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İbrahim Muter
School of Management, University of Bath, BA2 7AY Bath, UK

i.muter@bath.ac.uk
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Abstract: In a recent work, Muter et al. (2013a) identified and characterized a general class of linear pro-

gramming (LP) problems - known as problems with column-dependent-rows (CDR-problems). These LPs feature

two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking con-

straints, in which variables from both groups appear together. In a typical CDR-problem, the number of linking

constraints grows very quickly with the number of variables, which motivates generating both columns and their

associated linking constraints simultaneously on-the-fly. In this paper, we expose the decomposable structure of

CDR-problems via Benders decomposition. However, this approach brings on its own theoretical challenges. One

group of variables is generated in the Benders master problem, while the generation of the linking constraints is

relegated to the Benders subproblem along with the second group of variables. A fallout of this separation is that

only a partial description of the dual of the Benders subproblem is available over the course of the algorithm.

We demonstrate how the pricing subproblem for the column generation applied to the Benders master problem

does also update the dual polyhedron and the existing Benders cuts in the master problem to ensure convergence.

Ultimately, a novel integration of Benders cut generation and the simultaneous generation of columns and con-

straints yields a brand-new algorithm for solving large-scale CDR-problems. We illustrate the application of the

proposed method on a time-constrained routing problem. Our numerical experiments confirm the outstanding

performance of the new decomposition method.

Keywords: large-scale optimization; linear programming; column-dependent-rows; column generation; column-

and-row generation; Benders decomposition; pricing subproblem; quadratic set covering; time-constrained

routing problem.

1. Introduction. We have recently developed a simultaneous column-and-row generation methodol-

ogy (Muter et al., 2013a) for a general class of linear programming problems. The problems that belong

to this class have an interesting structure. In their most general form, they feature two sets of con-

straints with mutually exclusive groups of variables in addition to a set of linking constraints, in which

variables from both groups appear together. The list of applications which fit into this framework and

satisfy the assumptions of our analysis include multi-stage cutting stock (Zak, 2002), P-median facil-

ity location (Avella et al., 2007), multi-commodity capacitated network design (Katayama et al., 2009;

Frangioni and Gendron, 2009), two-stage batch scheduling (Wang and Tang, 2010), robust crew pairing

(Muter et al., 2013b), and time-constrained routing (Avella et al., 2006; Muter et al., 2012). These prob-

lems are frequently formulated with too many variables to be included explicitly in the model at the

outset and are therefore typically attacked by column generation techniques (Dantzig and Wolfe, 1960;

Lübbecke and Desrosiers, 2005). The additional challenge here is that the number of linking constraints is

either too large which precludes us from incorporating these constraints directly in the formulation, or an

explicit description of the full set of linking constraints is only available in the presence of the entire set of

variables. Therefore, whenever these problems are solved by column generation, the introduction of new
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columns leads to the generation of new linking constraints. That is, the sequence of LPs solved during

column generation does not only grow column-wise but also row-wise through the addition of new linking

constraints. Consequently, we refer to this class of formulations as problems with column-dependent-rows,

or more concisely as CDR-problems. A key point here is that these new linking constraints are structural

constraints required for the validity of the formulation. This is a defining property which clearly distin-

guishes our work from the branch-and-cut-and-price setting as we elaborate upon in the next paragraph.

The primary challenge in solving CDR-problems via column generation is to price out the columns absent

from the formulation correctly as the dual variables associated with the missing linking constraints are

unknown. To overcome this difficulty, we have developed a thinking-ahead approach, which computes

the correct values of the dual variables of the missing linking constraints as if they were present in the

formulation (Muter et al., 2013a). Recently, simultaneous generation of columns and rows has also been

studied in other settings by Frangioni and Gendron (2013) and Sadykov and Vanderbeck (2013).

A large number of problems solved by column generation originally involve integrality constraints for

some or all of the variables. To solve such problems to optimality, column generation is generally inte-

grated into the branch-and-bound method giving rise to the branch-and-price method (Barnhart et al.,

1998). Generating strengthened bounds at the nodes of the branch-and-price tree can be achieved through

valid inequalities obtained by solving a separation subproblem. This use of column and row genera-

tion together in a branch-and-bound setting is known as branch-and-cut-and-price; see the works of

Desaulniers et al. (2011) and Desrosiers and Lübbecke (2011). In the branch-and-cut-and-price frame-

work, rows and columns are generated sequentially and independently from each other by solving the

separation and pricing subproblems, respectively. This is fundamentally different from the setting in

Muter et al. (2013a) and in this paper, which requires us to generate both columns and their associated

linking constraints interdependently on-the-fly.

In this paper, we extend our previous work on CDR-problems and solve them by using Benders

decomposition (Benders, 1962). This decomposition technique partitions the variables into two smaller

problems –the Benders master problem and the Benders subproblem– so that the overall problem can be

handled efficiently with an iterative algorithm known as delayed cut generation. Rahmaniani et al. (2016)

provides a comprehensive survey of applications solved by Benders decomposition, including capacitated

facility location (Fischetti et al., 2016), production routing (Adulyasak et al., 2015), multi-period hub

location (Gelareh et al., 2015), and strip packing (Côté et al., 2014). As we shall discuss in the next

section, the structure of CDR-problems qualifies for such a decomposition. However, we observe that

a direct application of Benders decomposition is not possible because we do not have the complete

description of the dual of the Benders subproblem – the dual slave problem – during the iterations. In

particular, the dimension of the feasible region of the dual slave problem – the dual polyhedron – increases

as new linking constraints are introduced. This novel structure leads us to reconsider the fundamental

parts of Benders decomposition; solving a sequence of relaxed Benders master problems and applying

delayed cut generation by solving the dual slave problem in between. The proposed analysis along with

our observations constitute the main contributions of this work: We develop a new Benders decomposition

methodology for solving large-scale linear programs with column-dependent-rows. This approach induces

a novel integration of the delayed (Benders) cut generation and simultaneous column-and-row generation

for solving large-scale CDR-problems. To illustrate the application of the proposed method, we explain
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each step on the time-constrained routing problem. Our numerical experiments confirm that the new

decomposition method outperforms not only the off-the-shelf solvers but also our previous algorithm for

CDR-problems presented in Muter et al. (2013a).

2. Motivation. We devote this section to explaining our motivation for developing a new Benders

decomposition methodology for solving CDR-problems. To this end, we first revisit the generic mathe-

matical model for CDR-problems:

(MP) minimize
∑

k∈K

ckyk+
∑

n∈N

dnxn,

subject to
∑

k∈K

Ajkyk ≥ aj , j ∈ J, (MP-y)

∑

n∈N

Bmnxn ≥bm, m ∈M, (MP-x)

∑

k∈K

Cikyk+
∑

n∈N

Dinxn ≥ ri, i ∈ I(K,N), (MP-yx)

yk ≥ 0, k ∈ K, xn ≥ 0, n ∈ N.

In general, we allow for exponentially many y- and x- variables in the master problem formulation

(MP) above and therefore reckon that any generic viable algorithm for solving CDR-problems must be

able to generate both types of variables dynamically in a column generation framework. The cardinality

of the constraints (MP-y) and (MP-x) is polynomially bounded in the size of the problem, and these are

directly incorporated into the model. However, the cardinality of the set of linking constraints (MP-yx)

depends on | K | and | N | and is either theoretically or practically too large – see Example 3.1 in

Section 3. Note that the dependence of the linking constraints on the variables is conveyed through the

notation I(K,N). This non-standard structure of (MP) prompts us to search for alternatives to handle

the linking constraints (MP-yx) in a column generation scheme.

A key observation that motivates the solution approach for CDR-problems in this paper is that the

constraints (MP-y) and (MP-x) impose conditions only on the y− and x−variables, respectively. There-

fore, these two groups of variables can be handled in two separate problems. This is a typical structure

amenable to Benders decomposition. In particular, we project out the x−variables and relegate them to

the subproblem while the y−variables are kept in the master problem. This choice is not arbitrary; the

underlying reason will be clear in Section 3.1, where we qualify the y−variables as the primary set of

variables in some sense. Formally, we write

minimize
∑

k∈K

ckyk + z(y),

subject to
∑

k∈K

Ajkyk ≥ aj , j ∈ J,

yk ≥ 0, k ∈ K,

(1)

where for a fixed ȳ we have

(BSP) z(ȳ) = minimize
∑

n∈N

dnxn,

(vm) subject to
∑

n∈N

Bmnxn ≥ bm, m ∈M,

(wi)
∑

n∈N

Dinxn ≥ ri −
∑

k∈K

Cikȳk, i ∈ I(K,N),

xn ≥ 0, n ∈ N.

(2)
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This problem is referred to as the Benders subproblem, where the dual variables are indicated in paren-

theses to the left of their respective constraints. Using LP duality, we obtain the equivalent dual slave

problem

(DBSP) z(ȳ) = maximize
∑

m∈M

bmvm +
∑

i∈I(K,N)

(ri −
∑

k∈K

Cikȳk)wi,

subject to
∑

m∈M

Bmnvm +
∑

i∈I(K,N)

Dinwi ≤ dn, n ∈ N,

vm ≥ 0,m ∈M ;wi ≥ 0, i ∈ I(K,N).

(3)

Note that the dual polyhedron, denoted by Φ, is independent of ȳ. We assume that Φ is nonempty, and

by representing the set of extreme points and extreme rays of Φ as PΦ and QΦ, respectively, (DBSP) is

re-formulated as

z(ȳ) = minimize z,

subject to
∑

m∈M

bmvm +
∑

i∈I(K,N)

(ri −
∑

k∈K

Cikȳk)wi ≤ z, (v,w) ∈ PΦ,

∑

m∈M

bmvm +
∑

i∈I(K,N)

(ri −
∑

k∈K

Cikȳk)wi ≤ 0, (v,w) ∈ QΦ.

(4)

If we plug z(y) into (1), then we obtain the Benders master problem given by

(BMP) minimize
∑

k∈K

ckyk + z,

subject to
∑

k∈K

Ajkyk ≥ aj , j ∈ J,

z +
∑

i∈I(K,N)

∑

k∈K

Cikwiyk ≥
∑

m∈M

bmvm +
∑

i∈I(K,N)

riwi, (v,w) ∈ PΦ,

∑

i∈I(K,N)

∑

k∈K

Cikwiyk ≥
∑

m∈M

bmvm +
∑

i∈I(K,N)

riwi, (v,w) ∈ QΦ,

yk ≥ 0, k ∈ K,

(5)

which is equivalent to (MP). On the one hand, (BMP) has far fewer variables compared to (MP) as

the x−variables do not exist in this problem. On the other hand, the number of constraints in (BMP)

may be substantially larger because it includes one constraint for each extreme point and extreme ray of

Φ. The main motivation for conducting this study is to investigate whether the application of Benders

decomposition to solve CDR-problems is advantageous given that the overall problem needs to be solved

by column generation as alluded to at the start of this section.

There exist other studies in the literature, such as Cordeau et al. (2000) and Cordeau et al. (2001),

which employ column generation within a Benders framework. In all of these works, the dual polyhedron is

available for enumeration or generation. This is a key point because the validity of Benders decomposition

rests on the independence of the dual polyhedron from the values of the variables kept in the Benders

master problem. These variables only appear in the objective function of the dual slave problem, and

consequently, the convergence of the Benders decomposition scheme is established by arguing the finiteness

of the set of extreme points and the set of extreme rays of the dual polyhedron. Clearly, the maximum

number of generated Benders cuts cannot exceed the total number of extreme points and extreme rays of

the dual polyhedron. However, for CDR-problems considered here, the complete description of the dual

polyhedron is not available. Note that the sets of constraints and variables in the dual slave problem are

determined by the set of x−variables and the set of linking constraints, respectively. Consequently, if

we adopt an iterative approach that generates both variables and linking constraints on the fly in order

to solve (BMP), then the dual slave problem would be missing both constraints and variables during
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the iterations of such an algorithm. In other words, we would be solving the dual slave problem over

different feasible regions over the course of the iterations. This undermines the basic premise of Benders

decomposition. Moreover, generating a set of y− and x− variables and an associated set of linking

constraints simultaneously as a result of solving a single pricing subproblem (PSP) is a challenging task,

not least because the y−variables are generated in the Benders master problem, while the x−variables

and the linking constraints are added to the dual slave problem.

