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Model selection based on combined penalties for biomarker identification 1 

 2 

Abstract 3 

The growing role of targeted medicine has led to an increased focus on the development of 4 

actionable biomarkers. Current penalized selection methods that are used to identify biomarker 5 

panels for classification in high dimensional data, however, often result in highly complex 6 

panels that need careful pruning for practical use. In the framework of regularization methods a 7 

penalty that is a weighted sum of the 𝐿𝐿1  and 𝐿𝐿0  norm has been proposed to account for the 8 

complexity of the resulting model. In practice, the limitation of this penalty is that the objective 9 

function is non-convex, non-smooth, the optimization is computationally intensive and the 10 

application to high-dimensional settings is challenging. In this paper we propose a stepwise 11 

forward variable selection method which combines the 𝐿𝐿0 with 𝐿𝐿1 or 𝐿𝐿2 norms. The penalized 12 

likelihood criterion that is used in the stepwise selection procedure results in more parsimonious 13 

models, keeping only the most relevant features. Simulation results and a real application show 14 

that our approach exhibits a comparable performance with common selection methods with 15 

respect to the prediction performance whilst minimizing the number of variables in the selected 16 

model resulting in a more parsimonious model as desired. 17 

 18 

Keywords:  biomarker panels, combined penalties, model selection, penalized regression, 19 

regularization, sparsity, stepwise variable selection, treatment responder. 20 

 21 

1. Introduction 22 

 23 

The high costs and long duration of clinical development, paired with high levels of attrition, 24 

require the quantification of the risk when moving from early to late stage clinical development, 25 

and biomarkers may play an important role in this quantification. However, only rarely the 26 

number of variables (biomarkers) in the resulting panel plays an active role in selection 27 

procedures. Variable selection is an important aspect in the determination of such panels in the 28 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/211246554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

framework of high-dimensional statistical modeling. In practice, a large number of candidate 29 

predictors are available for modeling. Keeping only the relevant variables in the model makes 30 

interpretation easier and may increase the predictability of the resulting model. 31 

  32 

Particularly in the framework of regularization methods, various penalty functions are used to 33 

perform variable selection. Frank and Friedman (1993) proposed the bridge regression by 34 

introducing the penalty of the form 𝐿𝐿𝑞𝑞 = ∑ �𝛽𝛽𝑗𝑗�
𝑞𝑞𝑑𝑑

𝑗𝑗=1 , 𝑞𝑞 > 0, for the vector of regression 35 

coefficients 𝜷𝜷 =  (𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑑𝑑)  ∈  ℝ𝑑𝑑. When 𝑞𝑞 ≤ 1 the penalty performs variable selection. 36 

The case where 𝑞𝑞 = 1 is the 𝐿𝐿1  penalty and corresponds to the Least Absolute Shrinkage and 37 

Selection Operator (Lasso) (Tibshirani, 1995). It performs continuous shrinkage and variable 38 

selection at the same time, whereas for 𝑞𝑞 = 2 we get the ridge estimator (Hoerl and Kennard, 39 

1970) that shrinks coefficients towards zero but it does not perform variable selection. The limit 40 

of the 𝐿𝐿𝑞𝑞 as 𝑞𝑞 → 0 gives the 𝐿𝐿0  penalty, which penalizes the number of non-zero coefficients 41 

and thus is appealing for model selection, if sparse models are of advantage. However, due to its 42 

non-convexity and discontinuity at the origin, the corresponding optimization problem becomes 43 

difficult to implement in high dimensions. In addition, the solution using 𝐿𝐿0  may be unstable 44 

because it may not be identifiable. 45 

 46 

In genomic research, an 𝐿𝐿1  penalty is routinely used due to its convexity and optimization 47 

simplicity. However, the result of the 𝐿𝐿1 type regularization may not be sparse enough for a 48 

good interpretation. The development of methods to obtain sparser solutions than through 𝐿𝐿1  49 

penalization methods is becoming essential part in the classification and feature selection area. 50 

A variable selection method that combines the 𝐿𝐿1  and 𝐿𝐿0 penalties was proposed by Liu and Wu 51 

(Liu and Wu, 2007). They used a mixed integer programming algorithm for optimization of the 52 

objective function. The results showed that their method achieved sparser solutions than Lasso 53 

and more stable solutions that the 𝐿𝐿0  regularization. However the application was limited to 54 
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moderate data sizes, due to computational inefficiency for large-scale problems. Other 55 

combinations of 𝐿𝐿𝑞𝑞 penalties have been proposed so far (Zou and Hastie, 2005) and recently 56 

(Huang et al., 2016) with each of these methods using a different optimization algorithm to 57 

approach the solution. 58 

 59 

In this article, we propose a method for variable selection that penalizes the likelihood function 60 

with a linear combination of 𝐿𝐿0  with 𝐿𝐿1  or 𝐿𝐿2 penalties (CL, CL2) in a stepwise forward 61 

variable selection procedure. The aim is to obtain a model that is sparser than the model with 62 

the 𝐿𝐿1  penalty alone and at the same time achieve a good predictive performance. Moreover, a 63 

strong motivation for the proposed stepwise forward variable selection method is that state-of-64 

the-art global optimization algorithms for non-smooth and nonconvex functions do not provide 65 

satisfactory results. In section 2, we define the CL and CL2 penalties and present the algorithm 66 

for solving the penalized logistic regression problem with these combined penalties. In section 67 

