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Abstract

The increasing urban population is leading to the exploitation of building sites, close to surface or under-

ground railways, with considerable levels of ground-borne vibration. An important design consideration

regards the levels of perceptible vibration and/or re-radiated noise in the completed buildings. A fundamen-

tal question concerns to what extent the mass and stiffness of a building foundation influences these levels.

This paper explores this question in relation to a concrete slab foundation.

Previous research has explored the influence of the coupling between a thin, flexural plate and an elastic

half-space on the free-surface displacements arising from surface Rayleigh waves. Here, a numerical, wave-

based approach is used to model the slab foundation as an elastic layer of finite thickness, overlying the

half-space. The latter is subjected to incident waves in the form of Rayleigh, P- and SV-waves. It is found

that thin-plate theory alone is insufficient for modelling the slab over the full frequency range of interest,

and that the assumed soil-slab boundary condition plays a significant role. Design plots are presented in

order to summarise the influence of the salient dimensionless parameters, and to help guide the design of a

slab foundation to achieve a specific reduction in ground vibration level.

Keywords: foundation, ground-borne vibration, soil-structure interaction, railway

1. Introduction1

Ground-borne vibration generated by railways is an increasing concern for building designers. Vibration2

generated at the wheel-rail interface propagates through the track and supporting structures, into the un-3

derlying ground, from where it may propagate to the foundations of nearby buildings. Depending on the4

mass, stiffness and damping distribution within a building and its foundation, the resulting levels of per-5
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ceptible vibration and re-radiated noise may lead to the annoyance of occupants or, in the case of specialist6

manufacturing or research facilities, the malfunctioning of sensitive equipment.7

A number of strategies are available for mitigating ground-borne vibration in buildings, by addressing8

the source [1, 2], the transmission path [3, 4] or the receiver (building) [5]. One example of mitigation9

at the receiver is the introduction of a thick slab foundation to help suppress the vibration, primarily by10

stiffening the base of the building. This approach is usually employed for specialist manufacturing facilities,11

such as silicon wafer fabs [6], where particularly stringent vibration criteria must be met. It has also been12

suggested as a straightforward approach for commercial and residential buildings, since it may simply13

involve constructing a thicker slab than pure structural considerations dictate. However, the extent to which14

a slab influences the ground vibration field is not clear, and there is little or no guidance for designers15

wishing to achieve a specific reduction in ground vibration level.16

The behaviour of a slab foundation resting on a soil deposit subject to ground-borne vibration represents17

a particular case of soil-structure interaction (SSI). Significant literature exists on the SSI associated with18

both flexible and rigid foundations [7, 8, 9, 10]. However, the main focus has been earthquake-related19

problems, which involve low frequencies and long wavelengths, and therefore allow the foundations to20

be treated as rigid. In the case of ground-borne vibration due to railways, the frequency range of interest21

extends to much higher frequencies, typically from approximately 25 Hz to 250 Hz [11], and therefore22

involves relatively short wavelengths that are comparable with the dimensions of a typical foundation. In23

this case, the flexibility of a foundation is one of the dominant factors governing its response.24

In the context of ground-borne vibration, Auersch [12] considers the response of thin, flexural plates25

(representing the foundation slab) resting on an elastic half-space (the soil deposit) to surface Rayleigh wave26

excitation. Both finite and infinitely-long plates are considered, using a combined finite-element boundary-27

element method, and a semi-analytical method in the frequency-wavenumber domain. Valuable results from28

a parametric study are presented that considers the influence of mass, stiffness and soil layering on the soil-29

slab interaction and the extent to which a slab attenuates ground vibration levels. In particular, Auersch30

concludes that the slab thickness is the dominant parameter governing the level of attenuation, since this31

essentially governs the frequency above which attenuation occurs.32

The work presented here begins by reproducing some of the results of Auersch, this time using the dy-33

namic stiffness method (DSM) implemented within the Elastodynamics Toolbox [13, 14] in MATLAB [15].34

The foundation slab is now modelled as an elastic layer, of infinite horizontal extent but finite thickness,35
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overlying an elastic half-space. The assumption of infinite horizontal extent is unsuitable for modelling36

the detailed response of a particular foundation to a particular vibration source. In particular, it fails to37

account for any modal behaviour of the slab due to the absence of wave reflections from the slab bound-38

ary. However, these modes are often heavily damped, due to the radiation damping provided by the soil,39

and are of secondary interest to the fundamental, underlying SSI. Auersch demonstrates that, for the case40

of Rayleigh wave excitation and for a relaxed boundary condition at the soil-foundation interface, the SSI41

associated with a finite plate is approximated well by that of an infinitely long one. An infinite slab is42

therefore adopted here to investigate further some of the fundamental behaviour: to enable the identification43

of the salient non-dimensional groups; and to investigate the influence of the assumed boundary conditions44

at the soil-slab interface, as well as the effect of the plate-like assumption for the slab. The assumption of45

linear-elastic soil behaviour is justified on the basis of the low strain levels associated with ground-borne46

vibration, which usually lie within the elastic regime for most soils (see, for example, Connolly et al. [16]).47

Having considered surface Rayleigh wave excitation, the case of a buried source is investigated by con-48

sidering incident P- and SV-waves, before considering the overall implications of the study for foundation49

design.50

2. Overview of the problem51

Our interest is the particular SSI associated with a flexible, concrete slab foundation, that is, the influence52

of such a slab on the free-surface vibration field, expressed in terms of the ratio of the vibration amplitudes53

before and after the construction of the slab. As a first approximation, the slab may be assumed to be of54

infinite horizontal extent. This assumption is supported by Auersch, who demonstrates that, for the case of55

