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Attribute-Guided Network for Cross-Modal Zero-Shot Hashing 

Response to the Reviews 

The authors thank the Associate Editor and all reviewers for the constructive comments, and have very carefully 

followed and cleaned up every raised issue. We provide below a detailed account on the changes that we have made 

in response to comments that the reviewers have provided. The corresponding changes in the R1 version are marked 

in blue color. Apart from addressing these concerns, we have also made some minor revisions. All these changed parts 

are labelled in red color. 

 

To Reviewer # 1 

 
1) In the last paragraph in Page 1, “It should be noted that Image-Based Text Retrieval (IBTR), …. , which is 

not the focus of our work”, it is still not very clear to me. Please explain it more clearly.  

Response: Thanks for your comment. The setting of IBTR in cross-modal retrieval is that the query set is 

constructed with images and the retrieval set is established with textual representations. However, under the 

current zero-shot cross-modal hashing setting, each category has only one textual representation. If we perform 

IBTR, the corresponding results in hunting scope is only one. Therefore, IBTR in this situation is actually 

degenerates into a ZSL, which is not the focus of our work. 

 

2) Table II is suggested to present more detailed explanation for why it is set like that. For example, why using 

sigmoid function? 

Response: Thanks for your constructive comments. It is based on the following considerations. Firstly, one of the 

properties of sigmoid function is that it is easy to reach saturation. Since the attribute annotations we used are 

binary labels, we use sigmoid function in the final layer in V2A and T2A net to ensure the prediction to fit the 

ground truth. Secondly, the combination of sigmoid function and cross-entropy cost function is widely used in 

deep neural network learning. Finally, the reason why we design AgNet in the architecture of fully connected 

network is that we have utilized high semantic features (GoogleNet and WordVec) as visual and textual features, 

the plain neural network is enough to generate effective hash codes. 

 

3) Parameter scale and convergence speed of the model are suggested to be presented. 

Response:  Thanks for your constructive suggestion. We have added the description of parameter scale and the 

convergence curve of AgNet, which is as follow: 

“The network architecture details of AgNet are shown in TABLE II. For each connection for different neurons, there 

are two parameters. Totally, AgNet consists of 1.3 million parameters.” 
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“The convergence curve of AgNet is shown in Fig.3, AgNet reaches a stable objective function value at the 30-th 

epoch, which indicates the efficiency of AgNet.” 

TABLE II 

The network architecture details of the proposed AgNet. “Full”denotes the fully-connected layer, “Relu” and 

“Sigmoid” denote activation functions. 

 

Fig. 3. Convergence curve of AgNet on AwA dataset. 

 

4) Line 57-59, Page 4, fv() and ft() are not consistent with g(). 

Response: Thanks for pointing it out. We have unified the expression of these three items with ( ; )v i vf x   ,  

( ; )t i tf z   and ˆ( ; )v i hg a  . 

 

5) The authors should discuss more comments about future work. 

Response:  Thanks for your constructive suggestion. We have discussed more comments about future work in 

the last section, which is as follows: 

“In the future, as the acquisition of attribute annotation requires prior knowledge, we plan to exploit some other 

semantic information to formulate the common space, e.g., click-through data. We will also apply Hashlayer 

described in [40] to control the quantization error. In addition, we will exploit generative methods, e.g., GAN 

and VAE, to establish more robust embedding in zero-shot hashing.”  
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To Reviewer # 2 

 

1) In Section 3, the authors proposed a loss L_CS. Here, it is mentioned that “by minimizing this objective 

function, the Hamming distances for those instances within the same category but with different modalities 

are reduced.” However, here Q and P have not been binarized yet. How can we conclude that minimizing 

L_CS leads to better alignment of different modalities in Hamming distance measure? 

Response: Thanks for your comment. It is true that P and Q have not been binarized in the loss of L_cs. However, 

the purpose of a loss function is to reflect different relation intensities, which can be done by either real-valued 

variables or binary-valued variables. Actually, minimizing L_CS plays an indirect way to align different 

modalities in Hamming distance measure. Since P and Q are closely related to the final visual and textual hash 

codes, the operation on them can have an impact to the final result. Via minimizing the L_cs Loss, the products 

of P and Q reach to maximization when they are from the same categories, and reach to minimum when they are 

from different categories. In this way, it achieves a similar result comparing with that directly operating on the 

codes. 

 

2) Again, this L_CS loss is the same as the first term of formula (1) in [Deep Cross-Modal Hashing]. Here, the 

authors should give reference to this paper. [Deep Cross-Modal Hashing] also denotes that the first term in 

(1) can preserve the cross-modal similarity in S with the image feature representation F and text feature 

representation G. 

Response: Thanks for your suggestion. We have discussed the corresponding reference in Section III. C, which 

is as follow: 

“Inspired by DCMH [21], we utilize the category similarity loss to ensure the different predicted attribute vectors 

of different modalities in the same category can generate similar hash codes, while those in different categories 

have distinct differences.” 

 

3) SUN dataset does not contain binary attributes, which contradicts what the authors said in Section 3.A. 

Actually, the proposed method does not require binary attributes. Thus, it is recommended to use real-valued 

attributes. 

Response: Thanks for your constructive comment. SUN dataset has image-level attribute annotations and its 

attribute is real-value. We utilize binary class-level attribute annotations in AgNet with the following 

consideration: 

a) We view the attribute prediction as the classification problem, where labels used in deep neural network are 

usually in the form of one-hot code. 

b) Binary label increases the sparsity of annotation. 

c) The calculation of attribute similarity involves class-level category similarity, which makes it necessary to 

transfer the image-level annotation into the class-level. 
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To get the class-level binary attribute annotations, we first calculate the average value for each category and 

then ceil the mean values to get the binary attributes. 

 

4) In Section 3.C, when describing L_as, the S^(att) logic flow is somewhat vague. In this section, it is 

mentioned said “by minimizing this term, those instances closed in the attribute space and from different 

categories will be uncoupled in the Hamming space”. This sentence seems to be vague as all the elements 

in this term are real-valued, which has nothing to do with hamming space. A more specific explanation is 

required to clarify the statement. 

Response: Thanks for your comment. The reply to this comment is similar to that in comment 1. Although All 

elements in L_as are real-valued. We employ the inner products of these real-valued elements to capture relations 

among them, which has similar role with the binary-valued ones, but more accurate. 

 

5) In Section4. C, SUN dataset was not included in single modality ZSH methods. However, SUN is one 

representative dataset whose category number is large while samples number is small. The authors should 

add experiment about SUN or clarify why not use SUN. 

Response: Thanks for your comment. SUN is a representative dataset for zero-shot learning. However, SUN is 

not suitable for single modality ZSH setting. In the standard zero-shot split of SUN, the unseen class has 10 

categories and each class has 20 instances. For the popular single modality ZSH methods. The query sets have 

1,000 images from unseen class, and the retrieval set have more than 10,000 instances. The probe scale of SUN 

is too small to evaluate the effectiveness of the model. Therefore, SUN dataset is not suitable for single modality 

ZSH. 

