
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Knight, Edward and Lord, Sam and Arief, Budi (2019) Lock Picking in the Era of Internet of
Things. In: IEEE CPS Proceedings, 2019 Workshop on Data Security, Privacy, Forensics,
and Trust (DSPFT 2019). . pp. 835-842. IEEE (In press)

DOI

https://doi.org/10.1109/TrustCom%2FBigDataSE.2019.00121

Link to record in KAR

https://kar.kent.ac.uk/75142/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/211243547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lock Picking in the Era of Internet of Things
Edward Knight, Sam Lord, and Budi Arief

School of Computing, University of Kent, United Kingdom

edw@rdknig.ht, hello@samlord.me, b.arief@kent.ac.uk

Abstract—Smart locks are a recent development in the
Internet of Things that aim to modernise traditional key-
based padlock systems. They allow users to operate the
lock with their smartphone instead of carrying around a
physical key. Typically, smart locks have a cloud system for
sharing access with other people, which makes them ideal
for schemes such as communal lockers or bike sharing. One
of the smart locks available on the market is that produced
by Master Lock. They are an established brand, and unlike
many of the single product companies that have provided
insecure offerings, Master Lock have so far shown that
their locks are reasonably secure and resistant to known
attacks such as shimming, fuzzing, and replay attacks. This
paper provides a security analysis of the Master Lock
Bluetooth padlock. More importantly, it reveals that there
were several security vulnerabilities, including a serious one
in the Application Programming Interface used by Master
Lock to provide a crucial feature for managing access. We
carried out a responsible disclosure exercise to Master Lock,
but communication proved to be quite a challenge. In the end
we managed to establish contact, and as a result the most
serious vulnerabilities have now been patched. This indicates
that responsible disclosure is a valuable exercise, but we still
need better report-and-response mechanisms.

Keywords: security, IoT, smart locks, API vulnerabilities,

responsible disclosure.

I. INTRODUCTION

Internet of Things (IoT) devices are gaining popularity

and becoming more ubiquitous in our lives. There has

been a significant growth of IoT devices over the past

few years [1], but this new market has gained a reputation

for churning out insecure systems. This has led to security

and privacy concerns (such as [2]–[4]) and even a large-

scale Distributed Denial of Service attack using the Mirai

botnet of compromised IoT devices [5].

Smart locks provide a modern alternative to the traditional

key or combination lock, and access is generally managed

by an online service. Typically the locks themselves do

not connect to the internet directly, but communicate

with a smartphone app, which in turn talks to the online

service. This separation allows for locks to work offline,

an important feature if the owner is without an internet

connection or the online service becomes unavailable,

but also increases the attack space. The smartphone can

be thought of as the “key”, allowing its user to lock,

unlock and even share the smart lock with other users.

Furthermore, these locks typically provide an override

mechanism to allow their user to unlock it should the

associated smartphone become unavailable (e.g. due to the

smartphone being lost or stolen, or if the smartphone’s

battery has run out). In a sense, these override mechanisms

provide a way to open the lock with “something the user

knows”, akin to a combination lock or a password.

Locks have traditionally been judged on their physical

security; how well they stand up to picking, shimming and

cutting into. Smart locks need to be physically secure as

well as have a secure connection to a secure management

system. The market of smart locks is mostly made up of

small startup companies manufacturing a single product,

and many of them have been proven to be insecure (for ex-

ample [6] and [7]). The work presented in this paper looks

at the security of a smart lock built by an established lock

manufacturer (Master Lock, https://www.masterlock.com/)

to see if they have better security than other (relatively

new) companies.

The key contributions of this paper are: (i) a thorough

and systematic security analysis of the Master Lock Blue-

tooth padlock, leading to (ii) the revelation of several

vulnerabilities, including a serious security issue with the

Application Programming Interface (API) used, and (iii)

an impactful responsible disclosure exercise, which ended

up with the manufacturer of Master Lock patching their

system to address the vulnerabilities we uncovered.

Section II provides an overview of related work in investi-

gating security issues in smart locks. Section III introduces

the Master Lock Bluetooth padlock, including its system

and communication architecture. Section IV outlines our

methodology for finding potential security vulnerabilities

in Master Lock, along with an attacker model. Section V

presents and discusses the results of our investigation, as

well as our responsible disclosure. Section VI concludes

our paper and provides some ideas for future work.

II. RELATED WORK

Limited prior research has been undertaken regarding the

security of smart locks. Nevertheless, there is a wide range

of potential attack vectors. These include physical attack,

wireless communication sniffing and spoofing, as well as

exploiting the supporting back end services that enable

many of the “smart” features of smart locks.

