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 We argue such decline may be linked to the development of the Kingdom of Kush. 
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38 Abstract 

39 This paper seeks to contribute to the growing knowledge of iron production in ancient Sudan by 

40 examining the technology and craft organisation involved in the production of technical ceramics, 

41 which were integral to the iron smelting process. The focus of this study are the technical ceramics 

42 including tuyères, furnace linings, and furnace bricks, recovered from various slag heaps located at the 

43 archaeological sites of the Royal City of Meroe and the Meroitic town site of Hamadab. We used 



44 macroscopic examination and thin-section petrography to identify the source of raw materials and 

45 methods used in preparing the raw materials, to characterise the level of craft specialisation, and to 

infer 

46 the broader socio-political developments that might have influenced how the production of technical 

47 ceramics was organised. The resulting data reveal that changes occurred within the production of 

48 technical ceramics throughout different periods of Kushite history (traditionally divided into Napatan 

49 and Meroitic) and during the post-Meroitic period, and we argue that the observed changes might 

have 

50 been related to the rise and fall of the Kingdom of Kush. The production of technical ceramics was 

51 marked by clear distinctions in raw materials and paste preparation methods used for different types of 

52 technical ceramics, and a high degree of compositional and technological homogeneity within each 

type 

53 of technical ceramic during the Napatan and earlier Meroitic periods, coinciding with the time when 

54 Kush rose to and was at the height of its power. The production of technical ceramics appears to have 

55 exhibited more diversity in terms of the raw materials and paste preparation methods and lower degree 

56 of homogeneity during the later and post-Meroitic periods when the economic and political influence 

57 and power of the Kingdom of Kush is described as declining and ultimately ceasing to exist. Perhaps 

58 the most drastic change in the production of technical ceramics took place in the post-Meroitic period, 

59 which was characterised by lower level of specialisation, as well as the possibility of using a different 

60 technological approach to iron smelting. 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 Keywords: Technical ceramics; iron production; Sudan; African archaeology; macroscopic 

72 examination; thin-section petrography 

73 
74 
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75 1. Introduction 

76 Iron production is argued to have been a crucially important technology for the Kingdom of Kush, 

77 which lasted from at least the 8th century BC to the 4th century AD (Haaland, 2014: 658; Humphris, 

78 2014; Humphris and Rehren, 2014; Shinnie, 1985; for a background to the Kingdom of Kush see 

79 Török, 1997; Welsby, 1996). Kushite iron production is also argued to have had significant 

implications 

80 on the origin of iron metallurgy in sub-Sahara Africa (Childs and Killick, 1993; Killick, 2015: 310-

311; 

81 Shinnie and Kense, 1982). However, our present understanding of the nature and scale of Kushite iron 

82 production, based on the results of a few previous studies, is far from conclusive (Garstang et al., 

1911; 



83 Rehren, 1995, 1996, 1997, 2001; Rehren et al., 1995; Shinnie, 1985; Shinnie and Kense, 1982; 

Trigger, 

84 1969; Tylecote, 1970, 1982). Against this background, UCL Qatar’s archaeometallurgical research 

was 

85 initiated to fill important research gaps in current understandings of iron production during different 

86 periods of Kushite history by using a multidisciplinary approach (Humphris, 2014; Humphris and 

87 Carey, 2016; Humphris and Rehren, 2014; Charlton and Humphris, forthcoming; Humphris and 

88 Scheibner, forthcoming). Working within this framework, the investigation presented here was 

89 dedicated to the examination of the production of technical ceramics, which were integral to the iron 

90 production processes. This study, therefore, serves to differ from previous Nubian ceramic analyses, 

91 which largely centered on domestic pottery and/or fine-ware ceramics, by placing our emphasis on 

92 technical ceramics (cf. Brand, 2016; Carrano et al., 2009a, 2009b; Daszkiewicz and Schneider, 2011; 

93 Daszkiewicz et al., 2005; Dittrich, 2010; Edwards, 1999; Mason and Grzymski, 2009; Smith, 1991, 

94 1995, 1996, 1997, 1999). This study also serves to deviate from past technical ceramic 

characterisation 

95 works, which focused mostly on their refractory properties, by exploring the technology and craft 

96 organisation involved in technical ceramic production. In order to address these aspects of production, 

97 we focused on the technical ceramics recovered from slag heaps situated at two key Kushite 

98 settlements: the Royal City of Meroe (Shinnie and Anderson, 2004) and the Meroitic town-site of 

99 Hamadab (cf. Wolf and Nowotnick, 2013; Wolf, 2015). We used macroscopic examination and thin- 

100 section petrography to examine the technical ceramics so as to characterise the sources of raw 

materials 

101 and methods used in preparing the raw materials. The resultant compositional and technological 

102 variability enabled us to identify the technical practices and choices made by ancient producers, and 

to 

103 highlight the level of craft specialisation in relation to iron production. Ultimately, we aimed at 

104 inferring to the socio-political developments of the Kingdom of Kush in which the production of 

105 technical ceramics was organised. 

106 
107 2. Background 

108 2.1. Technical ceramics 

109 ‘Technical ceramics’ here refer to ceramic materials that were used for ferrous-technical purposes as 

110 opposed to domestic pottery and fine-ware ceramics (Chirikure and Rehren, 2004: 145; Martinón- 

111 Torres and Rehren, 2014: 109-110; Veldhuijzen, 2005). We examined a wide range of technical 

4 

112 ceramics, including tuyères, furnace lining and furnace bricks, and furnace materials (Fig. 1). 

Tuyères 

113 are the blowpipes that were made of clay to supply and regulate airflow direction and quantity from 

the 

114 bellows to the furnace. Furnace linings are the additional layer of ceramic materials attached to the 

115 interior surface of the furnace. Furnace bricks are the blocks or slabs of ceramic materials that were 

116 used to build the furnace. Furnace materials refer to the ceramic materials that belong to be a part of 

the 

117 furnace structure and display varying degree of vitrification but cannot be firmly placed into the 

118 category of furnace bricks or furnace linings. 

