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A detailed theoretical study is carried out for electron interactions with magnesium oxide (MgO) with incident
energies ranging from 0.01 to 5000 eV. This wide range of energy has allowed us to investigate a variety
of processes and report data on resonances through eigenphase study, vertical electronic excitation energies,
differential, momentum transfer, and total cross sections (TCS), as well as scattering rate coefficients. MgO has
a large number of low-lying π excited states and the present study finds overall a good agreement with earlier
reported data. In order to compute total cross sections, we have employed the ab initio R-matrix method (0.01 to
∼20 eV) and the spherical complex optical potential method (∼20 to 5000 eV). The R-matrix calculations are
performed using a close-coupling method with the aid of 34 target states, 1436 configuration state functions, and
213 channels employing a static exchange plus polarization model. The present study reports evidence for electron
scattering resonances through analysis of eigenphase diagrams at low energies below the ionization threshold. In
the absence of any theoretical or experimental data for resonances, we have done double differentiation of TCS
to confirm the resonances reported here. The present study is a maiden effort to report excitation cross sections,
differential cross sections, momentum transfer cross sections, and scattering rate coefficients at low energies
below the ionization threshold of the target. Additionally, in the absence of any experimental data and sparse
theoretical data for a total elastic cross section, the present comprehensive study will provide a reference data set
over such an extensive impact energy range.

DOI: 10.1103/PhysRevA.93.012702

I. INTRODUCTION

With the advent of highly sophisticated instruments for
experiments and high-performing computers for computation,
accurate electron collision data is a great success. However,
such methods are quite tedious and require both considerable
manpower and computational resources, producing only a
limited number of electron scattering cross sections for limited
targets out of the ocean of molecular systems that need to
be studied due to their importance in many diverse areas of
science and technology. This has prompted the authors to look
for faster methods to derive electron impact collision data on
the time scales required by the applied industry.

In the present paper, we focus on the calculation of
electron collisions with magnesium oxide over a wide range
of impact energies from 0.01 to 5000 eV. MgO is a simple
diatomic molecule distinguished from other alkaline-earth
metal oxides because it has several closely low-lying π excited
states [1], which has led to extensive spectroscopic studies
of MgO [1–12]. There is tremendous work on electronic
excitation energies of MgO both theoretically [1–5] and
experimentally [6–11]. Besides spectroscopy, thermochemical
investigation has also increased due to its use as a catalyst
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in the hydrocarbon reaction [13]. Further, MgO is widely
used as the protective layer in plasma display panels (PDPs)
because it has good characteristics of secondary electron
emission [14]. Additionally, MgO has been identified in the
interstellar medium, stimulating interest among the astrochem-
istry community [15,16]. A literature survey emphasizes the
fact that there has been a large amount of work on the ground
state and electronic excitation states of MgO, but the collision
data is extremely sparse. There are no experimental studies of
electron impact collision partly because it is difficult to obtain
pure samples of MgO in the gaseous phase [17], and only one
previous theoretical calculation by Dapor and Miotello [18]
who reported a decade ago for total elastic and total transport
elastic cross sections for e-MgO scattering from 50 eV to
10 keV. This large void in the collision data prompted us to do
the present study.

In this paper, we have performed scattering calculations
separately over two energy regimes (0.01 to 20 eV and
ionization threshold to 5000 eV). In the low-energy region
(below the vertical ionization potential), we make use of the
UK molecular R-matrix code [19,20]. In the intermediate- and
high-energy region (above the vertical ionization potential),
we employ the spherical complex optical potential (SCOP)
formalism [21,22]. Our low-energy study below 10 eV is
significant owing to the formation of short-lived anions
(resonances) and thus the possibility of their decay to produce
neutral and anionic fragments. Such processes are very
important in understanding the local chemistry induced by
electron target interaction. The present study is a maiden effort
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to report resonances through eigenphase study, excitation cross
sections, differential cross sections, momentum transfer cross
sections, and total cross sections at low energies below the
ionization threshold of the target.

II. THEORETICAL METHODOLOGY

Before providing details on the two theoretical method-
ologies (R matrix and SCOP) adopted for the present study,
we discuss the target model employed in the low-energy
calculation.

Target model used for low-energy calculations

For precise target properties as well as for the scattering
data, it is imperative to have an appropriate target model.
Magnesium oxide is a linear diatomic molecule with an ionic
bond between magnesium and oxygen with an equilibrium
bond distance of 1.749 Å [23]. We have employed a 6-311G*
basis set for the target wave-function representation. MgO has
C∞ symmetry, but we have used C2v point-group symmetry
to reduce the computational complexity in the wave-function
representation. The major key parameters involved in a proper
choice of the configurations are complete active space (CAS)
and the valance configuration interaction (CI) representation of
the target system [24]. It is achieved by carefully characterizing
the low-lying electronic states of the target and by generating
a suitable set of molecular orbitals. The molecular orbitals
are generated by performing a self-consistent field (SCF)
calculation of the ground state of the molecule (X 1A1).
Since the SCF procedure is not adequate to provide a good
representation of the target states, we improve the energies
of these states by employing the variational method of
configuration interaction (CI) in which we take a linear
combination of the configuration state functions (CSFs) of a
particular overall symmetry. This not only lowers the energies
of these states, but also the correlation introduced provides a
better representation of the charge cloud and the energies.

For the 34 target states included here, we employ a CI
wave function to represent them. The Hartree-Fock electronic
configuration for the ground state of MgO at its equilibrium
geometry in the C2v point-group symmetry is 1a2

1 , 2a2
1 , 3a2

1 ,
1b2

1, 1b2
2, 4a2

1 , 5a2
1 , 2b2

2, 2b2
1, and 6a2

1 . Out of 20 electrons, we
froze 12 electrons in six molecular orbitals 1a1, 2a1, 3a1, 4a1,
1b1, and 1b2. The rest of the eight electrons are allowed to move

freely in the active space of nine target occupied and virtual
molecular orbitals 5a1, 6a1, 7a1, 8a1, 9a1, 2b1, 3b1, 2b2, and
3b2. Seven virtual molecular orbitals (two of A1 symmetry, two
of B1 symmetry, two of B2 symmetry, and one of A2 symmetry)
are used to augment the continuum orbitals. A total of 34
target states were included in the close-coupling calculations
involving 1436 configuration state functions (CSFs) for the
ground state, and the number of channels included in the
calculation is 213.

The R-matrix inner-region modules GAUSPROP and DEN-
PROP generate target properties using Hartree-Fock calcula-
tions and construct the transition density matrix from the target
eigenvectors obtained from configuration interaction (CI)
calculations [25]. The multipole transition moments obtained
are then used to solve the outer-region coupled equations
and the dipole polarizability α0. These are computed using
second-order perturbation theory and the property integrals
are evaluated by GAUSPROP.