835

2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/13th IEEE International Conference On Big Data Science And Engineering

2324-9013/19/$31.00 ©2019 IEEE
DOI 10.1109/TrustCom/BigDataSE.2019.00121

There is a wealth of related work in IoT security, some

of which has informed our research here. An early paper

by Suo et al. [8] provides an overview of four key

layers of typical IoT architecture (perceptual, network,

support and application layers). Of particular interest to

us is the support layer, in which centralised control func-

tionality (such as access management) is implemented.

The challenge here is how to detect malicious activity,

such as commands that should not be executed due to

insufficient privileges, but may be performed anyway due

to improperly implemented access control.

Wurm et al. [9] performed security analyses on consumer

and industrial IoT devices. Some of the techniques used

(hardware and network communication analysis, reverse

engineering) gave us some initial direction when looking

at Master Lock’s offering.

We found that most of the investigation into breaking

smart lock security has come from hacking communities,

with scarce academic papers looking into the potential

security vulnerabilities of smart locks. One example of

the latter is a paper on the Nokē smart lock [10]. The

researchers focused on the manual override feature of the

Nokē lock and studied human-generated unlock codes.

They showed that the human-generated codes were of

low enough entropy to pose a serious vulnerability. A

mechanical brute-force tool was built to demonstrate this.

A DEF CON presentation on hacking Bluetooth locks [6]

specifically stated that two locks (from Nokē and Master

Lock) had not been cracked, showing that neither padlock

had trivially broken security. This provided a challenge

and a list of common attacks on smart locks to focus on:

• Plain-text passwords: Bluetooth transmission of pass-

words without encryption

• Replay attacks: where a recording of the communi-

cation can be replayed to unlock the device

• Fuzzing: sending invalid data can cause the device to

enter an error state and open

• Device spoofing: using a computer to pretend to be

the lock, we can listen to commands sent by a phone

and use them to unlock the real device

• Hard-coded secrets: some lock manufacturers include

hard-coded secrets in the smartphone application,

which can be retrieved by decompiling it

Another presentation from DEF CON included the full

methodology used to hack an August Smart Lock installed

in a front door [7]. This was of particular interest since the

methods used attacked both the Bluetooth communication

layer and the supporting cloud service, which is similar in

architecture to the Master Lock service. They looked at:

• Investigating the cloud service API: checking if users

can get privileged data or perform privileged actions

from a guest account

Figure 1. Master Lock and its override buttons

Figure 2. Master Lock components and their communication

• Man-in-the-Middle: by hosting a service which sits

between the phone and the real cloud service, it is

possible to modify requests and responses

• Reading the firmware: downloading the firmware for

the device from the cloud service and looking for any

hard-coded secrets

Additionally, after mapping out the API, the author made

a Software Development Kit (SDK) for accessing the

API. This SDK made it easier for them to investigate the

methods provided by the API and to search for potential

vulnerabilities.

Master Lock have registered patents for the lock itself [11],

managing the authentication keys over wireless communi-

cation [12] and for wireless firmware updates [13]. This

indicated to us that Master Lock has put some effort into

designing these systems, and also gave us a starting point

for areas to investigate.

III. SYSTEM OF INTEREST: MASTER LOCK

We chose to focus on Master Lock as it is an established

brand specialising in various lock and padlock systems.

We had hoped that this industry experience would result

in a more secure system than their competitors.

A. System architecture

The Master Lock Bluetooth padlock is a Bluetooth enabled

padlock which comes in two form factors for indoor and

outdoor usage. It has the look and feel of an ordinary

padlock but instead of a keyway, it has a 4-directional pad

that serves as the input device for the override mechanism

(see Figure 1).

The overall Master Lock system has three key components

(Figure 2): the padlock, the smartphone application, and

the cloud service. These components communicate to each

other by using two protocols: Bluetooth Low Energy

(BLE) and HTTP, using the smartphone application as the

interlinking component.

The padlock has the Slave Role, and communicates with

the smartphone, which gets the Master Role [14, Vol 6,

Part B, Section 1.1, p. 2553]. This means that the padlock

836

advertises itself when it turns on, on one of the three

advertising channels. The phone will periodically scan for

Bluetooth devices, and initiate a connection with the lock

when it is available.

The Master Lock Vault eLocks application runs as a ser-

vice in the background on the phone, and sends encrypted

commands to unlock the padlock when connected. It has

to query the cloud service to discover the locks which

the user has access to. In the application interface, a user

will either see the current valid temporary code if they

are a guest, or the primary code if they own the lock.

Furthermore, the owner is able to share future temporary

codes which they can request from the cloud service (see

Section III-C).

B. Unlocking the padlock

Before using the padlock, a user must install the Master

Lock Vault eLocks app on their phone. They can then

add the device to their Master Lock account by entering

the code which is printed on a sticker attached to the

packaging. This makes this user the owner of the padlock

and gives their account full access to control the device.

