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Abstract

Inverse Problems in medical imaging and computer vision are traditionally solved
using purely model-based methods. Among those variational regularization models
are one of the most popular approaches. We propose a new framework for applying
data-driven approaches to inverse problems, using a neural network as a regular-
ization functional. The network learns to discriminate between the distribution of
ground truth images and the distribution of unregularized reconstructions. Once
trained, the network is applied to the inverse problem by solving the corresponding
variational problem. Unlike other data-based approaches for inverse problems,
the algorithm can be applied even if only unsupervised training data is available.
Experiments demonstrate the potential of the framework for denoising on the BSDS
dataset and for computed tomography reconstruction on the LIDC dataset.

1 Introduction

Inverse problems naturally occur in many applications in computer vision and medical imaging. A
successful classical approach relies on the concept of variational regularization [11, 24]. It combines
knowledge about how data is generated in the forward operator with a regularization functional that
encodes prior knowledge about the image to be reconstructed.

The success of neural networks in many computer vision tasks has motivated attempts at using deep
learning to achieve better performance in solving inverse problems [15, 2, 25]. A major difficulty
is the efficient usage of knowledge about the forward operator and noise model in such data driven
approaches, avoiding the necessity to relearn the physical model structure.

The framework considered here aims to solve this by using neural networks as part of variational
regularization, replacing the typically hand-crafted regularization functional with a neural network.
As classical learning methods for regularization functionals do not scale to the high dimensional
parameter spaces needed for neural networks, we propose a new training algorithm for regularization
functionals. It is based on the ideas in Wasserstein generative adversarial models [5], training the
network as a critic to tell apart ground truth images from unregularized reconstructions.

Our contributions are as follows:

1. We introduce the idea of learning a regularization functional given by a neural network,
combining the advantages of the variational formulation for inverse problems with data-
driven approaches.

2. We propose a training algorithm for regularization functionals which scales to high dimen-
sional parameter spaces.

3. We show desirable theoretical properties of the regularization functionals obtained this way.
4. We demonstrate the performance of the algorithm for denoising and computed tomography.
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2 Background

2.1 Inverse Problems in Imaging

Let X and Y be reflexive Banach spaces. In a generic inverse problem in imaging, the image x ∈ X
is recovered from measurement y ∈ Y , where

y = Ax+ e. (1)

A : X → Y denotes the linear forward operator and e ∈ Y is a random noise term. Typical
tasks in computer vision that can be phrased as inverse problems include denoising, where A is the
identity operator, or inpainting, where A is given by a projection operator onto the complement of
the inpainting domain. In medical imaging, common forward operators are the Fourier transform in
magnetic resonance imaging (MRI) and the ray transform in computed tomography (CT).

2.2 Deep Learning in Inverse Problems

One approach to solve (1) using deep learning is to directly learn the mapping y → x using a neural
network. While this has been observed to work well for denoising and inpainting [28], the approach
can become infeasible in inverse problems involving forward operator with a more complicated
structure [4] and when only very limited training data is available. This is typically the case in
applications in medical imaging.

Other approaches have been developed to tackle inverse problems with complex forward operators. In
[15] an algorithm has been suggested that first applies a pseudo-inverse to the operator A, leading to
a noisy reconstruction. This result is then denoised using deep learning techniques. Other approaches
[1, 14, 25] propose applying a neural network iteratively. Learning proximal operators for solving
inverse problems is a further direction of research [2, 19].

2.3 Variational regularization

Variational regularization is a well-established model-based method for solving inverse problems.
Given a single measurement y, the image x is recovered by solving

argminx ‖Ax− y‖22 + λf(x), (2)

where the data term ‖Ax− y‖22 ensures consistency of the reconstruction x with the measurement y
and the regularization functional f : X → R allows us to insert prior knowledge onto the solution
x. The functional f is usually hand-crafted, with typical choices including total variation (TV) [23]
which leads to piecewise constant images and total generalized variation (TGV) [16], generating
piecewise linear images.

3 Learning a regularization functional

In this paper, we design a regularization functional based on training data. We fix a-priori a class
of admissible regularization functionals F and then learn the choice {f}f∈F from data. Existing
approaches to learning a regularization functionals are based on the idea that f should be chosen such
that a solution to the variational problem

argminx ‖Ax− y‖22 + λf(x), (3)

best approximates the true solution. Given training samples (xj , yj), identifying f using this method
requires one to solve the bilevel optimization problem [17, 9]

argminf∈F
∑
j

‖x̃j − xj‖2 , subject to x̃j ∈ argminx ‖Ax− yj‖22 + f(x). (4)

But this is computationally feasible only for small sets of admissible functions F . In particular, it
does not scale to sets F parametrized by some high dimensional space Θ.

