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 Abstract – In this article, we call for a "Walk Before You 
Run" adjustment in the Internet-of-Things (IoT) research and 
development exercise. Without first settling the quest for what 
thing is or could be or do, we run the risk of presumptuous 
visions, or hypes, that can only fail the realities and limits of 
what is actually possible, leading to customers and consumers 
confusion as well as market hesitations. Specifically, without a 
carefully-designed Thing architecture in place, it will be very 
difficult to find the “magic” we are so addicted and accustomed 
to – programming! Programming the IoT, as we once 
programmed the mainframe, the workstation, the PC and the 
mobile devices, is the natural way to realize a fancy IoT 
scenario or an application. Without Thing architectures and 
their enablement of new programming models for IoT – we will 
continue to only envision fancy scenarios but unable to unleash 
the IoT full potential. This article raises these concerns and 
provides a view into the future by first looking back into our 
short history of pervasive computing. The article focuses on the 
domain of “Personal” IoT and will address key new 
requirements for such Thing architecture. Also, practicing what 
we preach, we present our ongoing efforts on the Atlas Thing 
Architecture showing how it supports a variety of thing notions, 
and how it enables novel models for programmability.  
 
 Index Terms –Internet of Things, Thing Architectures, 
Pervasive Computing, IoT Programming Models, Mobile Apps as 
IoT Things. 
 

I.  INTRODUCTION 

 The success of the Internet of Things (IoT) will largely 
depend on how its main ingredient—the thing—is architected 
and prepared to match expectations and to fulfill the big 
heroic role that will magically make blue-sky visions a 
reality. Unfortunately, it seems we have not focused 
adequately or broadly enough on the architectural aspects of 
things in our pervasive computing journey. Explicit 
architectures addressing vision-enabling requirements need to 
be arrived at before we can harness the full potential of IoT.  
The highly abstracted notion of things, intentionally 
embedded within the IoT concept to keep a focus on the 
potential end-benefits, could perhaps explain the delay in 
paying attention to the architectural details of the things and 
the complexities inherent in their wide varieties and 
fragmented nature. Also, advances in low-power 
communications and light-weight networking protocols 
helped steer the initial focus to the internetworking aspects of 
IoT, leaving things themselves for later. Now seems to be the 
right time to focus on things themselves. 

In this article, we present a brief history of things 
evolution and provide an outlook for the critical research and 
development needed to enhance and accelerate their 
preparedness to engage in and power the IoT. We use things, 
devices, and smart objects interchangeably in this article to 
refer to things in the IoT ecosystem. 
 

II.  THING EVOLUTION: BACK TO THE FUTURE 

 Things have evolved considerably in the past 20 years, 
even though under different names, shapes and forms. 
Instrumenting devices and everyday objects so that they 
become “digital” things utilizable in a pervasive system was 
the first step in this evolution. Devices and objects were 
“smartened” by connecting them to a variety of 
microcontroller boards (also known as sensor/actuator 
platforms) such as the TINI Internet interface [26], the Mote 
family [4], the Smart-It board [1] and the Atlas platform 
[2][3], among several others. Simply attaching tags (e.g., 
RFID or QR codes) was another approach to create digital 
things even though tagging required the cooperation of other 
companion things—the tag readers or the cameras. These 
early devices helped wireless sensor networks (WSN) 
[11][12] to evolve from theory to practice making it easy to 
use physical nodes to demonstrate application scenarios. The 
opposite was also true where WSN research helped 
accelerate the interconnectivity of these early digital things 
supporting peer-to-peer (ad hoc) and infrastructure 
communication modes.  
 Integrating smart objects effortlessly into systems was 
one main goal of these early pervasive computing 
developments. The goal was more about avoiding ad hoc 
system integration which was a non-replicable, rigid and 
inflexible approach to sustain. Operating systems and 
middleware were developed to enable the effortless 
integration of these early digital things. TinyOS was one of 
the first open source operating systems developed for things 
initially supporting the mote hardware platform. Gaia [27], 
Pico [28], Aura and Atlas [29] were among the early 
middleware developed to enable the promise of effortless 
integration [30]. 
 Programming things flexibly into applications was a 
subsequent and complimentary goal towards effortless 
integration which required changing the actors’ roles. 
Making smart objects programmable empowered ordinary 
software developers with no hardware or thing knowledge to 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/211246109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

create pervasive and ubiquitous applications using then de 
jour programming models (object-oriented and service-
oriented models). Below, we zoom in a little on the 
integration and programmability aspects in the journey of 
thing evolution  [16][17][18]. 
 
