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Harmonization of data for pooled analysis relies on the principle of inferential equivalence between variables from different
sources. Ideally, this is achieved using models of the direct relationship with gold standard criterion measures, but the necessary
validation study data are often unavailable. This study examines an alternative method of network harmonization using indirect
models. Starting methods were self-report or accelerometry, from which we derived indirect models of relationships with doubly
labelled water (DLW)-based physical activity energy expenditure (PAEE) using sets of two bridge equations via one of three
intermediate measures. Coefficients and performance of indirect models were compared to corresponding direct models (linear
regression of DLW-based PAEE on starting methods). Indirect model beta coefficients were attenuated compared to direct model
betas (10%–63%), narrowing the range of PAEE values; attenuation was greater when bridge equations were weak. Directly and
indirectly harmonized models had similar error variance but most indirectly derived values were biased at group-level.
Correlations with DLW-based PAEE were identical after harmonization using continuous linear but not categorical models.
Wrist acceleration harmonized to DLW-based PAEE via combined accelerometry and heart rate sensing had the lowest error
variance (24.5%) and non-significant mean bias 0.9 (95%CI: −1.6; 3.4) kJ·day−1·kg−1. Associations between PAEE and BMI
were similar for directly and indirectly harmonized values, but most fell outside the confidence interval of the criterion PAEE-to-
BMI association. Indirect models can be used for harmonization. Performance depends on the measurement properties of original
data, variance explained by available bridge equations, and similarity of population characteristics.
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Harmonization of exposure and outcome variables is an
essential step when integrating different sources of data for the
same analysis, such as in meta-analysis of published results, pooled
or federated meta-analysis of individual-level data, and global
surveillance of risk factors for disease. Analyses of this nature
which use information from multiple sources are often constrained
by the quality and compatibility of the original data (Fortier et al.,
2010). Harmonization aims to bring together various types and
levels of data which represent the same underlying construct
(e.g., physical activity, energy intake, body fat percentage, etc.)
in order to achieve compatibility when methods vary between
studies or study phases (Granda & Blasczyk, 2011). The process
does not strictly require that precisely the same original collection
and processing methods are employed in each study (Fortier et al.,
2010), but the harmonized data should be “inferentially equivalent”
(i.e., their format, function, and meaning are the same) (Atkin et al.,
2017). This inferential equivalence will depend upon the scientific
context and the type of analysis being undertaken.

A common harmonization approach is conversion to the level
of the least detailed information, for example transformation of
continuous data to a binary categorization of low vs. high physical
activity level (Kilpelainen et al., 2011). However, this approach
loses the resolution of the more detailed data, and may therefore
limit the power and scope of subsequent analyses. It is also unclear
how well variables harmonized in this way relate to the latent true
value of the exposure. An alternative approach to harmonization is
to restrict analyses to only those studies which have assessed and
expressed the exposure and outcome in the desired way. This
maintains the detail of the contributing data, but—as highlighted
by Aune, Norat, Leitzmann, Tonstad, and Vatten (2015)—greatly
reduces the proportion of the available data that can be included in
evidence synthesis. At best, this leads to loss of power. At worst,
this leads to bias if the studies that are included with optimal data
have specific characteristics.

Another approach to harmonization is to use validation studies
which report the statistical (e.g., regression) models of relationships
between values from the less precise methods and the latent true
level of exposure, as assessed by a construct-specific gold-standard
criterion method. A direct model permits transformation of original
data to the desired harmonized format. The problem is that this
mapping approach is often not possible because the ideal validation
study employing gold-standard criterion methods has either not
been conducted, does not report the necessary model, or is not
applicable to the population or setting in question. This limitation
may be more common in particular populations or settings, such as
those in which the feasibility or cost of gold (or even silver)
standard methods is prohibitive. Consequently, some populations
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and settings may be studied with unsatisfactorily harmonized data
or excluded from analyses altogether.

When the ideal direct model is unavailable, a potential solution
may be to use a combination of models in the same network,
whereby estimates from the less precise but more feasible field
method are mapped to a criterion using “bridge equations” which
form an indirect route (Figure 1). This concept is analogous to
network meta-analysis in which multiple comparisons can be
inferred despite not being directly tested (Lu & Ades, 2004).
“Network harmonization” adopts similar principles in that it
utilizes existing, ideally published, validity data to derive a new
indirect model without the requirement to conduct de novo field-
work. By utilizing a combination of published bridge equations and
existing datasets, this study examines such an approach by com-
paring the inferential equivalence of data harmonized to a gold
standard format via both direct and indirect models.

