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A systematic experimental investigation of the macroscopic flow properties of extremely pure
He II in the zero temperature limit is reported, covering the pressure range 0.3 < P < 24.8 bar.
The flow is generated by electrostatically-driven oscillations of a thin, tightly-stretched, circular,
square-mesh nickel grid. With growing amplitude of oscillation, the flow changes character at a
first critical threshold from pure inviscid superflow past a submerged body of hydrodynamically
enhanced mass, to a flow regime that is believed to involve a boundary layer composed of quantized
vortex loops. Here the oscillatory motion of the grid acquires strongly nonlinear features. These
include double-valued (re-entrant) resonance curves and a decrease in the resonant frequency with
increasing drive amplitude, but without any appreciable increase in damping. On further increase
of the drive level, a second critical threshold is attained: here, the resonant frequency reaches a
stable value, the response amplitude almost stops growing, but the linewidth increases. Finally,
the flow acquires the character of fully developed classical turbulence, characterized by a square-
root dependence of flow velocity on the driving force. Additional flow features attributable to the
presence of remanent vorticity are observed and discussed.

PACS numbers: , 47.37.+q, 47.27.Cn, 47.15.Cb, 67.40.Vs

I. INTRODUCTION

Ever since the discovery of superfluidity more than a
half century ago, the exotic flow properties of superfluid
He II have been subjected to intense investigation, lead-
ing to the accumulation of a vast experimental database
and a great deal of theoretical knowledge (see e.g. refs.
1–3 and references therein). Nevertheless the problems
of He II flow, together with complex flow properties of
other quantum fluids, are still far from being settled.

Some features of He II flow at finite temperature are
firmly established. In the limit of low velocity, He II flow
is very well described within the framework of the two-
fluid model originally proposed by Landau [4, 5]. His
description assumes that the viscous normal fluid and
inviscid superfluid move in such a way that their veloc-
ity fields are independent. One great achievement of this
model was the prediction of second sound, which involves
a counteroscillation of these two components. Landau’s
predicted critical velocity for roton creation is seldom at-
tained [6], however. Rather, in macroscopic flow beyond
a certain threshold, quantized vortices appear in the liq-
uid. The magnitude of this threshold depends on the
precise geometry of the flow in question, and the gener-
ating mechanism can either be intrinsic [7, 8], i.e. where
the vortices are created ab initio in the superfluid, or ex-
trinsic i.e. where growth occurs from pre-existing (rema-
nent) vortices already present in the superfluid. Macro-
scopic flow always seems [2] to be characterised by extrin-
sic vortex creation. Quantized vortices couple together
the originally independent normal and superfluid veloc-
ity fields in a complicated way, creating a mutual friction

between them. Note that here, and in what follows, we
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FIG. 1: Schematic drawing showing the geometry of the ex-
perimental cell.

use the term macroscopic of flows that are large on the
scale of atoms, and which are not appreciably affected by
adding/removing one or a few quantized vortex loops or
by a slight change in their topology. This is in contradis-
tinction to the microscopic flows that result from one or
only a few individual vortex loops.

In the temperature range where He II contains an ap-
preciable proportion of normal fluid, say above about
1.2 K, numerous investigators have observed that, on ex-
ceeding a suitably defined Reynolds number, He II flow
acquires an increasingly classical character. For example:

(i) The He II surface within a bucket rotating with
sufficient angular velocity forms a nearly parabolic
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FIG. 2: Electron micrographs of the grid (sample cut from the
same sheet), together with a schematic drawing (upper part of
figure). The grid wires are not perfectly rectangular in cross-
section (lower part), and they are rougher on on their back
surfaces than on their fronts (see right hand edge of vertical
wire).

classical meniscus [9];

(ii) Flow of He II past a sphere displays both laminar
and turbulent drag [10–12];

(iii) Flow of He II past a sphere can also exhibit a drag
crisis [13];

(iv) The energy spectrum of turbulent He II involves
an inertial range [14] with a classical Kolmogorov
roll-off exponent of −5/3;

(v) The decay of quantum turbulence in He II, whether
generated by towing a grid through a stationary
sample [15–19], or by normal fluid/superfluid coun-
terflow, displays classical features [20].

Although such behaviour is typically observed over a
temperature range within which the proportion of nor-
mal fluid to superfluid changes widely, it is impossible to
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FIG. 3: Schematic block diagram of the experiment, showing
the main components used for the measurements.

exclude the possibility that this classical-like behaviour is
associated with the presence of the viscous normal fluid.
There is thus a clear call to study the macroscopic proper-
ties of He II flow in the zero temperature limit, where nor-
mal fluid is (almost) absent and the flow of the superfluid
can therefore be investigated in its pure form. The task
seems particularly topical in view of experiments with a
tiny sphere [10, 11] and a very thin vibrating wire [21]
displaying intriguing features attributable to single vor-
tices. The purpose of the present work is to investigate
how He II changes its properties from pure superfluid (in-
viscid) potential flow to turbulence as the flow velocity
increases. As we shall see, there is a clearly defined in-
termediate stage between these two extremes where there
seems to be a boundary layer of quantized vortices that
do not produce viscous effects, but can exert a dynam-
ical influence when the flow velocity changes. We infer
that this evolution is probably an inherent, temperature-
independent, property of He II in large scale flow.

Our tool is of macroscopically large dimensions – an
8 cm diameter oscillating grid, driven near its resonant
frequency in isotopically pure He II at low temperature.
A preliminary report of this work has already been pub-
lished [22]. The present paper provides a more detailed
account of our experiments and is organized as follows:
Sec. II describes our experimental set-up; in the central
Sec. III we present our experimental results; we discuss
them in Sec. IV; and we summarize and draw conclusions
in Sec. V.

II. EXPERIMENTAL ARRANGEMENTS

The experiments were performed in an Oxford Instru-
ments Kelvinox 100 3He/4He dilution refrigerator with
a cooling power exceeding 110 µW at 100 mK and a
base temperature of < 9.2 mK. The sample of istopically
pure 4He (3He content below 10−13) was prepared using
a thermal counterflow technique [23]. No part of the gas-
handling system – neither the storage bottle, high pres-
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FIG. 4: (a) Resonance curves measured with the lock-in amplifier at 5.05 bar for drive levels (in Vpp) of: 0.001, 0.005, 0.01,
0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5 and 10. Each drive level is represented by two separate curves recorded for
frequency sweeps in opposite directions. There is an intermediate range of driving levels where hysteresis loops with two stable
branches arise but, otherwise, the two sweeps produce identical results. The superimposed (almost) Lorentzian resonances
(smooth, gray-scale) represent the responses to 0.01, 0.05 and 0.1 Vpp drives in vacuum (upper frequency axis). (b) For clarity,
a separate plot of the data for the 0.2 Vpp drive is shown as an example of results recorded at intermediate drive amplitude.
The arrows indicate direction around the hysteresis loop.

sure tubing, valves, cold-traps nor bomb – had ever been
exposed to natural helium, thus avoiding any possibility
of contamination [24]. Pressures up to the solidification
pressure of 25 bar could be maintained and measured by
a high precision Texas Instruments pressure gauge.

