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Abstract   13 

Defensins represent an evolutionary ancient family of antimicrobial peptides that play diverse roles in 14 

human health and disease. Defensins are cationic cysteine-containing multifunctional peptides 15 

predominantly expressed by epithelial cells or neutrophils. Defensins play a key role in host innate 16 

immune responses to infection and, in addition to their classically described role as antimicrobial 17 

peptides, have also been implicated in immune modulation, fertility, development and wound healing. 18 

Aberrant expression of defensins is important in a number of inflammatory diseases as well as 19 

modulating host immune responses to bacteria, unicellular pathogens and viruses. In parallel with their 20 

role in immunity, in other species, defensins have evolved alternative functions, including the control 21 

of coat color in dogs. Defensin genes reside in complex genomic regions that are prone to structural 22 

variations and some defensin family members exhibit copy number variation (CNV). Structural 23 

variations have mediated, and continue to influence, the diversification and expression of defensin 24 

family members. This review highlights the work currently being done to better understand the 25 

genomic architecture of the β-defensin locus. It evaluates current evidence linking defensin copy 26 

number variation to autoimmune disease (i.e. Crohn’s disease and psoriasis) as well as the contribution 27 

CNV has in influencing immune responses to HIV infection.   28 

Word count: 2298    29 

1.  Introduction  30 

The defensins represent a class of cationic antimicrobial peptides that play pivotal roles in innate and 31 

adaptive immunity as well as roles in non-immunological processes. They constitute an ancient and 32 

diverse gene family, present in most multicellular organisms ranging, from plants, fungi, insects, 33 

molluscs and arachnids to mammals, including humans. During their evolutionary history, defensins 34 

have become highly diversified and have acquired novel functions in different species. Defensins have 35 

evolved to be highly efficient in their antimicrobial responses to a vast array of pathogens.   36 

The term “Defensins” was coined in 1985 after granule rich sediments were purified from human and 37 

rabbit neutrophils. This resulted in the characterization of the primary structure of the first six 38 
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neutrophils defensins (later known as α-defensins) (1–3). These early studies highlighted the structural 39 

hallmarks of defensins: That is, despite poor sequence identity across family members, all defensins 40 

possess a highly conserved motif of six cysteine residues that is key to their antimicrobial function. 41 

Subsequently, peptides with similar structure were discovered in the early 1990s in bovine (4) and 42 

mouse airway first (5) and subsequently in the human intestinal epithelium (6), and became known as 43 

β-defensins. The recent ability to interrogate genomic and proteomic data from a diverse array of 44 

species allowed the discovery and characterization of further members of the defensin gene family, 45 

intensifying interest in unveiling the roles of defensins in physiological and pathological processes.    46 

This review will primarily focus on the role of β-defensins in innate and adaptive immunity. We will 47 

highlight the methods currently employed to study the genomic architecture of this multifunctional 48 

gene family and how complex genetic variation has an impact on defensin host inflammatory 49 

responses.  50 

2.  Structure of β-defensins  51 

The β-defensin family members have poor sequence similarity, suggesting their antimicrobial activity 52 

is independent of their primary structure. Nuclear Magnetic Resonance (NMR) data has been used to 53 

evaluate the 3D structure of hBD1, hBD2 and hBD3 (7,8). These data confirm a high degree of 54 

similarity in their tertiary structures, despite their diverged amino acid sequences. The major element 55 

of the mature peptides secondary structure is represented by three β-strands arranged in an antiparallel 56 

sheet. The strands are held together by the three intramolecular disulfide bonds, formed between the 57 

six cysteines. The order of the disulfide bridges can vary, characterizing each family member. The 58 

amino-terminal region contains a short α-helical loop (which is absent in α-defensins). α-helical 59 

structures are common for protein regions that are incorporated into cell membranes and it has been 60 

proposed that this region of the β-defensin protein may anchor to bacteria cell walls (9). This is 61 

supported by the presence of two sites under positive selection located in the N- terminal region that 62 

may contribute to β-defensin functional diversity (10).  63 

Defensins do not appear to present a distinct hydrophobic core or a common pattern of charged or 64 

hydrophobic residues on the protein surface. This suggests peptide folding is driven and stabilized by 65 

disulfide bond formation alone. Moreover, the characteristic β-defensin 3D structure can be preserved 66 

and accommodates residues with different properties at most other positions. The first five amino acids 67 

of the mature peptide sequence is vital for correct protein folding under oxidative conditions. This 68 

favors the formation of the correct disulfide bonded pattern through the creation of a  69 
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key intermediate (11).  70 