Based on the preceding discussion, our main goal is to design a PSP for the column generation applied

to the Benders master problem which takes the changes in the dual polyhedron into consideration. We

show that the generation of new y−variables in the master problem also entails updating the existing

Benders cuts by taking into account the modifications required in the dual polyhedron in an effort to

ensure the convergence of the algorithm. Ultimately, we deal with an unconventional case, where the

currently existing methods fall short. We tackle it by designing an algorithm that correctly incorporates

simultaneous column-and-row generation into the Benders decomposition scheme.

3. Proposed Methodology. This study depends on our previous work on simultaneous column-

and-row generation (Muter et al., 2013a). To make the paper self-contained, we first review our notation

about CDR-problems on an illustrative example. Subsequently, we introduce the components of our

proposed approach – the delayed Benders cut generation and the simultaneous column-and-row generation

– and conclude this section with a formal convergence analysis of our algorithm.

3.1 Notation and Previous Work. As we mentioned in the previous section, when column gen-

eration is applied to the master problem (MP), the sets of columns K and N are replaced by their

subsets K̄ and N̄ , respectively. Recall that the linking constraints depend on the columns. There-

fore, any restriction on the variables leads to a restriction on the constraints, and we define the index

set Ī := I(K̄, N̄) ⊆ I(K,N) to designate the set of linking constraints formed by {yk | k ∈ K̄}, and

{xn | n ∈ N̄}. To reflect this special structure, we refer to the model formed by {yk | k ∈ K̄},

{xn | n ∈ N̄}, (MP-y), (MP-x), and a subset of the linking constraints indexed by Ī as the short

restricted master problem (SRMP).

Muter et al. (2013a) lay out three assumptions that characterize a generic CDR-problem (see Appendix

A). Relying on these assumptions, they propose a simultaneous column-and-row generation algorithm

applied directly to (MP). Likewise, we also use the same assumptions in our solution approach, which

is based on Benders decomposition coupled with simultaneous column-and-row generation applied to

(BMP). Roughly speaking, these assumptions designate the y−variables as the primary set of variables in

the sense that generating new x−variables and linking constraints does not improve the objective function

value of (SRMP) unless certain y−variables already exist in (SRMP) or are generated simultaneously.

Thus, the fundamental idea behind simultaneous column-and-row generation stems from the generation

of a set of y−variables indexed by SK – referred to as a minimal variable set –, which also triggers

the generation of a set of x−variables indexed by SN (SK) and a set of linking constraints indexed by

∆(SK). Note that both sets depend on SK . The second and third assumptions in Appendix A imply

that the variables {xn | n ∈ SN (SK)} cannot assume non-zero values until all variables {yk | k ∈ SK}

are generated and take positive values. Therefore, the linking constraints ∆(SK) are redundant until
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{yk | k ∈ SK} are present in (SRMP). These concepts and our notation – summarized in Table 1 – are

best explained by an illustrative example.

Table 1: Notation (Muter et al., 2013a).

SK the index set of a minimal variable set {yl | l ∈ SK}.

Sk
K index k denotes that yk is a member of the minimal variable set {yl | l ∈ Sk

K}.

SN (SK) the index set of the x−variables induced by {yl | l ∈ SK}.

∆(SK) the index set of the linking constraints induced by {yl | l ∈ SK}.

Pk the power set of the set composed by the index sets of the minimal

variable sets containing yk.

Fk a family of the index sets of the minimal variable sets of the form

Sk
K ; i.e., Fk ∈ Pk.

Σk = ∪Sk

K
∈Fk

Sk
K .

Example 3.1 The quadratic set covering problem (QSC) is a CDR-problem that satisfies the assumptions

given in Appendix A. The reader is referred to Muter et al. (2013a) for details. In this problem, the

objective is to cover all items j ∈ J by a subset of the sets k ∈ K at minimum total cost. The cost

function contains not only the individual costs for k ∈ K but also the cross-effect costs between each pair

of sets k, l ∈ K, leading to a quadratic objective function. A linearization of the objective function yields

the following LP relaxation of QSC:

minimize
∑

k∈K

fkkyk +
∑

(k,l)∈Π,k<l

2fklxkl, (6)

subject to
∑

k∈K

Ajkyk ≥ 1, j ∈ J, (7)

yk + yl − xkl ≤ 1, (k, l) ∈ Π, k < l, (8)

yk − xkl ≥ 0, (k, l) ∈ Π, k < l, (9)

yl − xkl ≥ 0, (k, l) ∈ Π, k < l, (10)

yk ≥ 0, k ∈ K, (11)

xkl ≥ 0, (k, l) ∈ Π, k < l, (12)

where Π := K ×K is the set of all possible pairs, and Ajk = 1, if item j is covered by set k; and is 0,

otherwise. In this linearized formulation of QSC, each pair of variables induces three linking constraints,

and the size of the formulation grows very quickly with | K |. Thus, (6)-(12) lends itself nicely to our

solution methods tailored to CDR-problems. To construct (SRMP), a subset of the columns from K,

denoted by K̄, is selected. This induces a set of associated linking constraints indexed by Π̄ ⊂ Π containing

the restricted set of column pairs in K̄ × K̄ along with the related x−variables. The addition of a new

variable yk to (SRMP) introduces a set of linking constraints and x−variables for each pair (k, l) with

l ∈ K̄. Observe that before both yk and yl enter (SRMP), the variable xkl and the linking constraints (8)-

(10) are redundant. Thus, the pair of variables {yk, yl} constitute a minimal variable set Sk
K = {k, l} which

triggers the generation of xkl with SN (Sk
K) = {(k, l)} and the three associated linking constraints labeled

as ∆(Sk
K). The challenging aspect of solving (6)-(12) via simultaneous column-and-row generation is that
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the reduced cost of yk may only drop below zero if it is added to (SRMP) along with, say, yl, ym, while yn

is already included in (SRMP). The notation Fk and Pk is required to account for this possibility. In the

case under consideration, we have a family of index sets Fk = {{k, l}, {k,m}, {k, n}}, where each element

corresponds to a minimal variable set containing yk. Thus, the members of {yk | k ∈ Σk} currently missing

from (SRMP) are incorporated, where Σk = ∪Sk

K
∈Fk

Sk
K = {k, l,m, n}. Furthermore, for each Sk

K ∈ Fk

the associated x−variables indexed by SN (Sk
K) and the set of linking constraints ∆(Sk

K) are also added.

Consequently, the updated (SRMP) is formed by {yk | k ∈ K̄ ∪Σk}, {xn | n ∈ N̄ ∪SN (Σk)}, and the set

of linking constraints Ī∪∆(Σk) in addition to constraints (7). For QSC, Fk will generally include several

minimal sets resulting from the interaction of yk with multiple y−variables. In contrast, for problems that

do not posses such a structure, such as the time-constrained routing problem that we consider in Section

4, Fk is always a singleton.

Starting from the concepts and observations discussed above, Muter et al. (2013a) design a simultane-

ous column-and-row generation algorithm for solving (MP) to optimality. This algorithm invokes three

PSPs sequentially and terminates if no new column is generated in a full cycle. In the y− and x−PSPs,

the currently absent y− and x− variables are priced out, respectively, by ignoring the missing linking

constraints. In the row-generating PSP, the objective is to determine a family Fk of index sets Sk
K that

minimizes the reduced cost of yk. If this PSP identifies a y−variable with a negative reduced cost, then

(SRMP) grows both horizontally and vertically as discussed in the context of QSC in the preceding ex-

ample. A fundamental difference of our approach in this paper from that in Muter et al. (2013a) is that

we exploit the decomposable structure of (MP) instead of attacking it directly. This fresh perspective,

on the one hand, carries computational benefits as demonstrated in Section 4, and on the other hand,

poses the theoretical challenges discussed at the end of Section 2.

3.2 Delayed Cut Generation. In this section, we restrict our attention to delayed Benders cut

generation for solving (BMP). In order not to detract the reader’s attention from this focus, we assume

that all y−variables are present in (BMP) and tackle the integration of delayed Benders cut generation

and simultaneous column-and-row generation in the next section.

Clearly, generating the complete set of Benders cuts in (BMP) by enumerating all extreme points

and extreme rays of the dual polyhedron is computationally prohibitive. A well-known remedy is to

employ delayed cut generation, which starts out with a small number of Benders cuts present in the

Benders master problem – referred to as the short Benders master problem (S-BMP) – and augments

the set of Benders cuts iteratively by solving a subproblem. Each iteration involves the re-optimization

of (S-BMP) followed by Benders cut generation based on the solution of (DBSP). The sets of extreme

points and extreme rays of the dual polyhedron for which cuts have been incorporated into (S-BMP)

over t = 0, 1, . . . iterations are represented by P t
Φ ⊂ PΦ and Qt

Φ ⊂ QΦ, respectively. The optimal objective

function value and the corresponding optimal solution of (S-BMP) at iteration t are denoted by Zt and

(ȳt, z̄t), respectively. At any iteration t, the value of Zt is a lower bound on the optimal objective function

value of (BMP) because (S-BMP) is a relaxation of (BMP). The relaxation gets tighter as we keep

adding Benders cuts over the iterations; i.e., we have P t−1
Φ ⊆ P t

Φ and Qt−1
Φ ⊆ Qt

Φ for t = 1, · · · . Thus,

the sequence of objective function values Zt, t = 0, 1. . . . , is non-decreasing.



8 Muter, Birbil, Bülbül: Benders and Column-and-Row Generation

At each iteration, (DBSP) is solved for the current optimal solution of (S-BMP). If (DBSP) is

unbounded – that is, if (BSP) is infeasible –, we retrieve the corresponding extreme ray (v̄, w̄), set

Qt+1
Φ = Qt

Φ ∪ {(v̄, w̄)}, and add the following feasibility cut to (S-BMP):

∑

i∈I(K,N)

∑

k∈K

Cikw̄iyk ≥
∑

m∈M

bmv̄m +
∑

i∈I(K,N)

riw̄i. (FeasCut)

Otherwise, there exists an extreme point optimal solution (v̄, w̄) to (DBSP). If z(ȳt) > z̄t holds for this

extreme point, then we set P t+1
Φ = P t

Φ ∪ {(v̄, w̄)} and incorporate the following violated optimality cut

into (S-BMP):

z +
∑

i∈I(K,N)

∑

k∈K

Cikw̄iyk ≥
∑

m∈M

bmv̄m +
∑

i∈I(K,N)

riw̄i. (OptCut)

Finally, if (DBSP) is not unbounded and no optimality cut is violated, the algorithm terminates. This

stopping condition may be too conservative, and we may also terminate the delayed cut generation

algorithm if we are sufficiently close to optimality. Observe that summing up the optimal objective

function value z(ȳt) of (DBSP) with
∑

k∈K

ckȳ
t
k yields an upper bound on the optimal objective function

value of (BMP) at iteration t. However, the sequence of these values is not necessarily non-increasing.

Therefore, we need to keep track of the smallest upper bound (incumbent upper bound) identified so far.

A natural termination condition for the algorithm is then that the gap between Zt and the incumbent

upper bound drops below a predetermined small value.

3.3 Simultaneous Column-and-Row Generation. We now propose an iterative column-and-

row generation algorithm in combination with delayed Benders cut generation to solve CDR-problems to

optimality. Each iteration of the algorithm involves solving a Benders master problem followed by a series

of subproblems in some appropriate sequence –as discussed later in this section– in order to generate new

variables, linking constraints, and Benders cuts. Initially, we start out by replacing the index set K of

the set of y−variables in (S-BMP) by a subset K̄. Due the structure of CDR-problems, the y−variables

indexed by K̄ induce a specific set of x−variables indexed by N̄ ⊂ N and a set of linking constraints

Ī ⊂ I(K,N). Consequently, both variables and constraints are absent from the Benders subproblem and

the dual slave problem during the iterations. We aptly refer to these problems as the short-and-restricted

Benders subproblem (SR-BSP) and the short-and-restricted dual slave problem (SR-DBSP) and state

them below for a given ȳ
t at iteration t:

(SR-BSP) z(ȳt) = minimize
∑

n∈N̄

dnxn,

subject to
∑

n∈N̄

Bmnxn ≥ bm, m ∈M,

∑

n∈N̄

Dinxn ≥ ri −
∑

k∈K̄

Cikȳ
t
k, i ∈ Ī ,

xn ≥ 0, n ∈ N̄ ;

(13)

(SR-DBSP) z(ȳt) = maximize
∑

m∈M

bmvm +
∑

i∈Ī

(ri −
∑

k∈K̄

Cikȳ
t
k)wi,

subject to
∑

m∈M

Bmnvm +
∑

i∈Ī

Dinwi ≤ dn, n ∈ N̄ ,

vm ≥ 0,m ∈M ;wi ≥ 0, i ∈ Ī .

