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Abstract: The emission of [O I] lines in the coma of Comet 67P/Churyumov-Gerasimenko during
the Rosetta mission have been explained by electron impact dissociation of water rather than the
process of photodissociation. This is the direct evidence for the role of electron induced processing
has been seen on such a body. Analysis of other emission features is handicapped by a lack of
detailed knowledge of electron impact cross sections which highlights the need for a broad range
of electron scattering data from the molecular systems detected on the comet. In this paper, we
present an overview of the needs for electron scattering data relevant for the understanding of
observations in coma, the tenuous atmosphere and on the surface of 67P/Churyumov-Gerasimenko
during the Rosetta mission. The relevant observations for elucidating the role of electrons come
from optical spectra, particle analysis using the ion and electron sensors and mass spectrometry
measurements. To model these processes electron impact data should be collated and reviewed in
an electron scattering database and an example is given in the BEAMD, which is a part of a larger
consortium of Virtual Atomic and Molecular Data Centre—VAMDC.

Keywords: electron scattering; cross sections; Rosetta mission; atomic and molecular databases

1. Introduction

The Rosetta spacecraft was launched in 2004 as a part of the European Space Agency (ESA)
space program, with the mission to rendez-vous with, orbit and place a lander upon periodic comet
67P/Churyumov-Gerasimenko. Rosetta was in orbit with the cometary nucleus from 2014 to September
2016 during which time it was able to closely examine how the coma of the comet and the frozen
comet’s surface changed relative to distance from the Sun. On November 2014 Rosetta dispatched
a lander, Philae, which touched down on the comet’s surface and recorded, for the first time, in situ
data from the surface. This pioneering mission has provided us with new and unexpected data that
are changing our understanding of the structure and chemistry of cometary systems and their role
in the evolution of our solar system and possible origins of life on Earth. For example, the D to H
ratio in cometary water ice is very different from that on Earth and, among the other similar findings,
challenges the hypothesis that water on Earth was brought by cometary impact [1].

In this paper, we will review another intriguing and unexpected result from the Rosetta mission
namely the role of electron induced dissociation in the comet’s coma. The data needed to model electron
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processes in cometary coma and its possible relevance to the formation but also the dissociation and
fragmentation of molecules observed by Rosetta instruments, will be discussed together with the
current data available and the databases in which such data may be found.

2. Rosetta Instruments and Their Observation of Electron Scattering Processes in the Cometary Coma

Rosetta orbiter carried eleven different complex scientific instruments, while the Philae lander
had ten instruments. Only those that are immediately relevant for the case study of the role of electrons
in comas and the detection of more complex species that may be formed by electron induced chemistry
will be reviewed here.

2.1. FUV Emissions Measured by the ALICE Instrument

ALICE was a far-ultraviolet (FUV) imaging spectrograph that could specially resolve spectra in
the range from 70 to 205 nm. Coma emission and the reflected solar spectrum from the nucleus were
recorded using ALICE throughout the Rosetta encounter. The coma was identified by a spectrum
that contains several features that are weak in the solar spectrum and do not appear in the reflected
light from the nucleus [2]. Besides strong hydrogen Lyman lines, lines from oxygen multiplets at
98.9, 115.2, 130.4 and 135.6 nm were observed, as were weak multiplets from carbon C I lines at
156.1 and 165.7 nm and emission bands coming from CO. The surprise was the O I line at 135.6 nm,
originated from the forbidden transition 5So–3P since this is usually not seen in comas. The presence
of this line and the intensity ratio of H I and O I multiplets is characteristic of the process of electron
dissociative excitation of water molecules [3] and led Feldman et al. [2] to establish that electron
collisions with H2O is the dominant source of these emissions. Similarly, they attributed C I emissions
to electron dissociative excitation of CO2. The relative contribution of the UV and electron impact to the
dissociation processes are dependent on the location with respect to the nucleus and the heliocentric
distance as discussed in [4,5].

2.2. Observations from the OSIRIS Instrument

OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) was one of Rosetta’s major
imaging systems equipped with a wide-angle camera (WAC) and a series of narrow band filters
covering range from 245 to 640 nm and two broad band filters, green and red, covering the spectra up
to 720 nm. This instrument recorded coma emission lines and specifically targeted to the transitions of
O, OH, CN, CS, NH and NH2. The mapping of water distribution was possible indirectly through
observations of O I and OH bandpass filters. The O I filter covers the forbidden transitions from the
O I (2p4) 1D state which is populated directly by photodissociation of H2O molecules, while the OH
filter covers the (0–0) band of the A 2Σ+–X 2Π transition of OH, centred at about 308.5 nm, which is
excited almost entirely by fluorescence of sunlight as pointed out in [6]. The O I 1D state can be also
populated from the transition from the O I (2p4) 1S state. Within the CN filter lies an emission line
B2Σ+–X2S+ (0, 0) at 388 nm, within the NH2 filter there is a wide emission band Ã 2A1–X 2B1 (0, 10, 0)
and the NH filter covers the NH A3Π1–X3Σ− (0–0) transition [6].

