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Abbreviations 

BMI   body mass index 

CVD   cardiovascular disease 

FA   fibre cross-sectional area 

CC   capillary contacts 

CD   capillary density 

C/Fı   capillary-to-fibre ratio on an individual fibre basis 

CFPE   capillary-fibre perimeter exchange index 

HIT   high intensity interval training 

MICT   moderate intensity continuous training 

Home-HIT  Home-based HIT 

Home-MICT  home-based MICT 

Lab-HIT  laboratory-based HIT 

NAD(P)Hox  NAD(P)Hoxidase 

NO   nitric oxide 

.O2
-    superoxide anion 

NOX2   catalytic subunit of the NAD(P)Hox complex 

p47phox  regulatory subunit of the NAD(P)Hox complex 

OGTT   oral glucose tolerance test 

 ̇O2peak  peak oxygen consumption 

Wmax   maximal aerobic power output 

HR   heart rate 

SMA   smooth muscle actin 

Ser1177  serine1177 

UEA-I FITC  Ulex europaeus-FITC conjugated 

WGA-350  wheat germ agglutinin-350 

ROS   reactive oxygen species 

IMTG   intramuscular triglyceride 

COX IV  cytochrome c oxidase complex IV 

DXA   dual-energy x-ray absorptiometry 
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FMD   flow-mediated dilation 

GLUT4  glucose transporter 4 

ISI   insulin sensitivity index 

PWV   pulse wave velocity 

MHCI   myosin heavy chain I 

 
 
KEY POINTS SUMMARY  
 

 Obesity and sedentary behaviour are associated with capillary rarefaction and 

impaired muscle microvascular vasoreactivity, due to reduced nitric oxide 

bioavailability.  

 Low-volume high-intensity interval training (HIT) is a time-efficient alternative 

to traditional moderate-intensity continuous training (MICT), but its effect on 

the muscle microvasculature has not been studied.  

 The applicability of current lab- and gym-based HIT protocols for obese 

individuals with low fitness and mobility has been disputed by public health 

experts, who cite the strenuous nature and complex protocols as major 

barriers. Therefore, we developed a virtually-supervised HIT protocol targeting 

this group that can be performed at home without equipment (Home-HIT). 

 This study is the first to show that 12-weeks of virtually-supervised Home-HIT 

in obese individuals with elevated CVD risk leads to similar increases in 

capillarisation and eNOS/NAD(P)Hoxidase protein ratio within the muscle 

microvascular endothelium as virtually-supervised home-based MICT and 

laboratory-based HIT, while reducing many of the major barriers to exercise. 
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Abstract 

This study investigated the effect of a novel virtually-supervised home-based high-

intensity interval training (HIT) (Home-HT) intervention in obese individuals with 

elevated cardiovascular disease (CVD) risk on capillarisation and muscle 

microvascular eNOS/NAD(P)Hoxidase ratio. Thirty-two adults with elevated CVD risk 

(age 36±10 years; BMI 34.3±5 kg∙m-2;  ̇O2peak 24.6±5.7 ml∙kg∙min-1), completed one 

of three 12-week training programmes: Home-HIT (n=9); laboratory-based 

supervised HIT (Lab-HIT; n=10) or virtually-supervised home-based moderate-

intensity continuous training (Home-MICT; n=13). Muscle biopsies were taken pre- 

and post-training to assess changes in vascular enzymes, capillarisation, 

mitochondrial density, intramuscular triglyceride content and GLUT4 protein 

expression using quantitative immunofluorescence microscopy. Training increased 

 ̇O2peak (P<0.001), whole-body insulin sensitivity (P=0.033) and flow-mediated 

dilation (P<0.001), while aortic pulse wave velocity decreased (P<0.001) in all 3 

groups. Immunofluorescence microscopy revealed comparable increases in total 

eNOS content in terminal arterioles and capillaries (P<0.001) in the 3 conditions. 

There was no change in eNOS ser1177 phosphorylation (arterioles P=0.802; 

capillaries P=0.311), but eNOS ser1177/eNOS content ratio significantly decreased 

following training in arterioles and capillaries (P<0.001). Training decreased NOX2 

content (arterioles P<0.001; capillaries P<0.001), but there was no change in p47phox 

content (arterioles P=0.101; capillaries P=0.345). All measures of capillarisation 

increased (P<0.05). There were no between group differences. Despite having no 

direct supervision during exercise, virtually-supervised Home-HIT resulted in 

comparable structural and endothelial enzymatic changes in the skeletal muscle 

microvessels to the traditional training methods. We provide strong evidence that 
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Home-HIT is an effective novel strategy to remove barriers to exercise and improve 

health in an obese population at risk of CVD. 

 

 

INTRODUCTION 

The physically inactive and sedentary lifestyle of industrialised nations combined 

with the overconsumption of energy dense food has led to a global obesity epidemic 

with >650 million adults worldwide classified as obese (BMI ≥30 m∙kg-2; WHO, 2018). 

Physical inactivity has been identified as one of the leading global risks for 

premature mortality, and obesity has been shown to double the risk of all-cause 

mortality due to its association with cardio-metabolic pathologies such as 

cardiovascular disease (CVD) and type 2 diabetes (Berrington de Gonzalez et al., 

2010; Ding et al., 2016).  

Obesity and sedentary behaviour lead to reduced capillary density and 

impaired vasodilation of the skeletal muscle microvasculature in response to meal 

ingestion and exercise (Wagenmakers et al., 2016). These structural and functional 

impairments in the skeletal muscle microvasculature significantly reduce the ability of 

the skeletal muscle to meet its metabolic demands and contribute to the 

development of insulin resistance and chronic diseases (Wallis et al., 2002; Vincent 

et al., 2003; Clerk et al., 2006). This decline in skeletal muscle microvascular 

function has been proposed to precede macrovascular impairments (Krentz et al., 

2009). Together these observations suggest that the skeletal muscle 

microvasculature should be regarded as a primary target for intervention in the 

increasingly obese population. 

Reduced skeletal muscle microvascular nitric oxide (NO) bioavailability is a 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



central factor contributing to capillary rarefaction and the impaired vasodilatory 

response seen in obesity (Frisbee, 2007; McAllister & Laughlin, 2006; Olver & 

Laughlin, 2016). Endothelial nitric oxide synthase (eNOS) is the rate limiting enzyme 

responsible for NO synthesis, with the ability of eNOS to synthesise NO being 

determined by its protein content and activity in the endothelial layer of the muscle 

microvasculature (Cocks & Wagenmakers, 2016). eNOS activation is determined by 

phosphorylation on multiple sites, with increases in insulin, shear stress and VEGFA 

leading to eNOS serine1177 phosphorylation and vasodilation of the muscle 

microvasculature (Cocks & Wagenmakers, 2016; Hellsten et al., 2008; Hoier et al., 

2013; Mount et al., 2007). Obesity and inactivity have been shown to alter the 

balance between NO production by eNOS and increased NO quenching by 

superoxide anions and other reactive oxygen species (ROS) (Frisbee, 2005; 

McAllister & Laughlin, 2006). The enzyme complex NAD(P)Hoxidase (NAD(P)Hox) 

has been shown to be a major source of superoxide anion production in obese 

individuals (Silver et al., 2007; La Favor et al., 2016). As such, the eNOS to 

NAD(P)Hox protein ratio has been suggested to be a key marker of microvascular 

function in skeletal muscle (Cocks et al., 2016; Cocks & Wagenmakers, 2016). 

Exercise prescription consisting of moderate-intensity continuous exercise in 

line with the physical activity guidelines is an important first line strategy for the 

management of obesity and cardio-metabolic disease (Ismail et al., 2013). However, 

adherence to exercise programmes is poor unless there is adequate supervision 

(Eriksson & Lindgärde, 1991; Faulkner et al., 2014). Recent work has demonstrated 

that 4 weeks of sprint interval training leads to similar improvements in capillarisation 

and eNOS/NAD(P)Hox protein ratio as traditional moderate-intensity continuous 

training (MICT) in obese males (Cocks et al., 2016). Although the sprint interval 
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training protocol used by Cocks et al. (2016) offers a time-efficient alternative to 

MICT, the suitability of sprint interval training as a safe and tolerable exercise 

strategy in obese individuals with elevated CVD risk has been questioned (Levinger 

et al., 2015). As such, low-volume high-intensity interval training (HIT) protocols, 

consisting of 60 seconds of intense constant-load cycling at 100% Wmax interspersed 

with 60 seconds of active recovery, have been developed as a safe and tolerable 

alternative (Little et al., 2011). Despite evidence showing low-volume HIT 

interventions are effective (Hood et al., 2011; Little et al., 2011; Tan et al., 2018) the 

applicability to sedentary obese individuals has been disputed by health experts 

(Biddle & Batterham, 2015; Courneya, 2010; Hardcastle et al., 2014), who cite the 

strenuous nature and complex protocols as major barriers in sedentary, exercise-

naïve individuals. Furthermore, most successful HIT interventions are laboratory-

based, providing participants optimal conditions with continuous supervision and 

specialised equipment (Hood et al., 2011; Little et al., 2011; Tjønna et al., 2008). 