(14)

A fundamental point that deserves special attention is the evolution of the dual polyhedron over the

iterations. Both the set of variables wi, i ∈ Ī, and the set of constraints n ∈ N̄ in (SR-DBSP) are
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determined by yk, k ∈ K̄, kept in the short-and-restricted Benders master problem (SR-BMP) given in

the following. The implication is that both dimensions (variables) and defining inequalities (constraints)

are initially removed from the dual polyhedron Φ, which are added back as required at certain steps of

the algorithm. We label the modified dual polyhedron as Φ̄ and index it by s. Under this definition,

(SR-BMP) at iteration t is formulated as

(SR-BMP) minimize
∑

k∈K̄

ckyk + z,

(uj) subject to
∑

k∈K̄

Ajkyk ≥ aj , j ∈ J,

(γp) z +
∑

k∈K̄

∑

i∈Ī

Cikwiyk ≥
∑

m∈M

bmvm +
∑

i∈Ī

riwi, (v,w) ∈ P t
Φ̄s ,

(µq)
∑

k∈K̄

∑

i∈Ī

Cikwiyk ≥
∑

m∈M

bmvm +
∑

i∈Ī

riwi, (v,w) ∈ Qt
Φ̄s ,

yk ≥ 0, k ∈ K̄.

(15)

Notation. For brevity of presentation, going forward we assume that the extreme points and extreme

rays of Φ̄s are enumerated sequentially and substitute the notation p ∈ P t
Φ̄s for (v,w) ∈ P t

Φ̄s and q ∈ Qt
Φ̄s

for (v,w) ∈ Qt
Φ̄s . Moreover, (vp,wp) stands for the pth extreme point or ray in P t

Φ̄s or Qt
Φ̄s , respectively,

depending on the context. Also note that the index s in Φ̄s is independent from the iteration index t as

we explain in the discussion following Figure 1 below.

As we elaborated upon in Section 2, the invariance of the dual polyhedron over the iterations is a basic

pillar of Benders decomposition. Therefore, we must ensure that all previously generated Benders cuts

remain valid with respect to the original dual polyhedron Φ as Φ̄ is updated. This is a main concern in the

PSPs explained later in this section. Note that we cannot trivially argue the validity of the previously

generated cuts because the relation Φ̄0 ⊆ Φ̄1 ⊆ Φ̄2 ⊆ . . . ⊆ Φ does not necessarily hold when both

variables and constraints are incorporated back into the dual polyhedron iteratively. Nonetheless, as

we later show, the extreme points and extreme rays of the lower-dimensional dual polyhedron Φ̄s can

be augmented with additional variables so that they remain extreme points and extreme rays for the

higher-dimensional –but more constrained– dual polyhedron Φ̄s+1. At termination, all Benders cuts in

(SR-BMP) are valid with respect to Φ – see Theorem 3.1.

We now discuss the rationale of the proposed algorithm at a high level without going into the details

of any PSP. An overview of the proposed column-and-row generation algorithm is depicted in Figure

1. Each iteration –indexed by t– commences by solving the current (SR-BMP) via column generation

to optimality by calling the y−PSP repeatedly and augmenting (SR-BMP) with new y−variables as

required. At the conclusion of this column generation phase, we identify the minimal variables sets

that were previously missing from (SR-BMP) and are completed incidentally by the addition of new

y−variables. Recall that by Assumption A.2, a linking constraint is redundant until all variables in at

least one of the associated minimal variable sets are generated. The Benders subproblem is updated by

taking into account the linking constraints induced by these new minimal variable sets. In some CDR-

problems, such as the quadratic set covering problem given in Example 3.1, the x−variables which appear

in these new linking constraints are readily available and also incorporated directly. At this point, we can

correctly evaluate whether the current optimal solution of (SR-BMP) yields a feasible solution in the

Benders subproblem by verifying the boundedness of (SR-DBSP). If not, the current optimal solution

of (SR-BMP) is removed from further consideration by generating a Benders feasibility cut (FeasCut)
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Figure 1: The flow chart of the proposed algorithm.

based on an extreme ray of (SR-DBSP), and column generation resumes for (SR-BMP). Once we

establish that the optimal solution of the current (SR-BMP) is feasible with respect to the Benders

subproblem, we move on to improving the approximation of the objective function of (SR-BMP). To

this end, we first solve (SR-BSP) to optimality through column generation by invoking the x−PSP

repeatedly with the current set of available linking constraints. Observe that the feasibility of (SR-BSP)

is guaranteed at this step because (SR-DBSP) is bounded. At the completion of the column generation,

a new optimality cut (OptCut) created from an extreme point optimal solution of (SR-BSP) is appended

to (SR-BMP) if a violated cut is detected as discussed in Section 3.2. Otherwise, the row-generating PSP

is called. (BMP) is solved to optimality and our column-and-row generation algorithm in combination

with delayed Benders cut generation terminates whenever the row-generating PSP fails to identify a

y−variable with a negative reduced cost.

We underline a fundamental difference between the row-generating PSP and the other two, before we

delve into the specifics of these subproblems. The y− and x−PSPs generate new y− and x−variables,

respectively, by completely ignoring the missing linking constraints. That is, these two PSPs do not

change the dimension of the dual polyhedron Φ̄. In contrast, the whole purpose of the row-generating
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PSP is to determine at least one y−variable which prices out favorably, only if it is created along with

other y− and x−variables and new linking constraints. The row-generating PSP triggers the addition

of a set of defining constraints and dimensions to the dual polyhedron Φ̄s and increases its index from

s to s + 1. In other words, the index s in Φ̄s keeps track of the number of times the dimension of the

dual polyhedron grows and the Benders cuts present in (SR-BMP) are modified accordingly. We do not

indicate it in Figure 1; however, strictly speaking, s is also incremented when the necessary changes to

the dual polyhedron are applied after the y−PSP as a consequence of the incidentally completed minimal

variable sets. We also point out that the algorithmic flow in Figure 1 avoids solving the computationally

more expensive row-generating PSP as long as it can proceed otherwise.

y−Pricing Subproblem. This subproblem is handled in (SR-BMP), and the objective is to deter-

mine a variable yk, k ∈ (K \ K̄) with a negative reduced cost, where any impact on the dual polyhedron

is disregarded. The y−PSP is defined as

ζy = min
k∈K






ck −

∑

j∈J

ujAjk −
∑

p∈P t

Φ̄s

∑

i∈Ī

Cikw
p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈Ī

Cikw
q
i µq






, (16)

where uj ≥ 0, j ∈ J , γp ≥ 0, p ∈ P t
Φ̄s , and µq ≥ 0, q ∈ Qt

Φ̄s are the set of dual variables corresponding

to the constraints in (SR-BMP) with their values retrieved from the optimal solution of the current

(SR-BMP). Note that the values of the dual variables corresponding to the Benders cuts present in

(SR-BMP) are taken into account in this subproblem. If ζy is non-negative, then the current solution

ȳ
t of (SR-BMP) is proven optimal, and we proceed to solve (SR-DBSP) given ȳ

t. Otherwise, there

exists yk whose reduced cost, denoted by c̄k, is negative, and (SR-BMP) grows by a single variable by

setting K̄ ← K̄ ∪ {k}.

The y−PSP is not intended to generate new linking constraints. However, the y−variables added by

the y−PSP may incidentally constitute or complete new minimal variable sets in (SR-BMP) that induce

a new set of linking constraints and associated x−variables in (SR-BSP). These new linking constraints

and x−variables change the dual polyhedron, and – as alluded to before – prescribe that we update the

currently existing Benders cuts in (SR-BMP) to ensure the correctness of our algorithm. Moreover, as

explained previously in this section, the mandatory modifications must be reflected in the dual polyhedron

prior to solving (SR-DBSP) so that the feasibility of the current optimal solution ȳ
t of (SR-BMP) is

assessed properly. Therefore, after generating columns by solving the y−PSP the incidentally completed

minimal variable sets must be identified, and the associated changes must be applied to (SR-BSP),

(SR-DBSP), and to the existing Benders cuts in (SR-BMP). The details of the cut update procedure

are discussed in the context of the row-generating PSP in the following.

x−Pricing Subproblem. This subproblem is part of the column generation algorithm for solving

(SR-BSP) to optimality by generating new x−variables, assuming that the set of linking constraints

stays fixed. According to Assumption A.1 in Appendix A, no new linking constraint may be induced

without generating new y−variables; that is, ∆(∅) = ∅ for this PSP. The x−PSP is then stated as

ζx = min
n∈NK̄






dn −

∑

m∈M

Bmnvm −
∑

i∈Ī

Dinwi






, (17)
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where NK̄ is the set of x−variables induced by K̄. If ζx < 0, we set N̄ ← N̄ ∪ {n}, and (SR-BSP) and

(SR-DBSP) grow by a single variable and constraint, respectively. Otherwise, we check whether the

relation (OptCut) is violated by the optimal solution of (SR-DBSP) and introduce a new optimality cut

into (SR-BMP) if necessary. Observe that even if the x−PSP creates new constraints in (SR-DBSP)

between two consecutively generated optimality cuts, the former cut stays valid as long as NK̄ stays

constant. This is true because the optimal extreme point solution of (SR-DBSP) does not violate any

constraint in n ∈ NK̄\N̄ . Recall that NK̄ is only augmented with additional x−variables as a consequence

of the row-generating PSP or if some minimal variable sets are completed incidentally in the y−PSP.

Row-Generating Pricing Subproblem and Lifting. We now develop the row-generating PSP

which identifies the y−variables that price out favorably only if they are incorporated into (SR-BMP)

along with new linking constraints and x−variables. That is, differently from the y−PSP, this PSP

purposely searches for minimal variable sets to be added to (SR-BMP) so that the reduced cost of at

least one y−variable is decreased below zero. Consequently, the outcome of the row-generating PSP

is the y−variable with the smallest reduced cost, say yk, and the associated sets Fk, Σk, SN (Σk) and

∆(Σk) as defined in Section 3.1. On the one hand, the new set of y−variables {yl | l ∈ Σk} are appended

to (SR-BMP) and complete the minimal variable sets Sk
K ∈ Fk. On the other hand, (SR-BSP)

is augmented with the new linking constraints i ∈ ∆(Σk) featuring the new x−variables {xn | n ∈

SN (Σk)}. In other words, the column and row generation aspects of our simultaneous column-and-row

generation algorithm are handled in two different problems (SR-BMP) and (SR-BSP), respectively.

This separation complicates the column-and-row generation algorithm and has critical implications for

the dual polyhedron. Each new variable xn, n ∈ SN (Σk) introduces a new constraint into (SR-DBSP),

and each new linking constraint i ∈ ∆(Σk) increases the dimension of the dual polyhedron Φ̄s in the

current iteration by adding a new variable wi, i ∈ ∆(Σk). From the perspective of solving (BMP) to

optimality via generating y−variables and Benders cuts, two issues are rooted in these changes in the dual

polyhedron. First, for reasons detailed in Section 2 and at the start of this section, we must guarantee

that each Benders cut in (SR-BMP) corresponds to either an extreme point or an extreme ray of the

updated dual polyhedron Φ̄s+1 to ensure the convergence of our algorithm. Second, the new variables

wi, i ∈ ∆(Σk) appear in the existing Benders cuts constructed from p ∈ P t
Φ̄s and q ∈ Qt

Φ̄s , and their

unknown values factor into the reduced costs of the y−variables. A detailed analysis of both of these

issues below culminates in the formulation of the row-generating PSP.

From Φ̄s to Φ̄s+1, the dimension increases by |∆(Sk
K)| for each Sk

K ∈ Fk added to (SR-BMP), and

these new variables wi, i ∈ ∆(Sk
K) for Sk

K ∈ Fk must also be incorporated into the existing Benders cuts.

For instance, if we consider the optimality cut for p ∈ P t
Φ̄s , then we observe

z +
∑

l∈K̄∪Σk

∑

i∈Ī∪∆(Σk)

Cilwiyl

︸ ︷︷ ︸

updated term

≥
∑

m∈M

bmvm +
∑

i∈Ī

riwi +
∑

i∈∆(Σk)

riwi

︸ ︷︷ ︸

new term

. (18)

Initially, setting wi = 0, i ∈ ∆(Σk) seems convenient. However, the validity of this approach would hinge

upon whether (vp,wp) remains feasible with respect to Φ̄s+1 even if it is not an extreme point any more.