The Master Lock Bluetooth padlock has two methods to

unlock: using the smartphone eLocks app with Bluetooth

LE communication, or entering a combination on the

directional pad (the latter as an override mechanism).

To use a smartphone to unlock the padlock, the user can

simply press any direction on the directional pad while

the Master Lock Vault eLocks application is open. This

sometimes works when the application is not open, but

seems to be dependent on the smartphone keeping the

Bluetooth radio active.

To unlock manually, the user needs to enter a combination

on the directional pad on the front of the lock (which is

similar to a password). If the combination is correct, it will

unlock as soon as the last input is entered. Otherwise, the

device will continue listening to inputs for a few seconds

before the LED turns red, indicating an invalid code.

There are three different types of combination:

• Primary code (the owner of the device sets this)

• Backup Master code (the owner of the device knows

this, and it cannot be changed)

• Temporary code (used for time-limited guest or

shared access)

C. Sharing access

Sharing lock access is a big feature for smart locks, since

a selling point is that you can grant temporary access

without giving someone a key, and can revoke access at

any time. This means you do not have to trust the guest

to give the key back, and there’s no risk of them making

a physical copy.

To share the device with other users, one can either share a

temporary code for a specific time slot, or add a guest user

to the lock. When sharing a temporary code, the Master

Lock Vault eLocks application uses the default sharing

system of the smartphone’s operating system, so it can

share the code through any messaging app of the user’s

choice. Adding a guest user requires them to have a Master

Lock Vault account.

Temporary codes are valid for 8 hours, and are generated

every 4 hours at 12am, 4am, 8am, 12pm, 4pm, and 8pm.

This means that there are two valid temporary codes at any

time. The padlock does not have to be connected to the

smartphone app to know which temporary codes are valid,

but will fall out of sync if the battery is removed. When the

owner generates a temporary code, they can either choose

to get the current code, or a code valid at a specified time

in the future.

The owner can limit the guest’s access to day-time (7am-

7pm) or night-time (7pm-7am). The guest will only be

able to receive temporary codes during those hours, but

the validity of the codes is still the same. This means that

a guest with access limited to day-time will be able to

get the code generated at 4pm, which will be valid until

midnight. Similarly a guest with access at night-time will

be able to get the code generated at 4am, which will be

valid until midday.

IV. METHODOLOGY

When we started our research, we spent some time in-

vestigating traditional locks and methods of picking them.

While a “smart lock” does not have a keyway, it still has

many of the physical components of a traditional padlock,

meaning that it shares some of the same vulnerabilities.

Some padlocks made by startup companies suffer from

technical weaknesses, and some had poor build quality

or were not resistant to simple physical attacks [6]. When

we experimented with lock picking, we found that cheaper

Master Lock padlocks were very easy to pick—even for

novices. We theorised that vulnerabilities may translate to

their smart padlock security as well.

Others have carried out tests regarding the physical robust-

ness of the Master Lock Bluetooth padlock. For example,

[15] shows that striking the lock with a hammer can

cause it to fall apart. We are not interested to repeat this

investigation, so we looked at other ways to tamper with

the lock and gain illicit access.

This section outlines various methods we explored in order

to find security vulnerabilities in Master Lock. These tech-

niques are also generally applicable to other IoT devices,

and may serve as a template methodology for investigating

potential vulnerabilities in other IoT systems with a similar

architecture.

837

• We looked at a possibility of physical tampering by

disrupting the power source to see if this would cause

inconsistency in the internal clock.

• We investigated the likelihood of a brute force attack
to guess the override pattern to unlock the padlock.

• We used a Bluetooth packet sniffer to investigate the

communication between the phone and the padlock.

• We decompiled the Android app to check for hard-

coded encryption keys and secrets, and to find out

how it communicated with the padlock and the cloud.

• We investigated the cloud service’s REST API to see

if we could extract information about a lock and its

owner.

A. RTC manipulation

The padlock has a Real-Time Clock (RTC) which it uses

to validate temporary codes. Based on information from a

teardown video [16], we saw that the padlock uses a Texas

Instruments MSP430 chip [17]. There is no other hardware

that could keep track of real time, so we conclude that the

padlock uses the RTC function on this chip.

There is only one power source in the padlock—the coin

cell battery. So the first thing we could do was to remove

the battery and see how that affected the operation of the

lock.

B. Brute-force attack

There are possible brute-force attacks based on the

directional-pad input. For example, it is possible to build a

rig to attach a mechanical brute-force device to the lock,

similar to the work presented by [10]. This brute-forcer

can be programmed to enter multitudes of codes to open

the lock using the manual override.

There are three types of code, each of different length,

with the temporary code always starting with right, while

the primary and master backup codes start with up.