Exercise in laboratory settings do not address additional barriers to exercise 

including difficulties with access to facilities (including travel distance and cost) and 

embarrassment due to a perceived negative body image and low exercise self-

efficacy in public gyms (Korkiakangas et al., 2009). 

Performing body-weight exercises in the home environment at a high intensity 

to mimic that of laboratory-based low-volume HIT may remove some of the barriers 

to exercise including lack of time, a requirement for equipment, costs and difficulty 

with transport (Machado et al., 2017). Only a handful of studies have investigated the 

efficacy of home-based exercise training programmes (Ong et al., 2009; Halse et al., 

2014; Dadgostar et al., 2016; Blackwell et al., 2017). However, no studies to date 

have made comparisons between Home-HIT and more traditional exercise training 
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strategies on the microvascular enzymes controlling NO production, and skeletal 

muscle microvascular density in previously sedentary obese individuals with 

elevated CVD risk. In addition, although home-based interventions remove traditional 

barriers to exercise, research suggests that lack of support from exercise specialists 

can create new barriers to exercise (Morgan et al., 2016). Advances in wearable 

technology provide the opportunity to facilitate feedback between the exerciser and 

healthcare provider. As such, the home-based interventions in the current study 

employed a novel virtual-monitoring system. 

The aim of this study was to investigate the effect of a 12-week virtually-

supervised Home-HIT intervention on skeletal muscle capillary density and skeletal 

muscle microvascular enzymes responsible for NO production (eNOS content and 

ser1177 phosphorylation) and NO quenching (NOX2 and p47phox content) in sedentary 

obese individuals with elevated CVD risk. To further assess the effectiveness of the 

developed intervention the study also investigated: 1) changes in cardio-metabolic 

health markers, 2) changes in classical markers of training adaptation within skeletal 

muscle. The study also provided preliminary data on adherence and compliance 

(defined as ability to meet prescribed heart rates) to the programme. Two control 

groups were included: 1) a supervised laboratory-based HIT (Lab-HIT) group, to 

assess the effect of Home-HIT compared to optimal conditions, and 2) a virtually-

supervised home-based moderate-intensity continuous training (Home-MICT) group, 

to allow comparison to a group achieving the physical activity guidelines (Colberg et 

al., 2016). The primary hypothesis was that microvascular density and eNOS content 

would increase to a similar extent in all three groups alongside an increase in  ̇O2peak 

and insulin sensitivity. The secondary hypothesis was that the three training 
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programmes would reduce the protein content of NOX2 and its activator p47phox to a 

similar degree in the endothelial layer of terminal arterioles and capillaries. 

 

METHODS 

Ethical Approval 

All participants provided written informed consent, and the study was approved by 

the Black Country NHS Research Ethics Committee (approval reference no. 

14/WM/1222) and conformed to the Declaration of Helsinki. The following clinical 

trials registration ID was used: NCT03557736. 

 

Participants 

Thirty-two sedentary obese adults (BMI >30kg·m2 or waist/hip ratio of >0.9 in men 

and >0.85 in women) with at least 2 further CVD risk factors, according to the 

American Heart Association criteria (Grundy et al., 1999), completed the study 

(Table 1). Participants were self-allocated to one of three 12-week training groups: 

Home-HIT (n=9); Home-MICT (n=13); or Lab-HIT (n=10) matched for age, BMI and 

 ̇O2peak (further details of the self-allocation process, and the rationale for this, can 

be found in the “training protocol” section of the methods). Participants completed a 

12 lead ECG to check for contraindications to exercise, and were free of diagnosed 

cardiovascular and/ or metabolic disease.  

 

Experimental Protocol 

Participants performed an incremental exercise test to exhaustion on an 

electromagnetically-braked cycle ergometer (Corival, Lode, Groningen, 
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Netherlands), using an online gas collection system (MOXUS, AEI technologies, 

Pittsburgh, PA) as described previously (Cocks et al., 2016). Waist-to-hip ratio was 

recorded, and body composition was analysed using Dual-energy X-ray 

Absorptiometry (DXA). Finally, participants were provided with a physical activity 

monitor (ActiGraph GT3X+, Fort Walton Beach, FL) and diet diary so that habitual 

physical activity and diet could be assessed over 7 and 3 days, respectively. 

 

Three to seven days after initial testing participants attended the laboratory following 

an overnight fast, having abstained from caffeine, alcohol and vigorous exercise the 

day before testing. Following 20 minutes of supine rest, blood pressure was 

measured in triplicate using a sphygmomanometer (Dianamap; GE Pro 300V2, 

Tampa, Florida). Brachial artery endothelial function was measured using flow-

mediated dilation (FMD), using the previously described method (Thijssen et al., 

2011; Cocking et al., 2018).  Aortic pulse wave velocity (PWV) was then measured in 

triplicate using a SphygmoCor (AtCor Medical, Sydney, Australia) (Cocks et al., 

2013). A resting muscle biopsy was then taken from the lateral portion of the m. 

vastus lateralis under local anaesthesia (0.5% Marcaine), using the Weil-Blakesley 

conchotome technique (Baczynska et al., 2016). Finally, insulin sensitivity was 

measured using an oral glucose tolerance test (OGTT) (Matsuda & DeFronzo, 

1999). A cannula was inserted into an antecubital vein and a baseline 10 ml blood 

sample was taken before consumption of a 25% glucose beverage containing 75g of 

glucose and 225 ml of water. Further 5 ml blood samples were collected at 30, 60, 

90 and 120 minutes after glucose ingestion. Muscle and blood samples were then 

stored at -80°C until analysis.   
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Assessments of FMD, aortic PWV and  ̇O2peak were repeated after 4 weeks and at 

the end of the 12 weeks of training using identical procedures to pre-training. Post-

training assessment of  ̇O2peak was performed instead of the 35th training session. 

~72h following the final training session post-training testing was conducted with 

procedures, methods and timings identical in all respects to pre-training. 

 

Training Protocols 

Participants trained for 12 weeks in one of three groups: 

1. Home-HIT: repeated 1-minute bouts of exercise interspersed with 1 minute of 

rest. Participants were advised to achieve ≥80% of predicted heart rate 

maximum (HRmax; 220–age) during the intervals. The 1-minute intervals were 

composed of two different 30-second bodyweight exercises with no rest in 

between. Participants were provided with 9 exercise pairs, detailed in an 

exercise pack, and were free to choose which exercises they completed 

(supplemental material). During weeks 1-4 participants were advised to 

complete 4 intervals, which increased by one interval each fortnight up to a 

maximum of 8 intervals. 

 

2.  Home-MICT: participants performed continuous exercise of their choosing 

(swimming, cycling or walking/running), at an advised exercise intensity of 

~65% predicted HRmax. During weeks 1-4 participants were asked to exercise 

for 30 minutes which increased by 5 minutes each fortnight up to 50 minutes.  
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3. Lab-HIT: participants completed the same protocol as Home-HIT, but on a 

cycle ergometer at the University laboratory. During the intervals, participants 

exercised at an intensity of 100% Wmax (Little et al., 2011) in order to elicit a 

HR of ≥80% HRmax. The number of intervals was identical to Home-HIT. The 

training sessions were supervised, and participants were given strong 

encouragement throughout. Participants were excluded if ≥80% of sessions 

were not completed.  

 

Participants were allowed to choose their training group, based on which fitted their 

current lifestyle best. To minimise potential allocation bias all participants were 

provided detailed (written and verbal) information on the three programmes before 

choosing their training group. In addition, recruitment to the groups was not restricted 

at any point; i.e. groups were left open for recruitment until appropriate participant 

numbers were achieved in all three groups. Self-allocation was chosen to increase 

the real-world translation of the findings.  

 

Lab-HIT participants completed all of their training within the exercise laboratories of 

Liverpool John Moores University. Sessions were scheduled by the research team 

for participants, and all sessions were supervised with researchers providing strong 

encouragement throughout. Participants trained 3x/week and were excluded if ≤80 of 

sessions were completed. In contrast, participants in the home-based interventions 

trained in a place of their choosing outside the laboratory. Participants were 

responsible for scheduling their own training sessions. Although participants were 

monitored virtually throughout the intervention (see below), training sessions were 
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completed without supervision or encouragement from the research team. 

Participants were advised to train 3x/week, but unlike Lab-HIT this was not enforced.  

Home-based participants were virtually monitored using a HR monitor which 

connected via Bluetooth to their smart phone (Polar Beat; www.polar.com/beat/uk-

en). During exercise this allowed participants to monitor their HR and provided 

immediate feedback on exercise intensity. To guide participants they were given a 

target HR to achieve during the sessions based on their predicted HRmax (220-age; 

Home-HIT >80% HRmax, Home-MICT ~65% HRmax). The rationale for predicted 

HRmax over actual HRmax (obtained on the  ̇O2max test) was to increase the real world 

translation of the study, as the research team do not envisage, or deem it feasible, 

that all individuals engaging in home-based training should complete a maximal 

exercise test before commencing training. Following each training session HR data 

was automatically uploaded to a cloud storage site (www.flow.polar.com), which 

allowed participants to monitor their progression. The website was also available to 

the research team to monitor if the programme was being completed as advised. 

