
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

CityFlow: exploiting edge computing for large scale
smart city applications

Nam Ky Giang, Victor C.M. Leung
Electrical and Computer Engineering
The University of British Columbia

Vancouver, Canada
{kyng, vleung}@ece.ubc.ca

Makoto Kawano, Takuro Yonezawa, Jin
Nakazawa

Graduate School of Media and
Governance

Keio University
Fujisawa, Japan

{makora, takuro, jin}@ht.sfc.keio.ac.jp

Rodger Lea, Matt Broadbent
Computing and Communications

Lancaster University
Lancaster, U.K.

{ r.lea1, m.broadbent}@lancaster.ac.uk

Abstract—This paper presents an approach to supporting
the development process for large-scale smart city applications
that leverage edge computing resources. A smart city testbed
called CitiFlow is developed, which uses Distributed Node-RED
as the underlying middleware to facilitate the decomposition
and communication among sub components of large scale smart
city applications. For the evaluation, a lab-based setup and a
real world deployment were executed and are presented.

Keywords—Fog, Edge computing, Smart Cities, IoT

I. INTRODUCTION
The development of Smart Cities, and the applications that

provide services has benefited from a number of new
technologies including the growing use of Fog/Edge
computing technologies [1]. However, while these
technologies offer significant benefits it is still the case that
developing applications to exploit them is complex and time
consuming and that truly large-scale smart city applications
are still in their infancy. In this paper, we highlight some of
these technical challenges and then describe our research
efforts to develop a platform, CityFlow, that is designed to
address these challenges and to encourage the development
and deployment of large-scale city applications. We validate
the approach using a lab-based trial and a real-world
deployment.

II. ISSUES AFFECTING THE DESIGN OF LARGE SCALE SMART
CITY APPLICATIONS

There are a number of technical challenges that must be
addressed when developing and deploying large-scale city
wide applications. These include:

A. Geographic Distribution of Smart City Computing
Systems
Large scale smart city applications may range from smart

buildings to smart city or regions spanning metro areas of
larger geographical groupings. This large-scale geographic
distribution has several consequences that influence the way
applications are developed.

Firstly, the computing resources are generally
communicating over a heterogeneous network that involves
1) different communication mediums (e.g Wi-Fi, LTE, Wired,
etc) and 2) a mix of static and dynamic endpoints with
different reachability (e.g direct IP addresses vs behind NAT).
This heterogeneity makes it more difficult for inter-device
communication. In large scale city applications, these
communication details should not hinder the development of
the application in general. Theefore, the developers should be
provided with programming tools and primitives that allows
them to focus only on the application logic.

Second, due to the large scale distribution of computing
resources, their physical location, or in general their physical
context, becomes an important factor in the city computing
application model. For instance, if there are many instances of
smart vehicles with a dash camera, and the city is interested in
understanding the road conditions in a specific location, only
the dash cameras in that area should upload images for
analysis.

B. Dynamic Nature of Edge Devices
Due to the close bonding with the physical world, edge

devices often exhibit a highly dynamic nature, in terms of both
load fluctuation and context changes (e.g. location changes
when edge nodes are mobile). While load balancing and
dynamic scaling is commonly used in cloud computing to
cope with the fluctuation in application load, it is more
difficult to do the same in the edge. This is partly because edge
resources are not as centralized and readily available as cloud
computing resources so that it is harder to scale horizontally.
The other reason is that the heterogeneous networking
environment makes it difficult to locate resources for the load
balancing task.

In addition to load fluctuation, changes in physical context
such as location, which as described in the previous section
plays an important role in IoT applications, requires a certain
level of context monitoring and situational re-evaluation. The

rodger lea
PrePrint: Cite Final Version as: Giang, N. K., Leung, V. C. M., Kawano, M., Yonezawa, T., Nakazawa, J., Lea, R. & Broadbent, M., 2019, IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE press

involvement of dynamic physical context also leads to the
question of how to expose the context information to
programming primitives or constructs that developers can use
to build the application. Returning to our previous example of
cars and dash cameras, a city wide monitoring application,
distributed across all cars in the city would use the contextual
data - their locations - to coordinate the communication, i.e.
to route the sensing streams to the appropriate processing and
analysis nodes.