When a human is inputting codes, it is possible to enter 3

codes in roughly 20 seconds, after which the device will

“lock-out” and not accept any more inputs for 60 seconds.

This time does not vary by much when entering different

length codes, as the majority of the time is spent waiting

for the directional pad to re-activate after each incorrect

code. This means that on average we can enter one code

every 26.7 seconds. It is possible that a rig would enter

codes faster than this, but this is adequate for a benchmark.

C. Bluetooth security

We briefly looked at the security of the Bluetooth com-

munication between the Master Lock and the smartphone

companion app. We recorded the communication between

the phone and the lock using Wireshark [18] and a

Bluetooth packet sniffer. Recording this was tricky because

the smartphone sometimes fails to detect the lock and

connect properly.

D. Application security

Master Lock have made apps for Android and iOS. We

tested the Android version1, as it is easier to decompile.

1) Temporary codes

We found that when sharing a temporary code, the inter-

face advertises that the codes will be valid for 4 hours.

However, the message generated to actually share the

code says it expires in 8 hours. This peculiar behaviour

showed that there was some amount of complexity in the

temporary code system, making it a good candidate for

vulnerabilities. To find out more about the generation of

temporary codes, we needed to know more about how the

application works.

2) Decompiling

The Android Package Kit (APK) of the app had not

been obfuscated, so decompiling produced mostly easy-to-

read Java source code. Apktool [19] was used to extract

metadata and the bytecode in DEX format. dex2jar [20]

converted the bytecode to JAR format, and JD-GUI [21]

decompiled this to source code.

Having access to the source code of the app allowed us

to look at the communication protocols between both the

padlock and the phone, and the phone and the server.

3) Dumping app data

With a rooted phone, we managed to dump the app’s

data store. In the shared preferences folder, we found the

file com.masterlock.ble.app.xml. This contains

two pieces of sensitive data: “authToken” and “dbToken”.

The “authToken” is used along with the username to

access the API. The “dbToken” is the password for an

encrypted database. We also found this same password in

the decompiled APK source code.

In the databases folder there is masterlock.db, an

SQLite database encrypted by SQLCipher [22]. Using the

“dbToken”, we decrypted the database and found that it

stores all of the data that the app uses. Looking at the

database access in the source code, it seems like most –

if not all – of this data is just cached API queries.

E. API security

The Android app uses the Retrofit library [23] for com-

municating with the server’s REST API. The API calls

all start with an explicit version number. Of the API calls

listed in the app source code, there are 44 v4 calls and

14 v5 calls. The app only communicates with the API

over HTTPS, however, the API itself is accessible over

plain HTTP when accessed through other means. This

means that the passwords and keys are being transmitted

1https://play.google.com/store/apps/details?id=com.masterlock.ble.app
version 2.1.2.4

838

in plaintext when HTTP is used instead of HTTPS. We

built a Python script to aid our testing, which is available

on Github2.

1) Generating an API key

In most of the requests with the API, the server authen-

ticates a user by both username and API key. If a user

does not already have an API key (this can be found in

the Android app’s shared preferences folder), the first call

they need to make is to “v4/account/authenticate/”. This

request requires an API key as parameter, but one can

use “androidble” or “iosble” in place of an actual key.

The body of the request is a JSON object containing the

username and password. This is the only API call that

requires a password – the API key is used like a password

in all other requests. Sample Python code for performing

this request can be seen below:

def get_api_key(username, password):
"""API call to get an API key to use in future requests."""
method = "POST"
url = BASE_URL + "v4/account/authenticate/"
parameters = {"apikey": "androidble"}
body = {

"username": username,
"password": password

}
response_json = call_api(method, url, parameters, body)
return response_json["Token"]

2) Getting padlock details

We have found one API call in particular that returns

a lot of information, from which we can extract some

interesting values:

def get_products(username, api_key):
"""API call to get a list of products registered with the account."""
method = "GET"
url = BASE_URL + "v4/product?complex=true"
parameters = {

"username": username,
"apikey": api_key

}
response_json = call_api(method, url, parameters)

products = []
for product in response_json:

products.append({
"name": product["Name"],
"product_id": product["Id"],
"device_id": product["KMSDevice"]["DeviceId"],
"KMS_id": product["KMSDevice"]["Id"],
"latitude": product["KMSDevice"]["Location"]["Latitude"],
"longitude": product["KMSDevice"]["Location"]["Longitude"],
"primary_code": product["KMSDevice"]["PrimaryCode"],
"model_id": product["Model"]["Id"],
"model_name": product["Model"]["Name"],
"model_number": product["Model"]["ModelNumber"],
"model_SKU": product["Model"]["SKU"]

})
return products

This single API call gives us all the information about all

products registered to the account. Further API requests

about individual padlocks require the “KMS id”. We get

the GPS coordinates of the last known location of the

lock in this request, as well as the user-set primary code

that was discussed earlier. Even a guest user can get the

primary code using this API call, which should only be

accessible to the owner.

