
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

CityFlow: exploiting edge computing for large scale 
smart city applications 

 

Nam Ky Giang, Victor C.M. Leung 
Electrical and Computer Engineering 
The University of British Columbia 

Vancouver, Canada 
{kyng, vleung}@ece.ubc.ca 

 

Makoto Kawano, Takuro Yonezawa, Jin 
Nakazawa 

Graduate School of Media and 
Governance 

Keio University 
Fujisawa, Japan 

{makora,  takuro, jin}@ht.sfc.keio.ac.jp 

Rodger Lea, Matt Broadbent 
Computing and Communications 

Lancaster University 
Lancaster, U.K. 

{ r.lea1, m.broadbent}@lancaster.ac.uk

 

Abstract—This paper presents an approach to supporting 
the development process for large-scale smart city applications 
that leverage edge computing resources. A smart city testbed 
called CitiFlow is developed, which uses Distributed Node-RED 
as the underlying middleware to facilitate the decomposition 
and communication among sub components of large scale smart 
city applications. For the evaluation, a lab-based setup and a 
real world deployment were executed and are presented.  
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I. INTRODUCTION 
The development of Smart Cities, and the applications that 

provide services has benefited from a number of new 
technologies including the growing use of Fog/Edge 
computing technologies [1]. However, while these 
technologies offer significant benefits it is still the case that 
developing applications to exploit them is complex and time 
consuming and that truly large-scale smart city applications 
are still in their infancy. In this paper, we highlight some of 
these technical challenges and then describe our research 
efforts to develop a platform, CityFlow, that is designed to 
address these challenges and to encourage the development 
and deployment of large-scale city applications. We validate 
the approach using a lab-based trial and a real-world 
deployment. 

II. ISSUES AFFECTING THE DESIGN OF LARGE SCALE SMART 
CITY APPLICATIONS 

There are a number of technical challenges that must be 
addressed when developing and deploying large-scale city 
wide applications. These include: 

A. Geographic Distribution of Smart City Computing 
Systems  
Large scale smart city applications may range from smart 

buildings to smart city or regions spanning metro areas of 
larger geographical groupings. This large-scale geographic 
distribution has several consequences that influence the way 
applications are developed.  

Firstly, the computing resources are generally 
communicating over a heterogeneous network that involves 
1) different communication mediums (e.g Wi-Fi, LTE, Wired, 
etc) and 2) a mix of static and dynamic endpoints with 
different reachability (e.g direct IP addresses vs behind NAT). 
This heterogeneity makes it more difficult for inter-device 
communication. In large scale city applications, these 
communication details should not hinder the development of 
the application in general. Theefore, the developers should be 
provided with programming tools and primitives that allows 
them to focus only on the application logic.  

Second, due to the large scale distribution of computing 
resources, their physical location, or in general their physical 
context, becomes an important factor in the city computing 
application model. For instance, if there are many instances of 
smart vehicles with a dash camera, and the city is interested in 
understanding the road conditions in a specific location, only 
the dash cameras in that area should upload images for 
analysis. 

B. Dynamic Nature of Edge Devices  
Due to the close bonding with the physical world, edge 

devices often exhibit a highly dynamic nature, in terms of both 
load fluctuation and context changes (e.g. location changes 
when edge nodes are mobile). While load balancing and 
dynamic scaling is commonly used in cloud computing to 
cope with the fluctuation in application load, it is more 
difficult to do the same in the edge. This is partly because edge 
resources are not as centralized and readily available as cloud 
computing resources so that it is harder to scale horizontally. 
The other reason is that the heterogeneous networking 
environment makes it difficult to locate resources for the load 
balancing task.  

In addition to load fluctuation, changes in physical context 
such as location, which as described in the previous section 
plays an important role in IoT applications, requires a certain 
level of context monitoring and situational re-evaluation. The 
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involvement of dynamic physical context also leads to the 
question of how to expose the context information to 
programming primitives or constructs that developers can use 
to build the application. Returning to our previous example of 
cars and dash cameras, a city wide monitoring application, 
distributed across all cars in the city would use the contextual 
data - their locations - to coordinate the communication, i.e. 
to route the sensing streams to the appropriate processing and 
analysis nodes.  

C. Ease of development 
Developing applications that are able to scale and adapt to 

the dynamic nature of city environments is in itself an issue. 
Programming languages and toolchains that have evolved to 
facilitate the development of more traditional applications 
often lack the features needed to address, and in some cases 
exploit, the scale and dynamic nature of smart city computing 
infrastructure. In particular, we believe that the following 
factors are critical:  

• Easy component reuse 

• Abstract communication among components 

• Scaling via automatic replication 

• Adaptability to run-time changes 

• Suitability for a range of skills 

III. CITY FLOW 
CityFlow is a new Smart City development environment 

that attempts to address the issues outlined in the previous 
section. It combines an edge process framework, called 
Distributed Node-RED, which is an extension of the popular 
visual programming tool for the IoT Node-RED, with a city 
scale messaging and communication framework SOXfire 
used as a universal sensor data exchange mechanism. 
CityFlow is the result of ongoing research as part of the 
BigClouT Smart City research project1. 