C. Ease of development
Developing applications that are able to scale and adapt to

the dynamic nature of city environments is in itself an issue.
Programming languages and toolchains that have evolved to
facilitate the development of more traditional applications
often lack the features needed to address, and in some cases
exploit, the scale and dynamic nature of smart city computing
infrastructure. In particular, we believe that the following
factors are critical:

• Easy component reuse

• Abstract communication among components

• Scaling via automatic replication

• Adaptability to run-time changes

• Suitability for a range of skills

III. CITY FLOW
CityFlow is a new Smart City development environment

that attempts to address the issues outlined in the previous
section. It combines an edge process framework, called
Distributed Node-RED, which is an extension of the popular
visual programming tool for the IoT Node-RED, with a city
scale messaging and communication framework SOXfire
used as a universal sensor data exchange mechanism.
CityFlow is the result of ongoing research as part of the
BigClouT Smart City research project1.

A. Distributed Node-RED.
Node-RED is a dataflow-based visual programming tool

and language for IoT applications. Dataflow is a natural
programming model represented as a directed graph of
processing nodes, each of which representing a resource. The
applications are developed by dragging and dropping
processing nodes onto a canvas, and ‘wiring’ the nodes

1 BigClout project: http://bigclout.eu/

together. The wires represent communication paths between
nodes. The resulting application is referred to as a “flow”,
which can be deployed to a single device. However, Node-
RED has no support for distributed edge environments.

Distributed Node-RED (DNR) is an extension of Node-
RED for distributed environments [3, 4]. There are three
notable extensions, which are described below. The first
extension is the notion of a device	 within the dataflow
language. This notion enables individual hardware devices to
be uniquely identified in a distributed environment. The
device also carries a set of characteristics. This allows the user
to determine which device(s) a node should be deployed to
and executed on; for example, mobile devices, embedded
computers, and cloud servers.

The second extension is the notion of remote	 wires.
Remote	 wires make it possible to support inter-device
communication so that the nodes running on distributed
separate devices can send the data. These wires are
implemented by using a publish/subscribe communication
mechanism. For instance, assuming that node A sends the data
to node B. Then node A publishes the data to the
communication broker so that node A does not need to know
where node B is. Similarly, node B subscribes to the
communication broker so that node B can receive the data
without needing to know its source node. Additionally, using
remote	wires logically separates the process so that highly
computational processes can be conducted on the multiple
edge devices without using cloud computing.

The last extension is the constraint	primitive, used as a
broader abstraction that specifies how a node is deployed and
run in a distributed setting. Accordingly, every node in a
dataflow is attached with a constraint, property that defines
how the deployment is conducted. This constraint	indicates
requirements on device identification, computing resources
such as CPU and memory, and physical location. For
example, by using the constraint, we could restrict a sensor
processing flow so this it only runs on a device mounted on a
moving vehicle, located within a certain geographic area.

By using DNR for CityFlow, developers can concentrate
on developing ML applications without knowing which
devices and data resources are used. For more details or other
extensions of DNR, see [4].

Figure 2. Simple DNR application designed to analyse
traffic using image recognition

Process Manager
Process 1 Process 2 Process n

Resource Manager
Sensor Camera Resource n

Node-RED & Communication
SOX (Node)

+ +

DNR Editor/Broker
SOX Brokers

Cloud Servers / ML Training

+ Any Edge Devices + IoT

Process Manager
Process 1 Process 2 Process n

Resource Manager
Sensor Camera Resource n

Node-RED & Communication
SOX (Node)

Process Manager
Process 1 Process 2 Process n

Resource Manager
Sensor Camera Resource n

Node-RED & Communication
SOX (Node)

: DNR Connection

: SOX Connection

: Virtual Connection

Each Layer doesn’t care
about each other

Figure 1. Overview of CityFlow.

B. Sensor-Over-XMPP Node
CityFlow offers a node implemented in DNR that handles

Sensor-Over-XMPP (SOX). SOX is the specification of
SOXFire [9] which is a universal sensor data exchange
system. This utilizes the Internet protocol of the open XML
format (XMPP), typically used for chat communications, to
represent the meta information. By using SOX nodes, data
from physical sensors and virtual sensors can be treated
uniformly allowing application developers to focus on the
algorithms rather than issues of data gathering. Furthermore,
because our focus is on distributed applications/algorithms,
communication transparency is necessary to support highly
distributed processing, such as Machine Learning (ML),
where the model is distributed to the edge devices all over a
city to conduct prediction locally.