Rayleigh wave excitation, the SSI associated with a finite plate may be approximated by that of an infinitely56

long one. Here, the slab is treated as an elastic layer of thickness h and infinite extent in both the x and y57

directions, with shear modulus Gc, Poisson’s ratio νc and mass density ρc (see Figure 1). The underlying58

soil is modelled as a homogeneous, isotropic, elastic half-space, with shear modulus Gs, Poisson’s ratio νs59

and mass density ρs. Damping in both the slab and the soil is assumed to be hysteretic, as described by a60

frequency-independent loss factor in shear, with no associated damping in dilatation (see Hunt [17]). Both61

surface and body, plane-wave excitation is considered: a Rayleigh wave travelling in the x-direction with62

speed VR, and either an incident P- or SV-wave travelling respectively with speed VP or VS at an incidence63

angle θP or θS . Such excitation may be regarded as being broadly representative of that from either a surface64
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Figure 1: (a) The free-field displacement amplitude u0 on the surface of an elastic half-space subjected to surface and body plane-

wave excitation. A Rayleigh wave travelling in the x-direction with speed VR, and a P- and SV-wave travelling with speeds VP and

VS at incidence angles θP and θS are considered; (b) the corresponding response following the construction of a slab foundation,

expressed in terms of the interface displacement u1 and the displacement u on the free-surface of the slab.

or underground railway.65

The wave excitation is assumed to be plane and therefore invariant in the y-direction. The problem66

can then be examined in the x − z plane with reference to the vertical and horizontal displacement ampli-67

tudes. The free-field displacement u0 of the half-space, the interface displacement u1 and the free-surface68

displacement u of the slab can be expressed in vector form as:69

u0 = A0 exp{i(ωt − kxx)} ; u1 = A1 exp{i(ωt − kxx)} ; u = A exp{i(ωt − kxx)} (1)

where ω and kx are the angular frequency and horizontal wavenumber of the vibration field. The relative70

amplitudes of the vectors A0 = [u0,w0] T, A1 = [u1,w1] T and A = [u,w] T, which are independent of the x71

coordinate due to the infinite extent of the slab, describe the influence of the slab foundation. Depending on72

the type of wave excitation considered, the horizontal wavenumber kx can be written as:73

kx = kR ; kx = kP cos θP ; kx = kS cos θS (2)

where kR, kP and kS are the wavenumbers of the Rayleigh, P- and SV-waves respectively.74

The influence of the slab foundation on the free-field displacement u0 relates to a general result in the75

SSI literature [7]. So-called weak coupling is assumed, in which only the coupling between the soil and the76

slab is accounted for; any coupling with the original source of the vibration is assumed to be negligible. By77

ensuring equilibrium and compatibility at the soil-foundation interface, the displacement u1 at the interface78
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can be expressed as:79

u1 =
[
I + Hs Hf

−1
]−1

u0 (3)

where Hf and Hs are the frequency-response function (FRF) matrices of the foundation and soil respectively,80

which can be found by inverting the respective dynamic stiffness matrices [18]. Equation 3 is also found81

in the ground-borne vibration literature in the context of soil-building interaction [5]. In the case of finite82

slabs, Equation 3 may be solved directly; in the case of infinite slabs, the solution may be obtained via a83

frequency-wavenumber formulation. Auersch used the latter approach for an infinitely-long slab subjected84

to Rayleigh waves, and assumed a relaxed boundary condition between the soil and the slab in which only85

the vertical displacements at the interface are coupled [12]. In this case, Equation 3 reduces to the following86

scalar equation for the vertical displacement ratio at the interface:87

w1

w0
=

1(
1 +

Hsz

H f z

) (4)

where H f z and Hsz are the vertical driving-point FRFs of the slab and the soil respectively, formally in88

the frequency-wavenumber domain. However, since the wavenumber is a function of frequency and the89

Rayleigh wave speed, this ratio of the displacement amplitudes is a function of frequency alone, and inde-90

pendent of position due to the infinite length of the plate.91

Focussing on the vertical displacements is common practice when dealing with ground-borne vibration92

in buildings, often based on the assumption that the flexibility of a building in the horizontal direction93

provides sufficient decoupling from any horizontal vibration. However, there is theoretical evidence that94

suggests otherwise, with all coupling degrees-of-freedom (vertical, horizontal and rotational) between a95

building structure and its foundation being potentially significant [19]. Furthermore, given the small strains96

associated with ground-borne vibration, the influence of friction at the soil-slab interface may lead to a97

fully-coupled boundary condition that includes coupling of the horizontal displacements. In this case, the98

full matrix form of Equation 3 must be solved, although this does reduce to a scalar equation, similar to99

Equation 4, for the horizontal u1/u0 and vertical w1/w0 displacement ratios in the case of normally-incident100

SV- and P-waves respectively.101

The fully-coupled condition calls into question the assumption of plate-like behaviour for the slab. By102

modelling the slab as a thin plate, the through-thickness deformation is assumed to be negligible, such that103

w = w1, and there is no consideration given to the in-plane horizontal displacement. The aim of the current104

study is therefore to investigate how the SSI associated with a slab foundation is influenced by the slab-soil105
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boundary condition and the plate-like assumption, and how this varies for the different incident wave fields.106

