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Abstract—In addition to the need for security, everyday infor-
mation exchange must be able to cope with noise and interference.
We discuss the noise robustness of a recently-introduced com-
munications protocol inspired by the human cardiorespiratory
interaction, based on analysis methods originally developed for
reconstructing coupling functions between oscillatory processes
underlying the biological signals. Security is assured by use of
multiple, time-varying, coupling functions between two or more
dynamical systems, and the protocol allows for multiplexing of
the information transfer. We focus on the exceptional noise-
robustness that arises from the application of dynamical Bayesian
inference to the stochastic differential equations. A particular
advantage of the protocol is that it facilitates an effective
separation between the deterministic information signals and the
dynamical (channel) noise perturbations. We define reliability in
terms of the bit-error-rate (BER) as a function of noise strength,
expressed as the signal-to-noise ratio (SNR). We present results
confirming that the coupling function protocol is highly noise
robust, and that it outperforms other known communications
protocols. In the broader context, we point out that this use
of coupling functions between dynamical systems is a modular
construct that can be extended to implement a range of different
encryption concepts. Similarly, the method of dynamical Bayesian
inference carries wider implications for future applications to
noise reduction in communications using other protocols.

I. INTRODUCTION

The ever-increasing use of non-local communications brings
an associated requirement for methods enabling secure and
reliable exchange of information [1]–[5] transmitted e.g. over
wires, optically, or by radio. In addition to withstanding human
attacks, the communications protocols must cope with noise
and with a range of other forms of interference, including
interruptions arising from the technical infrastructure. They all
tend to affect adversely the quality of communication, acting
mostly within the communication channels and media.

We discuss here the noise aspects of a secure commu-
nications protocol [6], [7] based on the coupling functions
between dynamical systems, a method that results in an
unbounded number of encryption key possibilities. The in-
formation signals are encrypted as the time-variations of
linearly-independent coupling functions; the transmission and
reception of more than one signal simultaneously is allowed.
Using predetermined forms of coupling function, we can apply
Bayesian inference at the receiver end to detect and separate
the information signals, while simultaneously eliminating the

effect of external noise. In principle, this procedure makes the
protocol particularly noise-robust.

A coupling function describes in great detail the physical
rule defining how interactions occur and manifest themselves.
Much attention is now being focused on their functional
form, which provides direct insight into the mechanisms of
interaction. In this way a coupling function can determine
the possibility of qualitative transitions between states of the
systems e.g. routes into and out of synchronization, even
with an invariant coupling strength [8]. Consequently, cou-
pling functions can be even used to predict the onset of
synchronization [9]. Different methods for coupling function
detection have been applied widely in chemistry [10], [11],
in cardiorespiratory physiology [12], [13], in neuroscience
[14]–[16], in mechanical interactions [17] and in the social
sciences [18]. In the present work we use coupling functions to
provide an effective nonlinear mixing of information, thereby
achieving encryption with extensive key possibilities.

II. FROM BIOLOGY TO SECURE COMMUNICATIONS

The interactions between the oscillatory activities of the
heart and the lungs carry important implications for the
wellbeing of the human cardiovascular system [19]–[22]. The
genesis of the secure communication protocol that we discuss
originated in an early discovery that the coupling functions of
the cardiorespiratory interactions are time-varying. A method
based on dynamical Bayesian inference, applied to reconstruct
and follow these time-variations, revealed that the cardiores-
piratory coupling function can be decomposed into a number
of independent functions, [23]. It was studies of this complex
biomedical problem that initiated the idea of a new secure
protocol to encrypt information as the time-variability of
multiple, non-linear, coupling functions between dynamical
systems.