The experimental cell [6] is shown schematically in Fig.

1. It has a stainless steel body, with a stainless steel and
copper cap, and is of about 1.5 ` capacity. Inside the cell
there are two metal film heaters and six resistance ther-
mometers, the principal one being a Lake Shore Cryo-
genics calibrated germanium diode.

The vibrating grid components consist of two plates
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FIG. 5: Resonance curves measured with the lock-in amplifier at 24.79 bar for drive levels (in Vpp) of: 0.003, 0.005, 0.01, 0.02,
0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0 and 10.0. Each drive level is represented by two separate curves recorded for
frequency sweeps in opposite directions. There is an intermediate range of driving levels where hysteresis loops with two stable
branches arise but, otherwise, the two sweeps produce identical results. The dashed lines – guides to the eye – indicate the
position of the first critical threshold. Note that its vertical position is shifted down slightly compared with Fig. 4. Otherwise,
the behavior is very similar to that at 5.05 bar.

sandwiching the high voltage grid with d = 1 mm spac-
ings between the grid and each plate. The plates are
1 mm thick discs of gold plated copper, with 170 ∼2 mm
holes drilled in a hexagonal pattern. The grid is in the
form of a circular membrane, 2R = 8 cm in diameter,
tightly stretched on a circular mild steel carrier. The
membrane is cut from Micromesh 200 lines-per-inch elec-
troformed nickel grid material of density %G = 8.902
g cm−3. The grid is of a mesh size 127 µm and of 70% ef-
fective transparency. It is shown in electron micrographs
and schematically in Fig. 2. Note that, on a scale of 1–
2 µm, the grid is considerably rougher on one side than
on the other, as can be seen in the lower part of the fig-
ure. A static potential, typically of V0 = 500 volts, is
applied to the grid and an oscillatory driving potential
V1 = V10 cosωt (V10 � V0) applied to the upper electrode
provides a net driving force on the grid of the form

fd = ε0εrπ R2V0V1/d2 (1)

where ε0 and εr denote respectively the permitivity of
free space and the relative permitivity of liquid 4He.

The grid thus represents an oscillating membrane un-
der uniform tension [27]. Approximating its motion as
one-dimensional, and assuming that the oscillation am-
plitude is uniform across its area [22, 27] it is easy to show
that oscillations of amplitude ∆D induce an oscillatory
voltage of amplitude

V2 = V0∆D/d (2)

on the lower electrode. The capacitance Cc
∼= 700 pF of

the connecting cable and the input capacitances of the
measuring devices reduce the induced voltage V2 by a
factor of (1 + Cc/C)−1, where C ∼= 47 pF is the capac-
itance between the grid and the lower copper electrode.
Subject to this reduction factor [28], the response ampli-
tude |V2| provides a direct measure of the amplitude and
peak velocity |vg | = |ω∆D| of the oscillating grid [29].

A Hewlett Packard HP3325B synthesizer/function
generator is used to provide the drive voltage for the
top electrode. Its output spans the range from 0.001 Vpp

to 10 Vpp; use of a 27× step up transformer extends the
range to 270 Vpp, thus encompassing more than 5 orders
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of magnitude in total, and allowing the flow to be probed
over a correspondingly wide dynamical range. A Bran-
denburg high voltage supply provides the grid bias, via
an RC filter to attenuate 50 Hz and other noise. The
signal picked up on the bottom electrode can be moni-
tored either with a Stanford Research SR-830 lock-in am-
plifier, or with an Agilent 54624A oscilloscope to allow
direct visualization of transient processes arising at the
higher drives. These devices are linked (see Fig. 3) via
the GPIB interface to a personal computer (PC) using
the LabView 5.0 software package.

III. EXPERIMENTAL RESULTS ON FLOW

DUE TO THE OSCILLATING GRID

In this Section, we describe our experimental observa-
tions on the behaviour of the grid oscillating in vacuum
and compare them with those in He II at various pres-
sures. In each case, the grid was driven by the same spa-
tially uniform harmonic driving potential in the vicinity
of the resonant frequency of its fundamental axisymmet-
ric (0,1) mode [30]. As we will see, the response am-
plitude as a function of frequency can be highly non-
Lorentzian. When we use terms like at resonance, or
resonant frequency in such cases, we are referring to the
frequency of maximum response. The main results are
presented in Figs. 4 and 5, which we discuss in detail
below.

A. Resonant response of the grid in vacuum

The vacuum experiments were performed at low tem-
perature using exactly the same setup as for He II. The
cell was alternately evacuated and flushed with dry nitro-
gen gas at room temperature to ensure that it was com-
pletely free of residual 4He, which would have formed
a creeping film and altered the mass and resonant fre-
quency of the grid. For low and moderately high drive
levels the resonant response is of a Lorentzian form with
a quality factor Q ∼ 104, as seen in Fig. 4(a) . The reso-
nant frequency depends only very weakly on the driving
amplitude: a plot of frequency against the square root of
the drive yields a straight line, giving the resonant fre-
quency of the (0,1) oscillatory mode in vacuum in the
limit of zero amplitude as f0 = (1117.20± 0.05) Hz. For
high drive levels the resonant response versus drive be-
comes visibly sub-linear, see Fig. 6, presumably due to
approaching the elastic limit of the grid material [32].
This phenomenon occurred gradually, and at higher re-
sponse amplitude than that for the onset of nonlinearity
when driving the grid in He II (see below).

FIG. 6: Response amplitude of the grid versus the drive
level at resonance measured in vacuum (open symbols) and
in He II at p = 5.05 bar (main figure). The positions of the
first and the second thresholds are indicated in order to em-
phasize that above the first threshold the damping remains
unchanged, provided the measurements are recorded in se-
quence from high-drive towards low-drive. The inset shows
the drive dependence of the response amplitude of the grid at
p = 15.5 bar, indicating regions of laminar and turbulent flow
regimes. The full lines indicate the linear and square-root
responses.

B. “Regular” resonant response of the grid in

He II

We refer to the resonant response of the grid as be-
coming regular after violently shaking it by means of
the highest available drive ≈ 10 Vpp (without use of
the transformer). This procedure was applied every time
the pressure in the cell was altered, especially when the
pressure was increased; in its absence, the resonant fre-
quency tended to be irreproducible. The regularisation
is believed (see below) to correspond to remanent vortex
lines being shaken off the grid, or rearranged on it while
still remaining attached. Following this “cleaning” pro-
cedure, the behaviour of the grid was found to be stable
on a time scale of days, in that its resonant frequency f1

in the limit of low drive was reproducible within typically
±0.1 Hz.

For the several pressures at which data were recorded
within the range 0.30 ≤ p ≤ 24.79 bar, the response
of the nearly-resonantly-driven grid was essentially un-
changed. The same interesting characteristic features
were observed, with only relatively weak quantitative
dependences on pressure. We therefore take as typical
the data sets obtained at p = 5.05 bar (Fig. 4) and
p = 24.79 bar (Fig. 5), and use these for a qualitative
discussion of the results.

