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Abstract 

 Regression mixture models are one increasingly utilized approach for developing 

theories about and exploring heterogeneity of effects. This study aims to extend the current use 

of regression mixtures to repeated regression mixture method when repeated measures, such as 

diary type and experience sampling method data, are available. We hypothesized that additional 

information borrowed from the repeated measures would improve the model performance in 

terms of class enumeration and accuracy of parameter estimates. We specifically compared three 

types of model specifications in regression mixtures: (a) traditional single outcome model, (b) 

repeated measures model with 3, 5, and 7 measures, and (c) single outcome model with the 

average of 7 repeated measures. Results showed that the repeated measures regression mixture 

models substantially outperformed the traditional and average single outcome model in class 

enumeration with less bias in parameter estimates. For sample size, whereas prior 

recommendations have suggested the regression mixtures require samples of well over 1000 

participants even for the large distance classes (regression weight of .20 vs .70 classes), the 

current repeated measures regression mixture models allow for samples as low as 200 

participants with increased number of (i.e., seven) repeated measures. Application of the 

proposed repeated measures approach is also demonstrated using the Sleep Research Project data. 

Implications and limitations of the study are discussed. 
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Repeated Measures Regression Mixture Models 

Introduction 

 Regression mixture models are a novel approach to identify heterogeneous effects. 

These models detect two or more sub-populations, which differ in the effect of a predictor on an 

outcome, using a latent class variable instead of the a priori moderator(s). For example, 

regression mixture models were used to find a differential susceptibility to the effects of a child’s 

temperament on the mother-child interaction style (Lee, 2013), where they found three latent 

classes with varying associations between the child’s temperament and mother-child interactions 

(i.e., non-susceptible class, susceptible-high class, and susceptible-low class). In another study, 

regression mixture approach was used to understand the differential effects of depressive 

symptoms and neuroticism on cognitive complaints in older adults (Kliegel & Zimprich, 2005). 

Given the exploratory nature of this approach, regression mixture models have become 

increasingly popular in the last decade (Dyer, Pleck, & McBride, 2012; Lanza, Cooper, & Bray, 

2014; Lanza, Kugler, & Mathur, 2011; McDonald et al., 2016; Schmiege & Bryan, 2016; 

Silinskas et al., 2013; Silinskas et al., 2016).  

 The current study introduces the use of regression mixture models with repeated 

measures. One of the commonly used mixture approaches to repeated measures is a growth 

mixture model (Muthén, 2004; Muthén & Muthén, 2000). Growth mixture models have been 

increasingly popular and applied in a wide range of fields including health, educational, and 

psychological studies. The main purpose of growth mixture models is to identify heterogeneity in 

growth trajectories assuming that the data are from a mixture of subpopulations of individuals 

with different growth trajectories. Growth mixture models identify these subpopulations by 

estimating class-specific growth parameters (e.g., intercept, change of rate, variance). Under the 
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framework of multilevel modeling (i.e., repeated measures are nested within individuals), 

random-effects mixture models (Ng et al, 2006; Xu & Hedeker, 2001) have been also widely 

employed to unfold the possible subpopulation heterogeneity. Similar to the growth mixture 

models, the main interest in the use of random-effect mixture models has been typically on 

determining the heterogeneity in the growth trajectory of repeated outcomes over time (Kohli, 

Harring, & Zopluoglu, 2016; Yau, Lee, & Ng, 2003) in which the latent classes are identified 

based on the fixed and random effects on each time point.  

While finite mixtures have been used extensively for examining heterogeneity in 

longitudinal trajectories (Bauer & Curran, 2003; Jung & Wickrama, 2008; Nylund, Asparouhov, 

& Muthén, 2007), our purpose in using repeated measures regression mixtures is quite different. 

Rather than focusing on trends over time, repeated measures are collected to increase the amount 

of information available about the outcome. Obvious uses of this approach are situations when 

repeated measures data are available but longitudinal trends are not of interest but considered as 

nuisance parameters. Examples, where this may be the case, include daily diary data (measures 

may include sleep quality, substance use, daily mood or affect) and data collected by loggers 

such as accelerometry measures of physical activity or logs of blood pressure. In these cases, 

researchers are interested in the true state of a behavior, but need to measure it multiple times to 

ensure they are capturing it with accuracy. Current state of the art practice with such data is to 

either average across the multiple observations or to create a latent factor from the multiple 

observations, which factor out the error and get a closer approximation of the true score. In 

repeated measures regression mixture models, the primary interest is in how such a factor or 

construct varies in its relation with other constructs while time is considered a nuisance rather 
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than a factor of interest to explore. We propose that repeated measures regression mixtures will 

benefit by the information gained when using all available data rather than a summary score.  

Regression mixture models are a specific type of finite mixtures, which examines 

heterogeneity in the regression of an outcome on predictor(s). Heterogeneity in effects is 

assessed by differences in the regression weights (e.g., intercept, slope), which connect 

predictor(s) to outcome(s) across latent classes. While a single set of average regression weights 

are estimated for all subjects in a traditional regression model, two or more sets of average 

regression weights are estimated for the corresponding number of latent classes in a regression 

mixture model. A general regression mixture model for a single outcome is: 

,  )σ,(N~ε kik
20    [eq. 1], 

where yi|X,k represents the observed value of y for subject i in a specific class k given predictor X, 

β0k captures the class-specific intercept coefficient, and heterogeneity in the effects of each 

predictor is captured by βpk, which represents the class-specific slope of the corresponding 

predictor, Xp. In line with traditional linear models, the errors within each class, εik, are assumed 

to be normally distributed with a mean of zero and a class-specific variance of σ2
k. Each 

observation (subject) is assigned to a latent class using a multinomial equation as a function of 

the overall latent class probabilities: 

   [eq. 2], 

where αk denotes the log odds of being in class k versus the reference class when all latent class 

predictors, zq (q=1,…, Q), equal zero. The potential difference in the predictor variable Xp 

between the latent classes can be taken into account by allowing the C on X path in the model 

(Lamont, Vermunt, & Van Horn, 2016). Figure 1 presents the example diagram of a regression 
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mixture model with a single outcome (y), a single predictor (x), and where (c) represents the 

unobserved (latent) class membership. 

