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Abstract 24 

Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course 25 

at early stages, distinct lesion characteristics in cortical gray versus subcortical white matter, and 26 

neurodegeneration at chronic stages. We assessed multilineage cell expression changes using 27 

single-nucleus RNA sequencing (snRNA-seq) and validated results using multiplex in situ 28 

hybridization in MS lesions. We found selective vulnerability and loss of excitatory CUX2-29 

expressing projection neurons in upper cortical layers underlying meningeal inflammation; such 30 

MS neuron populations showed upregulation of stress pathway genes and long non-coding 31 

RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated phagocytosing 32 

cells mapped most strongly to the rim of MS plaques. Interestingly, snRNA-seq identified 33 

phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin 34 

transcripts, confirmed by functional mouse and human culture assays. Our findings indicate 35 

lineage- and region-specific transcriptomic changes associated with selective cortical neuron 36 

damage and glial activation contributing to MS lesion progression.37 
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Multiple sclerosis (MS) is a progressive neuroinflammatory autoimmune disease affecting about 38 

2.3 million people worldwide1.  Immune-mediated cytotoxic damage to oligodendrocytes (OLs) 39 

causes demyelination and focal plaque formation2,3 accompanied by progressive axonal damage 40 

in white matter (WM)4,5, and active MS plaques typically show a rim of inflammation with 41 

myelin phagocytosis. MS lesion heterogeneity in WM versus gray matter (GM) compartments 42 

suggests that the underlying pathobiology and potential for repair is likely to vary in a region-43 

restricted manner.  Cortical GM pathologies include demyelination and damage to the axon, 44 

neurite and neuron cell body6, particularly in areas underlying meningeal inflammation with 45 

plasma cell infiltration7-9. However, whether this process affects all or a subset of cortical 46 

neurons is poorly understood10. Indeed, cell type-specific mechanisms of MS progression, 47 

including scar formation with slowly expanding WM lesions11 and cortical atrophy12 are unclear.  48 

Single-cell transcriptomic techniques are well suited to identify cellular heterogeneity in 49 

the human brain; recently, they have been applied to individual glial lineages in MS13,14. Here, 50 

we took a multilineage approach to brain-resident populations (neurons, astrocytes, OLs, 51 

microglia) to better understand molecular, cellular and spatially-restricted substrates of 52 

progressive MS pathology. We used frozen human brain samples from MS cases and controls to 53 

perform unbiased isolation of nuclei from cortical and subcortical lesion and non-lesion areas 54 

followed by single-nucleus RNA-sequencing (snRNA-seq)13,15 and in situ validation of RNA 55 

gene expression across large anatomical areas. Our results indicate that genes most dysregulated 56 

in MS map spatially to vulnerable upper cortical layer neurons and reactive glia at the borders of 57 

subcortical MS lesions associated with progression in MS58 
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Results 59 

snRNA-seq using post-mortem frozen MS tissue reveals cell-type specific molecular 60 

changes associated with MS pathogenesis. We used snRNA-seq to profile cortical GM and 61 

adjacent subcortical WM MS lesion areas at various stages of inflammation and demyelination, 62 

and control tissue from unaffected individuals. We established a pipeline for serial sectioning of 63 

entire tissue blocks including lesion and non-lesion GM and WM areas plus meningeal tissue. 64 

Tissue sections were screened for RNA integrity number (RIN) of >6.5. Using this criterion, 65 

12/19 MS tissue samples screened from 17 individuals and 9/16 samples screened from control 66 

individuals were further procesed (Fig. 1a; Supplementary Table 1).  Confounding variables of 67 

age, sex, postmortem interval and RIN were not significantly different between control and MS 68 

subjects (p > 0.1, Mann-Whitney U test). 69 

 We optimized and performed unbiased nuclei isolation using sucrose-gradient 70 

ultracentrifugation (Extended Data Fig. 1a), followed by snRNA-barcoding (10x Genomics) 71 

and cDNA sequencing. After quality control filtering, snRNA-seq yielded 48,919 single-nuclei 72 

profiles (Fig. 1b-c). We normalized data and applied several independent analysis techniques. As 73 

shown (Fig. 1c), unbiased clustering identified 22 cell clusters (n.b., none comprised nuclei 74 

captured from individual MS or control samples). We detected a median of 1,400 genes and 75 

2,400 transcripts per nucleus with higher numbers detected in neuronal versus glial populations 76 

(Extended Data Fig. 1b, Supplementary Table 2).  77 

 Next, we annotated cell clusters based on expression of lineage marker genes for 78 

excitatory and inhibitory cortical neurons, astrocytes, OL lineage cells and microglia, as well as 79 

smaller cell populations (Fig. 1d, Extended Data Fig. 1e, Supplementary Table 3)16.  Neuronal 80 

subtype markers included excitatory neuron marker SCL17A7, upper layer marker CUX2, layer 4 81 
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marker RORB, deep layer marker TLE4, as well as interneuron (IN) marker GAD2 and subtype 82 

markers PVALB, SST, VIP and SV2C. Comparing normalized nuclei numbers from MS and 83 

controls (Supplementary Table 4), we observed a selective reduction of upper-layer excitatory 84 

projection neuron (EN-L2-3A/B) numbers in MS samples with cortical demyelination (Fig. 1e-85 

f). In contrast, numbers of intermediate (EN-L4) and deep-layer (EN-L5-6) excitatory neurons, 86 

THY1/NRGN-high-expressing pyramidal cells, VIP-expressing, somatostatin (SST) - and 87 

parvalbumin (PVALB)-expressing INs were similar between MS samples and controls (Fig. 1e-88 

f). MS-associated genes showed greatest differential expression in EN-L2-3, followed by EN-L4 89 

and myelinating OLs (Fig. 1g).  Notably, for EN-L2-3 and OLs, transcriptomic changes 90 

distinguished subclusters from MS or control samples (Fig. 1c and 1e). In contrast to EN-L2-3 91 

cells, gene dysregulation was less pronounced in upper layer VIP-expressing INs (Fig. 1g). 92 

These findings suggested cell-type vulnerability of layer 2/3 excitatory CUX2-expressing 93 

neurons.  94 

 Selective vulnerability of CUX2-expressing upper layer neurons in MS. We 95 

investigated changes in CUX2-expressing EN-L2-3 cells in MS lesion pathology using 96 

unsupervised pseudotime trajectory analysis to identify dynamic gene expression changes. As 97 

shown (Fig. 2a), cell distribution along the trajectory separated control from MS in EN-L2-3 98 

cells. Interestingly, progression along the trajectory correlated with conventional inflammatory 99 

lesion staging and the degree of upper layer cortical demyelination (Fig. 2b, Extended Data Fig. 100 

1c-d), e.g., CUX2-expressing neurons, which localized towards the trajectory end, derived 101 

mainly from samples harboring late chronic inactive lesions with extensive subpial 102 

demyelination versus lesions with less upper cortical demyelination (Fig. 2c). 103 
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Trajectory analysis highlighted gene ontology (GO) terms and dynamic upregulation of 104 

oxidative stress, mitochondrial dysfunction and cell death pathways in EN-L2-3 cells, including 105 

FAIM2, ATF4, CLU, B2M (cell stress/death), HSPH1, HSP90AA1 (heat-shock response), APP, 106 

NEFL, UBB  (protein accumulation, axon degradation), COX7C, PKM, PPIA (energy 107 

metabolism, oxidative stress) and long-noncoding (lnc) RNAs LINC00657 (NORAD) and 108 

BCYRN1 (BC200) (Fig. 2d-e,  Extended Data Fig. 2a, Supplementary Table 5)17,18. 109 

Conversely, we noted dynamic downregulation of transcripts associated with mitochondrial 110 

energy consumption (FARS2), glutamate signaling (GRIA4, GRM5), potassium/cation 111 

homeostasis (KCNB2, KCNN2, SLC22A10), neuronal signaling (NELL1), axon plasticity 112 

(ROBO1) and lncRNA LINC01266 (Fig. 2f). Neurons from all cortical layers in MS showed 113 

enrichment of cell stress pathways compared to controls (Extended Data Fig. 2b, 114 

Supplementary Table 6); in contrast, PVALB- and VIP-expressing INs showed only one GO 115 

term (associated with protein folding) enriched for dysregulated genes. Together, these findings 116 

highlighted a selective transcriptomic damage signature for CUX2-expressing neurons in MS. 117 

Loss of CUX2-expressing neurons in demyelinated cortical MS lesions in situ. We 118 

next used large area spatial transcriptomic (‘LaST’) mapping19 to validate cell type-specific gene 119 

expression changes. We optimized chromogenic and multiplex small molecule fluorescent in situ 120 

hybridization (smFISH) protocols to overcome high levels of background auto-fluorescence in 121 

WM and GM areas in frozen human brain samples. As shown (Fig. 3a), we achieved a favorable 122 

signal-to-noise ratio over tissue sections for neuronal markers CUX2 and SYT1 combined with 123 

immunohistochemistry for myelin oligodendrocyte glycoprotein (MOG), and we confirmed 124 

layer-associated expression of neuronal subtype markers RORB, THY1, TLE4, VIP and SST (Fig. 125 

3a, Extended Data Fig. 3a). 126 
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Given snRNA-seq findings above, we investigated expression of co-located upper layer 127 

CUX2- and VIP-expressing populations by smFISH in MS and control sections (Fig. 3b). We 128 

found a significant reduction of CUX2-expressing neurons in completely and incompletely 129 

demyelinated cortical areas; in contrast, numbers of abutting VIP-expressing INs were 130 

maintained. Of note, meningeal infiltration of IGHG1/ MZB1-expressing plasma cells (that 131 

predominated over SKAP1+ T cells) was a common finding in sulci with underlying upper 132 

cortical layer demyelination and loss of CUX2-expressing neurons (Extended Data Fig. 3b)7,20.  133 

We next used smFISH to validate upregulation of the cell stress markers, including PPIA 134 