3.  The evolution and divergent roles of β-defensins   71 

The evolutionary relationship between vertebrate and non-vertebrate defensins is still unclear, however 72 

phylogeny indicates that a primordial β-defensin is the common ancestor of all vertebrate defensins 73 

and this gene family expanded throughout vertebrate evolution (12). This hypothesis is supported by 74 

the discovery of β-defensin-like genes in phylogenetically distant vertebrates, including reptiles (13), 75 

birds (14) and teleost fishes (15). α-defensins are mammalian specific genes, and in humans α-defensin 76 

genes and different β-defensin genes are present on adjacent loci on chromosome 8p22-p23. The 77 

organization of this cluster is consistent with a model of multiple rounds of duplication and divergence 78 

under positive selection from a common ancestral gene that produced a cluster of diversified paralogous 79 

(16,17). This expansion occurred before the divergence of baboons and humans approximately 23-63 80 

million years ago (18,19). The present-day β-defensins probably evolved before mammals diverged 81 

from birds generating α-defensins in rodents, lagomorphs and primates after their divergence from 82 

other mammals (20). Recent evidence suggests convergent evolution of β-defensin copy number (CN) 83 

in primates, where independent origins have been sponsored by non-allelic homologous recombination 84 

between repeat units. For rhesus macaques this resulted in only a 20kb CNV region containing the 85 

human orthologue of human β-defensin 2 gene. In humans, recent work suggest a repeat unit of 322kb 86 

containing a number of β-defensin genes (21).  87 

Defensin family members possess a plethora of non-immune activities and it is instructive to provide 88 

some examples of the diverged nature of defensins function. Some members of the β-defensin family 89 

have an important role in mammalian reproduction (reviewed in (22). For example, there are five 90 

human defensin genes (DEFB125-DEFB129) clustered on chromosome 20, which are highly expressed 91 

in the epithelial cell layer of the epididymal duct, which secretes factors responsible for sperm 92 

maturation (23). Moreover, human DEFB118 was shown to be a potent antimicrobial peptide able to 93 

bind to sperm, probably providing protection from microorganisms present in the sperm ducts  94 

(24). It is noticeable how in long tailed macaque (Macaca fascicularis) and in rhesus macaque  95 

(Macaca mulatta) there is a similar β–defensin, called DEFB126, which is the principal protein that 96 

coats sperm (25); this coating is lost in the oviduct allowing fertilization to occur. In support of this, 97 

the deletion of a cluster of nine beta defensin genes in a mouse model, resulted in male sterility (26). 98 

In human studies, a common mutation in DEFB126 has been shown to impair sperm function and 99 

fertility (27).  100 

In a second example, recent studies have suggested that some β-defensin gene products including hBD1 101 

and hBD3, can interact with a family of melanocortin receptors, modulating pigment expression in 102 

dogs and possibly in humans (28). Typically, there are two genes that control the switching of pigment 103 

types: the melanocortin receptor 1 (Mc1r) and Agouti, encoding a ligand for the Mc1r which inhibits 104 

Mc1r signaling. Mc1r activation determines production of the dark pigment eumelanin exclusively, 105 

whereas Mc1r inhibition causes production of the lighter pigment pheomelanin. In dogs it was 106 

discovered that a mutation in the canine DEFB103 is responsible for the dominant inheritance of black 107 

coat color, which does not signal directly through Mc1r; this insight revealed a previously 108 

uncharacterized role of β–defensins in controlling skin pigmentation. Further studies have been 109 

conducted on human melanocytes, discovering a novel role of hBD3 as an antagonist of the α-110 

melanocyte-stimulating hormone (α-MSH, a known agonist of Mc1r, which stimulates cAMP signaling 111 
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to induce eumelanin production). As hBD3 is produced by keratinocytes, it can act as a paracrine factor 112 

on melanocytes modulating α-MSH effects on human pigmentation and consequently responses to UV 113 