When there are additional data for the outcome measure, we incorporate the framework 

of latent growth models (LGM; Duncan, Duncan, & Strycker, 2013) into the regression mixture 

models. While the current method can be extended to more complex models with additional time 

functions (e.g., linear-, quadratic-growth model), we focus on building a random intercept-only 

model for the repeated measures where inter-individual and intra-individual differences are 

adequately modeled. We specifically focus on detecting the heterogeneity in the effect of 

predictor(s) on the latent intercept. Adding additional latent factors for the time function (e.g., 

linear, quadratic slope factors) can be also considered after conducting more exploratoryanalyses, 

such as visual inspection using graphical function in statistical software.  

Figure 2 represents the regression mixture model with 3 repeated measures of data. The 

single outcome regression mixture model can be extended for repeated measures as: 

Yi|X,k = τ + Ληik|X + εik, )σ,(N~ε tktik
20    [eq. 3], 

where yi refers to a vector of outcome variables (t×1, where t is the number of repeated measures 

from i individuals), τ refers to a vector of intercepts of ys (t×1; typically fixed to zero for model 

identification purpose), Λ relates the t observed repeated measures from the i individuals to the 

intercept (ηik) for each latent class given the predictor Xp, and εtik represents the class-specific 

measurement errors of the repeated response variables (t×1; a vector of within-subject residual 

variance of ys for each class). In the simplest case, the Λ vector is fixed to be 1 at all 

measurement points to represent the average value of repeated outcomes across times and the 

variance-covariance matrix ∑ is a diagonal matrix with all diagonal elements fixed to be equal: 



Repeated measures regression mixtures   6 
 

    

so that the residual variances are constant over time and uncorrelated for each pair of time 

measures (this is often called the Identity (ID) error structure). More complex error variance 

structures (e.g., Compound Symmetry, Auto-regressive, Banded-diagonal, etc.) could be 

considered. For the current study, however, we use the simplest ID structure for specifying the 

repeated measures regression mixture model as the method has limited value if it does not 

perform well under the simplest model. These restrictions presume that the focus of the model is 

on predicting the outcome equally across all repeated measures and that the residual variances 

across time points have no systematic correlations.  

Given the measurement model for η in equation 3, the focus of the regression mixture is 

on the prediction of η as a function of the class specific effects of p covariates. Thus, η becomes 

the outcome in equation 1.  

,
1

0| ik

P

p
ippkkXik x   



  )ψ,(N~ζ kik 0   [eq. 4]. 

In equation 4, β0k represents the mean of the repeated outcomes for each class when the 

predictor xip are zero, βpk represents the class-specific regression coefficients of xp as before, and 

ζ represents the deviation of the corresponding individual values from the mean estimates of the 

latent intercept factor. Along with the single latent intercept factor, there is one between-subject 

variance component (i.e., ψk), which captures the average deviation from the grand mean (i.e., 

mean of the repeated measures across all subjects) to the individual mean for the intercept factor. 
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 While the current model is formulated under the LGM framework, it can be reproduced 

under the multilevel modeling (MLM) framework given the equivalence of the two model 

frameworks (Grimm, Ram, & Estabrook, 2017). When the model is reproduced in MLM, the 2-

level model (i.e., repeated measures are nested within individuals) can be employed by having 

the total variance decomposed into ψk (i.e., between-subject variance) and σ2
tk (i.e., within-

subject variance). In the latent variable framework, this is achieved by having separate 

(correlated) variances across all of the measurement occasions. 

Study aims 

This study aims (1) to evaluate the performance of repeated measures regression mixtures 

and (2) to demonstrate the use of this model to examine the differential effects of stress on sleep 

diary in a sample obtained from a prior study. First, performance of the repeated measures 

regression mixture model is examined through Monte Carlo simulations in which we vary the 

measurement error variance of outcome across repeated measures, the number of repeated 

measures, and the sample size. In order to understand the usefulness of this approach in practice, 

we also compare the results of the repeated measures regression mixtures to two cases. The first 

case is a standard regression mixture where only 1 observation of the outcome is collected. This 

shows the potential benefit of collecting additional outcome data when planning a study, which 

will use regression mixtures. The second case compares the repeated measures regression 

mixture to the results that would be obtained if all repeated measures were available but the 

analysis conducted was a standard regression mixture with the outcome being the average across 

all time points. The purpose of this second case is to examine whether the benefits of using 

repeated measures data are due to simultaneously modeling multiple outcomes or to the 

increased reliability from having additional data points. If the two approaches (i.e., the repeated 
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measures regression mixture approach and the single outcome with the average score regression 

mixture approach) show no difference in their improvement over the traditional single outcome 

approach, then we would conclude that the benefits are solely due to the increased reliability but 

not to simultaneously modeling multiple outcomes. 