For low drives, the resonant response has the usual
Lorentzian lineshape, with a quality Q factor compara-
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FIG. 7: The drive dependence of the resonance frequency
measured at 10 bar using the lock-in amplifier.

ble to that measured in vacuum: see superimposed vac-
uum resonances in Fig. 4. The resonant frequency shifts
down slightly with increasing drive amplitude, roughly
in the manner expected of a lightly damped linear os-
cillator (see Fig. 7). As the drive increases further, the
grid amplitude reaches a first critical threshold (typically
10–20 mVpp, corresponding to a mean grid velocity of

0.08 < v
(1)
g < 0.24 cm/s) [31]. Subsequently, the oscil-

lation amplitude at resonance still continues to rise in
proportion to the drive (see Figs. 4–6), the resonant fre-
quency rather suddenly starts decreasing much faster (see
Fig. 7), and the resonance curves acquire highly nonlin-
ear features.

To illustrate more clearly the hysteretic behaviour ob-
served in the range of intermediate driving amplitude,
the resonance curve for a drive of 0.2 Vpp is replotted on
its own as an example in Fig. 4(b). As the driving fre-
quency is gradually reduced from 1093 Hz (in practice,
incrementally, in steps of typically 0.001 Hz), the system
initially continues to display a nearly Lorentzian station-
ary response. At the first threshold, however, there is
a distinct change in the local gradient of the response-
frequency characteristic: the response continues to rise
with decreasing frequency, but more slowly than before.
This continues until at about 1087.7 Hz, just after pass-
ing through a maximum, the response amplitude sud-
denly collapses down onto a lower stable branch. It then
decreases smoothly with further reduction in frequency.
On increasing the drive frequency again the system stays
on the lower branch until, at about 1088.8 Hz where
the first threshold is attained, a transition to the sta-
ble upper branch occurs. These hysteretic loops are sta-
ble. One can circle them many times, providing that
the frequency is changed very slowly or in small steps.
They have mostly been measured at temperatures around
50 mK, but are not appreciably affected by an increase of
temperature up to our maximum of 130 mK. It appears,
therefore, that they represent phenomena occurring in

the zero temperature limit of He II flow.
As a guide to the eye, Fig. 5 contains a pair of dashed

lines marking approximately the first critical threshold.
This threshold is clearly visible on all resonance curves (of
which we have measured about three times more than are
shown at this pressure, though for clarity not all are dis-
played) and slightly decreases with increasing frequency.
The same feature occurs at all pressures. As a quan-
titative measure of this first threshold we have chosen
the response amplitude V1 in mVpp at which the jump
from the lower to the upper branch occurs while slowly
sweeping the frequency up under 0.1 Vpp drive. Table I
contains these observed values for all investigated pres-
sures.

p f1 f2 V1 V2

(bar) (Hz) (Hz) (mVpp) (mVpp)
0.30 1091.15 1088.88 19.9 189.1
2.20 1090.45 1088.39 19.3 189.1
3.50 1090.41 1088.10 19.5 188.0
5.05 1089.95 1087.87 17.1 188.2
5.50 1089.75 1087.75 19.9 190.7
10.0 1087.82 1085.78 19.5 190.6
10.09 1087.75 1085.79 17.5 189.0
12.05 1087.50 1085.55 16.3 192.2
14.00 1087.40 1085.29 16.0 191.2
15.50 1086.80 1085.06 24.1 188.5
15.55 1086.90 1085.01 10.5 190.8
18.00 1086.85 1084.60 8.90 192.5
19.95 1086.50 1084.28 10.1 188.4
24.79 1085.75 1083.57 9.70 193.2

TABLE I: Observed values characterizing He II flow due to
the oscillating grid at various pressures: f1 and f2 are re-
spectively the resonant frequencies in the limit of low drive
(∼ 0.003 Vpp) and for the drive level needed to bring the
system to the second threshold; V1 stands for the peak am-
plitude response of the first, and V2 of the second threshold
(for explanation, see text).

In Fig. 4 the resonance curves measured in vacuum are
superimposed on the data obtained for the same drive
levels in He II at p = 5.05 bar. The low-response parts
of these two sets of resonance curves are seen to coincide
closely, provided that the frequency scale (upper axis) is
shifted down by about 30 Hz; the same procedure can
be carried out for data at any pressure. Above the first
threshold, however, the response in He II is drastically
different from that in vacuum.

The down-shift in frequency with increasing drive
reaches a maximum value of ≈ 2 Hz (see Fig. 7) at
all pressures, ceasing at a second critical threshold am-
plitude ' 190 mVpp. Unlike the first critical thresh-
old, the second threshold amplitude is almost pressure-
independent (see Table 1).

With further increase in drive, the oscillation ampli-
tude at resonance initially remains almost constant, while
the widths of the resonance curves increase rapidly (see
Figs. 4 and 5). Only for drive levels exceeding by about
an order of magnitude that needed to reach the second
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FIG. 8: Resonant frequency as a function of He II density at
low drive levels (circles) and for the second critical threshold
(triangles). The straight line extrapolates through the zero-
density (vacuum) resonant frequency of f0=1117.2 Hz. The
corresponding pressures are marked on the upper abscissa.
This shift of resonant frequency with density is due to the
change in the classical hydrodynamic effective mass (see text).

threshold does the amplitude at resonance grow again;
this time approximately in proportion to the square-root
of the drive, as shown in the inset of Fig. 6. In this
high-drive regime the linewidth increases rapidly while
the resonant frequency decreases gradually, qualitatively
in the manner expected for growing damping. Experi-
ments in this regime involve a rather tedious procedure.
Driving the grid very hard results in considerable heating
of the cell. The measurements were done in such a way
that the high level drive was applied only briefly, for the
∼ 5 s needed to obtain a stable signal and read out the
data point digitally from the oscilloscope; it then took
about an hour for the temperature of the cell to decrease
back to its previous level. The temperatures at which the
upper part of the drive dependence curve in Fig. 6 were
measured are thus poorly defined, and might have been
significantly higher than the nominal ∼ 50 mK where
most of the measurements were made.

There are thus two well-defined resonant frequencies
that have been observed at each investigated pressure:
the resonant frequency f1 in the zero-drive limit; and the
resonant frequency f2 at the second threshold, where the
frequency downshift with amplitude ceases. Their values
are given in Table I. Fig. 8 plots f1 as a function of He II
density (circles). The line represents a least-squares lin-
ear fit to these data, also including the zero-density res-
onant frequency f0 measured in vacuum under the same
conditions. It is evident that, in the low drive limit, the
resonant frequency decreases linearly with density. The
triangles show that the resonance also varies with den-
sity in a similar manner near the second critical thresh-
old. Within our experimental accuracy, the observed fre-
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FIG. 9: Downshift in resonant frequency, f1 − f2, between
the first and second critical thresholds plotted as a function
of pressure.

quency shift ∆f = f1 − f2 does not depend on pressure,
as indicated in Fig. 9

The response amplitude of the grid at resonance is plot-
ted as a function of drive amplitude in Fig. 6. While
increasing the drive amplitude, the system seems to
encounter a nucleation problem when passing the first
threshold: on some occasions the response stopped grow-
ing with increasing drive level (as indicated by several
points at the level of the first threshold), and jumped
onto the usual response/drive curve only later. With de-
creasing drive this feature was absent, and the response
remained always proportional to the drive level. How-
ever, when measuring the drive dependence of the re-
sponse amplitude of the grid at a fixed frequency near the
resonance, hysteresis occurs in the part of the parame-
ter space where the resonance curves are multi-valued.
Further away from the resonance, the drive dependence
is nonlinear but single-valued, as illustrated in Fig. 3 of
our preliminary report [22].