Before presenting the results, it is helpful to review the dimensionality of the problem. By dimensional107

analysis, the displacement ratios w/w0, w1/w0, etc. can each be expressed as a function of the following108

form:109

w
w0

= Ψ

(
Vs

Vc
,
ρs

ρc
, νs, νc, θ,

ωh
Vs

)
(5)

Assuming typical values for the Poisson’s ratios νs and νc (Table A.1), the dimensionless groups Vs/Vc110

and ρs/ρc enable the influence of the stiffness and density of the slab relative to the soil to be investigated111

for a given wave incidence angle θ and non-dimensional frequency a0 = ω h/Vs. The latter enables the112

thickness of the slab to be described relative to the shear wavelength in the soil. Given typical ranges for113

the shear wave speed in the soil Vs = 150 − 300 m/s, the slab thickness h = 0.5 − 1.5 m and the frequency114

range of ground-borne vibration f = 25− 250 Hz, the corresponding range of interest for the dimensionless115

frequency a0 lies between approximately 0.2 and 15.116

3. A slab foundation subjected to Rayleigh wave excitation117

This section explores the SSI associated with a slab foundation subjected to Rayleigh wave excitation. Be-118

fore considering the slab as an elastic layer, the case of an infinitely long, strip foundation is first reviewed,119

following the approach of Auersch [12]. Having reproduced Auersch’s results, the slab is then modelled as120

the elastic layer illustrated in Figure 1, enabling the influence of the slab-soil boundary condition and the121

slab’s finite thickness to be investigated.122

3.1. The slab as an infinitely long, strip foundation123

The infinitely long, strip foundation is modelled as an elastic plate of width b and thickness h. The vertical124

dynamic stiffness of the plate in the frequency-wavenumber domain is given by [20]:125

K f z(ω, kx) = Bbk4
x − ρcbhω2 (6)

where B = Ech3/12(1 − ν2
c) is the bending stiffness. The vertical driving-point FRF is obtained as H f z =126

1/K f z.127

The vertical driving-point FRF of the elastic half-space Hsz refers to a 2.5-D problem because of the128

finite width b of the plate in the y-direction. Auersch solved this by assuming plane-strain conditions and129

using a numerical integration approach in the wavenumber ky, regarding the plate as infinitely flexible along130
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the y-axis by assuming a constant stress distribution across the width of the plate. According to the relaxed-131

boundary condition, the vertical displacement ratio w1/w0 is then obtained from Equation 4.132

Figure 2 plots the ratio w1/w0 as a function of frequency for the parameter values of the benchmark prob-133

lem considered by Auersch (see Table A.1 in Appendix A). Several values of the foundation width b are134

considered. Irrespective of the width, at a particular frequency known as the “coincidence frequency” ( fco),135

the bending stiffness and inertia of the plate are such that a unit value of w1/w0 is obtained. The coinci-
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Figure 2: The influence of the width of a strip foundation b on the soil-foundation interaction under Rayleigh wave excitation,

as described by the ratio of the vertical displacement amplitudes at the soil-foundation interface, before (w0) and after (w1) the

construction of the foundation. Benchmark parameter values (Table A.1).

136

dence point represents the scenario in which the free-flexural wavelength λ f of the plate coincides with the137

horizontal wavelength λx of the input wave-field. The corresponding frequency can be found as [20]:138

fco =
V2

R

2π

√
ρch
B

=
V2

R

2π

√
ρc12(1 − ν2

c)
Ech2 (7)

The coincidence frequency is important because it governs the extent to which the plate attenuates ground139

vibration levels: it defines the transition from the low-frequency, mass-controlled region where amplifica-140

tion occurs, to the stiffness-controlled region where considerable attenuation is achieved with respect to the141

free-field displacement w0. The influence of the plate mass and bending stiffness on the value of fco can be142

determined from Equation 7. Increasing the plate thickness h results in a reduction in both fco and the ratio143
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w1/w0 (for frequencies f > fco). A similar effect may be obtained by decreasing the mass density ρc of144

the plate. A comprehensive discussion of the influence of the bending stiffness, mass and width of the strip145

foundation, and the shear wave speed Vs of the soil, can be found in Auersch [12], also with reference to a146

finite plate. The results of Figure 2 also illustrate the significance of increasing the strip width b, with the147

limiting case being that of a slab foundation of infinite extent along the x- and y-axis (b→ ∞).148

3.2. The slab as an elastic layer149

We now assume the slab foundation to be of infinite extent in both the x and y direction, modelling it as an150

elastic layer of finite thickness overlying the elastic half-space. The dynamic stiffness matrices Ks and Kf151

of both the half-space and the layer are calculated by means of the dynamic stiffness method (DSM) [18],152

making use of the ElastoDynamics Toolbox (EDT) [13, 14] in MATLAB [15]. The FRF matrices appearing153

in Equation 3, Hs and Hf , are obtained by inverting the respective dynamic stiffness matrices.154

In the case of the relaxed boundary (RB) condition, the vertical displacement ratio w1/w0 can be re-155

trieved from Equation 4, with the vertical driving-point FRFs, Hsz and H f z, being extracted from the FRF156

matrices. Figure 3a plots the ratio w1/w0 calculated by both Auersch’s strip model and the equivalent
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Figure 3: (a) The vertical displacement ratio at the soil-foundation interface of an infinitely long (Auersch) and infinitely large

(DSM) slab foundation subjected to an incident Rayleigh wave, considering the fully-coupled (FC) and relaxed (RB) boundary

conditions. (b) Comparison of the Rayleigh wave-field wavelength λR and the free-flexural wavelength of the strip foundation λ f .

