
Flexible Unsupervised Feature Extraction for Image
Classification

Yang Liua, Feiping Nieb, Quanxue Gaoa,∗, Xinbo Gaoa, Jungong Hanc, Ling Shaod

aState Key Laboratory of Integrated Services Networks, Xidian University, Shaanxi 710071, China.
bCenter for OPTical Imagery Analysis and Learning, Northwestern Polytechnical University, Shaanxi

710065, China.
cSchool of Computing and Communications, Lancaster University, United Kingdom.

dInception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates.

Abstract

Dimensionality reduction is one of the fundamental and important topics in the fields

of pattern recognition and machine learning. However, most existing dimensionality

reduction methods aim to seek a projection matrix W such that the projection WTx

is exactly equal to the true low-dimensional representation. In practice, this constraint

is too rigid to well capture the geometric structure of data. To tackle this problem, we

relax this constraint but use an elastic one on the projection with the aim to reveal the

geometric structure of data. Based on this context, we propose an unsupervised di-

mensionality reduction model named flexible unsupervised feature extraction (FUFE)

for image classification. Moreover, we theoretically prove that PCA and LPP, which

are two of the most representative unsupervised dimensionality reduction models, are

special cases of FUFE, and propose a non-iterative algorithm to solve it. Experiments

on five real-world image databases show the effectiveness of the proposed model.

Keywords: Dimensionality reduction, Unsupervised, Feature

extraction

1. Introduction

Dimensionality reduction has been one of the most important topics in the fields

of pattern recognition and machine learning. Its aim is to recover a meaningful low-
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dimensional representation, which well captures the geometric structure hidden in the

high-dimensional data and makes class distribution more apparent so as to improve5

the machine learning results. During the past few decades, we have witnessed many

dimensionality reduction methods, which have been successfully employed in a broad

range of applications including image classification [1, 2, 3], visual tracking [4, 5]

and action recognition [6, 7]. Two of the most representative dimensionality reduction

techniques are principal component analysis (PCA) [8] and linear discriminant analysis10

(LDA) [9]. PCA is an unsupervised method through projecting the data along the di-

rection of maximal variance, whereas LDA is a supervised method with the aim to seek

the projection vectors by maximizing between-class scatter and simultaneously mini-

mizing within-class scatter. Both PCA and LDA generally deal with the case where

data mainly lie in a linear data manifold [10, 11, 12, 13].15

Many studies [10, 11] have demonstrated that high dimensional data, especially

images, usually do not satisfy Gaussian distribution, and reside only on a low dimen-

sional nonlinear manifold embedded in the ambient data space. This makes PCA and

LDA fail in analyzing these high-dimensional data. To cope with this problem, many

manifold learning methods have been developed to characterize the local intrinsic geo-20

metric structure of data, among which locality preserving projection (LPP) and neigh-

borhoods preserving embedding (NPE) [14], which are respectively a linear approxi-

mation of the Laplacian eigenmaps (LE) [10] and locally linear embedding (LLE) [15],

are two most representative techniques. They are now widely used as a regular term

in sparse representation and low-rank decomposition models [16, 17]. The distance25

of adjacent data points represents the local geometrical structure of the same class,

yet distance from different data points indicates the global geometrical structure of d-

ifferent classes [18]. Since LPP and NPE discard the label information, they cannot

well encode discriminative information of data. Motivated by LPP and NPE, many

discriminative approaches have been developed for linear dimensionality reduction by30

integrating label information in different criterion functions [19]. For example, Xu

et al. [20] tried to preserve the global and local structures of data by imposing joint

low-rank and sparse constraints on the reconstruction coefficient matrix. Lu et al. [21]

proposed a method named low-rank preserving projections (LRPP) which learns a low-
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rank weight matrix by projecting the data on a low-dimensional subspace. In addition,35

LRPP advocates the uses of the L21 norm as a sparse constraint on the noise matrix

and the nuclear norm as a low-rank constraint on the weight matrix, which preserve the

global structure of the data during the dimensionality reduction procedure. All these

methods can be unified within the graph embedding framework [22]. Despite acquiring

generally accepted performance in many application, the above mentioned dimension-40

ality reduction methods assume the projected data WTx to be exactly equal to the

true low-dimensional representation, which is actually not guaranteed. This reduces

the flexibility of models and thus makes models fail to well characterize the geometric

structure of data [23, 24].