The self-consistent field (SCF) calculation yielded the
ground-state energy of MgO as −274.4167 hartree, which is
in very good agreement with theoretical values of −274.3901,
−274.3866, and −274.4655 hartree reported by Piyykko
et al. [26], McLean and Yahimine [27], and Bauschlicher
et al. [2], respectively. The first electronic excitation energy
of MgO is found to be 0.3428 eV, which is in very good
agreement with the experimental value of 0.3112 eV reported
by Kim et al. [8] and 0.3252 eV reported by Ikeda et al. [11].
Such a low electronic excitation energy is expected since it
has very closely low-lying π excited states [2,3]. The present
computed rotational constant of MgO is 0.5743 cm−1, which is
in good agreement with the experimental value of 0.5748 cm−1

reported by Murtz et al. [28]. The calculated dipole moment
of 6.2 Debye is also in excellent agreement with the dipole
moment of 6.2 ± 0.6 Debye reported in the CRC Handbook
of Chemistry and Physics [23]. Present calculations for the
ionization potential (IP) resulted in 8.49 eV, which is in good
agreement with 8.76 eV reported in the CRC Handbook [23]
and in excellent agreement with 8.76 ± 0.22 eV reported in the
NIST Computational Chemistry Comparison and Benchmark
Database (CCCBDB) [29]. The target properties along with
available comparisons are listed in Table I. Thus, a very good
reproduction of all of the target properties assures a very
good target model, which in turn guarantees reliable collision
cross-section data. A large number (34) of electronic excitation
thresholds for magnesium oxide obtained here are listed in

TABLE I. Target properties of magnesium oxide.

Other

Target property (unit) Present Theory Expt.

Ground-state energy (hartree) −274.4167 −274.3901 [26]
−274.3866 [27]
−274.4655 [2]

First excitation energy (eV) 0.3428 0.3112 [8]
0.3252 [11]

Rotational constant (cm−1) B 0.5743 0.5748 [28]
Dipole moment (Debye) 6.2 6.2 ± 0.6 [23]
Ionization potential (eV) 8.49 8.76 [23]

8.76 ± 0.22 [29]
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Table II. It is quite evident from Table II that our reported
vertical excitation energies are in very good agreement overall
with the earlier predicted experimental [6,7,11] as well as
theoretical results [1,2,5]. Here, vertical excited-state energies
beyond 4 1

A1 are predicted.

Low-energy formalism (0.01–15 eV)

Currently, low-energy electron collisions are modeled
using the Kohn variational method [30,31], the Schwinger
variational method [32–34], and the R-matrix method, of
which R matrix [19,20,35,36] is the most widely used method.
The underlying idea behind the R-matrix method relies on
the division of configuration space into two spatial regions:
an inner region and outer region. The inner region radius is
chosen large enough so that in the external region, only known
long-range forces are effective and antisymmetrization effects
can be neglected, which makes the outer-region calculations
very simple. The inner region involves short-range potentials
arising due to electron-electron correlation and exchange,
which makes the calculation very complex. In the inner region,
the full electron-molecule problem is solved using quantum
chemistry codes. The inner region is usually chosen to have
a radius of around 10 a.u. and the outer region is extended
to about 100 a.u. The choice of this value depends on the
stability of results obtained in the inner-region and outer-region
calculations.

We describe the scattering within the fixed-nuclei (FN)
approximation that neglects any dynamics involving the
nuclear motion (rotational as well as vibrational), whereas the
bound electrons are taken to be in the ground electronic state of
the target at its optimized nuclear geometry. This is an effect of
the extent of electronic charge density distribution around the
center of mass of the target. The center of this sphere is chosen
at the center of mass of the target; thus, N-target electrons
plus one incident electron are contained in the inner region,
which makes the problem numerically complex but physically
very precise. Consequently, the accuracy of the scattering
calculation depends critically on how the inner-region physics
is defined. The solution of the inner-region problem involves
rigorous computation using quantum chemistry codes and this
is the major time constraint of the calculation. Interestingly,
the inner-region problem is solved independent of the energy
of the scattering electron and hence is done only once.

In the outer region when the scattering electron is at a
large distance from the center of mass of the target, the
probability of swapping its identity with any one of the target
electrons is negligible, resulting in negligible contributions
from exchange and correlation effects. The single-center
close-coupling approximation with direct potential leads to
a set of coupled differential equations, allowing for quick,
simple, and fast solutions in the outer region. The outer-region
calculations are repeated for each set of energies. In the present
calculations, the inner R-matrix radius is taken as 13ao owing
to the larger size of the target. In the outer region, the R matrix
on the boundary is propagated to a sufficiently large distance
such that the interaction potential between target electrons and
the scattering electron is assumed to be zero. In the present
case, this distance is 100ao. Asymptotic expansion techniques
are used to solve the outer-region functions [37].
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In the inner region, the target electrons are placed in
some combination of target molecular orbitals, which are
represented by Gaussian-type orbitals and are multiplied by
spin functions to generate configuration state functions (CSFs).
The target molecular orbitals are also supplemented by a set of
continuum orbitals which have longer range and extend beyond
the inner-region R-matrix boundary. In the inner region,
the wave function is constructed using the close-coupling
approximation for all N + 1 electrons [38]. The total wave
function for the system may then be given as

�N+1
k (x1 . . . xN+1) = A

∑
ij

aijk�
N
i (x1 . . . xN )uij (xN+1)

+
∑

i

bikχ
N+1
i (x1 . . . xN+1), (1)

where A is the antisymmetrization operator that takes care of
exchange effects among the N + 1 electrons, xN (rn, σn) is
the spatial and spin coordinate of the nth electron, and j is
a continuum molecular orbital that is spin coupled with the
scattering electron. aijk and bik are variational coefficients
determined by the diagonalization of the N + 1 Hamiltonian
matrix.

The accuracy of the calculation depends solely on the
precise construction of the wave function given in Eq. (1).
The first summation runs over the 34 target states used in the
close-coupled expansion and a static-exchange calculation has
a single Hartree-Fock target state in the first sum. Here one
electron is placed in the continuum orbital of the target and
the rest of the electrons move in available target molecular
orbitals, thus generating a target + continuum configuration.
In the second term, χm are multicenter quadratically integrable
functions, known as L2 functions, constructed from target
occupied and virtual molecular orbitals, and are used to
represent correlation and polarization effects. This sum runs
over a minimal number of configurations, usually three or
fewer, which is required to relax orthogonality constraints
between the target molecular orbitals and the functions used
to represent the configuration. The continuum orbitals are
centered on the center of mass of the molecule.

The complete molecular orbital representation in terms of
occupied and virtual target molecular orbitals is constructed
using the Hartree-Fock self-consistent field method with
Gaussian-type orbitals (GTOs) and the continuum orbitals of
Faure et al. [39], and include up to g (l = 4) orbitals. The
benefit of employing a partial wave expansion for the low-
energy electron molecule interaction is its rapid convergence.
In the case of dipole-forbidden excitations (
J �= 1), where
J represents a rotational quantum number, the convergence of
the partial waves is rapid, but in the case of dipole-allowed
excitations (
J = 1) the partial wave expansion converges
slowly due to the long-range nature of the dipole interaction. In
order to account for the higher partial waves not included in the
fixed-nuclei T matrices, the effect of partial waves higher than
l = 4 was included using a Born correction, which requires
expressions for the partial waves as well as full Born cross
sections. These expressions are taken from the work of Chu
and Dalgarno [40]. We are constrained to employ partial waves
for the continuum orbital up to l = 4 only, as the representation
in Gaussian-type orbitals for the Bessel functions higher than

l = 4 is not available. For low partial waves (l � 4), T matrices
computed from the R-matrix calculations are employed to
compute the cross sections. The low partial wave contribution
arising from the Born contribution is subtracted in order
that the final cross-section set only contains those partial
waves due to the R-matrix calculation. We have performed
the calculations with and without dipole Born correction.