2https://github.com/Edward-Knight/master_lock_api

3) Generating temporary codes

The Android app does not contain the code to generate

temporary codes, so it has to ask the server to generate

them. Temporary codes can be generated for any time in

the future in 4 hour intervals. The latest code that can be

generated is in the year 9999, before the year rolls over

to 5 digits.

def generate_temporary_code(username, api_key, kms_id, access_time=None):
"""
API call to generate a temporary code. If access_time is None,
gets a currently active code.
"""
method = "GET"
url = BASE_URL + "v4/kmsdevice/" + kms_id + "/servicecode/"
parameters = {

"username": username,
"apikey": api_key

}
if access_time is not None:

parameters["accessTime"] = access_time
response_json = call_api(method, url, parameters)
return response_json["ServiceCode"]

As with a lot of “KMS id” specific API calls, the account

username must be registered with the product. For this API

call, one can be registered as a guest with the padlock.

4) Sending password reset emails

Another API request of interest is to send password reset

emails. In the app, this is triggered when the user selects

“forgot password” when authenticating. There is a similar

API call to send an email reminding the user what their

username is.

def forgot_password(email):
"""
API call that sends a password reset email to the specified address.
Returns True if successful and False otherwise.

Call this in a loop for a Denial of Service attack.
"""
method = "POST"
url = BASE_URL + "v4/account/resetpassword"
parameters = {

"apikey": "androidble"
}
body = {"email": email}
try:

response_json = call_api(method, url, parameters, body)
return isinstance(response_json, dict) \

and "ServiceResult" in response_json \
and response_json["ServiceResult"] == 1

except MasterLockError:
return False

Of note is the fact that one does not need to be authenti-

cated to use this API call—they only need to supply the

user’s email address. If the email is recognised, Master

Lock will send an email to that address. Otherwise the

request will return an error code. This also means that

this method can be used to check if an email address is

associated with a Master Lock account.

F. Attacker model

There are a couple of potential scenarios where an attacker

may be able to compromise the security of a Master Lock

device:

• The simplest scenario of attack involves a guest user

exploiting the security vulnerability in the REST API

service to generate many temporary codes that will

be valid into the future. This means that the attacker

will still be able to unlock the padlock, even after

their access has been revoked.

839

Table I
STATISTICAL ANALYSIS OF THE FREQUENCY OF BUTTON PRESSES

BASED ON THE HARVESTED TEMPORARY CODES

Direction Count Percentage

Up 21073 25.3%
Down 20816 25.0%
Left 20848 25.0%

Right 20633 24.7%

• For a potential attacker who has not been added as

a guest user of the lock, the likely scenario is for

them to carry out a brute-force attack on the override

mechanism using the 4-key directional pad.

As this kind of lock is typically used in sharing schemes,

the vulnerabilities uncovered through our research pose a

real threat to the security of anyone using Master Lock,

as discussed in the next section.

V. RESULTS AND DISCUSSION

Using the techniques and approaches outlined in Section

IV, we gained valuable insights into how Master Lock

works, and we uncovered several security vulnerabilities

with varying levels of severity.

A. RTC manipulation result and discussion

We found that when the battery is removed, the RTC is

effectively “paused”, meaning it falls behind the real time.

When the battery is re-inserted, the RTC resumes from

where it left off. The RTC is corrected when it commu-

nicates with a phone again. Of course, this “correction”

process just uses the phone’s internal clock. After testing,

we discovered that the lock’s RTC is updated to whatever

the time on the phone is. This updating only happens when

communicating with the owner’s phone, not a guest’s.

We have managed to successfully exploit this behaviour

to get the padlock to validate expired temporary codes.

However, either the padlock has to be unlocked (in order

to access the battery compartment) or the attacker needs

to use the owner’s phone, so this is not a feasible attack.

B. Brute-force attack result and discussion

Sampling temporary codes from the API shows that they

all start with a right press – no other patterns were found.

Out of 11,910 temporary codes, the expected occurrence

of each direction (not including the initial right press) is

(11910∗7)/4 = 20842.5. Our statistical analysis (Table I)

shows that the temporary codes are uniformly distributed.

Brute-forcing the backup master code would be the most

valuable, as the user cannot change it. However it is also

the most complex, with an attack space of 410 codes (4

directions, code of length 11 but always starts with up).

This would take almost a year to attack, which is not

practical.

Brute-forcing the primary code has an attack space of 46

codes (4 directions, code length of 7 but starts with up).

This would take a maximum of 30 hours to brute-force,

which is much more reasonable.