From this data Bodewits et al. [6] derived column densities and calculated global production
rates using the standard Haser model. They found that the water production rates derived from
OH are larger than those derived from [O I], OH and [O I] photolysis. Indeed, they analysed all
production rates and found a much larger drop in water production rates than diurnal variation can
explain. Therefore, they concluded that the photo-dissociation and fluorescence could solely explain
the processes resulting in the OH, [O I], CN and NH emission observed in the inner coma and that
the fragments might emanate from different parent species and/or be formed by other processes [6].
One additional process is electron induced dissociation of water, when including this in their model
a much better fit was obtained, indeed electron driven dissociation of water was found to be dominant
in agreement with Feldman et al. [2].
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2.3. Detection of Organic Molecules on the Comet Surface—COSAC Mass Spectrometry

The COSAC (COmetary SAmpling and Composition) experiment and Ptolemy were two gas
analysers on the Philae lander built to monitor the chemical composition of the surface of comet 67P.
Due to difficulties in landing Philae was not able to deploy all of its instruments as planned and the
drill could not be deployed to collect samples for in-situ analysis. However, seven measurements were
made by both COSAC and Ptolemy during Philae’s hopping and at its final landing site in a so-called
‘sniff mode’ that had no active sampling but rather just ionized whatever molecules were present
in the ionization chamber of the mass spectrometer. The sample with the richest data was acquired
a few minutes after the first touchdown with subsequent decay of signal strength in the other six
measurements. Both instruments measured a nearly identical decay of both the water (m/z 18) and
CO (m/z 28) peaks. However, in the COSAC measurements the peak at m/z 44 decays much slower
than all the other ion species, including the water peak and, the m/z 44 peak also decays much slower
in the COSAC measurements than in the Ptolemy data. From these results, it has been concluded
that COSAC analysed a regolith sample from the cometary nucleus in situ while Ptolemy measured
cometary gas from the ambient coma [7].

The compounds detected by COSAC are listed in Table 1. All of the larger molecules can be formed
from the smaller compounds carbon monoxide (CO), methane (CH4), water (H2O) and ammonia (NH3)
by simple addition reactions [8]. The m/z 44 peak measured by COSAC was likely dominated by
organic species, e.g., from acetaldehyde (C2H4O), formamide (HCONH2) and acetamide (CH3CONH2),
whereas the peak measured by Ptolemy was interpreted to be mostly due to CO2. Recently,
a comparison and comparative analysis of the Rosetta mass spectrometers (COSAC/Ptolemy/ROSINA)
that puts some question mark on the presence of some of the nitrogen-bearing species was presented [9].
Ptolemy measurements confirmed many of the species observed by COSAC and through observation
of regular peaks in the observed mass distributions indicated the presence of a sequence of compounds
with additional -CH2- and -O- groups (mass/charge ratios 14 and 16, respectively) which confirms
COSAC’s observations of acetaldehyde and may be explained by the presence of a radiation-induced
polymer at the surface. Ptolemy measurements also indicated an apparent absence of aromatic
compounds such as benzene and neither H2S nor SO2 were observed [10]. Ammonia believed to be the
precursor of N containing compounds was not unambiguously detected by either Ptolemy or COSAC,
probably due to its tendency to adsorb on stainless steel surface.

Table 1. List of molecules identified on the comet nucleus of comet 67P by the COSAC instrument [8].
Abundances are given normalized to water, which is the most abundant compound.

Name of Compound Sum Formula Abundance wrt Water

Methane CH4 0.5%
Water H2O 100%

Hydrogen cyanide HCN 0.9%
Carbon monoxide CO 1.2%

Methylamine CH3NH2 0.6%
Acetonitrile CH3CN 0.3%

Isocyanic acid HNCO 0.3%
Acetaldehyde CH3CHO 0.5%

Formamide HCONH2 1.8%
Ethylamine C2H5NH2 0.3%

Methyl isocyanate CH3NCO 1.3%
Acetone CH3COCH3 0.3%

Propionaldehyde C2H5CHO 0.1%
Acetamide CH3CONH2 0.7%

Glycolaldehyde CH2OHCHO 0.4%
Ethylene glycol HOC2H4OH 0.2%
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Recent experiments on the irradiation of ice mixtures reveal that many of the larger molecules
can be formed by electron bombardment, often at low energies and this will be discussed further in
Section 5. Indeed, the bombardment and dissociation of ice species has been proposed as a route by
which molecular oxygen can form. One of the most unexpected observations of Rosetta through the
Rosina instrument was the detection of molecular oxygen as the fourth most abundant gas in the
atmosphere of comet 67P. Oxygen is reactive so it was felt that it is unlikely to survive long periods
in space. The amount of molecular oxygen detected showed a strong relationship to the amount of
water measured at any given time, suggesting that their origin on the nucleus and release mechanism
are linked and that irradiation of water ice leading to oxygen production and storage in the ice is
a plausible mechanism for oxygen formation on a comet [11].