The R matrix provides the link between the inner region and
the outer region. The R matrix is propagated to an asymptotic
region where the radial wave functions describing the scat-
tering electron can be matched to analytical expressions. For
this purpose, the inner region is propagated to the outer-region
potential until its solution matches the asymptotic functions
given by the Gailitis expansion [41]. Coupled single-center
equations describing the scattering in the outer region are
integrated to identify the K-matrix elements. The K matrix
is a symmetric matrix whose dimensions are the number of
open channels. All of the observables deduced from it can be
used to obtain T matrices using the definition

T = 2iK

1 − iK
. (2)

The T matrices are, in turn, used to obtain various total cross
sections. The K matrix is diagonalized to obtain the eigenphase
sum. The eigenphase sum is further used to obtain the position
and width of any scattering resonances by fitting them to a
Breit-Wigner profile [42]. The detailed procedure is described
in our earlier publications [21,22,43,44].

Differential cross sections (DCS) are very important as they
provide a large amount of information about the interaction
process which is generally averaged out in the total cross
section. Indeed, the evaluation of DCS is a rigorous test for
any scattering theory. The DCS for a polyatomic molecule is
represented by

dσ

d�
=

∑
L

ALPL(cosθ ), (3)

where PL is the Legendre polynomial. Details on AL have been
discussed by Gianturco and Jain [45]. For a polar molecule,
this expansion over L converges slowly due to the long-range
nature of the dipole potential. To overcome this problem, we
use the closure formula given by

dσ

d�
= dσB

d�
+

∑
L

(
AL − AB

L

)
PLcosθ, (4)

where B denotes the fact that the relevant term is calculated
under the conditions of the Born approximation with an
electron point dipole interaction. It is clear from the above
expression that convergence of the series is faster compared
to calculations with no Born corrections since the contribu-
tion from higher partial waves is dominated by the dipole
interaction. Differential and momentum transfer cross sections
(MTCS) are calculated using the POLYDCS program with the
MTCS obtained by integrating the differential cross sections
(DCS) with a weighting factor (1 − cos θ ) [46].
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III. HIGH-ENERGY FORMALISM

Even with the aid of the latest computing facilities, the R-
matrix code has limitations for scattering calculations beyond
20 eV, and hence intermediate- to high-energy electron scatter-
ing is modeled here using the SCOP formalism [43,44,47,48].
We employ a partial wave analysis to solve the Schrödinger
equation with various model potentials as its input. The
interaction of the incoming electron with the target molecule
can be represented by a complex optical potential (Vopt), which
can be partitioned into real (VR) and imaginary (VI ) parts as

Vopt(Ei,r) = VR(Ei,r) + iVI (Ei,r), (5)

such that

VR(Ei,r) = Vst (Ei,r) + Vex(Ei,r) + Vp(Ei,r), (6)

where the real part VR is composed of the static potential (Vst ),
exchange potential (Vex), and polarization potential (Vp). The
static potential (Vst ) arises from the Coulombic interaction
between the static charge distribution of the target and the
projectile. It is calculated at the Hartree-Fock level. The ex-
change potential (Vex) term accounts for the electron exchange
interaction between the incoming projectile and one of the
target electrons. The polarization potential (Vp) represents
the short-range correlation and long-range polarization effect
arising from the temporary redistribution of the target charge
cloud. Note that the spherical complex optical potential as such
does not require any fitting parameters. The most important
basic input for evaluating all of these potentials is the charge
density of the target. The complexity of electron molecule
scattering is reduced by adopting a single-center approach so
as to make the spherical approximation applicable [49,50].

In the case of MgO, the single-center charge density is
obtained by expanding the charge density of the Mg atom and
O atom at the center of mass of the system. The spherically
averaged molecular charge density is determined from the
constituent atomic charge densities using the Hartree-Fock
wave functions of Bunge et al. [51]. The molecular charge
density so obtained is then renormalized to incorporate the
covalent bonding [49,51]. In the SCOP method, the spherical

part of the complex optical potential is treated exactly in a
partial wave analysis to yield various cross sections [49].

The atomic charge densities and static potentials (Vst )
are formulated from the parameterized Hartree-Fock wave
functions given by Bunge et al. [51]. The parameter-free Hara’s
“free-electron gas exchange model” is used to generate the
exchange potential (Vex) [52]. The polarization potential (Vp)
is constructed from the parameter-free model of correlation-
polarization potential given by Zhang et al. [53]. Here, various
multipole nonadiabatic corrections are incorporated into the
intermediate region, which approaches the correct asymptotic
form at large r smoothly.

The imaginary part in Vopt is called the absorption potential,
and Vabs or VI accounts for the total loss of flux scattered into
the allowed electronic excitation or ionization channels. The
Vabs is not a long-range effect and its penetration towards the
origin increases with increasing energy. This implies that at
high energies, the absorption potential accounts for the inner-
shell excitations or ionization processes that may be closed at
low energies.

The well-known quasifree model form of Staszewska
et al. [54,55], employed for the absorption part, is given by

Vabs(r,Ei) = −ρ(r)

√
Tloc

2

(
8π

10k3
F Ei

)

× θ
(
p2 − k2

F − 2

)
(A1 + A2 + A3), (7)

where the local kinetic energy of the incident electron is

Tloc = Ei − (Vst + Vex + Vp), (8)

where p2 = 2Ei , kF = [3π2ρ(r)]
1
3 is the Fermi wave vector,

and A1, A2, and A3 [44] are dynamic functions that depend
differently on θ (x), I, 
, and Ei . I is the ionization threshold
of the target, θ (x) is the Heaviside unit step function and is
an energy parameter below which Vabs = 0. Hence, 
 is the
principal factor which decides the value of the total inelastic
cross section since below this value, ionization or excitation is
not permissible. This is one of the main characteristics of the
Staszewska model [54,55]. We have attempted this by consid-
ering 
 as a slowly varying function of Ei around I. Such an
approximation is meaningful since 
 fixed at I would not allow

TABLE III. Total cross sections (TCSs) for e-MgO scattering.

Energy R matrix Energy R matrix Energy R matrix Energy SCOP Energy SCOP

(eV) TCS (Å
2
) (eV) TCS (Å

2
) (eV) TCS (Å

2
) (eV) TCS (Å

2
) (eV) TCS (Å

2
)

0.01 12424.1 1.40 144.7 7.00 35.4 17 18.65 300 8.33
0.05 2222.8 1.60 129.7 7.50 31.8 18 19.66 400 7.09
0.10 1145.0 1.80 119.0 8.00 28.5 19 20.50 500 6.16
0.20 839.2 2.00 109.7 8.50 25.6 20 21.17 600 5.45
0.30 587.3 2.50 96.0 9.00 23.2 30 22.39 700 4.88
0.40 424.7 3.00 77.3 9.50 21.7 40 20.76 800 4.42
0.50 345.9 3.50 66.6 10.00 20.7 50 19.24 900 4.04
0.60 302.4 4.00 62.5 11.10 20.0 60 17.84 1000 3.71
0.70 270.1 4.50 56.4 12.01 20.2 70 15.92 2000 2.05
0.80 243.9 5.00 51.1 13.00 21.5 80 14.72 3000 1.40
0.90 222.8 5.50 47.3 14.00 20.5 90 13.93 4000 1.05
1.00 199.5 6.00 42.9 15.01 18.4 100 13.32 5000 0.84
1.20 166.4 6.50 38.6 16.00 17.8 200 10.11