Benchmark parameter values (Table A.1).
157
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DSM (RB) model, for the same benchmark parameter values (Table A.1). It is clear that the two different158

methods agree well, with the strip model achieving convergent results with the DSM (RB) model for a slab159

width of b = 1000 m. Figure 3b plots the wavelength-frequency curves associated with the Rayleigh wave-160

field and the free-flexural response of the plate model. The coincidence point again indicates the transition161

region from amplification to attenuation.162

In the fully-coupled condition (FC), the displacement ratios w1/w0 and u1/u0 are obtained by calcu-163

lating the interface displacement u1 using Equation 3, with reference to both the horizontal and vertical164

components of the Rayleigh wave [21]. The ratio w1/w0 obtained with this DSM (FC) model is also plot-165

ted in Figure 3a. In this condition, the SSI leads to significant attenuation for all frequencies, without any166

amplification below the coincidence frequency. The fully-coupled condition highlights the importance of167

considering both the horizontal and vertical components of u0, and the cross-stiffness terms at the soil-168

foundation interface.169

Figure 4a plots the horizontal displacement ratio u1/u0, calculated by the DSM model for both the170

relaxed (RB) and fully-coupled (FC) conditions. The common feature is that both conditions result in a171

significant attenuation of the horizontal displacement. Again, the assumption of plane-wave excitation sim-
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Figure 4: (a) The horizontal displacement ratio at the soil-foundation interface of an infinitely large slab foundation subjected

to an incident Rayleigh wave, considering the fully-coupled (FC) and relaxed (RB) boundary conditions. (b) Comparison of the

Rayleigh wave-field wavelength λR and the free-axial wavelength of the slab λa. Benchmark parameter values (Table A.1).
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plifies the problem and enables a physical interpretation of the SSI. From the perspective of the (horizontal)173

slab, the incident wave-field is characterised by a horizontal wavelength λx = λR. This is true for the hori-174

zontal displacement u1 as for the vertical displacement w1 seen earlier. The horizontal displacement of the175

slab is influenced by its free-axial response along the x direction, the wavelength of which is given by:176

λa =
1
f

√
Ec

ρc (1 − ν2
c)

(8)

Figure 4b plots this wavelength-frequency relationship together with the curve for the Rayleigh wave-field.177

It is clear that λR is always shorter than λa, with no coincidence possible. It follows that the axial (in-plane)178

behaviour of the slab always restrains the horizontal displacement at the soil-foundation interface, resulting179

in attenuation for all frequencies for both the fully-coupled and relaxed boundary conditions.180

A better understanding of the results from the different models may be obtained by expressing the181

displacement ratios in decibels (dB) and referring to the non-dimensional frequency a0 on a logarithmic182

scale. Figure 5a re-plots in this form the results of Figure 3a for the vertical displacement ratio at the soil-183

foundation interface. Also included in Figure 5a are the results for the displacement ratio w/w0 calculated

10−1 100 101 102
−160

−140

−120

−100

−80

−60

−40

−20

0

20

layer-like

plate-like

a0 =
ωh
Vs

[-]

w
1

w
0
,

w w
0

[d
B

]

DSM (FC), w1/w0

DSM (FC), w/w0

DSM (RB), w1/w0

DSM (RB), w/w0

Auersch

(a)

10−1 100 101 102
−160

−140

−120

−100

−80

−60

−40

−20

0

20

a0 =
ωh
Vs

[-]

u 1 u 0
,

u u 0
[d

B
]

DSM (FC), u1/u0

DSM (FC), u/u0

DSM (RB), u1/u0

DSM (RB), u/u0

(b)

Figure 5: (a) The vertical displacement ratio at the free-surface (w/w0) and soil-foundation interface (w1/w0) of an infinitely large

slab foundation subjected to an incident Rayleigh wave, considering the fully-coupled (FC) and relaxed (RB) boundary conditions.
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at the free-surface - the location of most interest, since this will support any future building. The plate-185

like behaviour of the slab at relatively low frequencies is clearly captured by the Auersch strip model,186

which shows a good agreement with the DSM (RB) model up to a0 ≈ 1. The plate-like assumption is187

therefore sufficient to capture the SSI, as observed at the soil-slab interface (ratio w1/w0) with the relaxed188

boundary condition, but only up to a restricted value of h/λx. For shorter wavelengths, the through-thickness189

effects become more important, with the layer-like behaviour of the slab attenuating the wave field at the190

interface w1 down to a plateau at high frequencies. This is a common feature for both the relaxed and191

fully-coupled boundary conditions, although the former leads to lower attenuation because it neglects the192

retrograde elliptical motion of particles at the soil-foundation interface, characteristic of Rayleigh waves,193

accounting for only the vertical component. At the free surface, the high-frequency plateau is not evident.194

Instead, the level of attenuation is observed to increase with frequency. In the case of the relaxed boundary195

condition, the vertical displacement w is obtained simply as:196

w
w1

=
H̃ f z

H f z
(9)

where H̃ f z is the FRF for the vertical displacement at the free-surface due to a vertical traction at the197

interface, which can be retrieved from the FRF matrix of the layer Hf . Again, it is clear from Equation 9198

that the DSM (RB) model neglects the coupling between the horizontal and the vertical motion. The ratio199

w/w1 approaches unity at low frequencies, when the through-thickness effects are negligible, but introduces200

increasing attenuation at higher frequencies.201

Figure 5b plots the corresponding results for the horizontal displacements, this time re-plotting the re-202

sults of Figure 4a for the displacement ratio at the interface u1/u0, together with the free-surface ratio u/u0.203