Methods

Study Outline

We present a hypothetical analysis task requiring harmonization of,
at-first-glance, incompatible starting point values to the format of
values arising from a target criterion. One could use a direct model
between the two sets of data to complete this task, but as mentioned
above often an alternative approach is needed. Here, we use
intermediary values from a third method, for which separate links
(bridge equations) to the starting values and target criterion are
available. The regression models between starting point values and
the intermediate (Bridge Equation 1) and between the intermediate
and the target criterion (Bridge Equation 2) are used to derive the
indirect model as outlined in Figure 1. In order to assess the validity
of this network harmonization approach, the indirect model is
compared to the direct model.

Description of Data

Here, we use the example of harmonizing four distinct sets of
starting point values to the target of total daily physical activity
energy expenditure (PAEE) expressed in kJ·day−1·kg−1 as mea-
sured using the gold standard criterion. Although the gold standard
assessment method for PAEE has been used in the present study,

the following methods are applicable to other target variables
(e.g., moderate-intensity activity) with their own gold standard,
or to target variables assessed by methods which are not of gold
standard. For simplicity, we will use linear models to describe the
links between data.

StartingPoint Values. The four sets of starting point values were:
(1) duration (minutes per day) of moderate-to-vigorous physical
activity (MVPA) derived from the Recent Physical Activity Ques-
tionnaire (RPAQ) (Besson, Brage, Jakes, Ekelund, & Wareham,
2010); (2) total daily PAEE expressed in kJ·day−1·kg−1 derived
from RPAQ; (3) the four-level categorical Cambridge Index
(Golubic et al., 2014; Peters et al., 2012; Wareham et al., 2003);
and (4) mean wrist acceleration expressed in milli-g (ACCWRIST)
(White et al., 2019).

Target Criterion Values. The gold-standard target criterion for
assessing PAEE (kJ·day−1·kg−1) was the difference between total
and resting energy expenditure as measured by the DLW method
and two lab-based assessments of resting metabolic rate, coupled
with allowance for the diet-induced thermogenic effect.

Intermediate Values. To derive the indirect models between the
starting point data and the target criterion PAEE, one of three
intermediates was used: (1) mean daily trunk acceleration in
m·s−2 (ACCTRUNK) (Brage, Brage, Franks, Ekelund, & Wareham,
2005); (2) total daily PAEE in kJ·day−1·kg−1 derived from the
individually calibrated flex heart rate method (HR) (Brage et al.,
2007; Spurr et al., 1988); (3) total daily PAEE in kJ·day−1·kg−1 from
combined ACCTRUNK and HR (ACCHR) (Brage et al., 2004, 2007).
This allows examination of the measurement properties of the
intermediate values on the final model.

Bridge Equations

To examine different aspects of the performance of network harmo-
nization using indirect models, one of seven variations on Bridge
Equation 1 was combined with one of three variations on Bridge
Equation 2. In addition, we examine the performance of meta-
analyzing multiple indirect routes.

If available, we used published bridge equations. If relevant
equations were unavailable but correlation coefficients and basic
(mean and SD) summary statistics were, we derived the equations
through back-transformation of standardized coefficients using the
corr2data STATA command. If this was not possible, we used
individual-level data from existing datasets to derive equations
(pretending these were published validation studies), and subse-
quently used them alongside existing bridge equations sourced
from published work.

Bridge Equation 1. Five variations on Bridge Equation 1 were
derived from the Fenland Study, a population-based cohort study of
12,435 adults born between 1950 and 1975 and registered with
general practices in Cambridgeshire, United Kingdom.We randomly
split this dataset into five subsamples to represent five independent
validation studies. Participants attended our research facility and
completed RPAQ (Besson et al., 2010) and underwent treadmill
testing for individual calibration (Brage et al., 2007) whilst fitted with
a chest-worn combined heart rate and movement sensor (Actiheart,
CamNtech Ltd, Papworth, UK) (Brage et al., 2005). At the end of the
clinical assessment, they were instructed to wear this device contin-
uously for six days and nights and carry on with their normal
behaviors. Data from RPAQ were used to derive duration (minutes
per day) of MVPA by summing duration reported participating
in activities with intensity > 3.0 METs (Ainsworth et al., 2011),