To solve the aforementioned problem, we relax the constraint but use an elastic one45

on the projected data such that a better manifold structure can be preserved. Moreover,

we realize that incorporating either global or local geometrical structure may not be

sufficient to characterize the intrinsic geometrical structure of data [25, 26, 27] due

to the complex data distribution. Instead, we propose a flexible unsupervised feature

extraction (FUFE) method intending to characterize both local and global geometri-50

cal structures of data. The similar idea appeared in some papers [23, 24]. However,

the difference is that those algorithms are recognized as supervised or semi-supervised

dimensionality reduction methods, as opposed to them, our method is a purely unsu-

pervised method with no label information used. In real applications, it is difficult to

label the data, thus, unsupervised dimensionality reduction method is highly desired.55

We aim to prove that PCA and LPP are special cases of our model. Furthermore, we

develop a non-iterative algorithm to solve our objective function, thereby enabling an

efficient and fast implementation. Extensive experiments illustrate the superiority of

our proposed method.

We summarize our main contributions as follows: 1) Traditional manifold learning60

methods often assume that the projected data WTX is exactly equal to the true low-

dimensional representation. To relax this hard constraint, we incorporate a regression

residual term into the reformulated objective function to enforce the low-dimensional

data representation F to be close to the projected training data after using the projection

matrix W. With such relaxation, our method can better cope with the data sampled65
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from a certain type of nonlinear manifold that is somewhat close to a linear subspace.

2) Different from the traditional unsupervised methods that use complicated iterative

optimization solutions, we develop a non-iterative algorithm to solve the model which

has a closed solution. 3) Finally, PCA and LPP, which are the two most widely used

and representative unsupervised models, are special cases of FUFE. It illustrates that70

the proposed model is able to characterize both local and global geometric structures

of data.

2. PCA and LPP

Assume that we have a training data matrix X = [x1,x2, · · ·,xn] ∈ Rm×n, where

xi ∈ Rm denotes the i-th sample, m is the dimensionality of training data. n is the75

number of total training samples. Denoted by Y = WTX = [y1,y2, · · ·,yn] ∈ Rd×n

the projected data of X, W = [W1,W2, · · ·,Wd] ∈ Rm×d (d < m) is the projection

matrix. The means of X and Y are represented by x̄ and ȳ, respectively. In the

following section, we start with a brief introduction of PCA and LPP.

2.1. Principle Component Analysis (PCA)80

PCA [28] aims to seek the projection matrix W along with the projected data have

the maximum variance, or well reconstruct original data in the least squared criterion.

The optimal projection matrix can be obtained by solving the following equation.

max
WTW=I

n∑
i=1

∥yi − ȳ∥2

= max
WTW=I

tr

{
WT

[
n∑

i=1

(xi − x̄) (xi − x̄)
T

]
W

} (1)

The column vectors of the optimal solution W in the Eq. (1) are composed of

the k eigenvectors of covariance matrix
n∑

i=1

(xi − x̄) (xi − x̄)
T corresponding to the k

largest eigenvalues.

As can be seen in Eq. (1), the geometric structure preserved by PCA is determined

by covariance matrix which characterizes the global geometric structure when data85

mainly lie in a linear manifold or satisfy the Gaussian distribution. However, in real

applications, data rarely follow this distribution, which reduces the flexibility of PCA.
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2.2. Locality Preserving Projection (LPP)

LPP [11] is one of the most representative manifold learning methods for high-

dimensional data analysis. It employs an adjacency graph G = {X,S} with a vertex

set X and an affinity weight matrix S to characterize the intrinsic geometric structure

of data. Weighted matrix S can be defined as follows. Nodes xi and xj are linked

by an edge if xi is among the k nearest neighbors of xj or xj is among the k nearest

neighbors of xi. Then, the weights of these edges are assigned by Sij = 1, otherwise,

Sij = 0. LPP aims to seek the projection matrix W such that projected data well

preserve the intrinsic geometric structure which is learned by graph G. Projection

matrix W can be obtained by the following equation.

min
W

n∑
i,j

∥∥WTxi −WTxj

∥∥2Sij

s.t.
n∑
i

Dii

∥∥WTxi

∥∥2 = 1

(2)

where D is a diagonal matrix whose entries are column (or row, since S is symmetrical)

sum of the weight matrix S. By a simple algebraic formulation, Eq. (2) can be recast

as the following trace ratio form.

min
W

tr(WTXLXTW)

tr(WTXDXTW)
(3)

where L = D− S is a Laplacian matrix.