This is not necessarily the case, and (vp,wp) augmented with wi = 0, i ∈ ∆(Σk) may violate some of the
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new constraints in (SR-DBSP) associated with the new variables {xn | n ∈ SN (Σk)}:
∑

m∈M

Bmnvm +
∑

i∈Ī∪∆(Σk)

Dinwi =
∑

m∈M

Bmnvm +
∑

i∈∆(Sk

K
)

Dinwi ≤ dn, n ∈ SN (Sk
K), Sk

K ∈ Fk. (19)

The equality on the left hand side of (19) is a consequence of Assumption A.1 in Appendix A which

partitions the x−variables into disjoint sets of linking constraints. The new x−variables xn, n ∈

SN (Sk
K), Sk

K ∈ Fk are not part of the existing linking constraints i ∈ Ī in (SR-BSP). Consequently,

for each n ∈ SN (Sk
K), Sk

K ∈ Fk, the corresponding constraint in (SR-DBSP) involves only the variables

wi, i ∈ ∆(Sk
K). Ultimately, if (vp,wp) augmented with wi = 0, i ∈ ∆(Σk) does not satisfy any one of the

constraints (19), then the corresponding Benders cut in the current (SR-BMP) is invalid with respect

to Φ̄s+1. The remedy is to lift the variables wi, i ∈ ∆(Σk) in such a way that we obtain an extreme, and

hence valid, point of Φ̄s+1 out of p ∈ P t
Φ̄s and then update the associated Benders cut in (SR-BMP)

accordingly. Clearly, an analogous argument applies to the extreme rays q ∈ Qt
Φ̄s and the corresponding

feasibility cuts in the current (SR-BMP). Lifting is carried out independently for each p ∈ P t
Φ̄s and

q ∈ Qt
Φ̄s , where the values of the new dual variables wi, i ∈ ∆(Σk) for p and q after lifting are represented

by w
p
i , i ∈ ∆(Σk) and w

q
i , i ∈ ∆(Σk), respectively. The lifting problems are embedded into the definition

of the row-generating PSP because the values w
p
i , i ∈ ∆(Σk), p ∈ P t

Φ̄s and w
q
i , i ∈ ∆(Σk), q ∈ Qt

Φ̄s also

affect the reduced costs of the y−variables. They must be chosen such that the Benders cuts currently

present in (SR-BMP) are lifted correctly and the y−variable with the minimum reduced cost is identi-

fied. Finally, note that strictly speaking it would not be incorrect to transform p ∈ P t
Φ̄s or q ∈ Qt

Φ̄s to

any feasible point or ray of Φ̄s+1. However, we insist that each Benders cut corresponds to an extreme

point or ray of Φ̄s+1 because the convergence of a Benders algorithm is argued through the finiteness of

the sets of extreme points and extreme rays of the dual polyhedron.

To complete the development of the row-generating PSP we next analyze the reduced cost of a given

variable yk. The formulation of (SR-BMP) reveals that the reduced cost of yk is computed as

c̄k = ck −
∑

j∈J

Ajkuj −
∑

p∈P t

Φ̄s

∑

i∈Ī∪∆(Σk)

Cikw
p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈Ī∪∆(Σk)

Cikw
q
i µq. (20)

We observe that the expression (20) is similar to the reduced cost of a y−variable in the context

of the y−PSP given in (16), except that (20) includes the extra term −
∑

p∈P t

Φ̄s

∑

i∈∆(Σk)
Cikw

p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈∆(Σk)
Cikw

q
i µq. The challenge here is to properly account for the values wp

i , i ∈ ∆(Σk), p ∈

P t
Φ̄s and w

q
i , i ∈ ∆(Σk), q ∈ Qt

Φ̄s , which are currently unknown. Muter et al. (2013a) face a similar hurdle

and design a row-generating PSP to implicitly calculate the optimal values of the dual variables of the

missing linking constraints in (SRMP). By adopting a thinking-ahead approach similar in spirit, it turns

out that we can anticipate the true values of the new dual variables wi, i ∈ ∆(Σk) for any given p ∈ P t
Φ̄s

or q ∈ Qt
Φ̄s without explicitly solving an updated version of (SR-DBSP) first. This look-ahead feature

allows the correct computation of the reduced costs of all y−variables currently absent from (SR-BMP).

We have imposed two conditions on the row-generating subproblem so far: the values w
p
i , i ∈

∆(Σk), p ∈ P t
Φ̄s and w

q
i , i ∈ ∆(Σk), q ∈ Qt

Φ̄s must be set so that they minimize the reduced cost of

yk, where k 6∈ K̄, and they transform p ∈ P t
Φ̄s or q ∈ Qt

Φ̄s into an extreme point or ray of Φ̄s+1, respec-

tively. However, one additional trouble must be taken into account in the design of the row-generating

PSP. The values w
p
i , i ∈ ∆(Σk), p ∈ P t

Φ̄s and w
q
i , i ∈ ∆(Σk), q ∈ Qt

Φ̄s also affect the reduced costs of

yl, l ∈ K̄, and we must mandate that the row-generating PSP maintains the current reduced costs for
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these variables. This is obviously crucial to be able to warm start the simplex method for (SR-BMP)

following the updates prescribed by the outcome of the row-generating PSP. To this end, we enforce

Cilw
p
i = 0 for l ∈ K̄, i ∈ ∆(Σk), p ∈ P t

Φ̄s and Cilw
q
i = 0 for l ∈ K̄, i ∈ ∆(Σk), q ∈ Qt

Φ̄s . This clearly

guarantees that the extra term −
∑

p∈P t

Φ̄s

∑

i∈∆(Σk)
Cilw

p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈∆(Σk)
Cilw

q
i µq in (20) is zero

for yl, l ∈ K̄, and c̄l stays constant. The mechanism, through which these conditions are incorporated

into the definition of the row-generating PSP, is based on partitioning ∆(Sk
K) into two subsets for each

Sk
K ∈ Fk: ∆+(S

k
K) is the index set of the linking constraints of the form (38) given in Assumption A.3

with Cik > 0, and ∆0(S
k
K) = ∆(Sk

K)\∆+(S
k
K). Observe that a variable yl, l ∈ K̄ cannot appear in a new

linking constraint i ∈ ∆+(S
k
K), and wi, i ∈ ∆+(S

k
K) are allowed to take positive values. However, a new

linking constraint i ∈ ∆0(S
k
K) may involve yl, l ∈ K̄; and therefore, wi = 0, i ∈ ∆0(S

k
K) is imposed in the

row-generating PSP:

ζyx = min
k∈(K\K̄)

{

ck −
∑

j∈J

Ajkuj −
∑

p∈P t

Φ̄s

∑

i∈Ī

Cikw
p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈Ī

Cikw
q
i µq

− max
Fk∈Pk




∑

p∈P t

Φ̄s

γp
∑

Sk

K
∈Fk

αSk

K

(p) +
∑

q∈Qt

Φ̄s

µq

∑

Sk

K
∈Fk

αSk

K

(q)





}

,

where the optimization problem

αSk

K

(r) =maximize
∑

i∈∆(Sk

K
)

Cikw
r
i , (21a)

subject to
∑

i∈∆(Sk

K
)

Dinw
r
i ≤ dn(r)−

∑

m∈M

Bmnv
r
m, n ∈ SN (Sk

K), (21b)

wr
i = 0, i ∈ ∆0(S

k
K), (21c)

wr
i ≥ 0, i ∈ ∆+(S

k
K), (21d)

|∆(Sk
K)| many linearly independent tight constraints among (21b)-(21d)

(21e)

provides us with the values wp
i , i ∈ ∆(Σk) or w

q
i , i ∈ ∆(Σk), depending on whether it is invoked with the

argument r = p ∈ P t
Φ̄s or r = q ∈ Qt

Φ̄s , respectively. The parameter dn(r) on the right hand side of (21b)

is equal to dn if (21) is solved for p ∈ P t
Φ̄s and is zero for q ∈ Qt

Φ̄s . The underlying reason is that extreme

rays are required to be feasible with respect to the recession cone of the underlying polyhedron.

In its most general form stated above, the row-generating PSP is basically a subset selection problem,

where we search for the best family of the index sets of the minimal variable sets involving yk in an effort

to minimize the reduced cost of yk. To evaluate the contribution of a given family Fk ∈ Pk, we solve

the optimization problem (21) for each Sk
K ∈ Fk, p ∈ P t

Φ̄s , and q ∈ Qt
Φ̄s . Ultimately, we identify the

best combination of y−variables, which – if introduced simultaneously into (SR-BMP) – prompt the

generation of a set of new linking constraints and x−variables such that yk attains its minimum reduced

cost. Then, we pick the y−variable with the smallest reduced cost among those currently missing from

(SR-BMP). In the next section, we prove that (BMP) is solved to optimality if ζyx ≥ 0 and no missing

y−variable prices out favorably.

Observe that all three design requirements stipulated for the row-generating PSP are reflected in the

formulation above. The values w
p
i , i ∈ ∆(Σk), p ∈ P t

Φ̄s and w
q
i , i ∈ ∆(Σk), q ∈ Qt

Φ̄s are computed via
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(21) by respecting the restrictions on the dual variables wi, i ∈ ∆+(S
k
K) and wi, i ∈ ∆0(S

k
K) expressed

through the constraints (21c)-(21d) and such that c̄k is minimized. Furthermore, recall that the solution

of the row-generating PSP increases the dimension of (SR-DBSP) by | ∆(Sk
K) | for each Sk

K ∈ Fk. Thus,

transforming p ∈ P t
Φ̄s or q ∈ Qt

Φ̄s into an extreme point or ray of Φ̄s+1, respectively, requires that an

additional | ∆(Sk
K) | linearly independent defining inequalities of (SR-DBSP) are satisfied at equality.

This is precisely what is enforced by the constraint (21e). At first glance, this constraint seems redundant

because one may expect that the LP (21a)-(21d) would naturally admit an extreme point optimal solution

satisfying (21e) automatically whenever it is feasible. However, this LP is always unbounded as we prove

next, and (21e) needs to be stated explicitly as part of the row-generating PSP. Following Lemma 3.1,

we also show that the optimization problem (21) always admits an optimal solution and complete our

discussion on the design and structure of the row-generating PSP.

Lemma 3.1 The linear program (21a)-(21d) is unbounded.

Proof. It is sufficient to argue that (21a)-(21d) does always possess a feasible solution wr and

then construct a ray of unboundedness w̄r. Assumption A.3 guarantees that there always exists a linking

constraint i′ ∈ ∆(Sk
K) of the form (38) such that Ci′k > 0 and Di′n < 0 for all n ∈ SN (Sk

K). This prompts

us to define wr =
(

0 0 · · · L · · · 0
)⊺

and w̄r =
(

0 0 · · · 1 · · · 0
)⊺

, where the non-zero

entries correspond to i′ and L is a positive number. By definition, i′ ∈ ∆+(S
k
K) and (21c)-(21d) are

satisfied by w and w̄r. Clearly, we can always pick L large enough so that
∑

i∈∆(Sk

K
) Dinw

r
i = Di′nL ≤

dn −
∑

m∈M Bmnv
r
m for n ∈ SN (Sk

K). Moreover, we have
∑

i∈∆(Sk

K
) Dinw̄

r
i = Di′n < 0 for n ∈ SN (Sk

K)

and
∑

i∈∆(Sk

K
) Cikw̄

r
i = Ci′k > 0 which completes the proof. �

Lemma 3.2 The optimization problem (21) always has an optimal solution.

Proof. The polyhedron (21b)-(21d) is not empty by Lemma 3.1 and does not contain a line because

all variables are bounded through the constraints (21c)-(21d). Consequently, (21b)-(21d) has at least one

extreme point (Bertsimas and Tsitsiklis, 1997, Theorem 2.6) and the extreme point with the lowest cost

is optimal for (21). �

Solving the row-generating PSP becomes increasingly more time consuming as the number of Benders

cuts in (SR-BMP) grows. An additional complicating factor is that the search for an optimal solution

of (21) is restricted to the set of extreme points of the polyhedron described by (21b)- (21d). However,

in many applications – including the time-constrained routing problem in Section 4 – (21) is amenable

to a simple and very fast solution approach.