119 



120 
121 Figure 1. Examples of technical ceramic remains (from left to right): tuyère fragments, furnace 

lining, 

122 furnace brick, and furnace material. 

123 
124 2.2. Archaeological Contexts 

125 The technical ceramic remains, together with fragments of slag, iron ore and charcoal, are among the 

126 primary constituents of slag heaps, which are found in abundance within the landscape of certain 

127 ancient Kushite settlements. The technical ceramics included in this study were recovered from 

trenches 

128 excavated in the following slag heaps: MIS (Meroe Iron Slag) 1/2, MIS2, MIS4, and MIS6 of the 

Royal 

129 City of Meroe, and slag heaps 100-200, 300 and 800 of Hamadab (Fig. 2). Calibration of 

radiocarbon 

130 dates of the slag heaps suggests that they were dated to various phases of the Kushite and post-

Meroitic 

131 periods (Table 1; periodisation after Török, 2015). In this study, we use the traditional sub-division 

of 

132 Kush into two major periods, the earlier Napatan period from the beginning of the Kingdom until the 

133 Meroitic period, which runs from ca. 280 BC to AD 350, although we recognise this division is 

134 currently under critique; the term ‘Kushite period’ is used here to subsume both the Napatan and 

135 Meroitic periods. Hence, an examination of technical ceramic remains recovered from these slag 

heaps 

136 allows us to trace the development of technical ceramic production during the Kushite period and 

137 beyond. 
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138 
139 Figure 2. Left: Sudan, with Khartoum marked as the blue star and Meroe and Hamadab (3km apart), 

140 marked as the red star; Middle: The Royal City of Meroe with all slag heaps shown in red and the 

ones 

141 mentioned in this study labelled; Right: The slag heaps investigated at the Meroitic settlement of 

142 Hamadab shown in red. 

143 
Site Location Calibrated dates Period 

MIS4 ca. 8th – 2nd century BC Napatan to earlier Meroitic 

periods 

MIS2 ca. 5th – 2nd century BC Napatan to earlier Meroitic 

periods 

MIS1/2 ca. 4th – 1st century BC Napatan to earlier Meroitic 

periods 

Meroe 

MIS6 ca. 2nd – 6th century AD Meroitic to post-Meroitic 

300 ca. 3rd – 6th century AD Later Meroitic to post-Meroitic 

Hamadab 100–200 ca. 4rd – 6th century AD Later Meroitic to post-Meroitic 

800 ca. 4th – 6th century AD post-Meroitic 

144 Table 1. The calibrated, modelled radiocarbon dates and equivalent archaeological periods of the 

slag 

145 heaps, where the technical ceramics were recovered and included in this study (after Humphris and 

146 Scheibner, forthcoming). 



147 
148 2.3. Geological Setting 

149 Most of the Sudan is underlain by Precambrian metamorphic and intrusive basement rocks, with 

large 

150 areas being overlain by sedimentary cover rocks summarised as the so-called ‘Nubian Sandstone’ 

151 (Geological Map of the Sudan, 1981). The Nile, with its two main tributaries – the White Nile and 

Blue 

152 Nile – merging at Khartoum, runs through the region. The Atbara River, with its headwaters in 

153 Ethiopia, enters the main river system about 300km north of Khartoum. The three tributaries have 

154 distinct mineralogical composition, thus contributing to the variation in the mineralogical 

composition 

155 of the confluence area (Garzanti et al., 2006). The White Nile carries rounded monocrystalline 

quartz 

156 with small amount of feldspar, the sediments of the Blue Nile contain mostly mafic volcanic grains, 

K- 

157 feldspar, and biotite, and the Atbara River contributes volcanic rock fragments, augite, and olivine. 

The 
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158 Nile alluvium in the areas north of the confluence is described as more homogeneous, containing 

159 mineral suites of quartz, feldspars, amphiboles, clinopyroxenes, mica, rounded fragments of basic 

160 volcanic rock, and phytoliths of vegetation, which are mainly produced from weathering of the 

basaltic 

161 Ethiopian Highlands (Mason and Grzymski, 2009). In spite of their apparent homogeneity in the 

162 mineralogical composition, the grain size of the sediments is described to have decreased with 

distance 

163 from the confluence area (Eisawi et al., 2015: 310). 

164 
165 The archaeological sites of the Royal City of Meroe and Hamadab are both located along the eastern 

cut 

166 banks of the Nile: Meroe is situated ca. 150km north of Khartoum and Hamadab ca. 3km south of 

167 Meroe. The geology of both sites is characterised by the presence of the Nile alluvium as described 

168 above. In addition to the Nile alluvium, the areas to the north and east of the sites are underlain by 

169 granitic gneisses, amphibolites, and hornblende gneisses, with outcrops of granites and basic 

volcanic 

170 rocks. The areas to the south and west of the sites are underlain by sand- and mudstones of the 

Shendi 

171 Formation, the local stratigraphic unit of the ‘Nubian Sandstone’ (Eisawi et al., 2015: 316-317). 

172 Deposits of kaolinitic clays are interbedded with sandstone in the Shendi Formation (Eisawai et al., 

173 2015: 316-317; Robertson, 1992). The geomorphology of the region is also influenced by the 

seasonal 

174 wadi drainage systems such as Wadi el-Hawad and Wadi Hadjala, which have the effect of 

transporting 

175 and sorting sediments to the Nile (Wolf, 2015). We acknowledge that the above description of the 

176 geology of the areas surrounding the sites is somewhat generalised, and that more detailed 

description 

177 of the variation in the mineralogical composition specific to the sites will require the execution of 

178 systematic geological surveying of the region, which is an ongoing effort of the project. 



179 
180 3. Methods 

181 Macroscopic examination and thin-section petrography were used to examine the technical ceramics 

in 

182 this study. Macroscopic examination was carried out to document traits such as shape, dimension 

and 

183 fabric composition of the technical ceramic assemblages, and to select samples for further analysis. 