3, we use simulated data to evaluate the performance of our method and we compare it to Lasso 68 

and adaptive Lasso both in terms of correct variable selection (true covariates with 𝛽𝛽𝑗𝑗 ≠ 0) as 69 

well as predictive performance. Finally, we show an application of our method for classification 70 

and variable selection on a real dataset with protein measurements to identify the least number 71 

of predictors that can best classify responders and non-responders to a treatment. 72 

 73 

2. Methods 74 

 75 

2.1 Regularization 76 

 77 

Suppose we have data (X, y), where 𝐲𝐲 =  (y1, y2, … , yn) is the vector of responses and X is an  78 

𝑛𝑛 × 𝑑𝑑 matrix of predictors. We will assume that the observations are independent and the 79 

predictors standardized. With linear predictor 𝜂𝜂 = 𝑿𝑿𝑻𝑻𝜷𝜷 and link function 𝑔𝑔 the generalized 80 

linear model is expressed as  81 

                           𝑔𝑔(𝐸𝐸(𝒚𝒚|𝑿𝑿)) = 𝜂𝜂                                          (2.1) 82 
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                                       83 

Under the regularization framework, the estimated coefficients 𝜷𝜷� =  ��̂�𝛽1, �̂�𝛽2, … , �̂�𝛽𝑑𝑑�  ∈  ℝ𝑑𝑑 are 84 

obtained by minimizing the objective function −𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 + 𝜆𝜆𝜆𝜆(𝜷𝜷), and are given by:  85 

       𝜷𝜷� = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑎𝑎𝑛𝑛
𝛽𝛽

{−𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 + 𝜆𝜆𝜆𝜆(𝜷𝜷)}                                                       86 

where 𝜆𝜆(𝛽𝛽) is a regularization term. The parameter 𝜆𝜆>0 is a tuning parameter and −𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 is the 87 

negative log-likelihood. One of the most popular and commonly used regularization method is 88 

the 𝐿𝐿1 regularization (Lasso), where  𝜆𝜆(𝛽𝛽) = ∑ �𝛽𝛽𝑗𝑗�𝑑𝑑
𝑗𝑗=1 . Setting 𝜆𝜆 = 0 reverses the Lasso to 89 

Maximum likelihood estimation. On the other hand, a very large 𝜆𝜆 will completely shrink 𝛽𝛽 to 90 

zero thus leading to the empty or null model. In general, moderate values of  λ will cause 91 

shrinkage of the solutions towards zero, and some coefficients may be exactly zero.  92 

 93 

Other types of 𝐿𝐿1 regularization include the adaptive Lasso, where adaptive weights are used for 94 

penalizing different coefficients in the 𝐿𝐿1 penalty and was shown to have the oracle property 95 

(Zou, 2006).  A variable selection and estimation procedure is said to have the oracle property i) 96 

if it selects the true model with probability tending to 1 and ii) if the estimated penalized 97 

coefficients are asymptotically normal, with the same asymptotic empirical variance as the 98 

estimator based on the true model.  99 

 100 

However, the 𝐿𝐿1 type regularization is consistent only under rather restrictive assumptions 101 

(Zhao and Yu, 2006) and the coefficient estimates are severely biased due to shrinkage 102 

(Meinshausen and Yu, 2009); (Fan and Li, 2001). Although the 𝐿𝐿0 norm, where 𝜆𝜆(𝛽𝛽) =103 

∑ 1𝛽𝛽𝑗𝑗≠0
𝑑𝑑
𝑗𝑗=1  and 1𝛽𝛽𝑗𝑗≠0 is the indicator function of whether 𝛽𝛽𝑗𝑗 ≠ 0, tend to yield the sparsest 104 

solutions, its implementation in high dimensional data becomes an NP hard optimization 105 

problem and is not computationally feasible. Classical information criteria like AIC (Akaike, 106 

1974) or BIC (Schwarz, 1978) lie in the general class of the regularization 𝜆𝜆𝜆𝜆(𝛽𝛽) =107 
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𝜆𝜆 ∑ 1𝛽𝛽𝑗𝑗≠0
𝑑𝑑
𝑗𝑗=1  for suitable choices of 𝜆𝜆. In order to gain a more concise and sparse solution and 108 

whilst keeping a high predictive accuracy of the classification model, we propose a 109 

regularization term that combines the 𝐿𝐿0with 𝐿𝐿1 or 𝐿𝐿2  norms (Liu and Wu, 2007). Figure 1 plots 110 

the penalty functions 𝐿𝐿1 and 𝐿𝐿2 in the bottom panel and the 𝐿𝐿0  penalty in the top panel. Unlike 111 

𝐿𝐿2 , the penalty terms 𝐿𝐿1 and 𝐿𝐿0 are singular at the origin and thus perform variable selection 112 

(Fan and Li, 2001).  113 

 114 

          Figure 1.   115 

2.2 The combined 𝑳𝑳𝟎𝟎 + 𝑳𝑳𝟏𝟏 penalty 116 

 117 

Following Liu and Wu (Liu and Wu, 2007) the penalization term is defined as 𝐶𝐶𝐿𝐿𝛼𝛼𝜀𝜀(𝛽𝛽) =118 