Figure 1 — Indirect modelling of the relationship between starting
point values and target criterion values via intermediate values (broken
black arrow). Intermediates are characterized by already established
(published) relationships with both the target criterion and the starting
point as indicated by the solid black arrows. The new indirect model is
evaluated against the direct model (solid grey arrow).
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estimates of PAEE calculated as frequency × duration × intensity
(Besson et al., 2010), and the four-level Cambridge Index (Golubic
et al., 2014; Wareham et al., 2003). The ACCTRUNK signal from the
combined heart andmovement sensor was used in the format ofmean
daily trunk acceleration in m·s−2, while the HR signal together with
treadmill test data was used to derive an individually calibrated
estimate of PAEE as previously described (Brage et al., 2007, 2015).
The two signals were also combined (ACCHR) to predict PAEE
using branched equation modelling (Brage et al., 2004). The Fenland
Study was approved by the Health Research Authority National
Research Ethics Service Committee East of England-Cambridge
Central, and participants provided written informed consent. Five
variations on Bridge Equation 1 using self-report as the starting point
were derived from the linear regression of: 1) ACCTRUNK on RPAQ
MVPA; (2) HR PAEE on RPAQ MVPA; (3) ACCHR PAEE on
RPAQ MVPA; (4) ACCHR PAEE on RPAQ PAEE; (5a) ACCHR
PAEE on RPAQ Cambridge Index. To examine whether indirect
harmonization is robust to variations in measurement protocol and
population (i.e., a potentially non-ideal bridge equation), we used
an additional linear regression of (5b) ACCHR PAEE on RPAQ
Cambridge Index. This was derived from the similar short European
Prospective Investigation into Cancer and Nutrition Study Physical
Activity Questionnaire (short EPIC-PAQ) administered in the EPIC
cohort across 10 European countries (Peters et al., 2012; Wareham
et al., 2003) denoted by ACCHREUROPE.

To contrast the harmonization process of self-report data as
starting points with that of objective data as the starting point, two
additional AC bridge equations derived from the linear regression
of: (6) ACCTRUNK on ACCWRIST; and (7) ACCHR PAEE on
ACCWRIST, were obtained from published work (White, Westgate,
Wareham, & Brage, 2016).

Bridge Equation 2. Three bridge equations were obtained from
published data (Brage et al., 2015) using the linear regression
of DLW-based total daily PAEE expressed in kJ·day−1·kg−1 on:
(1) ACCTRUNK; (2) HR PAEE; and (3) ACCHR PAEE, in doing so
linking to the prediction output from a Bridge Equation 1
described above.

Direct Model

The inferential equivalence of harmonized PAEE values was
assessed using gold standard DLW-based PAEE values from the
UK Biobank Validation Study (BBVS) reported in detail elsewhere
(White et al., 2019). Briefly, rate of carbon dioxide production
(rCO2) was measured using the 10-day DLW method of Schoeller
et al. (1986) and converted to total energy expenditure (TEE)
using the energy equivalents of CO2 of Elia and Livesey (1988)
in 100 participants. Resting metabolic rate (RMR) was measured on
two separate days during clinic visits with a fifteen-minute rest test
by respired gas analysis (OxyconPro, Jaeger, Germany), and scaled
by a factor of 0.94 to account for RMR measurements being
conducted in the afternoon rather than the morning (Haugen,
Melanson, Tran, Kearney, & Hill, 2003). The closest measurement
value (visit 1, visit 2, or their mean) by proximity to the within-
person median of predictions of RMR using three equations (Henry,
2005; Nielsen et al., 2000; Watson et al., 2014) was used in analysis.
Total daily REE was calculated, with an additional adjustment of
sleeping metabolic rate being 5% lower than awake resting meta-
bolic rate (Goldberg, Prentice, Davies, & Murgatroyd, 1988). Diet-
induced thermogenesis was estimated using macronutrient intake
assessed by food frequency questionnaire as previously described
(Brage et al., 2015; Jequier, 2002). The REE and diet-induced

thermogenesis were subtracted from TEE and divided by body
mass yielding an estimate of total daily PAEE in kJ·day−1·kg−1.

The four variations on the starting point values described above
were replicated in BBVS so that four corresponding direct models
predicting the target criterion DLW PAEE could be derived. Parti-
cipants completed RPAQ and the raw data were used to derive
duration of MVPA, PAEE, and the four-level Cambridge Index.
In addition, participants were fitted with a tri-axial accelerometer
(AX3, Axivity, Newcastle, UK) on the wrist for 9 days and nights
whilst continuing with their usual activities. The ACCWRIST signal
was used to approximate acceleration as a result of humanmovement
and expressed in milli-g (van Hees et al., 2013). Ethical approval for
the study was obtained from Cambridge University Human Biology
Research Ethics Committee (Ref: HBREC/2015.16). All partici-
pants provided written informed consent.