2.4. Electrons in the Cometary Coma

That there are copious amounts of electrons to induce such dissociative excitation was confirmed
by ion and electron sensors (RPC-IES) on the Rosetta craft. Concentrations of particles and their time
evolution in inner coma plasma was measured by Rosetta Plasma Consortium (RPC) [12] using a set
of sensors developed for this purpose. The Ion and Electron Sensor (IES) was an electrostatic plasma
analyser that covered an energy/charge range from 1 eV/e to 22 keV/e with a resolution of 4% [13].
The sensor provided 3D ion and electron distributions over the whole measured energy range. It was
capable of simultaneously measuring electrons and positive ions with the single entrance aperture
owing to two back-to-back top-hat geometry analysers. The LAP instrument (Langmuir probes)
measured the plasma density in the range of (100–106 cm−3), electron temperature (102–105 K) and
plasma flow velocity (up to 104 ms−1). The LAP also measured the AC electric field up to 8 kHz [14].
The LAP was complemented by the Mutual Impedance Probe, MIP which probes the plasma and
measured the natural plasma frequency which yields the electron density in the range from 2 cm−3 to
1.5 × 105 cm−3 and temperature from 30 K to 106 K [15].

Depending on the comet distance from the Sun, both the solar wind and solar radiation interact
with its nucleus and inner coma shielded by comet’s own atmosphere and ionosphere. Cometary
ions are created by photoionization of neutral species, mainly like H2O and CO2 and their products
from photodissociation, and by charge transfer with solar wind protons [16]. Solar wind electrons in
interplanetary space typically have Maxwellian distribution functions with thermal energies of several
eV to tens of eV [13]. This energy distribution of electrons differs from one created by photoionization of
cometary neutrals by solar radiation in the cometary comas at certain distances from the Sun. Electrons
of cometary origin are mainly the product of photochemistry, originating from direct photoionization
and from Auger processes. They are thermalized by collisions, elastic and inelastic.

The electron density in the coma was measured complementary by the RPC Langmuir Probe
(LAP) and Mutual Impedance Probe (MIP). The first findings of the spatial distribution of the plasma
near comet 67P/CG showed a highly structured pattern that indicated an origin from local ionization
of neutral gas. The electron density fell off with distance as 1/r in the range from 8 km from the
nucleus up to 260 km [17]. Edberg et al. [17] concluded that this is in accord with a model in which the
ionization of a neutral gas is expanding radially from the comet nucleus and when there is no significant
recombination or other loss source for the plasma. However, they warned that the observed data have
a large scatter around fitted 1/r curve and that results could be an average effect of combination of
transport electric fields and solar wind.

From such data, the suprathermal energy distribution of electrons could be derived. The electron
energy distribution near the comet depends on the comet distance from perihelion and mass loading
process when the atoms and molecules in the cometary coma are photoionized and then interact
with the solar wind flow. It spans from the energy distribution of the solar wind itself to the
modified distribution where electrons are significantly decelerated as a consequence of magnetic
field causing regions to pile-up. The mass loading process is connected to the outgassing rate of
the comet. The formation of suprathermal electrons which are accelerated from a few eV upward
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to hundreds of eV, thus can play an important role in the electron driven chemistry of the comet.
The Rosetta IES sensor recorded the presence of suprathermal electrons at larger distances than
expected from the previous models of such weakly outgassing comets [18]. The observed electron
energy distributions change by reducing a heliocentric distance from pure solar wind distribution
to non-Maxwellian one that include suprathermal electrons showing maxima at energies from 10 eV
to 300 eV [18]. Clark et al. [18] hypothesize that the most likely mechanisms of creating accelerated
electron distributions are heating by waves generated by the pick-up ion instability and by the mixing
of cometary photoelectrons, secondaries and solar wind electrons.

Further statistical analysis of Rosetta IES sensor recordings by performing fitting procedures that
involve two separate sub-populations of electrons below and above 8.6 eV mean energy [19] revealed
different relationships between their density and temperature and possible mechanisms of creating
suprathermal electrons. Broiles et al. [19] suggested that electrons above 8.6 eV are being heated by
waves driven by counter streaming solar wind protons. This conclusion arises from the observations
that the population of electrons above 8.6 eV correlates well with the density of local neutrals, while
the sub-population below 8.6 eV is dominated by the local magnetic field strength. Recently, Deca et
al. [20] have used a fully 3D kinetic model to simulate the ion and electron dynamics of the solar wind
interaction with a weakly outgassing comet 67P. They used a detailed kinetic treatment of the electron
dynamics in order to cover energy distribution of electrons and to identify the origin of the warm and
suprathermal electrons.