(1 − 𝑎𝑎)𝐿𝐿0𝜀𝜀 + 𝑎𝑎𝐿𝐿1 , where 0 ≤ 𝑎𝑎 ≤ 1 is a weighting parameter between 𝐿𝐿0𝜀𝜀 and 𝐿𝐿1 penalties, 119 

with 𝐿𝐿0𝜀𝜀 given by:  120 

 𝐿𝐿0𝜀𝜀(𝛽𝛽) =  �
1 ,            |𝛽𝛽| ≥ 𝜀𝜀
|𝛽𝛽|
𝜀𝜀

,          |𝛽𝛽| < 𝜀𝜀                                                   (2.2) 121 

 122 

Clearly 𝐶𝐶𝐿𝐿1𝜀𝜀 = 𝐿𝐿1 (𝑎𝑎 = 1 ) and  𝐶𝐶𝐿𝐿0𝜀𝜀 = 𝐿𝐿0𝜀𝜀  (𝑎𝑎 = 0) are special cases of  𝐶𝐶𝐿𝐿𝛼𝛼𝜀𝜀. Discontinuity 123 

at the origin of 𝐿𝐿0 makes the optimization difficult and therefore we consider the continuous 124 

approximation to 𝐿𝐿0 defined by (2.2). The limit of  𝐿𝐿0𝜀𝜀(𝛽𝛽) when 𝜀𝜀 → 0 is 𝐿𝐿0(𝛽𝛽) itself. When 125 

𝜀𝜀 > 0  is small,  𝐿𝐿0𝜀𝜀(𝛽𝛽) is a good approximation to 𝐿𝐿0(𝛽𝛽) (Figure 1 top right). The estimated 126 

coefficients are obtained by minimizing the objective function 127 

                                               −𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 + 𝜆𝜆 ∑ 𝐶𝐶𝐿𝐿𝛼𝛼𝜀𝜀(𝛽𝛽𝑗𝑗)𝑑𝑑
𝑗𝑗=1                                                    (2.3) 128 

and are given by  129 

                                     �̂�𝛽𝐶𝐶𝐶𝐶𝛼𝛼𝜀𝜀 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑎𝑎𝑛𝑛
𝛽𝛽

�−𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 + 𝜆𝜆∑ 𝐶𝐶𝐿𝐿𝛼𝛼𝜀𝜀(𝛽𝛽𝑗𝑗)𝑑𝑑
𝑗𝑗=1 �                            130 

 131 

2.3 The combined 𝑳𝑳𝟎𝟎 + 𝑳𝑳𝟐𝟐  penalty 132 

 133 
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We now consider another combination, the 𝐿𝐿0 norm with 𝐿𝐿2 . The motivation for combining the 134 

𝐿𝐿0 norm with 𝐿𝐿2 , is to consider a penalty that will join the nice properties of the 𝐿𝐿2 and those of 135 

the 𝐿𝐿0  norm, which is to perform variable selection (𝐿𝐿0 ) and keep in the model groups of 136 

variables that are correlated (𝐿𝐿2 ). In theory, a strictly convex function provides a sufficient 137 

condition for such grouping of variables and the 𝐿𝐿2 penalty guarantees strict convexity. The 138 

grouping effect refers to the simultaneous inclusion (or exclusion) of correlated predictors in the 139 

model.  140 

 141 

The penalization term is now defined 𝐶𝐶𝐿𝐿2𝛼𝛼𝜀𝜀(𝛽𝛽) = (1 − 𝑎𝑎) 𝐿𝐿0𝜀𝜀 + 𝑎𝑎 𝐿𝐿2 , where 0 ≤ 𝑎𝑎 ≤ 1. The 142 

𝐿𝐿0𝜀𝜀 term introduced above is for variable selection and the 𝐿𝐿2  penalty shrinks the coefficients 143 

towards zero with no contribution to variable selection. Figure 2 gives a graphical 144 

representation of the regularization terms  𝐶𝐶𝐿𝐿0.3
0.1, 𝐿𝐿1 , 𝐿𝐿2,  𝐶𝐶𝐿𝐿20.5

0.1. 145 

 146 

Figure 2.  147 

2.4 The stepwise forward procedure 148 

 149 

In their paper Liu and Wu (2007) proposed a global algorithm to solve the corresponding 150 

difficult nonconvex problem (Mixed integer linear programming). However, the applicability 151 

was restricted to moderate datasizes. As mentioned by Frommlet F. and Nuel G. (Frommlet and 152 

Nuel, 2016), when the number of predictors grows large (d>20) it is not possible to apply 153 

algorithms which guarantee to find the optimal solution (Furnival and Wilson, 2000) and 154 

instead heuristic search strategies like stepwise procedures may be considered. By using 155 

heuristic techniques, we can approximate the solution of the non-smooth, non-convex and NP-156 

hard optimization problems like the one in equation (2.3), where exact algorithms are not 157 

applicable for such minimization problems.  158 

 159 
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The optimization of the objective function (2.3) is rather challenging since  𝐶𝐶𝐿𝐿𝛼𝛼𝜀𝜀(𝛽𝛽) and 160 

