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Abstract—In this paper we perform subcarrier and power
allocation for the downlink transmission in a cognitive radio net-
work by exploiting the location information of mobile secondary
users. A mixed integer nonlinear problem is formulated which
maximizes the aggregate capacity of the secondary network,
subject to the constrained interference at the primary user and
the maximum transmit power limit of the secondary base station.
To solve the formulated problem, an optimal subcarrier allocation
is first obtained based on a practical assumption, followed by an
optimal power allocation achieved using standard optimization
methods. The proposed solution can facilitate to reduce latency
and provide high speed communication of big data for mobile
secondary users since speed, direction and location are all taken
into account for effective allocation of resources. Simulation
results verify our design intentions and confirm the efficiency
of the proposed resource allocation strategy.

I. INTRODUCTION

Tremendous increase in the usage of wireless communica-
tion and resulting wireless big data [1] has spurred usage of
high number of frequency bands. Therefore, future generations
of wireless networks may face radio spectrum scarcity issues
due to the fixed allocation of licensed spectrum bands. The
licensed spectrum remains vacant during the idle period of
primary users (PUs) which results in its inefficient utilization.
Therefore, technologies, such as cognitive radio (CR) [2] and
device to device (D2D) communication [3], [4] are being
developed to improve bandwidth and spectral efficiency. In
particular, CR has been proposed as a promising solution
which aims to opportunistically and efficiently utilize the spec-
trum by dynamically accessing frequency resources with the
help of methods such as those provided by big spectrum data
[1]. Orthogonal frequency division multiple access (OFDMA)
in cognitive radio networks (CRN) allows the secondary users
(SUs) to flexibly utilize the available licensed spectrum as
long as their transmission does not interfere with that of the
PUs. This can be managed by use of optimum transmit power
allocation strategy so that the interference caused by SUs does
not exceed the interference tolerance level of PUs. At the same
time, it is desirable that the power allocation results in the
maximization of throughput to ensure reliability and quality
of service (QoS) to the SUs.
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Opportunistic spectrum access protocol design and resource
allocation algorithms have been extensively investigated for
stationary SUs [2], [5]–[8]. For example, a distributed resource
allocation algorithm using amplify and forward multi-antenna
relays in a cooperative CRN is proposed in [5]. With the
channel state information (CSI) available at the SU, an optimal
resource allocation is obtained. In [2], a closed form analytical
solution based upon Nash bargaining solution for the joint
channel and power allocation problem in CRN is proposed.
The proposed solution maximizes the overall throughput of
the CRN while minimum rate requirements and efficient dis-
tribution of power among SUs are also guaranteed. A solution
to the joint spectrum sensing and power allocation problem
is proposed in [6]. In a similar work [7], the joint spectrum
sensing and resource allocation problem for a downlink CRN
is solved using monotonic optimization techniques.

In most of the previous work, such as [2], [5]–[8], mobility
of SUs is not considered and the CSI is assumed to be constant.
In reality, condition of the communication channel between
the secondary base station (SBS) and the mobile SU changes
at each instant of time. Hence, these resource allocation
algorithms are applicable only to static environments. Simi-
larly, location awareness is one of the six important cognitive
abilities of a CRN identified by Federal Communications
Commission (FCC) in [9] for efficient and flexible spectrum
usage. However, it has not been extensively exploited in the
existing literature to address resource allocation in CRNs.

In our work, we exploit the location cognitive ability of a
CRN to predict the CSI of a mobile SU for efficient resource
allocation. Specifically, we propose a novel method to predict
the position of an SU in the next resource allocation time
slot by using the position coordinates of the mobile SU at
previous and current instants of time. We then utilize the
predicted location information for the prediction of the CSI
of the communication and interference links. Finally, the sub-
carrier and power allocation problem is solved using standard
optimization techniques to maximize the average throughput
by taking the shadow fading, predicted SU location, maximum
power limit and interference constraint into consideration.