A similar trend to the vertical displacements is observed but with the exception of the clearly absent amplifi-204

cation region at low frequencies for the DSM (RB) model, due to the lack of any coincidence phenomenon.205

For both the vertical and the horizontal displacements, the results of the DSM (RB) and DSM (FC)206

models have common features that indicate the importance of both the finite thickness of the slab, which207

becomes increasingly significant with frequency, and the assumed soil-foundation boundary condition. The208

influence of the latter results in at least 10 dB difference in the final free-surface displacements of the slab209

between the two conditions, without influencing the general trend in the results.210
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4. A slab foundation subjected to incident P- and SV-waves211

So far, the SSI associated with a slab foundation has only been investigated in the context of Rayleigh212

waves. The case of incident P- or SV-waves can be similarly investigated by using the same DSM model for213

the elastic layer but now with the free-field displacement components associated with these wave types [21].214

Considering an incident P- or SV-wave at an incidence angle θP or θS (see Figure 1), the displacement field215

u of the coupled soil-foundation system is calculated by the superposition of several elastic states [22]. Only216

the fully-coupled slab is considered here, in the belief that this better represents the actual soil-foundation217

boundary condition at the low strain levels present in practice.218

4.1. Influence on the vertical displacements (w1/w0 and w/w0)219

Figure 6 plots the interface displacement ratio w1/w0, together with the wavelength-frequency curves for220

incident P-waves (Figure 6a and 6c) and SV-waves (Figure 6b and 6d), for the benchmark parameter values221

(Table A.1) and an arbitrary incidence angle θP = θS = 3π/8. The results in this particular case can be222

qualitatively divided into the following frequency regions:223

1. an initial low-frequency region of either moderate attenuation (for P-waves) or amplification (for224

SV-waves), up to a frequency f1 < fco;225

2. a second region, with increased values of w1/w0, which are always greater than unity for SV-waves226

but not necessarily for P-waves. A maximum value is obtained at a frequency f2 > fco;227

3. a third region of sharply increasing attenuation, up to a frequency f3, beyond which w1/w0 tends to a228

limiting value.229

The wavelength-frequency curves (Figure 6c and 6d) are again helpful for interpreting the SSI. The coinci-230

dence frequency fco lies between f1 and f2, and does not correspond to a distinct feature in the w1/w0 curve.231

This is because the free-flexural wavelength λ f of the slab is calculated based on the thin-plate assumption;232

in practice, shear deformation is likely to contribute to higher values of λ f , resulting in lower values of fco.233

As seen before, a better understanding of the results is obtained by using logarithmic scales. Figure 7234

shows such a representation for the results in Figure 6 (a) and (b). The trend in the ratio w1/w0 described235

before can be observed more clearly with reference to the local minimum and maximum at a(1)
0 and a(2)

0 ,236

and the plateau beyond a(3)
0 . Additionally, the free-surface displacement ratio w/w0 is plotted. Analogous237

to what is observed for Rayleigh wave excitation, additional attenuation is obtained for the free-surface238
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Figure 6: The vertical displacement ratio w1/w0 at soil-foundation interface of an infinitely large slab foundation

subjected to (a) an incident P-wave at an angle θP = 3π/8 and (b) an incident SV-wave at an angle θS = 3π/8. The

wavelength-frequency curves are plotted below for the two cases ((c) P- and (d) SV-waves) with reference to the

coincidence frequency fco based on the thin-plate assumption. Benchmark parameter values (Table A.1).

displacement w, compared to the interface displacement w1, as a result of through-thickness effects at239

relatively short wavelengths. The results obtained using Auersch’s thin-plate assumption are also included240

to highlight the influence of the relaxed boundary condition and the thin-plate assumptions.241

Under Rayleigh wave excitation, investigated in Section 3, the attenuation provided by the fully-coupled242
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Figure 7: The vertical displacement ratio at the free-surface (w/w0) and soil-foundation interface (w1/w0) of an infinitely large slab

foundation subjected to (a) an incident P-wave at an angle θP = 3π/8 and (b) an incident SV-wave at an angle θS = 3π/8. Results

obtained using Auersch’s thin-plate assumption are included for comparison. Benchmark parameter values (Table A.1).

slab is considerable for all frequencies, and significantly greater than that provided to P- and SV-waves.243

The horizontal wavelength λx associated with an incident P- or SV-wave is always longer than that of a244

Rayleigh wave of the same frequency (see Figure 6c and 6d). Consequently, the coincidence frequencies245

fco associated with P- and SV-waves are always higher than that of the Rayleigh wave, and the region where246

strong attenuation is to be expected from the slab shifts to relatively high frequencies. The attenuation247

provided by the slab to Rayleigh waves therefore represents a limiting case.248

Another limiting case is that of normally incident P-waves (θP = π/2). In this case kx = 0 and the249

restraining effect of the slab foundation is maximum at the free-axial natural frequencies fn of the elastic250

layer in the vertical direction:251

fn =
VPc

4 h
(2n − 1) (10)

where VPc is the compressional wave speed in the slab. At these frequencies, the slab behaves like a dynamic252

vibration absorber. However, given the application, and the relatively high P-wave speed VPc, fn lies well253

beyond the frequency range of interest ( fn=1 ≈ 1270 Hz for the parameters in Table A.1), leading to only254

moderate attenuation in the frequency range of interest.255
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4.2. Influence on the horizontal displacements (u1/u0 and u/u0)256

A similar trend is observed in the horizontal displacements. This is illustrated in Figure 8 for incident P- and257

SV-waves at an arbitrary incidence angle θ = 3π/8. Although, by physical interpretation, no coincidence
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Figure 8: The horizontal displacement ratio at the free-surface (u/u0) and soil-foundation interface (u1/u0) of an infinitely large

slab foundation subjected to (a) an incident P-wave at an angle θP = 3π/8 and (b) an incident SV-wave at an angle θS = 3π/8.