184 Noteworthy is the inherent limitation in the archaeological sampling of tuyères, furnace linings, 

furnace 

185 bricks and furnace materials owing to their fragmentary nature. A stratified sampling strategy was 

186 applied to select tuyère samples to ensure the selected samples are representative of the variation that 

187 exists within the assemblages, as well as the variation through time and across the sites. The tuyère 

188 fragments were divided into macroscopic fabric groups based on variation in fabric colour, size and 

189 relative abundance of inclusions. Within each macroscopic fabric group, the fragments were further 

190 divided into subgroups according to their context of recovery, diagnostic features (i.e. nozzle end) 

and 

191 shape. Diagnostic fragments were selected from each subgroup, and in case no diagnostic fragment 

was 

192 present in the subgroup, non-diagnostic fragments were chosen instead. The application of the same 

193 criteria on selecting furnace lining samples was challenged by the lack of variation observed in their 

194 macroscopic fabric composition. Sampling of furnace brick and furnace material samples was 

equally 
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195 challenging because the macroscopic composition of furnace bricks and furnace materials appears to 

be 

196 different from fragment to fragment, making it difficult to place the samples into macroscopic fabric 

197 groups. Thus, the furnace lining, furnace brick, and furnace material samples were chosen according 

to 

198 their contexts of recovery to ensure that the composition and technological characteristics of 

different 

199 phases of Kushite and post-Meroitic periods were represented. In total, 70 tuyère, 25 furnace lining, 

17 

200 furnace brick, and 10 furnace material samples were selected for petrographic analysis (Table 2). 

201 
Site Location No. of tuyères No. of furnace lining No. of furnace 

bricks 

No. of furnace 

materials 

MIS4 6 9 2 n/a 

MIS2 3 1 n/a n/a 

Meroe MIS1/2 6 1 1 n/a 

MIS6 21 14 14 n/a 

100–200 26 n/a n/a 7 

Hamadab 300 3 n/a n/a 2 

800 5 n/a n/a 1 

202 Table 2. The quantity of tuyère, furnace lining, furnace brick, and furnace material samples selected 

203 from each slag heap at Meroe and Hamadab for petrographic analysis. 

204 
205 Since our focus is on the raw materials and methods used in making the technical ceramics rather 

than 



206 their refractory properties, thin-section petrography is the ideal method, as it has been readily used to 

207 examine the production of domestic pottery and/or fine-ware ceramics in the region; thus making our 

208 data comparable with other ceramic studies (cf. Brand, 2016; Carrano et al., 2009b; Daszkiewicz and 

209 Bobryk, 2003; Daszkiewicz and Schneider, 2011; Mason and Grzymski, 2009; Smith, 1991, 1996, 

210 1997, 1999). Thin-section petrography characterises the composition of technical ceramic samples 

by 

211 identifying their mineralogical constituents. By comparing the mineralogical constituents with local 

212 geological data, it has also made possible to establish the potential provenance of raw materials used 

in 

213 making technical ceramics. This analytical technique also sheds light on the technology used to 

make 

214 technical ceramics – especially paste preparation method and the level of standardisation involved – 

by 

215 characterising the relative and overall abundance, grain size, shape, and sorting of their inclusions 

216 (Freestone, 1991; Quinn, 2013; Whitbread, 1995). We argue that the variation in mineralogical 

217 composition and technological traits of the fabrics represents the presence of different ceramic 

pastes, 

218 each of which was unique to particular producers or production groups. The thin-section samples 

were 

219 prepared and analysed at the Laboratories of Archaeological Material Sciences at UCL Qatar. 

220 Estimation of the relative abundance of inclusions was made with reference to the percentage chart 

221 developed by Matthew et al. (1991). 

222 
223 4. Results 

224 4.1. Tuyères 
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225 Macroscopically, where shape is identifiable, the majority of tuyères are cylindrical, but with 

varying 

226 external diameter, bore diameter, and wall thickness. Three variants – cylindrical shape, cylindrical 

227 shape with thin wall, and cylindrical shape with thick wall – were identified (Fig. 3a). In addition to 

the 

228 cylindrical shape, some tuyères are square in shape with circular bore (Fig. 3b). It is interesting to 

note 

229 that correlations exist between the shapes of tuyères and their context of recovery. Cylindrical 

tuyères 

230 with thin wall occur in greater frequency in MIS1/2 and MIS2, whereas square-shaped tuyères are 

231 associated with MIS4. Cylindrical tuyères with thick wall were only found in MIS6, although the 

232 presence of tuyères of other shapes is also common in MIS6. The tuyères recovered from Hamadab 

are 

233 mostly cylindrical shaped, with a few square-shaped ones. The tuyères of same shape class 

recovered 

234 from each context are relatively homogenous in terms of their dimensions (Table 3). 

235 
236 
237 Figure 3. Different shapes of tuyères identified: (a) (from left to right) cylindrical with thin wall, 

238 cylindrical, and cylindrical with thick wall, and (b) square-shaped. 

239 



External diameter Bore diameter Wall thickness 

Location Tuyère 

shape max. 

(cm) 

min. 

(cm) 
mean 

(cm) 

s.d. 
(cm) 

r.s.d. 

(%) 
max. 

(cm) 

min. 
(cm) 

mean 

(cm) 
s.d. 

(cm) 

rsd 
(%) 

max. 

(cm) 
min. 

(cm) 

mean 
(cm) 

s.d. 

(cm) 
r.s.d. 