Finally, brute-forcing the temporary codes has an attack

space of (47)/2 (4 directions, code length of 8 but starting

with right, but with two codes active at any time). This

would take a maximum of 60 hours, but is not feasible as

each temporary code is only valid for 8 hours.

C. Bluetooth sniffing result and discussion

Analysing the handshake between the lock and the phone,

we saw some information transmitted in plaintext (e.g. the

lock’s firmware version). After a handshake is completed,

the smartphone and padlock seem to move to encrypted

communication.

We continued investigating the Bluetooth security at a

low priority, as we had already seen that a wide-range

of attacks had already been attempted on the Master Lock

[6] without success. We have not found this aspect of the

system to be vulnerable, but a more detailed analysis is

required before we would be confident in calling it secure.

Details about the padlock which cannot be seen on the

device were communicated in plaintext, including the

firmware version.

D. Application and API dissecting result and discussion

Analysing the decompiled Android app, we were able to

find the REST interface for the cloud service and the

Bluetooth LE interface for the padlock. We also found the

encryption key used for application’s database, which we

used to decrypt a dumped database. This contained some

secrets about the lock, and some personal information.

We created a Python program to interact with the REST

API, which is able to authenticate with a username and

password and query the details for the account which the

padlock is registered to. Accounts with guest association

can access privileged information, such as the device

location and the primary code. Guests can also generate

temporary codes for times which should be restricted.

We have demonstrated the specific attacks outlined below.

1) Key invalidation and rate limiting

The API keys generated seem to never expire. This means

that leaking an API key is as bad as leaking the user’s

password. However, we found out that a password change

will invalidate the API keys.

In our testing, we also found that the server does not rate-

limit calls, or blacklist IP addresses. On its own, this is

not a security flaw, but it can be exploited in combination

with other flaws to make certain attacks viable.

840

2) Guest access hours

Guests can be allowed to unlock the padlock at certain

time intervals. They can do this through Bluetooth LE

with their phone, or by a temporary code which rolls over

every 8 hours. The app therefore has to be able to perform

the “generate temporary code” API call with guest-level

credentials. However, the guest is only restricted to the

time when they can call the API. Because one can specify

the time a temporary code should be active for, it is

possible to generate temporary codes that can be used later.

This effectively means the entire “access hour” restriction

can be bypassed by pre-generating temporary codes far

into the future.

We created temporary access codes for one of our locks

that will be valid for a 10-year span from 2017-12-07 until

2027-12-05. A selection of these codes can be seen in

Appendix A. We tested these codes for the appropriate

time slots “in the future”, and they worked as expected.

What we did not expect was that the temporary codes were

still valid after the Master Lock device was unregistered

from the original owner and registered with a new owner.

We would have expected that this process would have

invalidated all future temporary codes, but our experiment

showed that they were still valid. This means that it is

possible for anyone who previously had guest access to

keep being able to unlock the device even after their access

is revoked, which is a serious vulnerability.

3) Guest access level

All padlock-specific API calls require the account to be

associated with the device in Master Lock’s system. This

association can be at two levels, “guest” and “owner”.

Some API calls will therefore return different data, or

not work at all, if the user is without proper association.

However, this is not correctly configured for “get product

details”. Even if one’s account only has guest access for

the padlock, this API call will return the primary code.

This is the owner-set directional code used to unlock the

padlock. Even if the owner revokes guest access and resets

their encryption keys, as suggested on the Master Lock

website3, the primary code will stay the same. As an

unusual password, the primary code is unlikely to ever

be changed by the owner, and likely to be the same on all

the locks they own.

E. Responsible disclosure

We carried out a responsible disclosure exercise by sub-

mitting our findings to Master Lock to give them time to

fix their systems before making the vulnerabilities public.

We found it challenging to find an appropriate method to

contact Master Lock. We tried the following recommended

methods to no avail:
3https://www.masterlock.com/bluetoothlockbox/guest-access

• The Forum of Incident Response and Security Teams

(FIRST) list4

• The Task Force on Computer Security Incident Re-

sponse Teams (TF-CSIRT) Trusted Introducer list5

• Common Vulnerabilities and Exposures (CVE) CVE

Numbering Authorities (CNA) list6

• A security.txt file7

• HackerOne’s directory8

• Bugcrowd’s bug bounty list9

• RFC 2142 email addresses [24]

The only official contact methods we found were contact

forms on the main Master Lock website10 and on the

Master Lock Vault website11. As these were both customer

contact methods, we were not hopeful of our disclosure

document getting to the right place.

As a last resort, we managed to find the “Global Informa-

tion Security Manager” for Master Lock through LinkedIn.