Deriving the Indirect Model

Beta and alpha coefficients for the indirect models were derived
by substituting Bridge Equation 1 into Bridge Equation 2 to give
Formula 3:

1. Intermediate Values = Beta1 × Starting Point Values +Alpha1
2. Target Criterion Values = Beta2 × Intermediate Values +

Alpha2
3. Target Criterion Values =Beta2 × (Beta1 × Starting Point

Values +Alpha1) +Alpha2.

Formula 3 simplifies to give the following formulae for
deriving the new coefficients:

AlphaIndirect = Alpha1 � Beta2 þ Alpha2

BetaIndirect = Beta1 � Beta2:
These formulae provide parameter estimates for the indirect

model coefficients but not their standard errors. To propagate the
uncertainty in the parameter estimates from Bridge Equation 1 and
Bridge Equation 2 to the new indirect model, 10,000 values of each
parameter were sampled from a normal distribution with mean equal
to the observed parameter estimate and standard deviation equal to the
standard error of that parameter estimate; the formulae above were
then applied to the sampled values. Themeans and standard deviations
of the resulting distributions for BetaIndirect and AlphaIndirect were used
as the coefficient point estimates and standard errors, respectively.

For the indirect model using the categorical Cambridge Index
derived from RPAQ, the categorical data were replaced by one
constant and three dummy variables to represent four levels. The
above steps were then applied in the same way, but repeated for
each of the four values of BetaIndirect.

We meta-analyzed the newly derived beta and alpha coeffi-
cients from each of three indirect models predicting PAEE from
duration of MVPA, thus generating a fifth indirect combined
prediction equation using all available information; this represents
the scenario where harmonization is performed using multiple
validation studies of the same instrument.

Analysis

The inferential equivalence of each permutation of the indirect
model was assessed alongside an equivalent direct model derived
from the linear regression of target criterion PAEE data on corre-
sponding starting point data available for 100 participants in the
BBVS. PAEE was predicted from four types of starting point data
using direct and indirect models and compared with values from
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the observed criterion PAEE (i.e., the “true” PAEE exposure using
the DLW method) by calculating the mean bias and 95% limits
of agreement, root mean square error (RMSE), and Spearman
correlation to assess the similarity with which individuals were
ranked. Note in this evaluation scenario, the mean bias of directly
mapped relationships is always zero. We derived the theoretical
combined explained variance as the product of the r2 values from
the two linear bridge equations for each indirect model.

Finally, to demonstrate utility, we examined the associations
between all PAEE estimates and body mass index (BMI) using
multivariable linear regression adjusted for age and sex in a subset
of 1695 participants in the Fenland Study. All data processing
and analyses were performed in STATA/SE 14.2 (StataCorp,
TX, USA).

Results

The characteristics of participants from each of the sources of data
are described in Table 1. The participants in the Brage et al. (2015)
study were younger and more active with lower BMI than parti-
cipants in BBVS and the Fenland Study, including the subset
reported in White et al. (2016). Participants in EPIC were less
active than those in the Fenland Study. The criterion value of PAEE
from the DLWmethod in the BBVS had a mean (SD) of 49.7 (16.2)
kJ·kg−1·day−1 and a range of 8.6 to 90.8 kJ·kg−1·day−1.

The combinations of Bridge Equation AC and Bridge Equa-
tion CB used to generate the indirect model are shown in Table 2
alongside their r2 values. The newly derived indirect models are
plotted alongside the direct models in Figure 2.

Table 3 reports the coefficients and performance of models
predicting target criterion DLW-based PAEE (kJ·kg−1·day−1) from
a continuous estimate of MVPA duration (minutes·day−1) derived
from RPAQ. The beta coefficients for indirect models were attenu-
ated compared with the direct model beta (also see Figure 2). The
correlation between the predicted and DLW-based PAEE values

was preserved irrespective of harmonization method; however, at
group-level the values from ACCHR and HR indirect models were
significantly biased. Each model was characterized by a narrowing
of the range of PAEE values, and this was particularly pronounced
when using ACCTRUNK values as the intermediate method, the
indirect model with the smallest combined explained variance,
most attenuated beta coefficient, and widest limits of agreement.
The HR indirect model resulted in predictions with the largest
RMSE while the ACCTRUNK and ACCHR indirect model predic-
tions were similarly precise. Coefficients generated by meta-
analyzing the three indirect models had smaller standard errors
and performance was similar to that of harmonization via ACCHR.