(%) 

MIS4 Square (n=4) 6.2 5.1 5.6 0.5 9 3.9 2.0 2.7 1.0 39 2.3 1.7 2.1 0.3 14 

MIS2 

Cylindrical 

with thin 

wall (n=3) 

4.3 3.4 3.9 0.5 12 2.0 1.9 2.0 0.1 3 1.0 0.9 1.0 0.1 6 

MIS1/2 

Cylindrical 

with thin 

wall (n=3) 

4.2 4.0 4.1 0.1 2 2.2 1.9 2.1 0.8 1 1.3 1.1 1.2 0.1 10 

Cylindrical 

(n=9) 6.1 4.2 5.4 0.7 13 3.8 2.2 3.2 0.7 21 2.0 1.4 1.8 2.0 13 

Cylindrical 

with thick 

wall (n=4) 

MIS6 6.4 6.1 6.2 0.1 2 3.6 2.4 3.2 0.7 22 3.5 2.0 2.8 0.3 15 

Square (n=6) 6.2 5.5 5.9 0.3 5 3.8 2.2 3.3 0.6 19 2.2 1.6 1.9 0.2 12 

Cylindrical 

Hamadab* (n=21) 6.5 5.1 5.7 0.5 8 3.9 2.1 3.1 0.5 17 2.3 1.1 1.7 0.3 19 

Square (n=4) 5.9 5.3 5.6 0.3 5 3.9 3.2 3.7 0.4 11 2.3 1.6 1.9 0.3 17 

240 Table 3. The maximum value (max.), minimum value (min.), mean, standard deviation (s.d.), and 

241 relative standard deviation (r.s.d.) of external diameter, bore diameter, and wall thickness of different 

242 tuyère shapes by their context of recovery. Measurements were made on larger pieces of sample with 

a b 
9 

243 identifiable shape. *Note that the tuyères from Hamadab were measured altogether as the slag heaps 

244 have similar calibrated radiocarbon dates. 

245 



246 On the microscopic level, the petrographic data reveal that the majority of samples (n=64) have 

quartz 

247 grains as the principal type of inclusion. These samples are further divided into four subgroups, 

248 primarily based on the variation in paste preparation methods, even though the differences in 

249 mineralogical composition and textural characteristics are also taken into consideration. Quartz 

250 Subgroup A (n=32) stands out from other subgroups for its fine-grained fabric, consisting of 10 to 

15% 

251 of quartz and less than 3% of plagioclase feldspar, biotite, amphibole, and Fe-rich nodules in non- 

252 calcareous clays (Fig. 4a). The inclusions are homogeneous in grain size, as well as in shape and 

253 sorting. They measure between <0.05mm and 1.1mm with a mode size of 0.1mm. The mineralogical 

254 constituents of these samples are consistent with the Nile alluvium, pointing to the use of local raw 

255 materials in making the tuyères of Subgroup A. Impression of plant fiber (<1%) is identified, but 

only 

256 in a few samples (Fig. 4b). Whereas the plant fiber could have occurred naturally in the Nile clay, it 

is 

257 also possible that plant materials might have been added to the clay as temper, as is evidenced by the 

258 presence of elongated pores, accounting for approximately 3% of the matrix. The use of organic 

259 materials, which would have burnt out and left voids during use, is argued to have the effect of 

260 increasing technical ceramics’ resistance to potential fractures due to sudden temperature changes 

261 (Martinón-Torres and Rehren, 2014: 123). This refractory property is of particular importance in 

262 making tuyères because they would have been exposed to higher temperatures when projected into 

the 

263 furnace close to the combustion zone (Freestone, 1989: 156). 

264 
265 
266 

a b c 

d e f 
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267 Figure 4. Photomicrographs showing the fabric of (a) Quartz Subgroup A, (b) impression of plant 

fiber 

268 of a sample from Subgroup A (indicated by arrow), (c) Quartz Subgroup B, (d) Quartz Subgroup C, 

(e) 

269 Quartz Subgroup D, and (f) the Kaolinite-tempered Group (kaolinite fragments indicated by arrows). 

270 All photomicrographs were taken in XP at x50 magnification. 

271 
272 The remaining subgroups all exhibit evidence of clay mixing, but each with a different method 

applied. 

273 Quartz Subgroup B (n=13) is marked by the addition of clay pellets to clays (Fig. 4c). The clay 

pellets 

274 have fine-grained quartz inclusions and clear boundaries, which occur in a wide range of sizes 

(0.1mm 

275 to 4.5mm and no clear mode size), relative abundance (5% to 10%) and sorting. The clay pellets 

were 

276 added to non-calcareous clay, consisting of approximately 5% of fine-grained quartz and less than 

3% 



277 of fine-grained plagioclase feldspar, biotite, amphibole, and Fe-rich nodules. Quartz Subgroup C 

(n=10) 

278 is distinguishable by the presence two or more clays, which were mixed when they were wet, as seen 

in 

279 the lack of clear boundary between the interface of clays (Fig. 4d). The clays are non-calcareous, 

280 including an orange-brown clay with 5% of fine-grained quartz and less than 3% of fine-grained 

281 plagioclase feldspar, biotite and amphibole, a greyish-brown clay with 10% to 15% of fine-grained 

282 quartz, and a brown clay with 5% to 10% of fine-grained quartz and 5% of fine-grained Fe-rich 

283 nodules. Quartz Subgroup D (n=9) is characterised by both mixing wet clays and adding clay pellets 

284 (Fig. 4e). In these samples, brown clay with 5% to 10% of fine-grained quartz and less than 3% of 

285 plagioclase feldspar, biotite, and amphibole was mixed with greyish brown clay, with little to no 

286 inclusions of quartz. Quartz grain-rich clay pellets of a variety of size (0.1mm to 3.5mm and no clear 

287 mode size), relative abundance (5% to 10%) and sorting were added to the clays. Overall, these 

288 subgroups display a great degree of internal heterogeneity, as a result of mixing varying types and 

289 proportions of clay pellets and clays. Again, the identification of quartz, plagioclase feldspar, biotite 

290 and amphibole in some clays point to the use of Nile alluvium for at least some of the raw materials 

291 used to make the tuyères of these subgroups. The identification of clay mixing in these samples has 

292 significant implications because such paste preparation method had been commonly used in making 

293 domestic pottery and fine wares during the Meroitic period (Brand, 2016: 82; Mason and Grzymski, 

294 2009; Smith, 1997). Thus, it highlights the potential that the same producers were responsible for 

295 making technical ceramics, domestic pottery and fine wares, or the existence of cross-craft 

296 technological interaction between the producers of technical ceramics and those of domestic pottery 

and 

297 fine wares. 