Benchmark parameter values (Table A.1).

258

phenomenon is expected in this case (see Section 3.1), local minima (a(1)
0 ) and maxima (a(2)

0 ) are observed259

for the ratios u1/u0 and u/u0. Moreover, the through-thickness effects at relatively short wavelengths result,260

once more, in additional attenuation of the free-surface displacement u. Following a similar argument to261

that used for the vertical displacements, it is clear that the Rayleigh wave and the normally incident SV-wave262

represent limiting cases for the horizontal displacements u1 and u0.263

4.3. The case of normally incident P- and/or SV-waves264

The case of normally incident waves is worth exploring further, since these may be representative of the265

wave field from a deep source, such as an underground railway. For normal incidence, the wave propagation266

problem is independent of x and effectively one-dimensional. The free-surface and interface displacement267

amplitudes u and u1 can be found, in terms of the incident wave amplitude, by considering the superposi-268

tion of multiple reflections and transmissions in the half-space-layer system, as illustrated schematically in269
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Figure 9. It is clear that a normally incident P- or SV-wave will induce only vertical or horizontal displace-270

ments respectively. With a similar discussion also being valid for the case of a normally incident SV-wave,271

the notation adopted in the following refers only to a normally incident P-wave (see Appendix B).

Figure 9: Schematic representation of the multiple reflected-transmitted wave amplitudes in an elastic layer overlying an elastic

half-space, due to a normally incident P-wave. An infinite repetition of a reflection-transmission unit follows the reflection and

transmission of the incident amplitude A(1)
1 .

272

As shown in Figure 9, the multiple reflections/transmissions trace back to the incidence of the amplitude273

A(1)
1 at the interface, and to the repeating reflection/transmission of the amplitude A′( j−1)

2 that results from274

the reflection of A′( j−1)
1 at the free-surface. In general, the vertical displacement in the layer can be written275

as:276

w(z̄) = ik′P

 ∞∑
j=1

A′( j)
1 exp (ik′Pz̄) −

∞∑
j=1

A′( j)
2 exp (−ik′Pz̄)

 (11)

By ensuring equilibrium and compatibility at the interface for the two cases, one can find:277

A(1)
2

A(1)
1

=
βP − 1
βP + 1

A′(1)
1

A(1)
1

=
kP

k′P

2
βP + 1

exp (−ik′Ph)

A′( j)
1

A′( j−1)
2

=
1 − βP

βP + 1
exp (−i2k′Ph) = ζ

A( j)
2

A′( j−1)
2

=
k′P
kP

2βP

βP + 1
exp (−ik′Ph)

278

where βP = (ρcVPc)/(ρsVPs). The amplitude A′( j)
2 = −A′( j)

1 because of the stress-free condition at z̄ = 0. It is279

clear that all the amplitudes involved in the repeating unit in Figure 9 trace back to the amplitude A′(1)
1 and280
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that the latter refers to A(1)
1 . The vertical displacement at the free-surface can then be found as:281

w(z̄ = 0) = ik′P

 ∞∑
j=1

A′( j)
1 −

∞∑
j=1

A′( j)
2

 = 2ik′PA′(1)
1 (1 − ζ + ζ2 + . . . ) =

2ik′PA′(1)
1

1 + ζ
(12)

Substituting the terms ζ and A′(1)
1 , and considering the free-field amplitude w0 from Appendix B:282

w
w0

=
1

cos (k′Ph) + iβP sin (k′Ph)
(13)

With a similar argument for the interface displacement w1, we can write:283

w1

w0
=

1
1 + iβP tan (k′Ph)

(14)

From the latter, as anticipated from Equation 10, it is clear that the slab has a restraining effect on the284

interface displacement w1 at the free-axial natural frequencies fn of the elastic layer. This effect disappears285

at frequencies 2 fn, when w1 = w0 if damping is neglected. The latter are frequencies for which the half-286

wavelength of the P-waves, or a multiple, matches the slab foundation thickness. In this case, the ratios287

w/w0 and w1/w0 will converge to the same value, that is, unity in the undamped case. In general, for
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Figure 10: (a) The vertical displacement ratios at the free-surface (w/w0) and soil-foundation interface (w1/w0) of an infinitely

large slab foundation subjected to an incident P-wave at angles of π/2 and 5π/12. (b) The equivalent horizontal displacement ratios

due to an incident SV-wave. Benchmark parameter values (Table A.1).