Electron energy ranges that correspond to the relevant processes in electron collisions with atoms
and molecules are shown in Figure 1. The elastic cross section is dominating over low electron
energies and usually is prominent even at higher energies where the ionization cross section becomes
comparable in magnitude. Vibrational excitations are important at low energies but they also extend to
higher energies due to resonance decay. Attachment and dissociation processes are relevant in certain
domains, in water between 6 to 9 eV and 20 to 200 eV, respectively (see the summery figure of cross
sections in [3]), but due to dissociative electron attachment (DEA) these processes may extend to very
low energies. The production of radiation due to de-excitation depends on excitation energy levels.
For water molecule production of Lyman alpha radiation has a high cross section in the electron energy
range from 50 to 200 eV.
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Figure 1. Electron energy ranges that correspond to the relevant processes in collisions with atoms
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3. Atomic and Molecular Data Needed for Analysing Electron Scattering Processes Relevant to
Comet 67P

Despite the evidence for electron induced processes in comets many of the discrete collision
processes necessary to quantify such electron driven chemistry remain uncertain. In order to develop
a predictive model of cometary coma and the comet’s ‘atmosphere’ it is necessary to assemble
a ‘database’ of relevant electron collision processes with the different atomic and molecular species
observed (or indeed inferred) from Rosetta. As discussed above Rosetta’s ROSINA, as well as Ptolemy
and COSAC on the Philae lander, have revealed a rich chemical inventory that would require a large
atomic and molecular physics database to model all possible processes. However, if a sensitivity
analysis is performed the number of important species contributing to the model may be reduced to
a minimum (more manageable) number of reactions. The dominant molecules are water, CO and CO2.
The presence of HCN as the source of CN radicals and ammonia as source of NH and NH2 is widely
accepted while the simple hydrocarbons C2H2 and C2H6 are assumed to be the source of C2, indeed
C2H6 concentrations were unusually high in comet 67P [21]. Methane has been identified in many
comets and is found in comet 67P. As discussed above several oxygen containing species were detected
and apart from the ubiquitous water methanol CH3OH may be an important primary compound.
The primary source of sulphur compounds may be H2S but 67P is depleted in all other sulphur bearing
species (CS2, OCS and SO2) compared to other comets [22]. Thus, in developing an electron chemistry
model of comet 67P it is necessary to have a good data base for electron interactions with H2O, CO,
CO2, CH4, C2H6, CH3OH, NH3, HCN and H2S. The status of such a database will be discussed below
but first it is necessary to understand the corollary for a ‘good’ database.

3.1. Databases

Many databases exist in order to assemble datasets and communicate them to different audiences.
The NIST database collection (https://srdata.nist.gov/gateway/gateway?dblist=0) is one of the best
known providing details of the structure, spectroscopy and fundamental parameters (ionization
and dissociation energies) of many atoms and molecules. The need for large datasets has led to
several communities investing in establishing data centres which assemble and maintain databases.
For example, the fusion community has, for several decades, compiled databases in order to model
plasmas in tokamak reactors and to provide data for diagnostic tools used in such plasmas. Another
example of large collection of collisional data is the LXCaT database [23], which provides electron and
ion scattering cross sections, swarm parameters (mobility, diffusion coefficient, etc.), reaction rates,
energy distribution functions, etc. and other data required for modelling low temperature plasmas.
Similarly, the astronomical community has needed large databases to interpret its observations, these
include not only spectroscopic databases but also databases of chemical reaction rates (e.g., KIDA [24])
are necessary to understand the rich inventory of molecules that have been observed in the
interstellar medium.

Many databases are simple collections of data but more recently the design and operation of
databases has been refined. The development of IT tools has allowed data to be provided on-line,
downloadable in a range of formats and allows new data to be added quickly, ensuring that the data
is up to date. Previously data was reviewed and published in journal reviews which once published
became gradually out of date until the next review, often a decade later (e.g., [25]). The opportunity
to add new data quickly not only ensures that the latest data is adopted by the community but also
reduces the likelihood of fragmentation amongst the community with different groups using different
data sets in accord with their knowledge (or more commonly lack of knowledge) of the data available.

Simple assembly of data alone is not, however, the most effective form of databases. The ‘user’
community requires guidance as to what data to adopt. Users rarely have the necessary experience to
select one dataset over another and therefore each may choose different sets, leading to systematic
problems. For example, if different datasets are used in different models, cross comparison of such
models is difficult and it may be hard to distinguish between the different physical and chemical

https://srdata.nist.gov/gateway/gateway?dblist=0
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hypotheses in different models from the data used in the model to explore such effects. Therefore,
databases should provide ‘recommended data’ which is the data that the expert community providing
such data believes is the optimal data reflecting state of the art measurements or calculations. These
values can be updated as new data becomes available. However, when changing recommended data,
it is essential to ensure that it is still ‘consistent’ For example in presenting a comprehensive set of
electron impact cross sections the individual cross sections (elastic and inelastic (including ionization
excitation etc.) should, when summed, be consistent with the recommended data for total cross
sections. Databases should also present data with stated estimates of uncertainties, particularly when
presenting its own composite data from several different datasets.