(encoding prolyl isomerase cyclophilin A, Extended Data Fig. 2a) in MS EN-L2-3 and EN-L4 135 

neurons. As shown (Fig. 3c), PPIA transcripts were increased in neurons from demyelinated and 136 

adjacent normal-appearing cortical lesion areas21. We confirmed upregulated NORAD in EN-L2-137 

3 and EN-L4 neurons (Extended Data Fig. 2a) by chromogenic and fluorescent smFISH, and 138 

observed cytoplasmic NORAD accumulation in MS lesions as compared to normal-appearing 139 

areas with intact myelin (Fig. 3c). Together, these findings confirm degeneration and selective 140 

loss of CUX2-expressing upper layer excitatory neurons in cortical MS lesions, while co-located 141 

inhibitory and other cortical excitatory neuron subtypes were relatively preserved. 142 

Distinct spatial macroglial signatures in cortical and subcortical MS lesions. Prior 143 

studies have indicated differential gene expression and functionally diverse properties of reactive 144 

astrocytes that can be antagonistic or beneficial to repair after injury22,23. We identified 145 

astrogliosis by enhanced immunoreactivity for glial fibrillary acidic protein (GFAP) in regions of 146 

subcortical demyelinated WM that did not cross into the demyelinated cortex in MS lesions 147 

(Extended Data Fig. 4a). The GFAP signature in demyelinated WM overlapped with CD44-148 

expressing reactive astrocytes24; CD44 showed upregulation at the lesion rim in astrocytes that 149 
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co-expressed CRYAB and MT3 (Extended Data Fig. 4a-b)25.  As shown (Fig. 4a, Extended 150 

Data Fig. 4a), RFX4 expression was specific to the astrocyte lineage and captured all SLC1A2-151 

positive GM and CD44-expressing WM astrocytes (Supplementary Table 3, Extended Data 152 

Fig. 4a). We observed downregulation of genes for glutamate (SLC1A2, GLUL) and potassium 153 

homeostasis (KCNJ10)26 in cortical GM astrocytes and confirmed expression of GPC5, a marker 154 

that co-localizes with RFX4-expressing GM astrocytes, in lesion and non-lesion cortical areas in 155 

situ (Fig. 4a-b, Extended Data Fig. 4a). Reactive astrocytes at inflammatory chronic active 156 

lesion rims showed strong expression of the transcription factors BCL6, FOS (encoding c-FOS) – 157 

associated with astrocyte endothelin receptor type B (EDNRB) upregulation – and LINC01088 158 

(Fig. 4b, Extended Data Fig. 4b)27. Thus, spatial transcriptomics revealed distinct expression 159 

patterns for cortical versus subcortical reactive astrocytes in the MS lesion microenvironment. 160 

Myelinating OLs characterized by myelin gene expression and the transcription factor 161 

ST18 (Fig. 1d, Extended Data Fig. 4c) exhibited the third highest number of differentially 162 

expressed genes (Fig. 1g) consistent with enriched stress pathways (Extended Data Fig. 4d) and 163 

known cell loss in MS. Differential gene expression analysis indicated upregulation of genes for 164 

heat shock response (HSP90AA1) (Extended Data Fig. 4e)34, cell stress (FAIM2, ATF4), MHC 165 

class I upregulation (B2M, HLA-C), iron accumulation (FTL, FTH1)28, ubiquitin-mediated 166 

protein degradation (UBB) and LINC00657 (NORAD) and LINC00844 (Fig. 4c-d, Extended 167 

Data Fig. 2a). Conversely, we observed downregulation of markers for OL differentiation and 168 

myelin synthesis (BCAS1, SGMS1)29, potassium/cation homeostasis (KCNJ10)26, cell-cell-169 

interaction (SEMA6A) and formation of the node of Ranvier (GLDN) in MS OLs at lesion 170 

borders (Fig. 4c). Our findings indicate severe cell stress in MS OLs that can be mapped back to 171 

periplaque rim areas of subcortical lesions. 172 
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Activated phagocytosing microglial cells can be identified by snRNA-seq and 173 

mapped to chronic-active MS lesion rims. Given dramatic expansion of microglia in MS 174 

samples (Fig. 1e), we performed hierarchical clustering (Extended Data Fig. 5) and observed 175 

microglial cells with a homeostatic gene expression signature (P2RY12, RUNX1, CSF1R) in MS 176 

and control samples as well as MS-specific cells with enrichment for transcripts encoding 177 

activation markers, complement factors and MHC-II associated proteins14 , and lipid degradation 178 

(ASAH1, ACSL1, DPYD) (Fig. 5a-b, Extended Data Fig. 5, Supplementary Table S5). 179 

Downregulated genes in MS microglia included synapse remodeling transcript SYNDIG1 and 180 

potassium channel KCNQ3. As shown (Fig. 5a-b), marker genes for microglia reactivity (CD68, 181 

CD74, FTL, MSR1) colocalized with the lineage microglia marker RUNX1, and mapped such 182 

activated cells to chronic active boundaries of subcortical MS lesions.  183 

Interestingly, we found a cluster of microglial cells characterized by phagocytosis and 184 

enrichment for OL-specific markers PLP1, MBP and ST18 (Fig. 1c-d, Extended Data Fig. 4c 185 

and 5, Supplementary Table 7) suggesting the possibility that ingested myelin transcripts co-186 

purified with nuclei of phagocytosing cells in MS. To provide functional evidence for putative 187 

myelin RNA microglial phagocytosis, we cultured human and mouse microglia exposed to 188 

purified myelin from rat brain (Fig. 5c), which contains myelin transcripts (Extended Data Fig. 189 

6)30.  As shown (Fig. 5c), PLP1 and MBP transcripts were observed in intracellular, perinuclear 190 

and nuclear compartments of cultured human or mouse microglia at 1-day post exposure to 191 

labeled (pHrodo) myelin; ingested MBP mRNA was observed in mouse microglia up to 4-days 192 

post-feeding. In parallel, we observed morphological changes in phagocytosing mouse microglia, 193 

differential upregulation of the activation marker Cd163 and downregulation of the homeostatic 194 
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microglia marker P2ry1231. Such changes in mouse microglia showed parallel gene expression 195 

changes in human MS microglia by snRNA-seq (Fig. 5c).   196 

Interactive single-cell web browser to visualize snRNA-seq data. We created an interactive 197 

web browser to analyze cell-type specific expression levels of genes and transcriptomic changes 198 

in MS versus control tissue (https://ms.cells.ucsc.edu).  199 
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Discussion 200 

MS lesions are heterogeneous in cortical and subcortical areas with distinct patterns of 201 

inflammatory demyelination10,32,33. We found cell type-specific gene expression changes in 202 

regions of cortical neurodegeneration and at the rim of chronic active subcortical lesions 203 

involved in progression and cortical atrophy. Our technical finding of snRNA-seq feasibility in 204 

MS is consistent with recent observations13-15. We used high-quality archival samples from 205 

patients, who did not receive modern immunomodulatory therapies; thus, they represent the 206 

endpoint of the natural disease course with relatively early death of patients (30-50 yrs). 207 

However, the number of MS samples studied could have resulted in under-reporting of certain 208 

lineages.  209 

Computational analysis of differential gene expression and trajectory analysis of a total of 210 

12 MS and 9 control samples pointed most strongly to the neuronal compartment and indicated 211 

dramatic cellular stress and loss of CUX2-expressing upper layer excitatory projection neurons in 212 

demyelinated and partially remyelinated cortical MS lesions. As such lesions underlie meningeal 213 

inflammation with pronounced plasma B cell infiltration, these findings suggest the importance 214 

of B cells in progressive MS7,8 and that damaged cortical neuron populations potentially 215 

benefited from B cell depleting therapies34.  216 

We validated candidate gene expression using spatial transcriptomics of human MS 217 

brain.  Markers of stressed CUX2-expressing neurons included PPIA (cyclophilin A) and 218 

NORAD, a neuronal lncRNA that helps stabilize DNA upon genomic stress by binding to 219 

PUMILIO and RBMX proteins 17,35, as well as other pathways for protein degradation, heat 220 

shock response and metabolic exhaustion36,37. Whereas most transcriptional changes and 221 

neuronal cell loss occurred in demyelinated regions, we also observed abnormal gene expression 222 
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features (e.g., PPIA) in normal-appearing cortical areas suggesting a gradient of pathology38. 223 

While it is possible that CUX2-expressing projection neurons are damaged by both sustained 224 

meningeal inflammation and retrograde axon pathology from juxtacortical WM lesions in MS33, 225 

additional intrinsic factors might account for their lack of resilience, especially considering that 226 

neighboring inhibitory and excitatory neurons of the cortex showed relatively little cell loss.    227 

Recent studies used MS WM lesion single-nuclei and single-cell RNA-seq to study the 228 

OL13 and microglia14 lineages and reported subsets linked to MS pathobiology. Here, we used 229 

spatial transcriptomics to map dysregulated glial gene expression in cortical and subcortical 230 

lesion and non-lesion areas. Transcriptomic changes associated with OL, microglia and astrocyte 231 

activation mapped predominantly to the rim areas of chronic active subcortical lesions11,39. In 232 

particular, lesion rim OLs28 showed molecular changes indicating cellular degeneration and iron 233 

overload. Notably, both stressed myelinating OLs and upper layer cortical projection neurons 234 

upregulated genes for self-antigen presentation to immune cells (B2M, HLA-C) suggesting 235 

processes perpetuate degeneration and inflammation40,41. 236 

In another example of spatial diversity in MS, we detected distinct transcripts for cortical 237 

versus subcortical lesion astrocytes, indicating molecular differences in the tissue 238 

microenvironment. Further, we found that snRNA-seq can distinguish phagocytosing cells in MS 239 

based on their transport of ingested myelin transcripts into peri-nuclear structures or the nucleus 240 

itself.  Future work is needed to determine whether this biology is beneficial or detrimental in 241 

disease course, e.g., by exacerbating inflammation. In summary, multilineage and spatial gene 242 

expression analysis indicates cell type-specific neuron vulnerability and glial activation patterns 243 

relevant to neurodegeneration and MS lesion progression. 244 
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Figure legends 281 