The Eq. (3) is non-convex, so there does not exist a closed-form solution. In real

applications, Eq. (3) is usually transformed into the following simpler ratio trace form

min
W

tr[(WTXDXTW)−1(WTXLXTW)]

which can be optimally solved by the generalized eigenvalue problem: XLXTW =90

λXDXTW.

3. Flexible unsupervised feature extraction (FUFE)

3.1. Motivation and Objective Function

As can be seen, both Eq. (1) and Eq. (2) implicitly consider that the projected

data WTx is exactly equal to the true low-dimensional representation F, which is
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actually unknown in real applications. This constraint might be too rigid to capture the

manifold structure of data due to the complex data distribution. To handle this problem,

we relax this constraint and use an elastic constraint on the projected data such that it

can well reveal geometric structure of data. To be specific, we minimize the regression

residual term
∥∥XTW − F

∥∥2
F

to make XTW be close to the true low-dimensional

representation F. Thus, our method is generally suitable to cope with a certain type of

nonlinear manifold that is somewhat close to a linear subspace. The objective function

of our proposed method can be defined as follows:

min
WTW=I,F

tr
(
FTLF

)
+ α

∥∥XTW − F
∥∥2
F
+ βtr

(
WTW

)
tr (WTStW)

(4)

where W ∈ Rm×d is the projection matrix, F ∈ Rn×d is the low-dimensional data

representation. α (α > 0) and β (β > 0) are two parameters to balance different95

terms. St is total scatter matrix, since X has been normalized to have zero mean, we

have St = XXT . L is a Laplacian matrix, which can be defined as in Eq. (2).

In the following subsection, we introduce how to solve the objective function i.e.

Eq. (4) by using an effective strategy.

3.2. Algorithm100

As can be seen in Eq. (4), we have two unknown variables F and W, which relate to

each other, to be solved. For this kind of problem, an iterative algorithm is usually used

to alternatively update F (while fixing W) and W (while fixing F) such as [23, 24].

Different from them, we herein propose a non-iterative algorithm to directly solve the

objective function.105

If the projection matrix W is known, then Eq. (4) becomes

min
F

Q (F) = min
F

tr
(
FTLF

)
+ α

∥∥XTW − F
∥∥2
F

(5)

Taking the derivative of Q (F) with respect to F and setting it to zero, we have

∂Q (F)

∂F
= LF+ αF− αXTW = 0 (6)

then,

F = α(L+ αI1)
−1XTW (7)
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where I1 ∈ Rn×n is a unit matrix.

Substituting Eq. (7) into Eq. (4), and by simple algebra, we have

trFTLF+ α
∥∥XTW − F

∥∥2
F
= trWTXAXTW (8)

where

A = α2B−1LB−1 + α3B−1B−1 − 2α2B−1 + αI1

= α2B−1BB−1 − α2B−1BB−1 − α2B−1 + αI1

= αI1 − α2B−1

(9)

B is defined as follows

B = L+ αI1 (10)

Substituting Eq. (8), Eq. (9) and Eq. (10) into Eq. (4), and by simple algebra, we

have

min
WTW=I

tr
(
WTSbW

)
tr (WTStW)

(11)

where

Sb = X
(
αI1 − α2(L+ αI1)

−1
)
XT + βI2 (12)

where I2 ∈ Rm×m is a unit matrix.

Eq. (11) is a trace ratio optimization problem that does not exist a closed-form

solution. In real applications, the solution of trace ratio model is usually obtained by

solving the corresponding ratio trace model. The ratio trace form of Eq. (11) is

min
WTW=I

tr
((

WTStW
)−1 (

WTSbW
))

(13)

According to matrix theory, the optimal solution of Eq. (13) can be obtained by

solving the following generalized eigen-decomposition problem.