3.2. VAMDC and BEAMDB Databases

The Virtual Atomic and Molecular Data Centre—(VAMDC) and Belgrade Electron Atom and
Molecule Database—(BEAMDB) are two examples of new generation of databases. The VAMDC
Consortium is a worldwide consortium which federates atomic and molecular databases through
an e-science infrastructure to provide easy access to data from different databases via a single portal
http://portal.vamdc.eu. About 90% of the inter-connected databases are focused on data that are
used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics
and astrochemistry, although recently the VAMDC Consortium has connected databases from the
radiation damage and the plasma communities which makes it suitable for medical and industrial
applications [26]. While VAMDC does not itself select and analyse data it ensures data from its
component databases are accessible in a single format and ascribe to general good practices as discussed
above. The VAMDC Consortium includes new databases and services on a case by case basis during
annual general scientific and technical meetings.

VAMDC provides its data in a XSAMS output. XSAMS is an XML representation of an atomic
and molecular data model. The system allows for distributed querying of data via the VAMDC-TAP
protocol, an implementation-agnostic standard, where data providers can build their models in their
own fashion and map them to the VAMDC model via a dedicated dictionary [27].

The Belgrade Electron Atom and Molecule Database—(BEAMDB) [28] is an application, database
and a VAMDC node which contains data for elementary processes of electron scattering by atoms and
molecules. The database covers collisional data of electron interactions with atoms and molecules
in the form of differential and integrated cross sections as well as energy loss spectra. The data is
stored in a relational (MySQL) database, upon a static model specifically suited to this dataset but
easily extendable. There have already been several migrations of the model, the latest of which
is an extension to enable storing non-neutral molecules. Currently, there are 22 species stored in
the database (11 atoms and 11 molecules), presented in 71 states, involved in 59 collision processes.
The web interface (http://servo.aob.rs/emol) enables on-site querying of data via an AJAX-enabled
web form. The application is implemented in Django, a Python web framework and hosted on
an Apache web server at the Astronomical Observatory in Belgrade.

The BEAMDB is a collisional database where several types of collisions are included: Elastic,
Electronic Excitation, (Total) Inelastic, Ionization, and Total Scattering as well as electron spectroscopic
data such as Energy-loss Spectra and Threshold Photoelectron Spectra. Cross sections are of several
different kinds: Differential, Integral, Total, Momentum Transfer, Viscosity. Specific data that are
maintained in the BEAMDB are differential cross sections (DCS) for elastic scattering and excitation
of atoms and molecules. These are 3D entries since DCS depend on both electron impact energy and
scattering angle. This requires two X columns while the Y column is also associated with the column
representing uncertainty of data points. An example of the XSAMS output of such kind of data for He
excitation is shown in Figure 2.

Producing a plot of DCS data is not available at the current stage of database development, but
such data can be visualized by using either VAMDC portal or alternatively the RADAM (RADiation
DAMage) database portal (http://radamdb.mbnresearch.com/). The general structure of RADAM

http://portal.vamdc.eu
http://servo.aob.rs/emol
http://radamdb.mbnresearch.com/
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databases covers electron/positron interactions, ionic and photonic interactions, multiscale radiation
damage phenomena and radiobiological phenomena occurring at different time, spatial and energy
scales in irradiated targets [29]. Examples of DCS surfaces for elastic electron scattering by helium
atom and formamide (CH3NO) molecule are shown in Figure 3a,b, respectively.Atoms 2017, 5, 46  8 of 18 
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Figure 3. DCS surfaces as retrieved from RADAM database [29] for elastic electron scattering by: (a) He 
atom—data points are taken from ref. [30]; (b) Formamide molecule—data points are taken from ref. 
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Initially BEAMDB was designed to maintain data of electron collisions with neutral species, atoms
and molecules mainly in their ground state and exceptionally in excited state. However, by broadening
the scope toward astrophysical applications, more specifically to the processes of comas that involve
electrons, the database has been upgraded to include electron collisions with ions. The most recent
data set included in BEAMDB is the one of electron ionisation cross sections of CN+ cations [32]. In the
next few months BEAMDB will expand to include many more molecular systems including those
needed to study the electron chemistry of comet 67P.

4. Electron Scattering Processes and Cross Sections—Data Needs

To understand and treat by models, processes in cometary plasmas is a very challenging task
since many parameters need to be taken into account in order to cover the variety of comet types and
their heterogeneity. One has to consider the changing of comet distances from the Sun and hence the
level of irradiation and solar wind interactions both with the comet surface and cometary plasma
environment. Nevertheless, models have been developed and set of processes reviewed, including
data analysis used in such models. Particles from the solar wind, secondary electrons created in
plasmas and photoelectrons, produce further events of excitation, ionization and dissociation with the
consequence of enhanced chemical reactions and light emission. However, comets are composed of
water, silicates and carbonaceous molecules (CO, CO2 and hydrocarbons) [33]. Recently, modelling
of plasma processes in cometary and planetary atmospheres has been performed by Campbell and
Brunger [34] with an emphasis on the role of electron-impact excitation processes. They concluded in
the case of comet Hale-Bopp that electron-impact could account for 40% of the fluorescence emissions
of the fourth positive bands (A1Π–X1Σ+) of CO [35] and thus reducing calculated outgassing rates.
Even more, their later paper [36] was focussed on electron initiated chemistry in atmospheres.