Outcomes in this study are both latent class enumeration (measured as the proportion of 

simulations that selected the correct number of classes) and the bias and efficiency of the 

parameter estimates. We hypothesize that both outcomes will be improved as the number of 

measurement and sample size increase. We also hypothesize that the benefit of having multiple 

outcomes is greater when the measurement error variance is larger, primarily due to jointly 

modeling these repeated measures outcomes. The reason for this is that the regression mixture 

model with a single outcome relies strongly on assumptions about the conditional distribution of 

that outcome for parameter estimation (Van Horn et al., 2015), with multiple outcomes, 

estimation is informed by the joint distribution of all outcomes, which contains more information 

than the univariate distribution.  

We then demonstrate the use of repeated measures regression to identify qualitatively 

different groups of people who differ in the effect of cognitive and behavioral symptoms of 

depression on sleep efficiency. Sleep efficiency is measured using daily diaries, an example of 

the type of application, which may benefit from repeated measures regression mixtures. We 

believe that this proposed method is especially beneficial for the clinical research which often 

includes relatively small sample sizes and in which there is often an inherent interest in 

individual differences. 

Methods 

Data generation.  
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The first part of this study uses Monte Carlo simulations to examine the performance of 

the repeated measures regression mixture model. Data are generated using R (R Core Team, 

2017) for a 2-class model as the true population model. Each class is defined by an intercept and 

slope (i.e., Class 1: β00 = 0.0 and β10 = 0.20 or 0.40 for the small or medium effect class, 

respectively; Class 2: β01 = 0.50 and β11 = 0.70 for the large effect class). Regression weights for 

Class 1 are set to be either small (β10 = 0.20) or medium (β10 = 0.40), so that the distances from 

Class 2 (β11 = 0.70) are set to be large- or small-distance condition, respectively. We anticipate 

that the regression mixture models perform poorly when the Class 1 effect size is medium given 

the reduced class separation from Class 2 (i.e., 0.40 vs. 0.70). We have used the current setting to 

generate the two latent classes because we believe that if regression mixtures are to be useful for 

finding individual differences they should be able to detect a difference of at least this size (Kim, 

Vermunt, Bakk, Jaki, & Van Horn, 2016; Van Horn et al., 2015). While the entropy is regarded 

as a model fit index to show the accuracy of class assignment in general finite mixture models, it 

is not necessarily indicative of goodness of fit in regression mixture models. Therefore, the 

entropy is not considered to be a design factor for our simulation study.  

We generated 7 repeated measures outcome for each condition because collecting daily 

data for weekly basis is common in many applied research. Additionally, we vary the proportion 

of measurement error variance,  (1%, 10%, 20%, and 40% of the total variance1), ranged 

from minimal (1%) to substantial (40%). The reason we include the minimal measurement error 

condition is that we often see that there are variables rarely changed over time (e.g., daily Body 

Mass Index). When the measures are extremely stable and not changed, we expect that the 

benefits of having additional time points is much smaller than when there is some extent of 

                                       
1 For ψk, population values are set to be 99%, 90%, 80%, and 60%, accordingly). 
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measurement errors. These simulations include four different sample size conditions from 200 as 

a small sample size condition to 3000 as a large sample size condition. Although previous 

simulation study has shown that 3000 is an adequate number for detecting the differential effect 

with large effect size difference, many applied studies have employed the regression mixture 

approach with a much smaller sample size (Dyer et al., 2012; McDonald et al., 2016; Wong, 

Owen, & Shea, 2012). Therefore, we have included 200 as the smallest sample size condition in 

the current study. Sample sizes for the two classes are balanced, having 50% of the total samples 

assigned to each class (αk=0.0). The predictor X was generated from a standard normal 

distribution with a mean of 0 and a standard deviation of 1. While it is important to model the 

potential mean difference in X between classes, we did not include this additional condition in 

the current simulations.  

For data generation, there are a total of 32 separate conditions (2 effect size distance X 4 

error variances X 4 sample sizes) with 500 replications used for each condition. The total amount 

of variance, , for each outcome is set to be 1 for all conditions. The following 

equations are used to generate the 7 time-point repeated measures data by varying the four 

conditions of measurement variance: 

Class 1: 

ηi|c=1 = 0.0 + 0.20xi + ζi1,  ζi1 ~ N(0, ),  , 

ηi|c=1 = 0.0 + 0.40xi + ζi1,  ζi1 ~ N(0, ),  , 
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 Class 2: 

ηi|c=2 = 0.5 + 0.70xi + ζi2,  ζi2 ~ N(0, ),   

         [eq. 5], 

where ζ and ε are assumed to be normally distributed. The simplest variance-covariance (V-CV) 

structure is adopted for the within-subject residual V-CV (i.e., Identity structure)2 because we 

specifically aim to use this approach for the repeated measures collected in a short period of 

time; we do not have a specific hypothesis for the error variance structure. Although it has been 

shown that the results of regression mixture models are affected by error variance distribution 

(Van Horn et al., 2012), examining non-normal errors is beyond the scope of the current study. 

Data analysis. 

Before analyzing the regression mixture models, a multiple regression model with a 

predictor X and a binary indicator of class membership, Z, (i.e., yi = β0+β1X+β2Z+β3X*Z+ei) is 

analyzed to confirm the data generation process. We used Mplus7.3 (L. K. Muthén & B.O. 

Muthén, 1998-2012) employing the maximum likelihood estimator with robust standard errors 

(ESTIMATOR=MLR) to analyze each dataset. Five types of regression mixture models are 

analyzed for each dataset: (A) a traditional regression mixture model with a single outcome 

measure (one of the 7 repeated measures), (B) 3-repeated-measures regression mixture model, 

(C) 5-repeated-measures regression mixture model, (D) 7-repeated-measures regression mixture 

model, and (E) model the average of all 7-repeated-measures in a regression mixture model. For 

                                       
2 This eventually makes the Compound Symmetry for the repeated outcome measures given the shared variance 
through the intercept variance, ψ. 
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Model (A), (B), and (C), the first 1, 3, and 5 variable(s) of the 7 generated outcomes are used for 

the data analysis, respectively. For Model E, the average score of the 7 repeated measures is used 

as a single outcome in a regression mixture analysis.  