012702-5



VINODKUMAR, DESAI, VINODKUMAR, AND MASON PHYSICAL REVIEW A 93, 012702 (2016)

excitation at the energies Ei � I . However, if 
 is much less
than the ionization threshold, then Vabs becomes unexpectedly
high near the peak position and, to avoid such a situation for
Ei < Ep, we have shown that 
 can be considered as the
average excitation energy of the target and, in most cases, it is
found to lie around 0.8I [50,56]. The amendment introduced
by us is to give a reasonable minimum value of 0.8I to 
. The
parameter 
 is expressed as a function of Ei around I as


(Ei) = 0.8I + β(Ei − I ), (9)

where the value of the parameter β is obtained by requiring
that 
 = I (eV) at Ei = Ep, i.e., the value of incident energy
at which Qinel reaches its peak. Ep can be found by calculating
Qinel, considering 
 = I . Beyond Ep, 
 is kept constant and
is equal to the ionization threshold I. The theoretical basis
for assuming a variable 
 is discussed in more detail by
Vinodkumar et al. [56].

The complex optical potential thus formulated is used to
solve the Schrödinger equation numerically through partial
wave analysis. This calculation will produce complex phase
shifts for each partial wave, which describe the interaction of
the incoming projectile with the target. The phase shifts (δi)
thus obtained are employed to find the relevant cross sections,
and the total elastic (Qel) and total inelastic (Qinel) cross
sections using the scattering matrix Si(k) = exp(2iδi) [57].
The sum of these cross sections will then give the total
scattering cross section (TCS), QT [58].

IV. RESULTS AND DISCUSSION

In the present work, we have carried out a comprehensive
study of the collision of electrons with the MgO molecule
in the gas phase. We report here the cross sections over a
wide range of incident energies from 0.01 to 5000 eV. Our
attempt in the present work is to compute the total cross section
below the ionization threshold using close-coupling formalism
employing the R-matrix method and beyond the ionization
threshold using SCOP formalism. R-matrix calculations are
computationally viable only up to 20 eV, while the SCOP
formalism could be employed successfully from the ionization
threshold of the target to 5000 eV. The results so obtained
are consistent. Thus it is possible to provide the total cross
section over a wide range of impact energies from meV to keV.
Apart from total cross sections, we have also reported various
target properties, resonances through an eigenphase sum study,
electronic excitation cross sections, differential cross sections,
momentum transfer cross sections, as well as scattering rate
coefficients for low impact energies below 20 eV. We have
presented our results in graphical form and numerical values
of total cross sections are tabulated in Table III.

Table IV shows resonances for various doublet scattering
states (2A1, 2A2, 2B1, and 2B2) of the MgO system. It is
important to study the eigenphase as we can deduce the

TABLE IV. Resonance positions and width (both in eV) for
scattering states obtained using the R-matrix method along with the
positions (eV) obtained using numerical double differential cross

sections d2σ

dE2 (DDCS in Å2

eV ) with respect to energy (e). Numbers in
parentheses indicate the resonance number presented in Figs. 1 to 4.

Resonance
Position (eV)

Width (eV)
state R matrix DDCS R matrix

2A1 I 0.30 (1)
II 0.32 (2)
III 0.48 0.46 (3) 0.0027
IV 0.48 0.49 (4) 0.0116
V 1.67 1.66 (7) 0.0021
VI 1.73 (8)
VII 2.71 2.72 (9) 0.0143
VIII 4.44 4.79 (11) 0.1966
IX 4.87 (12)
X 10.96 10.90 (14) 0.8734
XI 11.26 11.28 (15) 0.0511
XII 11.66 11.72 (17) 0.045
XIII 11.75 11.72 (17) 0.0724
XIV 12.18 12.16 (19) 0.2881
XV 12.20 12.16 (19) 0.0003

2B1 I 0.56 0.0145
2B2 I 1.26 1.10 (5) 3.24 × 10−5

II 1.12 (6)
III 4.00 4.06 (10) 0.2095
IV 8.80 8.79 (13) 0.0077
V 11.54 11.48 (16) 0.1287
VI 11.92 11.86 (18) 0.0217
VII 11.96 11.86 (18) 0.0595
VIII 13.09 0.9436

2A2 I 0.49 0.49 (4) 0.0271
II 2.25 0.0015
III 8.72 8.79 (13) 0.2132
IV 11.80 11.86 (18) 0.1146
V 13.96 13.87 (20) 0.0537
VI 14.09 (21)
VII 14.43 14.35 (22) 0.0104
VIII 14.62 (23)

position and width of resonances which lead to the important
phenomenon of dissociative electron attachment (DEA) in
the low-energy regime. Recently, DEA studies have gained
prominence as they are indicative of the role of potential for
controlling the chemistry driven by low-energy electrons. Due
to the absence of theoretical data as well as experimental
data for resonances, we have cross checked and confirmed
our resonance data obtained through eigenphase analysis
by performing double differentiation of TCS (DDCS) with
respect to energy using numerical double differentiation by
the five-point central difference formula [59]:

f ′′(E) = −2f (E − 2h) + 16f (E − h) − 30f (E) + 16f (E + h) − f (E + 2h)

h2
, (10)

where f is a cross section as a function of energy and h equals the step size of the evenly distributed data on the energy grid.
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FIG. 1. Double differential cross sections (DDCS in Å
2
/eV) with

respect to energy in the energy range 0.2 to 0.8 eV, indicating
the resonance peaks. (Numbers over peaks indicate the resonance
number.)

DDCS will give sharp peaks and valleys in the curve, at the
resonance positions. We have reported the resonances obtained
using the eigenphase sum and DDCS in Table IV. We have also
plotted the DDCS curve against incident energy. For brevity
of figures, we have divided the whole range of incident energy
from 0.01 to 20 eV for DDCS in four plots. Figure 1 shows
DDCS from 0.2 to 0.8 eV. The first two resonances (I and II)
are reported at 0.30 and 0.32 eV from the DDCS curve, which
are not seen in our eigenphase sum calculations. The third
and fourth (III and IV) resonances are observed at 0.48 eV
because 2A1 symmetry finds very good agreement with 0.46
and 0.49 eV obtained in our DDCS curve. Also, the first (I)
resonance due to 2A2 symmetry is reported at 0.49 eV using
the eigenphase sum and is in excellent agreement with data
obtained from the DDCS curve. The first resonance using 2B1

symmetry is reported at 0.56 eV for which we do not find
signature in our DDCS curve.

The second DDCS curve is from 1 to 3 eV (Fig. 2). The
first (I) resonance due to the 2B2 state is reported at 1.26 eV
using R-matrix calculations and is comparable to resonance
at 1.10 eV using the DDCS curve. The fifth (V) resonance
for the 2A1 state is at 1.67 eV and finds good agreement
with resonance at 1.66 eV and is slightly lower compared to
resonance at 1.73 eV observed in our DDCS curve. The second
(II) resonance for 2A2 is obtained at 2.25 eV in our eigenphase
study for which we have no signature in our DDCS curve. The
seventh (VII) resonance at 2.71 eV due to 2A1 symmetry finds
very good agreement with the resonance reported at 2.72 eV
in the DDCS curve of Fig. 2. The third DDCS curve (Fig. 3) is
for incident energies from 4 to 5 eV. The third (III) resonance
for the 2B2 state is reported at 4.00 eV using the eigenphase
sum and is in good agreement with the resonance observed
at 4.06 eV in the DDCS curve. The eighth (VIII) resonance
obtained at 4.44 eV for the 2A1 state using the eigenphase
sum is slightly lower than the resonances observed at 4.79 and
4.87 eV in the DDCS curves of Fig. 3.