298 
299 The petrographic data also reveal that there are a few samples (n=6) that can be placed in the 

Kaolinite- 

300 tempered Group. These samples are characterised by the presence of kaolinite fragments as the 

301 principal type of inclusion (Fig. 4f). The addition of kaolinite is said to have the effect of increasing 

the 

302 refractory properties of technical ceramics, with its use being reported in making tuyères at several 

pre- 

303 colonial and colonial Eastern African sites (Martinón-Torres and Rehren 2014, 121; Humphris, 

2004). 
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304 The kaolinite fragments of the samples are angular, and measure between 0.2mm and 3.5mm with a 

305 mode size of 1.0mm. Approximately 10% to 15% of kaolinite fragments were added to non-

calcareous 

306 clays consisting of 5% to 15% of fine-grained quartz and less than 3% of fine-grained plagioclase 

307 feldspar, biotite, amphibole, and Fe-rich nodules. The presence of kaolinite was reported in various 

308 places in Sudan, including the First and Second Cataracts in Lower Nubia (Smith 1997), Meroe in 

309 Upper Nubia (Robertson 1975), Umm Ali (Smith 1997), and Musawarat es-Sufra (Smith 1999). The 

310 reconnaissance of raw materials in the catchment area of the sites conducted as part of the UCL 

Qatar 

311 research had located several deposits of kaolinite (Fig. 5). Whether or not these deposits of kaolinite 

312 were used in making the tuyères requires further analysis on their chemical composition, but this 



313 finding, coupled with similarity of the mineralogical constituents of these samples to the Nile 

alluvium, 

314 again suggests the potential use of raw materials procured from the vicinity of the sites in making the 

315 kaolinite-tempered tuyères. 

316 
317 
318 Figure 5. Kaolinite deposit in the area adjacent to the archaeological site of Royal City of Meroe. 

319 
320 By comparing the variations observed at macroscopic and microscopic levels, no correlation 

between 

321 the tuyère shapes and fabric groups is observed (Table 4). The same fabric, Quartz Subgroup A, was 

322 used to make tuyères of all shapes recovered from all trenches and sites. Three different fabrics, 

namely 

323 Quartz Subgroups A and C, and Kaolinite-tempered, were used to make the cylindrical tuyères with 

324 thick wall characteristic of MIS6. All fabrics were used to make the cylindrical tuyères from 

Hamadab. 

325 Conversely, it seems strong correlations exist between the contexts of recovery and fabric groups 

and 

326 their associated paste preparation techniques (Table 4). The production of tuyères recovered from 

327 MIS1/2, MIS2 and MIS4 involved no clay mixing, their samples being only associated with the 

fabric 

328 of Quartz Subgroup A. The production of tuyères of MIS6 and Hamadab was marked by mixing clay 

329 pellets and wet clays, and adding kaolinite temper, as reflected in the identification of fabrics of 

Quartz 

330 Subgroups B and C and Kaolinite-tempered Group among their samples. The practice of mixing clay 

12 

331 pellets and wet clays in the same ceramic paste as seen in the fabric of Quartz Subgroup D appears 

to be 

332 solely related to making the tuyères recovered from Hamadab. 

333 
Location Tuyère shape Quartz 

Subgroup A 

Quartz 

Subgroup B 

Quartz 

Subgroup C 

Quartz 

Subgroup D 

Kaolinitetempered 

MIS4 Square 4 Unidentified 2 

MIS2 Cylindrical 

with thin wall 3 

Cylindrical 

MIS1/2 with thin wall 3 

Unidentified 3 

Cylindrical 1 6 1 1 

Cylindrical 

with thick wall 2 1 1 

Square 1 2 1 2 

MIS6 

Unidentified 1 1 

Cylindrical 8 2 5 5 1 

Hamadab Square 2 1 1 



Unidentified 2 2 1 3 1 

334 Table 4. The distribution frequency of fabric groups in relation to tuyère shape and context of 

recovery. 

335 
336 4.2. Furnace linings 

337 The furnace lining fragments recovered from MIS1/2, MIS2, MIS4, and MIS6 share similar 

338 macroscopic features, characterised by dark fabric colour and abundant amount of white inclusions. 

339 These fragments also share similar mineralogical composition and texture, as highlighted by the 

340 petrographic data. Quartz grains are the principal and only type of inclusion, which are distinctively 

341 well-rounded in shape and display a strong mode of 0.8mm in grain size (Fig. 5a and b). Their 

342 abundance is consistent across all samples, accounting for approximately 30% of the fabric. The 

quartz 

343 grains are found in a matrix that is highly vitrified and displays microscopic structures reminiscent 

of 

344 slag. A possible explanation to this observation is that the clay component of the furnace linings 

melted 

345 and mixed with slag during smelting. This hypothesis is supported by the identification of fractures 

346 within the quartz grains, as well as the presence of fractures between the interface of quartz grains 

and 

347 their surrounding matrix; suggesting that the samples were subjected to high firing temperatures. 