For all five specifications of regression mixture models, a series of analysis is conducted 

for each simulation varying the number of latent classes. First, a one-class model, which is a 

traditional regression model with no mixture, is analyzed. Results are compared with the next 

model having one more class (2-class model) using the Bayesian information criterion (BIC; 

(Schwarz, 1978) and the sample-size adjusted BIC (ABIC; Sclove, 1987). Finally, a three-class 

model was estimated for each simulated dataset to assess the probability of finding 3-classes over 

2-classes. The number of simulations finding the correct number of classes (i.e., 2 classes) is 

reported in class enumeration results. Accuracy of parameter estimates is assessed using absolute 

bias in parameter estimates to the population values based on the following equation: 

  popest ββ̂β̂B      [eq. 6]. 

In addition, coverage rate for the true population value is also reported. More specifically, the 

coverage is coded as 1 if the true population value is included in the 95% confidence interval 

(CI); 0 if it is outside of the 95% CI. Only replications selecting the true 2-class model using the 

BIC are included for calculating the bias as well as the coverage rate of the estimated 

parameters3. To account for the problem of switched labels in simulations (McLachlan & Peel, 

2000; Sperrin, Jaki, & Wit, 2010), we first sorted the two classes by the slope coefficients so that 

the smaller effect size class is always labeled Class 1 and the larger effect size class is Class 2. 

                                       
3 Full results including the parameter estimates for all simulation conditions are available from the first author. 
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Results 

Class enumeration.  

 All 1-class models converged while convergence rate for the 2-class and 3-class models 

are ranged from 99.2% and 96.4%, respectively, to 100% depending on sample size. Table 1  

presents the class enumeration results using the BIC4. Percentages of simulations detecting the 

true two classes are shown for each condition analyzed. Overall, the probability of selecting the 

correct 2-class model increases as sample size increases across all conditions as expected.  

Adding additional time points.  The primary question in the current study is whether the 

class enumeration result is improved by introducing the repeated measures into regression 

mixture model. This is assessed by comparing the results of the regular (single outcome) 

regression mixture (Model A) to the models with multiple repeated measures (Model B to Model 

D). As shown in Table 1, increasing the number of repeated measures in the regression mixture 

model substantially improves the probability of detecting the correct two classes using both the 

BIC and the ABIC. The average detection rate5 of 28.9% for Model A using the BIC under the 

large distance condition is increased to 51.3%, 71.2%, and 82.8% for Model B, C, and D, 

respectively. Similarly, the detection rate under the small distance condition is gradually 

increased from 5.7% (Model A) to 52.9% (Model D) on average. Although the ABIC is shown to 

be less sensitive to the different model specifications, detection rate using the ABIC steadily 

increases as well by adding more repeated measures into the model6.  

                                       
4 Class enumeration results using the ABIC can be requested from the first author. 
5 This is calculated using the sample size of 200, 500, and 1000, excluding 3000, across all conditions of 
measurement error variance. 
6 The results of the detection rate using the ABIC can be obtained by the request to the first author. 
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As hypothesized, the impact of adding additional time points on class enumeration is 

greater under the small sample size condition. For a sample size of 200 with the large distance 

condition, the probability of selecting the 2-class model using the BIC is substantially increased 

from Model A (average of 7.9%) to Model D (average of 52.3%) across different measurement 

error variance conditions. When the sample size is 500, Model D (7 repeated measures) selects 

the correct two classes in above 96% of simulations using the BIC while it is still below 20% for 

traditional regression mixtures (Model A) on average across all measurement error variance 

conditions. The class enumeration results for using the repeated measures are very promising 

when the sample size is 1000 under the large distance condition. The detection rate is 90% or 

above for using the three or more repeated measures in the model regardless of the degree of 

measurement error variance. While the same pattern is observed for the small distance condition, 

more repeated measures (at least five or seven) are required to achieve the power greater than .80. 

In sum, under the condition of small to moderately large sample sizes, introducing repeated 

measures into the regression mixtures greatly increases the utility of the method to detect the 

potential differential effects.  

Using the average value of repeated measures.  Next, we compare the class 

enumeration results of Model A and Model D to the results of an average composite model from 

the seven repeated measures (Model E). It is a common approach to use a composite variable of 

the repeated measures, such as mean and sum score, when the measures are expected to be stable 

with no systematic change over time. It is reasonable to expect that the average score represents 

the data better than the one-time measure at any point when the measurement error is associated 

with. Although there is an overall positive effect for using the average score over the single-time 
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point measure on class enumeration results, the use of repeated measures (Model B, C, and D) 

outperforms the use of average score in regression mixtures using both the BIC and the ABIC.  

While the detection rate is slightly increased from Model A to Model E by using the 

average score of 7 repeated measures, no major benefit has been shown for using the composite 

variable in regression mixture results. On the other hand, compared to Model E, using the 

original 7 repeated measure variables in regression mixture models (Model D) substantially 

improves the class enumeration results. Under the large distance between the two effect sizes 

condition, Table 1 shows that the average detection rate using the BIC is 28.9% for Model A and 

39.1% for Model E while it is drastically increased to 82.8% for Model D. Similarly, the average 

detection rate is increased from 5.7% (Model A) and 9.7% (Model E) to 52.9% (Model D) by 

employing the repeated measures into the regression mixtures under the small distance condition. 