C. Amplitude modulation phenomena

Our preliminary report contains a central figure (Fig.
2) showing the resonance curves that correspond to var-
ious drive levels measured at 10 bar using the memory
oscilloscope. Direct visualization of the grid response in
this way has the advantage of allowing us to identify areas
in the parameter space where an unexpected amplitude
modulation of the response occurred. As displayed on the
oscilloscope (Fig. 10) the phenomenon looks similar to
beats between oscillations of comparable amplitude but
slightly different frequency, so we will refer to it as stable
beating. Based on observations at several pressures, we
can summarise their main features:

(i) The modulation frequency is typically ∼1 Hz.
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0.65 s


FIG. 10: The response amplitude of the grid driven in He II
near its resonant frequency in a regime of steady beating, as
obtained on the screen of the memory oscilloscope. Note that
on this timescale it is the envelope of the oscillation amplitude
that is seen, not the individual oscillations.

(ii) Once established, the beatings are stable on a time
scale of at least hours.

(iii) Small changes of frequency do not kill the beats,
but modify the upper and lower amplitude lev-
els between which the beating occurs; only with
a larger change of the driving frequency does the
beating disappear

(iv) After changing the frequency, and then bringing
it back to its original value, the response is not
always completely reproducible: e.g. the beating
might reappear only later or, sometimes, not at all.

(v) Beatings were not observed at oscillation ampli-
tudes below the first, or above the second, thresh-
old; but they appeared on both sides of the resonant
frequency (see below).

(vi) Beatings were never observed while driving the grid
in vacuum.

(vii) Deeper modulation occurred for the case of the vir-
gin grid (see Sec. III D, below) than for the cleaned
grid.

It seems that beatings can occur at any pressure, but
only within a certain defined range of the response am-
plitude. We did not, however, succeed in establishing
any fully repeatable pattern, or well-defined experimen-
tal conditions, for the appearance of the phenomenon.

D. Virgin resonant response of the grid in He II

In this subsection we describe the response of the grid
to relatively low drives (up to 540 mVpp) when the exper-
iment was performed immediately after pressurizing the
cell to the desired pressure at mK temperatures, that is,
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FIG. 11: Resonance curves measured at 3.5 bar using the
memory oscilloscope for drive levels (in Vpp) as indicated.
Filled symbols represent the regular grid behaviour obtained
with the “cleaned” grid, while the virgin behaviour is repre-
sented by resonant curves composed of the open symbols. The
upper three curves plotted with open symbols are shown up
to the drive amplitude at which the onset of beating occurred
(see text).

without our having performed the “cleaning” procedure
described above.

As seen from Fig. 11, at p = 3.5 bar, the linewidth
measured at the low drive 54 mVpp was about 0.5 Hz as
opposed to the ∼0.2 Hz for a “cleaned” grid; the observed
additional downshift in the resonant frequency would ap-
pear to be attributable to this increase in the effective
damping of the grid. Otherwise, the response in this
range is similar to the regular response obtained from a
cleaned grid. However, as indicated for three higher drive
levels in Fig. 11, as the response amplitude exceeds about
100 mV pp, the behaviour abruptly changes: a sudden
onset of beating prevented a smooth continuation of the
frequency sweeps in each case. The best and most direct
way to visualize this phenomenon was to use the memory
oscilloscope. The very robust beating shown in Fig. 10
was obtained under these conditions. The amplitude of
the signal grows with time for about 0.45 s roughly pro-
portionally to

√
t, until it reaches the level 126.3 mVpp.

At this level the signal amplitude collapses within about
0.2 s to a nearly zero level, and then the whole cycle starts
again. We have observed this pattern over a time scale of
about an hour, without noticing any appreciable change
in its characteristics. For the virgin grid, this structure is
reproducible: if one reduces the drive so as to obtain the
regular Lorentzian response, and then restores its level
back again, the beating pattern reappears.
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IV. DISCUSSION

In this section, we aim to discuss the observed phe-
nomena in a physically-motivated way in order to iden-
tify the key features that an adequate theoretical anal-
ysis must be able to encompass. One attempt at such
an analysis, via consideration of the dynamics of indi-
vidual vortex loops, based on the data published in our
preliminary report [22] has already been proposed [33],
and we summarize its key features in Sec. IV D below.
First, however, we discuss possible connections to earlier
experiments, discuss the classical behaviour seen at low
amplitudes, and consider an empirical approach to the
intermediate amplitude results based on the concept of
an effective boundary layer.

A. Connection to earlier experiments

Reports of earlier experiments of a comparable kind
are relatively sparse. A growing shift in resonant fre-
quency with increasing drive was observed in the case of
a vibrating sphere in He II by Luzuriaga [12]. Although
its origin might be related to the effect observed here,
it seems different in character in that there was no defi-
nite threshold and the shift did not show a tendency to
saturation at high amplitude. The situation was more
complicated than here due to two-fluid behaviour of He
II above 1 K, so it is difficult to identify the connections,
if any, between the observed phenomena.

Morishita and coauthors [21] carried out an interest-
ing experimental study of a thin vibrating wire in He II
under conditions comparable to ours. Although they
were mainly concerned with mean free path effects at
higher temperatures, the authors reported hysteresis be-
low 70 mK that became larger with increasing drive level.
No satisfactory explanation could be offered. The ob-
served hysteresis was qualitatively different from that
reported here, in that it set in gradually rather than
abruptly on reaching a threshold; nor did the frequency
shift cease at a second threshold. In addition, given that
their experiment involved a NbTi wire oscillating in a
magnetic field of order of its first critical field Hc1, it was
impossible to exclude the possibility that some of the
observed hysteresis might have been connected with the
superconducting nature of the wire itself. Rather simi-
lar effects, most likely attributable to the nucleation of
quantized vortex lines both in He II [34] and in super-
fluid 3He-B [35–37], have been observed over the years in
experiments with vibrating wires in Lancaster.

We emphasize that the present study refers to macro-

scopic flow and turbulence of the superfluid. Where in-
fluenced by vorticity, the results reported represent an
average over a large ensemble of quantized vortices. It
should therefore be reproducible, and independent of the
positions/configurations of individual vortex lines. We
consider first the behaviour seen at relatively low veloci-
ties, which we assume to be unaffected (or almost unaf-

fected: see below) by the presence of vortices.