Fig. 1. Experimental approach and characteristics of snRNA-seq using frozen MS tissue. 282 

(a) Cortical and subcortical control tissue and MS lesion types (DM = demyelination, NA = 283 

normal appearing). (b) Experimental approach for isolating nuclei from postmortem snap-frozen 284 

brain samples of MS and control patients. (c) Cell types from individual samples (left), cell-type 285 

specific clusters (center; ctrl, n= 9; MS, n= 12) and sample contribution to individual clusters 286 

(right). Note separation of EN-L2-3 and OL cells into MS-specific clusters EN-L2-3-A/B and 287 

OL-B/C. (d) tSNE plots highlight marker genes for neurons, astrocytes, OLs and microglia. (e) 288 

Bar chart shows contributions of normalized control and MS cell numbers to major cell-type 289 

clusters. Note that EN-L2-3-A cell enrichment and concomitant decrease in EN-L2-3-B in 290 

control samples over MS was not statistically significant (p = 0.165 and 0.082). (f) Specific loss 291 

of EN-L2-3 versus EN-L4, EN-L5-6 or IN-VIP neurons based on normalized cell numbers. (g) 292 

Differential gene expression (DGE) analysis showing highest number of dysregulated genes in 293 

EN-L2-3 followed by EN-L4 and OL cells; least differentially expressed genes were found in 294 

SST INs and OPCs. Box plots represent median and interquartile range (IQR) of differentially 295 

expressed gene number calculated after downsampling (100 DGE analyses per cell cluster; ctrl, 296 

n= 9; n= 12 MS). Wiskers extend to the largest values within 1.5 IQR from box boundaries, 297 

outliers shown as dots, notches represent a 95% confidence interval around the median. Two-298 

tailed Mann-Whitney tests performed in e and f (ctrl, n= 9; MS, n= 12); *P ≤ 0.05. Data 299 

presented as mean ± SEM. For tSNE plots, data shown from a total of 48,919 nuclei (ctrl, n= 9; 300 

n= 12 MS). 301 

 302 
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Fig. 2. Pseudotime trajectory analysis of upper layer excitatory projection neurons. (a) 303 

Trajectory analysis of CUX2-expressing EN-L2-3 cells (upper left). Unsupervised pseudotime 304 

trajectories within the EN-L2-3 (upper right) cluster reflected cellular origin from MS samples or 305 

controls (lower left) and inflammatory lesion stage (lower right). (b) EN-L2-3 pseudotime 306 

trajectories showed similar features as (a) and suggested loss of normalized EN-L2-3 numbers 307 

(lower left). Strongest association with EN-L2-3 trajectories found for upper cortical layer 308 

demyelination (upper right) versus deep cortical layer (center right) and subcortical 309 

demyelination (lower right). (c) Note selective enrichment of dysregulated genes in EN-L2-3 310 

cells from samples with late chronic inactive lesions versus acute/chronic-active and control 311 

samples. (d) Visualization of GO terms (enrichment calculated using GSEA, FDR adjusted p ≤ 312 

0.05, no terms significantly decreased) in genes significantly regulated in EN-L2-3 in a 313 

pseudotime-dependent manner (Moran’s I test, FDR adjusted p ≤ 0.0001). Note enrichment of 314 

severe cell stress processes. (e) Trajectory-dependent upregulated (f) and downregulated EN-L2-315 

3 genes of interest. Grey shading represent 95% confidence interval based on gene expression in 316 

all (n= 5,938) sampled EN-L2-3 nuclei. 317 

 318 

Fig. 3. Cellular and molecular neuronal pathology in cortical MS lesions. (a) tSNE plots 319 

CUX2, VIP and TLE4-expressing neurons (left). Spatial transcriptomics showing layer-specific 320 

expression of CUX2 in lesion (indicated by loss of MOG) versus non-lesion areas (center left). 321 

Schematic illustrates layer-specific neuron subtype diversity (center). Note CUX2 and VIP 322 

expression in upper and TLE4 in deep cortical layers by smFISH (center right; ctrl, n=5), and 323 

validation of neuronal expression by SYT1 ISH (black arrowheads; ctrl, n=5). (b) CUX2 and VIP 324 

smFISH demonstrate reduction of CUX2- but not VIP-expressing upper layer neurons in DMGM 325 
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underlying meningeal inflammation (upper left and right) versus incomplete demyelinated 326 

(IDMGM), NAGM and control cortical GM (bottom left). ANOVA with Kruskal Wallis multiple 327 

comparison tests were performed (ctrl, n=5 (CUX2), n=4 (VIP); MS, n=8; *P ≤ 0.05; different 328 

samples with NAWM, IDMGM and DMGM MS lesion areas from same sections; representative 329 

images).  (c) Upregulation of neuronal PPIA in DMGM and NAGM versus control GM (left, 330 

white circles indicate perinuclear areas of PPIA quantification). Neuronal upregulation and 331 

cytoplasmic accumulation of LINC00657 (NORAD) in DMGM versus NAGM and control areas 332 

(right, black arrowheads). ANOVA with Tukey’s multiple comparison tests were performed 333 

(ctrl, n=3; MS, n=4; **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001; different samples with NAWM 334 

and DMGM areas from same sections; representative images). Data presented as mean ± SEM. 335 

For tSNE plots, data shown from a total of 48,919 nuclei (ctrl, n = 9; n = 12 MS). Violin plots 336 

represent DGE (normalized log transformed UMIs) in EN-L2-3 (EN-L2-3-A and EN-L2-3-B) 337 

nuclei (ctrl, n = 3,481; n = 2,639 MS); box plots represent median and standard deviation of 338 

gene expression. 339 

 340 

Fig. 4. Transcriptomic changes in astrocytes and myelinating oligodendrocytes in cortical 341 

and subcortical MS lesions. (a) Downregulation of SLC1A2 and GPC5 and upregulation of 342 

GFAP and CD44 in MS astrocytes (upper left). LaST ISH experiments confirm SLC1A2 343 

downregulation in DMGM underlying meningeal inflammation, whereas CD44 shows 344 

ubiquitous expression in NAWM and PPWM (periplaque white matter, center left) and 345 

upregulation in reactive astrocytes at lesion rims in b1 (center right). Note CD44 and GPC5 co-346 

expression with pan-astrocyte marker RFX4 (white/black arrowheads, lower left and right) and 347 

association of CD44 with fibrous/reactive WM astrocytes and GPC5 with protoplasmic cortical 348 
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GM astrocytes (black arrowheads; right; white star indicates blood vessel). (b) Downregulation 349 

of GLUL and KCNJ10 in MS astrocytes (left). Note differential upregulation of BCL6 and FOS 350 

in reactive astrocytes at PPWM (center, black arrowheads) and LINC01088 in fibrous/reactive 351 

WM astrocytes (right, black arrowhead). (c) Violin plots for selected genes linked to cell stress 352 

(upregulated, top), myelin biosynthesis and axon maintenance (downregulated, bottom) in MS 353 

OLs. (d) FTL and FTH1 upregulation in PLP1-expressing OLs at iron-laden lesions rims (left, 354 

black arrowheads). Note differential upregulation of B2M and HLA-C in PLP1-expressing OLs 355 

at PPWM (right; yellow arrowheads [white arrowheads mark OLs without B2M ISH signals in 356 

NAWM]). For ISH, representative images shown (ctrl, n = 3; n = 4 MS). For tSNE plots, data 357 

shown from a total of 48,919 nuclei (ctrl, n = 9; n = 12 MS). Violin plots represent DGE 358 

(normalized log transformed UMIs) in nuclei (astrocytes: ctrl, n = 1,571; n = 3,810 MS; OLs 359 

[OL-A, OL-B and OL-C]: ctrl, n = 3,070; n = 9,324 MS;); box plots represent median and 360 

standard deviation of gene expression. 361 

 362 

Fig. 5. Transcriptomic changes in activated and phagocytosing microglia subsets. (a) Violin 363 

and tSNE plots for upregulated genes in MS microglia linked to myelin phagocytosis/breakdown 364 

(left), microglia activation and iron handling (center); note downregulation of genes encoding for 365 

synapse function (SYNDIG1) and potassium homeostasis (KCNQ3) (right). (b) Pseudo low 366 

resolution 3D rendering of confocal images showing subcortical WM lesions of different 367 

inflammatory stages by MBP smFISH and CD68 IHC; white arrowheads indicate CD68+ cells 368 

with MBP+ ISH signals; note colocalization of MBP, CD74 and RUNX1 in CD68-positive cells 369 

(center left, white arrowheads). CD68 IHC identifies WM lesion (blood vessel, black star; upper 370 

right) with upregulation of MSR1 at lesion rims, co-expressed with RUNX1 (lower right) and 371 
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FTL (upper right, black arrowheads); representative images from different tissue sections (ctrl, 372 

n=3; MS, n=4). (c) Human (upper left; n=3 individual biopsies) and mouse (upper center right; 373 

n=4 independent cultures) myelin-microglia engulfment assays confirming ingestion of MBP and 374 

PLP1 transcripts derived from rat myelin. Note localization to nuclear/perinuclear spaces (white 375 

arrowheads). Microglia labeled by pHrodo (human) and Iba1/CD68 (mouse) with LMNA/C and 376 

DAPI nuclear counterstain. Schematic illustrates myelin phagocytosis and uptake into microglial 377 

(peri-)nuclear spaces (upper right). MBP persistence up to 4 days after ingestion in mouse 378 

microglia as shown by smFISH (4 independent cultures; lower left); note upregulation of Cd163 379 

and downregulation of P2ry12 in phagocytosing mouse (6 independent cultures) and human MS 380 

microglia (lower right). Two-tailed Mann-Whitney tests performed. Data presented as mean ± 381 