 

 

To Reviewer # 3 

 
1) Two-stage v.s. joint optimization: AgNet is trained in two steps: firstly train V2A and T2A and then train 

A2T. I am wondering why not train the three subnetworks simultaneously (by controlling the gradient flow)? 

An experimental comparison should be performed between two-stage optimization and joint optimization. 

Response: Thanks for your comment. Joint optimization is a good idea. However, in the proposed AgNet, the 

visual features and the text features are embedded into the common attribute space with V2A and T2A networks 

separately, and share the same A2H network. Thus, the gradient of the final objective function is hard to flow 

into V2A and T2A simultaneously. To this end, the whole network is hard to be optimized end-to-end. We will 

try it in our future work. 

 

2) Among the comparison methods in this table, DCMH is the only deep method, whose backbone net of image 

feature extraction is variant of AlexNet. However, image feature extraction net of AgNet, as well as those 
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image features used in those shallow methods, are based on GoogleNet, which may lead to unfair 

comparison. It is reasonable to expect that the performance of DCMH can be improved while also using 

GoogleNet as image extraction network. Please include this variant into comparison. 

Response: Thanks for your constructive suggestion. For fair comparison, we perform an additional experiment on 

DCMH by replacing the visual modality with GoogleNet, which is denoted as DCMH-G. The experimental results are 

in Section IV.B  

TABLE III 

Results on three benchmark datasets in Mean Average Precision (%) on CMZSH task. 

 

We utilize GoogleNet as backbone net in DCMH-G. As illustrated in Table III, we observe that DCMH-G outperforms 

DCMH on three datasets in most cases. However, AgNet clearly outperforms both DCMH and DCMH-G on three 

benchmark datasets, consistently. 

 

3) Zero-shot cross-modal retrieval or just classification? If I understand correctly, text fed into T2A is just name 

of category (single word for each image). This is ad-hoc because text data of most cross-modal benchmarks 

is caption (MSCOCO, Flicker-8K, etc) or article (wikipedia). The cross-modal retrieval task performed here 

actually is classifying images into category (via nearest neighbor between the hash codes of image and 

category name), which largely reduces the difficulties in general cross-modal retrieval (e.g. complex 

semantics and noises in text descriptions) and makes such attempt becomes trivial. Personally speaking, 

considering the label and class-attribute predicate are given, attribute names of each image might be used as 

the text modality, which have richer information than just name of category. 

Response: Thanks for your constructive comments. Actually, retrieval and classification can be viewed as inverse 

procedures. Both retrieval and classification are trying to establish the relationship between visual samples and class 

prototypes. The difference between classification and retrieval is that classification aims at categorizing samples into 

class prototypes, and retrieval attempt to find the Top-N instances which are relate to the samples.  

In the setting of traditional cross-modal retrieval, each class has plenty of textual representations, which indeed 

increase the difficulty in retrieval. Nevertheless, the representative zero-shot benchmarks are short of enough textual 

representation as cross-modal datasets. On the other hand, the textual representations from cross-modal benchmarks 

are hard to split under the zero-shot setting, where the categories of seen data and unseen data are non-intersect. In 

addition, using the names of categories as a query set is the popular setting in current zero-shot retrieval work [1][2][3].  
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And using the attribute names as the textual representations is not suitable for the current zero-shot cross-modal 

setting, as the attributes are shared with seen classes and unseen classes, the names of attribute can’t be effectively 

split under the zero-shot standard.  

 
4) In part Ⅵ.C, AgNet is compared with previous zero-shot hashing schemes and hashing methods for non 

zero-shot setting. However, it is quite natural to consider an abbreviated version of AgNet: which is only 

consisted of V2A and A2H. I am wondering if incorporating T2A into AgNet is beneficial to SMZSH? i.e., 

Does mitigating modality gap between image and text contributes to the zero-shot binary codes learning of 

images? Considering the significance of CMZSH task is quite doubtful (discussed in (3)), more experiments 

should be done in this part to reveal some "mutual promotion" for enhancing the significance. Otherwise 

this work is just a brutal-force combination of cross-modal hashing and zero-shot hashing, which will largely 

limit its novelty.  

Response: Thanks for pointing this issue out. In order to verify the contributions of each modality (e.g., visual 

and text), we conduct a list of ablation experiments on large-scale ImageNet dataset, the experimental details are 

in Part IV.C.3). 

TABLE IV 

Performances (mAP / Precision) of AgNet and AgNet-vis on ImageNet dataset on CMZSH task 

method 8bits 16bits 32bits 48bits 

AgNet-vis 4.33/2.41 5.66/5.11 6.92/10.7 8.22/15.71 

AgNet 4.40/2.80 6.09/7.31 6.94/13.3 8.46/17.51 

 

We implement a visual version (denoted as AgNet-vis) of AgNet on ImageNet dataset. The main different 

between AgNet and AgNet-vis is that AgNet-vis removes the T2A-Net. In addition, to maintain the category 

similarity, AgNet-vis replaces 
*

1

2

T

ij i *jP Q    with 
*

1

2

T

ij i *jP P   in category similarity loss function. 

The experimental results (mAP / Precision) on ImageNet is shown in Table IV. It can be observed that AgNet 

outperforms AgNet-vis in all code lengths consistently, which demonstrates that mitigating modality gap 

between image and text contributes to the zero-shot binary codes learning of images 

 
5) Page.7 line 6-9: the authors claim that SitNet uses random split while AgeNet uses standard split. But how 

to fairly compare these two methods is still unsolved. 
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Response: Thanks for pointing it out. For fair comparison, we randomly split the seen and unseen domain 

following the SitNet and individually compare AgNet and SitNet in Fig. 5. The result is shown as follow: 

 

Fig. 5. Performances (mAP and Precision) of SitNet and AgNet for singlemodal zero-shot hashing task on AwA dataset. 

 

As illustrated in Fig.5. AgNet outperforms SitNet in most situations. For instance, the mAP of AgNet gains 18.8% on 

32 bits, which has an improvement against SitNet by 7.4% in the same code length. 

 

6) As for the experimental setting, I would like to throw doubt on the way of constructing query and retrieval 

sets described in line 15~20 in Page.6, which is derived from [4]. In zero-shot classification, classfying 

samples from U and classifying samples from S∪U are defined as ZSL and Genaralized ZSL (GZSL), 

respectively [6]. The following two settings might be experimented separately: a) query and retrieval sets 

are both from unseen images; b) are mixture of seen and unseen images. 