 𝐶𝐶𝐿𝐿2𝛼𝛼𝜀𝜀(𝛽𝛽) are non-convex and non-differentiable at some points of the parameters’ space. We 161 

apply the BFGS, Broyden (Broyden, 1970)- Fletcher (Fletcher, 1970)- Goldfarb (Goldfarb, 162 

1970)- Shanno (Shanno, 1970) (BFGS) variable metric (quasi Newton) method, which is shown 163 

to work well for the optimization of non-smooth and non-convex functions (Lewis and Overton, 164 

2009); (Lewis and Overton, 2013); (Curtis and Que, 2015). The BFGS method uses an 165 

approximation of the Hessian matrix to find the stationary points of the function to be 166 

minimized. Its ability to capture the curvature information of the considered function makes the 167 

method so effective.  168 

 169 

We propose to use a stepwise forward variable selection using the previously introduced 170 

penalized likelihood criterion for feature selection that can be used effectively in high 171 

dimensional data. In this stepwise forward selection framework, at each step we optimize the 172 

objective function  −𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 + 𝜆𝜆 𝑎𝑎 𝐿𝐿1 using the BFGS algorithm and obtain    173 

�̂�𝛽𝐶𝐶1 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑎𝑎𝑛𝑛
𝛽𝛽

�−𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 + 𝜆𝜆 𝑎𝑎 ∑ 𝐿𝐿1(𝛽𝛽𝑗𝑗)𝑑𝑑
𝑗𝑗=1 �.  174 

The selected model is based on the criterion that minimizes the value of 175 

                            −𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿(�̂�𝛽𝐶𝐶1) + 𝜆𝜆 𝑎𝑎 𝐿𝐿1(�̂�𝛽𝐶𝐶1) +  𝜆𝜆 (1 − 𝑎𝑎) 𝐿𝐿0(�̂�𝛽𝐶𝐶1)                                 (2.4)  176 

 177 

The suggested algorithm is described as follows:  178 

Step 1:   179 

• Given a set of 𝑑𝑑 standardized predictors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑑𝑑 and a response 𝑦𝑦𝑖𝑖 ∈ {0,1}, 𝑎𝑎 =180 

1, …𝑛𝑛 we consider all possible univariate models (𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑑𝑑) 181 

           𝑀𝑀1:  𝑌𝑌~ 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1,   𝑀𝑀2: 𝑌𝑌~ 𝛽𝛽0 + 𝛽𝛽2𝑋𝑋2,   𝑀𝑀3:  𝑌𝑌~ 𝛽𝛽0 + 𝛽𝛽3𝑋𝑋3, ….,  𝑀𝑀𝑑𝑑:  𝑌𝑌~ 𝛽𝛽0 + 𝛽𝛽𝑑𝑑𝑋𝑋𝑑𝑑 182 

• Estimate �̂�𝛽𝐶𝐶1
𝑀𝑀1 , … , �̂�𝛽𝐶𝐶1

𝑀𝑀𝑑𝑑 and keep 𝑀𝑀𝑗𝑗, 𝑗𝑗 ∈ {1, … ,𝑑𝑑} that gives the smallest value of the 183 

function (2.4), e.g. keep variable 𝑋𝑋2 184 

 185 
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Step 2: 186 

• With the model chosen in step 1 (e.g. 𝑀𝑀2) and in an additive way we consider all the 187 

𝑑𝑑 − 1 models (𝑀𝑀′) by adding the remaining  𝑑𝑑 − 1 variables one at a time to the model 𝑀𝑀2. 188 

• 𝑀𝑀′
1 : Y~ β0 + β2𝐗𝐗𝟐𝟐 + 𝛽𝛽1𝑋𝑋1 189 

             𝑀𝑀′
2 ∶ Y~ β0 + β2𝐗𝐗𝟐𝟐 + 𝛽𝛽3𝑋𝑋3   190 

         ⋮ 191 

             𝑀𝑀′
𝑑𝑑 ∶  Y~ β0 + β2𝐗𝐗𝟐𝟐 + 𝛽𝛽𝑑𝑑𝑋𝑋𝑑𝑑  192 

 193 

• Keep the model that minimizes the function in (2.4),  194 

 195 

Step 3:  196 

• Continue adding single variables until the value of the function (2.4) in the current step 197 

is bigger than its value in the previous step.  198 

 199 

The advantage of using the function (2.4) instead of (2.3) in the optimization is that we no 200 

longer need to consider the continuous approximations to the discontinuous 𝐿𝐿0 function and 201 

therefore we eliminate the number of parameters by the continuity parameter 𝜀𝜀. The reason why 202 

we can do so is that within each step the 𝐿𝐿0-penality term remains constant (since the dimension 203 

of the model is fixed) and hence play no role in the determination of the regression coefficients. 204 

The 𝐿𝐿0-penality term does only play a role for the stopping criterium. 205 

 206 

2.5 Sparse logistic regression with combined penalties 207 

 208 

As a particular example we consider the binary linear regression model (2.1), where 𝑦𝑦 ∈ {0,1}, 209 

is a vector of  𝑛𝑛 observed binary outcomes,  𝜷𝜷 =  (𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑑𝑑)  ∈  ℝ𝑑𝑑 is the vector of 210 

coefficients. The link function is the logit function 𝑙𝑙𝑙𝑙𝑔𝑔𝑎𝑎𝑙𝑙(𝑝𝑝) = log � 𝑝𝑝
1−𝑝𝑝