A. Effortless Thing Integration 
 Human- and machine-readable descriptive languages 
such as IEEE 1451 [10], SensorML [9], ECHONET [8], 
IBM’s Device Kit [25] and Atlas’ DDL [13][14] eased thing 
integration problems by shifting quite a bit of the 
responsibility and role of integration from the traditional 
system integrator engineers, to the original equipment 
manufacturers (OEM). This approach was similar to, but 
much lighter in weight than, the universal plug and play 
(UPnP) standard. The main idea was for a thing OEM to 
provide a human- and machine-readable description for its 
thing that can be used by configuration tools or run-time 
middleware to generate an integration point out of the thing 
description, automatically.  
 Different integration points were developed, including 
language-specific APIs, sandbox services (e.g., Open 
Services Gateway Initiative (OSGi) service bundles [7]) and 
web-based RESTful services. The descriptive approach 
proved to be productive and continues to live on to date. 
Google’s recent Android Thing development (an IoT 
operating system based on Android) features a similar 
declarative core service called Weave which utilizes 
community-developed declarative schemas offering 
functional and semantic descriptions of devices and things. 
 
B. Programmable Things 
 Programming models also evolved as systematic thing 
integration was eased and facilitated by middleware and tool 
developments. Several models of overlapping types emerged, 
but we focus here on two key models: context-based and 
service-oriented. The former provided for a first successful 
approach to developing pervasive applications 
programmatically. A context was defined as an explicit 
specific state over a collection of things, or an expression that 
yields the state of a collection of devices when evaluated. 
Developing context-driven applications amounted to 
modeling, acquiring and reasoning about/reacting to such 
contexts. Context-driven programming models were a great 
success, even though they were limited in their expressive 
power, ability to model complex applications and capacity to 
alter or “actuate” contexts.  
 Service-oriented architecture (SOA) [22][23] models 
were also successful and provided for a more expressive 
alternative, equally powerful in both context sensing and 
context actuation. In this model, devices are integrated 
directly into services, forcing service composition as the 
model for programmability of pervasive applications. The 
service-oriented device architecture (SODA) [24] was a 
successful model developed jointly by IBM and the Atlas 
project in which devices were integrated into service bundles 
within OSGi, which is a Java sandbox supporting service 

activation, discovery, invocation and life cycle management. 
Things are basic services in this model, whereas applications 
are composed of basic and other composite services. Creating 
a SODA service for a thing had the effect of “integrate once, 
program everywhere.” SODA successfully made it to some 
commercial products in the form of personal health devices 
that follow the Continua Alliance reference architecture [34], 
which was initially based on SODA.  
 SOA has undoubtedly been a powerful programming 
model for pervasive computing, but as it was put to practical 
use in smart space applications (e.g., smart homes), it 
become gradually evident that it was perhaps too powerful to 
be safe. Conflicting or even harmful combinations of basic or 
composite services could yield unsafe applications with the 
potential of causing harm to the space user, physical damage 
to the devices themselves, or both. The unconstrained 
actuations that could result from direct service invocations 
were lacking numerous safeguards. For example, there was 
nothing to restrain a buggy application code that erroneously 
invokes an automatic door opener 50,000 times per second in 
an infinite loop. The strike mechanism of such a door opener 
would jam up and its circuit eventually damaged. SODA also 
overpromised and supplied “fake convenience” to the 
programmers by providing the same kind of interface often 
used for services hosted on powerful servers, to anything, 
including unreliable pinhead devices. Presenting ants as 
elephants was a major overpromise with safety, reliability 
and availability concerns. Initial promising solutions to 
address these concerns have recently been proposed 
including virtual things [35] in which multiple identical or 
equivalent things are utilized into a single virtual thing with 
superior safety, reliability, and availability.  
 The SOA approach also proved to be very productive 
and continues to live on to date. In fact, lighter weight 
versions of SODA exist today such as RESTful web services, 
often referred to simply as device API’s. The ARM Mbed 
ecosystem, for instance, allows embedded application code, 
developed and loaded into an ARM Mbed board running 
Mbed OS, to be externalized and “API’ed” as a “cloud 
device service” which is an HTTP-REST service hosted in 
the Mbed cloud [31][32].  
 Service architectures like Service Oriented Architecture 
(SOA), Resource Oriented Architecture (ROA) [6] and Event 
Driven Architecture (EDA) [5] are considered as frameworks 
to program the smart space through the explicit trigger of the 
available services provided by the devices and their 
appropriate APIs. The social IoT (SIoT), on the other side, is 
considered as a different way of organizing the services 
provided by the things and discover opportunities for smart 
space programmability. The recently proposed ideas on 
social IoT are to logically link the things according to their 
identification attributes (e.g., things collocated in same smart 
space, things from same vendor) and to exploit the service-
level relationships that logically and functionally tie the 
offered services to the smart space (e.g., the weather forecast 
readings can drive the home thermostat, different coffee 
makers offer similar services that compete with each other). 
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SIoT can empower developers to program a much wider class 
of meaningful IoT applications [19][20][21].  
 