Response: Thanks for your constructive comment. Traditional ZSL (TZSL) and GZSL are two primary tasks in Zero-

Shot Learning, where GZSL is more challenging than TZSL. This is because that GZSL enlarges the test set with the 

whole dataset and increases the obstruction of seen data. Besides, SitNet[5] constructs its experimental setting 

following GZSL criterion. Therefore, we follow the setting of SitNet in AgNet and believe GZSL is enough to evaluate 

the performance of model. 

 

7) Page.2 line 19: the generated hash codes should not be searched by nearest neighbor. Instead, approximate 

nearest neighbor (ANN) is used. 

Response: Thanks for pointing it out. We have replaced nearest neighbor with approximate nearest neighbor, which 

is as follow: 

“To implement effective approximate nearest neighbor (ANN) search, the generated binary hash codes are necessary 

to inherit the semantic similarity relationship of high dimensional real-value features.” 

 

8) Hashlayer described in [7] might be a good plug-in replacement to the way of controlling quantization error 

used in this paper. 
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Response: Thanks for your constructive suggestion. Hashlayer in [7] is a remarkable work to figure out the vanishing 

gradient problem of sign function. During the optimization stage in AgNet, we use the inner product between the 

outputs of network to maintain the category and attribute similarity in Hamming Space. Besides, the outputs of sign 

function in our algorithm act as a regularization item without suffering from vanishing gradient problem. We believe 

the Hashlayer in [7] is enlightening and beneficial for our future work, which has been discussed in the last section. 
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Attribute-Guided Network for Cross-Modal
Zero-Shot Hashing

Zhong Ji, Member, IEEE, Yuxin Sun, Yunlong Yu, Yanwei Pang, Senior Member, IEEE, Jungong Han

Abstract—Zero-Shot Hashing aims at learning a hashing model
that is trained only by instances from seen categories but can gen-
erate well to those of unseen categories. Typically, it is achieved
by utilizing a semantic embedding space to transfer knowledge
from seen domain to unseen domain. Existing efforts mainly focus
on single-modal retrieval task, especially Image-Based Image
Retrieval (IBIR). However, as a highlighted research topic in
the field of hashing, cross-modal retrieval is more common in
real world applications. To address the Cross-Modal Zero-Shot
Hashing (CMZSH) retrieval task, we propose a novel Attribute-
Guided Network (AgNet), which can perform not only IBIR, but
also Text-Based Image Retrieval (TBIR). In particular, AgNet
aligns different modal data into a semantically rich attribute
space, which bridges the gap caused by modality heterogeneity
and zero-shot setting. We also design an effective strategy that
exploits the attribute to guide the generation of hash codes for
image and text within the same network. Extensive experimental
results on three benchmark datasets (AwA, SUN, and ImageNet)
demonstrate the superiority of AgNet on both cross-modal and
single-modal zero-shot image retrieval tasks.

Index Terms—Zero-shot hashing, cross-modal hashing, zero-
shot learning, attribute, image retrieval.

I. INTRODUCTION

RCENTLY, hashing-based multimedia retrieval approach-
es have attracted a lot of attention, mainly owing to their

fast retrieval speed and low storage cost [1], [2], [3]. Generally,
these approaches fall into two categories: unsupervised hash-
ing [1], [2], [4], [5] and supervised hashing [6], [7]. The former
usually applies the statistics information, such as manifold
structure [4] and the variance of feature [5], to generate the
hash function with the intention to preserve the similarity
space, while the latter explores the semantic supervision in-
formation, e.g., class label, to capture the intrinsic property of
data. Because more knowledge is utilized, supervised hashing
approaches usually achieve better performance than those of
unsupervised ones. However, one deficiency of supervised
hashing approaches is that a large number of labeled instances
are required for training the model, which is time-consuming
and labor-intensive. In addition, it is very difficult to annotate
sufficient training data for the new concepts in a timely
manner, and also, impractical to retrain the hashing model
whenever the retrieval system meets a new concept [12].

This work was supported by the National Natural Science Foundation of
China (Grant No. 61771329 and No. 61632018), and the National Basic
Research Program of China (Grant No. 2014CB340400).

Z. Ji (corresponding author), Y. Sun, Y. Yu (corresponding author), and
Y. Pang are with the School of Electrical and Information Engineering, Tianjin
University, Tianjin 300072, China (e-mail: {jizhong, sunyuxin, yuyunlong, py-
w}@tju.edu.cn).

J. Han is with the School of Computing & Communications, Lancaster
University, UK (e-mail: jungong.han@lancaster.ac.uk).

Query: 

TBIR leopard 

IBIR 匾噩
Unseen Domain 

··、

CMZSH 

Model 

＋ 

Seen Domain 

Retrieval Result: 

--

Fig. 1. An illustration of Cross-Modal Zero-Shot Hashing (CMZSH).
Typically, a CMZSH model is trained by texts and images in seen domain. At
testing stage, the CMZSH model mainly tackles two tasks in unseen domain,
i.e., Text-Based Image Retrieval (TBIR) and Image-Based Image Retrieval
(IBIR). For TBIR, the query set are texts and the retrieval set are images. For
IBIR, both the query and the retrieval sets are images.

To address this awkward situation, inspired by the success
of Zero-Shot Learning (ZSL) [8], [9], [10], [11], Zero-Shot
Hashing (ZSH) is developed recently [12], [13]. Its goal is
to encode images of unseen categories with the hash funciton
trained by only those of seen categories by incorporating the
ideas of supervised hashing approaches and ZSL. Transferring
Supervised Knowledge (TSK) [12] is the pioneering method in
ZSH. The authors propose to employ the semantic vectors as a
bridge to transfer available supervision information from seen
categories to unseen categories. Further, Guo et al. [13] present
a deep ZSH method, named Similarity Transfer Network
(SitNet). Specifically, SitNet applies a multi-task architecture
to leverage the supervision knowledge of seen categories and
the semantic vectors simultaneously, and employs a straight-
through estimator to avoid information loss caused by real-
value relaxation. Although these methods have achieved im-
pressive performance, there is still a serious limitation for
them. That is, the existing ZSH approaches only focus on
Image-Based Image Retrieval (IBIR) task, where both the
query and the retrieval sets are images. In fact, Text-Based
Image Retrieval (TBIR), i.e., leveraging textual description to
search images, is also very common in the real-life scenario.

The aforementioned limitation motivates us to consider
investigating ZSH in a cross-modal retrieval setting, which we
call Cross-Modal Zero-Shot Hashing (CMZSH). Specifically,
CMZSH mainly deals with two different tasks, one is IBIR,
and the other is TBIR. That is to say, CMZSH broadens the
scope of conventional ZSH from single-modal application to
cross modal application. An illustration is described in Fig.
1. It should be noted that Image-Based Text Retrieval (IBTR)
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also belongs to the scope of Cross-Modal Hashing. However,
since only one category name is corresponding to a class of
images for most popular ZSH datasets, IBTR in this situation
actually degenerates into a ZSL (also called zero-shot image
classification) problem, which is not the focus of our work.