The research team used this data to contact participants by text/email every 2 weeks 

to enquire about training progress and to provide support if required. If participants 

missed consecutive sessions, the text/email enquired as to whether there was a 

specific reason for this. The monitoring system was also used to provide an objective 

measure of adherence (number of sessions completed) and compliance (whether 

HR thresholds and correct number of intervals were achieved during each session). 

 

Immunofluorescence Microscopy 

Details of the specific quantification techniques can be found below and all 

techniques have been described in detail previously, including antibody specificity 
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experiments (Cocks et al., 2013; Shepherd et al., 2013; Bradley et al., 2014; 

Shepherd et al., 2017). All techniques used frozen muscle biopsy samples 

cryosectioned to a thickness of 5µm mounted onto uncoated glass microscope slides 

so that transverse orientated samples could be used for analysis. 

For eNOS content, eNOS ser1177 phosphorylation, GLUT4 content and 

capillarisation measures sections were fixed in acetone and ethanol (3:1) for 5 

minutes. For mitochondrial density and intramuscular triglyceride (IMTG) analysis 

sections were fixed in 3.7% formaldehyde for 1 hour, rinsed briefly (3 x 30s) in 

deionized water, and permeabilized in 0.5% Triton-X 100 for 5 minutes. 

Subsequently, slides underwent incubation with appropriate primary antibodies 

against OXPhos Complex IV (Invitrogen, Paisley, UK), eNOS (Transduction 

Laboratories, Lexington, KY, USA), eNOS ser1177 (Cell Signalling Technology, 

Beverly, MA, USA) or GLUT4 (Abcam, Cambridge, UK). Muscle fibre type (used 

during analysis of mitochondrial density, IMTG content and capillarisation) was 

determined using an anti-myosin antibody for slow twitch fibres (A4.840-c, DSHB, 

developed by Dr Blau). Following primary antibody incubation sections were 

incubated in appropriate secondary antibodies and UEA-I-FITC (Sigma-Aldrich, UK) 

(eNOS content and phosphorylation and capillarisation) and/ or wheat germ 

agglutinin-350 (WGA-350; Invitrogen) (mitochondrial density, GLUT4 content, IMTG 

content and capillarisation) as markers of the endothelium and plasma membrane, 

respectively. Finally, for IMTG visualisation sections were incubated with Bodipy 

(Sigma-Aldrich).  
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Image Capture 

Images for mitochondrial density and capillarisation were acquired using a Lecia 

DM6000FS widefield microscope and 40x 0.6 numerical aperture (NA) objective. 

Images for GLUT4 and IMTG content were acquired using an inverted confocal 

microscope (Zeiss LSM-710, Carl Zeiss, Germany) with a 63x 1.4NA oil immersion 

objective and the images for the vascular enzymes were captured using a 40x 1.3NA 

oil immersion objective. Alexa Fluor 405 was excited using the 405 nm line of the 

diode laser and detected with 371-422 nm emission. FITC fluorescence was excited 

with a 488 nm line of the argon laser and detected with 493–559 nm emission. Alexa 

Fluor 546 and 633 fluorophores were excited with 543 nm and 633 nm lines of the 

helium–neon laser and 548–623 nm and 638–747 nm emission, respectively. The 

images were acquired at a resolution of 1,024 X 1,024 pixels and stored in 24-bit 

tagged image format file format. No image processing was carried out prior to 

intensity analysis and identical settings were used for all image capture for each 

variable within each participant.  

 

Image Analysis 

All image analysis was performed using ImagePro Plus 5.1 (Media Cybernetics Inc, 

Bethesda, MD, USA).  

 

Mitochondrial density and GLUT4 content 

Mitochondrial density and GLUT4 content were assessed using the methods 

described by Shepherd et al. (2013) and Bradley et al. (2014), respectively. Briefly, 

fluorescence intensity was quantified by measuring the signal intensity within the 
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intracellular regions of a mask created by the dystrophin stain in a fibre type specific 

manner.  

 

IMTG Analysis 

Fibre type specific IMTG analysis to assess peripheral and central regions of the 

myocyte was assessed using the method described in (Shepherd et al., 2017). This 

method was adapted in order to assess IMTG content, lipid droplet size and number 

in the peripheral and central regions of the myocyte. The peripheral region was 

defined as the 5µm below the plasma membrane. Briefly, an intensity threshold was 

uniformly selected to represent a positive signal for IMTG. IMTG content was 

expressed as the positively stained area fraction relative to the total area of each 

muscle fibre. IMTG density was calculated as the number of IMTG objects relative to 

area. The mean area of individual IMTG (lipid droplets) objects was used as a 

measure of lipid droplet size. 

 

Vascular Enzymes 

NOX2 and p47phox protein content in the skeletal muscle microvascular endothelium 

and sarcolemma were assessed using the previously developed 

immunofluorescence staining protocol and quantification technique (Cocks et al., 

2012; Cocks et al., 2013), adapted to allow for differentiation between capillaries and 

terminal arterioles (Cocks et al., 2016). Capillary and terminal arteriole specific 

eNOS content and eNOS ser1177 phosphorylation were also assessed using 

previously established methods (Cocks et al., 2016); however, the method was 

adapted to allow for assessment of individual vessel eNOS ser1177/eNOS ratio to be 

calculated. Briefly, blood vessels were divided into either capillaries or arterioles 
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using the αSMA image. The endothelial (UEA-I-FITC) outline was then overlaid onto 

the corresponding vascular enzyme image. Fluorescence intensity of the vascular 

enzyme signal was then quantified within the endothelial specific area. Diameter of 

the arterioles was determined on calibrated images. Vessels larger than 20µm in 

diameter were excluded to remove 3rd and 4th order arterioles (Wu et al., 2011) 

from the analysis, which rarely appear in muscle cross-sections. eNOS and eNOS 

ser1177 phosphorylation were stained on the same sections, as such, it was possible 

to establish eNOS ser1177/eNOS ratio on an individual vessel basis, as the same 

endothelial outline could be placed over both eNOS and eNOS ser1177 images. Cell 

membrane specific fluorescence for NOX2 and p47phox was determined using the 

WGA-633 stain to create an outline of the cell membrane. This mask was then 

overlaid onto the corresponding image to determine membrane specific fluorescence 

intensity for NOX2 or p47phox.  

 

Capillarisation 

Capillaries were quantified in a fibre type specific manner manually, using the UEA-I, 

WGA-633 and myosin heavy chain images. The following indexes were measured 

(Hepple et al., 1997): 1) the number of capillaries around a fibre (capillary contacts), 

2) capillary-to-fibre ratio on an individual fibre basis and 3) capillary-fibre perimeter 

exchange (CFPE) index. In addition, overall capillary density was determined. 

Quantification of capillarisation was performed only on transverse fibres. In line with 

previous studies assessing capillarisation, at least 50 complete fibres were included 

in each analysis (Porter et al., 2002). Fibre cross-sectional area and perimeter were 

measured on calibrated images using ImagePro Plus 5.1 software. 
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Statistical Analysis 

The primary aim of the study was to compare the effects of training on muscle 

microvascular eNOS protein content. The study was powered to detect between-

group differences in this variable in response to training. G*Power 3.1 software 

(G*Power Software Inc., Kiel, Germany) was used to calculate the required sample 

size. The study was designed to detect a between-group effect of f = 0.35, 

representative of a medium-sized effect (Cohen, 1992), adopting an alpha of 0.05 

and power of 0.80. This was deemed to be a physiologically relevant difference, as 

the authors have previously observed a medium effect size difference following 6 

weeks of SIT and MICT in sedentary individuals (Cocks et al., 2013). Measures 

taken pre, mid and post-training and measures assessing a fibre type differences 

were analysed using a two- or three-way mixed design ANOVA with the within group 

factors „training‟ (pre vs. mid vs. post) and „fibre type‟ (type I vs. type II) and the 

between group factor „group‟ (Home-HIT vs. Home-MICT vs. Lab-HIT). All other 

variables taken pre and post-training were analysed using a 2-way mixed design 

ANOVA with between factor „group‟ (Home-HIT vs. Home-MICT vs. Lab-HIT) and 

within group factor „training status‟ (pre vs. post). In the case of a significant 

interaction, a Bonferroni post-hoc test was applied. Eight muscle biopsies were taken 

and analysed pre and post training in each training group. Matsuda Index values are 

missing in one Lab-HIT participant and three Home-MICT participants because it 

was not possible to get blood samples. All analyses were performed using IBM 

SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. Significance 

was set at P≤0.05 and data are presented as mean ± SD.  

 

RESULTS 
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Adherence and Compliance  

Figure 2 shows a flow chart of participant recruitment and any reasons for study drop 

out. Although not significant, adherence tended to be different between groups 

(P=0.053; Figure 1A). Post-hoc analysis revealed a trend for greater adherence to 

Lab-HIT compared to Home-MICT (P=0.081), but no significant differences were 

observed between Home-HIT and Lab-HIT (P=1.000) or Home-MICT (P=0.195). 