B. Frequency shift at small amplitudes

The data of Figs 4, 5 and 7 show that, for small drive
amplitudes, the resonant frequency is almost amplitude-
independent, but shifted down by ∼30 Hz from its vac-
uum value. We can account for this effect in terms of the
classical hydrodynamic effective mass.

We start by approximating the actual motion of the
grid as one-dimensional, as in our preliminary report [22].
Although simplified [38], this approach may nonethe-
less be expected to provide useful insight into underlying
physical processes involved in the superflow under study.
The one-dimensional equation of motion for the grid os-
cillating in a vacuum then takes the simple form of a
driven linear oscillator

Mz̈ + Dż + Kz = F0 cos(ωt) (3)

responding at the driving frequency ω = 2πf . In vacuum
the damping coefficient D reflects the nuisance damp-
ing only and M denotes the bare mass of the grid; the
restoring term Kz comes from the tension in the grid
[27]. On sweeping the drive frequency slowly through
the resonant frequency, given in the limit of low damping
by f0

∼= 1/2π
√

K/M , we expect to obtain a Lorentzian
curve of narrow linewidth.

Driving the grid in an ideal fluid (corresponding to
pure superfluid He II with no remanent vorticity), the
effective mass of the grid becomes hydrodynamically en-
hanced [39] by ∆M = βV %He(p), which will result in a
downshift of the resonant frequency by ∆f , from f0 to
f1(p). Here V is the volume of the grid and the dimen-
sionless factor β can be evaluated as

β ∼= %Ni/%He(p)(f2
0 /f1(p)2 − 1) (4)

Experimentally, ∆f � f0 so, expanding and retaining
only the linear term, we expect a linear dependence of
∆f on %He(p), which is tabulated in ref. [40]. As shown
in Fig. 8, this is indeed the case: fitting this dependence
leads to a value of β = (3.01 ± 0.05). Taking into ac-
count the complex geometry of the grid (see Fig. 2), it
seems not inconsistent with the facts that β = 0.5 for a
sphere and β = 1 for an infinitely long cylinder. We do
not know of calculations for a body of rectangular cross-
section – let alone for the actual cross-section of the grid
– but, if we approximate a grid wire by an infinite elliptic
cylinder of axes a and b moving in the direction along its
short axis b, and if a/b=3, then β=3 [39]. The superim-
posed vacuum resonances in Fig. 4, like those in Fig. 2
of ref. 22, show that no appreciable increase in damping
occurs in the limit of low drive: the He-II just serves as
a mechanical vacuum [41] whose only physical effect is a
renormalisation of the mass. The excess damping due to
any remanent vortex lines that may still be present [42],
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even in the case of the cleaned grid, is evidently beyond
our resolution. We shall return to a question of a possible
frequency shift due to these remanent vortex lines later.

Nonetheless, remanent vorticity provides the most
likely explanation of why the “cleaned” and “virgin”
behaviours of the grid are so different. Increasing the
pressure in the cell presumably leads to the genera-
tion/injection of quantized vortices by the jet of super-
fluid entering the cell from the filling capillary. They
are likely to reconnect with each other and with image
vortices in walls and electrodes, leaving remanent vortic-
ity pinned to the grid or between the grid and the sur-
rounding electrodes. It is probably these vortices that
cause the additional down-shift of resonant frequency in
the low drive limit and the appreciable broadening of the
resonance peak (see Fig. 11). We shall return to the “vir-
gin” grid behaviour below. First we concentrate on the
regular flow due to a “cleaned” grid.

C. Amplitude-dependent frequency shift above the

first threshold - macroscopic approach

With increasing response amplitude, the regular be-
haviour of the driven grid acquires highly nonlinear fea-
tures, as we have seen, and between the first and second
thresholds the resonant frequency shifts further down
by about 2 Hz, independently of the applied pressure
(Fig. 8 and 9). Within our simple model with negligi-

bly low damping, the resonant frequency ∼
√

K/M can
be shifted down either by a decrease of the spring con-
stant K of the grid, or by a further enhancement of the
hydrodynamic effective mass [43] Meff = M + ∆M(p).
There is no obvious mechanism by which the presence
of the liquid could change the effective spring constant.
We are therefore left with the conclusion that the addi-
tional downshift of about 2 Hz observed above the first
threshold arises from a further enhancement of the effec-
tive mass of the grid, i.e. an enhancement additional to
the classical hydrodynamic enhancement [39] discussed
in the preceding subsection.

Given the essential simplicity of the superfluid in the
T → 0 limit, and the scarcity of excitations, we seem
forced to conclude that the increased effective mass is in
some way associated with quantized vortices. We spec-
ulate that, on exceeding the first threshold a “boundary
layer” of vortex loops builds up on the grid, somehow
increasing its inertia. This would cause the resonant fre-
quency to shift down with increasing amplitude and the
resonance curves to acquire the strongly nonlinear fea-
tures that are observed. Let us suppose that, as occurs
in classical viscous fluids, a boundary layer of thickness λ
is formed, enhancing the hydrodynamic effective mass of
the grid by ∆Mλ

g = Aλ%He(p), where A denotes the sur-
face area of the grid. Requiring that the downward shift
of the resonance frequency corresponds to those observed
experimentally we have

p v1 v2 %He β λ νeff

(bar) (cm/s) (cm/s) (g/cm3) (µm) (cm2/s ×105)
0.30 0.302 2.87 0.1456 2.95 0.63 1.35
2.20 0.292 2.87 0.1488 2.97 0.56 1.07
3.50 0.295 2.85 0.1508 2.94 0.62 1.31
5.05 0.260 2.86 0.1529 2.95 0.55 1.04
5.50 0.302 2.89 0.1535 2.96 0.53 0.95
10.00 0.295 2.89 0.1589 3.07 0.52 0.93
10.09 0.265 2.87 0.1590 3.07 0.50 0.86
12.05 0.245 2.90 0.1611 3.06 0.49 0.83
14.00 0.242 2.90 0.1631 3.03 0.53 0.95
15.50 0.365 2.86 0.1646 3.07 0.43 0.64
15.55 0.158 2.89 0.1646 3.06 0.47 0.75
18.00 0.135 2.92 0.1668 3.02 0.55 1.03
19.95 0.152 2.86 0.1685 3.03 0.54 0.99
24.79 0.148 2.93 0.1723 3.04 0.52 0.91

TABLE II: Calculated values characterizing the macroscopic
properties of the He II flow due to oscillating grid (assum-
ing its motion is one-dimensional) at various pressures at low
temperature: v1 and v2 are the estimated peak flow velocities
corresponding to the first and second critical thresholds; %He

denotes the density [40] of He II; β is the hydrodynamic en-
hancement factor (see text); λ denotes the required thickness
of the boundary layer; and νeff is the calculated value of the
effective kinematic viscosity.