SbW = λStW (14)

Finally, we summarize the pseudo code for solving Eq. (11) in Algorithm 1.
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Algorithm 1: FUFE algorithm

Input: Training sample matrix X ∈ Rm×n that has been normalized to have zero

mean, and regularization factors α and β.

Procedure

1. Initialize I1 ∈ Rn×n and I2 ∈ Rm×m.

2. Calculate Laplacian matrix L and scatter matrix St.

3. Calculate Sb according to Eq. (12).

4. Solve Eq. (14) using generalized eigenvalue decomposition method. The

columns vectors of optimal projection matrix W are composed of the eigenvec-

tors corresponding to the d smallest eigenvalues.

5.Output: the projective matrix W.

3.3. Relationship with PCA and LPP110

Theorem 1: PCA is a special case of Eq. (4).

Proof: When α → 0, the numerator in Eq. (4) becomes two terms tr(FTLF)

and βtr(WTW) which are independent to each other. Moreover, the minimization of

tr(FTLF) is 0 when F is the null subspace of L. Thus, the optimal solution of Eq. (4)

becomes Eq. (15) when alpha is zero.

min
WTW=I

tr
(
WTW

)
tr (WTStW)

(15)

According to the constraint WTW = I, Eq. (15) is equivalent to

max
WTW=I

tr
(
WTStW

)
(16)

which is just the objective function of PCA.

Theorem 2: LPP is also a special case of Eq. (4).

Proof: When α → ∞ and β → 0, according to Eq. (10), for the numerator of Eq.

(4), we have

lim
α→∞
β→0

tr(WTX(αI1 − α2B−1)XTW) + βtr(WTW)

= lim
α→∞

tr(WTX(αBB−1 − α2B−1)XTW)

= lim
α→∞

tr(WTX(αLB−1)XTW)

(17)
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According to Eq. (10), we have

lim
α→∞

αLB−1 = lim
α→∞

L(
1

α
L+ I1)

−1 = L (18)

Substituting Eq. (17) and Eq. (18) into our model (4), and by simple algebra, our

model becomes

min
WTW=I

tr
(
WTXLXTW

)
tr (WTStW)

(19)

Eq. (19) is very similar to LPP. If St is defined as XDXT , Eq. (19) is equivalent

to LPP.115

Theorem 1 and theorem 2 illustrate that our model well preserves both local and

global geometric structures of data.

4. Experiments

In this section, we evaluate our algorithm on several well-known databases (AR,

Extended YaleB, LFWcrop, Fifteen Scene Categories and Caltech101) whose details120

are presented in Table 1. We compare our method with PCA [28], LPP [11], NPE [14]

and LRPP [21]. For LPP, NPE, LRPP and our method, we first use PCA to reduce

dimensionality of all original datasets (except for Fifteen Scene Category database) to

be 200, and then extract feature by these four methods, respectively. 1-nearest neighbor

(1NN) is used for classification. We tune parameters for baseline methods by class-wise125

cross-validation using the training data. In the following experiments, we perform ten

rounds of random partitions for training and testing data and show the mean recognition

rates and standard deviations. In addition, we also compare the recognition rate curves

of different algorithms under different numbers of feature dimensions. All the above

mentioned experiments were run on the windows-7 operating systems (Intel Core i7-130

4770 CPU M620 @ 3.40 GHz 8 GB RAM).

The AR database [29] contains over 4000 color face images of 126 people, in-

cluding frontal views of faces with different facial expressions, lighting conditions and

occlusions. The pictures of 120 individuals (65 men and 55 women) are taken in two

sessions (separated by two weeks). Each session contains 13 color images, which in-135

clude 6 images with occlusion and 7 full facial images with different facial expressions
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Table 1: Descriptions of the benchmark datasets.

Datasets
Original

dimensions

Reduced

dimensions
Classes Samples

AR 2000 200 126 4000

Extended YaleB 1024 200 38 2414

LFWcrop 4096 200 5749 13233

Fifteen Scene Categories 75000 250 15 5000

Caltech101 78000 200 102 9144

Figure 1: Some samples in the AR dataset.