Training compliance showed no differences between groups (P= 0.420; Figure 1B).   

 

General Characteristics 

Baseline data showed no differences in age, BMI or  ̇O2peak between groups 

(P=0.369; 0.455 and 0.898, respectively). Training increased  ̇O2peak (main effect, 

P<0.001), but no difference between groups was observed. Post-hoc analysis 

revealed that  ̇O2peak increased following 4 weeks of training (Home-HIT 9%, Home-

MICT 6%, Lab-HIT 8%; P<0.001) and continued to increase further after 12 weeks 

(Home-HIT 16%, Home-MICT 12%, Lab-HIT 20%; P<0.001). Training decreased 

body mass and BMI (main effect, P=0.003 and P=0.005, respectively), with no 

differences between groups. Post-hoc analysis revealed both body mass and BMI 

decreased following 4 weeks of training (P=0.004 and P=0.007, respectively), and 

this decrease in body mass and BMI was retained after 12 weeks (P=0.014 and 

P=0.022, respectively). There was a 4% decrease in body fat percentage in all three 

groups (main effect, P<0.01), with no difference between groups (P=0.468). Visceral 

fat mass was also significantly reduced in all groups (Home-HIT -27%; Home-MICT -

12%; Lab-HIT -3%; main effect, P=0.025), with no difference between groups 

(P=0.304). There was no change in lean mass following training (P=0.387). 
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Blood Variables 

Insulin AUC decreased with training (Home-HIT -24%, Home-MICT -20%, Lab-HIT -

18%; main effect, P<0.001), but there was no change in glucose AUC (P>0.05), with 

no difference between groups for either variable. The Matsuda ISI was significantly 

increased by 12 weeks of training (Home-HIT 39%, Home-MICT 18%, Lab-HIT 13%; 

main effect, P=0.032), with no difference between groups (P=0.609). There was no 

change in fasting plasma glucose, insulin, cholesterol, triglycerides, HDL or LDL 

concentrations (P>0.05). Data are presented in Table 2. 

 

Vascular Measures 

There was a significant increase in FMD (main effect, P<0.001), with no difference 

between groups (P=0.246) or interaction. Post-hoc analysis revealed that FMD was 

unchanged following 4 weeks of training (P=1.000), but significantly increased 

following 12 weeks of training (Home-HIT 30%, Home-MICT 43%, Lab-HIT 49%; 

P<0.001). Baseline artery diameter was unchanged by training (P=0.334). There was 

no change in aortic PWV following 4 weeks of training (P=1.000), but a significant 

decrease following 12 weeks of training (Home-HIT -17%, Home-MICT -14%, Lab-

HIT -4%; P=0.04), with no difference between groups (P=0.417) or interaction 

(P=0.327). There was no difference in any of the blood pressure variables (P>0.05). 

 

Quantitative Immunofluorescence  

Mean diameter of arterioles assessed for analysis of the vascular enzymes were 

10.2 ± 0.8 µm which is consistent with the interpretation that only terminal or 5th 
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order arterioles were analysed (Wu et al., 2011). The mean number of arterioles 

analysed was 9 ± 2 at each time point per participant. 

 

eNOS Content and Phosphorylation 

Terminal arteriole eNOS content increased with training (Home-HIT = 20%; Home-

MICT = 18%; Lab-HIT = 15%; main effect of training, P<0.001; Figure 4). There was 

also an increase in capillary eNOS content (Home-HIT = 21%; Home-MICT = 7%; 

Lab-HIT = 9%; main effect of training, P=0.001; Figure 4). Training did not change 

eNOS ser1177 phosphorylation in the terminal arterioles (training effect, P=0.802) or 

capillaries (training effect, P=0.311; Figure 4). When eNOS ser1177 phosphorylation 

was normalised to eNOS content (eNOS ser117/eNOS ratio) on an individual vessel 

basis there were significant decreases with training in the arterioles and capillaries 

(main effect of training, P=0.001 and P<0.001, respectively; Figure 4). There were no 

between group differences for any of the variables. 

 

NAD(P)Hox Subunits  

Terminal arteriole NOX2 (catalytic subunit of NAD(P)Hoxidase) content was 

significantly reduced with training (Home-HIT = -22%; Home-MICT = -21%; Lab-HIT 

= -24%; main effect of training, P<0.001). Training also reduced skeletal muscle 

capillary NOX2 content (Home-HIT = -18%; Home-MICT = -14%; Lab-HIT = -24%; 

main effect of training, P<0.001; Figure 5). There was no change in p47phox 

(regulatory subunit of the NAD(P)Hox complex) content in the terminal arterioles 

(P=0.101) or capillaries (P=0.345) following training. Sarcolemma-associated NOX2 

and p47phox content were unaltered by training (main effect of training, P=0.897 and 
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P=0.561, respectively). There were no between group differences in any of the 

variables (P>0.05). 

 

Mitochondrial Density 

COX IV protein expression (fluorescence intensity), a marker of mitochondrial 

density, was greater in type I fibres than type II fibres (main effect P<0.001; Figure 

7). Mitochondrial density increased in both type I (Home-HIT 14%, Home-MICT 6%, 

Lab-HIT 22%) and type II fibres (Home-HIT 34%, Home-MICT 11%, Lab-HIT 33%) 

following training (main effect; P<0.001), with no differences between groups.  

 

Muscle GLUT4 Content 

Total muscle fibre GLUT4 content was increased by training (main effect, P=0.005), 

with no difference between groups (Figure 7). There was also a strong trend towards 

a significant training x fibre type interaction (P=0.061), and although not significant 

this trend was explored further. This analysis revealed training increased GLUT4 

content in type II fibres (P=0.005), but not type I fibres (P=0.089). Post-training 

GLUT4 content was higher in type II fibres than type I fibres (P=0.02), while there 

was not a fibre type difference  before training (P=0.983). 

 

Intramuscular Triglyceride Content 

IMTG content was significantly greater in type I fibres compared to type II fibres 

(P<0.001; Figure 7). IMTG content increased following training in both type I and II 

fibres (main effect, P<0.01), with no difference between groups. The increase in 

IMTG content was due to an increase in lipid droplet (LD) density (P=0.034) following 
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training. LD size did not change with training (P=1.000). Total and central IMTG 

content increased following 12 weeks of training (main effect of training, total 

P=0.006; central P=0.026). There was a non-significant trend towards an increase in 

peripheral IMTG content (P=0.06). The increase in IMTG content was due to an 

increase in central LD density (P=0.034) following training, and non-significant trends 

towards increased total (P=0.069) and peripheral (P=0.082) LD density. LD size was 

unchanged by training (P=1.000). 

 

Capillarisation 

Table 3 summarises the capillarisation results. Capillary density was increased by 

training (Home-HIT = 15%; Home-MICT = 33%; Lab-HIT = 16%; main effect of 

training P<0.001), with no differences between groups (P=0.850). Capillary-to-fibre 

ratio, capillary-fibre perimeter exchange index and capillary contacts were all higher 

in type I fibres than type II fibres irrespective of training status (main effect of fibre 

type, P<0.05). Capillary-to-fibre ratio on an individual fibre basis (C/Fı) increased 

with training (Home-HIT = 16%; Home-MICT = 25%; Lab-HIT = 10%; main effect of 

training, P<0.001), with no difference between groups (P=0.774). Capillary-fibre 

perimeter exchange increased with training (Home-HIT = 14%; Home-MICT = 19%; 

Lab-HIT = 5%; main effect of training, P<0.001), with no differences between groups 

(P=0.378). Capillary contacts increased with training (Home-HIT = 15%; Home-MICT 

= 33%; Lab-HIT = 16%; main effect of training, P<0.001), with no difference between 

groups (P=0.706). There was a trend towards an effect of fibre type on fibre cross-

sectional area (P=0.077), but there was no effect of fibre type on fibre perimeter 

(P=0.242). Training had no effect on fibre cross-sectional area (P=0.190) or 

perimeter (P=0.394).   
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DISCUSSION 

The most important and novel findings of the present study are that virtually-

monitored Home-HIT and Home-MICT and low-volume Lab-HIT in obese individuals 

with elevated CVD risk: 1) increased skeletal muscle endothelial eNOS protein 

content in both terminal arterioles and capillaries, 2) reduced eNOS ser1177 

phosphorylation when normalised to the increase in eNOS content, 3) decreased 

endothelial NOX2 protein content in skeletal muscle terminal arterioles and 

capillaries, and 4) increased skeletal muscle capillarisation. Importantly, these 

microvascular adaptations coincided with improvements in  ̇O2peak and whole-body 

insulin sensitivity. In addition, all three training modes caused significant 

improvements in brachial artery endothelial dependent dilation and aortic stiffness. 