To achieve CMZSH, the following challenges should be ad-
dressed. 1) Modality heterogeneity. As query set and retrieval
set are likely to be from different modalities, the generated
hash codes are expected to have an additional property that
preserves the semantic relationship between both modalities.
2) Category migration. It is an inherent problem of ZSL that
the learning model should have the ability of handling the
instances from unseen categories. Therefore, CMZSH needs
to exploit the transferable knowledge that bridges the gap
between seen categories and unseen categories. 3) Seman-
tic similarity preservation. The hash function is actually a
projection from high dimensional real-value features to low
dimensional binary space. To implement effective approxi-
mate nearest neighbor (ANN) search, the generated binary
hash codes are necessary to inherit the semantic similarity
relationship of high dimensional real-value features.

In this paper, we address the above issues with the proposed
Attribute-Guided Network (AgNet) framework. Specifically, to
narrow the semantic gap brought by modality heterogeneity
and category migration, we map both the visual features and
the textual features into a common space, respectively. In this
work, we utilize the class-level attribute space as the common
space. In this way, the two different modalities are aligned
into a high-level semantic space. Using the embeddings of
different modalities in the attribute space as inputs, both
visual and textual hash codes are obtained from a shared
deep neural network. Besides, the relationships between d-
ifferent modalities are constructed via a category similarity
matrix formulated with the pair-wise class label. Moreover,
to preserve the relationship of different categories, attribute
similarity is further introduced to restrict the distances of
different categories in the same modality.

We summarize our highlights as below:

1) We address the cross-modal retrieval problem in ZSH,
i.e., Cross-Modal Zero-Shot Hashing (CMZSH), via a
novel deep hashing neural network. It can perform not
only IBIR, but also TBIR. To the best of our knowledge,
it is the first work to study the cross-modal hashing
retrieval in the zero-shot setting.

2) By exploiting the class-level attributes information, we
propose an Attribute-Guided Network (AgNet) frame-
work. It first maps two different modalities into a com-
mon attribute space, which acts as a hub to bridge unseen
and seen categories, as well as visual and textual modal-
ities. Then, an effective strategy is designed to generate
two individual hash codes for image and text within the
same network. Specifically, we exploit the attribute to
guide the generation of hash codes by preserving the
category similarity and attribute similarity.

3) The experimental results for both IBIR and TBIR tasks
on three popular benchmark datasets demonstrate that
the proposed AgNet achieves competitive performance.

II. RELATED WORK

In this section, we will introduce some research progresses
closely related to our work, including cross-modal hashing
and zero-shot hashing. In fact, CMZSH can be viewed as a
special case for them. CMZSH also falls into the domains
of hashing-based retrieval and zero-shot learning. Due to the
limited space, please refer to [14] and [15] for more elaborate
surveys about them.

A. Cross-Modal Hashing

Cross-Modal Hashing (CMH) is a widely used retrieval
technique [3], [16], [18], most of which tackle the problems
of Text-Based Image Retrieval (TBIR) and Image-Based Text
Retrieval (IBTR). This is usually implemented by generating
two respective hash codes for each individual modality. In
this way, different modalities can be computed in the same
hashing space. A number of methods have been proposed,
which can be generally divided into two categories: unsu-
pervised methods and supervised methods. As one of the
representative unsupervised cross-modal methods, Collective
Matrix Factorization Hashing (CMFH) [16] generates cross-
modal hash codes in a latent semantic space shared by both
modalities via collective matrix factorization technique. To
explore the heterogeneous correlation in different modalities,
Liu et al. [17] propose a novel CMH scheme using fusion
similarity from the multiple modalities.

On the other hand, supervised CMH methods usually perfor-
m better than unsupervised ones since they can fully utilize the
intrinsic property in data. For example, Zhang et al. [18] merge
semantic labels into hashing learning procedure and propose a
Semantic Correlation Maximization Hashing (SCMH) method.
Lin et al. [19] convert the semantic similarity of instances
into a probability distribution and generate hash codes by
minimizing the KL-divergence. Liu et al. [20] propose a graph-
regularized Supervised Matrix Factorization Hashing (SMFH)
framework with a collective non-negative matrix factorization
technique. With the renaissance of the deep neural network,
deep learning has proved its outperformance in this field.
For instance, Jiang et al. [21] first propose an end-to-end
deep neural network framework to address the CMH problem.
However, they just utilize the inter-modal relationship but
ignore intra-modal information. To address this problem, Yang
et al.[22] use pairwise labels to exploit intra-modal similarity
and propose a Pairwise Relationship Guided Deep Hashing
(PRDH) method.

Our proposed CMZSH framework follows the idea of super-
vised CMH, which leverages semantic supervision information
to generate different hash codes for each modality to ensure
they are able to interact with each other. However, different
from CMH, CMZSH has to tackle an additional zero-shot
problem. That is, the supervision knowledge is limited to seen
categories, which is the only information in learning reliable
hash function for transforming modalities of unseen categories
into binary codes. Therefore, CMZSH is more challenging.
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Fig. 2. Architecture overview of the proposed AgNet approach. It consists of two stages. First, V2A Net and T2A Net embed the inputs of image and text
into a shared attribute space, respectively. Next, A2H Net encodes the visual and textual vectors in attribute space into visual hash codes and textual hash
codes, respectively. The shared attribute space enables the knowledge transferability from seen categories to unseen categories. And the A2H Net makes the
cross-modal retrieval feasible.

B. Zero-Shot Hashing

Zero-Shot Hashing (ZSH) is a marriage of zero-shot learn-
ing and hashing-based retrieval techniques. It is proposed
to tackle the close-set limitation in hashing-based retrieval
approaches, i.e., the concepts of possible testing instances in
either dataset or query set are within the training set [12],
[13]. Therefore, ZSH explores only the information from seen
categories to build hash functions to retrieve the images in
unseen categories.

As an emerging research topic, the existing ZSH methods
mainly focus on IBIR task. For example, in the pioneering
work proposed by Yang et al. [12], the labels of each seen
category are converted into semantic embedding representa-
tions via word2vec model [23], by which the supervision
knowledge in seen categories can be transferred to unseen
ones. Then, hash codes are generated by projecting the visual
representation to the embedding space. Instead of using word
vector as semantic representation in [12], Xu et al. [24] adopt
semantically-rich attribute information as transferable knowl-
edge. Further, Guo et al. [13] propose a multi-task framework
to simultaneously exploit the supervision information from
visual concepts and semantic representations. Specifically, they
leverage the hash codes to capture the semantic similarity
relationship in a transferable semantic embedding space and
propose a center regularization loss to preserve both intra-
concept similarity and inter-concept distance. In addition,
under the transductive setting [25], [26], Lai et al. [27] propose
a transductive zero-shot hashing method via coarse-to-fine
similarity mining. In this way, a greedy binary classification
network is first used to detect the most informative images
from unseen category images. After that, the fine similarity
mining module further finds the similarities among the in-
formative images. However, since these ZSH approaches are
designed for IBIR task, they have a natural deficiency that
cannot encode the text into hash codes. Therefore, they are
hardly applied for TBIR.