We conclude this section by explaining how the existing Benders cuts in (SR-BMP) are updated as a

result of the incidentally completed minimal variable sets in the y−PSP. In this context, the only concern

is to preserve the validity of the Benders cuts with respect to Φ̄s+1 following the selection of the new

y−variables to be included in (SR-BMP). Therefore, we only need to identify a feasible solution to

(21b)-(21e) for each incidentally completed minimal variable set, p ∈ P t
Φ̄s , and q ∈ Qt

Φ̄s . To this end, it

is sufficient to solve (21) with an empty objective function.
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3.4 Convergence Analysis. We next formally discuss that our integrated Benders decomposition

and simultaneous column-and-row generation algorithm obtains an optimal solution to (BMP). The

algorithmic flow depicted in Figure 1 dictates that the algorithm terminates if no y−variable prices

out favorably in the row-generating PSP. Two conditions are fulfilled when the row-generating PSP is

invoked: (i) we have a basic optimal solution to (SR-BMP) available, and (ii) the true objective function

value of this solution is estimated correctly by the set of Benders cuts in (SR-BMP). Based on these

conditions, our main convergence theorem rests on three intermediate steps. In the first step, we show

that the basic optimal solution of (SR-BMP) on hand is also a basic feasible solution to (S-BMP).

This step guarantees that without adding new Benders cuts, we obtain an optimal solution to (S-BMP)

as soon as ζyx ≥ 0 and the reduced costs of all columns become non-negative. The second step proves

that after augmenting the optimal solution of (SR-BMP) with a family of minimal variable sets, the

current optimal solution of (SR-DBSP) is also properly augmented; that is, the augmented solution is

optimal for the new (SR-DBSP). Then, we show in the third step that after lifting an extreme point

(ray), we still have an extreme point (ray) for the new altered dual polyhedron. With this step, we ensure

that the representation theorem is applied correctly within the master problem and guarantee the finite

convergence of our algorithm. In the sequel, we provide a series of intermediate results before formally

proving the correctness of our algorithm in Theorem 3.1.

If ζyx < 0, then the row-generating PSP determines that there exists k ∈ K \K̄ such that c̄k = ζyx < 0

if yl, l ∈ Σk = ∪Sk

K
∈Fk

Sk
K are incorporated into (SR-BMP). With this addition, the index sets K̄,

N̄ , and Ī are updated as K̄ ∪ Σk, N̄ ∪ SN (Σk), and Ī ∪ ∆(Sk
K), respectively. The associated changes

are reflected in (SR-BMP), (SR-BSP), and (SR-DBSP), and the resulting updated formulations are

referred to as SR-BMP(Σk), SR-BSP(Σk), and SR-DBSP(Σk), respectively.

Lemma 3.3 (Primal Basic Feasibility of the Master Problem) The following two statements

hold for SR-BMP(Σk): (i) The existing Benders cuts corresponding to p ∈ P t
Φ̄s and q ∈ Qt

Φ̄s are

satisfied by ȳ
′ =

(

ȳ
t 0

)

, where the current optimal solution ȳ
t of (SR-BMP) is augmented with zeros

for yl, l ∈ Σk \ K̄. (ii) ȳ
′ is a basic feasible solution for SR-BMP(Σk).

Proof. Recall that the outcome of the row-generating PSP modifies the existing Benders cuts in

(SR-BMP) as indicated in (18) for an optimality cut. Therefore, to show part (i), it is sufficient to

demonstrate that the new term in (18) vanishes and the updated term reduces to its original state. As

the modifications applied to a feasibility cut are identical to those applied to an optimality cut, the proof

is valid for both types of cuts. Let us start with the new term. Note that for Sk
K ∈ Fk and for both

r ∈ P t
Φ̄s and r ∈ Qt

Φ̄s , we have wr
i = 0, i ∈ ∆0(S

k
K) by constraints (21c) and ri = 0, i ∈ ∆+(S

k
K) by

Assumption A.3. Thus, we obtain
∑

i∈∆(Σk)

riw
r
i =

∑

Sk

K
∈Fk

∑

i∈∆(Sk

K
)

riw
r
i =

∑

Sk

K
∈Fk

∑

i∈∆0(Sk

K
)

riw
r
i +

∑

Sk

K
∈Fk

∑

i∈∆+(Sk

K
)

riw
r
i = 0.

Next, we check the updated term. Recall that the formulation of the row-generating PSP enforces Cilw
r
i =

0 for l ∈ K̄, i ∈ ∆(Σk) for both r ∈ P t
Φ̄s and r ∈ Qt

Φ̄s . Furthermore, ȳ′l = 0 for l ∈ Σk \ K̄. Therefore,
∑

l∈K̄∪Σk

∑

i∈Ī∪∆(Σk)

Cilw
r
i ȳ

′
l =

∑

l∈K̄

∑

i∈Ī

Cilw
r
i ȳ

′
l+
∑

l∈K̄

∑

∆(Σk)

Cilw
r
i ȳ

′
l+

∑

l∈Σk\K̄

∑

i∈Ī∪∆(Σk)

Cilw
r
i ȳ

′
l =

∑

l∈K̄

∑

i∈Ī

Cilw
r
i ȳ

′
l.

This completes the proof of part (i).
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Since none of the constraint coefficients – except for those in the Benders cuts – are affected by the

outcome of the row-generating PSP, ȳ′ is a feasible solution for SR-BMP(Σk) based on part (i). In

order to prove part (ii), it then suffices to argue that the coefficient
∑

i∈Ī Cilw
r
i of a basic variable l ∈ K̄

in a Benders cut r ∈ P t
Φ̄s or r ∈ Qt

Φ̄s remains intact after solving the row-generating PSP. Observe that

∑

i∈Ī∪∆(Σk)

Cilw
r
i =

∑

i∈Ī

Cilw
r
i +

∑

i∈∆(Σk)

Cilw
r
i =

∑

i∈Ī

Cilw
r
i ,

because Cilw
r
i = 0 for l ∈ K̄, i ∈ ∆(Σk) for both r ∈ P t

Φ̄s and r ∈ Qt
Φ̄s . �

Lemma 3.3 bears significance from a computational point of view because it implies that

SR-BMP(Σk) may be warm started from the most recent basic optimal solution of (SR-BMP). More-

over, yk is the only possible candidate for the entering variable in the simplex method as stipulated by the

next lemma. In the remainder of this section, ȳ′ refers to the optimal solution of the current (SR-BMP)

augmented by zeros for yl, l ∈ Σk \ K̄ as defined in Lemma 3.3.

Lemma 3.4 (Dual Feasibility of the Master Problem) The reduced cost of any variable yl′ , l
′ ∈

K \ {k} is non-negative with respect to the initial basic feasible solution ȳ
′ of SR-BMP(Σk).

Proof. Since the objective function coefficients of the basic variables and the basis matrix are

identical in both the optimal solution of (SR-BMP) and the starting solution of SR-BMP(Σk), the

values of the dual variables uj , j ∈ J , γp, p ∈ P t
Φ̄s , and µq, q ∈ Qt

Φ̄s remain constant. For any l′ ∈ K \{k},

the reduced cost of yl′ with respect to the initial basic feasible solution of SR-BMP(Σk) is then computed

as:

c̄l′ = cl′ −
∑

j∈J Ajl′uj −
∑

p∈P t

Φ̄s

∑

i∈Ī∪∆(Σk)
Cil′w

p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈Ī∪∆(Σk)
Cil′w

q
i µq

= cl′ −
∑

j∈J Ajl′uj −
∑

p∈P t

Φ̄s

∑

i∈Ī Cil′w
p
i γp −

∑

p∈P t

Φ̄s

∑

i∈∆(Σk)
Cil′w

p
i γp

−
∑

q∈Qt

Φ̄s

∑

i∈Ī Cil′w
q
i µq −

∑

q∈Qt

Φ̄s

∑

i∈∆(Σk)
Cil′w

q
i µq

= cl′ −
∑

j∈J Ajl′uj −
∑

p∈P t

Φ̄s

∑

i∈Ī Cil′w
p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈Ī Cil′w
q
i µq,

which is identical to the reduced cost of yl′ in the optimal solution of (SR-BMP) and must be non-

negative. The last equality follows from the same argument used in the proof of Lemma 3.3 – Cil′ = 0

for i ∈ ∆+(Σk), l
′ 6= k and w

p
i = w

q
i = 0 for i ∈ ∆0(Σk), p ∈ P t

Φ̄s , q ∈ Qt
Φ̄s . �

In the next lemma, we show that an optimal solution for SR-DBSP(Σk) can be constructed from the

optimal solution of (SR-DBSP). Moreover, both have the same objective function value.

Lemma 3.5 (Optimality of the Subproblem) An optimal solution to SR-DBSP(Σk) solved for ȳ′

is given by (v̄, w̄, w̄′), where (v̄, w̄) is an optimal solution of (SR-DBSP) solved for ȳ
t and the values

w̄′
i, i ∈ ∆(Σk) are set by solving (21) for Sk

K ∈ Fk given (v̄, w̄). In addition, we have z(ȳ′) = z(ȳt).

Proof. Given ȳ
t, let x̄t denote the optimal solution of (SR-BSP). We then construct an optimal

solution to SR-BSP(Σk) given ȳ
′. Since k 6∈ K̄ by definition, ȳ′k = 0 holds and the new constraints

in SR-BSP(Σk) indexed by ∆+(Σk) involving yk force the values of the new variables xn, n ∈ SN (Σk)

to zero by Assumption A.3. We claim that x̄
′ =

(

x̄
t 0

)

, where the current optimal solution x̄
t of

(SR-BSP) is augmented with zeros for xn, n ∈ SN (Σk), is a feasible solution for SR-BSP(Σk). The

constraints of SR-BSP(Σk) indexed by m ∈ M and i ∈ Ī are satisfied because x̄′
n = 0, n ∈ SN (Σk),
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ȳ′l = 0, l ∈ Σk \ K̄, and x̄
t is feasible for (SR-BSP). In addition, the second and third assumptions in

Appendix A collectively imply that the new linking constraints in SR-BSP(Σk) indexed by i ∈ ∆(Σk)

are not violated by x̄′
n = 0, n ∈ SN (Σk) if ȳ′l = 0, l ∈ Σk \ K̄. Thus, we conclude that x̄

′ is a feasible

solution to SR-BSP(Σk) with an objective function value of z(ȳt).

We next demonstrate that (v̄, w̄, w̄′) is feasible for SR-DBSP(Σk) with the same objective func-

tion value z(ȳt). By strong duality, this certifies (v̄, w̄, w̄′) as optimal for SR-DBSP(Σk) and proves

z(ȳ′) = z(ȳt). To this end, observe that the variables wi, i ∈ ∆(Σk) do not appear in the constraints of

SR-DBSP(Σk) indexed by N̄ due to Assumption A.1. Consequently, (v̄, w̄, w̄′) fulfills these constraints

because (v̄, w̄) is a feasible solution of (SR-DBSP). The remaining constraints in SR-DBSP(Σk) in-

dexed by SN (Σk) and the non-negativity constraints for wi, i ∈ ∆(Σk) are imposed by (21) and hold

for w̄
′. Therefore, the constructed solution (v̄, w̄, w̄′) is feasible for SR-DBSP(Σk). The associated

objective function value is z(ȳt), because the terms labeled as updated and new in (18) do not alter the

objective function evaluation as demonstrated in the proof of part (i) of Lemma 3.3. �

The following lemma shows that after lifting the existing extreme points and rays of the current

dual polyhedron according to the solution of the row-generating PSP, the resulting augmented points

and rays are also extremes for the new dual polyhedron. This is a critical step as the representation

theorem dictates to work with extreme points and rays, and is a key result for the finite convergence

of our algorithm. For ease of presentation, we restrict our attention to SR-DBSP(Sk
K) in the Lemma

3.6 below. The result is equally valid for SR-DBSP(Σk) by applying the construction described below

iteratively for each Sk
K ∈ Fk. For the purposes of Lemma 3.6, F represents the coefficients of the variables

vm,m ∈M and wi, i ∈ Ī in the linearly independent constraints of (SR-DBSP) active at some extreme

point (v̄p, w̄p) ∈ P t
Φ̄s . The matrices G and H are formed by the coefficients associated with the new

constraints in SR-DBSP(Sk
K) active at (v̄p, w̄p, w̄p′) – designated by p′ in the following discussion, where

w̄
p′
i , i ∈ ∆(Sk

K) are determined by solving (21) for Sk
K and p. The following matrix shows the structure

of these coefficients in SR-DBSP(Sk
K):




F 0

G H



 , (22)

where H denotes the coefficients of wi, i ∈ ∆(Sk
K) in the new constraints in SR-DBSP(Sk

K). Observe

that these variables do not appear in the constraints indexed by n ∈ N̄ based on Assumption A.1. Finally,

note that we obtain a very similar construction for an extreme ray (v̄q, w̄q) ∈ Qt
Φ̄s and (v̄q, w̄q, w̄q′) –

denoted by q′ in the sequel, where solving (21) for Sk
K and q yields w̄q′

i , i ∈ ∆(Sk
K). The only difference

is that the matrices F, G, and H are now defined with respect to the constraints tight at q and q′ in the

recession cones of Φ̄s and Φ̄s+1, respectively. Consequently, F is a (δ−1)× δ matrix of rank δ−1 instead

of a δ × δ square matrix of full rank, where δ =|M | + | Ī | is the dimension of Φ̄s.