II. SYSTEM MODEL

We consider downlink transmission in a CRN underlaid to
a primary network (PRN). The CRN exploits OFDMA sub-
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channels for transmission such that the interference caused by
the SU transmission remains below the permissible threshold
of the PRN. An individual PU is represented by p such that
p ∈ P = {1, 2, 3, ..., P} where P is the set of PUs with total
members P . Similarly, an arbitrary SU is represented by q such
that q ∈ Q = {1, 2, 3, ..., Q} where Q is the set of SUs with
total members Q. The number of OFDMA subchannels avail-
able to the CRN is N with a total bandwidth of B Hz . Hence,
the bandwidth of each subchannel is B/N Hz . An individual
subchannel is represented by n and the set of subchannels
is given by N = {1, 2, 3, ..., N} with total members N . To
limit interference and to ensure reliable data transmission,
each subchannel n is assigned exclusively to a single SU
q. Secondary subchannel allocation index is denoted by zqn
which is a member of the vector z = [z11, z12, z13, ..., zqn]. It
has a binary value and zqn = 1 if the channel n is allocated
to an SU q and zqn = 0 otherwise. The power allocated to an
SU q on subchannel n is denoted by PS

qn while the maximum
transmission power of the SBS is Pmax. The threshold of
interference permissible at PU p is represented by Ipt. The
corresponding threshold value of signal to interference noise
ratio (SINR) at a PU is β. For the interference to remain below
threshold Ipt, the SINR γp of the signal transmitted by the
primary base station (PBS) received at the PU p should be
such that γp ≥ β.

We consider an urban environment with mobile SUs. We
model large scale fading by using log-normal distribution
for the estimation of path loss and shadowing. The small
scale fading and multipath arising from network mobility are
modeled using Rayleigh fading. The CRN has knowledge of
location information using localization algorithms, such as,
[10]. We assume that a mobile SU maintains its speed and
direction during resource allocation period.

A. SINR at PU

The interference ISpn caused by the communication between
the SBS and an SU q operating at subchannel n to a PU p is

ISpn = hSpnP
S
qn, (1)

where hSpn is the gain of the interference link between the SBS
and the PU p. The interference ISpn can also be calculated using
the power spectral density (PSD) of the OFDM subcarrier [11].
Using ISpn from (1) , the SINR γp at PU p is given by

γp =
hPpnP

P
n

ISpn + B
NNo

, (2)

where hPpn is the gain of the PRN communication link between
the PBS and the PU p on subchannel n, PP

n denotes the
PBS power transmitted on subchannel n and No is the noise
power spectral density. From (2), the threshold value Ipt of
interference ISpn permissible at a PU p such that SINR γp ≥ β
is given by

Ipt =
1

β
(hPpnP

P
n )− B

N
No. (3)

B. SINR at SU

We consider a mobile SU q traveling with an average speed
vq as illustrated in Fig. 1. It starts from a point (xa, ya)
at time ta and arrives at (xb, yb) at time tb and at (xc, yc)
at tc. The distance elements between the SBS and the SU
at the three positions are represented by dsa, dsb and dsc
respectively. Likewise, the distance elements between the PBS
and the SU are denoted by dpa, dpb and dpc. We represent the
gain of the wireless communication channel between the SBS
and the SU q at instants ta, tb and tc at positions (xa, ya),
(xb, yb) and (xc, yc) by hSqna, hSqnb and hSqnc respectively. The
corresponding path loss is denoted by PLsa, PLsb or PLsc,
and the gain due to the path loss is represented by hsap, hsbp
or hscp. Similarly, the gain of the interference link between
the PBS and the mobile SU q at instants ta, tb and tc is
denoted by hPqna, hPqnb and hPqnc respectively. The path loss
is denoted by PLpa, PLpb or PLpc, and the gain due to the
path loss is represented by hpap, hpbp or hpcp depending upon
the position of the SU q. Note that if the transmitted and
received powers are denoted by Pt and Pr respectively, then
the path loss is given by PL = Pt/Pr and the gain due to the
path loss is given by Pr/Pt = 1/PL. For the speeds under
consideration, the time intervals between the instants ta, tb
and tc are short enough so that the multipath fading gain of
a subchannel n, denoted by hn, is assumed to be the same at
ta, tb and tc. As the SU q moves from (xa, ya) to (xb, yb), the
instantaneous CSI of the communication and interference links
can be obtained using the location information. Furthermore,
the position (xc, yc) of the SU q at tc is predicted considering
its speed and direction as it travels from (xa, ya) to (xb, yb).
This information is then used for the prediction of the CSI of
communication and interference links to SU q at tc.