SEM. For tSNE plots, data shown from a total of 48,919 nuclei (ctrl, n = 9; n = 12 MS). Violin 382 

plots represent DGE (normalized log transformed UMIs) in microglia nuclei (ctrl, n = 159; n = 383 

1,524 MS [microglial and phagocytosing cells]); box plots represent median and standard 384 

deviation of gene expression. 385 
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Methods 492 

Human tissue samples, ethical compliance and clinical information 493 

All tissue included in this study was provided by the UK Multiple Sclerosis Tissue Bank at 494 

Imperial College, London, UK and the University of Maryland Brain Bank through the NIH 495 

NeuroBioBank. Human MS and control tissues were obtained via a prospective donor scheme 496 

following ethical approval by the National Research Ethics Committee in the UK 497 

(08/MRE09/31). We have complied with all relevant ethical regulations regarding the use of 498 

human postmortem tissue samples. We examined a total of 35 (19 MS and 16 controls) snap-499 

frozen brain tissue blocks obtained at autopsies from 17 MS patients and 16 controls.  500 

RNA extraction and integrity measurements 501 

Frozen brain tissue samples encompassing the entire span of cortical GM with attached meninges 502 

and underlying subcortical WM were sectioned on a CM3050S cryostat (Leica Microsystems) to 503 

collect 100 µm-thick sections for total RNA and nuclei isolation. Total RNA from 10 mg tissue 504 

was isolated using Trizol (Invitrogen) and purified using the RNAeasy Kit (Qiagen) according to 505 

manufacturer’s instructions. Next, we performed RNA integrity analysis on the Agilent 2100 506 

Bioanalyzer using the RNA 6000 Pico Kit (Agilent, 5067-1514). Only samples with an RNA 507 

integrity number (RIN) ≥ 6.5 were used to perform nuclei isolation followed by snRNA-seq as 508 

samples with lower RIN generated low quality data. As the result, we excluded 14 samples (7 509 

MS and 7 control samples) and performed snRNA-seq on total of 12 snap-frozen brain tissue 510 

blocks obtained at autopsies from 7 female and 3 male MS patients (1 primary progressive MS, 9 511 

secondary progressive MS; Supplementary table 1). The age of the MS patients ranged from 34 512 

to 55 years (median 46 years), and the disease duration from 5 to 43 years (median 18 years). For 513 

control tissue, we included a total 9 snap-frozen brain tissue blocks obtained at autopsies from 4 514 
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female and 5 male individuals. The age of control patients ranged from 35 to 82 years (median 515 

54 years; Supplementary table 1). 516 

Nuclei isolation and snRNA-seq on the 10X Genomics platform 517 

Control and MS samples were processed in the same nuclei isolation batch to minimize potential 518 

batch effects. 40 mg of sectioned brain tissue was homogenized in 5 mL of RNAse-free lysis 519 

buffer (0.32M sucrose, 5 mM CaCl2, 3 mM MgAc2, 0.1 mM EDTA, 10 mM Tris-HCl pH 8, 1 520 

mM DTT, 0.1% Triton X-100 in DEPC-treated water) using a glass Dounce homogenizer 521 

(Thomas Scientific) on ice42. The homogenate was loaded into a 30 ml thick polycarbonate 522 

ultracentrifuge tube (Beckman Coulter). 9 ml of sucrose solution (1.8 M sucrose, 3 mM MgAc2, 523 

1 mM DTT, 10 mM Tris-HCl in DEPC-treated water) was added to the bottom of the tube under 524 

the homogenate and centrifuged at 107,000 g for 2.5 hours at 4°C. Supernatant was aspirated, 525 

and nuclei pellet was incubated in 250 µL of DEPC-treated water-based PBS for 20 min on ice 526 

before resuspending the pellet. Nuclei suspension were analyzed for the presence of debris, 527 

nuclei were counted using a hemocytometer and diluted to 2,000 nuclei/µL before performing 528 

single-nuclei capture using the 10X Genomics Single-Cell 3’ system (Extended Data Fig. 1a). 529 

Target capture of 4,000 nuclei per sample was used. Control and MS samples were loaded on the 530 

same 10X chip to minimize potential batch effects. Single-nuclei libraries from individual 531 

samples were pulled and sequenced on the Illumina HiSeq 2500 machine. 10X nuclei capture 532 

and library preparation protocol was carried out according to the manufacturer’s 533 

recommendation without modification. 534 

snRNA-seq data processing with 10X Genomics CellRanger software and data filtering 535 

For library demultiplexing, fastq file generation, read alignment and unique molecular identifier 536 

(UMI) quantification, CellRanger software v 1.3.1 was used. CellRanger was used with default 537 
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parameters, except for using pre-mRNA reference file (ENSEMBL GRCh38) to insure capturing 538 

intronic reads originating from pre-mRNA transcripts abundant in the nuclear fraction.  539 

Individual expression matrices containing numbers of UMIs per gene in each nucleus were 540 

filtered to retain nuclei with at least 500 genes and 1000 transcripts expressed. Genes expressed 541 

in less than three nuclei were filtered out. Mitochondrial RNA genes were filtered out as well to 542 

exclude transcripts originating from outside the nucleus and avoid biases introduced by nuclei 543 

isolation and ultracentrifugation. Individual matrices were combined, UMIs were normalized to 544 

the total UMIs per nucleus and log-transformed.  545 

Dimensionality reduction, clustering and t-SNE visualization 546 

A filtered log-transformed UMI matrix containing genes expressed in more than five cells was 547 

used to perform truncated singular value decomposition (SVD) with k=50. A screen plot was 548 

generated to select the numbers of significant principle components (PCs) by localizing the last 549 

PC before the explained variance reaches plateau. This resulted in selection of 11 PCs. The 550 

significant PCs were used to calculate Jaccard distance-weighted nearest neighbor distances; 551 

number of nearest neighbors was assigned to root square of number of nuclei. The resulting 552 

graph with Jaccard-weighted edges was used to perform Louvain clustering43. To visualize 553 

nuclei transcriptomic profiles in two-dimensional space, t-distributed stochastic neighbor 554 

embedding (t-SNE) was performed44. Several original clusters expressed a combination of cell 555 

type markers, including interneuron subtypes, T cells, B cells, stromal cells and endothelial cells. 556 

These clusters were further subclustered by repeating PCA analysis of selected cell populations 557 

and performing partitioning around medoids (PAM) bi-clustering (Supplementary table 2). 558 

Cell type annotation 559 
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Cell types were annotated based on the expression of known marker genes visualized by t-SNE 560 

plot, as well as by performing unbiased gene marker analysis (Supplementary table 3). For the 561 

latter, MAST was used to perform differential gene expression analysis by comparing nuclei in 562 

each cluster to the rest of nuclei profiles. Genes with a false discovery rate (FDR) <0.05 and at 563 

least two-fold gene expression upregulation were selected as cell type markers. Subtypes of 564 

projection neurons and interneurons were annotated based on combinatorial expression of 565 

inhibitory and excitatory markers and projection neurons and interneuron subtype markers.  566 

Quantification of number of cell for cell types in MS and control samples 567 

To get insight into enrichment or depletion of cell types in MS, numbers of nuclei in each cluster 568 

and individual were normalized to the total number of nuclei captured from each individual. The 569 

following formula was used: 570 

Normalization factor =  571 

 = N(total nuclei in sample)/N(total nuclei in sample with largest number of total nuclei 572 

captured) 573 

Normalized cell number =  574 

= N(raw cell number in a cell types captured from a sample)/Normalization factor 575 

Then, normalized cell numbers in each sample and cell type were compared between MS and 576 

control groups using Mann-Whitney test (Supplementary Table 4). 577 

Differential gene expression analysis based on repeated down sampling 578 

To estimate the degree of disease affection for different CNS cell types, the number of 579 

differentially expressed genes (DEG) between MS patients and controls was used as a surrogate 580 

parameter. We reasoned that the power to identify DEG is partially dependent on the number of 581 
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cells detected in each cluster. Thus, we devised an analytical approach that corrects for cell count 582 

based on repeated down sampling to identical cell numbers for each donor-cluster combination. 583 

Specifically, 100 iterations of down sampling were performed, where 20 cells were randomly 584 

drawn from each donor for each cluster and combined into synthetic bulk samples as input for a 585 

differential gene expression analysis using DESeq2 version 1.20.045. In this case we favored a 586 

computationally less intensive analysis using DESeq2 without covariates on synthetic bulk 587 

samples over MAST to facilitate the execution of a sufficient number of iterations. The results of 588 

this screening approach were plotted as notched box plots and relevant differences between 589 

clusters were assumed where notches did not overlap (Fig. 1g). Notably, very small clusters 590 

which had less than 4 samples with a minimum of 20 cells available, were excluded from the 591 

analysis. 592 

Trajectory pseudotime analysis 593 

A single cell trajectory for excitatory cortical layer 2-3 neurons was determined and analyzed 594 

using the Monocle package version 3 alpha46. FDR-corrected p values were calculated using the 595 

Monocle 3alpha R package using 5,938 EN-L2-3 nuclei (Supplementary Table 5). Briefly, 596 

single cell transcriptomes of all CUX2-expressing cells were dimensionally reduced by principal 597 

component analysis (PCA) followed by uniform manifold approximation and projection 598 

(UMAP). Next, an unsupervised trajectory through the reduced space was identified using the 599 

SimplePPT algorithm. The root of the resulting tree was set to where most cells of the control 600 

samples clustered. Pseudotime values were then automatically assigned to each cell depending 601 

on its distance on the trajectory relative to the root node. Moran’s I test as implemented in 602 