Reviews of cross section data and processes that cover electron scattering and excitations are
numerous and they cover interactions with atoms [37,38], diatomic molecules [37,39], species in
interstellar clouds [40] or concentrate on specific targets of triatomic molecules like water [3] or
CO2 and N2O [40]. Anzai et al. [41] stressed that any recommended values of cross section data
currently maintained in different databases might need to be updated due to the development of
new experimental techniques and theoretical methods. The number of established benchmark cross
sections is rather small.

The energy of the electrons available for electron interactions with atoms and molecules in the
cometary coma ‘atmosphere’ is such that all electron scattering processes are relevant, thus a large
amount of data is required if a model of electron induced processing is to be included in a simulation
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model of comet 67P. In this section, the status of our knowledge of such relevant cross sections will be
reviewed for the primary molecules defined in Section 3.

4.1. Elastic Electron Scattering and Cross Sections

Elastic scattering conserves the kinetic energy of the colliding particles. This means that quantum
numbers that determine the energy are unchanged but other quantum numbers corresponding to
degenerate states (e.g., helicity or spin flip) may change. In the case of many measurements not all
states in the system are resolved due to the finite resolution of the electron beams used. In this case
‘effective elastic cross sections’ are determined which may be referred to as ‘rotationally unresolved,
vibrationally unresolved, electronically unresolved etc. Elastic scattering is important since, although
there are no immediate changes in the target the range and hence spatial extent of the electrons is
determined by such scattering.

Elastic cross sections are usually measured at specific energies and angles. These data are used to
determine the ‘total elastic cross section’ by integrating over the entire angular range (4π). The total
elastic cross section at given electron impact energy Ei is given by:

Qel(Ei) =
∫ 4π

0

dσ(k; θ, ϕ)

dΩ
dΩ, (1)

where dσ(k;θ,ϕ)
dΩ is the elastic differential cross section, (θ, ϕ) are the scattering angles and k is the

wave-vector magnitude.
Elastic scattering is one of the best-studied electron collision processes and provides one of the

best tests of developing theoretical calculations of electron-molecule scattering. The development of
the magnetic angle changing method [42] to extend differential cross section measurements to the
full range of scattering angles from 0◦ to 180◦ has significantly improved the accuracy of total elastic
cross sections, particularly for molecules with dipole moments, where elastic scattering is strongly
forward peaked.

Elastic scattering cross sections have been reported for all the primary molecules H2O, CO, CO2,
O2, CH4, C2H2, CH3OH, NH3, HCN and H2S. Elastic scattering cross sections for water have been
discussed in detail as part of a wider review of electron scattering from water by Itikawa and Mason [3].
An updated review has recommended the corrected data of Khakoo et al. ([43] and erratum) for
low energy scattering and Munoz et al. [44] for higher energies (where experiment and theoretical
evaluations merge). The benchmarking swarm paper by de Urquijo et al. [45] on cross sections for
water reproduced measured transport data in water/helium mixtures and presented the integral cross
sections that are entirely self-consistent with the available total cross sections as well as the swarm
data over a large range of reduced electric field, E/N.

Cross sections for elastic scattering from methane and acetylene have recently been compiled
and evaluated by Song et al. [46,47]. Compilations of data for other molecules are less recent and
more fragmented and should be updated. Due to its toxicity, there are few measurements of the elastic
scattering cross section from HCN and therefore there is more reliance on theoretical calculations
(e.g., Sanz et al. [48]).

In elastic collisions electrons do not lose energy but change the direction of motion. This is
important for models where the kinetics of all particles is taken into account. In more dense plasmas
the elastic momentum transfer cross section, defined as integrated DCS with the weight of (1 − cos θ)
over all scattering angles, is a more relevant quantity. Differential cross sections, although being one
of the basic properties that defines electron—atom/molecule interactions, are known with relatively
low accuracy. In order to illustrate the current status of the agreement of DCS amongst different
experiments and theories, the case of absolute cross sections for elastic electron scattering by argon
atom is presented in Figure 4. It can be seen that although at first sight all values group around the
averaged values, it should be noted that the data are plotted on a logarithmic scale and that there is
almost an order of magnitude disagreement for particular data points.
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Figure 4. DCS for elastic electron scattering by argon atom at 100 eV impact energy. The data
symbols used correspond to: (red circles) , Rankovic et al. [49] experiment; (dark red full line),
Rankovic et al. [49] theory; (magenta solid line), McEachran and Stauffer [50]; (olive dash dot line),
Paikeday and Alexander [51]; (dotted line), Nahar and Wadehra [52]; (violet dash dot dot line),
Fon et al. [53]; (cyan dash dot line), McCarthy et al. [54]; (dashed line), Joachain et al. [55]; (cyan up
triangles), Milosavljević et al. [56]; (violet left triangle), Panajotović et al. [57]; (orange pentagons),
Srivastava et al. [58]; (blue diamond), DuBois and Rudd [59]; (orange right triangles), Jansen et al. [60];
(green circles), Williams and Willis [61].