Figure 2: Some samples in the Extended YaleB dataset.

Figure 3: Some samples in the LFWcrop dataset.

Figure 4: Some samples in the Fifteen Scene Categories dataset.
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Figure 5: Some samples in the Caltech101 dataset.

and lighting conditions. In the experiments, we manually cropped the face portion

of the image and then normalized it to 50×40. Figure 1 shows some images of the

AR database. In this database, we randomly select 7 images per subject for training,

and the remaining images for testing. Figure 10 shows the accuracy of our method vs140

parameter α and β. We can see that, when α=0.7 and β=0.1, our method has good

performance. Thus, in this dataset, we set α=0.7 and β=0.1 and repeat the experiment

10 times.

The Extended YaleB database [30] consists of 2414 frontal-face images of 38 in-

dividuals with the resolution and illumination changes. There are 64 images for each145

object except 60 for 11th and 13th, 59 for 12th, 62 for 15th and 63 for 14th, 16th and

17th. In the experiments, we manually cropped the face portion of the image and then

normalized it to 32×32. Figure 2 shows some images of this database. In this database,

we randomly select 32 images per subject for training, and the remaining images for

testing. In the experiments , we set α=5.3 and β=0.1. All of experiments are repeated150

10 times.

The LFWcrop database [31] is a cropped version of the Labeled Faces in the Wild

(LFW) [31] dataset, keeping only the center portion of each image (i.e. the face). In

the vast majority of images, almost all of the backgrounds are omitted. The extracted

area was then scaled to a size of 64x64 pixels. The selection of the bounding box155

location was based on the positions of 40 randomly selected LFW faces [31]. As the

location and size of faces in LFW were determined through the use of an automatic

face locator (detector) [31], the cropped faces in LFWcrop exhibit real-life conditions,

including misalignment, scale variations, in-plane as well as out-of-plane rotations.

Some sample images are shown in Figure 3. In the experiment, we choose people who160

have more than 20 photos but less than 100 photos as the sub-dataset, which contains
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57 classes and 1883 images. In the experiments, we set α=2.1 and β=0.1. For each

person, we randomly choose ninety percent of images for training, and the remaining

images for testing. We repeat this process 10 times.

The Fifteen Scene Categories database [32] includes 15 natural scene categories,165

such as office, street, store and so on, as shown in Figure 4. Each category has 200 to

400 images, and the average image size is about 250 × 300 pixels. The major sources

of the pictures in the database contain the COREL collection, personal photographs,

and Google image search. It is one of the most complete scene category database used

in the literature. We compute the spatial pyramid feature using a four-level spatial170

pyramid and a SIFT-descriptor codebook with a size of 200. The final spatial pyramid

features are reduced to 250 by PCA. We randomly select 20 images per category as

training samples and use the rest as test samples. In the experiments, we set α=0.001

and β=0.018. All of experiments are repeated 10 times.

The Caltech101 dataset [33] contains 9144 images from 102 classes (i.e., 101 object175

classes and a background class) which include pizza, umbrella, watch, dolphin, and so

on, as shown in Figure 5. The number of images of per class varies from 31 to 800. The

vector quantization codes are pooled together to form a pooled feature in each spatial

subregion of the spatial pyramid. We reduce the feature dimension to 200 by using

PCA. Each class is randomly selected 20 images as training samples and the rest as test180

samples. In the experiments , we set α=0.001 and β=0.019. All of experiments are

repeated 10 times.

Figure 7 to Figure 11 show the average classification accuracy versus the number of

feature dimension on the AR, Extended YaleB, LFWcrop, Fifteen Scene Categories and

Caltech101 databases, respectively. Table 2 shows the average classification accuracy185

and standard deviation on the five databases.

Comparing the aforementioned experiments, we have the several interesting obser-

vations:

(1) Our method FUFE achieves the best average accuracy for all the cases. On the

LFWcrop database, FUFE algorithm has obvious advantages compared with the other190

methods. One possible reason may be that PCA, LPP and NPE assume that the projec-

tion of data is exactly equal to the low-dimensional representation. This makes them
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Table 2: The optimal average classification accuracy (%) and standard deviation on the AR, Extended Yale

B, LFWcrop, Fifteen Scene Category and Caltech101 datasets.