We use log-normal shadowing model for estimation of the
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Fig. 1. System model of a CRN with mobile SUs.



path loss. For example, the path loss PLsa between the SBS
and the SU q at (xa, ya) is expressed as

PLsa[dB] = PLs(do) + 10α log
(dsa
do

)
+ χσsa, (4)

where PLs(do) is the average path loss at a reference distance
do from the SBS, α is the path loss exponent and χσsa

accounts for the shadow fading between the SBS and the SU.
If the reference distance do is the unit distance, in which case
we denote PLs(do) by PLso, then

PLsa[dB] = PLso + 10α log(dsa) + χσsa. (5)

Let us now consider that the mobile SU q whose initial
position was (xa, ya) at time ta is now at (xb, yb) at time tb.
Using this information, the CRN can predict the instantaneous
position (x, y) of the SU q at a future time t as below:

x(t) = xb +
t− tb
tb − ta

√
(xb − xa)2 + (yb − ya)2

× cos
(
tan−1 yb − ya

xb − xa

)
,

(6)

y(t) = yb +
t− tb
tb − ta

√
(xb − xa)2 + (yb − ya)2

× sin
(
tan−1 yb − ya

xb − xa

)
.

(7)

Using the predicted instantaneous position (x, y), the in-
stantaneous distance ds(t) between the SBS located at
(xSBS , ySBS) and the SU q is given by

ds(t) =

([
xb − xSBS +

t− tb
tb − ta

√
(xb − xa)2 + (yb − ya)2

× cos(tan−1 yb − ya
xb − xa

)
]2

+
[
yb − ySBS +

t− tb
tb − ta

√
(xb − xa)2 + (yb − ya)2

× sin(tan−1 yb − ya
xb − xa

)
]2) 1

2

. (8)

In a similar manner, the instantaneous distance dp(t) between
the PBS located at (xPBS , yPBS) and the SU q is given by

dp(t) =

([
xb − xPBS +

t− tb
tb − ta

√
(xb − xa)2 + (yb − ya)2

× cos(tan−1 yb − ya
xb − xa

)
]2

+
[
yb − yPBS +

t− tb
tb − ta

√
(xb − xa)2 + (yb − ya)2

× sin(tan−1 yb − ya
xb − xa

)
]2) 1

2

. (9)

The position (xc, yc) of the SU q at time tc can now
be predicted by substituting t = tc in (6) and (7). Similarly,
the distance dsc between the SBS and the SU q and the
distance dpc between the PBS and the SU q at time tc can

be estimated by substituting t = tc in (8) and (9) respectively.
Using the predicted position and distance information, the
path loss of the communication and interference links can
be estimated similar to (4) and (5). Next, knowing the path
loss, the instantaneous CSI of both the communication and
interference links of the mobile SU can be calculated by the
CRN. At instant tb, the CSI in terms of the gain hSqnb of the
communication link and the interference power IPqnb of the
interfering link is given by

hSqnb = hnhsbp =
hn
PLsb

, (10)

IPqnb = hPqnbP
P
n , (11)

where
hPqnb = hnhpbp =

hn
PLpb

. (12)

The SINR γqnb at the SU q at tb is now given by

γqnb =
hSqnbP

S
qn

IPqnb +
B
NNo

. (13)

It should be noted that PLsb and PLpb can be calculated
similarly to (4) and (5). Likewise, the expected CSI at tc using
the predicted position (xc, yc) is given by

E[hSqnc] = hnhscp =
hn
PLsc

, (14)

E[IPqnc] = hPqncP
P
n , (15)

where
hPqnc = hnhpcp =

hn
PLpc

. (16)

The expected value of SINR γqnc at tc is then given by

E[γqnc] =
E[hSqnc]PS

qn

E[IPqnc] + B
NNo

. (17)

Dividing (14) by (10), we can express the expected CSI at
predicted position (xc, yc) in terms of known CSI at tb.