4.2. Electron Impact Ionisation Cross Sections

Most of the ions observed in the comet ion tail are the result of photoionisation of the primary ice
species and since there are fewer high energy electrons, electron induced ionisation in comets is likely
to be a minor process in total ion yields. However, the mass spectrometric analysis of compounds
observed on Rosetta (e.g., using the Rosina instrument) rely upon knowing the fragmentation patterns
of candidate molecules which, when compared with the instrument sensitivity, can be used to calculate
the relative abundances of the detected molecules. Traditionally mass spectrometers operate with
electron energies of 70 eV, close to but not at, the maximum of total ionisation cross sections. Branching
ratios for fragments of electron impact ionisation are available in many databases (e.g., NIST Chemistry
WebBook [62]) however, whilst these ratios are often known the cross sections are not presented.
These cross sections may be derived if the total ionisation cross section is known. Total ionisation
cross sections may be measured to an accuracy of <10% while semi-empirical calculations provide
reliable cross sections (at least above 100 eV). Data on all of the primary molecules H2O, CO, CO2,
CH4, C2H2, CH3OH, NH3, HCN and H2S exist with an accuracy sufficient for providing reliable data
for determining their concentrations in the cometary coma and atmosphere. The recent review by
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Tanaka et al. [63] covered this topic in detail employing scaled plane-wave Born models in order to
provide comprehensive and absolute integral cross sections, first for ionization and then to optically
allowed electronic-state excitation.

4.3. Anion Production

Anions have been observed in comets and may be formed by a variety of processes including
radiative electron attachment, polar photodissociation, proton transfer and Dissociative Electron
Attachment (DEA) where an incident electron is captured by the molecular target (AB) to form
an excited state of the molecular negative ion AB−. This state, a Temporary Negative Ion (TNI),
generally decays by ejecting the excess electron within a finite time (a process called autodetachment)
but the molecular negative ion may also decay through dissociation leading to the formation of
a stable negative ion B- and a neutral (often radical) fragment (A). DEA to the list molecules have been
studied, identifying the fragment channels but there are few absolute cross sections. Node of VAMDC,
the IDEADB maintained by University of Innsbruck, that serves data about dissociative electron
attachment to molecules, lists more than 120 different fragments resulting from this process [64]. Anion
data from comet 67P is still under evaluation but earlier studies from the Giotto spacecraft of comet
1P/Halley led to a combined chemical/hydrodynamic model for the coma of comet Halley to explore
various anion production mechanisms and compute the abundances of atomic and molecular anions
as a function of radius in the coma [65]. The dominant anion production mechanisms are found to be
polar photodissociation of water and radiative electron attachment to carbon chains in the inner coma,
followed by proton transfer from C2H2 and HCN to produce C2H− and CN−, respectively. However,
in the outer regions of the coma where electron temperatures reach 103–105 K, dissociative electron
attachment may become a dominant process. Similar effects may be understood for comet 67P. DEA to
water yields H− and OH− and O− from CO and O2 so there are many candidates for production of
anions in comet 67P. DEA to all of the primary comet species (and most of the larger more complex
species in Table 1) has been reported with DEA fragments recorded from near zero to the ionisation
energy pathways. Nevertheless, very few absolute cross sections are available.

4.4. Electron Impact Excitation and Dissociation

Electron impact excitation and dissociative excitation of molecular systems is a critical process
for a study of cometary coma and its tenuous atmosphere. As discussed above, OSIRIS and ALICE
data from Rosetta shows the electron induced dissociation of water may be the source of the O I line
at 135.6 nm while electron impact by CO and CO2 yields C I lines at 156.1 and 165.7 nm. However,
this hypothesis is handicapped by the dearth of data on electron impact excitation and electron
induced neutral fragmentation for all molecules, not just those of immediate comet interest. This lack
of experimental data can be attributed to difficulties in measuring neutral atoms and molecules. When
an atom or molecule is in an excited state it may decay (fluoresce) with the emitted light being detected.
Such experiments may identify some fragmentation or de-excitation pathways but the sensitivity
of the optical detector and ability to ‘capture’ all of the emitted photons as well as the problem of
cascades from higher lying states into the decaying state make measurements of absolute cross sections
difficult. Furthermore, some excited states decay to ‘dark’ non-fluorescent or metastable states which
makes them hard to detect. Although metastable fragments may be detected directly by surface
ionization they will suffer from the same problems as photon detection i.e., cascade contributions may
dominate [66,67]. Presently there are few experiments measuring electronically excited fragments
by optical or metastable spectroscopy and more experiments are to be encouraged, building on the
recent commissioning of electron induced fluorescence (EIF) experiment in Comenius University
Bratislava. Figure 5 shows the H atom spectra recorded by electron impact of molecular hydrogen.
This experiment is well equipped to study EIF of water, CO and CO2 as required for cometary studies
although, due to the low cross sections, data collection periods may be days or even weeks placing
stringent conditions on the stability of the incident electron and gas beams.
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Electron Energy loss spectroscopy monitors the energy of the incident electron post collision
and may also be used to probe the direct excitation cross section of the parent molecule excited
states but cannot provide data on the fragmentation patterns of that excited state as it decays.
Furthermore, in most molecules the electronically excited states are both close together and overlap
their ro-vibrational bands, making deconvolution very difficult if discrete electronic excitation cross
sections are to be derived.