III.  RAISING THE BAR – NEW THING REQUIREMENTS 

 The “anesthetic” effect of abstracting things away from 
the Internet of Things has been stimulating unbounded 
imaginations of exciting IoT scenarios and unprecedented 
applications. Consequently, such “state of mind” has rapidly 
been raising big expectations and founding a tricky 
entanglement between ambitious technological future and 
hype. While past goals of programmability and friction-free 
integration remain to be critical and needy of further 
advancements, the new scenarios seem to be driving new 
requirements and goals for smart objects to meet. We 
demonstrate some of these new requirements in two sample 
scenarios in the domain of Personal IoT (e.g., smart homes).  
 
A. The Coffeemaker and the Smartphone Scenario 
 It is 2019, and the days of coffeemakers with built-in 
time displays and small “set” buttons are over. Such 
coffeemakers are considered backward; coffeemakers today 
buddy up with other thing-mates such as smartphones (or 
smart watches) to deploy and offer the user a better, more 
usable interface to their now invisible time functions. 
Coffeemakers may not even have any built-in time functions, 
in which case, in addition to interfacing through a 
smartphone, the coffeemaker would utilize the smartphone 
time services.  
 

 
Fig. 1: The foreseen interaction between a coffeemaker and smartphone thing. 
 
 The above is a simple, flowing wording one would use to 
describe an exciting blue-sky IoT scenario and even draw a 
cute little cartoon for it (Fig.1). Below, however, is a 
different language – one with a more challenging and 
demanding tone burdened with technical details of a possible 
set of requirements that must be met for the two things on 
hand to engage in fulfilling the scenario and making it a 
reality.  
 Obviously, both things must have a minimal hardware 
platform allowing them to store data, process code, and 
communicate. Smartphones are powerful hardware platforms, 
but now coffeemakers must include a miniaturized, low-cost 

platform or a system-on-a-chip (SoC). A minimal software 
layer will need to run atop the hardware (thing middleware, 
or thing OS) which implements many of the requirements we 
will discuss here. Things should also be able to sense each 
other’s presence perhaps through low-energy proximity 
beaconing (e.g., utilizing Bluetooth low energy (BLE)), and 
should be able to “chat” or tweet to learn about what each 
has to offer or capable of. Also, they should be able to chat to 
learn about each other’s interest. For instance: the 
coffeemaker’s interest in a thing with interface-hosting 
capability. Let us zoom in and analyze these requirements for 
a minute before we present additional ones. The following 
briefly described requirements are observed. 
• Thing hardware capabilities could vary widely ranging 

from minimal to powerful platforms such as 
smartphones, edge computers. Yet, all things should be 
able to engage and interact with each other. This defines 
the requirement for minimal hardware.  

• Things should be able to chat regardless of their make, 
specific hardware platform, the communication medium 
available to them, or the language they use to 
communicate. This may further require things to speak 
multiple languages (e.g., an HTTP-REST-speaking thing 
may need to somehow understand MQTT-speaking thing 
messages). This may also require things to use “mediator 
things” such as multi-interface edge devices or even the 
cloud to make communication possible despite 
incompatible communication media. This set of 
requirements may seem challenging and it is. However, 
given the broadness and the wide varieties of things, the 
importance of these requirements cannot be overstated, 
or we risk an ecosystem of fragmented, non-cooperating 
things, hampering IoT progress.  