The protocol starts with a number of information signals
coming from different channels or communications devices
(e.g. mobile phone, sensor networks or wireless broadband)
that need to be transmitted simultaneously. Each of the signals
si is encrypted as a coupling scale parameter in the nonlinear
coupling functions between two self-sustained oscillatory sys-
tems in the transmitter. Two signals, one from each system, are
transmitted through the public channel. At the receiving end,
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Figure 1. The coupling functions and the encrypted information space. (a) The quadratic univariate coupling function for encrypting the first information signal.
(b) The multiplicative bivariate coupling function for encryption of the second signal. (c) The Lissajous curve qualitatively demonstrating the complicated
information mixing.

two similar systems are enslaved, i.e. completely synchronized
[24], by the two transmitted signals. Finally, by applying time-
evolving Bayesian inference to the reconstructed systems one
can infer the model parameters and decrypt the information
signals si.

The number of coupling functions in use will always be
finite, depending on the specific number of information chan-
nels that are needed. However the choice of forms available
for the coupling functions constituting the private key has an
unbounded continuum of possible variations. Because the pro-
tocol allows a number of information streams to be encrypted
simultaneously, it inherently provides for multiplexing. The
other key advantage of the protocol is the Bayesian inference
of stochastic processes, which is what makes the procedure so
noise resistent.

III. TECHNICAL ASPECTS OF THE REALIZATION

A. The general systems model and an illustrative example

The coupled dynamical systems consist of (at least) two
noisy M -dimensional interacting systems given in general by
the following stochastic differential equation:

ẋi = f(xi,xj |c) +
√

Dξi = g(xi|c1) + q(xi,xj |c2) +
√

Dξi
(1)

where i 6= j = 1, 2, c is a parameter vector and f(xi,xj |c)
are base functions describing both the autonomous dynamics
g(xi) and the coupling functions q(xi,xj). The noise is
assumed to be white, Gaussian, and parameterized by a noise
diffusion matrix D. The dynamical systems ẋi,j need to be
self-sustained for optimal security. For example, they can be
limit-cycle oscillators or chaotic attractors. Chaotic properties
are not essential for the protocol, but they add additional
complexity with their random-like but deterministic signals.

In order to illustrate the protocol and its characteristics, we
use an example of the transmitter consist of a Rössler systems

(left, below) coupled to a Lorenz (right) system:

ẋ1 = 2 + x1(x2 − 4) + ξ1 ẏ1 = 10y2 − 10y1 + ξ2

ẋ2 = −x1 − x3 ẏ2 = −y1y3 − y2 + s0(t)y1+

ẋ3 = x2 + 0.45x3 + s1(t)x2x3 + s2(t)x23

ẏ3 = y1y2 − 2.67y3 + ξ3.
(2)

Only the signals x1 and y2 are transmitted, and they com-
pletely synchronize [24] the Rössler and Lorenz systems at
the receiver:

u1 = x1 ẇ1 = 10y2 − 10w1 + ξ4

u̇2 = −x1 − u3 w2 = y2

u̇3 = u2 + 0.45u3 ẇ3 = w1y2 − 2.67w3 + ξ5.
(3)

In this way the coupled systems at the receiver are completely
restored. The information signals acting as time-dependent
non-autonomous terms are given by binary pseudorandom
sequence signals s0(t) = {0, 28}, s1(t) = {1.6, 2.4} and
s2(t) = {0, 0.6}, while the noises have same intensity D =
0.05. In our implementation, the differentiation was rescaled to
d/dτ with τ = t/2000 for the Rössler and τ = t/1000 for the
Lorenz oscillator. The signals were generated by numerical
simulation, but analogue electrical circuits [25], [26] can
equally be used. Finally, dynamical Bayesian inference was
applied to the receiver signals u and w using the same base
functions as the rhs of the transmitter model (2).