Monocle 3 alpha was used to identify genes significantly regulated over pseudotime. For each 603 

gene the adjusted p value was signed by the direction of regulation determined by comparing 604 
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expression in the first 5% of cells in pseudotime with the last 5%. The resulting gene list, ordered 605 

by signed adjusted p value, was the input for Gene Set Enrichment Analysis (GSEA) to test for 606 

enriched gene ontology (GO) terms using the clusterProfiler package version 3.10.147. Gene sets 607 

with a FDR < 0.05 were considered as significantly enriched. The results of the analysis were 608 

plotted as a GO term map using the emapplot() function of the clusterProfiler package to cluster 609 

terms based on their gene set relation. Clusters of gene sets were annotated with representative 610 

labels. 611 

To analyze enrichment of individual gene sets on a single cell level, we employed the AUCell 612 

algorithm48. The algorithm measures geneset enrichment towards the top of an expression ranked 613 

gene list for each cell. The resulting area under the curve values (AUC) were plotted for all cells 614 

along pseudotime. 615 

Differential gene expression analysis using linear mixed model regression 616 

To identify genes differentially expressed in MS compared to control samples per cell type. P 617 

values were calculated and FDR-corrected using MAST R package. All nuclei from 9 control 618 

and 12 MS samples for corresponding cell types were used (Supplementary Table 6). MAST 619 

was used to perform zero-inflated regression analysis by fitting a linear mixed model. To exclude 620 

gene expression changes stemming from confounders, such as age, sex, RIN, cortical region, 621 

fractions of ribosomal and mitochondrial transcripts, 10X capture batch and sequencing batch, 622 

the following model was fit with MAST: 623 

zlm(~diagnosis + sequencer + (1|ind) + cngeneson + age + sex + RIN + region + Capbatch + 624 

Seqbatch + ribo_perc + mito_perc, sca, method = "glmer", ebayes = F, silent=T) 625 
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Where cngeneson is gene detection rate (factor recommended in MAST tutorial), Capbatch is 626 

10X capture batch, Seqbatch is sequencing batch, ind is individual label, ribo_perc is ribosomal 627 

RNA fraction and mito_perc is mitochondrial RNA fraction. 628 

To identify genes differentially expressed due to the disease effect, likelihood ratio test (LRT) 629 

was performed by comparing the model with and without the diagnosis factor. Genes with at 630 

least 10% increase or decrease in expression in MS vs control and an FDR <0.05 were selected 631 

as differentially expressed. In addition, we calculated raw fold changes of gene expression by 632 

repeating MAST analysis with only the diagnosis factor in the model and filtered out genes with 633 

raw fold change of expression less than 7%. The latter filtering step allowed removing genes, 634 

whose fold change of expression was heavily dependent on the confounding factors, rather than 635 

clinical diagnosis. 636 

Gene Ontology (GO) analysis for differentially expressed genes 637 

PANTHER software (Broad Institute, https://software.broadinstitute.org/panther) was used to 638 

perform statistical overrepresentation tests for DEGs with respect to individual clusters. All 639 

genes expressed in a given cluster were used as a background list, and GO term analysis for 640 

enriched biological processes was performed. Processes with an FDR < 0.05 were considered 641 

and sorted by FDR. 642 

Heatmap data presentation and hierarchical cluster analysis 643 

Hierarchical clustering was performed with the online Morpheus software (Broad Institute, 644 

https://software.broadinstitute.org/morpheus) using 1-Pearson correlation as distance metric and 645 

complete clustering of rows (genes) and columns (cells or samples). To perform hierarchical 646 

https://software.broadinstitute.org/panther
https://software.broadinstitute.org/morpheus
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clustering, we used single-nuclei gene expression matrix of cell type markers for lymphocytes, 647 

microglia and phagocytes (Extended Data Fig. 5, Supplementary Table 7).  648 

Immunohistochemistry 649 

16 µm-cryosections were collected on superfrost slides (VWR) using a CM3050S cryostat (Leica 650 

Microsystems) and fixed in either 4% PFA at room temperature (RT) or ice-cold methanol. Next, 651 

sections were blocked in 0.1M PBS/0.1% Triton X-100/ 10% goat/horse/donkey sera for 1 hour 652 

at RT. Primary antibody incubations were carried out overnight at 4°C. The following antibodies 653 

were used for immunohistochemistry: mouse anti-MOG (clone 8-18C5, 1:1,000 [1:200 after in 654 

situ hybridization], Millipore Sigma), rat anti-GFAP (clone 2.2B10, 13-0300, Thermo Fisher, 655 

1:1,000 [1:200 after in situ hybridization]), rat anti-CD3 (clone CD3-12, Bio-Rad, 1:100), rabbit 656 

anti-MZB1 (polyclonal, Thermo Fisher, 1:1,000), rabbit anti-SKAP1 (polyclonal, Sigma Aldrich, 657 

1:100), mouse anti-CD138 (clone DL-101, Biolegend, 1:100), mouse anti-CD68 (clone 514H12, 658 

Bio-Rad, 1:100), mouse anti-Neurofilament H (NF-H), nonphosphorylated (clone SMI32, 659 

801701, Biolegend, 1:10,000), mouse anti-NeuN (clone MAB377, Sigma Aldrich, 1:1,000). 660 

After washing in 0.1M PBS, cryosections were incubated with secondary antibodies diluted in 661 

0.1M PSB/ 0.1% Triton X-100 for 2 hours, RT. For chromogenic assays, sections were incubated 662 

with biotinylated secondary IgG antibodies (1:500, Thermo Fisher) followed by avidin-biotin 663 

complex for 1-hour incubation (1:500, Vector) and subsequent color revelation using 664 

diaminobenzidine according to the manufacturer’s recommendations (DAB, Dako). For 665 

immunofluorescence, Alexa fluochrome-tagged secondary IgG antibodies (1:500, Thermo 666 

Fisher) were used for primary antibody detection. Slides with fluorescent antibodies were 667 

mounted with DAPI Fluoromount-G (SouthernBiotech). Negative control sections without 668 
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primary antibodies were processed in parallel. For diagnostic purposes, hematoxylin and eosin 669 

(HE) and Luxol fast blue (LFB) staining was carried out. 670 

Iron staining 671 

Tissue non-heme iron was stained according to previously published protocols49. Sections of 672 

fixed, frozen human tissue was allowed to warm to room temperature and dried for 15 minutes in 673 

a laminar flow hood. Endogenous peroxidase activity was quenched by immersion in a solution 674 

of 0.3% H2O2 (v/v) in methanol for 20 minutes and washed three times in deionized water 675 

(dH2O). Sections were then placed in a solution of fresh 1% (w/v) potassium ferrocyanide 676 

(Sigma-Aldrich, UK), pH 1 with HCL for 40 minutes, followed by three washes in dH2O. 677 

Sections were then placed in 0.01M NaN3, 0.3% H2O2 in methanol for 60 minutes, followed by 678 

three washes in PBS. Iron staining was intensified using 3’-diaminobenzidine (DAB) (10% v/v) 679 

solution from Pierce DAB substrate kit (Thermo Fisher) in PBS with 0.005% H2O2 (v/v) for five 680 

hours. DAB reaction was halted with three washes in PBS, 1 wash in 100% methanol and a 681 

further three washes in Bond Wash solution (Leica Biosystems).  682 

Chromogenic single/duplex in situ RNA hybridization 683 

Single molecule in situ hybridization was performed according to the manufacturer’s 684 

recommendations (RNAscope 2.5 brown, red and duplex chromogenic manual assay kits, 685 

Biotechne). Sequences of target probes, preamplifier, amplifier, and label probes are proprietary 686 

and commercially available (Advanced Cell Diagnostics). Typically, target probes contain 20 ZZ 687 

probe pairs (approx. 50 bp/pair) covering 1,000 bp. The following human manual RNAscope 688 

assay probes were used: CUX2, RORB, TLE4, THY1, VIP, SST, HSP90AA1, LINC00657, PPIA, 689 

FTL, B2M, PIEZO2, IGHG1, MSR1, LINC01088, GPC5, CD44, BCL6, FOS, EDNRB, ST18, 690 

RUNX1-C2, SLC1A2-C2, CD44-C2, RFX4-C2, PDGFRA-C2, SYT1-C2, PLP1-C2. Following 691 
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red chromogenic single-molecule in situ hybridization, we performed immunohistochemistry 692 

using either chromogenic or fluorescence assays (see above). After duplex single molecule in 693 

situ hybridization we performed hematoxylin staining of nuclei.  694 

Fluorescence multiplex in situ RNA hybridization and human brain tissue optimization 695 

For small molecule fluorescence in situ RNA hybridization (smFISH) on human brain 696 

cryosections performed on an automated BOND RX robotic stainer (Leica), the following 697 

procedure was used.  Fresh snap frozen human brain tissue was cryosectioned and slides 698 

immediately stored at -80°C. Because human brain tissue often showed high levels of 699 

autofluorescence, several treatments were needed to minimize interference with FISH signals. 700 

Using spectral analysis, we identified sources of autofluorescence to be mainly lipofuscin in grey 701 

matter (emission wavelengths ~450-650nm) and collagen/elastin in white matter (emission 702 

wavelengths ~470-520nm). Initial experiments in fixed tissue also displayed low levels of 703 

formaldehyde-induced fluorescence in the green yellow spectra (~420-470nm); thus, sections of 704 

human brain tissue were not formaldehyde-fixed before storage. On the day of the experiment, 705 

with minimal exposure to (RT) air to keep oxidation of endogenous fluorescent proteins low, 706 

slides where directly transferred from -80°C into pre-chilled PFA 4% (methanol-free). Following 707 

45 minutes incubation sections where immediately submerged in boiling citrate buffer (pH 3.0, 708 

Sigma) for 15 minutes to loosen up the recent crosslinking. Slides where then rinsed twice in 709 

PBS and dehydrated. To avoid interference of background fluorescence, experiments were 710 

designed so that low expressing probes were detected using fluorophores with low background, 711 

i.e., Opal 570, Opal 650.  All samples in this study were treated in the same way regardless of 712 

disease/stage and age. The assay was then performed for 2-3 genes by FISH using the 713 