• A thing, giving a descriptive summary of its capabilities 
and services through its OEM, should be able to 
dynamically convert such description into actual 
executable services and build interfaces (e.g., APIs) for 
others to engage and trigger the offered services. 

• Things should be able to chat their capabilities and 
services both conceptually (so other things can reason if 
such capabilities are of interest), and programmatically 
(by providing a precise description on how to request the 
service, e.g., an API).  Things may also chat concepts 
they are interested in but in a “natural language” without 
requiring or following any stringent protocols or using 
specific ontologies.  Such protocols or ontologies will 
have to be both standardized and widely accepted, which 
are difficult goals that are slow to attain. Hence, the 
requirement here is to make smart objects chat and 
reason as naturally (humanly) as possible. This is no 
doubt a difficult requirement but attempting to 
defragment or unify all IoT things through a 
standardized set of concepts and ontologies is far more 
difficult. Having a smaller, focused, and community-
driven consensus on specialized concepts will be very 
helpful though in meeting this requirement.  
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 More would be required to enable such a simple 
coffeemaker-smartphone scenario. Sensing each other’s 
presence, tweeting capabilities and interest and exchanging 
API’s are not enough. Somehow, all such preparations need 
to be made actionable leading to “meaningful interactions” – 
a challenging and a missing piece of the IoT puzzle. Which 
thing will put together and autonomously initiate a 
meaningful interaction? Is a meaningful interaction the same 
thing as an IoT application? What is the exact definition and 
composition of such interactions? Should not such 
interactions be allowed to span more than two things? What 
if multiple interactions are initiated simultaneously? Could 
there be conflicting interactions? And how can such conflicts 
be handled? These are some of the questions that need to be 
addressed very carefully and adequately.  
 In our scenario, a meaningful interaction may be created 
and initiated by the coffeemaker requesting the smartphone 
to accept to host its coffeemaker interface. It may consist of a 
sequence (a recipe) of API calls along with assets such as 
HTML5 interface code and other “attachments”. It may even 
include mobile native code (e.g., Android services) that 
somehow can be dynamically linked to the preloaded thing 
middleware on the smartphone. Such native code could 
enable coffeemakers to utilize the smartphone not only as an 
interface-hosting thing, but also as a time service provider. 
We explain the requirements of meaningful interactions 
further in the next scenario.  
 
B. The 2018 & 2022 World Cup Scenario 
  In 2018, soccer fans around the world had many 
devices, all smart, all connected, but no Cigar (no IoT)! From 
smartphones with World Cup apps, to smart TV’s to 
connected Digital Video Recorder (DVR), all in their homes, 
and even accessible remotely. Browsing the semi-final 
games’ schedule on a mobile app revealed the historic 
France-Belgium game that a fan is unable to watch due to an 
urgent business meeting with an important client.  The fan is 
forced to put down the smartphone, move to the living room, 
search for the basket of remotes, sits down to remember and 
figure out how to program the darn DVR to record the 
game – what a chore. In 2022, the cup watching experience 
could be very different—enhanced by IoT. A fan browsing 
the games’ schedule will be able to program a recording of 
the game directly from the app. Here, the app developer did 
not make assumptions about the availability of a DVR thing 
in the user’s “smart space” and did not write any code to 
enable such a recording. The DVR thing and the World Cup 
app chatted and exchanged interest and capability lists, which 
resulted in the DVR thing initiating a meaningful interaction 
with the mobile app offering a recording service. The fan is 
presented with a toast or a pop-up screen (an asset, part of the 
meaningful interaction) asking if she wants to record the 
game on its DVR. On answering “yes”, she is asked if she 
wishes to have recording as a permanent feature of the app 
she is using, which she happily accepts. 
 This scenario underlines a couple of extra important 
requirements. First, mobile apps should be fully supported as 