(29). Moreover, it is known that melanocortin receptors are also involved in inflammatory and immune 114 

response modulation (30).  115 

4.  Expression of β-defensins  116 

  117 

Different β-defensins are present in different epithelial and mucosal tissues and can be constitutively 118 

expressed or induced in response to various stimuli (Table 2). Their anatomical distribution clearly 119 

reflects their ability to neutralize different pathogens and they are more abundant at sites prone to the 120 

microbial infections they are specific for. For example, hBD2 is strongly expressed in lung (31); hBD4 121 

is highly expressed in the stomach and testes (32), and hBD3 in the skin and tonsillar tissue (33). hBD1-122 

hBD4 are expressed in the respiratory tract, with constitutive expression of hBD1 (34) and inducible 123 

expression of hBD2-hBD4 in response to inflammation or infection (35). In keratinocytes there is 124 

constitutive mRNA expression of hBD1; conversely hBD2 expression is induced by 125 

lipopolysaccharides (LPS) or other bacterial epitopes in combination with interleukin-1β, released by 126 

resident monocyte-derived cells. hBD3 and hBD4 are inducible by stimulation with tumor necrosis 127 

factor (TNF), Toll-like receptor ligands, interferon (IFN)-γ or phorbolmyristate acetates [15]. hBD3 is 128 

also induced in response to local release of surface-bound EGFR (epidermal growth factor receptor) 129 

ligands via activation of metalloproteinases [46 47].  130 

  131 

5.  Antimicrobial activity of β-defensins   132 

  133 

The most studied function for β-defensins is their direct antimicrobial activity, through 134 

permeabilization of the pathogen membrane. Their exact mechanism of action is incompletely 135 

understood and two different models have been proposed. The first is a carpet model, where several 136 

antimicrobial peptides opsonize the pathogen surface bringing about necrosis, possibly disrupting the 137 

electrostatic charge across the membrane (36). The latter is a pore model, with several peptides 138 

oligomerizing and forming pore-like membrane defects that allow efflux of essential ions and nutrients 139 

(33).   140 

  141 

Defensins in vitro are active against gram negative and positive bacteria, unicellular parasites, viruses 142 

and yeast. Cationic peptides including β-defensins are attracted to the overall net negative charge 143 

generated by the outer envelope of Gram negative bacteria by phospholipids and phosphate groups on 144 

lipopolysaccharides and to the teichoic acid present on the surface of Gram positive bacteria.  145 

  146 

β-defensins also possess antiviral activity, interacting directly with the virus and indirectly with its 147 

target cells. Noticeably, in mammals β–defensins are also produced by the oral mucosa and they are 148 

active against HIV-1 virus: in particular hBD1 is constitutively expressed whereas the presence of a 149 

low HIV-1 viral load can stimulate the expression of hBD2 and hBD3 gene products through direct 150 

interaction with the virus. More specifically, hBD2 has been shown to down-regulate the HIV 151 

transcription of early reverse-transcribed DNA products (37) and hBD2 and hBD3 can mediate CXCR4 152 

down-regulation (but not CCR5) and internalization in immuno-stimulated peripheral blood 153 

mononuclear cells (38). This mechanism diminishes the chances of infection (39) and with other 154 

salivary gland components, could help to explain the oral mucosal natural resistance to HIV infection. 155 
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hBD3 also possesses an inhibitory effect on the influenza virus blocking the fusion of the viral 156 

membrane with the endosome of the host cell, through cross linking of the viral glycoproteins (40).  157 

Defensins have evolved to maximize their protective role, showing an extraordinary adaptation to 158 

different environmental challenges: for instance plant defensins are particularly active against fungal 159 

infections (Reviewed in (41), slowing down hyphal elongation, and some of them also evolved to gain 160 

an α-amylase inhibitory activity that can confer protection against herbivores (42,43).   161 