RNAScope LS Multiplex Assay (Biotechne).  714 
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Samples were initially permeabilized with heat and protease treatment to improve probe 715 

penetration and hybridization. For heat treatment, samples were incubated in BOND ER2 buffer 716 

(pH 9.0, Leica) at 95°C for 10 minutes. For protease treatment, samples were incubated in ACD 717 

protease reagent at 42°C for 10 minutes. Prior to probe hybridization, samples were incubated in 718 

hydrogen peroxide for 10 minutes to inactivate endogenous peroxidases and ACD protease. 719 

Subsequently, samples were incubated in target z-probe mixtures (C1-C4) for 2 hours at 42°C. 720 

Each slide wash flushed three times in order to obtain optimal hybridization to transcripts. The 721 

following human RNAScope LS assay probes were used: SYT1, CUX2, LINC00657, B2M, 722 

CD74, RUNX1, RFX4, SLC1A2, CD44, PLP1, MBP.  723 

Following hybridization, branched DNA amplification trees were built through sequential 724 

incubations in AMP1, AMP2 and AMP3 reagents for 15-30 minutes each at 42°C with LS Rinse 725 

buffer (Leica) high stringency washes between incubation steps. After amplification, probe 726 

channels were detected sequentially via HRP-TSA labeling. Here, samples were incubated in 727 

channel-specific HRP reagents for 15 minutes at 42°C, TSA fluorophores for 30 minutes and 728 

HRP blocking reagent for 15 minutes at 42°C. Probes were labeled using Opal 520, 570 and 650 729 

TSA fluorophores (Perkin Elmer, 1:300). Directly following FISH assay, localization of MOG 730 

myelin protein was performed by BOND RX assisted IHC, where samples were incubated with 731 

anti-MOG antibody in blocking solution for 1 hour (1:200). To develop the antibody signal, 732 

samples were incubated in donkey anti-mouse HRP (Abcam, ab205719, 1:500) for 1 hour, TSA-733 

biotin (PE, NEL700A001KT, 1:200) for 10 minutes and streptavidin-conjugated Alexa 700 734 

(Sigma, 1:200) for 30 minutes.  735 

PCR for myelin and neuron transcripts from rat myelin preparations 736 
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RNA from myelin was purified using phenol-chloroform extraction by adding 100 µl of 737 

chloroform (Sigma Aldrich) to 500 µl of Tri-Reagent containing 50 µl of enriched rat CNS 738 

myelin. Samples were vortexed and centrifuged at 12,000 gmax for 15 minutes at 4°C. The upper 739 

aqueous phase was collected and an equal volume of 70% ethanol added and vortexed. RNA was 740 

purified using PureLink RNA Mini-Kit (Thermo Fisher) according to manufactures instructions. 741 

RNA was eluted with 30 µl of RNAse free water and concentration determined using a 742 

SPECTROStar Nano. cDNA was synthesized from 0.3 µg of RNA using SuperScript III 743 

(Thermo Fisher) according to manufactures instructions with or without inclusion of RT enzyme. 744 

PCRs for rat Mbp and synaptophysin (Syp) were performed using 20 µl of PCR MegaMix Blue 745 

(Client Life Science), 1 µl of cDNA and 0.5 µl of 10 µM forward (F) and reverse (R) primers in 746 

an ABI Veriti 96 Well thermal cycler (Thermo-Fisher) for 30 cycles at 950C, 720C and 540C: 747 

Mbp-F: GTGGTATGTGAGCACAGGCT  748 

Mbp-R: TAAAAGCACCTGCTCTGGGG 749 

Syp-F: TGCCATCTTCGCCTTTGCTA 750 

Syp-R: GCCTGTCTCCTTGAACACGA 751 

Amplified products were loaded onto 1% E-Gel (Thermo-Fisher) according to manufactures 752 

instructions and imaged using E-Gel imager (Thermo-Fisher). 753 

Western blot and Coomassie staining for myelin and neuron protein from rat myelin 754 

preparations 755 

15-20 µg of protein were separated on 4-12% Bis-Tris NuPAGE gels (Thermo-Fisher) according 756 

to manufactures instructions. Gels were either stained for total protein using 0.3% w/v brilliant 757 

blue-G (Sigma) in 40% v/v methanol and 7% v/v glacial acetic acid overnight. Destaining was 758 
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done with several washes in 40% v/v methanol and 7% v/v glacial acetic. For Western blotting, 759 

proteins in gels were transferred onto PVDF membranes (Millipore) using Bolt transfer buffer 760 

(Thermo-Fisher) for 1 hour at 15 V constant voltage. Membranes were blocked with Li-Cor 761 

Blocking Buffer (Li-Cor) for 1 hour at room temperature on a platform shaker. Membranes were 762 

incubated overnight in primary antibodies (1:2000 dilution) rabbit-anti-Mbp or mouse-anti-Mog 763 

(Cell Signaling), rabbit-anti Neurofilament heavy or mouse anti-synaptophysin (Sigma) in 50% 764 

Li-Cor Blocking buffer in tris buffered saline with tween-20 (0.001% v/v) (TBS-T). Membranes 765 

were washed three times with TBS-T and Li-Cor 680-RD secondaries (1:5000) (Li-Cor) applied 766 

in 50% v/v Li-Cor Blocking Buffer in TBS-T for 1 hour at room temperature. Membranes were 767 

three times in TBS-T and imaged on a Li-Cor Odyssey (Li-Cor). 768 

Myelin Enrichment assay and polymerase chain reaction 769 

Myelin enrichment of adult rat CNS was performed according to Jahn et al.50. Unless otherwise 770 

stated all buffers were prepared in DEPC treated water and all procedures carried out at 4°C. 771 

Briefly, adult rats were perfused with saline and the brains rapidly dissected, olfactory bulbs 772 

removed and kept on ice. Brains were cut into hemispheres, and one hemisphere was used for 773 

each preparation. Hemispheres were homogenized using a glass Dounce in 6 ml of 0.32 M 774 

sucrose prepared in DEPC treated water with HALT protease inhibitor cocktail without EDTA 775 

(Thermo Fisher). 1ml of homogenate was retained for further biochemical analysis and 6ml of 776 

homogenate loaded on top of 6ml of 0.85 M sucrose treated with DEPC with HALT protease 777 

inhibitors in 14ml thin walled centrifuge tubes (Beckman Coulter, UK). Samples were 778 

centrifuged at 75,000 gmax for 35 minutes at 4°C. The interface between 0.85 and 0.32 M sucrose 779 

was collected, resuspended in water and centrifuged at 75,000 gmax for 15 minutes at 4°C. The 780 

pellet was subjected to two rounds of osmotic shock by resuspension in water, left on ice for 10 781 
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min and centrifuged at 12,500 gmax for 15 minutes at 4°C. The pellet was resuspended in 6 ml of 782 

0.32M sucrose and overlaid on a bed of 0.85 M sucrose and centrifuged at 75,000 gmax for 35 783 

minutes at 4°C. The purified myelin was collected from the 0.32M and 0.85M sucrose interface. 784 

The myelin was then washed in 10 ml of water and centrifuged at 75,000 gmax for 35 minutes at 785 

4°C and resuspended in either 0.25 M bicarbonate pH 8.3 or Tris Buffered Saline (TBS) pH 7.4 786 

to final volume of 400 µl. A 50 µl was retained and 500 µl of Tri-Reagent (Thermo Fisher) was 787 

added to preserve the RNA. Protein concentration was measured using Pierce-BCA Protein 788 

Assay (Thermo Fisher) according to manufactures instructions.  789 

Animals used for myelin-microglia engulfment assays 790 

Wildtype C57Bl/6J mice (stock #000664) were obtained from Jackson Laboratories (Bar Harbor, 791 

ME). All animal experiments were carried out at the animal facility at the University of 792 

Massachusetts Medical School and approved (#A-2496-17) by Animal Care and Use 793 

Committees (IACUC) and performed under NIH guidelines for proper animal welfare. 794 

Purification and treatment of primary mouse microglia 795 

Purified primary brain-derived microglia were obtained from mixed glial cultures by modified 796 

standard protocols as described before51. Briefly, cerebral cortices from male and female 797 

postnatal day 0.5 C57Bl/6J wildtype mice were dissected free of meninges, chopped into small 798 

pieces and mechanically dissociated until a single cell suspension was obtained. Cells were then 799 

seeded in 10 ml DMEM (Thermo Fisher) supplemented with 10% FBS (Life Technologies) and 800 

1% penicillin-streptomycin (Life Technologies) at a density of one brain per 75cm2 flask, and 801 

cultured for 7 days at 37°C in humidified 5% CO2/95% air. By shaking the culture flasks for 3 802 

hours at 180 rpm, loosely adhering microglia were detached. The suspended microglial cells 803 

were seeded onto glass coverslips at a density of 80.000 cells/well in a 24-well plate and cultured 804 
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overnight. 24 h prior to treatment cell culture medium was changed to neurobasal medium 805 

supplemented with 1x sodium pyruvate, 1x B27 (all from Thermo Fisher), 1x GlutaMAX, 1x 806 

penicillin-streptomycin (both from Life Technologies), 5 µg/ml insulin, 1x SATO, 5 µg/ml N-807 

acetyl-L-cysteine, 40 ng/ml T3 (all from Sigma), and 10 ng/ml mouse macrophage colony 808 

stimulating factor (Shenandoah). Finally, microglia were treated with 6.45 µg purified myelin 809 

fraction from rat brain for 4 hours, before myelin was removed and cells were fixed or harvested 810 

for analysis at the indicated time points. To visualize engulfment of myelin proteins into 811 

microglial lysosomes, myelin protein was labeled with pHrodo (Thermo Fisher) under RNase 812 

free conditions according to the manufacture’s recommendations prior to treatment.  813 

Mbp RNA hybridization on primary mouse microglia 814 

RNA in situ hybridization was performed according to the manufacturer’s recommendations 815 

(ACDBio). Briefly, after treatment, cells were fixed with 4% PFA, dehydrated and stored at -816 