first class things in future IoT. They are very opportune and 
extremely useful things to have around as they provide actual 
opportunities for the user to interact with his IoT through 
their host devices (the smart phone, watch, etc.) There are 
millions of these mobile app things covering all imaginable 
application areas. It may not be an overstatement they are or 
will become the “fertilizer” things in the personal Internet of 
Things!   
Such a requirement is however significant and requires new 
ways for apps to spontaneously adapt to changes in their 
environment. When new devices exchange capabilities with 
an app, the app must alter its behaviour and functionality, 
accordingly, deviating from the standard logic intended by its 
original developers. These alterations could range from how 
application data is managed and stored, to how UI elements 
are presented to the user. 
 Such altering of the app’s behaviour presents a 
reasonable challenge. Even if the interested thing-mate can 
provide all of the logic needed by the app, to control it for 
instance such as in the DVR thing example, the thing app 
must know when and where in the app to execute it. It must 
also know how to execute it. The thing middleware needs 
flexibility to not only recognize the capabilities of another 
thing, but also to accept and integrate logic provided by 
them. Rather than exchanging data or receiving commands, 
an app acting as a thing must understand how to integrate the 
API of another thing and make it available to the core 
functionality of the app. 
 In the above scenario, the developer of the World Cup 
app did not explicitly implement the ability to interact with a 
DVR recorder, nor any of the other myriad devices that could 
utilize information the app provides. Instead, the developer 
may merely describe the capabilities that can be offered to a 
smart space, in this case television program IDs and 
descriptions. When the capabilities are utilized by an 
interested thing-mate, the app must change its interface to act 
as a gateway for the user to control its new functionality. 
This presents another challenge; with minimal consideration 
from the original developer, the app must allow the user to 
control when and how its data (whether represented as a list, 
button, action, or other) is utilized by a thing, through an 
appropriate UI. Trust and security issues are not addressed 
here to maintain focus on the new functional requirements.  
 How to adequately express this capability for interaction 
(from the mobile app side, especially) must be carefully 
considered. Pressure is put on the app developer: if these 
capabilities are not able to be adequately represented 
between things, such a scenario cannot occur even if both 
devices are capable. Expecting app developers to implement 
and properly utilize such a system may seem to be a tall 
order but could be facilitated by adding support and tools to 
their app development pipeline. For example, an IDE plugin 
may consider cases when the developer is writing code that 
produces data or an action, asking them if such code could be 
utilized by a smart space and how its functionality could be 
described (such as keywords). The plugin could then encode 
this into a form used by the middleware, reducing the 
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overhead required of the developer. This information could 
also be of use when the developer is designing the user 
interface, for example, with the plugin recommending where 
to leave space/logic for UI resulting from meaningful 
interactions with interested things. Such enhancement would 
require the developer to focus less of the intricacies of the 
thing middleware, and instead consider how their app may be 
utilized in an IoT ecosystem. 
 Now to the second requirement of this World Cup 
scenario. The increased responsibility of the interested thing 
to dictate new behaviour to an app also emphasizes the 
requirement of attachments—resources available externally 
to a thing. It is unlikely the devices interacting with an app 
maintain copies of all meaningful interaction assets (such as 
unique copies for Android and iOS, or localization variants) 
for all the potential interactions the thing intends to support. 
This is especially significant for more lightweight things 
which may not have the resources to store application assets 
such as HTML/mobile interface code. Rather, it may be more 
manageable to architect things in a way that allows 
additional elements to be “attached” just-in-time to a thing 
for direct use, but stored, hosted, updated, and managed in 
the cloud or a powerful edge. 
 The Atlas Thing Architecture, briefly discussed in 
section V below, attempts to support this scenario [38], 
utilizing its social relationships, tweeting capabilities and on-
board device descriptions. The overall functioning of this 
scenario is represented in Fig.2. Here, the DVR OEM 
encodes the device’s identity and capabilities, along with a 
list of keywords describing potential interests (such as 
receiving a channel to record), in a descriptive schema (the 
IoT-DDL, briefly discussed in section V below). The mobile 
app, on the other hand, describes no services in its developer-
written schema, only providing keywords of its capabilities 
(such as providing a TV channel). When powered up, these 
devices begin to broadcast their identities and search for 
potential relationships. The semantic similarity between the 
DVR’s interests and the mobile app’s capabilities results in 
the DVR sending its API to the app, and the app notifying the 
user of a new relationship. The app can then expose a new 
web view (defined by the DVR) to allow the app user to 
access the features of the DVR. 
 