λ(p) =
M + ∆Mλ

g

A%He(p)

(

f2
1

f2
2

− 1

)

(5)

The values of λ(p) required to account for the maximum
frequency downshift are given in Table 2. A statistical
analysis leads to λ = (0.53±5) µm, although there seems
to be a slight tendency for λ(p) to decrease with increas-
ing pressure. Note that the boundary layer thickness is
much smaller than any linear dimension of the grid win-
dows. At first sight, therefore, it might be reasonable
to approximate the behaviour in terms of a classical-like
boundary layer covering the moving surface.

From the calculated thickness of the effective bound-
ary layer, we can formally calculate an effective kinematic
viscosity, requiring λ(p) =

√

2νeff(p)/ω and the dynamic
viscosity ηeff(p) = %(p)νeff(p). These quantities are plot-
ted versus pressure in Fig. 12. These are the viscosities
that would be needed to produce a change in effective
mass sufficient to cause the observed frequency shift if
the grid were oscillating in a hypothetical viscous fluid,
not in a superfuid. Note in passing that the calculated
value of this effective kinematic viscosity is three orders
of magnitude below that of water, and a factor of 20 be-
low that of normal liquid He I just above the lambda
transition [46]. Extending the analogy, we may also esti-
mate the expected linewidth of the resonance peak due to
the drag of such a hypothetical viscous fluid. A straight-
forward calculation [47], approximating the flow veloc-
ity gradient in the fluid by 〈vg〉/λ, leads to a linewidth
∼1 Hz. The strongly nonlinear curves corresponding to
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FIG. 12: Calculated values of the effective kinematic viscosity
(squares) and dynamic viscosity (circles) versus pressure.

drive levels slightly exceeding the first threshold do not,
however, display any appreciable increase in damping, in
the sense that the response at maximum remains pro-
portional to the drive (see Fig. 6). This suggests that,
until the response amplitude reaches the second thresh-
old, none of the vortex loops that we suppose to comprise
the boundary layer can carry away any energy by leav-
ing the grid. These ideas are developed in more detail in
Sec. IV D below, describing a recently proposed theory
[33] that effectively replaces the concept of an effective
kinematic viscosity.

It is interesting to characterize the first threshold in
terms of a superfluid Reynolds number Res = RchUch/κ,
where Rch and Uch stand respectively for a length scale
and characteristic velocity characteristic of the superflow
in question, and κ = 0.000997 cm2/s denotes the quan-
tum of circulation. To estimate the critical value of ReI

s

associated with the first threshold, we believe it is natural
to use the peak flow velocity averaged over a grid win-
dow in the frame of reference of the grid. The observed
values of the first critical amplitude are given in Table
I for all investigated pressures. We have converted the
peak value of the grid velocity to the peak flow velocity by
multiplying by a numerical factor ≈ 1.43 to allow for the
70% grid transparency, assuming that the grid motion is
one-dimensional (see column v1 in Table II). If one also
takes into account that the vertical displacement profile
of the grid, when vibrating in its fundamental axisym-
metric mode, is given in the radial direction by the ze-
roth order Bessel function J0(2.4048r/R), the peak flow
velocity (i.e., U I

ch) through its center is further enhanced
by a factor ≈ 2.3. As a characteristic length scale RI

ch
we use the size of the individual bars composing the grid.
The superfluid Reynolds number associated with the first
threshold, ReI

s = RI
chU I

ch/κ, is displayed in Fig. 13. Note
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FIG. 13: The superfluid Reynolds number ReI

s corresponding
to the first critical threshold, plotted versus the pressure. The
“anomalous” triangular data point is discussed in the text.

that, although it decreases with increasing pressure, it is
of order unity for all pressures, in qualitative agreement
with the famous Feynman criterion based on the value of
self-induced velocity for a vortex loop of the size of the
grid bar.

The experimental point plotted for p = 15.5 bar (the
open triangle) falls in a seemingly anomalous position.
We are aware of only one experimental difference from the
conditions under which the other data were recorded: the
drive dependence of the resonant response had just pre-
viously been measured up to the highest available drive
amplitudes. This involved use of the transformer to boost
the driving potential (by a factor of ' 27). This unusu-
ally high drive probably resulted in more efficient “clean-
ing” than the standard procedure of shaking the grid with
the 10 Vpp directly available from the signal generator.
This observation supports the idea that driving the grid
at high amplitude causes a re-arrangement of remanent
vorticity rather than its total removal.

D. Amplitude-dependent frequency shift above the

first threshold - microscopic approach

The macroscopic approach above, based on analogy
with the boundary layer theory for classical fluids, fails
to explain why the damping above the first threshold
remains apparently unchanged. The main challenge for
any microscopic theory based on vortex dynamics is (i) to
explain the mechanism that gives rise to the amplitude-
dependent effective mass, and (ii) to show how this effect
can occur without any corresponding increase in damp-
ing. A possible approach to these problems has been
proposed in Ref. [33], and we now summarise briefly the
main ideas.

The character of the dynamical response of a vortex
loop attached to a grid oscillating at the drive frequency
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ω will depend on whether it is significantly longer or
shorter than the minimum resonant length ` ≈ 13 µm
required by the well-known dispersion relation

ω(k) = ω

(

2π

`

)

∼= κk2

4π
ln

(

1

ka0

)

(6)

for a Kelvin wave [2], where a0 is the vortex core pa-
rameter. If the loop is shorter than `, it will respond
adiabatically, in that its position and configuration in
the flow will always correspond to equilibrium. For loops
that are significantly longer than `, on the other hand,
Kelvin waves will be excited, leading to dissipation. Dis-
sipation may thus occur either through the transfer of
energy via a Kelvin wave cascade [17] to very high fre-
quencies, at which there can be significant phonon radi-
ation, or through the loss of vortex rings as the result
of reconnections. It appears likely, therefore, that these
longer vortex loops (probably including some connecting
the grid to the neighbouring electrodes) are being re-
moved during the “cleaning” procedure described above.

It can be shown [33] that, when a vortex loop is pinned
by both ends to the grid and responds adiabatically, it
enhances the effective mass of the grid by %HeIIκ(dS/dv),
without increasing the damping. Here S(v) is the area
between the loop and the neighbouring walls. For small
velocities, S(v) is probably a linear function of the flow
velocity, v, and the overall effect is a constant, amplitude-
independent, enhancement of the effective mass of the
grid. If S(v) were to become nonlinear at the first
threshold, however, the observed highly nonlinear form
of the measured resonance curves can be accounted for:
it would be necessary for the non-linear part of the loop
area to contribute ∼2500 µm2 per window of the grid at
the second threshold [33]. It follows that mass enhance-
ment through this mechanism cannot be due a single loop
– it would simply be too long to respond adiabatically.
In fact, if one considers also the stability of these loops
against “ballooning out” below the second threshold, the
analysis [33] suggests a dense boundary layer constituted
of small loops, with ∼103 per grid aperture, i.e. about
108 loops altogether, each sized ∼1 µm or less.