Based 

348 on this finding, we raise the speculation that the furnace linings could have been made deliberately 

to 

349 melt and facilitate the smelting process (Craddock et al., 2007; Crew, 2000; David et al., 1989; 

350 Veldhuijzen, 2005; Veldhuijzen and Rehren, 2007: 195), although the verification of this hypothesis 

351 warrants further analysis of the chemical composition of slag. Current understanding of the iron 

352 smelting technology suggests rather that this lining was added to protect the furnace structures, 

which 

353 were reused numerous times. When destroyed, the lining could be removed and discarded on the 

slag 

354 mounds with the other metallurgical debris, and a new lining applied. The high degree of 

vitrification of 

355 the clay component of the samples has made it difficult to determine the sources of clay used in 

making 

356 the furnace linings. That being said, the roundness and homogeneous grain size of quartz inclusions 

357 point to nearby wadis as their potential source, as the seasonal stream systems had the effect of 

sorting 
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358 and depositing quartz sands. Alternatively, the high degree of homogeneity in the grain size of 

quartz 

359 inclusions might have been attained through sieving or winnowing and adding the quartz as temper 

in a 

360 standardised way. In either case, it appears that the producers were very specific in their selection of 

361 quartz temper in making furnace linings to enhance their refractory properties (Kilikoglou et al., 

1998; 

362 Tite et al., 2001). 

363 



364 
365 
366 Figure 5. Photomicrographs showing the fabric of (a) furnace lining from MIS2, (b) furnace lining 

from 

367 MIS6 with fractures within quartz grain, (c) furnace brick from MIS4, (d) furnace brick from MIS6 

368 (slag inclusions indicated by arrows), and (e) furnace materials from Hamadab. All 

photomicrographs 

369 were taken in XP at x50 magnification. 

370 
371 4.3. Furnace bricks 

372 Macroscopically, the furnace bricks recovered from MIS1/2, MIS2, MIS4, and MIS6 are identifiable 

373 for their pale yellowish brown and/or reddish brown fabric colour and crumbly texture, implying that 

374 they were probably unfired. The furnace bricks are also characterised by the presence of different 

types 

375 of inclusions of varying grain sizes and abundance. The petrographic data confirm the compositional 

376 and textural variability, which is attributable to mixing different types and proportions of clays; thus 

377 making the division of samples into groups difficult. Whereas quartz grains are the principal type of 

378 inclusion in all furnace brick samples, just as other types of technical ceramics in this study, the 

quartz 

379 grains of furnace brick samples are coarser-grained (0.2mm and 4.5mm with no clear mode size) and 

380 more angular than those of the tuyères and furnace linings (Fig. 5c). In some furnace brick samples, 

the 

381 quartz grains are found together with fine-grained plagioclase feldspar, biotite, amphibole, and Fe-

rich 

382 nodules. Slag fragments, which measure between 0.4mm and 2.3mm, are also identified in the 

samples 

a b c 

d e 
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383 that are exclusively associated with MIS6, even though their occurrence is only very rare (<1%) in 

each 

384 sample (Fig. 5d). The identification of the rare occurrence of slag fragments indicates that they were 

385 likely incorporated accidentally rather than added intentionally to the paste for furnace bricks. We, 

386 therefore, suggest that the furnace bricks recovered from MIS6 might have been produced at or in 

close 

387 proximity of the site where smelting took place. We further argue that the producers might have used 

388 whatever clays and raw materials that were available to make the paste for furnace bricks, including 

the 

389 use of the Nile clays that were also intended for tuyère production. This hypothesis would support 

the 

390 low degree of standardisation involved in preparing the pastes for furnace bricks, as reflected in the 

391 high degree of heterogeneity in the grain size, abundance and sorting of inclusions in these samples. 

392 
393 4.4. Furnace materials 

394 Furnace materials, i.e. material displaying a gradual degree of vitrification across the sample, were 



395 recovered exclusively from Hamadab. Macroscopic examination of the furnace materials show that 

they 

396 are similar to the furnace bricks in terms of their pale yellowish brown fabric colour and the 

presence of 

397 different types of inclusions of varying grain sizes and abundance. However, the furnace materials 

do 

398 not have a crumbly texture like the furnace bricks, suggesting that they might have been subjected to 

399 firing. This observation is supported by the petrographic data, which show that the furnace materials 

are 

400 characterised by the presence of quartz grains with fractures in a non-calcareous clay matrix that is 

401 partially vitrified and displays structure similar to slag, just as the furnace linings. However, the 

quartz 

402 grains in the furnace materials lack the high degree of homogeneity in grain size, shape, and sorting 

as 

403 seen in the furnace linings. The quartz grains are angular in shape and display a wide range of sizes, 

404 measuring between 0.2mm and 5.0mm with no clear mode size (Fig. 5e). The heterogeneity of 

quartz 

405 inclusions suggests that they were likely procured from sources different from those used in making 

406 furnace linings of previous periods as described above, or reflects a low degree of standardisation in 

407 preparing the materials with little effort to remove the coarse particles and/or refine the clays. The 

408 determination of the potential provenance of the clays used in making furnace materials is difficult 

409 owing to the high degree of vitrification of the matrix, as well as the lack of mineralogical 

constituents 

410 in the remaining clay component that are indicative of their geological origins. 

411 
412 5. Discussion 

413 Our analyses reveal that the production of technical ceramics during the entire Kushite and post- 

414 Meroitic periods shared a common feature, that is the use of local raw materials, particularly the Nile 

415 clays. This finding corresponds with the results of other studies, which demonstrate that Nile clays 

were 

416 procured to manufacture domestic pottery and fine wares in the region (cf. Bourriau et al., 2000; 

Brand, 

417 2016; Carrano et al., 2009b; Daszkiewicz and Bobryk, 2003; Daszkiewicz and Schneider, 2011; 

Mason 

418 and Grzymski, 2009; Smith, 1991, 1996, 1997, 1999). Whether or not the same clay sources were 

used 

419 in making the domestic pottery and fine-ware ceramics that were found together with the technical 
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420 ceramics in the slag heaps requires further analyses. Nevertheless, the identification of the use of the 

421 Nile clays in making the technical ceramics has emphasised the ability of the producers to acquire 

local 

422 raw materials and work within the constraints of those available in order to maximise their useful 

423 properties (Craddock et al., 2007: 8; Freestone and Tite, 1986: 60-61). In addition to this 

observation, 

424 we have highlighted several major trends in the technology and craft organisation involved in 

making 

425 technical ceramics during the Kushite and post-Meroitic periods at Meroe and Hamadab. 