Lemma 3.6 (Validity of Lifting) Let p and q be an extreme point and an extreme ray of the dual

polyhedron Φ̄s associated with (SR-DBSP), respectively. Suppose for a given Sk
K , we construct p′ and

q′ out of p and q, respectively, according to the solution of (21). Then, p′ is an extreme point and q′ is

an extreme ray of the dual polyhedron Φ̄s+1 induced by SR-DBSP(Sk
K).

Proof. The point p′ is feasible with respect to the constraints indexed by n ∈ N̄ in SR-DBSP(Sk
K)
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because the variables wi, i ∈ ∆(Sk
K) do not factor into these, and p is feasible for (SR-DBSP). The con-

straints (21b)-(21d) ensure that p′ is feasible with respect to the remaining constraints of SR-DBSP(Sk
K).

The δ linearly independent constraints active at p denoted by the δ × δ square matrix F in (22) are also

binding at p′. Furthermore, the constraint (21e) assures that the rows of the | ∆(Sk
K) | × | ∆(Sk

K) |

square matrix H are linearly independent. Consequently, p′ satisfies | ∆(Sk
K) |-many additional linearly

independent constraints of SR-DBSP(Sk
K) – depicted as

(

G H

)

in (22) – as equality. The dual poly-

hedron Φ̄s+1 is of dimension δ+ | ∆(Sk
K) |, and in order to conclude that p′ is an extreme point of Φ̄s+1

it is then sufficient to argue that the (δ+ | ∆(Sk
K) |) × (δ+ | ∆(Sk

K) |) square matrix given in (22) is of

full rank. This is obviously true because both square matrices F and H are of full rank.

The same line of reasoning presented above applies analogously to q and q′, where the only difference

is that the arguments are developed with respect to the recession cones of Φ̄s and Φ̄s+1. �

We are now ready to prove the optimality of our proposed approach given in Figure 1.

Theorem 3.1 (Correctness and Finite Convergence) Suppose that at iteration t, we have the

sets K̄, N̄ , and Ī. Let the pair (ȳt, z̄t) be the optimal solution of (SR-BMP). If the row-generating

PSP yields the optimal objective function value ζyx ≥ 0, then (ȳ′, z̄t) is optimal for (BMP), where

ȳ
′ =

(

ȳ
t 0

)

is obtained by augmenting ȳ
t with zeros for yk, k ∈ K \ K̄.

Proof. Observe that none of the Lemmas 3.3–3.6 requires an optimal solution to (21). All results

presented so far in this section are valid as long as we pick some extreme point of the polyhedron specified

by (21b)-(21d) in each call to (21) while solving the row-generating PSP. The particular choice of the

extreme point does only impact the reduced cost of the variable k 6∈ K̄ currently under consideration.

Based on the observation in the previous paragraph, we can construct a basic feasible solution of

(S-BMP) out of the basic optimal solution of (SR-BMP) at iteration t. To this end, select an arbitrary

family F of index sets SK such that (K \ K̄) ⊆ Σ = ∪SK∈FSK . Different from the row-generating PSP,

these minimal variable sets do not need to share a common variable index, because we are not interested

in minimizing the reduced cost of a particular variable at this step. For each SK ∈ F, solve (21) with

an empty objective function for each p ∈ P t
Φ̄s and q ∈ Qt

Φ̄s , where Φ̄s represents the dual polyhedron

at iteration t. Then, by applying Lemma 3.3 to Σ, we conclude that ȳ
′ is a basic feasible solution to

(S-BMP).

Next, we argue that no variable yk, k ∈ K \ K̄ prices out favorably in (S-BMP) with respect to

the basis associated with ȳ
′ if ζyx ≥ 0. To this end, note that all minimal variable sets of the form

{yl | l ∈ Sk
K} absent from (SR-BMP) in iteration t are included in (S-BMP) . The corresponding

family of index sets is clearly an element of Pk. Thus, we conclude that the reduced cost c̄k of yk in

(S-BMP) is non-negative because 0 ≤ ζyx ≤ ζkyx ≤ c̄k, where ζkyx denotes the minimum reduced cost of

yk computed over all possible members of Pk in the row-generating PSP. Hence, ȳ′ is a basic optimal

solution of (S-BMP) .

Each minimal variable set in F features at least one variable currently missing from (SR-BMP).

Therefore, Lemma 3.5 can be invoked iteratively for all SK ∈ F. This process keeps augmenting N̄

and Ī until all missing constraints indexed by N \ N̄ and all missing variables wi, i ∈ I(K,N) \ Ī are
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incorporated back into the dual polyhedron – ultimately yielding (DBSP) solved over Φ. Furthermore,

Lemma 3.5 guarantees that the optimal objective function value of (DBSP) solved for ȳ
′ is equal to

z(ȳt) so that z(ȳ′) = z(ȳt) ≤ z̄t holds based on the flow in Figure 1.

Finally, an iterative application of Lemma 3.6 to each SK ∈ F assures us that the extreme points

and extreme rays of Φ̄s associated with (SR-DBSP) are correctly lifted to become extreme points and

extreme rays of Φ associated with (DBSP). Thus, all Benders feasibility and optimality cuts in (S-BMP)

are valid with respect to the original dual polyhedron Φ and their number is finite. Moreover, the relation

z(ȳ′) ≤ z̄t implies that no Benders cut p ∈ PΦ or q ∈ QΦ is violated by the optimal solution of (S-BMP),

and the algorithm terminates with an optimal solution (ȳ′, z̄t) to (BMP) in a finite number of iterations.

�

4. Time-Constrained Routing Problem. In this section, the mechanics and promise of our ap-

proach is exemplified through an application to a time-constrained routing (TCR) problem. We first

define this problem and then solve its LP relaxation through our integrated Benders decomposition and

simultaneous column-and-row generation algorithm. The computational results attest to the effectiveness

of the proposed solution framework.

An application that needs to schedule the visit of a tourist to a given geographical area as efficiently

as possible motivates the time-constrained routing (TCR) problem defined and studied by Avella et al.

(2006). The tourist must be sent on one tour on each day of the vacation period so that his/her total

satisfaction is maximized and no attraction is visited more than once.

TCR can be formulated as a set packing problem with side constraints. To be consistent with (MP),

we change the notation given in Avella et al. (2006). The set of sites that may be visited by a tourist in

a vacation period M is denoted by J , and K represents the set of daily tours that originate from and

terminate at the same location. Each tour is a sequence of sites to be visited on the same day, provided

that it satisfies the time-windows restrictions of the tourist and the other feasibility criteria. The total

satisfaction of the tourist from participating in tour k is given by ck, and the binary variable yk is set to

one, if tour k is incorporated into the itinerary of the tourist. If tour k is performed on day m, then the

binary variable xkm takes the value one. The overall mathematical model is given as

maximize
∑

k∈K

ckyk, (23)

subject to
∑

k∈K

Ajkyk ≤ 1, j ∈ J, (24)

∑

k∈K

Bkmxkm ≤ 1, m ∈M, (25)

yk −
∑

m∈M

Dkmxkm = 0, k ∈ K, (26)

∑

k∈K

yk = |M |, (27)

yk ∈ {0, 1}, k ∈ K, (28)

xkm ∈ {0, 1}, k ∈ K,m ∈M. (29)

The matrix A is binary, and Ajk = 1 only if tour k contains site j. The matrices B and D are identical,
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and Bkm = Dkm = 1 indicates that tour k can be performed on day m; Bkm = Dkm = 0 otherwise.

Due to the constraints (24), at most one tour in the selected itinerary of the tourist visits site j. The

linking constraints (26) impose that a tour to be included in the itinerary is assigned to one of the days

allowed in M , and we also require that exactly one tour is selected on each day of the vacation period as

prescribed jointly through the constraints (25)-(27). The constraints (25), which were originally presented

as equality constraints in Avella et al. (2006), are posed here as inequality constraints without affecting

the validity of the formulation and help us circumvent the technical difficulties arising from the existence

of a line in the dual polyhedron. Finally, the objective (23) maximizes the total satisfaction of the tourist

over the vacation period M .

Avella et al. (2006) solve the LP relaxation of (23)-(29) by a column-and-row generation approach due

to a potentially huge number of tours. Muter et al. (2012) demonstrate that the optimality condition of

Avella et al. (2006) for their column-and-row generation approach leads to a premature termination of

the algorithm and prove a correct stopping condition.

4.1 Application of the Proposed Methodology. In our integrated Benders decomposition and

simultaneous column-and-row generation framework, the LP relaxation of TCR is re-formulated as

maximize
∑

k∈K

ckyk + z(y),

subject to
∑

k∈K

Ajkyk ≤ 1, j ∈ J,

∑

k∈K

yk = |M |,

yk ≥ 0, k ∈ K,

(30)

where the Benders subproblem becomes

z(ȳ) = maximize 0,

subject to
∑

k∈K

Bkmxkm ≤ 1, m ∈M,

∑

m∈M

Dkmxkm = ȳk, k ∈ K,

xkm ≥ 0, k ∈ K,m ∈M.

(31)

Clearly, this is only a feasibility problem, and we only check whether there exists a feasible solution to

(31) given the values of the y−variables. The dual slave problem is then formulated as

z(ȳ) = minimize
∑

k∈K

ȳkwk +
∑

m∈M

vm,

subject to wk + vm ≥ 0, k ∈ K,m ∈Mk,

vm ≥ 0, m ∈M,

(32)

where v and w are the sets of dual variables corresponding to the first and the second set of constraints in

(31) respectively, and Mk = {m ∈ M | Bkm = 1}. The dual polyhedron Φ is always non-empty because

v = w = 0 is feasible regardless of ȳ. Furthermore, Φ is a polyhedral cone with a unique extreme point
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at the origin. Therefore, (BMP) is formed only with the feasibility cuts:

maximize
∑

k∈K

ckyk,

subject to
∑

k∈K

Ajkyk ≤ 1, j ∈ J,

∑

k∈K

yk = |M |,

∑

k∈K

wkyk ≥ −
∑

m∈M

vm, (v,w) ∈ QΦ,

yk ≥ 0, k ∈ K.

(33)

Mercier (2008) performs a theoretical comparison of the different types of feasibility cuts for the

integrated aircraft-routing and crew-pairing problem. The Benders subproblem in this work is a feasibility

problem; however, the author argues that the identification of a ray of unboundedness “may be a difficult

task, especially if the primal form of the subproblem is being solved.” Therefore, Mercier adds artificial

variables to the Benders subproblem and guarantees its feasibility and the boundedness of the dual slave

problem. Feasibility cuts associated with the original Benders subproblem are then obtained from the

extreme point optimal solutions of the modified Benders subproblem. Applying this strategy to (31)

leads to the following modified Benders subproblem

z(ȳ) = maximize
∑

m∈M

−s+m,

subject to
∑

k∈K

Bkmxkm − s+m ≤ 1, m ∈M,

∑

m∈M

Dkmxkm = ȳk, k ∈ K,

xkm ≥ 0, k ∈ K,m ∈M,

s+m ≥ 0, m ∈M,

(34)

and the modified dual slave problem

z(ȳ) = minimize
∑

k∈K

ȳkwk +
∑

m∈M

vm,

subject to wk + vm ≥ 0, k ∈ K,m ∈Mk,

0 ≤ vm ≤ 1, m ∈M.

(35)

The Benders master problem imposes that a total of |M | tours are selected. However, it is oblivious to

the requirement that each tour must be assigned to a distinct day m ∈ M in a feasible solution of the

Benders subproblem (31). If such an assignment is not possible for the given set of tours ȳ from the master

problem, s+m must assume a positive value for some m ∈ M in the modified Benders subproblem (34)

and z(ȳ) < 0. In such cases, the short Benders master problem is augmented with a violated feasibility

cut created from an extreme point optimal solution of (35), where the feasible region of (35) is denoted

by Φc and its set of extreme points is represented by PΦc
. The following proposition characterizes the

relationship between QΦ and PΦc
and justifies solving the modified dual slave problem (35) instead of

the original dual slave problem (32).

Proposition 4.1 Each extreme ray of unboundedness in QΦ corresponds to an extreme point in PΦc
.