6.  Immune modulatory activity of β-defensins  162 

A role for defensins in proinflammatory responses and more recently immunosuppression (reviewed 163 

in (44) has been delineated over the last two decades. An initial important observation was that 164 

βdefensins can recruit immature dendritic cells and memory T cells to sites of infection and/or 165 

inflammation providing a link between the innate and adaptive arms of the immune system. A 166 

mechanism for this was provided by Oppenheim’s group where they demonstrated that natural and 167 

recombinant hBD2 could chemoattract human immature dendritic cells and memory T cells in vitro in 168 

a dose-dependent manner. This response was inhibited with the Gαi inhibitor pertussis toxin and 169 

suggested the possible involvement of a chemokine receptor(s) which was confirmed using antiCCR6 170 

blocking antibodies.   171 

TH17 cells express CCR6 and respond to β-defensins chemoattractant action. Furthermore, TH17 172 

cytokines (i.e. IL-17 and IL-22) induce expression of defensins from relevant cell types including 173 

primary keratinocytes potentially resulting in an amplification of TH17 responses (45). Increased TH17 174 

levels have been reported in different autoimmune diseases, such as multiple sclerosis (46), rheumatoid 175 

arthritis (47) and psoriasis (48), implicating β-defensin expression in autoimmunity. Given the role of 176 

defensins in chemoattracting monocytes and macrophages and the lack of CCR6 on these cell types 177 

other receptors were investigated that might mediate this chemoattractant activity. This resulted in the 178 

identification of CCR2 as a receptor for hBD2, hBD3 and their mouse orthologs (mBD4 and mBD14) 179 

(49)  180 

In addition to signaling through chemokine receptors, defensins have been shown to function through 181 

Toll like receptors (50,51).  hBD2 has been shown to be a natural ligand for the Toll-like-receptor-4 182 

(TLR-4), present on immature DCs, up-regulating co-stimulatory molecules and leading to DC 183 

maturation, and on CD4+ T cells, possibly stimulating their proliferation and survival (52). On bone 184 

marrow derived macrophages pre-treated with a recently identified mBD14 (53), TLR restimulation of 185 

these cells resulted in enhanced expression of pro-inflammatory mediators that was Gi protein 186 

dependent but independent of CCR2 or CCR6 signaling pathways (54).  187 

7.  β-defensin copy number variation and disease association studies  188 

In humans, β-defensins genes are organized into three main clusters at 8p23.1, 20p13 and 20q11.1, 189 

with another likely small cluster on chromosome 6p12 (55). At 8p23.1 a number of β-defensins are 190 

found on a repeat unit that is typically present at 2-8 copies in the population, with a modal copy 191 

number of 4. Each chromosome 8 copy can contain 1-8 copies of the repeat unit. The mutation rate at 192 

this locus is extremely fast (~0.7% per gamete) (56), indicative of the high level of plasticity in this 193 

genomic region. One-copy individuals are extremely rare (57,58), and suggest that the presence of a 194 
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null allele might be deleterious and selected against. At the other end of the DEFB copy number 195 

spectrum lies a proportion of high copies individuals (9-12 copies) with a cytogenetically visible CN 196 

amplification at 8p23.1 that has no phenotypic effect (59). These first experimental observations ignited 197 

further interest into the chromosome 8 DEFB cluster. Within the repeat unit there is DEFB4, DEFB103, 198 

DEFB104, DEFB105, DEFB106, DEFB107, SPAG11 and PRR23D1 (21,60) (Figure 1). The variation 199 

in the number of repeat units between individuals in the population and likely sequence variation 200 

between copies suggests that CNV of defensins may play a role in modulating defensin expression 201 

(61,62) and function. The consequences of copy number variation have been explored for a number of 202 

years and may include increased gene product, the production of fusion genes, the formation of extra 203 

coding domains or a position effect that alters expression of the gene product (63). This extensive 204 

structural genome variation in humans is particularly pertinent to diseases where defensins may be 205 

implicated in their pathology. This includes a number of autoimmune and infectious diseases (Table 206 

1).  207 

Mapping of the β-defensin CNV region has been challenging but recent data fixes the minimal length 208 

of the CNV at 157 kb (64) and a recent study using high density array comparative genomic 209 

hybridization combined with Paralogue Ratio Test (PRT) assays suggests it may be as large as 322kb 210 