In the example systems, three coupling functions are used to
provide nonlinear complicated “scrambling” of the information
signals. The first coupling function q(x) = y1 is univariate and
linear, and can act more as a control function, for example to
mutually synchronize the two systems in the transmitter. The
other two functions are nonlinear and are the ones that provide
for the complex mixing of information. The q(x3) = x23 cou-
pling is a quadratic univariate function, Fig. 1(a), that shows
how the information signal s2(t) is included in the dynamics



through dependence on the x3 variable. Similarly, Fig. 1(b)
shows the bivariate coupling function q(x2, x3) = x2x3 that
encrypts the s1(t) information signal as the scale of a product
dependence based on the x2 and x3 variables. The resultant
coupled dynamics that an intruder would face, for example
as observed in the Lissajous curves in Fig. 1(c), demonstrates
complex information mixing that, without knowledge of which
coupling functions to use (i.e. the information of the private
key) is extremely difficult, if not impossible, to break.

B. Dynamical Bayesian inference

After the information has been encrypted numerically at the
receiver, the signals sent over the channel, and the systems
reconstructed at the receiver, dynamical Bayesian inference
[23], [27] is applied for decryption of the information and
separation of the interfering noise. If 2 × M time-series
X = {xn ≡ x(tn)} (tn = nh) are provided as inputs,
the fundamental task for the Bayesian dynamical inference
is to reveal the unknown model parameters M = {c,D}.
The inference uses Bayes’ theorem to calculate the so-called
posterior density pX (M|X ) of the unknown parameters M,
given a prior density pprior(M) that encloses previous knowl-
edge of the unknown parameters based on observations, and
the likelihood function `(X|M) which is the conditional
probability density to observe X for a given choice M of
the dynamical model (1).

The log-likelihood can be derived to have a specific
quadratic form to be used with multivariate normal distribu-
tions for the prior and posterior. Given such a distribution as a
prior for the parameters c, with mean c̄, and covariance matrix
Σprior ≡ Ξ−1prior, the stationary evaluation within the method
can be calculated recursively using only the following four
equations:

D =
h

N

(
ẋn − ckfk(x∗·,n)

)T (
ẋn − ckfk(x∗·,n)

)
,

ck = (Ξ−1)kw rw,

rw = (Ξprior)kw cw + h fk(x∗·,n) (D−1) ẋn+

− h

2

∂fk(x·,n)

∂x
,

Ξkw = (Ξprior)kw + h fk(x∗·,n) (D−1) fw(x∗·,n),

(4)

where summation over n = 1, . . . , N is assumed and the
summation over repeated indices k and w is again implicit.
The initial prior is set to be the non-informative flat normal
distribution given by Ξprior = 0 and c̄prior = 0. A special
procedure is used to propagate information from the previous
prior to the new posterior, thereby enabling the method to
follow the time-evolution of the parameters i.e. the encrypted
signals. More details about the method, its implementation and
coding can be found in [28], [29].

IV. THE NOISE ROBUSTNESS

The channel noise affects the transmitted signals, which
are then incorporated into the dynamical systems i.e. they
are introduced into the differential equations. In this way
channel noise acts as a dynamical noise in the reconstructed

Figure 2. Deviations of the demodulated signal from the initial binary
states due to noise, presented as compact boxplots (in terms of descriptive
statistics: median, quartiles, max., and min.) plotted as functions of the
signal-to-noise-ratio (SNR). The transmitted signal has the two binary values
s1(t) = {−2.5, 2.5}.

systems, and the dynamics turns into stochastic processes.
Hence, dynamical Bayesian inference is ideally fitted to treat
such stochastic differential equations and to separate out the
noise effects.

To test and demonstrate the noise robustness of the protocol,
we studied the reliability of communications by gradually
increasing the noise level. Fig. 2 illustrates the resultant
distributions of deviations from the as-sent binary values,
plotted as functions of the signal-to-noise-ratio (SNR). Note
that, as the noise increases i.e. the SNR decreases, the boxplots
and the deviations enlarge. For some values below 4dB SNR,
the boxplots start to overlap, meaning that they cannot be
separated, and corresponding to communications failure.