20°C for up to 7 days before further use. Prior to RNA hybridization, cells were rehydrated, 817 

rinsed in PBS and treated with 1:15 diluted “Protease III” for 15 minutes at 40°C. Then, probes 818 

against Mbp (ACDBio) were added and incubated for 2 hours at 40°C. Subsequent amplification 819 

steps were performed according to the manufacturer’s instructions. To confirm specificity of 820 

RNA signals, some samples were treated with 10 mg/ml RNaseA (Thermo Fisher Scientific) for 821 

1h at 37°C prior to incubation with probes. To immunostain samples following Mbp RNA 822 

hybridization, cells were washed in PBS, blocked in 2% normal goat serum supplemented with 823 

0.01% TritonX-100 for 30 minutes and incubated with the following primary antibodies: rabbit 824 

polyclonal anti-Iba1 (Wako Chemicals) and rat monoclonal anti-CD68 (clone FA-11, AbD 825 

Serotec, MCA1957) (both 1:100). The following day, cells were incubated with appropriate 826 

Alexa-fluorophore-conjugated secondary antibodies (Thermo Fisher Scientific) and mounted 827 
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with vectashield containing DAPI (Vector laboratories). Random 63x fields of all cultures were 828 

imaged using identical settings on a Zeiss Observer Spinning Disk Confocal microscope 829 

equipped with diode lasers (405nm, 488nm, 594nm, 647nm) and Zen Blue acquisition software 830 

(Zeiss). For unbiased quantification of Mbp puncta, signals were co-localized to Iba1+ microglia 831 

blind to treatment of the samples and the number of total puncta as well as signals associated 832 

with microglia nuclei (0.5µm distance from the nucleus) were determined using ImageJ (NIH). 833 

Moreover, 630x z-stacks were acquired with 35-50 steps at 0.22 µm spacing and processed in 834 

Imaris (Bitplane, Switzerland) to 3D surface render engulfed signals as previously described. 835 

RNA isolation and quantitative reverse transcriptase polymerase chain reaction 836 

Total RNA from microglia was extracted using TRIzol (Life Technologies) acco52rding to 837 

manufacturer’s recommendations. 500 ng total RNA samples were transcribed into cDNA using 838 

Power SYBR™ Green Cells-to-CT Kit (Thermo Fisher Technologies) according to 839 

manufacturer’s instructions. Relative Cd163 and P2ry12 expression was determined by 840 

quantitative polymerase chain reaction (qPCR) in relation to Gapdh housekeeping gene 841 

expression using the following forward (F) and reverse (R) primers: 842 

Cd163-F: GGGTCATTCAGAGGCACACTG 843 

Cd163-R: CTGGCTGTCCTGTCAAGGCT 844 

P2ry12-F: GTTCTACGTGAAGGAGAGCA  845 

P2ry12-R: CTACATTGGGGTCTCTTCGC 846 

Gapdh-F: TGTCCGTCGTGGATCTGAC 847 

Gapdh-R: CCTGCTTCACCACCTTCTTG 848 

Human tissue sampling for primary human microglia assays 849 
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Human brain tissue was obtained with informed consent under protocol REC 16/LO/2168 850 

approved by the NHS Health Research Authority. Adult human brain tissue was obtained from 851 

three biopsies (age 17, male, diffuse axonal injury, right frontal lobe; age 61, male, unruptured 852 

cerebral aneurysm, right gyrus rectus; age 70, male, normal pressure hydrocephalus, right 853 

parietal lobe) taken from the site of neurosurgery resection for the original clinical indication. 854 

Tissue was transferred to Hibernate A low fluorescence (HALF) supplemented with 1x SOS 855 

(Cell Guidance Systems), 2% Glutamax (Life Technologies), 1% P/S (Sigma), 0.1% BSA 856 

(Sigma), insulin (4g/ml, Sigma), pyruvate (220 g/ml, Gibco) and DNase 1 Type IV (40 g/ml, 857 

Sigma) on ice and transported to a dedicated BCL 2 laboratory.  858 

Dissociation of human brain tissue and purification of human microglia 859 

Brain tissue was mechanically digested in fresh ice-cold HALF supplemented with 1x SOS (Cell 860 

Guidance Systems), 2% Glutamax (Life Technologies), 1% P/S (Sigma), 0.1% BSA (Sigma), 861 

insulin (4g/ml, Sigma), pyruvate (220 g/ml, Gibco) and DNase 1 Type IV (40 g/ml, Sigma). The 862 

prepared mix was spun in HBSS+ (Life Technologies) at 300g for 5 mins and supernatant 863 

discarded. The digested tissue was rigorously triturated at 4°C and filtered through a 70µm nylon 864 

cell strainer (Falcon) to remove large cell debris and undigested tissue. Filtrate was spun in a 865 

22% Percoll (Sigma) gradient with DMEM F12 (Sigma) at 800g for 20 minutes. Supernatant was 866 

discarded and the pellet was re-suspended in ice cold supplemented HALF. The isolated cell 867 

suspension was incubated with anti-CD11b conjugated magnetic beads (Miltenyi) for 15 minutes 868 

at 4°C. Cells were washed twice with supplemented HALF and passed through an MS column 869 

(Miltenyi). Each sample was washed three time in the column and then extracted. Cells were 870 

plated in DMEM F12 with 10% foetal bovine serum and 0.1% Macrophage colony-stimulating 871 
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factor (M-CSF). Note that incubators for all cell culture incubators are regularly tested for 872 

mycoplasma contamination. 873 

Mbp and Plp1 RNA hybridization on primary mouse microglia 874 

Purified rat brain myelin extracts from three biological replicates were diluted to 1 mg/mL (total 875 

protein) in 0.1 M sodium bicarbonate buffer, pH 8.3 in a volume of 100 µl. The pH sensitive 876 

fluorescent dye succinimidyl ester known as pHrodoRed (Thermo Fisher) was added from a 10 877 

mM stock in DMSO to a final of 100 µM to each myelin extract for 45 minutes at room 878 

temperature. Samples were centrifuged for 30 minutes at 17,000x g at 4°C and the supernatant 879 

discarded. The labelled myelin pellets were resuspended in 100 µl of 0.1 M sodium bicarbonate 880 

buffer, pH 8.3 to a final of 1mg/ ml of protein and 1.5 µl added to wells of human microglia in 881 

24 well glass bottom plate (Cellvis) for phagocytosis over 18 hours. The next day, the cells were 882 

washed twice with PBS before fixation with 4% PFA at room temperature for 10 minutes and 883 

washing with PBS. 884 

Cells were manually stained for RNA using RNAScope using a modified automated procedure 885 

for the Leica BOND RX (Leica). Fixed cells were washed twice with BOND wash solution 886 

(Leica) before antigen retrieval with BOND Epitope Retrieval Solution 2 (Leica) at 95°C and 887 

allowed to cool to room temperature, and followed by three washes with BOND wash. Cells 888 

were permeabilized with 0.5x RNAScope 2.5 LS Protease III (Biotechne) in PBS at 37°C for 5 889 

min, followed by cold BOND wash (40°C) and then two more BOND washes at room 890 

temperature. Endogenous peroxidase activity was quenched with RNAScope 2.5 LS Hydrogen 891 

Peroxide (Biotechne) for 10 minutes and followed by two more BOND washes. RNAScope 892 

probes for mouse Mbp (Biotechne) and Plp-1 (Biotechne) were diluted 1:50 in C1 probe. Mbp 893 

and Plp-1 probes were amplified using sequential treatments with RNAScope LS Multiplex 894 
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AMP 1, 2 and 3 (Biotechne) for 30 minutes at 42°C with BOND washing and RNAScope 2.5 LS 895 

Rinse Reagent (Biotechne) for 5 minutes each between each amplification step. Probe channel 896 

C2 for Mbp was fluorescently developed using RNAScope Multiplex HRP-C2 (Biotechne) for 897 

15 minutes at 42°C, followed by BOND washes and incubation with tyramide-conjugated Opal 898 

520 dye at 1: 2,500 (Perkin Elmer) for 30 minutes followed with two more BOND washes. 899 

Residual HRP activity was quenched with RNAScope LS Multiplex HRP Blocker (Biotechne) 900 

for 15 minutes at 42°C, followed by BOND washes. Probe channel C3 for Plp-1 was developed 901 

as for C2 but using RNAScope LS Multiplex HRP-C3 (Biotechne) and Opal 650 dye at 1:2,500 902 

(Perkin Elmer, UK) and followed by RNAScope LS Multiplex HRP Blocker (Biotechne) with 903 

BOND washing. Staining of LMNA/C (Laminutes A/C) was done after RNAScope development 904 

by incubating cells with mouse anti-porcine Laminutes A/C antibody (Insight Biotechnology, 905 

UK) at 1:200 and rabbit anti-Iba1 biotin conjugated antibody at 1:200 for 60 minutes at RT. 906 

Excess primary antibodies were washed away with BOND wash and cells incubated goat anti-907 

mouse IgG2B AlexaFlour 350 at 1:500 and streptavidin-conjugated AlexaFlour 700 at 1:1,000 908 

for 60 minutes at RT. Cells were wash three times in BOND wash and twice in PBS before 909 

imaging on an Operetta CLS (Perkin-Elmer) spinning disk confocal microscope. 910 

Image acquisition and analysis of human IHC and ISH experiments 911 

Bright field images were acquired on Zeiss Axio Imager 2 and Leica DMi8 microscopes 912 

equipped with Zeiss Axiocam 512 color and Leica DMC5400 cameras. Fluorescent images were 913 

taken using Leica TCS SP8 and TCS SPE laser confocal and DMi8 widefield (equipped with 914 