We reached out to their personal email address to ask

for a work contact, stating our intentions. They replied

quickly (same day on 19 March 2018) and promised to

analyse our disclosure document, but we did not hear

anything further. While writing up this paper, we decided

to try contacting Master Lock again. This happened on

12–13 March 2019 and this time we got a much more

comprehensive response. They confirmed our findings, and

worked quickly to resolve the issues. As a result, several

key vulnerabilities have now been patched:

• The most serious vulnerability in the API (which

would allow a guest user to obtain the primary

code and future temporary codes) has been fixed, by

restricting guest access permissions

• Insecure HTTP access to their API has been disabled

• The API now uses a rate-limiting mechanism to

prevent an attacker from spamming email addresses

There are still some less severe vulnerabilities that need

to be addressed, but we feel confident that the company is

taking security seriously, and that they will fix the other

vulnerabilities in due course.

VI. CONCLUSION AND FUTURE WORK

Previous research into smart lock security had found many

locks to be insecure, but did not show any technical

vulnerabilities in Master Lock’s offering. We applied

techniques from one researcher [7] which broaden the

scope of attack to the entire system, and ultimately found

4https://first.org/members/teams/
5https://www.trusted-introducer.org/directory/teams.html
6https://cve.mitre.org/cve/request_id.html#cna_participants
7https://securitytxt.org/
8https://hackerone.com/directory
9https://www.bugcrowd.com/bug-bounty-list/
10https://www.masterlock.eu/contact-us
11https://contact.masterlock.com/90/contactus.aspx

841

several significant vulnerabilities with the Master Lock

Vault eLocks service.

We disclosed these vulnerabilities to Master Lock (initially

on 19 March 2018, with a follow up a year later). After

some initial difficulties in communication, we managed

to get a positive response from Master Lock, who ac-

knowledged our findings and moved quickly to implement

patches to secure the padlock’s ecosystem.

Future investigation could look closer at the Bluetooth

LE protocol used between the smartphone app and the

padlock. Other researchers seem to have found it not triv-

ially insecure, but a more in-depth analysis is required to

determine if there is any part of the communication which

is vulnerable. Capturing the padlock firmware during an

update would also be interesting. This can be analysed in a

similar way to the Android application to see if it contains

any hard-coded keys or secrets, or even to reverse-engineer

the algorithm for generating temporary codes.

A mechanical brute-forcer tool could be built to allow a

systematic approach to unlock the Master Lock by repeat-

edly guessing the override codes. This is an interesting

engineering challenge, and we believe the low entropy of

potential codes will make it feasible to find the correct

code in a relatively short time.

From a more generic point of view, many IoT systems rely

on back-end services to handle data and provide necessary

features. We have shown in this paper that these back-end

services can be the cause of serious vulnerabilities if they

are not secured properly. A holistic perspective has to be

taken with IoT security, requiring thorough examination

of the devices, supporting cloud services, and interlinking

components.

Finally, our experience in conducting a responsible dis-

closure exercise shows that it is a valuable process, but

we are still some way from having an effective means to

communicate our findings to device manufacturers.

VII. REFERENCES

[1] Louis Columbus. 2017 Roundup Of Internet Of Things
Forecasts. https://www.forbes.com/sites/louiscolumbus/2017/12/10/
2017-roundup-of-internet-of-things-forecasts/, December 2017.

[2] Eyal Ronen and Adi Shamir. Extended functionality attacks on
iot devices: The case of smart lights. In 2016 IEEE European
Symposium on Security and Privacy, pages 3–12, 2016.

[3] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security
analysis of emerging smart home applications. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 636–654, 2016.

[4] Kishore Angrishi. Turning internet of things (iot) into internet of
vulnerabilities (iov): Iot botnets. arXiv:1702.03681, 2017.

[5] Manos Antonakakis, Tim April, and Michael Bailey, et al. Under-
standing the Mirai Botnet. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1093–1110, 2017.

[6] Anthony Rose and Ben Ramsey. Picking Bluetooth Low Energy
Locks from a Quarter Mile Away. Presented at DEF CON 24,

August 2016. Recording available at https://www.youtube.com/
watch?v=KrOReHwjCKI.

[7] Jmaxxz. Backdooring the Frontdoor. Presented at DEF CON 24,
August 2016. Recording available at https://www.youtube.com/
watch?v=MMB1CkZi6t4.

[8] Hui Suo, Jiafu Wan, Caifeng Zou, and Jianqi Liu. Security in
the internet of things: a review. In 2012 international conference
on computer science and electronics engineering, volume 3, pages
648–651. IEEE, 2012.

[9] Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi,
and Yier Jin. Security analysis on consumer and industrial iot
devices. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 519–524. IEEE, 2016.

[10] Jack McBride, Julio Hernandez-Castro, and Budi Arief. Earworms
Make Bad Passwords: An Analysis of the Noke Smart Lock Manual
Override. In Int’l Workshop on Secure Internet of Things 2017 (SIoT
2017), Sep 2017.