Measurement error variance in repeated regression mixtures.  As shown in Table 1, the 

degree of measurement error variance has no significant impact on class enumeration results for 

single outcome measure (Model A) other than the random sampling error. Given that the 

intercept variance and the residual variance are combined as one total residual variance 

component for Model A, it is not surprising that the class enumeration results are consistent 

under the same conditions with the total variance of one.  

The interesting finding is that the impact of introducing the repeated measures into the 

regression mixtures is much greater when the measurement error variance gets larger. When the 

ratio of error variance is only 1%, the average rate for detecting the true 2 classes is increased 

from 29.2% to 45.7%, for Model A and B, respectively. Compared to 1% condition, when the 

measurement error variance is increased to be 10%, 20%, 40% of the total residual variance, the 
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average detection rates increase to 48.4%, 52.1%, and 59.1%, respectively. That is, the impact of 

having more information from the repeated measures is greater when the measurement reliability 

is more problematic given the increased error variance. This can be understood as the more 

shared variance across repeated measures (higher ratio of intercept variance to the total 

variance7) adds less information on estimating the parameters. In the extreme scenario, when the 

ratio of intercept variance to the total variance is 1, the repeated measures are perfectly correlated 

and so they are redundant information. For Model C with a small or moderate sample size, the 

same pattern is shown that the detection rate steadily increases as the measurement error variance 

increases.  

Distance in the effect size difference between classes. Under the condition of large 

distance in effect sizes between the two classes (.20 vs .70 condition), when the sample size is 

large (n=3000), two classes are successfully detected in most simulations regardless of the 

number of repeated measures as well as the degree of measurement error variance. Therefore, a 

sample size of 3000 condition is excluded for comparing different model specifications in class 

enumeration results for further discussion. Under the condition of small distance in effect sizes 

(.40 vs .70), even the sample size of 3000 condition cannot obtain the conventional power of .80 

for successfully detecting the two latent classes using the traditional single outcome regression 

mixture model. This result is consistent with the previous simulation studies where 1-class model 

is selected over the true 2-class model in most simulations when the slope difference is small 

(Jaki et al., 2018). While it is not surprising that the overall coverage rate is relatively low in the 

small distance condition, the probability for selecting the 2-class model increases as the number 

of repeated measures increases. Since the class detection rate is noticeably low for the small 

                                       
7 This refers to the intra-class correlation (ICC) in the framework of multilevel modeling.   
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distance conditions, we further focus on the large distance condition for its accuracy of the 

parameter estimates.  

Accuracy of parameter estimates.  

Table 2 and 3 shows the summary of estimated parameters for a 2-class regression 

mixture model for all five types of model specifications8. Specifically, Table 2 shows the average 

bias in each estimated parameter (see equation 6) and Table 3 presents the coverage rate based 

on the 95% confidence interval (CI) constructed from its standard error. Simulations selecting 

the 2-class model as the best fitting model using the BIC9 are included for computing the bias as 

well as the coverage rate. When sample size is 3000, biases for all parameter estimates are 

minimal across all simulation conditions10. This is consistent with the previous research that 

3000 is an adequate number for detecting the true 2 classes under the current simulation 

condition (Jaki et al, in press). Therefore, we compare the absolute bias for the estimated 

parameters across five different model specifications when the sample size is small (n=200) to 

moderately large (n=1000). We focus on the parameters of the regression line (i.e., intercept and 

slope) for each class because the differential effects are mainly defined by the overall pattern of 

regression11. First, we describe the estimated parameters for Model A, compare the results to 

Model B through D, which use the repeated measures into the regression mixtures, and compare 

the results to Model E using the average score of 7 repeated measures. 

                                       
8 The model results for the small distance condition can be requested to the first author. 
9 Given that the BIC has shown more sensitive results on class enumeration, we used the BIC to summarize the 
accuracy of parameter estimates. 
10 We omitted the results for the sample size of 3000 and the measurement error variance of 10% in Table 2 to 
reduce the table size for a better presentation. 
11 The average estimate for factor variance and residual variance for all conditions can be also obtained by the first 
author on request. 
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In the following section, we focus on the results of Model A, which is the traditional 

single-outcome regression mixture model. As presented in Table 2, the average parameter 

estimates of Model A across different error variance conditions are severely biased when sample 

size is equal to or less than 1000. While the intercept coefficient and the regression weight for 

the large effect class (Class 2) are relatively well estimated across all conditions except for the 

sample size of 200, those for the small effect class (Class 1) are substantially biased depending 

on the model specification. When the population parameters for intercept and slope are β00= .00 

and β10= .20 for Class 1 and β01= .50 and β11= .70 for Class 2, the average parameter bias across 

all sample size and measurement variance conditions, B, for the two estimates are B(β00)= -.20 

and B(β10)= -.23 for Class 1 and B(β01)= -.01 and B(β11)= -.01 for Class 2, respectively. That is, 

parameter estimates for Class 1 are substantially downward biased while those for Class 2 are 

relatively stable. Class mean, which is the log of odds of being assigned to Class 1, is also 

severely biased to be B(α0)= -.65 (population class mean =.00). That is, about two times more 

subjects (66%) are assigned to be in Class 2, which dominates the class enumeration results.  