A. Distributed Node-RED.  
Node-RED is a dataflow-based visual programming tool 

and language for IoT applications. Dataflow is a natural 
programming model represented as a directed graph of 
processing nodes, each of which representing a resource. The 
applications are developed by dragging and dropping 
processing nodes onto a canvas, and ‘wiring’ the nodes 

                                                        
1 BigClout project: http://bigclout.eu/ 

together. The wires represent communication paths between 
nodes. The resulting application is referred to as a “flow”, 
which can be deployed to a single device. However, Node-
RED has no support for distributed edge environments.  

Distributed Node-RED (DNR) is an extension of Node-
RED for distributed environments [3, 4]. There are three 
notable extensions, which are described below. The first 
extension is the notion of a device	 within the dataflow 
language. This notion enables individual hardware devices to 
be uniquely identified in a distributed environment. The 
device also carries a set of characteristics. This allows the user 
to determine which device(s) a node should be deployed to 
and executed on; for example, mobile devices, embedded 
computers, and cloud servers.  

The second extension is the notion of remote	 wires. 
Remote	 wires make it possible to support inter-device 
communication so that the nodes running on distributed 
separate devices can send the data. These wires are 
implemented by using a publish/subscribe communication 
mechanism. For instance, assuming that node A sends the data 
to node B. Then node A publishes the data to the 
communication broker so that node A does not need to know 
where node B is. Similarly, node B subscribes to the 
communication broker so that node B can receive the data 
without needing to know its source node. Additionally, using 
remote	wires logically separates the process so that highly 
computational processes can be conducted on the multiple 
edge devices without using cloud computing.  

The last extension is the constraint	primitive, used as a 
broader abstraction that specifies how a node is deployed and 
run in a distributed setting. Accordingly, every node in a 
dataflow is attached with a constraint, property that defines 
how the deployment is conducted. This constraint	indicates 
requirements on device identification, computing resources 
such as CPU and memory, and physical location. For 
example, by using the constraint, we could restrict a sensor 
processing flow so this it only runs on a device mounted on a 
moving vehicle, located within a certain geographic area.  

By using DNR for CityFlow, developers can concentrate 
on developing ML applications without knowing which 
devices and data resources are used. For more details or other 
extensions of DNR, see [4]. 

Figure 2. Simple DNR application designed to analyse 
traffic using image recognition 
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Figure 1. Overview of CityFlow. 



B. Sensor-Over-XMPP Node  
CityFlow offers a node implemented in DNR that handles 

Sensor-Over-XMPP (SOX). SOX is the specification of 
SOXFire [9] which is a universal sensor data exchange 
system. This utilizes the Internet protocol of the open XML 
format (XMPP), typically used for chat communications, to 
represent the meta information. By using SOX nodes, data 
from physical sensors and virtual sensors can be treated 
uniformly allowing application developers to focus on the 
algorithms rather than issues of data gathering. Furthermore, 
because our focus is on distributed applications/algorithms, 
communication transparency is necessary to support highly 
distributed processing, such as Machine Learning (ML), 
where the model is distributed to the edge devices all over a 
city to conduct prediction locally.  

IV. EVALUATING CITYFLOW  

A. Lab Study: car recognition for traffic flow analysis 
Since realizing large scale application in a real world 

setting is difficult, an initial lab-based implementation has 
been developed that mimics the core application scenario.  

The application aims to analyse traffic flows at busy city 
intersections by using image recognition to determine the type 
and number of cars and trucks flowing through the 
intersection. Figure. 2 shows the development of our example 
application using DNR. As can be seen, the application model 
consists of a data flow graph of the involved software 
components and the context-dependent constraints that are 
applied onto each software components. When the application 
is deployed onto the pool of participating devices, each device 
will process the application and all the associated context-
dependent constraints. It then reasons about whether or not to 
enable certain components, as well as to fetch/redirect data 
from/to any external devices. 

In our lab setup we deploy this application to a simple set 
of devices. Specifically, we have two embedded boards, one 
desktop computer and one laptop that participate in the 
distributed application. With regard to the software 
components involved, we still have one component that 
captures the camera feed (through playing a video footage), 
the data is sent to a background subtraction component to 
extract the foreground running cars, which are subsequently 
classified by a neural network classification model.  

The lab-based experimental setup is seen in Figure. 3 . In 
our setup, we name the desktop computer 152, the two  

  

Figure	4.	Road	damage	detection	application	in	CityFlow.		

embedded boards 117 and 198. For the sake of simplicity, 
these numerical identification is manually named after their 
IP addresses in our local network. For example, if one’s IP 
address is 192.168.1.117, it is named 117. Since these naming 
becomes irrelevant in large scale deployment, our DNR 
platform can constraint the execution of software components 
on devices using their physical context such as the level of 
memory usage, or their locations. To accomplish this, device 
117 and 198 are configured with a predefined latitude and 
longitude. Our application is developed so that the video 
source and background subtraction components are 
constrained to run on a desktop computer, thus the device 152 
while the neural network image classification component is 
constrained to run at a certain location (e.g downtown).  