Finally, muscle biopsy data revealed skeletal muscle adaptations typically observed 

following endurance training in all three groups. Despite the training sessions being 

completed at home without direct supervision, participants in both the Home-HIT and 

Home-MICT groups had high adherence at the prescribed exercise intensity, similar 

to fully supervised Lab-HIT, which provides initial support for home-based training 

interventions using virtual monitoring. This study suggests virtually monitored Home-

HIT is an effective and practical training strategy capable of producing metabolic and 

functional adaptations in the skeletal muscle microvasculature in a direction 

consistent with substantial health benefits in obese individuals with elevated CVD 

risk. Therefore, Home-HIT may be an effective public health intervention for 

sedentary obese individuals, and future research should now investigate the 

applicability of these home-based training programmes in a larger cohort. 

 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



Skeletal Muscle Endothelial Enzymes Regulating NO Bioavailability  

Here we demonstrate for the first time that low-volume Lab-HIT increased terminal 

arteriole and capillary eNOS expression. These findings are similar to previous work 

from our group demonstrating that lab-based sprint interval training increased 

skeletal muscle microvascular eNOS content in lean (Cocks et al., 2013) and obese 

(Cocks et al., 2016) individuals. However, the low-volume HIT protocol used in the 

current study was developed as a more suitable training method than sprint interval 

training for the obese population studied due to the lower workload (Gibala et al., 

2012). This study is also the first to demonstrate that the two "real world" home-

based exercise programmes, performed with virtual supervision, produced similar 

increases in eNOS content as the highly controlled Lab-HIT protocol. The current 

study found comparable increases in eNOS content in the two HIT groups and the 

MICT group, confirming our observations in a previous study comparing sprint 

interval training and MICT in obese individuals (Cocks et al., 2016). However, an 

earlier study in sedentary young lean men demonstrated that the increase in eNOS 

was significantly greater following six weeks of “all-out” sprint interval training than 

MICT (Cocks et al., 2013). This may suggest differences in the training stimulus (30-

second “all out” sprints vs. 1-minute submaximal exercise in the current study) 

and/or fitness differences between populations may influence eNOS expression in 

response to training.    

There was no change in basal eNOS ser1177 phosphorylation in the 

microvascular endothelium following 12 weeks of training in all three groups. 

However, when normalised to eNOS content, eNOS ser1177 phosphorylation was 

reduced. This is different to previous studies investigating the effect of training on 

basal eNOS ser1177 phosphorylation. Our group has previously found that 6 weeks of 
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sprint interval training or MICT in sedentary lean individuals reduced eNOS ser1177 

phosphorylation expressed by itself and when normalised to eNOS content (Cocks et 

al., 2013). However, eNOS ser1177 phosphorylation was shown to increase and 

eNOS ser1177/eNOS content ratio was unchanged in obese individuals following 4 

weeks or sprint interval training or MICT (Cocks et al., 2016). The data produced by 

these studies indicate that the response of eNOS ser1177 phosphorylation to training 

is affected by obesity and temporal differences. In combination, the studies suggest 

that in obesity eNOS ser1177 phosphorylation initially increases in response to 

training before reducing over time. This reduction in obese individuals may continue 

with training to eventually reduce eNOS ser1177 phosphorylation irrespective of eNOS 

content as observed in the lean individuals (Cocks et al., 2013). The decrease in 

eNOS ser1177 phosphorylation following training has been attributed to a decrease in 

shear stress due to the increased capillary density (Cocks et al., 2013), however 

Gliemann et al. (2014) suggested it may be a reflection of increased NO 

bioavailability as a result of less NO being scavenged by NOX2 and therefore less 

activation of eNOS is needed. 

Expression of the catalytic subunit of the NAD(P)Hox complex NOX2 was 

reduced in terminal arterioles and capillaries following Home-HIT to a similar degree 

as Home-MICT and Lab-HIT. This adds to previous work that found 4 weeks of 

laboratory-based sprint interval training and MICT reduced mixed microvascular 

NOX2 content in obese individuals (Cocks et al., 2016). Conversely, when 

investigating sedentary lean individuals, Cocks et al. (2013) found no change in 

mixed microvascular NOX2 protein content following sprint interval training or MICT, 

presumably because the lean individuals have a very low NOX2 protein content at 

baseline. There was no change in arteriole or capillary content of the regulatory of 
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the NAD(P)Hox complex p47phox following training. These findings agree with those 

of La Favor et al. (2016), who used Western blots on whole tissue homogenates to 

show that 8 weeks of aerobic interval training did not alter the expression of p47phox 

in obese individuals, despite elevated baseline levels. Together the current study 

and that of La Favor et al. (2016) demonstrate the importance of measuring multiple 

NAD(P)Hox subunits to gain full insight into the effect of training on .O2
- production.  

The increase in eNOS content and reduced NOX2 content following training 

indicates an altered balance between NO formation and quenching by .O2
- anions 

and other ROS leading to increased skeletal muscle microvascular NO 

bioavailability. Previous work has shown that NO-mediated increases in skeletal 

muscle perfusion are essential for optimal glucose uptake (Vincent et al., 2003, 

2004) and that this mechanism is impaired in obesity, contributing to impaired 

glucose disposal in this population (Clerk et al., 2006; Keske et al., 2009). As such, 

the improved eNOS/NAD(P)Hox ratio observed in the current study likely contributed 

to the improved insulin sensitivity observed following training. The metabolic 

importance of elevated endothelial eNOS content was highlighted by Kubota et al. 

(2011) who observed that an increase in endothelial eNOS content, through 

administration of bera-prost sodium (a prostaglandin I2 analogue that stimulates 

eNOS mRNA expression and protein synthesis), increased skeletal muscle capillary 

perfusion and glucose uptake in IRS-2 knockout and high-fat fed mice. In addition, 

obesity is associated with elevated oxidative stress in skeletal muscle due to 

elevated NOX-mediated ROS production, which leads to microvascular endothelial 

dysfunction (Weseler & Bast, 2010; La Favor et al., 2016). La Favor et al. (2016) 

found that 8 weeks of aerobic interval training in obese individuals decreased 

expression of NAD(P)Hox subunits which coincided with reduced ROS production 
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and reversed microvascular endothelial dysfunction. The observations from these 

previous studies combined with the results of the present study suggest that the 

increased eNOS/NAD(P)Hox ratio in obese individuals following exercise training will 

result in increased NO bioavailability upon insulin stimulation and a more 

metabolically healthy phenotype.    

 

Capillarisation 

This is the first study to demonstrate that two home-based exercise interventions 

performed with virtual supervision and no equipment improve capillary density, 

capillary contacts and capillary-fibre perimeter exchange index. The findings also 

extend the previous work of Tan et al. (2018), which demonstrated that 6 weeks of 

low-volume HIT increased capillary contacts in overweight/obese women, while we 

show that 12 weeks of low-volume HIT increased capillary density and capillary-fibre 

perimeter exchange index. The similar increases in capillarisation with Home-HIT 

and supervised Lab-HIT suggest Home-HIT is an effective strategy to increase 

capillarisation while simultaneously reducing the major barriers to exercise. The 

findings also provide support for previous shorter duration sprint interval training 

(Cocks et al., 2013, 2016) and HIT studies (Tan et al., 2018), which show no 

difference in fibre type specific angiogenesis in response to interval training, which is 

in contrast to previous work in rats showing fibre type difference in response to 

interval training and MICT (Gute et al., 1994).   

The increase in skeletal muscle capillarisation, as shown here, is an 

established adaptation to exercise training that is likely to be a key contributing factor 

to improved  ̇O2peak  (Andersen & Henriksson, 1977; Saltin, 1988; Bassett & Howley, 
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2000; Hellsten & Nyberg, 2015),   due to prolonged mean erythrocyte transit time and 

decreased diffusion distance to allow increased delivery and extraction of oxygen. 

Increased capillarisation is also likely to contribute to the improved insulin sensitivity 

observed, which would improve glucose tolerance and delay progression to type 2 

diabetes in obese individuals with elevated metabolic disease risk. This is supported 

by Akerstrom et al. (2014), who directly investigated the effects of capillarisation on 

insulin sensitivity by treating sedentary rats with Prazosin (an α1-adrenergic receptor 

antagonist). The ~20% increase in capillary density following 3 weeks of Prazosin 

treatment resulted in a ~30% increase in insulin-stimulated skeletal muscle glucose 

disposal, despite no change in skeletal muscle insulin signalling. This suggests that 

increased capillarisation with exercise training has a direct effect on insulin 

sensitivity, independent of other metabolic adaptations.  

 

Vascular Measures 

FMD increased by 2% after 12 weeks of Home-HIT. Brachial artery FMD is an 

independent predictor of CVD (Gokce et al., 2002; Green et al., 2011) and is a 

surrogate of coronary artery endothelial function (Anderson et al., 1995). Indeed, 

there is a 9% decrease in risk of cardiovascular events with each 1% increase in 

FMD (Green et al., 2011). Improved FMD has been suggested to be the result of 

elevated nitric oxide (NO) bioavailability following training (McAllister & Laughlin, 

2006).  

This is the first study to investigate the time course of brachial artery FMD in 

response to MICT and low volume HIT in obese individuals with elevated CVD risk. 