Leica DFC7000 GT camera) microscopes with either 10x, 20x, 40x or 63x objectives; all 915 

fluorescent confocal pictures are Z-stack images, unless stated otherwise. High-resolution FISH 916 

images of human tissue sections were acquired on a spinning disk Operetta CLS (Perkin Elmer) 917 
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in confocal mode using a sCMOS camera and a 40X NA 1.1 automated-water dispensing 918 

objective. The field-of-view was 320 x 320 µm and voxel size 0.3 x 0.3 x 1 µm. Each field was 919 

imaged as a z-stack consisting of 20 to 30 planes with a 1 µm step size. z-heights of tissue 920 

sections were manually identified by imaging DAPI on sample fields prior to tissue-wide scans. 921 

Each z-plane was imaged across 5 channels depending on the experiment with exposure between 922 

60 and 120 ms at 90% LED power. 3D projections were generated using raw imaging data in 923 

Volocity 6.3 software (Perkin Elmer). Images were processed using Fiji ImageJ or Photoshop 924 

software (Adobe) and exported to Illustrator vector-based software (Adobe) for figure 925 

generation. 926 

Statistical Analysis 927 

Data are presented as mean ± standard error of mean (SEM). Analyses were performed using 928 

two-tailed parametric or non-parametric (Mann-Whitney, Kruskal-Wallis) t-tests for two groups 929 

and if applicable, one-way ANOVA with corresponding post-hoc tests for multiple group 930 

comparisons. P values were designated as follows: *p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001, **** p 931 

≤ 0.0001. Analyses were performed using GraphPad Prism (GraphPad Software). 932 

 933 

Data Availability 934 

All raw snRNA-seq data (fastq files) were deposited to the Sequence Read Archive (SRA), 935 

accession number PRJNA544731 (NCBI Bioproject ID: 544731).  936 
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Extended Data Figure legends 967 

Extended Data Fig. 1. Sample and disease contribution of cell types captured by snRNA-968 

seq. (a) Representative images selected from nuclei suspensions (ctrl, n=9; MS, n=12) after 969 

ultracentrifugation and before capturing by 10X Genomics confirming DAPI nuclear 970 

counterstaining with presence of smaller and larger DAPI+ nuclei. Note that larger nuclei are co-971 

stained with anti-NeuN antibody confirming neuronal origin (white arrowheads). (b) Colored t-972 

SNE plots showing numbers of genes (left) and UMIs (right) per captured nuclei from control 973 

and MS samples. (c) Colored t-SNE plot visualizing nuclei from different lesion stages based on 974 

classic pathological MS lesion staging. (d) Colored t-SNE plots visualizing nuclei from samples 975 

with different levels of upper and deep layer cortical demyelination as well as subcortical 976 

demyelination. (e) Representative tSNE plots with cell-type specific marker genes for OL 977 

progenitor cells, stromal cells including pericytes, endothelial cells, and leukocytes. For tSNE 978 

plots, data shown from 9 control and 12 MS samples and a total of 48,919 nuclei. 979 

 980 

Extended Data Fig. 2. Molecular changes in cortical neuron subtypes in MS lesions. (a) 981 

NORAD and PPIA expression patterns in cortical neurons and selected glial subtypes. Note 982 

baseline expression of NORAD and PPIA in neuronal versus glial subtypes and preferential 983 

upregulation of both NORAD and PPIA in upper cortical layer excitatory neurons (EN-L2-3 and 984 

EN-L4) in MS lesion tissue versus deep cortical layer excitatory and inhibitory neurons (EN-L5-985 

6 and IN-SST). For all tSNE and violin plots, data are shown from 9 control and 12 MS samples. 986 

For tSNE plots, data from 48,919 nuclei are shown. For EN-L2-3, EN-L4 and EN-L5-6 violin 987 

plots, data shown from 6,120, 3,125 and 3,058 nuclei. Box plots inside violin plots represent 988 

median and standard deviation of gene expression. (b) Visualization of enriched GO terms in 989 
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EN-L2-3, EN-L4 and EN-L5-6 cells based on differential gene expression analysis (linear mixed 990 

model regression). Binomial test with FDR correction was utilized to calculate FDR-corrected p 991 

values using genes differentially expressed in EN-L2-3, EN-L4 and EN-L5-6 nuclei (n= 428, 992 

364 and 327). 993 

 994 

Extended Data Fig. 3. Cortical neuron and lymphocyte subtype analysis in MS lesions. (a) 995 

tSNE plots for neuron subtype specific expression of RORB, THY1, NRGN, SST, SV2C and 996 

PVALB (left). LaST (ctrl, n= 5) showing layer-specific expression of neuronal RORB in 997 

intermediate cortical layer 4 and widespread expression of pyramidal neuron marker THY1 with 998 

enrichment in layer 5; note that SST-expressing interneurons preferentially map to deep cortical 999 

layers. Co-expression studies (ctrl, n= 5) with SYT1 confirm neuronal expression of RORB, 1000 

THY1 and SST (black arrowheads). (b) Heatmap with hierarchical clustering of lymphocyte-1001 

associated transcripts allowing sub clustering of lymphocytes in T cells, B cells and plasma cells 1002 

based on marker gene expression (upper left). tSNE plots for typical B/plasma cell and T cell 1003 

marker genes enriched in lymphocyte clusters (upper right). IHC for T cell marker SKAP1 1004 

(black arrowheads mark SKAP1+ T cells) together with spatial transcriptomics for B cell-1005 

associated IGHG1 encoding immunoglobulin G1 (IgG1) (magenta-colored arrowheads; lower 1006 

left); note preferential clustering of plasma cell-associated MZB1+ and IGHG1-expressing B 1007 

cells (white arrowheads, lower right) in inflamed meningeal tissue versus mixed T and B cell 1008 

infiltration in perivascular cuffs of subcortical lesions (lower panels). One caveat to these 1009 

findings is the relatively small number of MS cases samples, which limited our ability to cluster 1010 

T cell populations.  For tSNE plots (a, b) and hierarchical clustering (b), data shown from 9 1011 

control and 12 MS samples. For tSNE plots, data shown for all 48,919 nuclei; for hierarchical 1012 
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clustering, data shown from 53 nuclei in the B cell cluster. For ISH and IHC experiments in b, 1013 

representative images shown from individual tissue sections (ctrl, n= 4; MS, n= 7). 1014 

 1015 

Extended Data Fig. 4. Astrocyte and oligodendrocyte cluster analysis and spatial 1016 

transcriptomics in MS lesions. (a) Differential spatial expression patterns of astroglial GFAP in 1017 

subcortical versus cortical demyelination by IHC (left); tSNE plots visualizing astrocyte specific 1018 

genes corresponding to all (RFX4) protoplasmic (SLC1A2, GPC5) and fibrous/reactive astrocytes 1019 

(GFAP, CD44). Quantification of RFX4+ ISH signals per nuclei in GM and WM of control 1020 

samples validates RFX4 as a canonical astrocyte marker (ctrl, n= 5); quantification of GPC5+ 1021 

and CD44+ ISH signals per RFX4+ astrocytes confirms validates GPC5 as protoplasmic GM and 1022 

CD44 as fibrous WM marker. Two-tailed Mann-Whitney tests were performed. Data presented 1023 

as mean ± SEM.  (b) Upregulation of astroglial CRYAB, MT3 (black arrowheads) and endothelin 1024 

type B receptor transcript EDNRB (white arrowhead) in reactive astrocytes in subcortical lesions. 1025 

(c) tSNE plots showing OL-specific expression of myelin genes MBP, CNP and transcription 1026 

factor ST18; note co-expression of ST18 with PLP in control WM by ISH. (d) Visualization of 1027 

enriched GO terms in myelinating OLs based on differential gene expression analysis. Binomial 1028 

test with FDR correction was utilized to calculate FDR-corrected p values using 151 genes 1029 

differentially expressed in OLs. (e) Co-expression spatial transcriptomic studies confirming 1030 

upregulation of heat shock protein 90 transcript HSP90AA1 in both progenitor (PDGFRA-1031 

expressing) and myelinating (PLP1-expressing) OLs at lesion rims (PPWM, black arrowheads). 1032 

For tSNE and violin plots, data shown from 9 control and 12 MS samples. For astrocyte violin 1033 

plots, 1,571 control and 3,810 MS nuclei are shown. Box plots inside violin plots represent 1034 
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median and standard deviation of gene expression. For ISH and IHC experiments, representative 1035 

images from  from 3 control and 4 MS individual tissue sections are shown. 1036 

 1037 

Extended Data Fig. 5. Cluster analysis of activated and phagocytosing microglia subtypes. 1038 

Hierarchical cluster analysis identifies several homeostatic and activated MS-specific microglia 1039 

subtypes according to inflammatory lesion stages allowing transcriptomic staging of microglia 1040 

subtypes. Clusters with enriched genes are marked and annotated a-f (see Supplementary Table 1041 

8 for gene list). Note that phagocytosing cells are identified by presence of OL/myelin genes 1042 

(cluster “f” on bottom of heatmap). 1043 

 1044 

Extended Data Fig. 6. PCR for rat Mbp from myelin preparation. (a) Representative 1045 

Coomassie stain of brain homogenate (Hom.) and purified myelin (P.M.) from adult rat brain 1046 

(left). Western blots for myelin basic protein (Mbp), myelin oligodendrocyte glycoprotein 1047 

(Mog), synaptophysin (Syp) and neurofilament heavy molecular weight (NF-H) (center). PCRs 1048 

of myelin basic protein (Mbp) and synaptophysin (Syp) transcripts in brain homogenate and 1049 

purified myelin fractions (right). (b) Densitometric quantification of myelin and homogenates 1050 

prepared from n= 4 independent rat hemispheres for Coomassie (total protein), Western blot 1051 

proteins and PCRs shown in (a) of purified myelin fractions normalized to their respective 1052 

homogenates. Data is shown as median and error bars ± standard error of the mean of the 4 1053 

biological replicates. Similar results were obtained with Hom. and P.M. fractions not used in this 1054 

study. P values calculated from Students’s two tailed t-test with Welch's correction and p values 1055 

less than 0.05 considered significant.  1056 
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