(21). Because of the extensive copy number variation of defensins, robust methods are required to 211 

accurately interrogate copy number states in disease cohorts. Various locus specific techniques for CN 212 

determination have been utilized including  Multiplex Amplifiable Probe Hybridization (MAPH) (65), 213 

Multiple Ligation Probe Amplification (MLPA) (66) and PRT (67). The advantage of such techniques 214 

is the ability to obtain data that clusters around integer copy numbers providing a high degree of 215 

concordance between the methods and confidence in the copy number obtained. Association studies 216 

investigating some CNVs (i.e. CCL3L1/CCL4L2 in HIV) have provided conflicting results as the 217 

methods used did not generate data that clustered around integer copy number values (68,69). In some 218 

cases initial findings have been replicated in subsequent studies that have utilized more robust methods 219 

(70).    220 

In early association studies of multi-allelic CNV and disease, copy number variation of defensins was 221 

implicated in psoriasis. Individuals with more than five β-defensin copies presented a five-fold 222 

increased risk of developing psoriasis when compared to two copy individuals. In addition, there was 223 

a direct correlation between the number of copies and relative risk (odds ratio of 1.32) (71) This 224 

association was replicated (although with reduced odds ratio) in a subsequent study (72). In the case of 225 

an autoimmune condition, such as psoriasis, high copy number may contribute to the strong induction 226 

of hBD2 and hBD3, conferring protection from bacterial infections of the psoriatic lesions (73).   227 

Another disease strongly linked with defensin expression is Crohn’s disease (CD) where it has been 228 

demonstrated that reduced Paneth cell expression of defensins in the ileum results in ileal CD. 229 

Therefore defensin expression at this site may be important in maintaining the mucosal microbiota. 230 

NOD2 has been strongly implicated in the pathogenesis of CD from GWAS (74) giving a 17.1-fold 231 

increased risk for CD in homozygous or compound heterozygous individuals. NOD2 is a Nod like 232 

family receptor (NLR) member that controls expression of defensins in CD. Polymorphisms in NOD2 233 

result in reduced α-defensin expression and exacerbated disease. Polymorphism of the DEFB1 (non 234 

CNV gene) promoter has been associated with CD (75). So is there a role for copy number variation in 235 

CD? Previous studies indicated that α-defensin copy number may be important (76). However, recent 236 

work that accurately measured copy number using PRTs to determine copy number of DEFA1A3 237 
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determined that a SNP (rs4300027) is associated with DEFA1A3 CN in Europeans (77). This SNP was 238 

then used to indirectly interrogate GWAS data and suggested that α-defensins CNV may not be 239 

important in CD. A similar outcome was obtained with β-defensin copy number whereupon accurate 240 

measurement, there was no association with the CD (57) in contrast to previous reports (78,79). These 241 

results however do not exclude the role of α and β-defensin expression in the pathogenesis of CD but 242 

suggest that the individuals copy number state may not be important in this context.  243 

Given the suspected anti-viral role of defensins, it was suggested that defensin CNV may be important 244 

in host responses to HIV infection. There are a number of conflicting reports of the association between 245 

defensin copy number and HIV infection (80–82). A surprising finding from a cohort study that 246 

evaluated two sub-Saharan populations with HIV-1 or HIV-1/tuberculosis coinfection was that high 247 

copy number of β-defensins did not result in the predicted low viral load and did not improve immune 248 

reconstitution in patients (83). The converse was found suggesting that the immune modulatory 249 

properties of defensins may be subverted during HIV-1 infection. A model suggested to explain this 250 

apparently paradoxical result was that high copy number may promote increased recruitment of CCR6 251 

expressing cell types that are highly permissive for HIV-1 infection thus amplifying the foci of HIV-1 252 

infection.   253 

Conclusions  254 

Defensins play a key role in pathogen host interactions and are at the interface of innate and adaptive 255 

immunity. The complex genetic variation that underlies the evolutionary history of defensins and their 256 

biology is gradually being elucidated, suggesting defensin copy number variation is an important 257 

contributor to maximizing the host innate and adaptive response. The history of the defensin gene 258 

family is particularly paradigmatic given that many CNV loci in the human genome host immunity 259 

genes. Further studies should be conducted to better understand the genomic architecture of multi-260 

allelic CNVs. This will aid the development of robust assays that evaluate the overall impact that CNV 261 

has on and both physiological and pathological mechanisms of immunity.  262 
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271  Figure 1. Genome assembly of β-defensin repeat unit at 8p23.1    
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DEFB cluster 