To achieve CMZSH, the idea of ZSH should be combined
with that of CMH. This is exactly what this paper is going to
tackle.

TABLE I
The main notations.

Notation Description
N number of instances
s number of seen categories
u number of unseen categories
d number of attributes
c hash codes length
l dimensionality of visual space
k dimensionality of textual space

x ∈ Rl visual representation vector
z ∈ Rk textual representation vector

y ∈ Rs+u label vector
a ∈ Rd ground-truth attribute vector

â(v) ∈ Rd predicted attribute vector in visual modality
â(t) ∈ Rd predicted attribute vector in textual modality

S(c) ∈ Rn×n category similarity matrix
S(att) ∈ Rn×n attribute similarity matrix

P ∈ Rc×n outputs matrix of A2H Net in visual modality
Q ∈ Rc×n outputs matrix of A2H Net in textual modality
B ∈ Rc×n hash codes matrix

III. THE PROPOSED AGNET ALGORITHM

A. Problem Definition

In order to address the CMZSH problem, both the require-
ments of knowledge transferability from seen categories to
unseen categories and cross-modal retrieval should be fulfilled.
Attributes and word vectors are two most popular side infor-
mation in ZSL [28], [29], [30], [31]. Specifically, attributes
define a few properties of an object, such as color, shape, and
the presence or absence of a certain body part. They are shared
across both seen and unseen categories. Word vectors represent
words as vectors based on distributed language representa-
tion techniques, and theoretically, they can encode arbitrary
concepts into sematic vectors. Therefore, both attributes and
word vectors can construct a semantic space to transfer the
knowledge from seen categories to unseen categories, meaning
either of them can be selected as the candidate semantic space
in CMZSH. Further, different approaches can be designed
to generate both visual and textual hash codes from either
attributes or word vectors space, which enables the cross-
modal retrieval feasible. In this paper, we only focus on the
usage of attributes. That is to say, we exploit attributes as the
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TABLE II
The network architecture details of the proposed AgNet. “Full”denotes the
fully-connected layer, “Relu” and “Sigmoid” denote activation functions.

Sub-network Layer Configuration

V2A Net
Full1+Relu 1024
Full2+Relu 512

Full3+Sigmoid number of attributes d

T2A Net Full1+Relu 1000
Full2+Sigmoid number of attributes d

A2H Net
Full1+Relu 128

Full2+Sigmoid 128
Full3 hash codes length c

intermediary space, from which the hash codes are encoded.
Suppose we are given N training instances Dtr = {di =

(xi, zi,yi) , i = 1, ..., N} from s labeled seen categories S =
{1, 2, ...s}, where xi ∈ Rl is the visual representation, zi ∈
Rk is the textual semantic representation of its corresponding
category name and yi ∈ {0, 1}s is the label vector represented
as one-hot encoding. Note that the different modalities mainly
refer to image and text in this paper. Besides, each instance is
also annotated with a binary attribute vector denoted as ai ∈
{0, 1}d. Under the zero-shot setting, there also exist unseen
categories U = {s + 1, ..., s + u}, which is disjoint with the
labeled seen categories, i.e., S ∩ U = ∅.

B. Network Architecture

The overall framework of the proposed AgNet framework
is illustrated in Fig. 2. It consists of three components: i)
V2A Net. The output of penultimate layer (before the Softmax
layer) of the fine-tuned GoogleNet [32] is first extracted as the
visual features. After that, these CNN features are utilized as
the input to a deep neural network with three fully-connected
layers, which embeds the visual features to attribute vectors.
ii) T2A Net. We use word2vector model [23] to represent the
text input, which has been trained on the Wikipedia corpus.
It is a 1000-dimensional vector for each category name. T2A
Net is a two-layer neural network that is used to establish the
word vectors to attributes projection. iii) A2H Net. Unlike
the existing deep cross-modal hashing methods that generate
hash codes from two independent networks (one for image,
and the other for text), AgNet accomplishes the hash codes
generation only with a single three-layer neural network.
Specifically, it utilizes the predicted attribute vectors (or called
attribute embedding vectors) as input, and outputs both visual
and textual hash codes. Table II shows the configuration of
AgNet. AgNet consists of 1.3 million parameters. It needs
to be highlighted that the architecture of the neural network
is not the focus of this work, what we want to prove is that
attribute-guided framework is reasonable and beneficial for the
performance of CMZSH.

C. Objective Function

We first design the objective functions for the V2A Net
and the T2A Net, whose purpose is to transform the inputs
of image and text to the attribute space. Their transformation
functions are denoted as fv and ft, respectively. Let â

(v)
i =

fv (xi; θv) ∈ Rd denote the predicted attribute vector of each

visual representation xi while â
(t)
i = ft (zi; θt) ∈ Rd denotes

the predicted attribute vector of each textual representation
zi. Given a training set of instances and their corresponding
category attribute vectors, the V2A Net and the T2A Net are
both trained with the cross-entropy objective function:

Latt = −
1

N

N∑
i=1

ai
T log (âi) + (1− ai)

T
log(1− âi), (1)

where ai denotes the attribute vector, and âi is the predicted
attribute vector â

(v)
i for V2A Net or â

(t)
i for T2A Net. This

objective function ensures that the predicted attribute vectors
approximate to the distribution of original attribute vectors.

Then, the key challenge is how to realize the purpose of
A2H Net, i.e., to generate two individual hash codes for image
and text from the attribute space. We design three functions
to achieve this purpose: i) category similarity loss; ii) attribute
similarity loss; and iii) regularization loss.

Inspired by DCMH [21], we utilize the category similarity
loss to ensure the different predicted attribute vectors of
different modalities in the same category can generate similar
hash codes, while those in different categories have distinct d-
ifferences. Given the predicted attribute vectorsâ(v) and â(t) of
image and text, respectively, denote P∗i = g

(
â

(v)

i ; θh

)
∈ Rc

and Q∗i = g
(
â

(t)

i ; θh

)
∈ Rc as their outputs of A2H Net,

where g is the transformation function for A2H Net and θ
is the parameters for it. Moreover, use Θij = 1

2P∗i
TQ∗j to

represent the neighbor relationship between P∗i and Q∗j in
the Hamming space . Denote S(c) ∈ Rn×nas the category
similarity, where S

(c)
ij = 1 when yi = yj and S

(c)
ij = 0

otherwise. By using the negative log likelihood of the inter-
modal similarities, we formulate the category similarity loss
as:

Lcs = −
N∑

i,j=1

(
S
(c)
ij Θij − log

(
1 + eΘij

))
. (2)

By minimizing this objective function, the Hamming dis-
tances for those instances within the same category but with
different modalities are reduced, whereas the distances are
getting larger for those with different categories. Therefore, the
category similarity is preserved between different modalities.