 
 
Fig. 2: The World Cup scenario, as viewed by the Atlas Thing Architecture. 

IV.  THE RISE OF THING ARCHITECTURES 

 Several architectures and what is widely becoming 
known as IoT platforms have emerged recently in support of 
things in the IoT. As would be expected, they all 
encompassed embedded computing elements based on 
traditional embedded Linux or emerging embedded operating 
systems specifically designed for the IoT. However, they all 
broke out of the confines of traditional inward embedding of 
computing and smartening to additionally provide an outward 
path of the same. In doing so, embedded elements became 
part of a broader fabric in an ecosystem spanning other 
things, edge computers and the cloud. This is a significant 
development marking the evolution from just smart things to 
Internet of Things, or the evolution of embedded computing 
to an “ascended-embedded” form of computing. We present 
only a few examples of such developments due to space 
limitations. 
 One of the most fast-evolving developments is ARM 
Mbed—a licensable thing architecture specifically designed 
for the IoT with an unmistaken ascended-embedding design 
philosophy. It is based on the 32-bit ARM Cortex-M family 
of micro-controllers, which makes it open only to this 
processor architecture. Mbed OS is a new thing operating 
system offering integrated set of lightweight yet powerful 
software components, including security, communication and 
device management features. Applications developed for 
(and using) Mbed OS can be embedded into any compliant 
thing hardware. Additionally, the same applications (or parts 
of) can be “ascended” and exposed as cloud device services 
in the cloud. A cloud device service is a light-weight web 
service (HTTP-REST) which is linked to the actual 
application running on an ARM Mbed hardware platform. 
Right here is where the ARM Mbed delivers – making 
devices part of the Internet, or creating an Internet of Things, 
not just an Internet of content or powerful web services. 
Mbed has a large community of developers today and is 
hoped to productively align the energy of several 
stakeholders including IoT solution developers, hardware 
partners and cloud providers to create a critical mass IoT 
industry. Requiring ARM Cortex-M processor hardware 
would certainly remain as a limitation even though the 
positive impact of the Mbed ecosystem on advancing IoT is 
highly recognized [31][32]. 
 Another development is the SmartThings platform. 
Through development and acquisitions, Samsung was one of 
the first to establish an IoT ecosystem consisting of things 
(actually brand-named SmartThings), SmartThings Hub (an 
edge computer) and the Samsung Cloud. Several 
SmartThings are offered by Samsung itself in the personal 
IoT (consumer) market. To promote the creation of more 
things by third party in this ecosystem, Samsung has pushed 
the ARTIK [33] hardware platform as an embedded/ascended 
platform that effortlessly connects with SmartThing Hubs 
and the Samsung Cloud. Several ARTIK architectures are 
provided to cater to very small, medium or complex smart 
objects. The programming model is simple in which an 
application is composed of restricted, Java-like code (known 
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as Groovy script) that executes on the SmartThing hub and/or 
the Samsung cloud. The SmartThings follow SOA in which 
HTTP-REST APIs are generated and hosted in the Hub 
and/or the cloud (known as device handlers). Such an API is 
automatically linked and connected to the actual SmartThing 
(no effort needed by the developer). Groovy scripts simply 
access the API’s for device information or control. A less 
open but very similar IoT ecosystem is Wink, spanning Wink 
things, Wink hub and the Wink cloud. HTTP-REST is also 
used to externalize Wink things on the Wink hub.  
 The Amazon AWS IoT ecosystem is another emerging 
thing architecture. Here, emphasize is placed on the cloud 
with significant support to allowing devices to access and 
interact with AWS services. An SDK is provided for third 
party to bring up any device into this ecosystem. The SDK 
acts as a middleware that connects the device to an AWS IoT 
Gateway, a software stack that runs on standard edge devices 
which provides support for lightweight and secure 
communication with the AWS cloud. Applications are cloud-
hosted in the form of rules run by a rule-engine. Things are 
utilized by the applications through cloud-based web service 
proxies that are synced with the physical things through 
MQTT messages exchanged between the proxies and the 
device gateways. Similar emerging ecosystems are IBM’s 
BlueMix and GE’s Predix. 
 While recent developments are impressive by all 
measures, they each had to make their own assumptions or 
set some limitations on openness and interoperable 
participation. That is, as we start, we seem to be building 
silos of fragmented ecosystems. For instance, only 
SmartThings can be used within the Samsung ecosystem. 
Additionally, only Zigbee and Z-Wave technology are 
compatible with the same. While not universal and 
interoperable, current efforts are very important as they 
provide key early lessons to learn from. These ecosystem 
silos also make for an excellent platform to test and sift 
through emerging ideas, standards and open elements which 
guides adoption and eventually consensus and 
interoperability.  