The fourth DDCS curve (Fig. 4) is for incident energies
from 10.5 to 15 eV. The third (III) resonance for the 2A2

FIG. 2. Double differential cross sections (DDCS in Å
2
/eV)

with respect to energy in the energy range 1 to 3 eV, indicating
the resonance peaks. (Numbers over peaks indicate the resonance
number.)

state and fourth (IV) resonance for the 2B2 state are reported
at 8.72 and 8.80 eV, respectively, for which we get clear
signature at 8.79 eV in our DDCS curve of Fig. 3. The tenth
(X) resonance observed due to the 2A1 state at 10.96 eV in
our eigenphase study is in good agreement with resonance
at 10.90 eV observed in our DDCS curve. Above 11 eV, we
find many resonances. The eleventh (XI) resonance due to
2A1 symmetry at 11.26 eV observed in the eigenphase study
is in good agreement with the resonance at 11.28 eV in our
DDCS curve, while the twelfth (XII) and thirteenth (XIII)
resonances observed at 11.66 and 11.75 eV are comparable
to the resonance observed at 11.72 eV in our DDCS curve.
Similarly, the fifth resonance (V) is due to 2B2 symmetry
reported at 11.54 eV for which we observe the peak at 11.48 eV

FIG. 3. Double differential cross sections (DDCS in Å
2
/eV) with

respect to energy in the energy range 4 to 5 eV (inset: between
8.77 and 8.80 eV), indicating the resonance peaks. (Numbers over
peaks indicate the resonance number.)
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FIG. 4. Double differential cross sections (DDCS in Å
2
/eV) with

respect to energy in the energy range 10.5 to 15 eV, indicating
the resonance peaks. (Numbers over peaks indicate the resonance
number.)

in our DDCS curve, while resonances reported at 11.92 eV (VI)
and 11.96 eV (VII) in the eigenphase study are comparable
to 11.86 eV observed in our DDCS curve. The fourth (IV)
resonance reported at 11.80 eV for the 2A2 state is in very good
agreement with the peak observed at 11.86 eV in our DDCS
curve. The fourteenth and fifteenth (XIV and XV) resonances
of the 2A1 state are reported at 12.18 and 12.20 eV for which
we find clear signature at 12.16 eV in our DDCS curve of
Fig. 4. The eighth (VIII) resonance of the 2B2 state is reported
at 13.09 eV using the eigenphase sum for which we do not get
any signature in the DDCS curve. The fifth (V) resonance of
the 2A2 state is 13.96 eV using the eigenphase sum for which
we get peaks at 13.87 and 14.09 eV in our DDCS curve in
Fig. 4. Finally a seventh (VII) resonance for 2A2 symmetry
is reported at 14.43 eV, which has a clear peak at 14.35 and
14.62 eV in our DDCS curve in Fig. 4.

These resonances reported in Table IV are reflected in the
momentum transfer cross sections and also in our total cross-
section curves. It is to be noted that as more states are included
in the Close Coupling (CC) expansion and retained in the outer-
region calculation, the eigenphase sum increases, reflecting the
improved modeling of polarization interaction.

The two important contributions to the total inelastic cross
sections are electronic excitation and ionization cross sections,
apart from the contributions coming from nuclear motion, viz.,
rotational excitation and vibrational excitation. We have not
considered contributions coming from nuclear motion as our
basic assumption is a stationary nucleus. Figure 5 depicts the
electronic excitation cross sections for ground state 1A1 to
eight low-lying excited states (3B1, 3B2, 1B2, 1B1, 3A1, 1A1,
3A1, and 3A2) for the 34-state CC calculation. Examining
Table II, we find that 1A1 and 1A2, 3A1 and 3A2, and 3B1

and 3B2 are degenerate states. The excitation cross sections
arising from the ground state to eight low-lying excited
states are shown in Fig. 5. The maximum contribution to the
excitation cross section comes from the two transitions from

FIG. 5. MgO excitation cross section for a 34-state CC calcula-
tion from initial state 1

A1.

ground-state X 1A1 to 1 3A1 and to 2 1A1. These transitions
show a sharp increase near their respective thresholds, indi-
cating the dominance of these energy levels in the present
calculation. It is important to note that for MgO, we get very

high total electronic excitation cross sections of about 9 Å
2
.

These cross sections reflect the probability of excitation to
various energy levels of the target.

We have reported the differential cross sections for incident
energies 1 to 10 eV, 15 eV, and 20 eV. We present the DCS
results for 1, 3, 5, and 7 eV in Fig. 6. The scattering is
dominated by elastic component 0 → 0 and dipole component
0 → 1. The elastic component shows a strong dip at 125◦ in the
1 eV curve, at 123◦ in the 3 eV curve, at 128◦ in the 5 eV curve,
and at 50◦ and 127◦ in the 7 eV curve. These dips arise from

FIG. 6. Differential cross sections summed over all transitions
for incident electron energies of 1, 3, 5, and 7 eV.
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FIG. 7. Differential cross sections summed over all transitions
for incident electron energies of 2, 4, 6, and 8 eV.

cancellations of attractive and repulsive potentials leading to
very low scattering amplitudes and hence low values of the
DCS at these angles. The contributions to differential cross
sections from J = 0 to higher J diminish as expected.

In Fig. 7, we have shown DCS which are obtained by sum-
ming the rotational cross sections for all elastic components
at selected energies of 2, 4, 6, and 8 eV. The divergence at
the forward angle is confirmed as being due to dipole-allowed
transitions 0 → 1 dominating the scattering. The differential
cross sections decrease as the incident energy increases. The
sharp enhancement in the forward direction is a result of
the strong long-range dipole component of the interaction
potential. For the 2 eV curve, we find a strong dip at 130◦;
for 4 eV, it is at 133◦; for 6 eV, it is at 127◦; and for 8 eV, it
is at 51◦ and 131◦. We notice that the position of these dips
is almost the same for all of these curves. Finally, in Fig. 8,
we have shown DCS for 9, 10, 15, and 20 eV; in all of these
curves, we find two strong minima, as seen from Fig. 8. At
9 eV, these minima are at 52◦ and at 133◦; for the 10 eV curve,
at 51◦ and at 131◦; for 15 eV, at 54◦ and 132◦; and for 20 eV,
at 54◦ and 127◦. It is worth noting that the position of these
minima in all of these curves lies almost at the same angles.
We have not found other theoretical or experimental data to
compare with these data sets for DCS.