426 
427 5.1. Napatan and earlier Meroitic periods at Meroe 

428 The production of tuyères, furnace linings and furnace bricks was marked by high level of 

429 specialisation during the Napatan and earlier Meroitic periods, as represented by the samples from 

430 MIS4, MIS2 and MIS1/2. Owing to the absence of direct evidence of production such as ceramic 

431 workshops at Meroe and Hamadab to date, we define specialisation by using indirect evidence 

(Costin 

432 1991, 31-40), particularly the skills and technological know-how of producers, and the degree of 

433 standardisation in ceramic fabrics and end products. It is clear that the producers had the knowledge 

of 

434 using specific raw materials and paste preparation methods to make particular types of technical 

435 ceramics. As the results of the petrographic analysis confirm, there is no overlap in the fabrics for 

436 tuyères, furnace linings and furnace bricks. The fabrics used for making tuyères and furnace linings 

437 exhibit a high degree of standardisation, which is reflected in the high degree of homogeneity in 

grain 

438 size, abundance, shape, and sorting of inclusions. The degree of standardisation of the fabrics used 

for 

439 furnace bricks is not as high as the other two types of technical ceramics. We interpret such variation 

in 

440 standardisation of fabrics as further evidence demonstrating the skills and technological know-how 

of 

441 producers. It appears that the producers were aware of the fact that tuyères and furnace linings 

should 

442 have higher thermal shock resistance as opposed to furnace bricks because the collapse of tuyères 

and 

443 furnace linings might inhibit the process of iron smelting (Martinón-Torres and Rehren, 2014: 114). 

444 Thus, the raw materials used to make the pastes for tuyères and furnace linings were procured from 

445 specific sources and prepared in standardised ways to enhance their thermal stability. As for the 

tuyères, 

446 the same fabric, i.e. Quartz Subgroup A, was used to make the square-shaped examples from MIS4 

and 

447 the cylindrical ones with thin wall from MIS2 and MIS1/2. This finding suggests that even though 

there 

448 was different preference for tuyère shapes during the Napatan and earlier Meroitic periods, and 

despite 

449 the fact that these slag heaps probably represent the waste of different smelting workshops and cover 

a 

450 relatively long time span, the producers shared the same knowledge in paste preparation, 

highlighting 

451 continuity in tuyères production through time. We have little evidence to explain why different 

tuyère 

452 shapes were preferred at different phases of the Meroitic period. It is premature at this stage to argue 

453 that different smelting methods were used on the basis of the variation in tuyère shape and associated 

454 bore diameter, as we are unable to estimate whether there was a change in the volume of airflow 

being 

455 channeled into the furnace without the recovery of tuyères in their full length. Nonetheless, the end 

456 products of each tuyère shape are highly standardised as shown in the low relative standard deviation 
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457 value of their respective measurements of external diameter, bore diameter, and wall thickness 

(Table 

458 3). 

459 
460 5.2. Later Meroitic and post-Meroitic periods at Meroe 

461 Just as the case of the technical ceramics of Napatan and earlier Meroitic periods, the production of 

462 technical ceramics during the later and post-Meroitic periods at Meroe continues to exhibit high 

level of 

463 technological know-how of the producers. This is highlighted by the analysis of the samples from 

464 MIS6, showing that there is no overlap in the ceramic fabrics used to make tuyères, furnace linings, 

and 

465 furnace bricks. The production of furnace linings and furnace bricks during the later periods, in 

466 particular, displays further similarity to their earlier counterparts in the level of standardisation of 

467 fabrics. The fabrics for furnace linings are highly standardised, as reflected in their quartz inclusions 

468 that are homogeneous in abundance, shape, size, and sorting, whereas the ceramic fabrics for furnace 

469 bricks have low level of standardisation. However, the production of tuyères during the later periods 

470 appears to have deviated from their earlier counterparts in terms of the level of standardisation of 

471 fabrics and end products. The identification of the presence of four fabrics – Quartz Subgroups A, C 

472 and D, and Kaolinite-tempered – among the tuyère samples suggests that greater variety of raw 

473 materials (i.e. clays of different sources and kaolinite) and paste preparation methods (i.e. clay 

mixing) 

474 were used. With the exception of the samples of Quartz Subgroup A, all samples exhibit 

heterogeneity 

475 in the proportions of clays being mixed, as well as the abundance, size, and sorting of inclusions. 

476 Furthermore, a greater variety of tuyère shapes, including cylindrical, cylindrical with thick wall, 

and 

477 square, is identified. Yet in spite of the variation in shape, the bore diameter is consistent across all 

478 tuyère shapes, with an average that measures ca. 3.2/ 3.3cm, whereas the outer diameter and wall 

479 thickness only vary slightly among tuyère shapes (Table 3). This finding, coupled with the lack of 

480 correlation between tuyère shapes and fabrics, has led to two hypotheses. The first hypothesis is that 

the 

481 tuyères discarded at MIS6 were supposed to be similar in shape, but the lack of standardisation in the 

482 execution of technical practices might have contributed to the observed difference in tuyère shapes, 

483 resulting in some cylindrical tuyères being slightly larger than the others. As for the square-shaped 

484 tuyères, they might have been caused by stacking the unfired cylindrical tuyères during drying, as 

485 shown by experimental work. The second hypothesis is that different tuyère shapes were used at 

486 different phases within the later periods at Meroe, but verification of this hypothesis requires more 

487 refined stratigraphic excavation and data analysis. MIS6 spans over a timeframe of roughly 300+ 

years 

488 (Humphris and Scheibner, forthcoming), incorporating the chronological shift from Meroitic to post- 

489 Meroitic. It is perhaps therefore unsurprising that a degree of heterogeneity in certain aspects of 

490 technical ceramic production is evident, as the social, economic and political environment within 

which 

491 the iron production took place was changing. Overall, by comparing the production of tuyères, 

furnace 



492 linings and furnace bricks, we postulated that the producers still possessed high level of 

technological 

493 know-how, but the level of skill and standardisation involved in executing the production of 

technical 
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494 ceramics, especially tuyères, decreased during the later Meroitic and post-Meroitic periods. 