Table 4 reports the coefficients and performance of models
predicting DLW-based PAEE (kJ·kg−1·day−1) from a continuous
estimate of total daily PAEE (kJ·kg−1·day−1) derived from RPAQ.
Compared with the raw values of RPAQ-derived PAEE, the
indirect and direct models reduced group-level mean bias and
approximately halved RMSE. As for MVPA estimates, the corre-
lation between RPAQ PAEE values and criterion PAEE was
maintained regardless of whether values were raw, directly or
indirectly harmonized. The ranges of the indirectly and directly
harmonized values were much reduced compared with those from
the raw RPAQ and those of the criterion PAEE.

Table 5 reports the coefficients and performance of models
predicting DLW-based PAEE (kJ·kg−1·day−1) using the categorical
Cambridge Index derived from RPAQ. Correlations with criterion
DLW-based PAEE were weaker, and differed for direct and
indirect harmonization. For the direct model, the value of PAEE
assigned to being “inactive”was greater than that assigned to being
“moderately inactive” and “moderately active”; the indirect model
values of PAEE for each category were ordered more intuitively
(also see Figure 2). RMSEs for the indirectly and directly harmo-
nized values were similar, and also similar to RMSEs using
continuous RPAQ data described above, however the group-level
values were again biased when using the Fenland Study data for

Table 1 Participant Characteristics

Fenland Study White et al. (2016) Peters et al. (2012) Brage et al. (2015) BBVS

N 10 602 1050 1941 46 100

Age (years) 48 (7) 50 (7) 53 (8) 34 (9) 54 (7)

Female (%) 52 48 70 50 50

BMI (kg·m−2) 27 (5) 26 (4) 26 (4) 25 (3) 27 (3)

ACCTRUNK (m·s−2) .126 (.055) .125 (.055) – .237 (.090) –

HR PAEE (kJ·day−1·kg−1) 71 (43) – – 67 (42) –

ACCHR PAEE (kJ·day−1·kg−1) 55 (22) – 44 (16) 69 (25) –

RPAQ MVPA (minutes·day−1) 112 (152) – – – 128 (146)

RPAQ PAEE (kJ·day−1·kg−1) 38 (32) – – – 40 (29)

CAM Inactive (%) 13 – 15 – 7

CAM Moderately inactive (%) 54 – 33 – 37

CAM Moderately active (%) 28 – 28 – 30

CAM Active (%) 17 – 24 – 26

DLW-based PAEE (kJ·day−1·kg−1) – – – 66 (24) 50 (16)

ACCWRIST (milli-g) – 48 (11) – – 43 (10)*

Note. Values are mean (SD) unless specified otherwise. Abbreviations: ACCTRUNK =mean daily trunk acceleration; ACCWRIST =mean daily high pass filter vector
magnitude wrist acceleration signal; ACCHR = combined heart rate and movement sensing; BBVS =Biobank Validation Study; BMI = body mass index; CAM =
Cambridge Index; DLW = doubly labelled water; HR = heart rate; MVPA =moderate-to-vigorous physical activity; PAEE = physical activity energy expenditure;
RPAQ =Recent Physical Activity Questionnaire.
*n = 97.
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Table 2 Bridge Equations Used to Derive Indirect Models

Bridge Equation
Starting Point
Value

Intermediate
Value

Target Criterion
Value N β (SE) α (SE) r2

Harmonization of RPAQ MVPA via ACCTRUNK

1 RPAQ MVPA
(minutes·day−1)

ACCTRUNK (m·s−2) – 2121 5.84·10−5 (7.9·10−6) .1199 (.0015) .02

2 – ACCTRUNK (m·s−2) DLW PAEE
(kJ·day−1·kg−1)

46 165 (32) 26.7 (8.2) .37

Harmonization of RPAQ MVPA via PAEE from HR

1 RPAQ MVPA
(minutes·day−1)

HR PAEE
(kJ·day−1·kg−1)

– 2121 .0840 (.0061) 60.9 (1.2) .08

2 – HR PAEE
(kJ·day−1·kg−1)

DLW PAEE
(kJ·day−1·kg−1)

46 .34 (.07) 42.7 (5.8) .34

Harmonization of RPAQ MVPA via PAEE from ACCHR

1 RPAQ MVPA
(minutes·day−1)

ACCHR PAEE
(kJ·day−1·kg−1)

– 2120 .0390 (.0030) 50.69 (.57) .07

2 – ACCHR PAEE
(kJ·day−1·kg−1)

DLW PAEE
(kJ·day−1·kg−1)

46 .66 (.11) 20.0 (8.1) .45

Harmonization of RPAQ PAEE via PAEE from ACCHR

1 RPAQ PAEE
(kJ·day−1·kg−1)

ACCHR PAEE
(kJ·day−1·kg−1)