In Fig. 9, the results for momentum transfer cross sections
(MTCS) are presented in the range 0.01–20 eV. The MTCS
are an indication of the amount of backward scattering. The
MTCS are a useful observable for the swarm study of electrons
through gases and it determines the electron distribution
function through the solution of the Boltzmann equation and
their drift velocity in the molecular gas. We observe that the
MTCS decrease with increasing incident energies. In contrast
to the divergent behavior of DCS at lower angles, the MTCS
do not diverge due to the multiplicative factor (1 − cosθ ).
The various peaks observed in the MTCS are the signatures
of various resonances, which are shown in Table IV, and we
find a good match between the two. The distinctive peak seen

FIG. 8. Differential cross sections summed over all transitions
for incident electron energies of 9, 10, 15, and 20 eV.

at 11.48 eV is the result of the large number of resonances
reported in our eigenphase study as well as in DDCS curves
from all symmetry states (Figs. 1–4).

Figure 10 represents the total cross sections for e-MgO
scattering over a wide range of impact energies from 0.01
to 5000 eV. For brevity of figure, the total cross sections for
0.2 to 2.8 eV are shown in the inset as the magnitude of the
cross section in this energy range is extremely high due to
a strong dipole moment. Further, this figure clearly reflects
various structures arising due to resonance processes. “1” in
the inset figure corresponds to the peak at 0.48 eV, which may
be attributed to two resonances: one at 0.48 eV due to 2A1 and
the other at 0.49 eV due to 2A2 symmetry. The second feeble
structure at position “2” and a very clear peak at 1.11 eV
at position 3 are not reported in our resonance table. The

FIG. 9. Momentum transfer cross sections (MTCS) for electron
MgO scattering ranging from the incident electron energy of 0.01 to
20 eV.
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FIG. 10. Total cross sections (TCS) along with the elastic cross
sections (Qel) for e-MgO scattering.

small structure at position “4” at 1.68 eV is close to resonance
at 1.67 eV due to 2A1 symmetry. The structure reflected at
position “5” at 1.74 eV finds no predictions by our R-matrix
calculation.

It is quite clear from the curve that there is a smooth
matching of results obtained by the R-matrix formalism and
SCOP formalism at about 16 eV. We have also performed
high-energy calculations using the weighted additivity method
(WAM) [60,61], which also finds excellent agreement with the
SCOP results beyond 160 eV. The total elastic cross sections
(Qel) are also presented in Fig. 10. Our Qel data find very good
agreement both quantitatively and qualitatively with the data
of Dapor and Miotello [18] above 75 eV, below which they are
slightly higher.

Finally, electron impact scattering rate coefficients are
plotted as a function of the kinetic temperature (Fig. 11), which
is defined according to the Maxwell-Boltzmann distribution.
From this graph, it is noted that the scattering rate increases
rapidly up to approximately 290 K before gradually dying
down as the temperature is further increased. The maximum

FIG. 11. Total rate coefficients for e-MgO elastic scattering.

rate coefficient value is 3.31 × 10−5 cm3/s at 290 K. Once
again, we did not find any data with which to compare our
presented values.

V. CONCLUSION

We report a detailed ab initio study of e-MgO scattering.
This includes various target properties, resonances through
eigenphase study as well as DDCS, vertical electronic exci-
tations and differential, momentum transfer, and total cross
sections along with scattering rate coefficients in the article.
We get very good agreement for all target properties listed in
Table I with data available in the literature. There is a large
number of electronic excited states in MgO and the present
data is close to many earlier predictions (see Table II). The
important component of low-energy studies is resonances,
which are reported here for all four doublet states (2A1,
2A2, 2B1, 2B2). In the absence of any comparisons, either
experimental or theoretical, we have deduced resonances
using the eigenphase sum and reconfirmed through double
differentiation of the TCS (DDCS). All DCS curves for 1 to
10 eV, 15 eV, and 20 eV and also MTCS are our maiden
efforts. At low energy, the elastic cross sections diverge due
to the effect of the strong dipole moment. There are many
resonances observed around 11 eV, as listed in Table IV. They
are reflected in MTCS as well as TCS as a prominent structure
around 11.48 eV. The present total elastic cross sections
find very good agreement both quantitatively and qualita-
tively with a single set of theoretical results by Dapor and
Miotello [18].

We have performed 34-state close-coupling calculations
employing the UK molecular R-matrix code below the ion-
ization threshold of the target, while SCOP formalism is used
beyond it. We have demonstrated through Fig. 10 that the
results using these two formalisms are consistent and show a
smooth crossover at the overlap energy (∼16 eV). This feature
confirms the validity of our theories and hence enables us to
predict the total cross sections from thermal energy of the
target (0.01 eV) to high energy (5000 eV) [21,22,43,44].

We are confident that this methodology may be employed
further to calculate total cross sections over a wide range of
impact energies in other molecular systems where experiments
are difficult or not possible to perform. Total cross-section data
finds importance in a variety of applications, from aeronomy
to plasma modeling. Accordingly, such a methodology may be
built into the design of an online database to provide the “data
user” with the opportunity to request their own set of cross
sections for use in their own research. Such a prospect will be
explored by the emerging Virtual Atomic and Molecular Data
Centre (VAMDC) [62].

ACKNOWLEDGMENT

M.V. acknowledges Department of Atomic Energy (DAE),
Board of Research in Nuclear Sciences (BRNS), Govt.
of India, Mumbai for the Major research project [Grant
No. 37(3)/14/44/BRNS-2014] for financial support under
which part of this work is carried out.

012702-10



INDUCED CHEMISTRY BY SCATTERING OF ELECTRONS . . . PHYSICAL REVIEW A 93, 012702 (2016)

[1] J. Schamps and H. LefebvreBrion, J. Chem. Phys. 56, 573
(1972).

[2] C. W. Bauschlicher, Jr., D. M. Silver, and D. R. Yarkony,
J. Chem. Phys. 73, 2867 (1980).

[3] C. W. Bauschlicher, B. H. Lengsfield III, D. M. Silver, and
D. R. Yarkony, J. Chem. Phys. 74, 2379 (1981).

[4] B. Huron and P. Rancurel, Chem. Phys. Lett. 13, 515 (1972).
[5] H. Thummel, R. Iuotz, and S. D. Peyerimhoff, Chem. Phys. 129,

417 (1989).
[6] B. Rosen, Spectroscopic Data Relative to Diatomic Molecules

(Pergamon Press, Oxford, 1970).
[7] K. P. Huber and G. Herzberg, in Molecular Spectra and

Molecular Structure (Van Nostrand Reinhold, New York, 1979),
p. 550.

[8] J. H. Kim, X. Li, L. S. Wang, H. L. de Clercq, C. A. Fancher,
O. C. Thomas, and K. H. Bowen, J. Phys. Chem. A 105, 5709
(2001).

[9] B. Bourguignon, J. McCombie, and J. Rostas, Chem. Phys. Lett.
113, 323 (1985).

[10] L. Brewer and S. Trajmar, J. Chem. Phys. 36, 1585 (1962).
[11] T. Ikeda, N. B. Wong, D. O. Harris, and R. W. Field, J. Mol.