V.  REPORTING ON OUR OWN  INITIAL EFFORTS TOWARDS 
THING ARCHITECTURES 

 In this section, we present some of our own efforts and 
attempts to contribute to advancing thing architectures and 
IoT programming models. We briefly describe the IoT 
Device Description Language (IoT-DDL) which is a 
descriptive language that seeks to achieve seamless 
integration between things and also affect some level of 
homogenization with the IoT ecosystem. To utilize such 
descriptive language, a lightweight architecture we call the 
Atlas Thing Architecture is designed and implemented. The 
architecture provides new layers and services to existing 
embedded operating systems and introduces novel 
capabilities a thing must have to be easily configured and 
managed, and to seamlessly engage with other things in 
hopefully powerful IoT scenarios. We then briefly present an 
overview of an inter-thing relationships programming 

framework that describes how services offered by things can 
be combined to build applications explicitly or 
opportunistically through a new set of service-level 
relationships.  
 
A. IoT-Device Description Language (IoT-DDL) 
 The IoT-DDL is a machine- and human-readable 
descriptive schema used to describe, through a set of 
attributes and parameters, a thing in the smart space [15]. 
The thing description should be part of the thing itself to 
facilitate a thing’s smooth migration from one smart space to 
another and to enable thing-to-thing direct ad-hoc 
interactions. The IoT-DDL is based on and extends the 
original Atlas DDL [13][14] to describe the thing in terms of 
the thing’s identity, resources (e.g., network capabilities), 
inner software and hardware-based components (e.g., sensors 
and actuators), and the services such thing offers to the 
surrounding smart space. The OEM can also describe the 
cloud-based expansions attached to the thing to provide 
further representations (e.g., virtualization) and extra services 
(e.g., database) that are considered too heavyweight to be 
hosted on the thing.  
 The IoT-DDL also describes the knowledge (social 
bonds and relationships) injected or acquired by the thing, as 
well as the different interactions that engage the thing with 
other entities in the ecosystem. Such configuration scheme is 
then uploaded to the thing to enable the thing to self-discover 
its own power and engage with the surrounding IoT 
ecosystem. A thing in a smart space may engage with thing 
mates, users (e.g., end-user, developer), computing edges and 
cloud platforms through a set of action- and information-
based interactions. Action-based interactions include 
management commands, lifetime updates and configurations 
from authorized parties, as well as the applications that target 
the thing’s capabilities and services. Information-based 
interactions enable a thing to announce its identity, 
capabilities and APIs to others. A thing may tweet what it is, 
what it does and what it knows to the other thing mates. A 
thing can also share how socially it is related and linked with 
its thing mates. These social binds can be in terms of some 
identification attributes (e.g., things’ vendor, space 
characteristics) and some relationships that show how the 
offered services can be logically and functionally tied (e.g., 
the proper display of an indoor TV requires the window 
blinds to close, thus the window blinds support the indoor 
TV). Such social network of logically connected things can 
guide the building of meaningful applications. 
 
B. Atlas Thing Architecture 
 The current IoT platforms and architectures [36][37] link 
the access of things to a central point (e.g., cloud platforms 
or edge) where space users can access resources and collect 
data. This type of architecture highly facilitates cloud-based 
application development. On the other hand, direct 
communication between things is hardly supported, and the 
IoT clouding is mostly vendor-specific. Such vendor-
restricted connections narrow down the capabilities of 
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connecting other types of things from different vendors 
seamlessly to the smart space. Such a restricted paradigm 
ignores the distributed nature of IoT, which requires things to 
communicate with other things as well as with cloud 
platforms and edge for the seamless integration, device 
management, and engagement with others in ad-hoc IoT 
scenarios and apps. The Atlas Thing Architecture [15] is a set 
of software operating layers that utilizes the specifications of 
the IoT-DDL to provide novel capabilities a thing requires to 
engage in IoT scenarios and applications.  
 