Sawyer et al. (2016) investigated the effect of low-volume HIT (10x1 min intervals on 
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a cycle ergometer at 90-95% HRmax) and MICT (30 min at 70-75% HRmax on a cycle 

ergometer) on brachial artery FMD after 4 and 8 weeks of training in obese adults. 

Similar to the current study no change in brachial artery FMD was observed after 4 

weeks in either group. However, unlike the current study differences in the response 

to MICT and low-volume HIT were observed after 8 weeks of training, with FMD 

being unchanged following MICT and increased following low-volume HIT. In 

addition, differences in baseline artery diameter were observed, with MICT inducing 

significant increases following 8 weeks of training, and no difference following 8 

weeks of low-volume HIT. The reason for the differences between studies is unclear, 

but it may be due to participants (obese vs. obese with at least 2 further CVD risk 

factors) or duration of training (8 vs. 12 weeks). Importantly, studies in healthy young 

volunteers have demonstrated that endothelial function is increased following 2-4 

weeks of training, but that function is normalised after prolonged training (>6-weeks) 

due to structural adaptation i.e. increased brachial artery diameter (Green et al., 

2017). The current results and those of Sawyer et al. (2016) differ from this paradigm 

as endothelial function was increased only after 8 or 12-weeks, and there was no 

suggestion of arterial remodelling in the current study. These data are in line with 

previous work investigating the time-course of arterial adaptations in individuals with 

chronic heart failure and coronary artery disease (Maiorana et al., 2000; Walsh et al., 

2003). This may be due to the impact of oxidative stress or inflammation on NO 

bioavailability, which are known to be elevated in obese individuals with increased 

CVD risk (Silver et al., 2007; La Favor et al., 2016). 

This is the first investigation to study the effects of exercise training on aortic 

PWV over 12 weeks in obese individuals with elevated CVD risk. The results mirror 

the changes in FMD with no change in aortic PWV following 4 weeks, but a 
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significant improvement after 12 weeks. Obesity results in increased central artery 

stiffness even in young individuals, with subsequent negative cardiovascular 

outcomes (Zebekakis et al., 2005). Therefore, the improved PWV may be related to 

improved cardiovascular risk. 

 

Myocyte Adaptations 

The myocyte adaptations investigated were selected because they are classical 

markers of training adaptation associated with improved health (Hawley & Lessard, 

2008). Previous research has shown that HIT increases GLUT4 content (Bradley et 

al., 2014), IMTG content (Shepherd et al., 2013, 2017) and mitochondrial density 

(Shepherd et al., 2017; Tan et al., 2018). The increase in mitochondrial content likely 

underpins the improved  ̇O2peak as mitochondrial biogenesis is a major training 

adaptation that increases lipid and glucose fuel handling. High IMTG content is 

associated with insulin resistance in sedentary individuals, as excess IMTG content 

in obesity leads to  accumulation of lipid metabolites such as ceramides, LCFA-CoA 

and diacylglycerol that can impair insulin signalling via serine phosphorylation at the 

insulin receptor 1, eventually leading to insulin resistance (Shulman, 2014). 

However, it is important to note that athletes combine high IMTG content with high 

insulin sensitivity (Goodpaster et al., 2001), due to their greater capacity to oxidise 

IMTG. Here, training increased total IMTG content in all three groups, which was 

driven by an increase in central LD density (larger number of small LDs). This  

training adaptation is in line with  the observations of Shepherd et al. (2017) showing 

that 4 weeks of SIT and MICT reduced ceramide concentrations and increased the 

number of lipid droplets in contact with the mitochondria in obese males. The present 

study provides further evidence that an increase in central IMTG content is an 
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important training adaptation that means the muscle is more efficient at using fatty 

acids released by the IMTG pool for oxidation. The increase in mitochondrial density 

alongside increased LD density will lead to greater IMTG utilisation during exercise 

and has been suggested to improve insulin sensitivity (Shepherd et al., 2013).  

GLUT4 is the primary insulin-responsive glucose transporter in skeletal 

muscle, and experimental increases in skeletal muscle GLUT4 in animal models 

have been shown to increase whole-body insulin sensitivity (Ren et al., 1995; 

Hansen et al., 1995; Tsao et al., 1996). As such, the increase in GLUT4 expression 

likely contributed to the increased insulin sensitivity. 

 

An Effective ‘Virtually Monitored’ Training Programme  

A number of groups have shown HIT to be effective at improving a range of cardio-

metabolic health parameters (Hood et al., 2011; Little et al., 2011; Cocks et al., 2013, 

2016). However, most of these studies are highly controlled laboratory-based 

interventions (Weston et al., 2014), or field-based work with high levels of participant 

supervision (Ong et al., 2009; Lunt et al., 2014; Shepherd et al., 2015). Therefore, 

health researchers have argued that although effective under optimal conditions, HIT 

cannot become an effective public health intervention when targeted at exercise-

naïve populations. In addition, many of the current protocols require exercise 

equipment (ergometers or treadmills), introducing additional barriers to exercise such 

as difficulties with access to equipment or facilities (including distance and cost) and 

potential embarrassment due to negative body image within a gym setting (Trost et 

al., 2002). 

Despite previous concerns (Frazao et al., 2016), our data suggest obese 

participants with elevated CVD risk were able to adhere to the Home-HIT 
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programme, and exercise at sufficiently high exercise intensities to elicit health 

benefits without close supervision. The training intervention in the current study was 

designed for individuals with low fitness and mobility, and to remove the need for 

costly equipment or facilities (Trost et al., 2002; Morgan et al., 2016). To achieve 

this, participants were provided with a number of exercises which ranged from 

simple low-impact exercises to complex movements with higher impact. This allowed 

participants to modify exercise sessions, choosing exercises that elicited the desired 

HR response, but were suitable for their level of mobility and fitness. In addition, 

recent studies have suggested that sedentary individuals report pleasant feelings 

during the first 3-4 bouts of low-volume HIT (Frazao et al., 2016), but importantly 

enjoyment of HIT increases as participants progress through a training programme 

(Heisz et al., 2016). Therefore, unlike previous low-volume HIT studies (Little et al., 

2011; Tan et al., 2018), the current intervention started with a low number of 

intervals and progressed training volume throughout (4 intervals during week 1-2 to 8 

intervals during week 11-12). 

Interestingly, we observed high adherence levels in both home-based 

interventions (MICT and HIT), which was higher than two studies investigating 

supervised gym-based and outdoor MICT and HIT programmes (Lunt et al., 2014; 

Shepherd et al., 2015). Whilst home-based exercise programmes have a number of 

benefits over supervised programmes, lack of support and supervision from exercise 

professionals presents a significant barrier. Indeed, a recent meta-analysis 

suggested that supervision from exercise professionals was needed to build and 

maintain motivation to exercise (Morgan et al., 2016). As such, the novel virtual-

monitoring system may have positively influenced the findings of this study, 

contributing to the high adherence observed. Previous work in sedentary individuals 
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has shown that immediate feedback illustrating HR can positivity influence 

participant motivation (Kinnafick et al., 2018). Allowing the research team to provide 

feedback to participants throughout the intervention also likely improved motivation 

by creating a supportive environment (Petit & Cambon, 2016). In addition, knowing 

the research team were monitoring exercise may have increased motivation to 

adhere to the programme. Such extrinsic motivation can facilitate adoption to 

exercise and result in adaptive outcomes when accompanied by more autonomous 

motivation (e.g., facilitated through self-monitoring) (Thøgersen-Ntoumani & 

Ntoumanis, 2006). As such, future studies should investigate the potential of novel 

monitoring systems to increase adherence to exercise interventions.  

 

Limitations 

The study was powered to detect a medium effect size between groups for skeletal 

muscle capillarisation and microvascular eNOS content, and as a result the sample 

size was not high enough to detect between-group differences in other variables 

displaying a larger variability (e.g. increases in  ̇O2peak and whole-body insulin 

sensitivity). Using the data generated in this study a power calculation suggests 69 

participants per group would be required to detect a between group difference in 

 ̇O2peak of 1.5 ml·kg-1·min-1
 between Home-HIT and Home-MICT. Therefore, based 

on this promising data, future trials should investigate virtually-monitored Home-HIT 

in larger cohorts to investigate its true effectiveness compared to traditional training 

interventions. We decided not to include an untrained control group in this study. 

Although this would have strengthened the design, it would have reduced the 

feasibility of completing the study due to costs, difficulty with recruitment and the 

invasive nature of some of the measures. It is also important to acknowledge the 
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non-exclusion of females using hormonal contraceptives and that not all females 

were measured in days 1-7 of their menstrual cycle. Self-allocation of participants to 

the training groups may be deemed as a limitation as this does not conform to the 

traditional randomisation approach. However, it is known that offering patients choice 

and actively involving them in decision making about treatment strategies can 

improve health outcomes (Redfern et al., 2009).  As such, self-allocation of exercise 

training should be encouraged and was used to improve the real world translation of 

the findings. Importantly, there were no between group differences before training 

started, suggesting the groups included similar individuals, based on the health 

measures included. However, future large scale studies should investigate if there 

are differences in exercise choice between individuals based on health status. In 

addition, future work should investigate the specific demographics of the groups, for 

example, what is the previous exercise experience of participants, what is the 

participants‟ knowledge of the training programmes on offer, to see if these variables 

influence choice of training mode and training adherence and compliance. 