 �, where 𝑝𝑝 is the 211 

conditional event probability and is given by 212 
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             𝑝𝑝 = 𝜆𝜆(𝒚𝒚 = 1|𝑿𝑿) = 𝑒𝑒𝜂𝜂

1+𝑒𝑒𝜂𝜂
                                       213 

(2.5) 214 

The coefficient estimates are obtained by minimizing (2.3) with the log-Likelihood  215 

            𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 = 𝐿𝐿(𝜷𝜷|𝒚𝒚,𝑿𝑿) =   ∑ 𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖)𝑛𝑛
𝑖𝑖=1 + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑝𝑝𝑖𝑖)                   216 

 217 

3. Results  218 

 219 

In this section we examine via simulations the performance of logistic regression when models 220 

are selected and estimated with the above introduced combined penalties (CL, CL2) by either 221 

stepwise forward selection as introduced in Section 2 (stepCL and stepCL2) or by global 222 

minimization (CL, CL2). In the stepwise model selection scheme, we also examine the 223 

performance of the stepwise adaptive 𝐿𝐿1 model with the 𝜆𝜆 (1 − 𝑎𝑎) 𝐿𝐿0 selection criterion 224 

(stepAdaCL). For that model the objective function to minimize is −𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿 + 𝜆𝜆 𝑎𝑎 ∑ 𝑤𝑤𝑗𝑗𝐿𝐿1(𝛽𝛽𝑗𝑗)𝑑𝑑
𝑗𝑗=1 , 225 

where 𝑤𝑤𝑗𝑗 = 1
|𝛽𝛽𝑗𝑗

∗|𝛾𝛾
  are the adaptive weights and �𝛽𝛽𝑗𝑗

∗� is the ridge regression estimator. The 226 

estimation is done with the stepwise algorithm described in Section 2.4.  227 

 228 

Although the proposed method is a stepwise variable selection procedure, we did not consider 229 

the comparison with other stepwise methods like the stepwise BIC or AIC, as they tend to 230 

perform poorly when the dimension is large relative to the sample size and are usually too 231 

liberal, that is, they tend to select a model with many spurious covariates (Chen and Chen, 232 

2008). As mentioned by Zhang and Shen (Zhang and Shen, 2010) these criteria may be 233 

inadequate due to their nonadaptivity to the model space and infeasibility of exhaustive search.  234 

 235 

We include the global minimization in spite of the disadvantages mentioned in Section 2 for a 236 

comparison. We also consider the results from Lasso (𝐿𝐿1 penalty) and the adaptive Lasso. We 237 

compare the different methods in terms of the fraction of correctly selected variables and the 238 



10 
 

prediction classification accuracy. The real data come from a biomarker study concerned with 239 

protein measurements with the objective to select biomarkers that potentially discriminate 240 

between responders and non-responders.  241 

 242 

3.1 Simulation Study 243 

 244 

We simulate data for varying number of predictors. We consider two settings, one high 245 

dimensional data where the number of predictors (d) exceed the number of samples (n), and a 246 

setting where the sample size is smaller than the dimensionality of the data. We assume 247 

multivariate normal predictors 𝑋𝑋1, … ,𝑋𝑋𝑑𝑑 with pairwise correlation 𝜌𝜌 (compound symmetry). Let 248 

𝜌𝜌 denote the correlation between variables 𝑋𝑋𝑚𝑚, 𝑋𝑋𝑙𝑙 where 𝑎𝑎, 𝑙𝑙 ∈ {1, … , d}, 𝑎𝑎 ≠ 𝑙𝑙. 249 

 250 

The true model that was used to generate the outcome has k informative covariates 𝑋𝑋𝑘𝑘 , 𝑘𝑘 ∈ ℤ,251 

1 < 𝑘𝑘 < 𝑑𝑑. We consider a classification problem with y a binary response and standard 252 

normally distributed predictors 𝑿𝑿~𝑀𝑀𝑀𝑀𝑀𝑀(0, Σ), where Σ is the covariance matrix. We consider 253 

the logistic model with logit link function, 𝑙𝑙𝑙𝑙𝑔𝑔𝑎𝑎𝑙𝑙(𝑝𝑝) = 𝑋𝑋𝑇𝑇𝛽𝛽, as described above with 𝑝𝑝 the 254 

probability of y=1 given X  as defined in (2.5). In other words, each component of the response 255 

vector y is viewed as a realization of a Bernoulli random variable with probability of success 𝑝𝑝. 256 

  257 

Four scenarios will be presented here, each with n=100 samples. 258 

 259 

1. Scenario 1:  d<n, correlation 𝜌𝜌 = 0.5 260 

We consider d=50 covariates, with k=3 informative predictors and coefficient vector 𝛽𝛽 =261 

(3, 1.5, 2,  0, … ,0���
47

). The correlation between the 3 informative predictors is 𝜌𝜌 = 𝑐𝑐𝑙𝑙𝑎𝑎𝑎𝑎(𝑋𝑋𝑚𝑚,𝑋𝑋𝑙𝑙) =262 