Note en passant that, at higher temperature where
there is an appreciable fraction of normal fluid, such a
flow involving a boundary layer of small vortex loops
would be dissipative, and not only because the grid is
moving through a normal fluid of finite viscosity. On
length scales comparable with the distance between the
vortex loops constituting the boundary layer, the normal
and superfluid velocity fields cannot be fully matched
and the resulting mutual friction will assure dissipation
of the flow energy. The interesting question of just how
such a process sets in remains open as a subject for future
investigation.

It is tempting to suppose that the formation of this
boundary layer is intrinsic to any superflow over a solid
boundary. Perhaps, employing the ideas of Kusmartsev
[44], the boundary layer can grow from a “plasma” of
half vortex rings, although the critical velocities derived

by Kusmartsev are much larger than those considered
here. The difficulties associated with intrinsic vortex nu-
cleation are well-established [45] and intrinsic critical ve-
locities in microscopically small channels are assumed to
be ∼30 m/s at low temperature. Here, on the other hand,
we have an open geometry, the grid surface is very rough
and substantial enhancement of flow around excrescences
is possible. The nucleation problem, discussed above in
relation to the drive-dependence of the response ampli-
tude at resonance, is consistent with this picture.

Another possibility is to suppose that the bound-
ary layer is essentially extrinsic, in that the generation
of quantized vortex loops on the surface of the grid
by macroscopic superflow around it probably involves
growth from remanent vortex lines [42] and may well be
produced by the “cleaning” procedure that causes the
“virgin” and “regular” behaviours to differ.

At present, the available experimental data do not al-
low us to resolve this interesting and fundamental issue.
There is a clear call for more precise studies of the “clean-
ing” procedure, possibly involving grids with different ge-
ometry and surface roughness.

E. Onset of dissipation

As we have seen, a dissipative process sets in at a re-
sponse level corresponding to the second critical thresh-
old: on increasing the drive further, the main result is
an increase in linewidth (see Fig. 4 and 5). Under these
flow conditions, the He II is behaving in close analogy
with a classical Navier-Stokes fluid, in that the flow is
dissipative. Using the observed values of the response
amplitude for the second threshold from Table I we can
conclude that it does not depend appreciably on pressure,
and reaches (190± 2) mVpp.

Let us now discuss the second, pressure-independent
threshold in terms of a superfluid Reynolds number
ReII

s = RII
chU II

ch /κ. In the classical case, steady flow
through a grid generates turbulence that is nearly ho-
mogeneous and isotropic – the turbulent wakes created
at grid bars coalesce at some distance downstream. One
usually characterizes such a flow by a mesh Reynolds
number, i.e. the mesh size of the grid plays the role of
the characteristic distance. Below the second threshold,
however, we are dealing with an oscillating (super)flow
of relatively small amplitude (up to a size of the bar).
Flow around the bar on one side of a grid aperture will
therefore be almost unaffected by flow around the bar on
the other side of the aperture. Use of the mesh size as a
characteristic length scale therefore seems inappropriate.
We suggest that the relevant superfluid Reynolds number
characterizing the onset of superfluid turbulence at the
second threshold be defined in the same way as was done
above for the first threshold. Calculation of the peak ve-
locity for the second threshold by the above procedure
results in U II

ch = 6.6± 0.1 cm/s and assuming RII
ch = RI

ch
we arrive at ReII

s ≈ 14.
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The observed values of ReII
s compare well with the

critical Res = UD/κ ≈ 20 (U is the transport velocity
and D the diameter of the pipe) found as a temperature-
independent threshold in pipe flow of He II at much
higher temperatures when the flow of the normal com-
ponent was inhibited by superleaks placed at both ends
of the pipe [48]. This suggests that, although the un-
derlying physical mechanism leading to a transition to
supefluid turbulence is not well understood, it probably
remains unchanged even at temperatures above 1.4 K
where there is an appreciable fraction of normal fluid.

Microscopic considerations based on the dynamic re-
sponse of individual vortex loops relevant to the onset of
dissipation can be found in [33]. To resolve this compli-
cated issue fully, however, further more work is needed,
including computer simulations on dynamic behaviour of
pinned vortex loops subject to an oscillatory superflow.

The square-root behaviour (see the inset in Fig. 6) of
the resonant response as a function of drive amplitude
above the second threshold is typical of classical turbu-
lent drag scaling. It is therefore most likely that this
threshold marks the onset of turbulence. The dissipation
process might be analogous to the evaporation of a packet
of quantized vorticity [49] proposed to explain turbulent
behaviour [50] of superfluid 3He-B.

F. Amplitude modulation “beating” phenomena

Let us consider possible origins of the beating phenom-
ena, (see Fig. 10, and Fig. 2 of Ref. [22]) with proper-
ties summarized above. We recall that, in the “regular”
regime, they are observed at the response amplitude be-
tween the first and second threshold on both sides of the
resonant frequency. The most pronounced beatings are
observed (Fig. 10) above a critical amplitude (Fig. 11)
when probing the virgin behaviour of the grid. Given the
similar appearance and timescales of beatings within the
regular and cleaned regimes, we will assume for now that
they have a common origin. As already mentioned above,
we associate the difference between the virgin/regular be-
haviours with the presence/absence of remanent quan-
tized vortices in significant numbers. The linewidth at
low drive (virgin behaviour) is broader than that ob-
served either in vacuum or in He II (regular behaviour),
and the resonant frequency is shifted down relative to
the latter. We infer that the observed phenomena are a
direct consequence of quantum vortices adjacent to the
grid, pinned in some random fashion.

We may therefore attempt to explain the observed
beatings on the assumption that, on reaching the critical
response amplitude (126.3 mVpp in the particular case
described above) the oscillatory motion of the grid almost
stops within a period of ∼ 0.2 s by generation of a vortex
tangle. It means that the energy of the moving grid with
peak velocity given by its critical response amplitude, of
order 0.01 µJ, is transformed to vortex line of total length
∼ 5 km. Assuming further that the tangle spreads and

decays away at a sufficiently high rate, it corresponds
to a steady heat input to the cell of ' 0.01 − 0.1 µW.
Notwithstanding the linkage of the He II sample (via a
complicated set of thermal links including the Kapitza
resistance) to the mixing chamber of the dilution refrig-
erator, this would have led to appreciable warming of
the sample (30 mK to 50 mK in about 15 minutes, just
considering heat capacity).

In practice, no appreciable increase of the cell temper-
ature was observed on the time scale of one hour while
observing the stable beating pattern. If the motion of the
grid is approximated as one-dimensional [22], then we are
obliged to interpret the behaviour of Fig. 10 in this way,
but it is an approach that evidently fails to provide a
plausible explanation for the beating phenomenon.