We hence apply a novel technique for learning the regularization functional f ∈ F that scales to high
dimensional parameter spaces. It is based on the idea of learning to discriminate between noisy and
ground truth images.
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In particular, we consider approaches where the regularization functional is given by a neural network
ΨΘ with network parameters Θ. In this setting, the class F is given by the functions that can be
parametrized by the network architecture of Ψ for some choice of parameters Θ. Once Θ is fixed, the
inverse problem (1) is solved by

argminx ‖Ax− y‖22 + λΨΘ(x). (5)

3.1 Regularization functionals as critics

Denote by xi ∈ X independent samples from the distribution of ground truth images Pr and by
yi ∈ Y independent samples from the distribution of measurements PY . Note that we only use
samples from both marginals of the joint distribution PX×Y of images and measurement, i.e. we are
in the setting of unsupervised learning.

The distribution PY on measurement space can be mapped to a distribution on image space by
applying a -potentially regularized- pseudo-inverse A†δ . In [15] it has been shown that such an inverse
can in fact be computed efficiently for a large class of forward operators. This in particular includes
Fourier and ray transforms occurring in MRI and CT. Let

Pn = (A†δ)#PY
be the distribution obtained this way. Here, # denotes the push-forward of measures, i.e.
A†δY ∼ (A†δ)#PY for Y ∼ PY . Samples drawn from Pn will be corrupted with noise that both
depends on the noise model e as well as on the operator A.

A good regularization functional ΨΘ is able to tell apart the distributions Pr and Pn- taking high
values on typical samples of Pn and low values on typical samples of Pr [7]. It is thus clear that

EX∼Pr [ΨΘ(X)]− EX∼Pn [ΨΘ(X)]

being small is desirable. With this in mind, we choose the loss functional for learning the regularizer
to be

EX∼Pr
[ΨΘ(X)]− EX∼Pn

[ΨΘ(X)] + λ · E
[
(‖∇xΨΘ(X)‖ − 1)

2
+

]
. (6)

The last term in the loss functional serves to enforce the trained network ΨΘ to be Lipschitz continuous
with constant one [13]. The expected value in this term is taken over all lines connecting samples in
Pn and Pr.
Training a neural network as a critic was first proposed in the context of generative modeling in
[12]. The particular choice of loss functional has been introduced in [5] to train a critic that captures
the Wasserstein distance between the distributions Pr and Pn. A minimizer to (6) approximates a
maximizer f to the Kantorovich formulation of optimal transport [26].

Wass(Pr,Pn) = sup
f∈1−Lip

EX∼Pn [f(X)]− EX∼Pr [f(X)] . (7)

Relaxing the hard Lipschitz constraint in (7) into a penalty term as in (6) was proposed in [13].
Tracking the gradients of ΨΘ for our experiments demonstrates that this way the Lipschitz constraint
can in fact be enforced up to a small error.

Algorithm 1 Learning a regularization functional

Require: Gradient penalty coefficient µ, batch size m, Adam hyperparameters α, inverse A+
δ

while Θ has not converged do
for i ∈ 1, ...,m do

Sample ground truth image xr ∼ Pr, measurement y ∼ PY and random number ε ∼ U [0, 1]
xn ← A+

δ y
xi = εxr + (1− ε)xn
Li ← ΨΘ(xr)−ΨΘ(xn) + µ (‖∇xi

ΨΘ(xi)‖ − 1)
2
+

end for
Θ← Adam(∇Θ

∑m
i=1 Li, α)

end while

3



Algorithm 2 Applying a learned regularization functional with gradient descent

Require: Learned regularization functional ΨΘ, measurements y, regularization weight λ, step size
ε, operator A, inverse A+

δ , Stopping criterion S
x← A+

δ y
while S not satisfied do
x← x− ε∇x

[
‖Ax− y‖22 + λΨΘ(x)

]
end while
return x

In the proposed algorithm, gradient descent is used to solve (5). As the neural network is in general
non-convex, convergence to a global optimum cannot be guaranteed. However, stable convergence to
a critical point has been observed in practice. More sophisticated algorithms like momentum methods
or a forward-backward splitting of data term and regularization functional can be applied [10].