288

the case of normal incidence, the free-surface displacement w is greater than, or at least equal to, the289
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interface displacement w1. The behaviour illustrated here depends only on the relative characteristics of290

the soil-slab system, that is, the impedance ratio β. This is generally greater than unity for both P-waves,291

βP = (ρcVPc)/(ρsVPs), and SV-waves, βS = (ρcVS c)/(ρsVs), so that the slab has an overall attenuating effect292

on the displacement amplitudes. In contrast to the interface displacement, for the free-surface displacement293

w such attenuation has a limiting value, again related to the impedance ratio β. This is shown in Figure 10a294

for normally incident P-waves and, in Figure 10b, for normally incident SV-waves. Figure 10 also shows295

the results for an incidence angle just off normal, that is, θ = 5π/12.296

It is clear that normal incidence represents a special case, when the slab behaves as a simple elastic297

layer, with no plate-like behaviour. For both P- and SV-waves, this ensures no amplification of the incident298

waves but limits the available attenuation. Once the incidence angle deviates from normal, even by a small299

amount, plate-like behaviour becomes significant, resulting in additional attenuation that increases with300

frequency.301

5. Design of slab foundations against ground-borne vibration302

This section considers the overall implications of this study for foundation design. In particular, it considers303

what guidance may be drawn regarding the design of a slab foundation to achieve a specific reduction in304

ground-borne vibration level. It is clear that the SSI associated with a slab foundation is complex, even305

for the simplified system considered here. Nevertheless, some useful guidance may be presented in the306

form of Figures 11, 12 and 13. These present a series of summary design plots that illustrate the influence307

of the dimensionless groups Vs/Vsc, ρs/ρc and θ, over the typical ranges associated with ground-borne308

vibration, for the three incident wave types (P, SV and Rayleigh). Typical values are assumed for the309

Poisson’s ratios and damping loss factors of the slab and soil (Table A.1). The results are given in terms310

of the displacement ratios at the free-surface of the slab, for the fully-coupled boundary condition at the311

soil-foundation interface.312

5.1. Surface Vibration Sources313

In the case of a surface source, it is reasonable to assume that the incident vibration field will be dominated314

by Rayleigh waves, at least for locations remote from the source. In this case, the plots in Figure 13 sum-315

marise concisely the behaviour of the slab. It is clear that the density ratio has a relatively weak influence,316

with the level of attenuation varying by no more than 6 dB over the typical range ρs/ρc = 0.6 - 1.2. A317

relatively dense slab is therefore desirable but probably not worth pursuing actively, given the expense of318
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specialist high-density concrete. In contrast, the wave speed ratio has a strong influence, with the attenuation319

varying by up to 25 dB over the typical range Vs/Vsc = 0.05 - 0.2. This sensitivity to the wave speed ratio320

indicates the significance of the relative stiffness of the slab, and the importance of obtaining an estimate of321

soil stiffness before relying on a particular slab for vibration mitigation.322

For a given site, the controlling parameter is the slab thickness, which the designer is free to select in323

order to provide acceptable attenuation at the lowest frequency of concern, in the knowledge that any higher324

frequencies are attenuated further. For example, the results indicate that, for the benchmark soil properties,325

typical of London Clay (Vs = 200 m/s, ρs = 2000 kg/m3), a concrete slab (Vsc = 2284 m/s, ρc = 2500 kg/m3)326

of thickness 0.5 m would provide 24 dB of attenuation to vertical vibration at 25 Hz, increasing to 81 dB327

at 250 Hz. The corresponding attenuation of horizontal vibration is slightly greater, ranging from 33 dB to328

79 dB.329

5.2. Buried Sources330

In the case of a buried source, when body waves are more significant, the situation is more complex. As331

with Rayleigh excitation, the attenuation provided by the slab is influenced only weakly by the density ratio332

(again, by no more than 6 dB) but strongly by the wave speed ratio, this time by up to 38 dB. For P-waves,333

the attenuation of vertical vibration is negligible for frequencies below a0 ≈ 1 (below 64 Hz for the 0.5 m334

thick slab considered in Section 5.1) but then increases steadily with frequency. For horizontal vibration,335

the low-frequency attenuation may be as high as 20 dB or more, but this depends strongly on the wave speed336

ratio and incidence angle; the minimum attenuation may be close to zero.337

For SV-waves, the most significant observation is that the slab may amplify low-frequency vibration,338

particularly in the vertical direction, and by up to 10 dB depending on the wave speed ratio and incidence339

angle. To avoid any amplification, the slab must be sufficiently thick to ensure a minimum non-dimensional340

frequency of a0 ≈ 2. This corresponds to a slab thickness of at least 2.5 m, assuming the benchmark341

properties and that the minimum frequency of concern is 25 Hz.342

In general, for both P- and SV-waves, the vibration incidence angle is by far the most influential factor,343

causing variations in attenuation of 60 dB or more. This sensitivity presents a challenge to the designer,344

who may, at best, only estimate the incidence angle based on the approximate location of the source.345
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Figure 11: The horizontal (left) and vertical (right) displacement ratios at the free-surface of an infinitely large slab

foundation subjected to an incident P-wave at an angle θP = π/8, showing the influence of (a, b) the ratio Vs/VS c,

for ρs/ρc = 0.8, and (c, d) the ratio ρs/ρc for Vs/VS c = 0.088. (e, f) The influence of the incidence angle θP for

Vs/VS c = 0.088 and ρs/ρc = 0.8.
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Figure 12: The horizontal (left) and vertical (right) displacement ratios at the free-surface of an infinitely large slab

foundation subjected to an incident SV-wave at an angle θP = π/8, showing the influence of (a, b) the ratio Vs/VS c,

for ρs/ρc = 0.8, and (c, d) the ratio ρs/ρc for Vs/VS c = 0.088. (e, f) The influence of the incidence angle θS for

Vs/VS c = 0.088 and ρs/ρc = 0.8.
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Figure 13: The horizontal (left) and vertical (right) displacement ratios at the free-surface of an infinitely large slab foundation

subjected to an incident Rayleigh wave, showing the influence of (a, b) the ratio Vs/VS c, for ρs/ρc = 0.8, and (c, d) the ratio ρs/ρc

for Vs/VS c = 0.088.