0.5, 𝑎𝑎 ≠ 𝑙𝑙 and 𝑎𝑎, 𝑙𝑙 = 1,2,3.  263 

 264 

2. Scenario 2: High dimensional setting  d>n, correlation 𝜌𝜌 = 0.5 265 
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We consider d=150 covariates, with k=15 informative predictors with 𝛽𝛽 =266 

(3, …�
3

,−3.5, …�����
3

, 1.5, … ,���
3

5, … ,�
4

−2, . .���
2

, 0, … ,0���
135

). The correlation 𝜌𝜌 between the 15 informative 267 

predictors is corr(𝑋𝑋𝑚𝑚,𝑋𝑋𝑙𝑙) = 0.5, 𝑎𝑎 ≠ 𝑙𝑙 and 𝑎𝑎, 𝑙𝑙 = 1, … ,15.  268 

  269 

3. Scenario 3: High dimensional setting  d>n, correlation 𝜌𝜌 = 0.7 270 

The dataset consists of n=100 samples and d=200 covariates, with k=15 informative predictors 271 

with 𝛽𝛽 = ( 2, …�
4

,−3, …���
3

, 1.5, … ,���
4

−2, … ,���
4

0, … ,0���
185

). The correlation 𝜌𝜌 between the 15 informative 272 

predictors is corr(𝑋𝑋𝑚𝑚,𝑋𝑋𝑙𝑙) = 0.7, 𝑎𝑎 ≠ 𝑙𝑙 and 𝑎𝑎, 𝑙𝑙 = 1, … ,15  273 

 274 

4. Scenario 4: High dimensional setting  d>n, block correlation 275 

We consider d=200 covariates, with k=16 informative predictors with 𝛽𝛽 =276 

(1,  4, …�
4

,−3, …���
3

, 1.5, … ,���
4

−2, … ,���
4

0, … ,0���
184

). In this scenario there are two groups (blocks) of 277 

correlated predictors and one single independent feature. The coefficients of d-k=184 variables 278 

were set to zero,  𝛽𝛽𝑟𝑟 = 0, 𝑎𝑎 = 184, … , 200. The correlation between predictors in block 1 is 279 

corr(𝑋𝑋𝑚𝑚,𝑋𝑋𝑙𝑙) = 0.4, 𝑎𝑎 ≠ 𝑙𝑙 and 𝑎𝑎, 𝑙𝑙 = 1, … ,7 and the correlation among predictors in block 2 is 280 

corr(𝑋𝑋𝑚𝑚,𝑋𝑋𝑙𝑙) = 0.7, 𝑎𝑎 ≠ 𝑙𝑙 and 𝑎𝑎, 𝑙𝑙 = 8, … ,16.  281 

 282 

3.2 Tuning of parameters 283 

 284 

All analyses were done in R version 3.2.3 (R Core Team, 2015). For the Lasso and Adaptive 285 

Lasso the glmnet library was used and all the functions that were used for the combined penalty 286 

approach can be found in the R-package “stepPenal”, available on the CRAN. For the adaptive 287 

lasso weights were estimated by ridge regression and then used for a weighted 𝐿𝐿1 penality in 288 

estimation of 𝛽𝛽. The optimal regularization parameters for the methods stepCL, stepAdaCL, CL, 289 

CL2, stepCL2 were tuned by 10-fold cross-validation on the two dimensional surface (𝑎𝑎, 𝜆𝜆) 290 

using a grid of values. The choice of the optimal parameters was done in the following way. For 291 
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each configuration of (𝑎𝑎, 𝜆𝜆) in the grid, the AUC of the ROC curves on the validation set was 292 

computed in each of the 10 validation sets. The average of the 10 AUCs was reported together 293 

with its standard deviation.  294 

 295 

Selection of (𝑎𝑎, 𝜆𝜆) was based on the interval 𝐴𝐴 =  [𝑎𝑎𝑎𝑎𝑚𝑚𝐴𝐴𝑚𝑚𝐶𝐶 − 𝑠𝑠𝑑𝑑𝐴𝐴𝑚𝑚𝐶𝐶,𝑎𝑎𝑎𝑎𝑚𝑚𝐴𝐴𝑚𝑚𝐶𝐶) where 296 

maxAUC is the maximum average AUC and sdAUC is the standard deviation of the AUCs 297 

corresponding to the (𝑎𝑎, 𝜆𝜆) with maximum average AUC. The (𝑎𝑎, 𝜆𝜆) that corresponds to the 298 

median of the AUCs in the interval A was chosen for the final model fitting. In case that more 299 

than one configurations yields the median of the AUCs, we select the configuration with the 300 

largest 𝜆𝜆 and smallest 𝑎𝑎, to obtain the sparsest model. The use of the interval A acknowledges 301 

the sample variability and the fact that we are aiming for a compromise between good 302 

classification performance and complexity of the model. In other words, a small decrease in the 303 

AUC of the ROC curve is acceptable in return to a less complex model. The Lasso and adaptive 304 

lasso were also tuned by 10-fold cross-validation on the one dimensional space (𝜆𝜆), using the 305 

default settings in R in the function cv.glmnet and the measure type “auc“.  306 

 307 

3.3 Simulation Results 308 

 309 

The different classifiers were built by the estimated tuning parameters on the training set. Then, 310 

the obtained classifiers were applied to the testing set for classification and prediction. For the 311 

testing set, we simulated data from the same distribution as the training set for n=1000 samples. 312 

