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ABSTRACT
This paper presents the results of the second edition of the Wind
Farm Layout Optimization Competition, which was held at the
22nd Genetic and Evolutionary Computation COnference (GECCO)
in 2015. During this competition, competitors were tasked with
optimizing the layouts of five generated wind farms based on a sim-
plified cost of energy evaluation function of the wind farm layouts.
Online and offline APIs were implemented in C++, Java, Matlab
and Python for this competition to offer a common framework for
the competitors. The top four approaches out of eight participating
teams are presented in this paper and their results are compared.
All of the competitors’ algorithms use evolutionary computation.
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1 INTRODUCTION
Wind farm design is a complex task and the recent trend of larger
farm sizes has greatly increased demands on designers. Tradition-
ally, a small, well-connected, land area is divided into smaller cells
and turbine placement among cells is decided through a simple
search algorithm with a pre-specified cost function. This function
is usually limited to minimizing inter-turbine wake interferences
and thus maximizing energy capture. Few approaches consider
additional factors such as operation and maintenance costs, turbine
costs, or cable layout.

Modern farms cover large areas and boast hundreds, and some-
times even thousands, of turbines. The layout design process is
iterative, computationally expensive, burdened with global and
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local constraints, and ultimately controlled by subjective assess-
ments due to the involvement of a variety of stakeholders. During
each step, designers must either refine an incremental layout or
propose a new layout which they have generated by incorporating
new constraints. Additionally, evaluating a layout requires var-
ied multi-disciplinary models and sub-modules that are extremely
computationally expensive.

The wind farm layout optimization problem is the identification
of turbine positions in a 2-D plane such that the energy capture is
maximized while costs associated with a number of other factors
are minimized. The energy capture for a turbine takes into account
the wind scenario (wind force distribution and terrain), the turbines’
power curve (power generated by the turbine in function of the
wind input) and wake effects (inter-turbine interferences) [2]. Many
approaches have been tested to optimize both the positing and the
number of turbines on a layout. Extensive reports on the state of
the art of existing techniques are available in Khan et al. [1] and
Samorani [3].

In an article published in the Renewable Energy Journal, DOI
https://doi.org/10.1016/j.renene.2018.03.052, we report on a compe-
tition we ran at the Genetic and Evolutionary Computation Confer-
ence 2015 (GECCO 2015) during which experts from the evolution-
ary computation community optimized wind farm layouts. Eight
teams participated and proposed innovative algorithms, all evalu-
ated in the same context: the same wind scenarios, power curve
and wake effect models. This paper summarizes the competition
context and the top four algorithms.

2 COMPETITION RULES AND FRAMEWORK
The first edition of the wind farm layout optimization competition,
held at the 2014 Genetic and Evolutionary Computation COnference
(GECCO), consisted in only optimizing the wake free ratio, the ac-
tual energy output over potential output without wake. The second
edition focuses on the economic viability of the produced layouts.
Layouts generated by the competitors’ algorithms are evaluated in
the cloud on 5 unknown wind scenarios (wind rose, layout shape
and obstacles, turbine specifications, etc.) using the cost function
presented below. In order to keep the computation cost acceptable,
the competitors have a finite number of possible evaluations: they
can only call the evaluation function 10,000 times for all 5 scenar-
ios combined. This limited amount of evaluation credits aims to
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represent the CPU cost of layout evaluation and to promote effi-
cient algorithms. This metric was preferred to CPU time because
the computation was held on a shared research cluster with no
exclusive access guaranteed. In order to develop their algorithms,
competitors also have access to 20 known scenarios, 10 without
obstacles and 10 with obstacles, all different from the ones used
during the competition.

In order to reduce the competitors’ development efforts, we have
developed an open-source API, called WindFLO, that implements
the cost function and the inter-turbine interference model in multi-
ple languages (C++, Java, Matlab and Python)1. The API provides a
simple GA as an example of use of the library and the competitor
algorithms presented hereafter. This library can be of interest to
the evolutionary computation community as a benchmark for new
algorithms and new development.