In addition, an effective hash code should also be equipped
with the discriminative ability in a single modality. Hence,
attribute similarity matrix S(att) is introduced to make the
intra-modal hash codes more discriminable. Let S(att)

ij =

cos (ai,aj) − S(c)
ij , where cos (ai,aj) is the cosine distance

between attribute vectors of ai and aj . S(att)is a modified
cosine similarity, which is used to measure the semantic
similarities among different categories. Different from the
binary label similarity S(c), S(att) utilizes a real-value to
describe the similarities among different categories. It is used
in the attribute similarity loss Las as a guide for the generation
of visual hash codes. Specifically, if two attribute vectors
from different categories are similar, their corresponding visual
instances should be given a higher penalty such that their hash
codes have higher discriminative ability. If two instances are
from the same category, we do not give them penalty, that is
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why S(c) is subtracted. The attribute similarity loss is defined
as follow:

Las =
N∑

i,j=1

σ
(
φi,jS

(att)
i,j

)
, (3)

where φij = 1
2PT
∗iP∗j represents the neighbor relationship of

P∗i and P∗j in Hamming space, and σ (•) denotes the sigmoid
function. The sigmoid function is applied to restrict the scope
of this term. By minimizing this term, those instances closed
in the attribute space and from different categories will be
uncoupled in the Hamming space.

Meanwhile, we use ‖B−P‖2F to make P approximate to
hash codes. And

∥∥PT1
∥∥2
F

ensures each bit of the hash codes is
balanced. Then, the regularization loss is formulated as follow:

Lreg = ‖B−P‖2F +
∥∥PT1

∥∥2
F
, (4)

where B = sign (P) , 1 denotes a vector with all elements
being 1.

Therefore, the overall objective function of the A2H Net is
written as follow:

LA2H = Lcs + λLas + ηLreg

= −
N∑

i,j=1

(
S
(c)
ij Θij − log

(
1 + eΘij

))
+

N∑
i,j=1

λσ
(
φi,jS

(att)
i,j

)
+ η

(
‖B−P‖2F +

∥∥PT1
∥∥2
F

)
,

(5)
where λ and η are trade-off parameters to control the weight
of each item.

D. Optimization

Our AgNet is trained in two steps. Firstly, V2A Net and T2A
Net are separately learned with cross entropy functions. Then,
using the predicted attribute vectors from two modalities,
we train A2H Net according to Eq. (5). Back Propagation
algorithm is adopted to optimize AgNet. For Eq.(5), the
gradient of LA2H

∂P∗i
is calculated with:

LA2H

∂P∗i
=

1

2

N∑
j=1

(
σ(Θij)− S

(c)
ij Q∗j

)
+

1

2

N∑
j=1

λP∗jS
(att)
i,j σ(φi,jS

(att)
i,j )(1− σ(φi,jS(att)

i,j ))

+ 2η (P∗i −B∗i) + 2ηPT
∗i1.

(6)
Then, the gradient of weight in A2H Net can be calculated

with LA2H

∂P∗i
according to chain rule. The details of training A2H

Net are shown in Algorithm 1. Using mini-batch Stochastic
Gradient Descent algorithm, we fix the batch size to be 32.
The initial learning rate is set as 10−3 and decreased by 0.01%
for each iteration. We choose the hyperparameter λ and η in
AgNet according to the results on validation set and find the
best performances can be achieved with λ = η = 1. Therefore,
we set λ = η = 1. The convergence curve of AgNet is shown
in Fig.3, AgNet reaches a stable objective function value at

Algorithm 1 Algorithm for training A2H Net.
Input:
The predicted visual attribute vectors â(v),
the predicted textual attribute vectors â(t),
label matrix Y and attribute matrix A .
Output:

Parameters θ in the A2H Net and binary codes B.
1: Initialization: Randomly initialize parameters θh of A2H

Net, set mini-batch M = 32 and iteration number l =
bN/Mc.

2: Repeat
3: for iter = 1, 2, ..., l do
4: Randomly sample M instances.
5: Calculate category similarity S(c).
6: Calculate attribute similarity S(att).
7: Calculate Q and P by forward propagation, respec-

tively.
8: Get the corresponding binary code B.
9: Update the parameter θ by back propagation.

10: until a fixed number of iterations.
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Fig. 3. Convergence curve of AgNet on AwA dataset.

the 30-th epoch, which indicates the efficiency of AgNet. Our
neural network is implemented with TensorFlow library on an
NVIDIA 1080ti GPU server.

IV. EXPERIMENT

In this section, we implement both the single-model and
cross-modal zero-shot retrieval tasks, i.e., IBIR and TBIR,
on three benchmark datasets. And we compare the proposed
AgNet approach with several existing state-of-the-art methods
to demonstrate its effectiveness.

A. Datasets

Animals with Attributes (AwA) [28]. AwA dataset consists
of 30,475 images from 50 animal categories and 85 associated
class-level attributes. It is a popular dataset for ZSL. We follow
the standard seen/unseen split [28], where 40 categories with
24,295 images are taken as the seen domain and the remaining
10 categories with 6,180 images are adopted as the unseen
domain.

Page 13 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6

TABLE III
Results on three benchmark datasets in Mean Average Precision (%) on CMZSH task. The best results are marked in bold.

Method AwA SUN ImageNet
8bits 16bits 32bits 48bits 64bits 8bits 16bits 32bits 48bits 64bits 8bits 16bits 32bits 48bits 64bits

SCMH [18] 15.2 14.2 14.1 12.6 12.1 15.1 16.2 19.1 21.4 18.8 1.46 1.88 2.06 1.84 1.73
SMFH [20] 17.7 19.3 21.5 22.9 21.6 12.6 12.1 12.4 12.6 13.1 1.38 1.33 2.00 2.23 2.40
DCMH [21] 11.9 9.8 12.7 9.8 10.3 12.3 12.6 13.7 13.5 14.1 1.00 1.04 1.03 1.00 1.01
DCMH-G 12.4 10.1 11.8 12.3 13.5 13.4 12.8 12.7 13.2 14.0 1.19 1.27 1.38 1.62 1.57
FSH [17] 12.7 14.1 14.2 12.6 12.1 19.7 20.8 16.2 18.7 16.5 1.44 1.95 2.31 2.65 2.72

AgNet 41.9 50.1 56.1 58.1 58.8 21.1 21.3 23.5 24.5 26.6 3.80 5.26 5.89 5.98 5.77

SUN attribute [33]. It is another widely used dataset
in ZSL, which consists of 717 scene categories annotated
by 102 attributes. Each category has 20 images, and there
are totally 14,340 images. Following [34], we utilize 707
categories as the seen domain and the other 10 categories as
the unseen domain. It is worth noting that SUN dataset has
image-level attribute annotations and its attribute is real-value.
We utilize binary class-level attribute annotations in AgNet
with the following consideration: 1) We view the attribute
prediction as the classification problem, where labels used in
deep neural network are usually in the form of one-hot code.
2) Binary label increases the sparsity of annotation. 3) The
calculation of attribute similarity involves class-level category
similarity, which makes it necessary to transfer the image-level
annotation into the class-level. To get the class-level binary
attribute annotations, we first calculate the average value for
each category and then ceil the mean values to get the binary
attributes.