– 2120 .239 (.014) 45.63 (.69) .12

2 ACCHR PAEE
(kJ·day−1·kg−1)

DLW PAEE
(kJ·day−1·kg−1)

46 .66 (.11) 20.0 (8.1) .45

Harmonization of Cambridge Index via PAEE from ACCHR

1 RPAQ Cambridge
Index

ACCHR PAEE
(kJ·day−1·kg−1)

– 2120 *Inactive = 0;
Moderately inactive =
5.6 (1.5); Moderately
active = 13.0 (1.6);
Active = 24.2 (1.7)

44.2 (1.3) .12

2 ACCHR PAEE
(kJ·day−1·kg−1)

DLW PAEE
(kJ·day−1·kg−1)

46 .66 (.11) 20.0 (8.1) .45

Harmonization of Cambridge Index via PAEE from ACCHREUROPE

1 RPAQ Cambridge
Index

ACCHREUROPE PAEE
(kJ·day−1·kg−1)

– 1941 *Inactive = 0;
Moderately inactive =
4.6 (1.1); Moderately
active = 9.1 (1.1);
Active = 14.8 (1.1)

36.14 (.88) .10

2 ACCHREUROPE PAEE
(kJ·day−1·kg−1)

DLW PAEE
(kJ·day−1·kg−1)

46 .66 (.11) 20.0 (8.1) .45

Harmonization of ACCWRIST via ACCTRUNK

1 ACCWRIST (milli-g) ACCTRUNK (m·s−2) – 1050 4.78·10−3 (9.0·10−5) -.097 (.0036) .53

2 ACCTRUNK (m·s−2) DLW PAEE
(kJ·day−1·kg−1)

46 165 (32) 26.7 (8.2) .37

Harmonization of ACCWRIST via PAEE from ACCHR

1 ACCWRIST (milli-g) ACCHR PAEE
(kJ·day−1·kg−1)

– 1050 1.232 (.012) −6.90 (.45) .67

2 ACCHR PAEE
(kJ·day−1·kg−1)

DLW PAEE
(kJ·day−1·kg−1)

46 .66 (.11) 20.0 (8.1) .45

Abbreviations: ACCTRUNK =mean daily trunk acceleration; ACCWRIST =mean daily high pass filter vector magnitude wrist acceleration signal; ACCHR = combined heart
rate and movement sensing; ACCHREUROPE = combined heart rate and movement sensing from European population; DLW = doubly labelled water method; HR = heart
rate; MVPA =moderate-to-vigorous physical activity; PAEE = physical activity energy expenditure; RPAQ =Recent Physical Activity Questionnaire; SE = standard error.
*Constant and three dummy variables used to represent four-level Cambridge Index.
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Bridge Equation 1. The indirect model derived using the Bridge
Equation 1 from a less active European population showed unbi-
ased group-level estimates of PAEE.

Table 6 reports the coefficients and performance of models
predicting DLW-based PAEE (kJ·kg−1·day−1) from ACCWRIST

(milli-g). Compared with the RPAQ-derived models described
above, models based on accelerometer data as starting point and
mapping via other objective methods resulted in stronger correla-
tions of estimated PAEE with DLW-based PAEE. The RMSEs
observed for both the indirect and direct models were smaller than
for any of the RPAQ models, and with higher combined explained
variance; the range of PAEE values was also better preserved as
shown in Figure 2.

To demonstrate utility of the different harmonization ap-
proaches, we examined the associations of PAEE with BMI in
the Fenland study (n = 1695 subsample); Figure 3 shows the beta
(95% confidence intervals) of these linear associations by harmo-
nization method and starting data format, alongside that from the
silver-standard ACCHR PAEE. PAEE estimates harmonized from
ACCWRIST showed statistically significant inverse associations

with BMI. There was a striking difference between models for
the Cambridge Index, with indirectly harmonized PAEE showing
statistically significant inverse associations with BMI and the
directly harmonized PAEE showing no relationship. Other asso-
ciations of indirectly harmonized PAEE values with BMI were
similar but more uncertain when compared to the direct equivalent.
All associations using PAEE harmonized from continuous RPAQ
data were weak with 95% confidence intervals crossing zero.
MVPA data indirectly harmonized to PAEE via ACCTRUNK values
resulted in the widest confidence intervals.