3.2 Distributional Analysis

Here we analyze the impact of the learned regularization functional on the induced image distribution.
More precisely, given a noisy image x drawn from Pn, consider the image obtained by performing a
step of gradient descent of size η over the regularization functional ΨΘ

gη(x) := x− η · ∇xΨΘ(x). (8)

This yields a distribution Pη := (gη)#Pn of noisy images that have undergone one step of gradient
descent. We show that this distribution is closer in Wasserstein distance to the distribution of ground
truth images Pr than the noisy image distribution Pn. The regularization functional hence introduces
the highly desirable incentive to align the distribution of minimizers of the regularization problem (5)
with the distribution of ground truth images.

Henceforth, assume the network ΨΘ has been trained to perfection, i.e. that it is a 1-Lipschitz function
which achieves the supremum in (7). Furthermore, assume ΨΘ is almost everywhere differentiable
with respect to the measure Pn.
Theorem 1. Assume that η 7→Wass(Pr,Pη) admits a left and a right derivative at η = 0, and that
they are equal. Then,

d

dη
Wass(Pr,Pη)|η=0 = −EX∼Pn

[
‖∇xΨΘ(X)‖2

]
.

Proof. The proof follows [5, Theorem 3]. By an envelope theorem [20, Theorem 1], the existence of
the derivative at η = 0 implies

d

dη
Wass(Pr,Pη)|η=0 =

d

dη
EX∼Pn [ΨΘ(gη(X))]|η=0. (9)

On the other hand, for a.e. x ∈ X one can bound∣∣∣∣ d

dη
ΨΘ(gη(x))

∣∣∣∣ = |〈∇xΨΘ(gη(x)),∇xΨΘ(x)〉| ≤ ‖∇xΨΘ(gη(x)‖ · ‖∇xΨΘ(x)‖ ≤ 1, (10)

for any η ∈ R. Hence, in particular the difference quotient is bounded∣∣∣∣1η [ΨΘ(gη(x))−ΨΘ(x)]

∣∣∣∣ ≤ 1 (11)

for any x and η. By dominated convergence, this allows us to conclude

d

dη
EX∼Pn [ΨΘ(gη(X))]|η=0 = EX∼Pn

d

dη
[ΨΘ(gη(X))]|η=0. (12)

Finally,

d

dη
[ΨΘ(gη(X))]|η=0 = −‖∇xΨΘ(X)‖2. (13)
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Remark 1. Under the weak assumptions in [13, Corollary 1], we have ‖∇xΨΘ(x)‖ = 1, for Pn a.e.
x ∈ X . This allows to compute the rate of decay of Wasserstein distance explicitly to

d

dη
[ΨΘ(gη(X))]|η=0 = −1 (14)

Note that the above calculations also show that the particular choice of loss functional is optimal
in terms of decay rates of the Wasserstein distance, introducing the strongest incentive to align
the distribution of reconstructions with the ground truth distribution amongst all regularization
functionals. To make this more precise, consider any other regularization functional f : X → R with
norm-bounded gradients, i.e. ‖∇f(x)‖ ≤ 1.

Corollary 1. Denote by g̃η(x) = x − η · ∇f(x) the flow associated to f . Set P̃η := (g̃η)#(Pn).
Then

d

dη
Wass(Pr, P̃η)|η=0 ≥ −1 =

d

dη
Wass(Pr,Pη)|η=0 (15)

Proof. An analogous computation as above shows
d

dη
Wass(Pr, P̃η)|η=0 = −EX∼Pn

[〈∇xΨΘ(x),∇xf(x)〉] ≥ −1 = −EX∼Pn

[
‖∇xΨΘ(X)‖2

]
.

3.3 Analysis under data manifold assumption

Here we discuss which form of regularization functional is desirable under the data manifold
assumption and show that the loss function (6) in fact gives rise to a regularization functional
of this particular form.
Assumption 1 (Weak Data Manifold Assumption). Assume the measure Pr is supported on the
weakly compact setM, i.e. Pr(Mc) = 0

This assumption captures the intuition that real data lies in a curved lower-dimensional subspace of
X .

If we consider the regularization functional as encoding prior knowledge about the image distribution,
it follows that we would like the regularizer to penalize images which are away fromM. An extreme
way of doing this would be to set the regularization functional as the characteristic function ofM.
However, this choice of functional comes with two major disadvantages: First, solving (5) with
methods based on gradient descent becomes impossible when using such a regularization functional.
Second, the functional effectively leads to a projection onto the data manifold, possibly causing
artifacts due to imperfect knowledge ofM [8].

An alternative to consider is the distance function to the data manifold d(x,M), since such a choice
provides meaningful gradients everywhere. This is implicitly done in [21]. In Theorem 2, we show
that our chosen loss function in fact does give rise to a regularization functional ΨΘ taking the
desirable form of the l2 distance function toM.