IV. EVALUATING CITYFLOW

A. Lab Study: car recognition for traffic flow analysis
Since realizing large scale application in a real world

setting is difficult, an initial lab-based implementation has
been developed that mimics the core application scenario.

The application aims to analyse traffic flows at busy city
intersections by using image recognition to determine the type
and number of cars and trucks flowing through the
intersection. Figure. 2 shows the development of our example
application using DNR. As can be seen, the application model
consists of a data flow graph of the involved software
components and the context-dependent constraints that are
applied onto each software components. When the application
is deployed onto the pool of participating devices, each device
will process the application and all the associated context-
dependent constraints. It then reasons about whether or not to
enable certain components, as well as to fetch/redirect data
from/to any external devices.

In our lab setup we deploy this application to a simple set
of devices. Specifically, we have two embedded boards, one
desktop computer and one laptop that participate in the
distributed application. With regard to the software
components involved, we still have one component that
captures the camera feed (through playing a video footage),
the data is sent to a background subtraction component to
extract the foreground running cars, which are subsequently
classified by a neural network classification model.

The lab-based experimental setup is seen in Figure. 3 . In
our setup, we name the desktop computer 152, the two

Figure	4.	Road	damage	detection	application	in	CityFlow.		

embedded boards 117 and 198. For the sake of simplicity,
these numerical identification is manually named after their
IP addresses in our local network. For example, if one’s IP
address is 192.168.1.117, it is named 117. Since these naming
becomes irrelevant in large scale deployment, our DNR
platform can constraint the execution of software components
on devices using their physical context such as the level of
memory usage, or their locations. To accomplish this, device
117 and 198 are configured with a predefined latitude and
longitude. Our application is developed so that the video
source and background subtraction components are
constrained to run on a desktop computer, thus the device 152
while the neural network image classification component is
constrained to run at a certain location (e.g downtown).

On deployment, this constraint resolves to the two
embedded boards with pre-configured coordinates. There are
also device capability constraints applied to the image
classification component so that it only runs on devices with
a minimal amount of network bandwidth.

This essentially demonstrates the load-balancing
capability of the system, which in turn, highlights its dynamic
nature. That is, our coordination platform has to periodically
monitor the devices’ network bandwidth to make the
coordination decision as to which device to send the car
images stream to. Since we let the developer to explicitly
specify the network bandwidth threshold at which the load-
balancing coordination is triggered, the example also shows
how physical status of the underlying computing
infrastructure (e.g current network consumption of devices)
can affect the correctness of the application logic (e.g only run
this component on devices that have minimum available
bandwidth).

Our lab-based setup allows us to verify the behaviour of
our example application when it is distributed to a number of
devices. It also shows that the application model itself is
scalable as it does not rely on any specific deployment details.
These could be what types of devices are involved, where are
they located, which network connection they are on, etc. In
large scale applications, this is an important characteristic of
the application model, which is also known as a
programming-in-the-large approach.

B. Real World deployment: Road Damage Detection
Following on from our lab study, we use a road damage

detection application as a first case real-world study, with a
focus on road line markings. This application has been
deployed to garbage trucks in the city of Fujisawa, Japan, and
runs live, gathering information on the status of the road
network for city officials. Figure 3. Lab setup for our example fog application.

Although road damage is a common problem, in many
cities, inspection is still conducted by sight. This manual
visual inspection is resource intensive and expensive.
Therefore, we have to explore ways to inspect the city
infrastructures, especially roads, at low cost. Recent work by
Kawano et al. [5] proposed a method for road inspection using
recorded images from cameras mounted on garbage trucks.
However their approach relied on central cloud processing
which is inefficient and costly in terms of processing and
communications and fails to handle local privacy issues.
Simultaneously, since they adopted an object detection
approach [6] which uses a large neural network, it is difficult
to work on edge devices.