On deployment, this constraint resolves to the two 
embedded boards with pre-configured coordinates. There are 
also device capability constraints applied to the image 
classification component so that it only runs on devices with 
a minimal amount of network bandwidth.  

This essentially demonstrates the load-balancing 
capability of the system, which in turn, highlights its dynamic 
nature. That is, our coordination platform has to periodically 
monitor the devices’ network bandwidth to make the 
coordination decision as to which device to send the car 
images stream to. Since we let the developer to explicitly 
specify the network bandwidth threshold at which the load-
balancing coordination is triggered, the example also shows 
how physical status of the underlying computing 
infrastructure (e.g current network consumption of devices) 
can affect the correctness of the application logic (e.g only run 
this component on devices that have minimum available 
bandwidth).  

Our lab-based setup allows us to verify the behaviour of 
our example application when it is distributed to a number of 
devices. It also shows that the application model itself is 
scalable as it does not rely on any specific deployment details. 
These could be what types of devices are involved, where are 
they located, which network connection they are on, etc. In 
large scale applications, this is an important characteristic of 
the application model, which is also known as a 
programming-in-the-large approach.  

B. Real World deployment: Road Damage Detection  
Following on from our lab study, we use a road damage 

detection application as a first case real-world study, with a 
focus on road line markings. This application has been 
deployed to garbage trucks in the city of Fujisawa, Japan, and 
runs live, gathering information on the status of the road 
network for city officials.  Figure 3. Lab setup for our example fog application. 



Although road damage is a common problem, in many 
cities, inspection is still conducted by sight. This manual 
visual inspection is resource intensive and expensive. 
Therefore, we have to explore ways to inspect the city 
infrastructures, especially roads, at low cost. Recent work by 
Kawano et al. [5] proposed a method for road inspection using 
recorded images from cameras mounted on garbage trucks. 
However their approach relied on central cloud processing 
which is inefficient and costly in terms of processing and 
communications and fails to handle local privacy issues. 
Simultaneously, since they adopted an object detection 
approach [6] which uses a large neural network, it is difficult 
to work on edge devices.  

Moreover, we have to treat a covariate shift [6, 7] in the 
city. The covariate shift occurs because the relationship 
between the data and the desired output does not differ but the 
difference of the marginal distribution between a training 
dataset and a test dataset. We assume that the covariate shift 
exists in the city, as the distribution of the data from the city 
often varies significantly in spatial and in temporal domains, 
namely, a spatial-temporal covariate shift. Our application to 
address these problems, implemented using CityFlow, 
operates as follows Figure 4: 

The	 flow	 of	 Figure	 4	 top.	 In order to deploy the 
networks to edge devices and cope with a spatial-temporal 
covariate shift, the neural network is separated into feature	
extractor	node and damage	detector	node and deployed to 
different edge devices on the truck, respectively. 
Consequently, we can adopt a domain	adaptation	learning	
approach [2], so that we can exchange the damage detector in 
order to treat the spatial-temporal covariate shift. Then, when 
the damaged road is detected through these networks nodes, 
the location of it and the degree of the damage are published 
to SOXFire via SOX Node (sox-out in the flow).  

The	flow	of	Figure	4	bottom.	When multiple garbage 
trucks confirm an area of road damage, one truck is designated  

to upload a partial video of the area. A SOX-in node receives 
the location and the damage information, and the next node  
compares the location of the truck with it. If it is true, the 
driving recorder mounted on the truck sends the videos after 
anonymizing to the cloud visualization application. Before 
uploading, information related to the person such as faces or 
car matriculation plates is removed if the video contains them. 
Upload and display the videos in a suitable application for 
confirmation by city staff and the staff will fix the road. 

V. CONCLUSION AND FUTURE WORK 
While we are still at an early stage, it is clear that the 

CityFlow platform is a powerful tool for developing and 
deploying large scale smart city applications. In particular, our 

real-world trial using Fujisawa City garbage trucks, has 
validates the overall platform and the ability to easily develop 
and deploy sophisticated applications that combine advanced 
ML algorithms with distributed processing.  

Our first area of ongoing research is focused on the issue 
of coordination among the distributed elements of the smart 
city applications and in particular on how we support 
exogenous co-ordination. More details of our initial efforts 
can be found in [3]. Secondly, we are exploring distributed 
ML algorithms and aim to extend CityFlow with explicit 
support for distributed learning. Finally, although we have 
deployed CityFlow in a real world context in Fujisawa, we are 
keen to extend both the scale of our applications, and the 
geographical reach and hope to deploy to other cities in the 
BigClouT project in the near future. 
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