The coverage rate also supports the findings from the bias in parameter estimates. Table 3 

shows that the coverage rates for the population parameters under the small sample size 

condition is very low (ranged between .36 and .56) , meaning that the chances of recovering the 

true values are low for the sample size of 200, even when the two class model is selected as the 

best-fitting model. On the other hand, while the major biases in the parameter estimates are 

driven from the Class 1 (see Table 2), the coverage rate is relatively consistent between the two 

classes. The average coverage rate of 95% CI for intercepts and slopes for Class 1 are .72 and .74 

while they are .77 and .71 for Class 2, respectively. The reason is that the standard errors for the 
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estimated parameters for Class 1 are much larger than the ones for Class 2 given its instability 

and smaller class size.  

Overall, results show that small sample size (n=200) is a serious problem in regular 

regression mixture models by producing biased parameter estimates, such as, switched direction 

for the regression weights (positive effect to be negative effect) and biased class proportion. 

Across all conditions of measurement error variance, the parameter estimates for Class 1 are 

downward biased (ranged between -.65 and -.23) and the power to detect the population 

parameter is low (ranged between .36 and .43). 

Adding additional time points. When adding additional time points, accuracy of 

parameter estimates is substantially improved on average across all error variance conditions 

under the small to moderately large sample size conditions. The average biases for the intercept 

and slope for Class 1 are reduced to be B(β00)= -.09 and B(β10)= -.07 when adding two more time 

points (Model B). In a same pattern, when increasing the number of repeated measures to 5 and 7, 

the absolute biases for the intercept and slope for Class 1 steadily decrease to be B(β00)= -.05 and 

B(β10)= -.04 for Model C, and down to B(β00)= -.03 and B(β10)= -.02 for Model D, respectively. 

Conversely, the coverage rate of 95% CI to detect the population value increases as the number 

of repeated measures increases. Across all sample size and measurement variance conditions, the 

average coverage rates of all parameter estimates (β00, β10, β01, β11, and α0) are increased 

gradually by adding more repeated measures into the regression mixture analyses. That is, for 

example, when a week of data (7 repeated measures) is used in regression mixture models 

instead of a single time point measure, biases in parameter estimates are dramatically reduced to 
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be about 7 times smaller for intercept (-.20 to -.03) and 11 times smaller for regression weight (-

.23 to -.02) on average, while the coverage rate is increased up to .95.  

More specifically, under the condition of 20% measurement error variance with a sample 

size of 500, for example, the average estimate of the intercept and slope for Class 1 for Model A 

are β00= -.17 (MSE = .17) and β10=.06 (MSE = .14), which are seriously underestimated. That is, 

the statistical significance of small effect (population value of β10= .20) cannot be even detected 

in most simulation conditions but regarded as ‘no-effect’ class. Notably, the standard deviation 

of the estimated regression weights for Class 1 across simulations is .30, which is substantial, 

indicating that the regression coefficient for the small effect class is unstable and estimated to be 

negative in many simulations. Compared to Model A, when using the 7 repeated measures in 

regression mixtures (Model D), the average regression weight for Class 1 under the same 

condition (n=500, error variance=20%) is β10=.19 (MSE = .09), which is very close to the 

population value. In terms of the statistical significance, it clearly shows the improved accuracy 

for estimating the regression weight for the smaller effect group with the average standard error 

of .09 when using the repeated measures approach. The standard deviation of the regression 

weights is .09 as well, which is greatly reduced from Model A (SD=.30) showing the improved 

model stability. 

Likewise, the computed bias in class mean has been greatly reduced by increasing the 

number of repeated measures into the regression mixture models. When adding more repeated 

measures into the model, the average bias in class mean, B(α0), is reduced to be -.19, -.08, and -

.04 for Model B, C, and D, respectively, meaning that more subjects are correctly assigned to be 
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in Class 1 given the increased number of repeated measures. This finding is also supported from 

the increased coverage rate as shown in Table 3. 

Using the average value of repeated measures.  Next, we examine whether using an 

average score of repeated measures has an advantage over a single time measure in the accuracy 

of parameter estimates. As shown in Table 2 and 3, Model E (the average score of 7 repeated 

measures model) shows no clear advantage over Model A overall. Although the size of biases for 

the intercept and slope for Class 1 (B(β00)= -.16 and B(β10)= -.16) are smaller than those from 

Model A (B(β00)= -.20 and B(β10)= -.23), the estimated parameters are still seriously biased and 

underestimated compared to Model B, C, and D. The absolute bias in class mean (B(α0)= -.43) 

and the coverage rate (.74) for Model E also show that the benefit of using the average score of 

the repeated measures is limited compared to the repeated measures regression mixture approach.  

Application: Use of repeated measures regression mixture model to sleep research 

project data 

To demonstrate the use of the repeated measures regression mixture model, we utilize 

data from the University of Memphis Sleep Research Project epidemiological survey of sleep 

and daytime functioning (Lichstein, Durrence, Riedel, Taylor, & Bush, 2004). While the overall 

association between the morbidity and sleep disturbances has been studied as a means of 

calibrating health risk (Altevogt & Colten, 2006; Nilsson, Rööst, Engström, Hedblad, & 

Berglund, 2004; Taylor et al., 2007), there has been a limited literature to understand the 

heterogeneity in the effects of daytime functioning on sleep quality, or vice versa. It is important 

to understand the potential differential effects because daytime functioning (e.g., depression, 

anxiety, and fatigue) affects the perceived sleep impairment, which has been identified as a 
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significant factor in insomnia treatment-seeking behavior and increased use of healthcare (Moul 

et al., 2002; Ustinov et al., 2010).  