Spectrosc. 68, 452 (1977).
[12] A. Lagerqvist and U. Uhler, Nature 164, 665 (1949).
[13] J. K. A. Clarke, M. J. Bradley, L. A. J. Garvie, A. J. Craven, and

T. Baird, J. Catal. 143, 122 (1993).
[14] J. B. Johnson and K. G. McKay, Phys. Rev. 91, 582 (1953).
[15] W. W. Duley Astrophys. Space Sci. 47, 185 (1977).
[16] S. MacLean and W. W. Duley, Astrophys. J. 252, L25 (1982).
[17] J. B. Pedley and E. M. Marshall, Phys. Chem. Ref. Data 12, 967

(1983).
[18] M. Dapor and A. Miotello, Eur. Phys. J. AP 5, 143 (1999).
[19] J. Tennyson, D. B. Brown, J. Munro, I. Rozum, H. N. Varambhia,

and N. Vinci, J. Phys.: Conf. Ser. 86, 012001 (2007).
[20] H. N. Varambhia, J. J. Munro, and J. Tennyson, Int. J. Mass

Spectrosc. 271, 1 (2008).
[21] M. Vinodkumar, H. Desai, and P. C. Vinodkumar, RSC Adv. 5,

24564 (2015).
[22] M. Vinodkumar, C. Limbachiya, H. Desai, and P. C.

Vinodkumar, J. Appl. Phys. 116, 124702 (2014).
[23] D. R. Lide, CRC Handbook of Physics and Chemistry, 74th ed.

(Chemical Rubber Company, Boca Raton, FL, 1993).
[24] J. Tennyson, J. Phys. B: At., Mol. Opt. Phys. 29, 6185 (1996).
[25] H. N. Varambhia, Ph.D. dissertation (University College,

London, 2010).
[26] P. Piyykko, H. F. Geerd, and F. Muller, Chem. Phys. Lett. 141,

535 (1987).
[27] A. D. McLean and M. Yoshimine, IBM J. Res. Dev. Suppl. 13,

206 (1967).
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M. Vinodkumar, G. Garcı́a, and N. J. Mason, Phys. Rev. A 71,
032720 (2005).

[59] E. Balagurusamy, Numerical Methods (Tata/McGraw-Hill,
New Delhi, 1999), p. 361.

[60] H. Desai, M. Vinodkumar, and P. C. Vinodkumar, in Electron
Collision Processes in Atomic and Molecular Physics, edited by
M. Vinodkumar (Narosha Publishing House, New Delhi, 2014),
p. 61.

[61] H. Desai, M. Vinodkumar, and P. C. Vinodkumar, Theoretical
Estimations of Electron Impact Collision Cross Sections (Lam-
bert, Germany, 2014).

[62] M. L. Dubernet et al., J. Quantum Spectrosc. Radiat. Transf.
111, 2151 (2010).