6. Conclusions346

This paper has considered the fundamental dynamic behaviour of a concrete slab foundation excited by347

ground-borne vibration. By modelling the slab as an elastic layer overlying an elastic half-space, and348

using the corresponding dynamic stiffness matrices in a wave-based approach, the response of the slab to349

incident Rayleigh, P- and SV-waves has been explored. Having referred to previous work that assumes350

plate-like behaviour, it is clear that thin-plate theory alone is insufficient for modelling the effect of a slab351

foundation on an existing ground vibration field over the full frequency range of interest. Furthermore,352

models that assume a relaxed boundary condition at the soil-slab interface have been found to underestimate353

the attenuation provided by the slab by at least 10 dB in the case of Rayleigh wave excitation.354
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The study has illustrated the importance of the coincidence phenomenon, in which the free-flexural355

wavelength of the slab coincides with the horizontal wavelength of the incident wave-field. For frequencies356

above coincidence, considerable attenuation can be achieved, but this depends on a number of dimensionless357

groups, as illustrated in a series of summary design plots. The least significant of these is the soil-slab358

density ratio, which, for all three wave types, has only a weak influence on the level of attenuation provided.359

In contrast, the relative stiffness of the slab (expressed as a ratio of wave speeds) has a strong influence. For360

a given site, the controlling parameter available to the foundation designer is the slab thickness. In the case361

of Rayleigh excitation, the design plots summarise concisely the behaviour of the slab, indicating that at362

least 20 dB of attenuation might reasonably be assumed for a typical, 0.5 m thick slab (considerably more at363

high frequencies). For P- and SV-waves, the situation is more complex because the coincidence frequencies364

associated with these wave types are always higher than that of the Rayleigh wave, which shifts the region365

of strong attenuation to relatively high frequencies. The overall attenuation therefore depends strongly on366

the slab stiffness and, importantly, the incidence angle of the vibration.367

A fundamental assumption of this study is that the ground may be represented by a homogeneous half-368

space, but this is often not the case due to soil layering. Layering introduces additional wave reflections and369

mode conversions, and this is likely to reduce the attenuation provided by the slab. The extent to which this370

is the case remains the subject of future research.371
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Appendix A. Benchmark Data417

Table A.1: Benchmark Data

Soil Shear modulus Gs = 8 x 107 N/m2 Slab Young’s Modulus Ec = 3 x 1010 N/m2

Shear wave speed Vs = 200 m/s Poisson ratio νc = 0.15

Poisson ratio νs = 1/3 Mass density ρc = 2500 kg/m3

Mass density ρs = 2000 kg/m3 Damping loss factor ηc = 0.1

Damping loss factor ηs = 0.1 Width b = 2, 4, 10, 20,∞ m

Thickness t = 0.7 m

Appendix B. Displacement field u0 and w0 for incoming P- and SV-waves418

Consider an elastic and homogeneous half-space (Figure 1a) subjected to incident, plane P- or SV-waves419

at an angle θP or θS respectively. The wave equations for the P-SV problem can be written in terms of the420

potentials Φ and Hy [21, 23]:421

∇2Φ =
1

V2
P

∂2Φ

∂t2 ; ∇2Hy =
1

V2
S

∂2Hy

∂t2 (B.1)

The solution can be found in terms of incoming and outgoing waves of amplitude A1, B1 and A2, B2 respec-422

tively, with reference to the potentials Φ and Hy:423

Φ(x, z, t) = A1 exp {i (ωt − kP cos θPx + kP sin θPz)} + A2 exp {i (ωt − kP cos θPx − kP sin θPz)} (B.2a)

424

Hy(x, z, t) = B1 exp {i (ωt − kS cos θS x + kS sin θS z)} + B2 exp {i (ωt − kS cos θS x − kS sin θS z)} (B.2b)

The case of an incident P- or SV-wave can be explored by considering a known amplitude, A1 or B1, and425

imposing the stress-free condition at the free surface of the half-space to obtain the amplitudes A2 and B2426

of the reflected waves:427

Case of incident P-wave

A2

A1
=

sin 2θP sin 2θS − γ2 cos2 2θS

sin 2θP sin 2θS + γ2 cos2 2θS
(B.3)

B2

A1
=

2 sin 2θP cos 2θS

sin 2θP sin 2θS + γ2 cos2 2θS
(B.4)

Case of incident SV-wave

B2

B1
=

sin 2θP sin 2θS − γ2 cos2 2θS

sin 2θP sin 2θS + γ2 cos2 2θS
(B.5)

A2

B1
= − γ2 sin 4θS

sin 2θP sin 2θS + γ2 cos2 2θS
(B.6)

428
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where γ = VP/VS is the ratio between the pressure and shear wave speeds in the half-space. Finally, the429

displacement amplitude u0 = [u0 w0] at the free surface of the half-space can be retrieved from the poten-430

tials as:431

Case of incident P-wave

u0

−ikPA1
= cos θP

(
1 +

A2

A1

)
− γ sin θS

B2

A1
(B.7)

w0

−ikPA1
= sin θP

(
A2

A1
− 1

)
+ cos θP

B2

A1
(B.8)

Case of incident SV-wave

u0

−ikPB1
= cos θP

A2

B1
+ γ sin θS

(
1 − B2

B1

)
(B.9)

w0

−ikPB1
= sin θP

A2

B1
+ cos θP

(
1 +

B2

B1

)
(B.10)

432
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