 

Conclusions 

This study provides novel evidence that 12 weeks of virtually-monitored Home-HIT, 

and Home-MICT and Lab-HIT in obese individuals with elevated CVD risk leads to 

similar skeletal muscle microvascular adaptations that likely underpin the functional 

improvements in insulin sensitivity and  ̇O2peak. All three interventions induced 

similar improvements in endothelial enzyme balance as indicted by increased eNOS 

protein content, reduced eNOS ser1177/eNOS ratio and reduced expression of the 

catalytic subunit of the NAD(P)Hox subunit of NOX2. All three training modes also 

induced similar improvements in capillarisation, mitochondrial density, IMTG and 
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GLUT4 content which occurred alongside increased  ̇O2peak and whole-body insulin 

sensitivity. The virtually-monitored Home-HIT intervention used in this study was 

time-efficient and reduced many of the other traditional barriers to exercise. 

Therefore, this study is an important first step that suggests Home-HIT may be an 

effective strategy to improve cardio-metabolic health by increasing physical activity 

participation in the obese population most in need. Future research should 

investigate how home-based exercise removes barriers to exercise and its 

applicability to larger cohorts.  
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Authors' Translational Perspective  

Laboratory-based high-intensity interval training (HIT) is a time-efficient alternative to 

moderate-intensity continuous training (MICT). However, the currently open question 

is whether data produced in highly controlled laboratory environments can be 

translated to the real world. Therefore, this study tested the hypothesis that a novel, 

virtually-supervised home-based HIT (Home-HIT) intervention could be used for 

prevention and management of cardio-metabolic diseases. We investigated whether 

HOME-HIT would have similar values for adherence and compliance and for 

recognised metabolic and functional outcome measures as home-based moderate-

intensity continuous training (MICT) and laboratory-based HIT in obese individuals 

with elevated cardiovascular disease risk. This is the first study to show that home-

based exercise modes (either HIT or MICT), which do not require any equipment or 

direct supervision, can induce favourable adaptations in skeletal muscle and its 

microvasculature that likely underpin the observed functional improvements 

observed ( ̇O2peak, insulin sensitivity, brachial artery endothelial function (FMD) and 

aortic stiffness). This combination of metabolic/structural measurements with whole-

body functional measures has not previously been made in real-life home-based 

training modes. The virtually-monitored Home-HIT intervention was time-efficient and 

reduced many of the traditional barriers to exercise including travel time and gym 

membership costs. Therefore, these data may underpin future studies aiming to 

improve exercise adherence using home-based exercise, resulting in increased 

acceptance of exercise as a therapy for the prevention and management of disease. 

Future research should investigate how home-based exercise removes barriers to 

exercise and its applicability to larger cohorts.  
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Table 1. Participant characteristics and overview of the number of patients that 
met American Heart Association coronary heart disease risk factor thresholds 

 

 Home-HIT Home-MICT Lab-HIT 

Age (yrs) 32 ± 8 38 ± 9 37 ± 13 

Sex (male/female) 4/5 4/9 5/5 

Height (cm) 168 ± 12 172 ± 8 172 ± 8 

BMI (kg·min-2) 35.9 ± 4.1 33.3 ± 5.2 34.2 ± 4.2 

 ̇O2peak (ml·kg-1·min-1) 23.8 ± 2.5 24.9 ± 6.8 24.8 ± 6.4 

Medication 1/9 8/13 4/10 

Smoker/previous 
smoker 

1/9 3/13 5/10 

Family history 5/9 6/13 4/10 

Obesity 9/9 13/13 10/10 

Sedentary lifestyle 9/9 13/13 10/10 

Impaired fasting 
glucose 

1/9 1/13 1/10 

Dyslipidaemia 9/9 12/13 7/10 

Hypertension  4/9 7/13 1/10 

Mean number of risk 
factors per participant  

4 ± 1             4 ± 2             4 ± 2 

Range of risk factors 3-5              3-6             3-6 

 

Medication included blood pressure medication (e.g. ramipril, felodipine, losartan, 
amilodipine, indipamide), metformin or statins. Family history included diabetes 
and/or cardiovascular disease in an immediate family member. Obesity was 
classified as a BMI >30 kg·m2 or waist/hip ratio of >0.9 in men and >0.85 in women. 
Dyslipidaemia was defined as total cholesterol >11.1 mmol.L-1, HDL <2.2 mmol.L-1 or 
LDL >7.2 mmol.L-1. Hypertension was classified as >140/90 mmHg or on 
antihypertensive medication and impaired fasting glucose was defined as fasting 
blood glucose >6.1 mmol.L-1. Sedentary lifestyle was defined as persons not 
participating in a regular exercise programme or accumulating 30 minutes or more of 
moderate physical activity on most days of the week. Data are presented as 
mean±SD when appropriate.  
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Table 2. Participant characteristics at pre, week 4 and post training 

 

 Home-HIT  Home-MICT  Lab-HIT 

 Pre Week 4 Post  Pre Week 4 Post  Pre Week 4 Post 

Body mass (kg) 
 

101.5±21.6 100.2±22
.0* 

100.1±22.4*  98.3±16.0 96.7±16.1
* 

95.5±16.4*  101.1±15 99.6±14* 99.2±15* 

BMI (m∙kg2) 
 

35.9±4.1 35.4±4.3* 35.4±4.6*  33.3±5.2 32.8±5.1* 32.3±5.1*  34.2±4.2 33.7±3.5* 33.6±3.5* 

Body fat (%) 40.1±5.8 - 38.4±5.6*  35.8±8.4 - 34.4±8.7*  38.1±7.6 - 36.6±7.9* 

Visceral fat (g) 523.1±198.
9 

- 412.0±183.
2* 

 645.4±250
.9 

- 557.2±192.1
* 

 626.7±243.
3 

- 611.0±216.
3* 

Lean mass (kg) 56.7±14.3 - 58.1±14.9  57.9±9.5 - 57.5±10.6  58.1±12.5 - 58.8±12.5 

 ̇O2peak (ml∙kg-

1∙min-1) 

23.8±2.5 25.9±2.5* 27.6±4.7*#  24.9±6.8 26.4±6.6* 28.0±8.1*#  24.8±6.4 26.9±7.0* 29.8±8.2*# 

 ̇O2peak(L/min-1) 2.4 ± 0.6 2.6 ± 0.6* 2.8 ± 0.8*#  2.5±0.8 2.5±0.8* 2.7±1.0*#  2.5±0.8 2.7±0.9* 3.0±1.0*# 

Wmax (W) 180±34 202±35* 213±34*#  182±53 188±55* 208±60*#  174±43 198±54* 221±49*# 

W/H ratio 
 

0.93±0.13 0.92±0.1
3 

0.92±0.14  0.92±0.11 0.92±0.09 0.92±0.08  0.94±0.09 0.92±0.0
8 

0.91±0.11 

ISI Matsuda 
 

2.8±2.2 - 3.9±3.6*  2.8±1.6 - 3.4±1.5*  2.2±1.0 - 2.5±0.9* 

Glucose AUC 
(mmol.L-

1.120min-1) 
 

15551±156
2 

- 15155±274
4 

 13979±70
98 

- 14868±5313  18401±427
3 

- 17840±397
0 

Insulin AUC 
(mmol.L-

1.120min-1) 
 

13740±775
0 

- 10442±551
8* 

 12556±73
41 

- 10043±5684
*# 

 11914±396
4 

- 9723±2777* 
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Fasting glucose 
(mmol.L-1) 
 

5.4±0.7 - 5.0±0.8  5.2±0.7 - 5.5±1.0  5.2±0.6 - 5.6±0.7 

Cholesterol 
(mmol.L-1) 

4.2±0.8 - 4.1±1.0  4.4±0.9 - 4.5±0.9  5.3±1.3 - 5.3±1.1 

Triglycerides 
(mmol.L-1) 

1.0±0.3 - 1.0±0.6  1.1±0.6 - 1.3±0.7  1.6±1.0 - 1.4±0.5 

HDL (mmol.L-1) 0.8±0.2 - 0.9±0.3  1.0±0.2 - 1.0±0.2  1.1±0.2 - 1.1±0.2 

LDL (mmol.L-1) 3.7±0.8 - 3.7±1.0  3.7±1.3 - 3.8±1.1  4.4±1.5 - 4.4±1.2 

MAP (mmHg) 
 

86±10 82±9 83±9  91±12 90±11 90±11  86±6 87±4 85±7 

SBP (mmHg) 
 

119±12 115±13 115±12  127±17 124±15 125±14  122±8 123±6 121±9 

DBP (mmHg) 70±10 66±8 66±10  73±11 73±9 72±10  68±6 69±4 67±8 

Calorie intake 
(kcal) 

1838±479 - 2216±439  1952±565 - 2043±402  1849±332 - 1696±473 

Energy 
expenditure 
(kcal) 