We point out that it may, however, be necessary to
consider the dynamics of our oscillating grid in more de-
tail. It represents a nearly homogeneous oscillating mem-
brane under uniform tension. The electrostatic driving
force resulting from applying the ac voltage to the upper
electrode can be assumed as nearly uniformly distributed
over the entire grid area. Thus, as already pointed out
in Sec. IV C, driving the grid at a frequency near its fun-
damental resonance should result in a particularly sim-
ple axially symmetric oscillation pattern, with a vertical
displacement profile in the radial direction given by the
Bessel function J0(krr), with the wave vector kr chosen
in such a way that the displacement vanishes at the cir-
cumference of the grid, r = R. This spatial displacement
profile ought to be relevant when driving the grid in vac-
uum and in He II for amplitudes below the first thresh-
old , i.e., up to response signal amplitudes not exceed-
ing ∼ 10 mVpp. As the oscillation amplitude increases,
the threshold will first be reached initially in the middle
of the grid [51], where quantum vortex loops will cause
a local enhancement of the effective mass per unit area.
Consequently, the spatial displacement profile will depart
from that given by the Bessel function J0(krr).

Assuming that the axial symmetry is maintained, the
resonant frequency of the stationary response curve ought
gradually to shift down, in accord with the experiment.
If the vortex loops composing the boundary layer do not
leave the grid carrying its energy away, there is no rea-
son to expect any broadening of the peak at this stage:
its width should remain at the nuisance damping (i.e.
vacuum) level.

In reality the vortex loops will probably locally en-
hance the effective mass of the grid in a way that breaks
the axial symmetry. The grid can therefore no longer
be well-approximated as an oscillating membrane of ho-
mogeneous areal density, but represents a rather com-
plex nonlinear oscillatory system. A simple stationary
response to a spatially uniform drive might no longer ex-
ist and, conceivably, this could show up experimentally
as beatings between two different amplitude values. We
may expect that, for any given configuration of vortex
loops, the beating pattern would be reasonably stable
in that small changes in the drive would only change
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the average sizes of existing loops, but not their over-
all geometrical configuration. Consistent with this idea,
there is a high degree of reproducibility of the response
for a given frequency and drive when the range of the
frequency sweeps is sufficiently small. Faster and big-
ger changes in frequency probably lead to a more drastic
spatial rearrangement of the vortices that constitute the
boundary layer. On bringing the frequency back to its
original value, following an excursion of this kind, a dif-
ferent spatial configuration might be produced, leading
either to a different beating pattern or to the disappear-
ance of beating. This qualitative discussion of the beat-
ings described in Sec. III C is consistent with the obser-
vations that beatings are never observed in vacuum, and
only occur above the first threshold in He II.

On increasing the amplitude further, the second
threshold will eventually be reached in the central area
of the grid. Note that the second threshold is 10× higher
than the first one so, by this time, most of the grid area
will be oscillating with an amplitude exceeding that of
the first threshold. Thus its mass per unit area is al-
ready enhanced by the existence of the effective bound-
ary layer. It would seem that, when the second threshold
is attained by the central part of the grid, an additional
damping force will start to act locally, in the central area
of the grid; presumably it suffers a phase shift [47] (which
for a viscous fluid would be π/4). Further increase in the
the oscillation amplitude is no longer proportional to the
drive but almost ceases due to the very rapid increase in
damping. Only for much higher drives, when the damp-
ing area becomes almost the size of the entire grid, does
a new regular pattern become established. This time,
the turbulent-like drag is characterized by a square-root
dependence of the response on the drive amplitude.

These considerations allow us to speculate about a pos-
sible alternative scenario that might account for the beat-
ings (Fig. 10). Additional damping in the central area
of the grid will tend to flatten the displacement profile.
The resultant force in the central area of the grid will
become more and more phase-shifted. It is possible to
envisage that, with a further increase in drive, this phase
shift may grow until a transition occurs into a vibration
regime where the middle of the grid and its outer annu-
lus oscillate in opposite directions, mutually in antiphase,
i.e. similarly as in the (0,2) oscillatory mode. Due to en-
ergy conservation the oscillating amplitude (or, rather,
its mean-square value averaged over the entire grid area)
ought to stay roughly constant. However, our detection
method consists of measuring the induced voltage in a
lower electrode that covers the entire grid area. For the
same response amplitude, therefore, the signal induced
in the (0,1) mode will be vastly greater than that in an
(0,2)-like mode. So what appears (Fig. 10) as a drastic
reduction in the oscillatory amplitude may in reality cor-
respond to a continuous transition to an (0,2)-like mode.
At present we cannot decide which scenario is more likely;
further experimental work, backed up by simulations and
theoretical investigations is required to resolve the issue.

V. SUMMARY

We have reported the first systematic experimental in-
vestigation of the macroscopic flow of pure He II in the
limit of very low temperature, using a vibrating grid as a
probe. Our results confirm that for flow velocities below
a threshold value, He II can indeed behave as an ideal
fluid: its presence enhances the hydrodynamic mass of
the oscillating body, without making a measurable con-
tribution to the damping. After the injection of extra liq-
uid through an increase of pressure at low temperature,
however, the He II does contribute additional damping,
observed as a downshift in resonance frequency and an
increase of the linewidth, even in a limit of low driving
force. We attribute this effect to an increased level of
remanent vorticity engendered by the jet of He II issuing
from the filling capillary as the cell is being pressurised.
The effect can be substantially reduced by violently shak-
ing the grid – presumably causing remanent vorticity
to be shaken off or rearranged in some way – following
which procedure the resonance frequency is found to have
shifted up, with a corresponding decrease of linewidth
indistinguishable from its vacuum value. The response
then remains stable on a time scale of at least days.

On increasing the flow velocity above the first thresh-
old (characterized by a flow velocity of a few mm/s or by
a superfluid Reynolds number of order unity) an effective
boundary layer comprised of quantized vortices enhances
the hydrodynamic effective mass of the grid but not the
damping which, in the zero temperature limit, remains
unchanged until the second threshold (characterized by a
flow velocity of a few cm/s or by the superfluid Reynolds
number ∼10–20) is attained, which is where dissipation
sets in. Intriguing effects such as the pronounced beat-
ings have been observed in this range of response ampli-
tudes and, currently, these are only partly understood.

Further increase of the drive leads to a viscous-like
dissipative flow. It can perhaps be understood as He II
mimicking the boundary layer that arises in oscillatory
viscous flow in a classical fluid: in the case of He II this
would involve an appropriate rearrangement of vortex
loops in the vicinity of the solid boundary, analogous to
the way in which a rotating bucket of He II at sufficient
angular velocity imitates solid body rotation. For the
highest achievable drives, the flow can be characterized
as developed superfluid turbulence. The velocity grows
in proportion to the square root of the drive, i.e. the
quantized vorticity being generated leads to a turbulent
drag dependence typical of classical viscous fluids.

We are aware that there are number of problems and
unanswered questions, such the universality of the ob-
served phenomena, the intrinsic versus extrinsic origin
of the effective boundary layer, the pressure dependence
of the first threshold, and a more detailed characteriza-
tion of the influence on flow of the remanent vorticity.
There is also a clear call to investigate how the observed
phenomena change with increasing temperature, and rel-
evant experiments have already been started.
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We hope that these results will stimulate further effort,
both experimental and theoretical, leading to a better
understanding of the underlying physics of superflow and
of the nucleation of quantum and possibly even classical
turbulence.
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