Denote by

PM : D →M, x→ argminy∈M ‖x− y‖ (16)

the data manifold projection, where D denotes the set of points for which such a projection exists.
We assume Pn(D) = 1. This can be guaranteed under weak assumptions onM and Pn.
Assumption 2. Assume the measures Pr and Pn satisfy

(PM)#(Pn) = Pr (17)

i.e. for every measurable set A ⊂ X , we have Pn(P−1
M (A)) = Pr(A)

We hence assume that the distortions of the true data present in the distribution of pseudo-inverses Pn
are well-behaved enough to recover the distribution of true images from noisy ones by projecting back
onto the manifold. Note that this is a much weaker than assuming that any given single image can be
recovered by projecting its pseudo-inverse back onto the data manifold. Heuristically, Assumption 2
corresponds to a low-noise assumption.
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Theorem 2. Under Assumptions 1 and 2, a maximizer to the functional

sup
f∈1−Lip

EX∼Pn
f(X)− EX∼Pr

f(X) (18)

is given by the distance function to the data manifold

dM(x) := min
y∈M

‖x− y‖ (19)

Proof. First show that dM is Lipschitz continuous with Lipschitz constant 1. Let x1, x2 ∈ X be
arbitrary and denote by ỹ a minimizer to miny∈M ‖x2 − y‖2. Indeed,

dM(x1)− dM(x2) = min
y∈M

‖x1 − y‖ − min
y∈M

‖x2 − y‖ = min
y∈M

‖x1 − y‖ − ‖x2 − ỹ‖

≤ ‖x1 − ỹ‖ − ‖x2 − ỹ‖ ≤ ‖x1 − x2‖,
where we used the triangle inequality in the last step. This proves Lipschitz continuity by exchanging
the roles of x1 and x2.
Now, we prove that dM obtains the supremum in 18. Let h be any 1-Lipschitz function. By
assumption 2, one can rewrite

EX∼Pn [h(X)]− EX∼Pr [h(X)] = EX∼Pn [h(X)− h(PM(X))] . (20)

As h is 1 Lipschitz, this can be bounded via

EX∼Pn
[h(X)− h(PM(X))] ≤ EX∼Pn

[‖X − PM(X)‖] . (21)

The distance between x and PM(x) is by definition given by dM(x). This allows to conclude via

EX∼Pn
[‖X − PM(X)‖] = EX∼Pn

[dM(X)] = EX∼Pn
[dM(X)− dM(PM(X))]

= EX∼Pn
[dM(X)]− EX∼Pr

[dM(X)] .

Remark 2 (Non-uniqueness). The functional (18) does not necessarily have a unique maximizer.
For example, f can be changed to an arbitrary 1-Lipschitz function outside the convex hull of
supp(Pr) ∩ supp(Pn).

4 Stability

Following the well-developed stability theory for classical variational problems [11], we derive a
stability estimate for the adversarial regularizer algorithm. The key difference to existing theory is
that we do not assume the regularization functional f is bounded from below. Instead, this is replaced
by a 1 Lipschitz assumption on f .
Theorem 3 (Weak Stability in Data Term). We make Assumption 3. Let yn be a sequence in Y with
yn → y in the norm topology and denote by xn a sequence of minimizers of the functional

argminx∈X ‖Ax− yn‖2 + λf(x)

Then xn has a weakly convergent subsequence and the limit x is a minimizer of ‖Ax− y‖2 + λf(x).

The assumptions and the proof are contained in Appendix A.

5 Computational Results

5.1 Parameter estimation

Applying the algorithm to new data requires choosing a regularization parameter λ. Making the
assumption that the ground truth images are critical points of the variational problem (5), λ can
be estimated efficiently from the noise level, using the fact that the regularization functional has
gradients of unit norm. This leads to the formula

λ = 2 Ee∼pn‖A∗e‖2,
where A∗ denotes the adjoint and pn the noise distribution. In all experiments, the regularization
parameter has been chosen according to this formula without further tuning.
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Table 1: Denoising results on BSDS dataset
Method PSNR (dB) SSIM

Noisy Image 20.3 .534
MODEL-BASED

Total Variation [23] 26.3 .836
SUPERVISED

Denoising N.N. [28] 28.8 .908
UNSUPERVISED

Adversarial Regularizer (ours) 28.2 .892

(a) Ground Truth (b) Noisy Image (c) TV (d) Denoising N.N. (e) Adversarial Reg.