3 COMPETITORS’ ALGORITHMS
The second edition of the competition received a total of 8 sub-
missions. In this paper, the top 4 approaches are presented. In our
opinion, they are the most relevant to the wind farm optimiza-
tion community and provide the best results in term of quality
of layouts obtained. These algorithms are summarized in the fol-
lowing: 3s-MDE: from Carlos Segura, Guillermo LÃşpez Buenfil,
Mario Ocampo Pineda, Sergio Ivvan Valdez PeÃśa, Salvador Botello
Rionda, and Arturo HernÃąndez-Aguirre. The 3-Stages Memetic
Differential Evolution (3s-MDE) starts by creating a surrogatemodel
which approximates the cost function. Then, a memetic differential
evolution is used to pre-optimize the model based on a geomet-
ric distortion of a layout based on rhomboids. The pre-optimized
layout is then refined by locally modifying the candidate solution.
The more accurate model is used only to evaluate solutions with a
promising behaviour in the surrogate model. CMA-ES: from Ilya
Loshchilov and Frank Hutter, this second approach uses the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) to optimize a
layout described by 5 variables: scale (horizontal and vertical), shift
from the origin, rotation, and shift from a given location. SSHH :
from Ahmed Kheiri and Ed Keedwell, the Sequence-based Selec-
tion Hyper-Heuristic (SSHH) approach discretized the layout and
then a solution is represented by three integer variables that corre-
sponds to the distance between neighboring turbines and a shift
factor. A hidden Markov model produces a sequence of low level
heuristics which create the final layout. GM: from Brian Goldman,
the Goldman Method (GM) presented in this paper uses a pair of
lattice vectors to calculate turbine locations. It also uses the cost of
substation, which is larger than the turbine cost itself, to leverage
the size of the evaluated layouts. A deterministic best-improvement
local search method is then used to optimize the lattice vectors.

4 COMPETITION RESULTS
The algorithms presented in the previous section, in addition to
four others not described in this paper, were run on the 5 scenarios
presented in the competition rules section. As mentioned above,
the competitors were given a budget of 10,000 evaluations to split
between the 5 scenarios for computational cost reasons. As a basis
of comparison, we have compared the results to a genetic algorithm.
1This API is available on github: https://github.com/d9w/WindFLO

Scenario 3s-MDE CMA-ES SSHH GM GA
1 1.164422E−3 1.172731E−3 1.181129E−3 1.185466E−3 1.269266E−3
2 1.00929E−3 1.029998E−3 1.039825E−3 1.044906E−3 1.158464E−3
3 6.26867E−4 6.30916E−4 6.40241E−4 6.49096E−4 6.91265E−4
4 6.53861E−4 6.5356E−4 6.66205E−4 6.64341E−4 7.18626E−4
5 1.142309E−3 1.152661E−3 1.167168E−3 1.16033E−3 1.269238E−3

Table 1: Cost of energy, compared to the state-of-the-art layout optimization
(binary GA).

GAs have been used many times in this domain and offer a familiar
and standard benchmark against other algorithms from the field
of evolutionary computation. For this problem, a GA optimizes a
binary genome that decides whether or not a turbine is located in
each grid of a discretized layout. Parameters of the GA are provided
in the journal paper. Table 1 shows the gain obtained by participants
in comparison to the GA. Further analysis on convergence, problem
encoding and surrogate models are discussed in the journal paper.

5 CONCLUSION
This paper presents the results of the 2015 competition on wind
farm layout optimization. With this event, we were able to propose
innovative algorithms to optimize large wind farms with a strong
computational constraint. Thanks to this competition, we were
also able to compare these approaches with state-of-the-art algo-
rithms and observe the potential improvement of the optimization
algorithms used to generate the wind farm layouts.

This competition also provides a framework to compare future
algorithms with existing ones on a comparative basis. The com-
petition framework is freely available in multiple programming
languages (C++, Java, Matlab and Python) with a set of randomly
generated wind scenarios. Real-world scenarios could be easily
added to the scenario set by the wind industry.

Because solutions were obtained with acceptable computational
costs in this competition, we can now imagine targeting new opti-
mization objectives. The 3D structure of the terrain, and/or hetero-
geneous wind distribution within the terrain, heterogeneous wind
turbines with different height, width and power curves could be
considered. In this competition, cable and road networks were not
taken into account, but these are of great importance for the initial
investment to build the wind farm. They could be added to the
framework and the cost of energy function in order to be addressed
by the optimization algorithms.
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