We simulated 1000 datasets on which we applied all methods. For each method we computed 313 

the mean classification performance of the models on the testing sets measured by the AUC of 314 

the ROC curve (test AUC). This is a measure for the discrimination ability of the model to 315 

correctly distinguish the two classes of the response. The complexity of the resulting model was 316 

measured by the ratio of correctly selected variables (true covariates with 𝛽𝛽𝑗𝑗 ≠ 0)  to the total 317 

variables selected by the model. We will call this ratio RCV for the rest of the paper. 318 
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 319 

This ratio takes values between zero and one. When the model selects none of the informative 320 

variables it is zero and it becomes one, when the selected model includes only the k informative 321 

covariates. The closer the RCV is to one, the sparser the model is and selects the true variables. 322 

The results in Table 1 summarize the performance of the different methods in terms of model 323 

complexity. An ideal model selection method would only select the k true features and set the 324 

coefficients of the other d-k variables equal to zero. 325 

 326 

Table 1: 327 

 328 

In most of the scenarios, the stepCL and stepCL2 methods yield a higher RCV than the other 329 

methods and on average the stepCL and stepCL2 models are sparser than the other methods. In 330 

scenario 2 and 3 the adaptive Lasso yields the higher RCV, but the models are not as sparse as 331 

the stepwise methods. Although the stepwise methods (stepCL, stepCL2, stepAdaCL) result in 332 

including the least variables in the model, its discriminative ability in terms of AUC, as shown 333 

in Table 2, is comparable with the other methods that tend to select a larger model with more 334 

variables.   335 

 336 

The stepCL2 method also has remarkable performance both in terms of sparsity and predictive 337 

discrimination. Considering the trade-off between model complexity and performance, the 338 

proposed stepwise combined penalty approach achieves a good balance between parsimony, 339 

including less variables and maintaining a high predictive accuracy that is comparable with 340 

state-of-the-art methods. We should mention that in scenarios 2,3 and 4 none of the methods 341 

select all of the k informative variables, however, for the stepwise method the AUC of the ROC 342 

curve on the testing set is greater than 90%, indicating a good discrimination accuracy by 343 

including the least variables in the model. In all scenarios, we found that the stepCL2 method 344 

has comparable performance to stepCL and is superior to adaptive Lasso and Lasso.  345 
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 346 

In Table 2 we present results regarding the predictive classification accuracy of the methods by 347 

the AUC of the ROC curves. We report the Brier score (Brier, 1950) as a measure of the 348 

accuracy of predictions, defined as   349 

𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎 =
1
𝑛𝑛
�(�̂�𝑝𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 350 

It is given by the squared distance between the patients observed status 𝑦𝑦𝑖𝑖 and the predicted 351 

probability 𝑝𝑝𝚤𝚤� . The decision space for the Brier score is the interval [0,1] and generally the 352 

lowest the Brier score , the better the classification rule. If the predicted probability is 0.5 for 353 

each individual, the Brier score of 0.25 would indicate that the classification rule is a random 354 

one.  355 

 356 

Table 2: 357 

 358 

Empirical results from our simulations show that even for no high-dimensional settings where 359 

n>d, the stepwise method gives the sparsest solutions whilst maintaining classification 360 

performance measures as good as Lasso and adaptive Lasso. The CL2 method tends to select 361 

big models, due to the 𝐿𝐿2  norm which shrinks coefficients towards zero without variable 362 

selection. Thus when 𝑎𝑎 is close to 1, the model will behave similar to ridge regression and the 363 

resulting model will be complex in terms of the number of predictors.  On the other hand, when 364 

𝑎𝑎 is closer to 0, the CL2 and stepCL2 penalties will borrow more of the characteristics of the 𝐿𝐿 0 365 

norm and will result in sparser models.  366 

 367 

In our simulations we also considered the case where there is no correlation among predictors 368 

(results not shown in the table as we don’t consider it a realistic scenario). We repeated scenario 369 

2 with the only alteration of setting 𝜌𝜌 = 0. Results were in the same direction as in scenario 2 370 

shown in Table 1 and Table 2. That is, the stepwise methods perform better than all the other 371 
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methods in terms of model complexity resulting in the sparsest models with a high classification 372 

performance. 373 

 374 

Furthermore, we examined the situation where there are no predictors in the data associated 375 

with the outcome. In that case that the true model is the null model, none of the methods 376 

identified the true model. Again, running through again the second scenario with d=150 377 

predictors with none being informative for the outcome, the stepCL method selected a median 378 

of 5 variables whereas the other methods selected between 14 (AdaLasso, CL) and 19 (CL2). 379 

We observed the same pattern in the results for repeating the first scenario with d=50 380 

uninformative predictors, where none of the methods selected the true model but the stepwise 381 

methods produced the sparsest solutions. 382 

 383 

3.4 Application- real data analysis 384 

 385 

To illustrate the applicability of the proposed method, we applied the stepwise method on a real 386 

example involving protein measurements. The dataset contained n=53 patients with baseline 387 

measurements of d=187 proteins. To maintain confidentiality, the names of the proteins are not 388 

revealed. For the presentation of the results and keeping the study anonymized we renamed the 389 

proteins to 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋187. The objective is to extract potential candidate markers 390 

discriminating responders from non-responders based on patients’ protein levels. We apply our 391 

proposed stepwise combined penalty approach with the aim to select a small set of proteins that 392 

can sufficiently predict response to the treatment. We compare our approach with the commonly 393 

used Lasso and adaptive Lasso, but also with the global optimization penalized methods CL and 394 