447±164 - 499±137  471±184 - 538±279  304±165 - 339±220 

 
Values are means ± SD. #Denotes a significant difference with training from baseline and *indicates a difference between week 4 

and 12 (P<0.05). At baseline there were no differences in age, BMI or  ̇O2peak between groups (P>0.05). Matsuda Index values are 
reported for 9 Home-HIT, 10 Home-MICT and 9 Lab-HIT participants as it was not possible to obtain blood from all participants.
Table 3. Capillarisation pre and post training 

 Home-HIT  Home-MICT  Lab-HIT 

Variable Pre Post  Pre Post  Pre Post 
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Overall FA (mm2) 3732±1294 4758±3482  3054±966 3210±968  3912±2025 4569±3411 

Type I FA (mm2) 4041±1449 5658±5840  3397±809 3180±752  4061±2154 4698±3646 

Type II FA (mm2) 3550±1317 4277±2488  2852±1150 3192±1226  3901±2134 4509±3378 

Overall perimeter (mm2) 292.2±81.4 307.5±93.6  253.0±56.0 263.7±63.7  324.7±104.9 333.2±118.0 

Type I perimeter (mm2) 300.9±87.2 318.0±120.8  261.4±46.4 267.7±73.9  329.3±103.1 327.1±106.1 

Type II perimeter (mm2) 287.2±81.7 301.3±89.2  249.1±66.3 259.9±67.4   323.1±109.0 334.4±122.7 

Overall CC* 3.97±0.61 4.56±0.86  3.52±1.17 4.68±0.45  3.93±0.83 4.56±0.94 

Type I CC* 4.33±0.99 4.84±1.13  3.78±1.20 4.99±0.56  4.35±0.60 4.76±1.00 

Type II CC* 3.70±0.57 4.27±0.69  3.38±1.18 4.48±0.70  3.69±1.03 4.44±0.96 

Overall C/Fı* 1.54±0.32 1.79±0.35  1.41±0.37 1.77±0.26  1.66±0.42 1.83±0.48 

Type I C/Fı* 1.63±0.43 1.86±0.41  1.57±0.37 1.89±0.34  1.85±0.42 1.92±0.49 

Type II C/Fı* 1.47±0.35 1.70±0.37  1.30±0.32 1.69±0.35  1.54±0.42 1.76±0.49 

Overall CFPE* 5.60±1.11 6.38±1.91  5.79±1.50 6.90±1.11  5.63±1.91 5.92±1.24 

Type I CFPE* 5.80±1.37 6.60±2.23  6.20±1.63 7.25±1.36  6.39±2.29 6.42±1.82 

Type II CFPE* 5.38±0.94 6.10±1.69  5.52±1.42 6.68±1.09  5.10±1.55 5.65±0.92 
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CD (caps mm-2)* 682.6±183.5 812.7±226.8  806.4±223.2 955.7±192  675.8±238.2 836.6±144.4 

 

Values are mean ± SD. *Indicates P<0.05, main effect of training. FA = fibre cross-sectional area, CD = capillary density, CC = 
capillary contacts, C/Fı = capillary-to-fibre ratio on an individual fibre basis, CFPE = capillary-fibre perimeter exchange.
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Figure 1. Adherence and compliance to home-based high intensity interval 
training (Home-HIT), home-based moderate intensity continuous training (Home-
MICT) and lab-based HIT (Lab-HIT).  

A) Adherence is defined as the percentage of scheduled training sessions completed. 
B) Compliance, defined as the percentage of training sessions where target HR 
threshold was met (80% HRmax in the HIT groups and 65% in Home-MICT).  
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Figure 2. Flow chart of study design 
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Figure 3. Effect of Home-based high intensity interval training (Home-HIT), home-
based moderate intensity continuous training (Home-MICT) and lab-based HIT 
(Lab-HIT) on aortic pulse wave velocity (PWV; A), brachial artery flow mediated 
dilation (FMD; B) and resting brachial artery diameter (C).  

*indicates a significant difference from baseline (P<0.05) and #indicates a significant 
difference from week 4 (P<0.05). There were no significant differences in any of the 
variables between the groups. Data are presented as mean ± SD. Aortic PWV was 
recorded in 8 Home-HIT, 6 Home-MICT and 9 Lab-HIT participants due to difficulty 
scanning some participants. Original data is presented for FMD as the same findings 
were reported when baseline diameter was analysed using allometric scaling (Atkinson 
& Batterham, 2013). A
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Figure 4. Effect of 12 weeks of home-based high-intensity interval training (Home-
HIT), home-based moderate-intensity continuous training (Home-MICT) and lab-
based HIT (Lab-HIT) on eNOS content and eNOS ser1177 phosphorylation in 
capillaries and terminal arterioles 

(A) Representative confocal microscopy images of skeletal muscle from pre (top) and 
post (bottom). The skeletal muscle microvascular endothelium was revealed using Ulex 
europaeus-FITC conjugated lectin (green). Arterioles and capillaries were differentiated 
using anti-α-smooth muscle actin (αSMA) in combination with Alexa Fluor 405 
conjugated secondary antibody (blue). Skeletal muscle eNOS ser1177 phosphorylation 
was revealed using Alexa Fluor 633 conjugated secondary antibody (purple). Skeletal 
muscle eNOS expression was revealed using Alexa Fluor 546 conjugated secondary 
antibody (red). (B) and (C) show mean fold change in eNOS content in capillaries and 
arterioles with training; (D) and (E) show mean fold change in eNOS ser1177 
phosphorylation  in capillaries and arterioles with training and (F) and (G) show change 
in eNOS/PeNOS ser1177 ratio with training. *Indicates a significant main effect of training 
(P<0.05). White bar = 50 µm. 
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Figure 5. Effect of 12 weeks of home-based high intensity interval training (Home-
HIT), home-based moderate intensity continuous training (Home-MICT) and lab-
based HIT (Lab-HIT) on NOX2 and p47phox content. 

(A) Representative confocal microscopy images of skeletal muscle from pre (top) and 
post (bottom) training on NOX2 content. The skeletal muscle microvascular endothelium 
was revealed using Ulex europaeus-FITC conjugated lectin (green). Arterioles and 
capillaries were differentiated using anti-α-smooth muscle actin (αSMA) in combination 
with Alexa Fluor 405 conjugated secondary antibody (greyscale). Wheat germ 
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agglutinin-633 (WGA-633; Invitrogen, Paisley, UK) was used as a plasma marker 
membrane (pink). Skeletal muscle NOX2 expression was revealed using Alexa Fluor 
546 conjugated secondary antibody (red). White bar = 50 µm. (B) and (C) show mean 
fold change in NOX2 content in capillaries and arterioles with training; (D) and (E) show 
mean fold change in p47phox expression in capillaries and arterioles with training. 
*Indicates a significant main effect of training (P<0.05). White bar = 50 µm.  
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Figure 6. Effect of 12 weeks of home-based high intensity interval training (Home-
HIT), home-based moderate intensity continuous training (Home-MICT) and lab-
based HIT (Lab-HIT) on skeletal muscle capillarisation 
Representative widefield microscopy images of skeletal muscle pre (top) and post 
(bottom) training. Capillarisation was revealed using Ulex europaeus-FITC conjugated 
lectin (UEA-I, green). The skeletal muscle membrane was revealed using wheat germ 
agglutinin-633 (WGA, blue). Fibre type was revealed using anti-myosin I (MHC-I, red). 
White bar = 50 µm. 
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Figure 7. Effect of 12 weeks of home-based high intensity interval training (Home-
HIT), home-based moderate intensity continuous training (Home-MICT) and lab-
based HIT (Lab-HIT) on fibre type specific GLUT4 content, mitochondria density 
indicated by COX IV fluorescence intensity and intramuscular triglyceride (IMTG) 
content. 
 
(A) Representative confocal microscope images of skeletal muscle GLUT4 fluorescence 

intensity pre (a) and post-training (b); white bar = 50 µm. Change in GLUT4 pre-post 

training is shown in type I fibres (B) and type II fibres (C). (D) Representative widefield 

microscopy images of COX IV fluorescence intensity pre (c) and post-training (d). 

Change in COX expression pre-post training is shown in type I fibres (E) and type II 

fibres (F). *Indicates main effect of training (P<0.05); white bar = 50 µm. †Indicates a 

main effect of fibre type (P<0.05). (G) Representative confocal microscope images of 

IMTG pre (e) and post (f) training. Analysis was performed in both the peripheral (5µm 

border from the plasma membrane) and central (remainder of the cell) regions of each 

fibre. White bar = 20 µm. (H) Shows change in IMTG content pre and post training in 

type I and type II fibres in the central and peripheral region of the cells.  *Indicates main 

effect of training in total IMTG content; **indicates a change in central IMTG content 

(P<0.05). GLUT4 protein expression, mitochondrial density and IMTG content were 

analysed using a three-way mixed ANOVA, with the between-group factor being 

„training group‟ and within-group factors „training status‟ (pre vs. post) and „fibre type‟ 

(type I vs. type II). Eight muscle biopsies were taken and analysed pre- and post-

training in each group. 
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