In the current application study, regression mixture models are used to explore and better 

understand the potential differential effects of daytime functioning on sleep quality. Specifically, 

we illustrate the use of repeated measures regression mixtures to identify qualitatively different 

groups of people who differ in the effect of cognitive and behavioral symptoms of depression on 

sleep efficiency. A total of 771 participants ranged in age from 20 to 98 years participated in the 

study and were included for data analysis. More details on demographic and socio-economic 

characteristics of participants are available from Lichsten et al. (2004). Two weeks (14 days) of 

sleep diary were measured using a questionnaire. Among 9 sleep measures (e.g., time in minutes 

taking to fall asleep, the number of awakenings during the night, total sleep time, total sleep in 

bed, etc.), we employed the sleep efficiency percent for the current demonstration, which is the 

ratio of total sleep time to total time in bed x 100, indicating the overall sleep quality. Depression 

severity was measured using The Beck Depression Inventory (BDI) consisting of 21 items 

(Taylor et al., 2007).  

To demonstrate the use of repeated measures regression mixture in the current application, 

we used the eight days of weekday data (Monday through Thursday for two weeks) to focus on 

the differential effect of daytime functioning on sleep quality during weekdays. Since previous 

research has shown that there are some different sleep patterns between the weekday and 

weekend (Adam, Snell, & Pendry, 2007; Vitale et al., 2014), we excluded the weekend data for 

the current illustration to remove the potential complications by combining the weekday and 

weekend data in the same analysis. First, to examine whether there is any systematic change of 

the sleep efficiency over time during weekdays, we plotted the individual trajectories across 
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eight days of data from the randomly selected 15 subjects. Figure 3 shows no particular pattern 

in the repeated measures of sleep quality over time other than the random fluctuations. Next, we 

analyzed an intercept-only model under the MLM framework to assess the intra-class correlation 

coefficient (ICC), which is a gauge of the correlation among the observations within subjects 

(Raudenbush & Bryk, 2002). The calculated ICC is .4912, indicating that about half of the 

variance is found at the between-subject level. We are specifically interested in understanding 

the between-subject variance part to the extent that we hypothesize the between-subject variance 

will be differentially explained by the daytime functioning (i.e., depression) based on the 

unobserved latent classes. Figure 4 shows the model specification for the repeated measures 

regression mixtures with sleep efficiency outcome having depression as the predictor. As shown 

in Figure 4, each sleep efficiency measure was treated as an indicator of a latent intercept factor 

of sleep efficiency with a fixed factor loading of 1, thus the latent variable represents the average 

sleep efficiency across eight repeated measures. The within-subject residual variances (σ2
k) were 

constrained to be equal across time points but allowed to differ across classes and no covariances 

were estimated (i.e., Identity structure13). Intercept (β0k), slope (β1k), and between-subject 

residual variance (ψk) were estimated to be class-specific. A traditional regression analysis (1-

class) was conducted and the results were compared to a series of regression mixture models (2-

class, 3-class, 4-class, and 5-class). Mplus 7.3 (Muthén & Muthén, 1998-2012) was used for all 

data analyses and the BIC and ABIC were used for model comparisons14. 

                                       
12 ICC = between-subject var/(between-subject var + within-subject var); .49 = 79.36/(79.36+81.10) from the 
results. 
13 To reduce the complexity of model specifications, the simplest ID error variance structure was adopted in the 
current study for demonstration purpose.  
14 Mplus syntax for analyzing the current model is provided in Appendix for applied researchers. 
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Table 4 presents the results of the repeated measures regression mixture model 

investigating the differential effect of depression on sleep impairment. Based on the BIC and 

ABIC for all four models, 4-class model fits the data best with the value of 42161 and 42100, 

respectively15. However, the Mplus result informs that the solution may not be trustworthy given 

that the best log-likelihood value was not replicated, which could be a sign of a local solution. 

Thus, we increased the random start value to be 500 (the Mplus default value is 20), which was 

suggested by the program. The result still warned that there was a non-convergence issue. Not 

surprisingly, 5-class model was not converged, which often is a sign that too many classes are 

requested to be extracted. Thus, we present both results from the 3-class and 4-class models for 

the readers of this paper (see Table 4) instead of presenting only one result over the other. Our 

interpretation on the model results is based on the 3-class model, which is converged with no 

issue.  

As shown in Table 4, about half of the participants are classified to be in Class 1, named 

as a normal sleeper group, with 90% of sleep efficiency level on average with a small negative 

effect of depression. About 23% of the participants are classified to be in Class 2, named as a 

healthy sleeper group, with the highest sleep efficiency level on average (95.4%) with a smaller 

effect of depression on their sleep quality. In other words, participants in Class 2 are not greatly 

affected by the severity of depression on their sleep efficiency while they have overall a good 

sleep quality. About 28.4% of participants are classified to be in Class 3, named as a sleep 

impaired group, with the lowest level of sleep efficiency (79%) and the largest negative effect of 

depression on the quality of sleep. People in Class 3 are mostly the focus group for further 

                                       
15 We also analyzed the 5-class model, but the result was not converged, which can be a sign that we are trying to 
extract too many classes. 
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investigation in health and clinical research to find out who they are and why they are vulnerable 

to daytime functioning and psychological traits on their sleep. As shown in the current 

demonstration, regression mixture models allow applied researchers to investigate potential 

differential effects of interest on repeated measures outcome.  

Discussion 

Given the complexity of human nature, people respond differently to the same context. 

Regression mixture models are a powerful tool for identifying the unobserved class of subjects 

based on the differential effects of interest without a priori hypothesis. This study extends the use 

of traditional regression mixture models with a single observed outcome to a latent construct of 

repeated measures outcomes. The current approach for repeated measures regression mixture 

model can be considered as a special type of factor mixture modeling (Lubke & Muthén, 2005) 

where the population heterogeneity is lied on the effect of predictor X on the latent construct η, 

having the indicator Y as the repeated measures. While factor mixture modeling is a broader 

concept of latent class approach, which covers almost every type of population heterogeneity, 

repeated measures regression mixture models are specialized to detect the effect heterogeneity, 

which focuses more on the substantive questions.  