Finally, the production of neutral fragments in their ground state must be considered. Photon and
electron induced dissociation produces many fragments in their ground state where ground state in
this case includes fragments that are ro-vibrationally excited but still in the electronic ground state.
This low internal energy precludes their detection by fluorescence since IR detection has not proven
possible due to IR sources in the apparatus (e.g., electron filaments). Several alternative methods have
been proposed to detect ground state neutral fragments including using a second electron beam to
ionize the product, or use of surfaces to ‘getter’ the fragments. In the current context, there are only two
experiments relevant to the modelling of electron dissociation of primary comet molecules—that of
Harb et al. [69] measuring OH radical production from water and C and O from CO by Cosby et al. [70]
using a fast beam method.

Further experimental studies on electron impact dissociation to neutral fragments will not only
benefit the cometary community but the wider electron chemistry community with applications
in many plasma systems, aeronomy and radiation chemistry. However, given the experimental
difficulty much of the necessary data may be provided by theoretical calculations, which require more
detailed exploration.

5. Possibility of Electron Induced Surface Chemistry

As discussed above (Section 2.3) many of the larger more complex molecules observed by COSAC
and Ptolemy on the Philae lander may be made by addition reactions from simpler molecules. How
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are such reactions induced? Photodissociation has been considered the primary process but electron
induced chemistry within ices has been shown to be an efficient route to molecular synthesis and
simple electron irradiation of primary ices has been shown to be produce most (all) of the larger
molecular species. For example, Figure 6 shows the yield of formamide in an ice film composed of CO
and NH3 as a function of electron energy [71]. The ice was prepared with a mixing ratio of 1:8 and
thickness corresponding to 12–18 monolayers and an electron exposure of 200 µC/cm2. Formamide is
readily formed and the resonance like feature between 6 and 12 eV is characteristic of the synthesis
by reactants prepared in a dissociative electron attachment process [71]. Similar experiments have
shown that as many as 15 products can be formed by electron irradiation of pure methanol ices [72]
including ethylene glycol and methyl formate whilst formamide HCONH2 is formed in irradiation of
binary mixtures of ammonia and methanol ice and the simplest amino acid glycine from irradiation
of a methylamine and carbon dioxide ice [73]. Thus, electron induced synthesis of simple cometary
ices may be a route to formation of several of the organic species observed in surface material from
comet 67P.
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Figure 6. The production of formamide present in mixed multilayer films of CO and NH3. The
resonance like feature (red line) between 6 and 12 eV is characteristic of the synthesis of formamide by
reactants prepared in a DEA process, Bredehöft et al. [71].

The route by which molecular oxygen was formed as the fourth most abundant compound in
the coma observed by Rosetta, is still subject to debate. However, laboratory experiments [74,75]
have shown that radiolysis of water by both electrons and photons yields molecular oxygen but also
copious amounts of hydrogen peroxide. Furthermore, comparative experiments between photon and
electron irradiation show that electron induced yields are higher for the same energy. Whether this
is due to penetration depth of electrons or that electrons open more dissociative pathways (through
dipole or spin forbidden transitions) is unknown. The role of electron induced chemistry in comets,
in ice covered planetary and lunar objects and in the rich chemistry of the interstellar medium is
therefore an emerging topic of modern astronomy and one that has been encouraged by the results of
the Rosetta mission.

6. Conclusions

In this paper, we have presented a review of recent results from the Rosetta mission to comet
67P/Churyumov-Gerasimenko. The role of electron induced processes has been highlighted with
the emission of [O I] lines in the coma explained by the process of electron impact dissociation of
water. The role of other electron processes e.g., in the production of the unexpectedly large amounts
of molecular oxygen in the coma, is handicapped by lack of detailed knowledge of electron impact
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cross sections We have reviewed the need for electron scattering data and discussed how such data
should be collated and reviewed in electron scattering databases. The BEAMD database which is
a part of a larger consortium of Virtual Atomic and Molecular Data Centre—VAMDC has been used as
an example of modern generation of databases.

The importance of electron processes in comet 67P/Churyumov-Gerasimenko highlights the need
for closer interactions and joint projects between the cometary and electron communities and this
paper has identified some topics for joint research.
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