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ABSTRACT
Smart Energy Systems represent a radical shift in the approach to
energy generation and demand, driven by decentralisation of the
energy system to large numbers of low-capacity devices. Managing
this flexibility is often driven by machine learning, and requires
real-time control and aggregation of these devices, involving a
diverse set of companies and devices and creating a longer chain
of trust. This poses a security risk, as it is sensitive to adversarial
machine learning, whereby models are fooled through malicious
input, either for financial gain or to cause system disruption. We
show the feasibility of such an attack by analysing empirical data
of a real system, and propose directions for future research related
to detection and defence mechanisms for these kind of attacks.

1 INTRODUCTION
Smart Energy Systems represent a radical shift in the approach to
energy generation and demand, driven by the decentralisation of a
large number of smaller units of power, like Electric Vehicles (EVs),
Uninterruptible Power Supplys (UPSs), Photo Voltaics (PVs), and
heat pumps. Managing this flexibility requires real-time control and
aggregation of these devices, involving a diverse set of companies
and devices and creating a longer chain of trust. This is often driven
by Machine Learning (ML), which poses a security risk, as it is
sensitive to Adversarial Machine Learning (AML), whereby models
are fooled through malicious input, either for financial gain or to
cause system disruption.

In this paper we investigate methods an adversary may use to
game a distributed smart energy system targeting the ML and de-
cision making elements of the system. The specific contributions
of the paper are: (1) Vulnerability Identification: We provide a de-
scription of data inputs and decision logic within an aggregator
employing ML, (2) Attack Examples: We showcase attack examples
evaluated in a practical distributed energy system, and (3) Counter-
measures: We discuss potential future directions for development
of a protection framework for defending against these attacks.

In the next section we describe related work. Section 3 gives a
description of the architecture of distributed energy systems, and
the system used for our study. Section 4 describes two examples of
attacks on a real system, and sec. 5 gives possible countermeasures.
Section 6 discusses future work and concludes the paper.

2 RELATEDWORK
AML in energy systems has been introduced under different fla-
vours in past literature. Most commonwas the category of false data
injection attacks targeting the grid’s power state optimisation pro-
cess for affecting its overall resilience [6], and the potential impact
on real-time market operations [9]. Through a number of studies,
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Figure 1: System architecture of an aggregator.

bad data injection attacks were demonstrated that operated in a
stealthy fashion [3, 5]. Several solutions have been proposed that
exploit the advancements of ML, like distributed Support Vector
Machine (SVM) [4], or a synergy of k-Nearest Neighbour, SVMs,
and Sparse Logistic Regression [7]. Nonetheless, [2, 8] highlight
the loopholes present within a large set of ML algorithms used for
a range of energy-explicit applications. In our work we consider
data from a real operational system, whereas most studies were
restricted on numerical results and simulations.

3 SMART ENERGY SYSTEMS
The role of the aggregator is to combine small loads into a ‘virtual
energy store’, which can then be used for a wide range of flexibility
services. Many of these services must operate near real time in
order to respond to deviations, and contracts are available requiring
different response rates.

To provide the services, an aggregator must: (1) predict availab-
ility for services given the capabilities of the devices under their
control, (2) respond to signals that require dispatch of assets at
given power levels, (3) provide an audit trail of power output for
billing and regulatory requirements. Each of these is a potential
target for performance figure manipulation, or service denial.

A general system architecture of an aggregator is shown in fig. 1.
End users have one or more assets on a site that can be used for
flexibility.In the case of decentralised system, these customers are
connected to the electricity network via a supplier, who charges
them for electricity. Assets communicate using low-level proto-
cols (RS485, CANBUS, MODBUS), at a regular interval with the
aggregator, typically over the internet, often using control hardware
installed by the aggregator.

4 EXAMPLE ATTACK SCENARIO
We look at two scenarios to demonstrate the feasibility and impact
of an attack: A ‘lying’ device, that systematically misreports beha-
viour, and a direct attack on an IDS designed to filter out anomalous
input.
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Figure 2: Three days of available energy for DSR, showing
anomalous high figures in the last two days.

Modbus-TCP Injection. For Frequency Response (FR), an asset
owner provides its assets to respond to a frequency event, that is
when the AC grid frequency goes outside the dead band. To increase
the likelihood for being picked to provide FR, an asset can overstate
its reliability, by declaring its availability, even when it is under
maintenance. Even when the asset communicates via an on-premise
gateway, provided by the aggregator and which is tightly locked
down, communications between the asset and gateway are typically
performed over simple, unencrypted protocols. It is trivial to inject
false Modbus TCP messages [1], or use an off-the-shelf emulator
to simulate a malicious asset entirely, complete with a full audit
trail of plausible data. This error is unlikely to be caught unless
significant discrepancies exist between the site’s metered electricity
usage and the logs submitted as evidence of FR participation.

IDS Evasion. Figure 2 shows the energy available for FR as re-
ported by a single UPS for three consecutive days. On the first day,
the UPS operates normally, reporting a median available energy of
0.82 kWh. However, on the second and third day, just around noon
(12 o’clock), the asset reports a capacity of over 3500 kWh, which
is in excess of the nameplate capacity of the UPS’ battery storage.
If the aggregator would have nominated this UPS to perform FR,
and a frequency event would have occurred, the asset owner would
have been paid out around 4300% more than it would have with
the actual amount of service provided.

An adversarial ML would, in this context, be capable of learn-
ing the thresholds at which the rule-based warnings are fired by
inspecting the responses from the server: if these withdraw the
device from service then a rule has been tripped.

5 COUNTERMEASURES
The scenarios described above is a simplified example. A simple,
rule based, system to alert on anomalous values would be enough
to detect this (malicious) activity. Attacks, however, are often much
more sophisticated, resembling more noise, and requiring a better
detectionmechanism than looking for outliers. Additionally, a hand-
crafted rule-based approach would be intractable, given the sheer
amount of different assets, each with their own profiles, limits, and
requirements.

Therefore, a better approach is an anomaly-based Intrusion De-
tection System (IDS) using binary classifier that is trained on the
existing logs of device behaviour. This approach would seek to label
incoming data as benign or malicious based upon features extrac-
ted real-time from the data stream. Through gradual refinement
of feature extraction and expansion of the training dataset, this
approach would yield a confidence score that may be used to tune

precision/recall, leading to fewer false alerts and lower maintenance
overheads than a manual system.

The IDS can also use a much wider range of features: besides
the features derived from the metrics reported by the asset (energy,
capacity, temperature, etc.), other features like the communication
security (e.g. negotiated cipher suite, certificate fingerprints), and
network properties (e.g. packet size, packet arrival time) can be
used to detect malicious behaviour. Besides incoming data, outgoing
data from the control algorithm can also be used as features for
the IDS. This approach would enable the detection not only of the
incoming, malicious data, but also the anomalous response sought
by the attacker.

6 CONCLUSIONS
In this paper we illustrated the case of a ML-based aggregator in a
smart energy system. We showed from empirical data that an attack
on such a system is (potentially) trivial, using a variety of methods.
Though many theoretical approaches to attacking and securing
these systems have been proposed, we are in a position to test these
using an established, practical, system. Further work will involve
the inspection, classification, and formalism of attacks within the
smart energy space, and production of a machine-learning based
intrusion detection system, tuned to advance the current capabilities
of the rule-based system.
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