Monte-Carlo Simulation of Radon Equilibrium Under Varying Conditions. R G M Crockett

Introduction

At the core of this investigation is the development of Monte-Carlo simulations of the radon, ²²²Rn, (and thoron, ²²⁰Rn) decay chains. Currently, these preliminary simulations assume an hypothetical closed cubic metre of atmosphere and the simulations are time-stepped at constant intervals. At each time-step, there is a radon (or thoron) influx and each nucleus in the decay chains decays probabilistically, with nuclei and activity being aggregated and tabulated at the end of each time-step.

The preliminary simulations have been coded in two opensource interpreted mathematical software packages:

- Scilab user-friendly environment;
- Yorick fast, good numerical precision.

The ²²²Rn Decay Chain

The full version of the ²²²Rn decay chain, including five very low probability decay paths, was modelled. This is shown in Figure 1.

Fig 1. The ²²²Rn Decay Chain (main decay shaded).

The Simulation – ²²²Rn

The simulation is a time-stepped Monte-Carlo simulation. Each daughter, from ²²²Rn (beginning) to ²⁰⁶Pb (end, stable) is represented by a loop which determines the random decay according to the probability of decay per time-step (calculated from tabulated half-life data).

Currently, the decays in the chain are processed sequentially. Thus, at each time-step, the daughters are processed 'upstream', i.e. from ²⁰⁶Pb to ²²²Rn so that each daughter is 'decayed' according to the previous state before being updated.

Schem decay

The decay probabilities are listed in Table 1.

Decay	Decay Probability 5-minute timestep	Decay	Decay Probability 5-minute timestep	
222 Rn $lpha$	6.29 ×10 ⁻⁰⁴	²¹⁴ Pb β	0.121	
218 Po $lpha$	0.673	210 Po $lpha$	1.74 ×10 ⁻⁰⁵	
²¹⁸ Ρο β	1.35 ×10 ⁻⁰⁴	210 Bi $lpha$	6.24 ×10 ⁻¹⁰	
218 At $lpha$	0.999	²¹⁰ Βί β	4.80 ×10 ⁻⁰⁴	
²¹⁸ Αt β	0.001	210 Pb $lpha$	5.61 ×10 ⁻¹⁵	
218 Rn $lpha$	1.000	²¹⁰ Pb β	2.95 ×10 ⁻⁰⁷	
214 Po $lpha$	1.000	²¹⁰ ΤΙ β	0.930	
214 Bi $lpha$	3.20 ×10 ⁻⁰⁵	²⁰⁶ ΤΙ β 0.562		
²¹⁴ Βi β	0.160	²⁰⁶ Hg β	0.346	

The 'Experiments'.

1. Cyclically Varying Radon Influx.

The main investigation so far has been into cyclically varying radon influx. The phase relationships between radon influx, radon concentration and the ²²²Rn, ²¹⁸Po and ²¹⁴Po α -particle activities have been investigated for 12h, 24h and 48h sinusoidal cycles in radon influx.

2. Radon Equilibrium Factor.

The effect of different metallic-daughter plate-out probabilities on the equilibrium of ²²²Rn and its α -emitting daughters has also been investigated. This allows calculation of the radon equilibrium factor, F.

Data Analysis Group, School of Science and Technology, University of Northampton, NN2 6JD, UK.

Results: Cyclic Lags.

natically, at each time-step, for each daughter in the chain:
P(decay) = P(daughter_timestep_decay)
activity = 0
n_nucleus = n_nucleus_old
for counter = 1 to n_nucleus_old
<i>P(nucleus_decay) = random_number</i> [0,1]
if $P(nucleus_decay) \le P(decay)$
n_nucleus = n_nucleus-1
n_next_nucleus = n_next_nucleus+1
activity = activity + 1
end_if
end_for
n_nucleus_old = n_nucleus
\rightarrow plus downstream checks/updates

Tab 1. Particles Decay Probabilities, 5-minute time-step.

shown in Table 2.

Fig 2a.

Fig 2b.

Lag behind ²²²F

Note the $\sim 1/4$ cycle lag of ²²²Rn behind influx and the ~90m lag of ²¹⁴Po α -activity behind ²²²Rn.

The cyclic relationships are shown in Figure 2, for 12h and 24h cycles. The lags for 12h, 24h and 48h cycles are

12h Sinusoidal Variation in Radon Influx.

24h Sinusoidal Variation in Radon Influx.

			Cycle Period				
	48h	24h	12h				
oncentration behind			2h 56m				
of period)			(24.4%)				
222 Rn $lpha$	2 m	0 m	7 m				
²¹⁸ Po α	9 m	5 m	14 m				
²¹⁴ Po α	85 m	88 m	94 m				
	nd ²²² Rn α ²¹⁸ Po α ²¹⁴ Po α	C 48h 11h 31m (24.0%) 222 Rn α 2 m 218 Po α 9 m 214 Po α 85 m	Cycle Perio 48h 24h nd 11h 31m 5h 51m (24.0%) (24.4%) 222 Rn α 2 m 0 m 218 Po α 9 m 5 m 214 Po α 85 m 88 m				

Tab 2. Lags: 48h, 24h and 12h Cycles (mean, 5 runs).

Results: Radon Equilibrium Factor.

The radon equilibrium factor, F, was calculated for plateout rates as shown in Figure 3, according to the formula cited by the Wise Uranium Project.

Fig 3. Radon α -Particle Equilibrium.

Conclusion

These preliminary results, obtained using a coarse timestep, start to illuminate the behaviours of the radondaughter system when the influx is cyclically varying: it is evident that the shorter the cyclic period, the more damped the response of the daughters to the variation.

However, it is clear that:

It is intended to recode the simulation to run on a multicore HPC cluster such that daughters can be decayed in parallel rather than sequentially, to reduce the run-time and enable finer time-stepping.

The thoron, ²²⁰Rn, decay-chain will also be simulated: this will assist with understanding the equilibrium and cyclic behaviours in situations where both radon isotopes are present.

References

- 2. Scilab (http://www.scilab.org) Yorick (http://yorick.sourceforge.net).

i) ²²²Rn concentration lags the influx by $\sim \frac{1}{4}$ cycle ii) ²¹⁴Po α -activity lags ²²²Rn and ²¹⁸Po α -activity by ~90m