012702-11

View publication statsView publication stats

http://dx.doi.org/10.1063/1.1676908
http://dx.doi.org/10.1063/1.1676908
http://dx.doi.org/10.1063/1.1676908
http://dx.doi.org/10.1063/1.1676908
http://dx.doi.org/10.1063/1.440456
http://dx.doi.org/10.1063/1.440456
http://dx.doi.org/10.1063/1.440456
http://dx.doi.org/10.1063/1.440456
http://dx.doi.org/10.1063/1.441358
http://dx.doi.org/10.1063/1.441358
http://dx.doi.org/10.1063/1.441358
http://dx.doi.org/10.1063/1.441358
http://dx.doi.org/10.1016/0009-2614(72)80094-0
http://dx.doi.org/10.1016/0009-2614(72)80094-0
http://dx.doi.org/10.1016/0009-2614(72)80094-0
http://dx.doi.org/10.1016/0009-2614(72)80094-0
http://dx.doi.org/10.1016/0301-0104(89)85011-6
http://dx.doi.org/10.1016/0301-0104(89)85011-6
http://dx.doi.org/10.1016/0301-0104(89)85011-6
http://dx.doi.org/10.1016/0301-0104(89)85011-6
http://dx.doi.org/10.1021/jp010331d
http://dx.doi.org/10.1021/jp010331d
http://dx.doi.org/10.1021/jp010331d
http://dx.doi.org/10.1021/jp010331d
http://dx.doi.org/10.1016/0009-2614(85)80374-2
http://dx.doi.org/10.1016/0009-2614(85)80374-2
http://dx.doi.org/10.1016/0009-2614(85)80374-2
http://dx.doi.org/10.1016/0009-2614(85)80374-2
http://dx.doi.org/10.1063/1.1732784
http://dx.doi.org/10.1063/1.1732784
http://dx.doi.org/10.1063/1.1732784
http://dx.doi.org/10.1063/1.1732784
http://dx.doi.org/10.1016/0022-2852(77)90247-8
http://dx.doi.org/10.1016/0022-2852(77)90247-8
http://dx.doi.org/10.1016/0022-2852(77)90247-8
http://dx.doi.org/10.1016/0022-2852(77)90247-8
http://dx.doi.org/10.1038/164665b0
http://dx.doi.org/10.1038/164665b0
http://dx.doi.org/10.1038/164665b0
http://dx.doi.org/10.1038/164665b0
http://dx.doi.org/10.1006/jcat.1993.1259
http://dx.doi.org/10.1006/jcat.1993.1259
http://dx.doi.org/10.1006/jcat.1993.1259
http://dx.doi.org/10.1006/jcat.1993.1259
http://dx.doi.org/10.1103/PhysRev.91.582
http://dx.doi.org/10.1103/PhysRev.91.582
http://dx.doi.org/10.1103/PhysRev.91.582
http://dx.doi.org/10.1103/PhysRev.91.582
http://dx.doi.org/10.1007/BF00651366
http://dx.doi.org/10.1007/BF00651366
http://dx.doi.org/10.1007/BF00651366
http://dx.doi.org/10.1007/BF00651366
http://dx.doi.org/10.1086/183712
http://dx.doi.org/10.1086/183712
http://dx.doi.org/10.1086/183712
http://dx.doi.org/10.1086/183712
http://dx.doi.org/10.1063/1.555698
http://dx.doi.org/10.1063/1.555698
http://dx.doi.org/10.1063/1.555698
http://dx.doi.org/10.1063/1.555698
http://dx.doi.org/10.1051/epjap:1999122
http://dx.doi.org/10.1051/epjap:1999122
http://dx.doi.org/10.1051/epjap:1999122
http://dx.doi.org/10.1051/epjap:1999122
http://dx.doi.org/10.1088/1742-6596/86/1/012001
http://dx.doi.org/10.1088/1742-6596/86/1/012001
http://dx.doi.org/10.1088/1742-6596/86/1/012001
http://dx.doi.org/10.1088/1742-6596/86/1/012001
http://dx.doi.org/10.1016/j.ijms.2007.12.002
http://dx.doi.org/10.1016/j.ijms.2007.12.002
http://dx.doi.org/10.1016/j.ijms.2007.12.002
http://dx.doi.org/10.1016/j.ijms.2007.12.002
http://dx.doi.org/10.1039/C5RA01035G
http://dx.doi.org/10.1039/C5RA01035G
http://dx.doi.org/10.1039/C5RA01035G
http://dx.doi.org/10.1039/C5RA01035G
http://dx.doi.org/10.1063/1.4896485
http://dx.doi.org/10.1063/1.4896485
http://dx.doi.org/10.1063/1.4896485
http://dx.doi.org/10.1063/1.4896485
http://dx.doi.org/10.1088/0953-4075/29/24/024
http://dx.doi.org/10.1088/0953-4075/29/24/024
http://dx.doi.org/10.1088/0953-4075/29/24/024
http://dx.doi.org/10.1088/0953-4075/29/24/024
http://dx.doi.org/10.1016/0009-2614(87)85076-5
http://dx.doi.org/10.1016/0009-2614(87)85076-5
http://dx.doi.org/10.1016/0009-2614(87)85076-5
http://dx.doi.org/10.1016/0009-2614(87)85076-5
http://dx.doi.org/10.1080/00268979509413627
http://dx.doi.org/10.1080/00268979509413627
http://dx.doi.org/10.1080/00268979509413627
http://dx.doi.org/10.1080/00268979509413627
http://cccbdb.nist.gov
http://dx.doi.org/10.1103/PhysRevA.37.3749
http://dx.doi.org/10.1103/PhysRevA.37.3749
http://dx.doi.org/10.1103/PhysRevA.37.3749
http://dx.doi.org/10.1103/PhysRevA.37.3749
http://dx.doi.org/10.1103/PhysRevA.24.2473
http://dx.doi.org/10.1103/PhysRevA.24.2473
http://dx.doi.org/10.1103/PhysRevA.24.2473
http://dx.doi.org/10.1103/PhysRevA.24.2473
http://dx.doi.org/10.1103/PhysRevA.30.1734
http://dx.doi.org/10.1103/PhysRevA.30.1734
http://dx.doi.org/10.1103/PhysRevA.30.1734
http://dx.doi.org/10.1103/PhysRevA.30.1734
http://dx.doi.org/10.1071/PH920325
http://dx.doi.org/10.1071/PH920325
http://dx.doi.org/10.1071/PH920325
http://dx.doi.org/10.1071/PH920325
http://dx.doi.org/10.1088/0953-4075/40/6/016
http://dx.doi.org/10.1088/0953-4075/40/6/016
http://dx.doi.org/10.1088/0953-4075/40/6/016
http://dx.doi.org/10.1088/0953-4075/40/6/016
http://dx.doi.org/10.1016/j.physrep.2010.02.001
http://dx.doi.org/10.1016/j.physrep.2010.02.001
http://dx.doi.org/10.1016/j.physrep.2010.02.001
http://dx.doi.org/10.1016/j.physrep.2010.02.001
http://dx.doi.org/10.1016/0010-4655(84)90145-0
http://dx.doi.org/10.1016/0010-4655(84)90145-0
http://dx.doi.org/10.1016/0010-4655(84)90145-0
http://dx.doi.org/10.1016/0010-4655(84)90145-0
http://dx.doi.org/10.1098/rspa.1960.0125
http://dx.doi.org/10.1098/rspa.1960.0125
http://dx.doi.org/10.1098/rspa.1960.0125
http://dx.doi.org/10.1098/rspa.1960.0125
http://dx.doi.org/10.1016/S0010-4655(02)00141-8
http://dx.doi.org/10.1016/S0010-4655(02)00141-8
http://dx.doi.org/10.1016/S0010-4655(02)00141-8
http://dx.doi.org/10.1016/S0010-4655(02)00141-8
http://dx.doi.org/10.1103/PhysRevA.10.788
http://dx.doi.org/10.1103/PhysRevA.10.788
http://dx.doi.org/10.1103/PhysRevA.10.788
http://dx.doi.org/10.1103/PhysRevA.10.788
http://dx.doi.org/10.1088/0022-3700/9/5/027
http://dx.doi.org/10.1088/0022-3700/9/5/027
http://dx.doi.org/10.1088/0022-3700/9/5/027
http://dx.doi.org/10.1088/0022-3700/9/5/027
http://dx.doi.org/10.1016/0010-4655(84)90147-4
http://dx.doi.org/10.1016/0010-4655(84)90147-4
http://dx.doi.org/10.1016/0010-4655(84)90147-4
http://dx.doi.org/10.1016/0010-4655(84)90147-4
http://dx.doi.org/10.1039/C5RA12866H
http://dx.doi.org/10.1039/C5RA12866H
http://dx.doi.org/10.1039/C5RA12866H
http://dx.doi.org/10.1039/C5RA12866H
http://dx.doi.org/10.1103/PhysRevA.89.062715
http://dx.doi.org/10.1103/PhysRevA.89.062715
http://dx.doi.org/10.1103/PhysRevA.89.062715
http://dx.doi.org/10.1103/PhysRevA.89.062715
http://dx.doi.org/10.1016/0370-1573(86)90125-0
http://dx.doi.org/10.1016/0370-1573(86)90125-0
http://dx.doi.org/10.1016/0370-1573(86)90125-0
http://dx.doi.org/10.1016/0370-1573(86)90125-0
http://dx.doi.org/10.1016/S0010-4655(98)00091-5
http://dx.doi.org/10.1016/S0010-4655(98)00091-5
http://dx.doi.org/10.1016/S0010-4655(98)00091-5
http://dx.doi.org/10.1016/S0010-4655(98)00091-5
http://dx.doi.org/10.1103/PhysRevA.83.042708
http://dx.doi.org/10.1103/PhysRevA.83.042708
http://dx.doi.org/10.1103/PhysRevA.83.042708
http://dx.doi.org/10.1103/PhysRevA.83.042708
http://dx.doi.org/10.1103/PhysRevA.84.052701
http://dx.doi.org/10.1103/PhysRevA.84.052701
http://dx.doi.org/10.1103/PhysRevA.84.052701
http://dx.doi.org/10.1103/PhysRevA.84.052701
http://dx.doi.org/10.1140/epjd/e2008-00106-3
http://dx.doi.org/10.1140/epjd/e2008-00106-3
http://dx.doi.org/10.1140/epjd/e2008-00106-3
http://dx.doi.org/10.1140/epjd/e2008-00106-3
http://dx.doi.org/10.1016/j.ijms.2011.04.005
http://dx.doi.org/10.1016/j.ijms.2011.04.005
http://dx.doi.org/10.1016/j.ijms.2011.04.005
http://dx.doi.org/10.1016/j.ijms.2011.04.005
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1088/0953-4075/25/8/021
http://dx.doi.org/10.1088/0953-4075/25/8/021
http://dx.doi.org/10.1088/0953-4075/25/8/021
http://dx.doi.org/10.1088/0953-4075/25/8/021
http://dx.doi.org/10.1063/1.447310
http://dx.doi.org/10.1063/1.447310
http://dx.doi.org/10.1063/1.447310
http://dx.doi.org/10.1063/1.447310
http://dx.doi.org/10.1103/PhysRevA.29.3078
http://dx.doi.org/10.1103/PhysRevA.29.3078
http://dx.doi.org/10.1103/PhysRevA.29.3078
http://dx.doi.org/10.1103/PhysRevA.29.3078
http://dx.doi.org/10.1140/epjd/e2010-00140-6
http://dx.doi.org/10.1140/epjd/e2010-00140-6
http://dx.doi.org/10.1140/epjd/e2010-00140-6
http://dx.doi.org/10.1140/epjd/e2010-00140-6
http://dx.doi.org/10.1103/PhysRevA.71.032720
http://dx.doi.org/10.1103/PhysRevA.71.032720
http://dx.doi.org/10.1103/PhysRevA.71.032720
http://dx.doi.org/10.1103/PhysRevA.71.032720
http://dx.doi.org/10.1016/j.jqsrt.2010.05.004
http://dx.doi.org/10.1016/j.jqsrt.2010.05.004
http://dx.doi.org/10.1016/j.jqsrt.2010.05.004
http://dx.doi.org/10.1016/j.jqsrt.2010.05.004
https://www.researchgate.net/publication/289556772