 

 
Fig. 3: Atlas Thing Architecture. 

 
 
 Fig.3 depicts the Atlas Thing Architecture, which is 
based on and extends the original Atlas architecture [2][3]. It 
takes advantage of the thing’s OS services (e.g., network 
module, I/O ports and physical interfaces, and its process 
manager) to provide new functionalities for the thing to: 1) 
self-discover its characteristics, resources, and capabilities 
through the uploaded IoT-DDL along with the dynamic 
generation of its own services and the formularization of the 
appropriate APIs; 2) open an ad-hoc channel with a device 
management server for provisioning, management, and 
configuration purposes, and 3) enable the secure interactions 
with thing mates and engagement in IoT applications and 
scenarios. The Atlas Thing Architecture also enables the 
communication interoperability between the smart objects 
that speak different communication languages through Atlas 
protocol translator thing attachment [15][39]. The Atlas 
Thing Architecture takes advantage of device management 
standards and object modeling standards to enable thing 
management and configuration with minimal human 
intervention, along with IoT communication standards to 
empower secure ad-hoc interactions between the thing and 
thing mates. The architecture also extends the micro services 
concept to enable the dynamic generation of the services by 
the thing and the formulation of the corresponding APIs for 
service-oriented ad-hoc meaningful interactions to take place 
between the things. 

C. Inter-thing relationships programming framework 
 The inter-thing relationships programming framework 
[21] utilizes both Atlas Thing Architecture and the thing IoT-
DDL description language to build a distributed 
programming ecosystem for the social IoT. The framework 
broadens the social bonds (thing-level relationships) between 
things according to their identification attributes (e.g., 
vendor, things collocated in same space) and utilizes a new 
set of relationships between the offered services (e.g. Garmin 
as a GPS device competes with the GPS service offered by a 
smartphone, A DVR that records a TV channel extends the 
functionalities of a smart TV that can display channels) that 
we believe can empower developers to program a much 
wider class of meaningful applications.  
 These relationships logically and functionally tie these 
services to empower the developers to build domain-related 
applications. The framework introduces service (abstraction 
of the function offered by a thing), relationship (abstraction 
of how different services are linked together) and recipe 
(abstraction of how different services and relationships build 
up a segment of an app) as the primitives for the Atlas IoT 
application. The framework also defines Filter, Match, and 
Evaluate as three operators that functionally define how the 
primitives are wired. The proposed framework also facilitates 
the description of the IoT application through a set of 
semantic rules, that evaluate the correctness of the 
established application by the developer and guide the 
execution.  
 The relationships defined in the framework can be: 1) 
utilized by vendors in the things’ IoT-DDLs, and 2) utilized 
by developers while building IoT apps, and 3) dynamically 
inferred from the exchanged knowledge (relationships and 
social bonds) between the things. The discovery and 
inference of links between un-related services suggest the 
existence of new engagement opportunities to the application 
developers.  
 

VI.  THE FUTURE OF THINGS 

 Things are a new breed of computers that we recently 
started to more fully understand, in terms of importance and 
the huge role they will play in shaping our future. They are a 
thrilling development in the making, currently being shaped 
by multiple communities each addressing different sets of its 
demanding requirements. The VLSI community, for instance, 
is targeting extremely low energy and extremely low-cost 
designs that can deliver a complete system-on-a-chip 
including computation, security, and wireless 
communication. Even software giants such as Microsoft are 
delving into developing IoT hardware (the Azure Sphere 
[40]) given the extreme importance of things, and the 
importance of putting requisite software on them.  Another 
community is machine learning, which is working hard on 
developing scalable big data, cloud-based algorithms for 
analyzing thing data and embedding constrained learning 
directly on the things themselves. Security is another critical 
area of development. By exploring the use of hardware 
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secure elements and blockchains, this community too will 
eventually influence thing architectures greatly. 
Understanding key thing requirements and developing 
solutions for meeting them is currently a feasible challenge. 
Managing the complexity of meeting all such requirements 
combined and in small packages could prove trickier than we 
have ever thought.  
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