CL2. 395 

 396 

The regularization parameters were not tuned by cross-validation, due to the relatively small 397 

sample size (n=53). The tuning was done using the bootstrap method in the following way; for a 398 
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grid of values of (𝑎𝑎, 𝜆𝜆), we trained the models on B=100 bootstrapped datasets (drawing 399 

samples with replacement from the original data) and evaluate their classification performance 400 

(in terms of AUC) on the original data. For each combination of the tuning parameters (𝑎𝑎, 𝜆𝜆), 401 

the models were trained on B bootstrapped sets and validated on the testing set (original data) 402 

and the average AUC (over the B bootstrapped samples) was reported together with its standard 403 

deviation. The configuration of (𝑎𝑎, 𝜆𝜆) that corresponds to the median of the AUC in interval A, 404 

as described above in the section 3.2 ‘Tuning of parameters’, was chosen. 405 

 406 

The results show that the stepwise methods yield the sparsest models by selecting 8 variables 407 

(stepCL) and 9 (stepCL2) accordingly, whereas the other methods select between 22 (CL2) and 408 

26 (Lasso). It is noticeable that the classification performance of the stepwise method is as good 409 

as the other variable selection methods, albeit including the least predictors. In order to evaluate 410 

the performance of the models and in the absence of an external validation dataset we use 411 

bootstrapping. We applied all the methods on another B=1000  bootstrapped datasets of the 412 

protein data, by sampling with replacement, and the frequencies of the top 10 selected variables 413 

by all methods are reported in Figure 3. This results in 16 unique proteins.   414 

 415 

This figure shows that the proteins that were frequently selected by the stepCL and stepCL2 416 

methods are also frequently selected by the Lasso and adaptive Lasso. Note that the stepwise 417 

methods have lower frequencies of the selected variables, because selection of larger models 418 

will automatically increase the number of selection for individual variables.  419 

 420 

Figure 3: 421 

 422 

Figure 4 shows boxplots of the total number of variables included in the model over the 423 

bootstrap evaluations. The stepwise method yields consistent model selection by selecting a 424 
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median of 8 variables for stepCL and stepCL2, whereas the Lasso and Adaptive Lasso have a 425 

big variability on the complexity of the model selected. The AUC of the ROC curves that is 426 

used as a measure of classification performance of the methods on the bootstrapped datasets and 427 

their distribution is shown in Figure 5. The stepwise methods tend to always select the most 428 

sparse models more systematically, while maintaining a very good classification performance.  429 

 430 

Figure 4: 431 

 432 

Figure 5: 433 

 434 

4. Conclusion  435 

 436 

In this paper we have proposed a stepwise forward approach for model selection in the 437 

framework of penalized regression using a penalty that combines the 𝐿𝐿0 norm, which is based 438 

on the number of coefficients, with 𝐿𝐿1 norm which is based on the size of coefficients or 439 

𝐿𝐿2 norm which take into account the grouping effect. The aim of the proposed method is to find 440 

a model that includes as less and relevant variables on one hand, and have good predictive 441 

performance on the other hand. The combined penalization term  𝐶𝐶𝐿𝐿𝛼𝛼𝜀𝜀(𝛽𝛽) that was introduced 442 

by Liu and Wu (2007) was limited to moderate datasets due to limitations of the optimization 443 

algorithm. Considering the heuristic stepwise forward approach, we can apply the penalization 444 

 𝐶𝐶𝐿𝐿𝛼𝛼(𝛽𝛽) and  𝐶𝐶𝐿𝐿2𝛼𝛼(𝛽𝛽) to high-dimensional data by using the BFGS algorithm which is found 445 

to work well in practice for nonconvex and non-smooth functions (Lewis and Overton, 2009); 446 

(Lewis and Overton, 2013); (Curtis and Que, 2015). As a result, the practical implementation of 447 

the stepwise penalization method is simpler and more efficient.  448 

 449 

We found that for the stepwise method the computational time was shorter than the global 450 

optimization. However, the tuning of the regularization parameters (𝑎𝑎, 𝜆𝜆) can be 451 

computationally intensive. This is an important aspect of penalization methods and can be 452 
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further explored and improved in future work. Simulation results and a real data application 453 

show that the proposed method yields sparser models, while maintaining a good classification 454 

performance. This is an important consideration for classification and screening applications 455 

where the goal is to develop a test using as less features as possible to control the cost. Overall, 456 

we found that our method provides a sparser model whilst maintaining similar prediction 457 

properties with the other methods. We hope that this paper could be a first step to learn more 458 

about the theoretical properties of this method, which seems to be worth of further investigation. 459 

 460 

Furthermore, it would be of great interest to extend the forward stepwise method to the stepwise 461 

bidirectional approach, considering at each step of the algorithm which variables can be 462 

included and excluded (forward and backwards variable selection) in the model. As future work 463 

we also consider to apply our method to regression problems for variable selection with a 464 

continuous response as well as time-to-event data. 465 
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