495 
496 5.3. Later Meroitic and post-Meroitic periods at Hamadab 

497 The production of technical ceramics during the later Meroitic and post-Meroitic periods at 

Hamadab 

498 appears to differ from the previous periods at the Royal City of Meroe in at least two main ways. 

499 Firstly, the distinction in the ceramic fabrics for different types of technical ceramics is not as clear. 

500 Whereas the fabrics used for making tuyères are still separated from those for other technical 

ceramics, 

501 it is difficult to differentiate the fabrics for furnace linings and furnace bricks. Such lack of 

distinction 

502 of fabrics for furnace linings and furnace bricks, as we suggest here, might have implied that furnace 

503 linings were used per se and that the furnaces were not designed to be reused at Hamadab as was the 

504 case of the previous periods at Meroe. This argument is supported by the type and abundance of 

505 metallurgical remains found in the slag heaps at Hamadab, where we see less tapped slag and more 

506 furnace material discarded when compared to Meroe, implying a smelting technology less associated 

507 with re-useable furnaces. Thus, it is likely that the concept of lining the furnace for reuse that was 

seen 

508 at the Meroe sites was not used as a technological approach at Hamadab, and rather that furnaces 

were 

509 dismantled more frequently at Hamadab. Secondly, the petrographic analysis shows that even greater 

510 variety of raw materials were used in making the fabrics for tuyères and furnace materials, and that 

the 

511 fabrics were generally marked by a lower level of standardisation as evident in the great degree of 

512 heterogeneity of the abundance, size, shape, and sorting of the inclusions. As for the tuyères, in 

513 particular, the end products of cylindrical and square-shaped tuyères are standardised as expressed in 

514 the low standard deviation values of their respective external diameter, bore diameter, and wall 

515 thickness; but the same fabrics were used to make both types of tuyères. The discrepancy in the level 

of 

516 standardisation between the fabrics and end products of the tuyère samples highlights the possibility 

517 that the producers at Hamadab seem to have had similar concepts of what tuyères should look like, 

but 

518 with greater liberty in executing the manufacturing process, especially the selection of raw materials 

519 and paste preparation method. Overall, we suggest that the observed variation in the production of 

520 technical ceramics at Hamadab and Meroe might be attributed to the changing social, economic and 

521 political framework of the Kingdom of Kush, in which the producers at Hamadab, who although 

522 operating for a time contemporaneously to the producers at Meroe represented by the earlier levels 

of 

523 MIS6, were not producers at a capital site. Therefore, central control over production might have 

524 existed at Meroe (especially in the earlier periods) but never at Hamadab, and while the technology 

or 

525 iron production at Meroe had over a one thousand year history embedded within its practice, the 



526 production at Hamadab began only in the final years of the Meroitic period, perhaps these being the 

527 only years another site so close to Meroe was allowed to potentially compete for market demand for 

528 iron. Alternatively, the Hamadab iron production may have been a reaction to the apparent decrease 

in 

529 scale of iron production at Meroe during the later times (Humphris and Scheibner, forthcoming; 

Carey 

530 et al., forthcoming), creating a situation whereby Hamadab was forced to cater for its own demand, 
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531 without the degree of knowledge or specialisation that marked but gradually declined in the remains 

532 evident at MIS6. 

533 
534 6. Conclusion 

535 We argue that the observed changes in the production of technical ceramics were linked to the 

broader 

536 socio-political developments of the Kingdom of Kush. The higher level of specialisation 

characteristic 

537 of the production of technical ceramics during the Napatan and earlier Meroitic periods at Meroe 

538 coincided with the period when the Kingdom of Kush was at its height of power. It has been 

suggested 

539 that iron production might have been controlled by royal elites, as reflected in the close proximity of 

540 slag heaps to Royal residence at Meroe (Haaland, 2014; Shinnie, 1985). If this was the case, it was 

541 likely that the manufacture of technical ceramics during this period was also organised by elites 

directly 

542 or indirectly as part of their control of iron production, resulting in the evident standardised practices 

543 regarding the selection of raw materials and paste preparation methods for tuyères, furnace lining, 

and 

544 furnace bricks. Yet, the level of standardisation involved in the production of technical ceramics 

545 appears to have decreased during the later Meroitic period and post-Meroitic at Meroe when the 

power 

546 of the Kingdom of Kush is said to have been in decline. During this time, the elites may have had 

less 

547 control over iron production, including the manufacture of technical ceramics. Subsequently, the 

548 producers appear to have greater liberty in the execution of production, even though these producers 

549 might have been bounded by similar technological knowledge as those of previous periods. Perhaps 

the 

550 most drastic change in the production of technical ceramics occurred during the post-Meroitic period 

551 and is evident in the comparison between Meroe, which technical knowledge was presumably 

retained, 

552 and Hamadab, which appears to have only then begun its own iron production. During this period, it 

553 seems that more individuals might have attempted to produce technical ceramics, but improvising 

with 

554 their own technological knowledge and practices; thus contributing to the low level of 

standardisation 

555 that characterised the later Meroitic and post-Meroitic production of technical ceramics at Hamadab. 

556 
557 This study has served to contribute to illuminating the link between iron production and the rise and 

fall 



558 of the Kingdom of Kush, even though cross-referencing with other lines of evidence such as slag and 

559 iron ores are necessary to solidify such link. In addition, this study has demonstrated the value of 

using 

560 macroscopic examination and petrographic analysis to address different aspects of technical ceramic 

561 production, with particular emphasis on their manufacturing technology and craft specialisation 

rather 

562 than their refractory properties. An important step in the future of this work will be to compare our 

563 results with the production of domestic pottery and fine-ware ceramics so as to delineate the inter-

craft 

564 technological interaction and how the ceramic economy was organised; thus bringing about a more 

565 wholesale understanding of different facets of Kushite society. 
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