Discussion

This study is the first to examine and evaluate an indirect validation
technique for harmonization, an essential step in any study which
combines data from different sources in the same analysis. Our
findings indicate that indirect models can be employed to harmo-
nize data to a compatible format in the absence of the ideal
validation study, but that the harmonized values may still be biased
at group-level, have a narrower value range compared to the

Figure 2 — Comparison of direct and indirect harmonization models by starting data type. Abbreviations: ACCTRUNK =mean daily trunk acceleration;
ACCHR = combined heart rate and movement sensing; ACCHREUROPE = combined heart rate and movement sensing from European population;
ACCWRIST =mean daily high pass filter vector magnitude wrist acceleration signal; HR = heart rate; MVPA =moderate-to-vigorous physical activity;
PAEE = physical activity energy expenditure; RPAQ =Recent Physical Activity Questionnaire.
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criterion, and that gains in precision are dependent upon the
variance explained by the contributing bridge equations. These
findings reinforce the necessity to carefully consider the inferential
equivalence of harmonized data and “the truth” according to the
scientific context and the purpose of the analyses being performed
(Fortier et al., 2010).

For analyses such as exposure-disease associations which
primarily rely on relative validity, harmonization using indirect
models is beneficial in that it increases precision while retaining the
correlation between the original data and estimates of the latent
truth from the gold standard criterion (when all bridge equations are
linear). Our results for RPAQ-derived PAEE demonstrate that even
when data pre-exist in a seemingly compatible format, improve-
ments in precision are possible following harmonization.

Furthermore, even if no harmonization need be conducted, the
newly derived indirect model could be used to perform measure-
ment error correction by regression calibration (Keogh &
White, 2014).

Using indirect models revealed some unexpected advantages.
When harmonizing Cambridge Index categorical data to a contin-
uous estimate of PAEE, the direct model assigned a higher PAEE
value to level 1 than both level 2 and 3, whereas the indirect model
was more logically ordered by mean PAEE in kJ·kg−1·day−1 using
the relationships in the Fenland sample or the published EPIC data.
The illogical ordering in the small sample likely contributed to
the null PAEE-BMI association for directly harmonized PAEE,
whereas the two logically ordered indirectly harmonized PAEE
estimates both showed inverse relationships. Given that validation

Table 3 Model Coefficients and Performance for Predicting DLW-Based PAEE from RPAQ MVPA

Direct
BBVS

Indirect
via ACCTRUNK

Indirect
via HR

Indirect
via ACCHR Meta-equation

Coefficients

β (SE) .036 (.011) .0099 (.0032) .0291 (.0081) .0261 (.0062) .0225 (.0012)

α (SE) 45.1 (2.1) 46.5 (12.2) 63.7 (10.6) 53.5 (13.9) 54.5 (.23)

Combined explained variance – .007 .027 .032 –

Performance vs DLW PAEE

Mean bias (kJ·day−1·kg−1)[95% CI] – −1.9 [−5.1; 1.2] 17.7 [14.6; 20.7] 7.1 [4.1; 10.1] 7.7 [4.6; 10.7]

Mean bias (%) – −3.9 35.6 14.3 15.4

Limits of agreement* (kJ·day−1·kg−1) – −34; 30 −13; 48 −24; 37 23; 39

RMSE (kJ·day−1·kg−1) 15.3 15.8 23.4 16.9 17.2

RMSE (%) 30.7 32.0 47.0 34.0 34.6

Spearman correlation* (rho) .37 .37 . 37 .37 .37

Range (kJ·day−1·kg−1) 46; 67 47; 52 64; 81 54; 69 55; 68

Note: Combined explained variance is the product of the explained variance of the two bridge equations. It is not the explained variance (r2) of the indirect model.
Abbreviations: ACCTRUNK =mean daily trunk acceleration; ACCHR = combined heart rate and movement sensing; BBVS =Biobank Validation Study; DLW = doubly
labelled water; HR = heart rate; MVPA =moderate-to-vigorous physical activity; PAEE = physical activity energy expenditure; RMSE = root mean square error; RPAQ =
Recent Physical Activity Questionnaire; SE = standard error.

Table 4 Model Coefficients and Performance for Predicting DLW-Based PAEE from RPAQ PAEE

Direct
BBVS

Indirect
via ACCHR

Non-harmonized
RPAQ PAEE

Coefficients

β (SE) .176 (.054) .159 (.035) –

α (SE) 42.7 (2.7) 50.2 (13.5) –

Combined explained variance – .054 –

Performance vs DLW PAEE

Mean bias (kJ·day−1·kg−1) [95%CI] – 6.9 [3.8; 9.9] −9.6 [−15.2; −4.0]