We also quantified the erroneous communications in terms
of the bit-error-rate (BER) as a function of gradually increas-
ing noise strength, as shown in Fig. 3. First, in Fig. 3(a) we
present the case of our coupling-function-based protocol. Note
that the communications are quite noise robust, with insignif-
icant BER above SNR=4dB. Secondly, in order to compare
our scheme with other encryption methods, we investigated
how noise affects signal-masking [3] communication. This
case can act as a general example of a whole class of secure
communications schemes based on dynamical systems and
complete synchronization [24]. It also corresponds to how
we transmit and recover the systems in the coupling-function
scheme, before the Bayesian inference is applied. For this
reason we masked the y2 signal at the transmitter with a binary
signal s3(t) = {0, 5} as: ẏ2 = −y1y3−y2 +28y1 +s3(t), and
we applied the relevant recovery procedure [3]. The results
for this protocol, presented in Fig. 3(b), show that erroneous
detection occurs at around and below ∼ 20dB, representing
significantly lower than the noise-tolerance when compared to
4dB for the coupling function protocol.

V. CONCLUSION

We have confirmed that the communication scheme [6]
based on coupling functions is exceptionally noise resistant,



Figure 3. Variation of erroneous communication with noise intensity. (a) Bit-
error-rate (BER) of the coupling-function scheme as a function of SNR. (b)
For comparison, BER of the signal-masking scheme as a function of SNR.
In each run, 103 randomly-ordered binary symbols were sent.

in addition to being secure and allowing multiplexing. In the
present case, we used three coupling functions but, in principle
a larger number (e.g. ten) could be used. Our focus was on the
noise tolerance conferred by the use of dynamical Bayesian
inference.

Applied to the coupled chaotic systems, our demonstration
showed that the noise resistance of around 4dB SNR provided
by the coupling function protocol is well below the 15dB
SNR of a typical digital transmission, or the 40dB SNR of
a wireline communication channel in a real environment [5].
The coupling-function scheme’s 4dB, was also greatly superior
to the 20dB of signal-masking schemes, clearly illustrating the
advantage of Bayesian inference in providing robust commu-
nications in a noisy environment.

Our results imply that the combination of dynamical sys-
tems and dynamical Bayesian inference provides a powerful
tool that can be used to confer high noise-robustness on other
communications protocols and logic schemes.
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[12] B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner,
J. Schaefer, and M. Moser, “In vivo cardiac phase response curve
elucidates human respiratory heart rate variability,” Nat. Commun.,
vol. 4, p. 2418, 2013.

[13] D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P. J. Owen-Lynch,
P. B. M. Clarkson, P. V. E. McClintock, and A. Stefanovska, “Evolution
of cardio-respiratory interactions with age,” Phil. Trans. R. Soc. Lond.
A, vol. 371, no. 1997, p. 20110622, 2013.

[14] T. Stankovski, V. Ticcinelli, P. V. E. McClintock, and A. Stefanovska,
“Coupling functions in networks of oscillators,” New J. Phys., vol. 17,
no. 3, p. 035002, 2015.

[15] T. Stankovski, S. Petkoski, J. Raeder, A. F. Smith, P. V. E. McClintock,
and A. Stefanovska, “Alterations in the coupling functions between cor-
tical and cardio-respiratory oscillations due to anaesthesia with propofol
and sevoflurane.” Phil. Trans. R. Soc. A, vol. 374, no. 2067, p. 20150186,
2016.

[16] J. Wilting and K. Lehnertz, “Bayesian inference of interaction properties
of noisy dynamical systems with time-varying coupling: capabilities and
limitations,” Eur. Phys. J. B, vol. 88, no. 8, pp. 1–11, 2015.

[17] B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, and
R. Mrowka, “Phase dynamics of coupled oscillators reconstructed from
data,” Phys. Rev. E, vol. 77, no. 6, Part 2, p. 066205, 2008.

[18] S. Ranganathan, V. Spaiser, R. P. Mann, and D. J. T. Sumpter, “Bayesian
dynamical systems modelling in the social sciences,” PloS one, vol. 9,
no. 1, p. e86468, 2014.
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