Methods PCA LPP NPE LRPP FUFE

AR 83.87 88.66 88.87 90.59 95.04

±4.94 ±5.49 ±5.72 ±4.05 ±3.49

Extended 91.29 96.02 96.34 96.64 98.77

YaleB ±2.18 ±1.48 ±1.24 ±1.58 ±0.69

LFWCrop 27.89 28.58 24.95 30.83 43.39

±1.59 ±1.89 ±1.09 ±1.64 ±1.45

Fifteen Scene 89.64 77.05 63.15 74.91 91.00

Category ±1.02 ±1.01 ±4.09 ±3.80 ±0.76

Caltech101 57.44 56.66 53.77 52.41 58.54

±0.68 ±0.66 ±0.89 ±2.03 ±0.64
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Figure 6: Accuracy of our method versus parameters α and β on the AR database.

fail to characterize the intrinsic geometric structure of data, which is important for data

classification. Moreover, this strict constraint may result in over-fitting. Another pos-
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Figure 7: Average recognition accuracy vs. number of projection vectors on the AR database.
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Figure 8: Average recognition accuracy vs. number of projection vectors on the Extended YaleB database.

sible reason is that we add a regression residual term
∥∥XTW − F

∥∥2
F

in our objective195

function. With such a regression residual term, F can well approximate XTW such
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Figure 9: Average recognition accuracy vs. number of projection vectors on the LFWcrop database.
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Figure 10: Average recognition accuracy vs. number of projection vectors on the Fifteen Scene Category

database.
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Figure 11: Average recognition accuracy vs. number of projection vectors on the Caltech101 database.

that our method is generally suitable to cope with a certain type of nonlinear manifold

that is somewhat close to a linear subspace.

(2) PCA performs better than LPP and NPE in the Fifteen Scene Category database

and Caltech101 database. This is probably due to the fact that the graph, which is200

artificially constructed in LPP and NPE in these two datasets, does not well characterize

the intrinsic geometric structure of data [27]. Our method is superior to PCA, LPP, NPE

and LRPP, the reason may be that FUFE well preserves both local and global geometric

structures of data.

(3) In the face datasets (AR, Extended YaleB and LFWcrop), LRPP is superior to205

PCA, LPP and NPE. This is attributed to the fact that LRPP adaptively learns similar-

ity matrix which determines the construction of graph. In the fifteen scene category

database and Caltech101 database, LRPP is inferior to the other methods. The reason

may be that LRPP does not reveal global geometric structure of data. According to

Figure 10 and Figure 11, it is easy to see that the recognition accuracy has a sharp in-210

crease when the dimension is close to the peak. Different from face images, the feature

on the fifteen scene category database or Caltech101 database may not be suited for
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low rank representation so that LRPP cannot learn a well low-rank weight matrix es-

pecially when the dimension of features is low. In the future, we will study the change

of recognition rate of LRPP in higher dimensions.215

(4) As can be seen in Figure 10, Figure 11 and Table 2, all methods (PCA, LP-

P, NPE, LRPP and FUFE) do not achieve a good recognition rate on the LFWcrop

and Caltech101 databases. This is probably because that LFWcrop and Caltech101

databases consist of natural portrait without setting conditions. It is very challenging

for subspace learning methods.220

5. Conclusions

In this paper, we propose a flexible unsupervised dimensionality method for fea-

ture extraction. Different from most existing dimensionality reduction methods, our

method uses an elastic constraint on the projection such that it can well reveal geo-

metric structure of data. Thus, our method is not only suitable for dealing with certain225

types of nonlinear manifolds, but also can effectively characterize both local and glob-

al geometric structures. Moreover, theoretical analysis proves that PCA and LPP are

special cases of the proposed model. Finally, a non-iterative algorithm is proposed to

solve our model. Experiments on several well-known databases (AR, Extended Yale-

B, LFWcrop, Fifteen Scene Categories and Caltech101) illustrate the efficiency of our230

proposed approach. In the future, our main work is to combine proposed model with

convolutional neural networks for handling gesture recognition, behavior recognition

and other applications.
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