CN calls per 

diploid  
genome  

Sample size  Methods used for CN 

calling  
Association study?  Findings  Reference  

2-12  90 controls  
12 related individuals 

from 3 families with 

chr8p23 euchromatic 

variant (EV)  

MAPH  
SQ-FISH  

No  Average CN distribution of 2-7 for controls.   
Average CN distribution of 2-7 for EV carriers  

(Hollox et al.,  
2003)(84)  

2-8  27 unrelated samples  qPCR  No  Concordant CN for DEFB4 and DEFB103  (Linzmeier &  
Ganz, 2005)  
(85)  

2-10  355 patients with cystic 

fibrosis  
167 UK controls  

MAPH  Cystic fibrosis  DEFB CN is not associated with cystic fibrosis  (Hollox et al.,  
2005) (86)  

2-7 for DEFB4  44 samples  qPCR  No  Discordant CN for DEFB4, DEFB103 and DEFB104.   (Chen et al.,  
2006) (87)  

2-10  250 CD patients  
252 controls  

Array-CGH 

qPCR  
Crohn’s disease  <3 copies associated with CD (OR=3.06)  (Fellermann et 

al., 2006) (79)  
2-12  498 cases  

305 controls  
MAPH   
PRT  

Psoriasis  Higher CN associated with psoriasis RR=1.69 

>6 copies.  
(Hollox et al.,  
2007) (71)  

2-8  >800 samples  MAPH/REDVR, MLPA  
and array-CGH. All 

validated through PRT  

No  PRT is a reliable method for CNV analysis  (Armour et al.,  
2007) (67)  

2-9  42 samples  MLPA  No  Strict copy number concordance for all genes in 

the chr8p23.1 DEFB cluster  
(Groth et al.,  
2008) (88)  

1-12  208 offspring from 26  
CEPH families  

PRT   
Microsatellite analysis  

No  Fast germline copy number recombination of  
DEFB cluster (~0.7% per gamete)  

(Abu Bakar et 

al., 2009) (56)  
1-12 in CD 

patients 2-9 in 

controls  

466 CD patients  
329 controls  

  

qPCR  Crohn’s disease  >4 copies associated with CD (OR=1.54)  (Bentley et al.,  
2009) (78)  

1-10  1000 Crohn’s disease  
(CD) patients  
500 controls  

PRT on all samples qPCR 

on 625 samples  
Crohn’s disease  DEFB copy number  is not associated with CD 

(Higher accuracy in CN calling and a larger cohort 

compared with previous studies on CD)  

(Aldhous et al.,  
2010) (57)  

1-9  1,056 individuals from the 

HGDP-CEPH panel  
PRT  No  Recent selection of high-expressing DEFB103 gene 

copy in East Asia  
(Hardwick et al., 

2011) (89)  
1-9  1002 Ethiopian and  

Tanzanian HIV and  
HIV/TB patients  

PRT  HIV viral load in 

HIVonly and HIV/TB 

patients  

Increased HIV load prior to HAART (P = 0.005) 

and poor immune reconstitution following 

initiation of HAART (P = 0.003)  

(Hardwick et al., 

2012) (90)  

2-7  543 SLE patients  
112 AASV patients  
523 controls  

PRT  
515 samples validated 

with REDVR  

Systemic lupus 

erythematosus  ANCA 

associated small 

vasculitis (AASV)  

Higher CN associated with SLE and AASV.  
(SLE OR=1.2;  
AASV OR=1.5)  

(Zhou et al.,  
2012) (91)  