Figure 1: Denoising Results on BSDS

5.2 Denoising

As a toy problem, we compare the performance of total variation denoising [23], a supervised
denoising neural network approach [28] based on the UNet [22] architecture and our proposed
algorithm on images of size 128× 128 cut out of images taken from the BSDS500 dataset [3]. The
images have been corrupted with Gaussian white noise. We report the average peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) [27] in Table 1.

The results in Figure 1 show that the adversarial regularizer algorithm is able to outperform classical
variational methods in all quality measures. It achieves results of comparable visual quality than
supervised data-driven algorithms, without relying on supervised training data.

5.3 Computed Tomography

Computer Tomography reconstruction is an application in which the variational approach is very
widely used in practice. Here, it serves as a prototype inverse problem with non-trivial forward
operator. We compare the performance of total variation [18, 23], post-processing [15], Regular-
ization by Denoising (RED) [21] and our proposed regularizers on the LIDC/IDRI database [6] of
lung scans. The denoising algorithm underlying RED has been chosen to be the denoising neural
network previously trained for post-processing. Measurements have been simulated by taking the ray
transform, corrupted with Gaussian white noise. With 30 different angles taken for the ray transform,
the forward operator is undersampled. The code is available online 1.

The results on different noise levels can be found in Table 2 and Figure 2, with further examples in
Appendix C. Note in Table 2 that Post-Processing has been trained with PSNR as target loss function.
Again, total variation is outperformed by a large margin in all categories. Our reconstructions are of
the same or superior visual quality than the ones obtained with supervised machine learning methods,
despite having used unsupervised data only.

6 Conclusion

We have proposed an algorithm for solving inverse problems, using a neural network as regulariza-
tion functional. We have introduced a novel training algorithm for regularization functionals and
showed that the resulting regularizers have desirable theoretical properties. Unlike other data-based

1https://github.com/lunz-s/DeepAdverserialRegulariser
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Table 2: CT reconstruction on LIDC dataset

(a) High noise

Method PSNR (dB) SSIM

MODEL-BASED

Filtered Backprojection 14.9 .227
Total Variation [18] 27.7 .890

SUPERVISED

Post-Processing [15] 31.2 .936
RED [21] 29.9 .904

UNSUPERVISED

Adversarial Reg. (ours) 30.5 .927

(b) Low noise

Method PSNR (dB) SSIM

MODEL-BASED

Filtered Backprojection 23.3 .604
Total Variation [18] 30.0 .924

SUPERVISED

Post-Processing [15] 33.6 .955
RED [21] 32.8 .947

UNSUPERVISED

Adversarial Reg. (ours) 32.5 .946

(a) Ground Truth (b) FBP (c) TV (d) Post-Processing (e) Adversarial Reg.

Figure 2: Reconstruction from simulated CT measurements on the LIDC dataset

approaches in inverse problems, the proposed algorithm can be trained even if only unsupervised
training data is available. This allows to apply the algorithm to situations where -due to a lack of
appropriate training data- machine learning methods have not been used yet.

The variational framework enables us to effectively insert knowledge about the forward operator and
the noise model into the reconstruction, allowing the algorithm to be trained on little training data. It
also comes with the advantages of a well-developed stability theory and the possibility of adapting
the algorithms to different noise levels by changing the regularization parameter λ, without having to
retrain the model from scratch.

The computational results demonstrate the potential of the algorithm, producing reconstructions of
the same or even superior visual quality as the ones obtained with supervised approaches on the LIDC
dataset, despite the fact that only unsupervised data has been used for training. Classical methods
like total variation are outperformed by a large margin.

Our approach is particularly well-suited for applications in medical imaging, where usually very few
training samples are available and ground truth images to a particular measurement are hard to obtain,
making supervised algorithms impossible train.

7 Extensions

The algorithm admits some extensions and modifications.

• Local Regularizers. The regularizer is restricted to act on small patches of pixels only,
giving the value of the regularization functional by averaging over all patches. This allows
to harvest many training samples from a single image, making the algorithm trainable on
even less training data. Local Adversarial Regularizers can be implemented by choosing a
neural network architecture consisting of convolutional layers followed by a global average
pooling.

• Recursive Training. When applying the regularization functional, the variational problem
has to be solved. In this process, the regularization functional is confronted with partially
reconstructed images, which are neither ground truth images nor exhibit the typical noise
distribution the regularization functional has been trained on. By adding these images to the

8



samples the regularization functional is trained on, the neural network is enabled to learn
from its own outputs. First implementations show that this can lead to an additional boost in
performance, but that the choice of which images to add is very delicate.
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