Proof. See Appendix B. �
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Observe that (35) is always feasible and bounded for any ȳ, and any extreme point optimal solution

(v̄, w̄) ∈ PΦc
with z(ȳ) < 0 gives rise to a feasibility cut

∑

k∈K

w̄kyk ≥ −
∑

m∈M

v̄m in the short Benders

master problem. The convergence of the algorithm is guaranteed because QΦ ⊆ PΦc
and any extreme

point optimal solution (v̄, w̄) of (35) such that (v̄, w̄) ∈ PΦc
\ QΦ is still feasible with respect to (32).

Thus, such an optimal solution of (35) is still a ray of Φ – although it is not extreme – and leads to a

valid feasibility cut.

So far, we have assumed that all tours k ∈ K are included in the formulation a priori in order

to develop the Benders master and (modified) subproblems for TCR. However, the cardinality of K

is generally large and motivates us to solve the Benders master problem via our integrated Benders

decomposition and simultaneous column-and-row generation framework. To this end, we set up the short-

and-restricted Benders master problem with a strict subset K̄ of the set of all possible tours. Observe

that each y−variable appears in a unique linking constraint of the form (26). Therefore, the short-and-

restricted modified dual slave problem is initialized only with the variables wk, k ∈ K̄ associated with the

existing linking constraints and the constraints associated with xkm, k ∈ K̄,m ∈Mk. As usual, the dual

polyhedron is updated after the solution of the row-generating PSP developed in the sequel and labeled

as Φ̄s
c after s updates.

Each variable yk, k ∈ K in TCR appears in a distinct linking constraint and forms a unique minimal

variable set Sk
K = {k}. In other words, Fk = {{k}} and Σk = {k} for all k ∈ K \ K̄. The expression (20)

for the reduced cost of a y−variable then reduces to

c̄k =ck −
∑

j∈J

Ajkuj −
∑

p∈P t

Φ̄s

∑

i∈Ī∪∆(Σk)

Cikw
p
i γp −

∑

q∈Qt

Φ̄s

∑

i∈Ī∪∆(Σk)

Cikw
q
i µq

=ck −
∑

j∈J

Ajkuj −
∑

p∈P t

Φ̄s
c

Ckkw
p
kγp (36)

for k 6∈ K̄, where the kth linking constraint is associated with yk and Ckk = 1 is the coefficient of

yk in this currently missing constraint. In contrast with (16), all terms associated with the existing

linking constraints drop out, and the y−PSP becomes redundant in the context of TCR. Based on these

observations, the row-generating PSP is formulated as

ζyx = max
k∈(K\K̄)







ck −
∑

j∈J

Ajkuj − θ −
∑

p∈P t

Φ̄s
c

γpαk(p)







,

where

αk(p) =minimize w
p
k, (37a)

subject to w
p
k ≥ −v

p
m, m ∈Mk, (37b)

One tight constraint among (37b). (37c)

Note that we must also take into account the dual variable θ corresponding to the cardinality constraint

defined over the y−variables in (SR-BMP). For each p ∈ P t
Φ̄s

c

, the optimal solution of (37a)-(37c) is

w
p
k = maxm∈Mk{−vpm} = −minm∈Mk{vpm}. Thus, the row-generating PSP for TCR simplifies to

ζyx = max
k∈K\K̄







ck −
∑

j∈J

Ajkuj − θ +
∑

p∈P t

Φ̄s
c

γp min
m∈Mk

{vpm}







.
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If ζyx > 0, the variable yk with the maximum reduced cost is added to (SR-BMP), and the Benders

cuts in (SR-BMP) are updated by adding the term Ckkw
p
kyk = −minm∈Mk{vpm}yk for each p ∈ P t

Φ̄s
c

.

Otherwise, the optimal solution for (BMP) is attained as prescribed in Figure 1.

We conclude this section by discussing the choices regarding the x−PSP. It turns out that the x−PSP

is optional from a practical point of view because the number of days in a vacation period is typically

small. Thus, for any yk, k 6∈ K̄ to be incorporated as a result of solving the row-generating PSP we can

include all constraints for xkm,m ∈ Mk into (SR-DBSP) along with wk. However, it is evident from

the structure of the optimal solution of the row-generating PSP that some of these constraints would be

redundant. Thus, we can also opt for only adding the tight constraints among (37b) and then invoking

the x−PSP by following the flow in Figure 1 in order to price out the variables xkm currently excluded

from (SR-BSP), where k ∈ K̄. In the computational experiments in the next section, we adopt the first

approach.

4.2 Computational Experiments. In this section, we present the results of our computational ex-

periments on a set of randomly generated TCR instances. The experiments are conducted on a personal

computer with a 3.60 GHz Intel Xeon E5-1620 processor and 16 GB of RAM. Our codes are imple-

mented in Visual C++ by employing IBM ILOG CPLEX 12.5 with the default settings and the Concert

Technology component library to solve the LP relaxation of TCR in three different ways. We compare the

performance of the simultaneous column-and-row generation algorithm developed in Muter et al. (2013a)

(CRG) with that of the proposed algorithm in this paper in order to justify our efforts in integrating

simultaneous column-and-row generation with Benders decomposition (CRG-BDS ). The complete set

of instances are also solved directly by CPLEX to set a benchmark. We show that CRG-BDS is the

best-performing algorithm on average, and CPLEX is outperformed by the CRG-based algorithms.

The algorithmic flow illustrated in Figure 1 defers solving the row-generating PSP until no more

Benders cuts are generated and reflects the general rationale that the row-generating PSP is inherently

difficult to solve. However, in our particular implementation for TCR, the row generating PSP boils down

to a linear-time search. Therefore, the performance of our algorithm is improved by deviating from the

general flow in Figure 1 as follows: we keep solving the row-generating PSP until no new y-variable is

generated and then proceed with the Benders subproblem. The algorithm stops if the objective function

value of the Benders subproblem is zero; that is, if a feasible daily assignment is determined for the tours

selected in the Benders master problem. Otherwise, the row-generating PSP is re-invoked. Furthermore,

K̄ is empty at the start of the algorithm, and the feasibility of (SR-BMP) is initially guaranteed by

a single non-negative artificial variable inserted into the left hand side of the second constraint in (33)

and penalized with a large negative coefficient in the objective. To demonstrate the typical behavior of

CRG-BDS as new columns and Benders cuts are incorporated, we plot the objective function value of

(SR-BMP) over the iterations of the algorithm for a single instance in Figure 2. We observe that the

objective function increases monotonically and only the row-generating PSP is solved repeatedly until

the artificial variable is driven out of the solution. Following this milestone, the Benders subproblem is

called whenever the row-generating PSP fails to identify a negatively-priced y−variable, and the objective

generally drops as a result of adding a new cut to (SR-BMP). Subsequently, the row-generating PSP

adds new columns, and the objective value of (SR-BMP) is restored to its previous levels.
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Figure 2: The progress of the objective function values of (SR-BMP) over the iterations.

In Avella et al. (2006), the set of possible tours is enumerated by checking several feasibility rules,

and some dominance rules are implemented to speed up the tour enumeration. In this paper, our sole

concern is contrasting the solution time performances of the algorithms, and the instances are generated

differently. The values for the number of sites that can be visited are |J | ∈ {50, 150}, and four values are

selected for the length of the vacation period so that |M | ∈ {7, 14, 21, 28}. The number of sites each tour

can visit is generated from an integer uniform distribution U [1, 10], and the sites are picked randomly.

Each site is assigned a rating from an integer uniform distribution U [1, 100], and the objective function

coefficient of a tour is defined as the sum of the ratings of the sites visited on the tour. Our simple

modification to the flow in Figure 1 guarantees correct termination if (SR-BSP) can identify a feasible

daily assignment of the tours, given the values of the associated y−variables retrieved from the solution

of (SR-BMP). Therefore, the number of days in the vacation period on which tours may take place

has an impact on the performance of the proposed methodology. We generate this parameter using an

integer uniform distribution U [1, P ], and a given tour is then available on a randomly selected set of

days of required cardinality in the vacation period. In our preliminary experiments, we set P ∈ {1, 3, 7}

and observe that larger values of P benefit our approach and degrade the performance of CPLEX. On

the one hand, increasing P simplifies the task of determining a feasible daily assignment for the tours in

(SR-BSP) and expedites the convergence of CRG-BDS . On the other hand, higher values of P result in

more x−variables in the formulation and deteriorates the performance of CPLEX in solving the full-blown

model. A further insight provided by our preliminary experiments is that the solution time of CRG

is relatively insensitive to increases in the value of P . In this algorithm, the pricing PSP is the main

determinant of the solution time, and the number of columns added through the calls to the pricing PSP

does not change drastically with P . These observations collectively lead us to set P = 3 for generating

the instances used in the comparative analysis with the goal of demonstrating the average performance

of the algorithms over relatively tough instances for CRG-BDS . The number of tours |K| ranges from

10,000 to 100,000 in increments of 10,000 in the instances created. Five instances are solved for each

combination of |J |, |M | and |K|.

In Tables 2 and 3, the statistics related to CRG-BDS , CRG , and CPLEX are depicted for |M | ∈ {7, 14}
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and |M | ∈ {21, 28}, respectively. For all methods, the total solution time in seconds is indicated under

Soln T. The total number of the y−variables generated by CRG-BDS and CRG is given in columns

labeled as # Cols, and for CRG-BDS the number of the Benders cuts added to (SR-BMP) and the

total time expended for solving the row-generating PSP over the course of the algorithm are reported

under # Cuts and Pricing T, respectively. The total time spent by (SR-BSP) for creating Benders

cuts is negligible and is therefore not presented separately. Thus, the time taken up by (SR-BMP)

corresponds to the difference between Soln T and Pricing T. All reported figures are averaged over the

five instances created for the corresponding parameter combination. When compared against CPLEX, the

solution times for CRG-BDS and CRG are less sensitive to the number of tours and sites. For CRG-

BDS , even the impact of changing |J | from 50 to 150 is relatively minor for fixed |M |, except when

|M | = 14. The underlying reason is that the optimal solutions for different values of |K| contain roughly

the same number of non-zero y− and x−variables as long as |M | is fixed. In contrast, the solution times

of CPLEX increase rapidly with |K|. For instance, the average solution times of CPLEX and CRG-BDS

for |K| = 100, 000 over all instances in Tables 2-3 are 15.6 and 5.6 seconds, respectively. Increasing |M |

has an adverse affect on the performances of CRG and CRG-BDS because the total number of non-zero

y− and x−variables in the optimal solution increases and more iterations have to be performed. Overall,

CRG-BDS outperforms the other two algorithms and exhibits the best scaling performance. The average

solution times over the entire set of instances are 3.3, 7.5, and 5.0 seconds for CRG-BDS , CPLEX, and

CRG , respectively. These figures imply a 127% and 52% speedup over CPLEX and CRG in favor of CRG-

BDS , respectively. From a different perspective, by taking the ratios of the corresponding numbers in

Tables 2 and 3, we conclude that CRG is on average 50% slower than CRG-BDS , and the solution times

of CPLEX are on average twice as large as those of CRG-BDS .
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Table 2: Results of CRG-BDS , CPLEX and CRG for |M | = 7 and |M | = 14.