E[hSqnc]
hSqnb

=
PLsb

PLsc
. (18)

10 log

(
E[hSqnc]
hSqnb

)
= PLsb[dB]− PLsc[dB]. (19)

However,

PLsb[dB] = PLso + 10α log(dsb) + χσsb, (20)

PLsc[dB] = PLso + 10α log(dsc) + χσsc. (21)

Using these values in (19),

10 log

(
E[hSqnc]
hSqnb

)
= 10α log(dsb)− 10α log(dsc)

+ χσsb − χσsc.

(22)



Shadow fading χσsb at (xb, yb) and χσsc at (xc, yc) follow a
normal distribution with a zero mean value so that

E[hSqnc] =
(dsb
dsc

)α
hSqnb. (23)

In a similar manner, the expected value of interference at
predicted position (xc, yc) at tc can be derived in terms of
known value of interference IPqnb at time tb at position (xb, yb)
and the distances dpb and dpc.

E[IPqnc] =
(dpb
dpc

)α
IPqnb. (24)

Knowing the values of hSqnc and IPqnc, the capacity of the
subchannel n between the SBS and the SU q at tc at position
(xc, yc) is given by

E[Cqnc] =
B

N
log2(1 + E[γqnc]),

=
B

N
log2

(
1 +

E[hSqnc]PS
qn

E[IPqnc] + B
NNo

)
.

(25)

Using (23) and (24),

E[Cqnc] =
B

N
log2

(
1 +

(dsb

dsc
)αhSqnbP

S
qn

(
dpb

dpc
)αIPqnb +

B
NNo

)
. (26)

III. PROBLEM FORMULATION

By exploiting the location information of an SU q predicted
using the speed and position information at the previous time
slots, we aim to maximize the total average rate for the CRN,
subject to the total transmission power limit and the maximum
interference constraint at the PU.

max
PS

qn,zqn

B

N

Q∑
q=1

N∑
n=1

zqnE

log2
(
1 +

(dsb

dsc
)αhSqnbP

S
qn

(
dpb

dpc
)αIPqnb +

B
NNo

) ,
(27a)

subject to:
Q∑

q=1

N∑
n=1

zqnE[PS
qn] ≤ Pmax, (27b)

Q∑
q=1

N∑
n=1

zqnI
S
pnE[PS

qn] ≤ Ipt,∀p ∈ P, (27c)

PS
qn ≥ 0,∀q ∈ Q,n ∈ N, (27d)

zqn ∈ {0, 1},∀q ∈ Q,n ∈ N, (27e)
Q∑

q=1

zqn ≤ 1,∀n ∈ N. (27f)

In the above problem formulation, the constraint (27b)
ensures that the total assigned power does not exceed the
power limit Pmax of the SBS. Similarly, the minimum as-
signed power should be a positive value which is enforced by
constraint (27d). The interference caused by the CRN to a PU
should remain below the threshold level and is guaranteed by
(27c). Disjoint OFDMA subchannel assignment is ensured by
(27e) and (27f) so that each subchannel is assigned to at most
one user at a time for reliable communication.