ImageNet [35]. ImageNet is a large-scale image dataset
organized according to the Word-Net [36] hierarchy. As no
attribute is annotated for this dataset, in our experiment, we use
AwA dataset as an auxiliary dataset to construct the training
set. Specifically, after removing 10 similar categories shared
by two datasets1, we choose 40 categories with 21,832 images
from AwA as seen domain and 100 animal categories with
129,622 images from ILSVRC2012 as the unseen domain.

B. Cross-Modal Zero-Shot Hashing

Under cross-modal zero-shot retrieval setting, i.e., TBIR,
the seen data are used for training the model. At the testing
stage, the names of unseen categories are used as queries for
retrieving images from the unseen domain.

Since the existing ZSH approaches cannot tackle the cross-
modal retrieval task, we choose the CMH approaches for
comparison. Four existing state-of-the-art CMH approaches
are selected for comparison, where SCMH [18], SMFH [20],
and DCMH [21] are three representative supervised CMH
methods, while FSH [17] is an unsupervised CMH method. As
the backbone net of visual modality in DCMH is a variant of
AlexNet [39], we perform an additional experiment on DCMH
by replacing it with GoogleNet for fair comparison, which is
denoted as DCMH-G. For all comparative approaches, we use
the codes provided by the authors. As DCMH is an end-to-
end CMH method, we utilize raw images as input. The others

1We eliminate 10 categories (i.e., dalmatian, collie, german shepherd,
chihuahua, persian cat, siamese cat, bobcat, horse, deer, sheep) from AwA
to construct the seen domain.

adopt the same visual features as ours, that is, the GoogleNet
features [32] fine-tuned in the training set. Besides, we use the
word2vec features [23] as textual features for all methods.

We use the Mean Average Precision (mAP) to evaluate
the performances of the proposed AgNet and the comparative
approaches. To observe the performance under different code
lengths, we set the code length with 8, 16, 32, 48 and 64 bits
, respectively. From the results shown in Table III, we have
the following observations: i) The proposed AgNet achieves
the best performance on all three datasets consistently. All the
comparative approaches have a relatively poor performance.
This is mainly due to the reason that they are not designed
for zero-shot settings, which leads to a worse generalization
ability on the unseen domains. Specifically, it has a significant
improvement on AwA dataset. For instance, the mAP perfor-
mance of AgNet is 58.1% with 48 bits, which has a 35.2%
absolute gain than that of the second best method SMFH. ii)
The performances of AgNet on SUN dataset are inferior to
those on AwA dataset. This is partly due to the fact that SUN is
a fine-grained dataset in which there are few diversities in each
category, making the learned hash codes be less discriminative.
iii) AgNet also has a relatively small promotion on the large-
scale ImageNet. Considering that the numbers of both the
testing categories and instances in ImageNet are far more than
those in AwA and SUN datasets, the improvements are still
impressive. iv) The mAP performances of AgNet are positively
related to code length in most situations, which indicates that
the discriminative ability of hash codes increases with the
growth of code length. By contrast, the mAP performances of
comparative methods are unstable and without such a property.
In a word, the experimental results clearly demonstrate the
superiority of the proposed AgNet approach in CMZSH task.

C. Single-Modal Zero-Shot Hashing

The existing ZSH methods mainly focus on single-modal re-
trieval, i.e., the query set and retrieval set are both constructed
with the images. To evaluate the generalization of AgNet, we
also implement AgNet in the single-modal ZSH task. As the
scale of the unseen domain in SUN is insufficient to evaluate
the performance of image retrieval task, we just implement
single-model retrieval on AwA and ImageNet datasets.

Following [12] and [13], we randomly choose 10,000 in-
stances from seen domain to construct the training set. As
for testing, we randomly select 1,000 images from the unseen
domain as the query set. The remaining unseen images and
all seen domain images form the retrieval set.
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We select the following state-of-the-art hashing methods as
the baselines. IMH [37] and ITQ [5] are two representative
unsupervised hashing methods, SDH [6], TSK [12] and SitNet
[13] are three supervised hashing methods. In addition, TSK
and SitNet are specially designed for zero-shot retrieval. The
mAP and Precision within Hamming radius 2 are adopted
as the evaluation metrics in this task. For all comparative
approaches, we utilize GoogleNet features fine-tuned in the
training set as the visual features. Following [13], we set the
code length to be 8, 16, 32, and 48 bits, respectively.

ITQ[5] SDH[6] IMH[37] TSK[12] AgNet
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Fig. 4. Performances (mAP and Precision) of different methods for single-
modal zero-shot hashing task on AwA dataset.
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Fig. 5. Performances (mAP and Precision) of SitNet and AgNet for single-
modal zero-shot hashing task on AwA dataset.

1) Experimental results on AwA: All the comparative ap-
proaches are implemented by ourselves with the code provided
by the authors, except for SitNet. The results of SitNet are
directly cited from the original paper [13]. It should be noted

that the split of seen and unseen domain in SitNet has a slight
difference with ours. SitNet randomly chooses 10 categories
as unseen domain, while we follow the standard split [28] in
this work. We follow this setting to make our work repeatable.
For fair comparison, we randomly split the seen and unseen
domain following the SitNet and individually compare AgNet
and SitNet.

The performances of AgNet and the comparative methods
on AwA dataset are reported in Fig. 4 and Fig. 5, respectively.
As we can see, the proposed AgNet achieves the best mAP
performance in most cases. For example, AgNet gains 18.8%
on 32 bits, which has an improvement against SitNet by 7.4%
in the same code length. Besides, the mAP performances of
AgNet keep improving with the increase of code length, which
is similar to the phenomenon in the cross-modal retrieval task.
As for Precision, AgNet exceeds all comparative methods in
the code length of 32 and 48 bits, and only achieves a slightly
inferior performance on 8 and 16 bits. Moreover, there is a
slight drop from 32 bits to 48 bits in the precision performance
of AgNet, indicating that we need to choose a suitable code
length to guarantee the retrieval performance.

ITQ[5] SDH[6] IMH[37] TSK[12] AgNet
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Fig. 6. Performances (mAP and Precision) of different methods for single-
modal zero-shot hashing task on ImageNet dataset.

2) Experimental results on ImageNet: The comparative
experiments are reported in Fig. 6. Note that SitNet [13] is not
selected for comparison in this dataset since its experimental
setting is different from ours. It can be observed that AgNet
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TABLE IV
Performances (mAP / Precision) of AgNet and AgNet-vis on ImageNet

dataset on SMZSH task. The best results are marked in bold.