[11] Glenn P. Meekma. Padlock. Patent US8453481B2, July 2010.
Available at https://patents.google.com/patent/US8453481B2.

[12] Nathan Conrad, Yi Zhang, and Nemanja Stefanovic. Wireless key
management for authentication. Patent US9600949B2, July 2014.
Available at https://patents.google.com/patent/US9600949B2.

[13] Nathan Conrad. Wireless firmware updates. Patent
WO2017066409A1, October 2015. Available at
https://patents.google.com/patent/WO2017066409A1.

[14] Bluetooth Special Interest Group. Bluetooth Core Specification,
core version 5.0 edition, December 2016.

[15] BosnianBill. (897) Review: Master Lock’s Bluetooth Padlock.
https://www.youtube.com/watch?v=YsKMsvx8vvo, August 2016.

[16] Dave Jones. EEVblog #1014 - Masterlock Bluetooth Padlock Tear-
down. https://www.youtube.com/watch?v=zRdovnGruqk, 2017.

[17] Texas Instruments. MSP430. http://www.ti.com/microcontrollers/
msp430-ultra-low-power-mcus/overview/overview.html.

[18] Gerald Combs. Wireshark. https://www.wireshark.org/, July 2016.
version 1.12.13.

[19] Connor Tumbleson and Ryszard Wiśniewski. Apktool. https://
ibotpeaches.github.io/Apktool/, September 2017. version 2.3.0.

[20] Bob Pan. dex2jar. https://github.com/pxb1988/dex2jar, June 2015.
version 2.0.

[21] Emmanuel Dupuy. JD-GUI. http://jd.benow.ca/, August 2015.
version 1.4.0.

[22] Zetetic LLC. SQLCipher. https://www.zetetic.net/sqlcipher/,
November 2008.

[23] Square Inc. Retrofit. https://square.github.io/retrofit/, 2013.
[24] Dave Crocker. Mailbox names for common services, roles and

functions. RFC 2142, Internet Mail Consortium, Santa Cruz, CA,
May 1997. Available at https://www.ietf.org/rfc/rfc2142.txt.

APPENDIX

A. Samples of Generated Temporary Codes

Using the Python script outlined in Section IV-E3, we

managed to create temporary access codes for one of our

Master Locks, for every 4-hour slot from 7 December 2017

until 5 December 2027. A small selection of the generated

temporary codes is provided below.

2017-12-07_00 RLLDLDRR
2017-12-07_04 RUDULLRR
2017-12-07_08 RRDDLLUL
2017-12-07_12 RRLLDRDL
2017-12-07_16 RRRRDUDU
2017-12-07_20 RURULLLR
2017-12-08_00 RRDDLRUU
2017-12-08_04 RDDLDLLR
2017-12-08_08 RDRLUUDL
2017-12-08_12 RURDURLD
2017-12-08_16 RUDRRULL
2017-12-08_20 RRDLUDRD
2017-12-09_00 RURLLDDR
2017-12-09_04 RULRDDDU
2017-12-09_08 RRLDLRLR
2017-12-09_12 RLULRURR
2017-12-09_16 RDLLDRLD
2017-12-09_20 RURDULDL
...

2019-03-15_00 RDRUUULL
2019-03-15_04 RLDULLUD
2019-03-15_08 RRRDLRUL
2019-03-15_12 RURRDLDU
2019-03-15_16 RUDLDLDR
2019-03-15_20 RRDURLLR
2019-03-16_00 RRLULRUR
2019-03-16_04 RLLURDRU
2019-03-16_08 RRLURRLD
2019-03-16_12 RULDUURL
2019-03-16_16 RULURLLU
2019-03-16_20 RRDUUDLU
2019-03-17_00 RDLDRRLL
2019-03-17_04 RDURUDRR
2019-03-17_08 RRRDULLR
2019-03-17_12 RDLUULUR
2019-03-17_16 RLUDDDUR
2019-03-17_20 RDDLULRL
...

2027-12-03_00 RUDLDDUL
2027-12-03_04 RRLLRDLL
2027-12-03_08 RRLDLRLR
2027-12-03_12 RRRRLRDU
2027-12-03_16 RRULURUD
2027-12-03_20 RRRURRRL
2027-12-04_00 RLDULUDD
2027-12-04_04 RURLDLLR
2027-12-04_08 RRLRLDLR
2027-12-04_12 RRRLUULR
2027-12-04_16 RDDDLDLD
2027-12-04_20 RDUUUULU
2027-12-05_00 RULRUUUD
2027-12-05_04 RLDURDLD
2027-12-05_08 RLULLDLL
2027-12-05_12 RUDUDDRD
2027-12-05_16 RDLRDDLU
2027-12-05_20 RRURDLDD

842