While regression mixture models are a powerful tool for identifying the latent class 

showing the differential effects of interest, with only a single outcome the required sample size is 

very large and impractical in many applications (Jaki et al, in press; Van Horn et al., 2015). The 

current approach using repeated measures suggests an alternative solution by improving the 

power to search for the heterogeneous groups in the effect of interest. We note that this approach 

is especially recommended for those who are interested in the effect of heterogeneity with a 

small sample size when they have or are able to collect additional measurements from the same 
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subjects. Collecting repeated measures data from the same subjects can be as difficult as 

increasing the sample size in many longitudinal studies, especially with measurements over 

longer period of time (e.g., attrition, relocation, mortality, etc.). The current method is 

particularly interested in using the repeated measures with relatively short time-interval, in which 

the main purpose of collecting the repeated measures is on achieving more stable measurements 

for the subjects rather than examining the change over time (e.g., daily diary of patients’ pain 

severity, sleep diary, diary of physical activity, etc.). As shown in the results, introducing 

repeated measures into regression mixture models greatly improves the likelihood of identifying 

the correct number of latent classes, reduces bias in parameter estimates, and improves efficiency 

and stability of the results of analysis.   

Whereas prior recommendations have suggested the regression mixtures require samples 

of well over 1000 participants even under the condition of large distance in effect sizes between 

the classes (Van Horn et al., 2015), the current repeated measures regression mixture models 

allow for samples as low as 200 participants when classes have separation like that simulated 

herein. Specifically, the results show that at the lowest sample size considered, 200, that more 

repeated measures are needed for problems like our simulation model; notable bias remained in 

the class with weaker regression effects even with 5 (but not 7) repeated measures. At samples 

closer to 500 results were reasonably stable and bias free when the large distance between two 

classes are conditioned. Thus, the use of repeated measures regression mixture modeling greatly 

extends the sample sizes for which regression mixtures are feasible, if there are repeated 

measures available. However, it is important to note that the results are dependent on including 

the repeated measures for specifying the regression mixture model rather than using the average 

score as a single outcome. Results have shown that the use of average score for the repeated 
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measures in the regression mixture has no substantial but small gain in class enumeration 

accuracy or bias of parameter estimates. Another important point is that adding more repeated 

measures into the regression mixture models has a greater impact when the measures are 

relatively unstable. In other words, if the measures are highly stable across time, such as, 

repeated measures of Body Mass Index, the benefit of having the additional time point is limited 

given the small amount of extra information from the multiple time points.  

 Limitations. As in most simulation studies, there are some limitations regarding the 

simulation conditions in the current study. First, we have used two class as the population model 

in the current study. Because study conditions are already complex with 5 different model 

specifications for each simulated dataset, we have simplified the simulation conditions for 

generating the true population model. Although we have looked at a relatively small set of the 

possible regression mixtures, we believe that the major findings of the current study (i.e., 

improved power and accuracy for enumerating classes and estimating parameters in regression 

mixtures when using the repeated measures) will be held for extended conditions. Second, we 

elucidate this model using a relatively simple example where there is no time trend. This, of 

course, can be easily extended to the case where there is a time trend on the outcome. In this case, 

the repeated measures mixture is defined on the intercept term and/or the slope coefficient of the 

growth curve. Results of the current simulations should maintain in this slight extension, as long 

as the growth trend is modeled as a nuisance and constrained to be equal across classes. When 

the researcher’s question is on the heterogeneity of growth trajectory, however, growth mixture 

model can be further considered for analyzing their data. We note that the substantive question is 

largely shifted from the differential effects to the differential trajectories in this case. More 
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research would be needed to understand the case where instead a growth-mixture approach is 

needed or more appropriate.  

 We have purposefully constrained the total variance to be 1 for both latent classes across 

all simulation conditions to maintain the constant effect sizes regardless of the different 

conditions in measurement error variance. By doing this, increase in measurement error variance, 

which can possibly have a negative impact on the regression mixtures, is confound with the 

reduction in the intercept variance of the repeated measures, which can possibly have a positive 

impact on the results by providing more information for estimation from the multiple outcomes. 

Also, we used the simplest Identity V-CV for the residual error variance structure. It can be 

extended to more complex error variance structure for future research to examine whether the 

current approach still captures the latent classes appropriately and performs successfully under 

more complex scenarios.  

For the application study, we simplified the model to be an unconditional regression 

mixture only with the main predictor, depression, without having any other covariates given the 

purpose of demonstration. We note that the results are intended to demonstrate the use of 

repeated measures regression mixtures rather than thoroughly examine heterogeneity in the 

effects of depression on sleep efficiency. Thus, findings of the current application study using the 

empirical data (i.e., three different types of sleepers given the effect of depression) should be 

interpreted with more thorough investigation. 

Conclusion. Regression mixtures have been shown effective at finding differential effects 

in behavioral and health outcomes; however, large sample sizes are necessary to have stable and 

robust findings (Van Horn et al., 2015). Our repeated measures regression mixture approach 

holds extreme promise of reducing the size of the sample of individuals needed to use this 
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methodology, as long as repeated measures are available. With the increase of repeated measures 

data associated with daily diary, logging and ecological momentary data, there are increasing 

opportunities to use this approach. 
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Open Practices Statement 

None of the data or materials for the experiments reported here is available, and none of the 

experiments was preregistered. 
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