Moreover, we have to treat a covariate shift [6, 7] in the
city. The covariate shift occurs because the relationship
between the data and the desired output does not differ but the
difference of the marginal distribution between a training
dataset and a test dataset. We assume that the covariate shift
exists in the city, as the distribution of the data from the city
often varies significantly in spatial and in temporal domains,
namely, a spatial-temporal covariate shift. Our application to
address these problems, implemented using CityFlow,
operates as follows Figure 4:

The	 flow	 of	 Figure	 4	 top.	 In order to deploy the
networks to edge devices and cope with a spatial-temporal
covariate shift, the neural network is separated into feature	
extractor	node and damage	detector	node and deployed to
different edge devices on the truck, respectively.
Consequently, we can adopt a domain	adaptation	learning	
approach [2], so that we can exchange the damage detector in
order to treat the spatial-temporal covariate shift. Then, when
the damaged road is detected through these networks nodes,
the location of it and the degree of the damage are published
to SOXFire via SOX Node (sox-out in the flow).

The	flow	of	Figure	4	bottom.	When multiple garbage
trucks confirm an area of road damage, one truck is designated

to upload a partial video of the area. A SOX-in node receives
the location and the damage information, and the next node
compares the location of the truck with it. If it is true, the
driving recorder mounted on the truck sends the videos after
anonymizing to the cloud visualization application. Before
uploading, information related to the person such as faces or
car matriculation plates is removed if the video contains them.
Upload and display the videos in a suitable application for
confirmation by city staff and the staff will fix the road.

V. CONCLUSION AND FUTURE WORK
While we are still at an early stage, it is clear that the

CityFlow platform is a powerful tool for developing and
deploying large scale smart city applications. In particular, our

real-world trial using Fujisawa City garbage trucks, has
validates the overall platform and the ability to easily develop
and deploy sophisticated applications that combine advanced
ML algorithms with distributed processing.

Our first area of ongoing research is focused on the issue
of coordination among the distributed elements of the smart
city applications and in particular on how we support
exogenous co-ordination. More details of our initial efforts
can be found in [3]. Secondly, we are exploring distributed
ML algorithms and aim to extend CityFlow with explicit
support for distributed learning. Finally, although we have
deployed CityFlow in a real world context in Fujisawa, we are
keen to extend both the scale of our applications, and the
geographical reach and hope to deploy to other cities in the
BigClouT project in the near future.

ACKNOWLEDGEMENT
This work was supported in part by National Institute of

Information and Communications Technology and in part by
H2020-EUJ-2016 EU-Japan joint research project, BigClouT
(Grant Agreement N723139)

REFERENCES
[1] Lea, R.: Smart Cities: An overview of the technology trends driving

Smart Cities. IEEE press, March 2017,
http://doi.org/10.13140/RG.2.2.15303.39840

[2] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H.,
Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial
training of neural networks. The Journal of Machine Learning
Research 17(1), 2096–2030 (2016)

[3] Giang, N.K., Lea, R., Leung, V.C.M.: Exogenous coordination for
building fog-based cyber physical social computing and networking
systems. IEEE Access 6, 31740–31749 (2018).
https://doi.org/10.1109/ACCESS.2018.2844336

[4] Giang, N.K., Lea, R., Blackstock, M., Leung, V.C.M.: Fog at the edge:
Experiences building an edge computing platform. In: 2018 IEEE
International Conference on Edge Computing (EDGE) (2018)

[5] Kawano, M., Mikami, K., Yokoyama, S., Yonezawa, T., Nakazawa, J.:
Road marking blur detection with drive recorder. In: 2017 IEEE
International Conference on Big Data (Big Data). pp. 4092–4097 (Dec
2017)

[6] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once:
Unified, real-time object detection. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 779–788
(2016)

[7] Shimodaira, H.: Improving predictive inference under covariate shift
by weighting the log-likelihood function. Journal of statistical planning
and inference 90(2), 227–244 (2000)

[8] Sugiyama, M., Kawanabe, M.: Machine learning in non-stationary
environments: Introduction to covariate shift adaptation. MIT press
(2012)

[9] Yonezawa, T., Ito, T., Nakazawa, J., Tokuda, H.: Soxfire: A universal
sensor network system for sharing social big sensor data in smart cities.
In: Proceedings of the 2nd International Workshop on Smart. p. 2.
ACM (2016)