IV. SUBCHANNEL AND POWER ALLOCATION

The optimization problem (27) is a mixed integer nonlinear
programming (MINLP) problem, which is NP-hard and very
challenging to solve. In order to arrive at a solution, we first
relax the binary constraint zqn ∈ {0, 1} to zqn ∈ [0, 1]. Then,
a new variable yqn is introduced such that yqn = zqnP

S
qn. The

transformed problem is given as follows:

max
yqn,zqn

B

N

Q∑
q=1

N∑
n=1

zqnE
[
log2(1 +

ψqnyqn
zqn

)

]
(28a)

subject to:
Q∑

q=1

N∑
n=1

E[yqn] ≤ Pmax, (28b)

Q∑
q=1

N∑
n=1

ISpnE[yqn] ≤ Ipt,∀p ∈ P, (28c)

Q∑
q=1

zqn ≤ 1,∀n ∈ N, (28d)

yqn ≥ 0,∀q ∈ Q,n ∈ N, (28e)
zqn ≥ 0,∀q ∈ Q,n ∈ N, (28f)

where ψqn =
(
dsb
dsc

)αhS
qnb

(
dpb
dpc

)αIP
qnb+

B
N No

. The objective function (28a)

is concave with respect to zqn and yqn, as it is the perspective
function of a logarithmic function, which itself is concave.
Further, all the constraints are affine. Hence, the transformed
optimization problem (28) is a concave problem which can
be solved using Karush-Kuhn-Tucker (KKT) conditions. The
Lagrange function can be expressed as

L =
B

N

Q∑
q=1

N∑
n=1

zqnE
[
log2(1 +

ψqnyqn
zqn

)

]

+ λ

(
Pmax −

Q∑
q=1

N∑
n=1

E[yqn]

)

+

P∑
p=1

µp

(
Ipt −

Q∑
q=1

N∑
n=1

ISpnE[yqn]

)

+

N∑
n=1

ηn

(
1−

Q∑
q=1

zqn

)
.

(29)

Differentiating this with respect to yqn results in,

∂L
∂yqn

=
1

ln 2
E
[

zqnψqn

zqn + ψqnyqn

]
− λ−

P∑
p=1

µpI
S
pn. (30)

By setting the KKT condition
∂L
∂yqn

= 0, we get

yqn = zqn

 1

ln 2

(
λ+

P∑
p=1

µpISpn

) − 1

ψqn


+

, (31)



where [x]+ = max{0, x}. On the other hand, differentiating
(29) with respect to zqn, we have

∂L
∂zqn

= E
[
log2(1 +

ψqnyqn
zqn

)

]
− 1

ln 2
E
[

ψqnyqn
zqn + ψqnyqn

]
− ηn,

(32)

which can be further expressed as follows by applying (31).

∂L
∂zqn

= E

log2
1 + ψqn

 1

ln 2

(
λ+

P∑
p=1

µpISpn

) − 1

ψqn


+


− 1

ln 2
E



ψqnzqn

 1

ln 2

(
λ+

P∑
p=1

µpISpn

) − 1

ψqn


+

zqn + ψqnzqn

 1

ln 2

(
λ+

P∑
p=1

µpISpn

) − 1

ψqn


+


− ηn,

(33)

which equals to zero if zqn > 0, and is negative if zqn = 0.
Furthermore, from the complementary slackness of KKT con-
ditions, it follows that

λ

(
Pmax −

Q∑
q=1

N∑
n=1

E[yqn]

)
= 0, (34)

µp

(
Ipt −

Q∑
q=1

N∑
n=1

ISpnE[yqn]

)
= 0,∀ p ∈ P, (35)

ηn

(
1−

Q∑
q=1

zqn

)
= 0,∀ n ∈ N, (36)

with all Lagrangian multipliers λ, µp, ηn ≥ 0. From [7], it
can be observed that under a practical assumption of distinct
ψqn values existing for all SUs, ∀n ∈ N , the transformed
problem (28) can always achieve a binary optimal solution
for the subcarrier allocation variable zqn. Specifically, each
subcarrier is solely assigned to the SU with the largest ψqn,
i.e., zq∗n = 1|q∗ = argmaxψqn and zqn = 0|q ̸= q∗, ∀n.
The optimal values z∗qn and y∗qn for the transformed problem

lead to z∗qn and PS∗
qn =

y∗qn
z∗qn

which are optimal for the original

problem.
After obtaining the optimal subcarrier allocation z∗qn using

the aforementioned strategy, problem (28) becomes a location-
assisted rate maximization problem with only power allocation

required. As it is a concave problem, nearly any standard
optimization method can reach a global optimum [12]. Specif-
ically, since strong duality holds for a concave problem with
Slater’s constraint qualification satisfied, the optimal duality
gap is zero and the Lagrangian dual problem can be solved.
Hence, the subgradient method can be used to iteratively
update the dual variables [12], as following:

λi+1 =

(
λi − δi

(
Pmax −

Q∑
q=1

N∑
n=1

E[yqn]

))+

, (37)

µi+1
p =

(
µi
p − δi

(
Ipt −

Q∑
q=1

N∑
n=1

ISpnE[yqn]

))+

, (38)

where δi is a positive step size which is fixed independent
of i or is chosen following rules for the ith iteration [12].
Computation of both the subcarrier and power allocation
is completed in linear time. Hence, the proposed resource
allocation has overall linear time complexity.

V. SIMULATION RESULTS

To simulate the proposed resource allocation scheme using
MATLAB, we assume a CRN with a coverage radius of 500 m.
The CRN comprises of an SBS and 5 mobile SUs, unless
otherwise indicated. The speed of each SU may vary from 0 to
100 Km/h and its direction may range from 0 to 2π radians. We
further assume that the SUs periodically send their sensing and
position information to the SBS. Based upon this information,
the SBS predicts the location and CSI of the SU for the next
transmission slot. The maximum transmission power limit of
the SBS, Pmax, is assumed to vary from 1 W to 1.5 W. The
number of PUs is assumed to be 4. The number of OFDM
subchannels, N , available to the CRN is 20, and the bandwidth
of each subchannel is 0.3125 MHz. The path loss exponent α
is 4. The interference threshold for a PU, Ipt, is assumed to be
5× 10−12 W [13]. Using an Intel Core i3-3110M 2.40-GHz
CPU with 4 GB RAM, the average time taken by the proposed
resource allocation strategy varies from 1.1 to 1.5 s.

The effect of change in speeds of SUs on their total capacity
is shown in Fig. 2. The decrease in data rate with increase in
speed can mainly be attributed to multipath fading and Doppler
spread. In particular, Doppler shift increases with velocity re-
sulting in impairment of the wireless channel. As concluded in
[14], increased time variations of the channel adversely affect
the orthogonality of different OFDM subcarriers giving rise
to inter carrier interference (ICI). This results in performance
degradation of the system.

In Fig. 3, we plot the total capacity of SUs versus the
total transmission power limit of the SBS for three different
average velocities of SUs, i.e. 10, 50 and 100 Km/h. As
can be observed from Fig. 3, the total capacity of the CRN
increases as the maximum transmission power limit of the
SBS increases. However, it decreases with an increase in the
average speed of SUs as is also evident from Fig. 2.

We compare our predictive allocation with the static allo-
cation, which does not consider mobility, for two values of
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Pmax. Performance of the static allocation scheme degrades
more rapidly with increase in average velocity of SUs as seen
in Fig. 4. The predictive allocation is able to predict the CSI
for the next transmission slot and hence a better allocation
is possible. In the case of static allocation, the allocation is
based upon the previous CSI results available at the time of
allocation. Meanwhile, the SU may have traveled to a different
location where the CSI is different from the one upon which
the allocation was based. This results in degradation of the
performance of the static allocation with increase in velocity.

VI. CONCLUSION

We investigated location-assisted resource allocation prob-
lem for the downlink transmission in a mobile CRN with mul-
tiple OFDMA subchannels. An MINLP optimization problem
was formulated based upon the location cognitive ability of the
CRN and an optimal solution for subcarrier and power alloca-
tion was obtained. Simulation results confirm the effectiveness
of the proposed solution based upon CSI prediction compared
to static allocation which does not consider mobility.
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