2-8  70 PDAC patients  
60 CP patients  
392 controls  

MLPA  Pancreatic ductal 

adenocarcinoma  
(PDAC)  
Chronic pancreatitis  
(CP)  

Protective effect of high DEFB CN against PDAC  
(Fisher’s exact test p=0.027)  

(Taudien et al.,  
2012) (92)  

1-9  2343 samples (689 

children and 1149 adults)  
PRT  Asthma   

Chronic obstructive 

pulmonary disease  
(COPD)  

DEFB CN is not associated with lung function in 

the general population (OR=0.89)  
(Wain et al.,  
2014) (93)  

2-9  113 otitis media 

prone children 259 

controls  

PRT  Susceptibility to otitis 

media  
DEFB CN associated with nasopharyngeal 

microbiota composition (with respect to the 

three predominant pathogens for otitis media:  
S.pneumoniae, M. catarrhalis and H. influenzae.   

(Jones et al.,  
2014) (94)  

Table 1. Summary of β-defensin CNV studies. AASV: ANCA Associated Small Vasculitis; array-CGH: array 

Comparative Genomic Hybridization; CD: Crohn’s disease; CEPH: Centre d'Etude du Polymorphisme Humain DNA 

panel; COPD: Chronic Obstructive Pulmonary Disease. CP: Chronic Pancreatitis; HAART: Highly Active Anti- 
Retroviral Therapy; HGDP: Human Genome Diversity cell line Panel; MAPH: Multiplex Amplifiable Probe  2 
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Hybridization; MLPA: Multiplex Ligation-Dependent Probe Amplification; PDAC: Pancreatic Ductal Adenocarcinoma;  3 
PRT: Paralogue Ratio Test; REDVR: Restriction Enzyme Digest Variant Ratio; SLE: Systemic Lupus Erythematosus;  4 
SQ-FISH: Semi-Quantitative Fluorescence in Situ Hybridization; TB: tuberculosis   5 
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Gene  Peptide  Tissue distribution  Synthesis and regulation  

Date  

DEFB4  Human β-defensin 2  

(HBD2)  

Oral (95) and nasal mucosa (96), lungs (31), plasma (97), 

salivary glands (95), small and large bowel (98), stomach 

(99), eyes (100), skin (101), and kidney with chronic 

infections (102).  

Inducible in response to viruses (103), bacteria (98), lipopolysaccharide  

(95,104), peptidoglycan (105), lipoproteins (106), cytokines (IL1α (98), 

IL-1β (107), TNF (108)), PMA (109), IFN-γ (HBD3 only,  and growth 

factors.   

TLR2-mediated expression of HBD2 (110).  

Constitutive expression on ocular surface (HBD3) (100). HBD3 CSE 

inducible (111).  
DEFB103  Human β-defensin 3  

(HBD3)  

Leukocytes, placenta, testis, heart, skeletal muscle (112), 

urinary tract (113)  

DEFB104  Human β-defensin 4  

(HBD4)  

Gastric antrum, oral mucosa (114) and testis  Constitutive or inducible in response to PMA (109), TNF-α (109) and 

bacteria.  

Constitutive mRNA expression in gingival keratinocytes (114).  

DEFB105  Human β-defensin 5  

(HBD5)  

Testis  In vitro antimicrobial activity against E.coli but not S.aureus (115).  

Constitutive mRNA expression in testis (116).  

HBD5 CSE inducible (111).  
DEFB106  Human β-defensin 6  

(HBD6)  

Testis , lung (117)  

DEFB107  Human β-defensin 7  

(HBD7)  

Oral mucosa (114), testis  Constitutive mRNA expression in gingival keratinocytes (114). 

Constitutive mRNA expression in testis (116).  

DEFB108  Human β-defensin 8  

(HBD8)  

Lung, oral mucosa (114)  Inducible by IL-1β (7) and Candida spp (114).  

Constitutive mRNA expression in testis (116).  

DEFB109  Human β-defensin 9  

(HBD9)  

Oral mucosa (114), lung, ocular surface (100)  Constitutive mRNA expression in gingival keratinocytes (114).  

Constitutive expression on ocular surface (100).  

mRNA almost ubiquitously expressed (117).  

CSE inducible (111).  
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