Method 8bits 16bits 32bits 48bits
AgNet-vis 4.33 / 2.41 5.66 / 5.11 6.92 / 10.7 8.22 / 15.71

AgNet 4.40 / 2.80 6.09 / 7.31 6.94 / 13.33 8.46 / 17.51
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Fig. 7. Performances of AgNet with different number of attributes on AwA
dataset.

outperforms all comparative methods with significant margins
in all code lengths. Besides, the performances of unsuper-
vised methods surpass those of the conventional supervised
method, i.e., SDH. Without using the supervision information,
unsupervised methods exploit the inherent property of visual
representations to generate hash codes and avoid suffering
from the misleading of supervision information of seen cat-
egories in zero-shot setting. However, by utilizing semantic
information as the transferable supervision information, AgNet
and TSK mitigate the influence of zero-shot problem and
outperform both unsupervised and conventional supervised
hashing methods on ImageNet dataset.

3) The contribution of T2A Net for SMZSH task: It can be
noticed that T2A net of AgNet is adopted on SMZSH task.To
evaluate the effect of T2A Net, we implement experiment with
a visual version of AgNet, which is denoted as AgNet-vis,
on ImageNet dataset. The main different between AgNet and
AgNet-vis is that Agnet-vis removes the T2A Net. In addition,
to maintain the category similarity, AgNet-vis replaces Θij =
1
2P∗i

TQ∗j with φij = 1
2PT
∗iP∗j in category similarity loss

function. The experimental results on ImageNet is shown in
Table IV. It can be observed that AgNet outperforms AgNet-
vis in all code lengths consistently, which demonstrates that
the additional textual information is beneficial to generation
of effective visual hash codes.

D. Effects of Attributes

As our algorithm is an attribute-based method, the per-
formance of the learned attribute space will affect the dis-
criminative ability of hash codes. In this part, we implement
some experiments to analyze the impact of the attribute
space, including the scale of attribute space and the attribute
prediction accuracy to the final performances.

To evaluate the influence of attribute space scale, we vary
the number of attributes from 10 to 80 with the interval of
10. In consideration of the difference on attributes, we report
the average performance of 5 trials for each number by fixing
the code length as 64 bits. The curve of CMZSH in terms of
mAP is shown in Fig. 7.

Fig. 8. (a)The distribution of binary attribute tags on AwA and SUN. (b)The
results of positive-error distance on AwA and SUN.

Fig. 9. Confusion matrix of AgNet on AwA, where the columns are the
categories that visual hash codes belong to and the rows are the categories of
textual hash codes that visual hash codes are close to.

It can be observed that the mAP performance increases
with the growth of attribute number. Specifically, there is a
giant leap when attribute number changes from 10 to 20. It
indicates that more attributes are required to guarantee the
discriminative ability. Besides, when the amount of attribute
is large enough, the increasing scope turns to saturation.

In addition, the attribute prediction accuracy also plays a
significant role in the performance of AgNet. The previous
experiment in cross-modal task has demonstrated that the
performances of AgNet on SUN are inferior to those on AwA.
The underlying reason may be that the attribute prediction
accuracy on SUN is inferior to those on AwA. Therefore, we
analyze the attribute prediction accuracy on both datasets.

According to the distribution of binary attribute tags on
AwA and SUN, as is shown in Fig. 8(a), it can be easily
noticed that the tags of AwA and SUN are biased to 0. There-
fore, we propose to utilize the positive-error distance(PED) to
evaluate the prediction accuracy, which is defined as:

D =

N∑
i

d∑
j

Aji

∣∣∣Aji − Âji

∣∣∣
N∑
i

d∑
j

Aji

, (7)

where Â∗i denotes the predicted attribute vector and A∗i de-
notes the ground-truth attribute vector, d is the dimensionality
of A∗i and N is the number of instances. Using Eq. (7), the
distances between A∗i and Â∗i are calculated when Aji = 1.

The results are reported in Fig. 8(b), which demonstrate
that the attribute prediction on AWA is closer to the ground
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Fig. 10. t-SNE visualization of unseen instances on AWA dataset. Points denote visual representations and triangles denote text representations. (a) The
visualization of attribute predictions. (b) The visualization of outputs from the last layer in A2H Net.

truth than that on SUN. The PED of visual modality and
textual modality on SUN are larger than that on AwA in 70.1%
and 61.4%, respectively. Thereby, the attribute prediction on
AwA is more discriminable than that on SUN, which further
interprets the better performance of AgNet on AwA than those
on SUN.

E. Visualization

To further evaluate the performance of AgNet in each cat-
egory, taking AwA dataset for example, we utilize confusion
matrix to visualize the neighbor relationship between textual
hash codes and visual hash codes of AgNet. We fix the code
length to 64 bits. The result is shown in Fig. 9, where each
column denotes the categories that visual instances belong to,
and each row is the categories of textual instances that visual
instances are close to. It can be observed that most instances
are concentrated in the diagonal line, which indicates that
visual instances are close to the text instance with the same
category in most situations. However, there still exists some
confusions in some categories. Take “seal” as example, about
40% of visual instances are close to “humpback whale”. The
main underlying reason is that both categories are marine ani-
mal with a lot of similar attributes, which misguides the model
to generate the similar hash codes for both categories. This
means that the performance of AgNet in similar categories
should be further improved in future.

In addition, the hash codes need to preserve the neighbor
relationship of the original features. As for AgNet, we use
A2H Net to generate hash codes from both the textual and
visual modalities. In this part, we use t-SNE [38] to visualize
the performance of A2H Net on the unseen domain. Instead
of adopting the binary codes that are difficult to generate
effective cluster with t-SNE, we utilize attribute predictions
and outputs from the last layer in A2H Net as the inputs
for t-SNE. As is illustrated in Fig. 10, we can observe that
the similarity relationship in attribute space has been well
preserved in the hash space. For instance, the visual and textual
instances from “leopard” matain the same relationships with
other classificatory instances in attribute and hash space.

V. CONCLUSION

In this paper, we have proposed a deep hashing neural net-
work to address the cross-modal zero-shot retrieval problem.

It aligns different modal data into a more high-level semantic
space, i.e., attribute space. Besides, category similarity is
utilized to construct the relationships between different modal-
ities while attribute similarity is introduced to regularize the
distance of similar categories in single modality. Experimental
results on both cross-modal and single-modal retrieval tasks
have demonstrated the superiority of the proposed approach.

In the future, as the acquisition of attribute annotation
requires prior knowledge, we plan to exploit some other
semantic information to formulate the common space, e.g.,
click-through data. We will also apply Hashlayer described
in [40] to control the quantization error. In addition, we will
exploit generative methods, e.g., GAN and VAE, to establish
more robust embedding in zero-shot hashing.
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