CRG-BDS CPLEX CRG

|K| |J| |M| # Cols # Cuts Pricing T Soln T Soln T Soln T # Cols

10000 50 7 68.8 2.6 0.1 0.4 0.6 0.7 65.0

20000 50 7 69.6 0.8 0.2 0.5 1.5 1.0 69.0

30000 50 7 72.8 0.6 0.4 0.6 2.2 1.3 69.0

40000 50 7 71.6 1.2 0.5 0.8 3.2 1.6 72.2

50000 50 7 73.2 0.6 0.7 1.0 5.3 1.9 72.4

60000 50 7 72.6 0.2 0.8 1.1 7.3 2.1 71.0

70000 50 7 74.6 1.6 1.0 1.3 9.9 2.5 73.6

80000 50 7 72.6 1.2 1.0 1.3 11.4 2.6 73.2

90000 50 7 71.4 0.4 1.1 1.4 13.3 2.9 73.6

100000 50 7 75.6 1.2 1.4 1.7 14.6 3.3 75.8

Avg 72.3 1.0 0.7 1.0 6.9 2.0 71.5

10000 150 7 51.6 1.6 0.1 0.3 0.7 0.5 52.6

20000 150 7 58.8 1.8 0.2 0.4 1.5 0.9 60.2

30000 150 7 64.4 1.0 0.3 0.6 2.4 1.3 65.0

40000 150 7 66.4 1.2 0.5 0.8 5.4 1.6 67.6

50000 150 7 71.2 0.4 0.7 1.0 7.5 2.0 75.0

60000 150 7 72.2 0.6 0.7 1.2 9.1 2.1 71.4

70000 150 7 73.2 0.4 1.1 1.4 11.8 2.5 74.0

80000 150 7 71.4 0.2 1.3 1.6 12.5 2.8 73.2

90000 150 7 78.4 0.4 1.5 1.9 15.1 3.3 81.2

100000 150 7 76.8 0.6 1.6 2.1 16.4 3.6 76.8

Avg 68.4 0.8 0.8 1.1 8.2 2.1 69.7

10000 50 14 121.4 9.2 0.2 0.7 0.6 1.0 117.4

20000 50 14 128.4 5.6 0.5 1.0 1.6 1.5 122.2

30000 50 14 134.2 6.6 0.9 1.4 2.4 2.4 131.2

40000 50 14 134.4 6.8 1.1 1.7 3.6 2.8 131.4

50000 50 14 137.8 8.4 1.4 2.1 5.4 3.3 133.0

60000 50 14 142.4 7.2 1.5 2.3 7.4 3.9 139.4

70000 50 14 142.2 6.8 1.6 2.7 8.6 4.4 140.2

80000 50 14 144.6 3.4 2.2 2.8 10.7 4.9 140.0

90000 50 14 144.6 7.6 2.7 3.4 12.1 5.6 140.4

100000 50 14 144.0 9.0 3.1 3.8 14.2 6.1 140.0

Avg 137.4 7.1 1.5 2.2 6.7 3.6 133.5

10000 150 14 248.4 2.2 0.3 1.5 0.6 2.4 245.0

20000 150 14 236.8 0.6 0.6 1.7 1.4 3.4 237.0

30000 150 14 230.2 1.2 1.0 2.2 2.8 4.5 227.2

40000 150 14 233.4 0.6 1.4 2.6 4.3 5.1 225.4

50000 150 14 227.0 0.8 1.7 3.2 5.5 6.0 221.2

60000 150 14 224.0 1.2 2.4 3.8 6.3 7.0 227.0

70000 150 14 222.8 0.4 3.2 4.3 8.8 8.0 225.6

80000 150 14 223.2 0.8 3.6 4.8 10.3 8.4 221.2

90000 150 14 223.8 1.4 4.3 5.4 12.0 9.7 227.2

100000 150 14 221.8 0.0 4.5 5.6 13.4 10.0 215.2

Avg 229.1 0.9 2.3 3.5 6.5 6.5 227.2

Overall Avg 126.8 2.5 1.3 2.0 7.1 3.5 125.5
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Table 3: Results of CRG-BDS , CPLEX and CRG for |M | = 21 and |M | = 28.

CRG-BDS CPLEX CRG

|K| |J| |M| # Cols # Cuts Pricing T Soln T Soln T Soln T # Cols

10000 50 21 166.8 19.4 0.4 1.0 0.6 1.2 160.8

20000 50 21 177.6 21.8 1.0 1.7 1.6 1.9 162.6

30000 50 21 177.4 14.2 1.3 2.0 2.5 2.9 174.6

40000 50 21 180.0 27.6 2.7 3.5 3.7 3.9 181.4

50000 50 21 186.6 15.0 2.3 3.2 5.6 4.6 181.0

60000 50 21 188.0 18.6 3.1 4.1 7.3 5.2 179.6

70000 50 21 191.4 13.6 2.8 4.0 8.9 5.8 180.8

80000 50 21 191.0 16.2 3.9 4.7 10.6 6.8 185.8

90000 50 21 196.6 17.0 4.6 5.4 12.0 7.4 188.6

100000 50 21 190.0 23.6 6.2 7.2 14.7 8.4 191.4

Avg 184.5 18.7 2.8 3.7 6.8 4.8 178.7

10000 150 21 202.6 3.6 0.2 1.3 1.2 1.9 196.2

20000 150 21 213.0 7.2 0.5 1.7 2.6 3.0 208.0

30000 150 21 219.4 5.4 0.9 2.2 4.3 4.4 215.2

40000 150 21 224.0 6.8 1.6 2.8 5.9 5.1 214.6

50000 150 21 223.2 2.0 1.7 3.2 7.9 6.1 215.8

60000 150 21 224.0 7.6 2.6 4.0 10.7 6.9 222.2

70000 150 21 232.6 5.0 3.5 4.7 11.3 8.1 227.4

80000 150 21 227.6 8.6 4.1 5.4 13.5 8.8 224.6

90000 150 21 229.4 5.0 4.3 5.7 19.1 9.8 227.6

100000 150 21 232.6 7.8 5.4 6.6 18.0 10.7 227.4

Avg 222.8 5.9 2.5 3.8 9.5 6.5 217.9

10000 50 28 194.4 19.8 0.4 1.2 0.6 1.5 187.0

20000 50 28 203.2 39.0 1.9 3.0 1.5 2.6 207.0

30000 50 28 211.8 24.4 2.0 3.1 2.5 3.6 207.4

40000 50 28 219.0 32.4 3.7 4.7 3.6 4.5 214.0

50000 50 28 212.6 31.4 4.4 5.5 5.4 5.3 214.8

60000 50 28 219.6 35.6 5.6 6.9 6.9 6.1 217.4

70000 50 28 233.2 22.8 4.3 5.9 8.1 7.2 219.4

80000 50 28 230.4 27.8 6.3 7.4 10.0 8.0 223.2

90000 50 28 225.8 33.6 8.5 9.6 11.1 8.6 219.8

100000 50 28 232.2 22.4 6.7 7.9 13.6 9.8 222.0

Avg 218.2 28.9 4.4 5.5 6.3 5.7 213.2

10000 150 28 261.0 10.0 0.3 1.7 1.8 2.5 253.6

20000 150 28 275.8 18.4 1.0 2.6 2.5 4.0 264.4

30000 150 28 288.4 11.8 1.5 3.0 4.0 5.6 279

40000 150 28 295.2 9.0 2.0 3.7 6.7 7.0 287.8

50000 150 28 296.4 13.8 2.8 5.0 7.9 8.6 293.2

60000 150 28 304.0 9.6 3.8 5.7 9.9 9.2 297.2

70000 150 28 310.2 14.4 5.2 7.0 11.1 10.6 296.8

80000 150 28 314.2 19.2 6.7 8.7 13.0 12.0 301.4

90000 150 28 313.6 14.6 6.8 8.8 14.4 12.7 301.8

100000 150 28 314.6 12.8 7.6 9.5 19.6 15.1 313.8

Avg 297.3 13.4 3.8 5.6 9.1 8.7 288.9

Overall Avg 230.7 16.7 3.4 4.6 7.9 6.4 224.7
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5. Conclusions. Benders decomposition applied to CDR-problems exhibits a novel structure in the

feasible region of the dual slave problem, which has not been previously encountered in the literature.

By analyzing this structure, we designed an integrated delayed Benders cut generation and simultaneous

column-and-row generation algorithm to solve large-scale CDR-problems to optimality. An original fea-

ture of this algorithm is that the extreme points and extreme rays corresponding to the existing Benders

cuts are lifted as part of the row-generating PSP in order to account for the increase in the dimension of

the dual polyhedron. We provided an extensive analysis on the convergence of the proposed methodology

and illustrated its mechanics by an application to the TCR problem. The computational experiments at-

test to the superior performance of our algorithm compared to solving the LP relaxation of TCR directly

via CPLEX. Moreover, we also demonstrated that the new integrated delayed Benders cut generation and

simultaneous column-and-row generation algorithm improves significantly over the direct application of

simultaneous column-and-row generation (Muter et al., 2013a) to TCR.

In our current work, we apply column generation to both the master and the subproblems in a Benders

decomposition framework instead of a single restricted master problem as in the column-and-row genera-

tion approach CRG by Muter et al. (2013a). That is, in this paper, we expose the decomposable structure

of CDR-problems – which went unexploited in our earlier work – via Benders decomposition. Therefore,

we expect our proposed approach CRG-BDS to be outperformed by CRG only if the Benders cuts are

weak by nature for the specific problem at hand. In our illustrative application to the TCR problem, we

show empirically that some instance types are inherently less suitable for Benders decomposition as they

lead to slower convergence.

The end goal of our research agenda on CDR-problems is to embed our algorithms relying on simulta-

neous column-and-row generation into branch-and-price or branch-and-cut-and-price frameworks in order

to solve large-scale CDR-problems with integrality restrictions. Equally important is the customization of

the generic framework to specific CDR-problems giving rise to computationally viable implementations.
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Appendix A. Here are the three assumptions that were originally stipulated for CDR-problems in

Muter et al. (2013a).

Assumption A.1 The generation of a new set of variables {yk | k ∈ SK} prompts the generation of a

new set of variables {xn | n ∈ SN (SK)}. Furthermore, a variable xn′ , n′ ∈ SN (SK), does not appear

in any linking constraints other than those indexed by ∆(SK , SN (SK)) and introduced to the (SRMP)

along with {yk | k ∈ SK} and {xn | n ∈ SN (SK)}.

Assumption A.2 A linking constraint is redundant until all variables in at least one of the minimal

variable sets associated with this linking constraint are added to the (SRMP).

Assumption A.3 Suppose that we are given a minimal variable set {yl | l ∈ SK} that generates a set

of linking constraints ∆(SK) and a set of associated x−variables {xn | n ∈ SN (SK)}. When the set of

linking constraints ∆(SK) is first introduced into the (SRMP) during the column-and-row generation,

then for each k ∈ SK there exists a constraint i ∈ ∆(SK) of the form

Cikyk +
∑

n∈SN (SK)

Dinxn ≥ 0, (38)

where Cik > 0 and Din < 0 for all n ∈ SN (SK).

Appendix B. Here is the proof of Proposition 4.1.

Proof. Suppose that the dual polyhedron is described as Φ = {(v,w) ∈ R
|M |+|K| |

(

Rv Rw

)(

v w

)⊺

≥ 0} and (v̄, w̄) ∈ QΦ is an extreme ray of unboundedness. Note that Φ is a

polyhedral cone and by the definition of an extreme ray, (v̄, w̄) must lie on a 1-dimensional face of Φ.

Therefore, n − 1 linearly independent constraints are binding at (v̄, w̄) with n = |M | + |K|. Denoting

the index set of the active constraints at (v̄, w̄) by E we have
(

Rv
E Rw

E

)(

v̄ w̄

)⊺

= 0. The extreme

ray (v̄, w̄) certifies (32) as unbounded only if
(

cv cw
)(

v̄ w̄

)⊺

< 0 holds, where c ≥ 0 is the vector of

objective function coefficients of (32). This condition implies that there exists k ∈ K such that w̄k < 0

because c ≥ 0 and v̄ ≥ 0. This in turn requires the presence of m ∈ Mk such that v̄m > 0 because

Mk 6= ∅ and the feasibility of (v̄, w̄) for (32) prescribes w̄k + v̄m ≥ 0, m ∈Mk.

Without loss of generality, we can scale (v̄, w̄) such that v̄m = 1. Thus, (v̄, w̄) satisfies
(

Rv
E Rw

E

0 · · · 1 · · · 0

)
(

v̄ w̄

)⊺

=
(

Rv
E′ Rw

E′

)(

v̄ w̄

)⊺

=

(

0

1

)

, where the single non-zero entry in the last

row of RE′ is the coefficient of vm. We conclude the proof by arguing that the rank of RE′ is n which

establishes (v̄, w̄) as an extreme point of (35). Since the rank of RE is n − 1, the column associated

with vm in RE can be expressed as a linear combination of the remaining n − 1 linearly independent

columns of RE . However, this is not true for RE′ because only vm has a non-zero coefficient in the last

row. Thus, the rank of RE′ is n. �
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a robust airline crew pairing problem with column generation. Computers & Operations Research,

40(3):815–830.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2016). The Benders decomposition algo-

rithm: A literature review. European Journal of Operational Research.

Sadykov, R. and Vanderbeck, F. (2013). Column generation for extended formulations. EURO Journal

on Computational Optimization, 1(1-2):81–115.

Wang, G. and Tang, L. (2010). A row-and-column generation method to a batch machine schedul-

ing problem. In Proceedings of the Ninth International Symposium on Operations Research and Its

Applications (ISORA-10), pages 301–308, Chengdu-Jiuzhaigou, China.

Zak, E. (2002). Modeling multistage cutting stock problems. European Journal of Operational Research,

141(2):313–327.