Mean bias (%) – 13.7 −19.3

Limits of agreement (kJ·day−1·kg−1) – −24; 38 −66; 47

RMSE (kJ·day−1·kg−1) 15.3 16.8 29.8

RMSE (%) 30.8 33.8 60.0

Spearman correlation (rho) .38 .38 .38

Range (kJ·day−1·kg−1) 44; 71 51; 76 8; 160

Note: Combined explained variance is the product of the explained variance of the two bridge equations. It is not the explained variance (r2) of the indirect model.
Abbreviations: ACCHR = combined heart rate and movement sensing; BBVS =Biobank Validation Study; DLW = doubly labelled water; PAEE = physical activity energy
expenditure; RMSE = root mean square error; RPAQ =Recent Physical Activity Questionnaire; SE = standard error.
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studies using comparisons with a gold-standard criterion are often
relatively small, mapping of categorical data from questionnaires
to continuous metrics may be unduly influenced by incorrectly
classified individuals with extreme values. In a larger study such as
a prospective cohort like Fenland, the influence of incorrectly
classified individuals on category means is diminished resulting
in more logically ordered group means. Thus in certain scenarios
and under some feasibility constraints, it is possible that indirect
models using bridge equations sourced from larger studies with
silver-standard assessment are actually preferable to harmonization
using a direct model from a smaller study using the gold standard.
Although indirect harmonization is a potential solution in the

absence of direct models, these findings also suggest investigators
should make use of all available information—both direct and
indirect—in a form of network harmonization analogous to net-
work meta-analysis.

We observed that beta coefficients of indirect models were
attenuated compared to those from direct models, and that the level
of attenuation is related to the variance explained by the bridge
equations being combined. We calculated the theoretical combined
explained variance which summarises the r2 values of the two
contributing bridge equations derived in separate studies; indirect
models with a higher value tended to have less attenuated beta
coefficients, greater precision and less narrowed range of resulting

Table 5 Model Coefficients and Performance for Predicting DLW-Based PAEE from RPAQ Cambridge Index

Direct
BBVS

Indirect
via ACCHR

Indirect
via ACCHREUROPE

Coefficients

Cambridge Index Inactive β (SE) 0 0 0

Cambridge Index Moderately inactive β (SE) −7.9 (6.3) 3.8 (1.6) 3.1 (1.2)

Cambridge Index Moderately active β (SE) −4.8 (6.4) 8.7 (2.4) 6.1 (1.7)

Cambridge Index Active β (SE) 6.9 (6.5) 16.1 (3.7) 9.9 (2.4)

α (SE) 52.3 (5.8) 49.3 (13.7) 43.9 (12.6)

Combined explained variance – .054 .045

Performance vs DLW PAEE

Mean bias (kJ·day−1·kg−1) [95%CI] – 7.8 [4.7; 10.9] −.2 [−3.3; 2.8]

Mean bias (%) – 15.7 −.4

Limits of agreement (kJ·day−1·kg−1) – −23; 39 −31; 31

RMSE (kJ·day−1·kg−1) 15.0 17.2 15.5

RMSE (%) 30.1 34.6 31.2

Spearman correlation (rho) .34 .27 .27

Range (kJ·day−1·kg−1) 44; 59 49; 65 44; 54

Note: Combined explained variance is the product of the explained variance of the two bridge equations. It is not the explained variance (r2) of the indirect model.
Abbreviations: ACCHR = combined heart rate and movement sensing; ACCHREUROPE = combined heart rate and movement sensing from European population; BBVS =
Biobank Validation Study; DLW = doubly labelled water; PAEE = physical activity energy expenditure; RMSE = root mean square error; RPAQ =Recent Physical
Activity Questionnaire; SE = standard error.

Table 6 Model Coefficients and Performance for Predicting DLW-based PAEE from ACCWRIST

Direct
BBVS

Indirect
via ACCTRUNK

Indirect
via ACCHR

Coefficients

β (SE) 1.05 (.12) .79 (.17) .81 (.14)

α (SE) 4.2 (5.3) 10.9 (5.6) 15.5 (7.6)

Combined explained variance – .196 .302

Performance vs DLW PAEE

Mean bias (kJ·day−1·kg−1) [95%CI] – −4.8 [−7.2; −2.3] .9 [−1.6; 3.4]

Mean bias (%) – −9.5 1.8

Limits of agreement (kJ·day−1·kg−1) −24; 24 −29; 20 −24; 25

RMSE (kJ·day−1·kg−1) 11.9 13.1 12.2

RMSE (%) 24.0 26.4 24.5

Spearman correlation (rho) .69 .69 .69

Range (kJ·day−1·kg−1) 31; 94 31; 78 37; 85

Note: Combined explained variance is the product of the explained variance of the two bridge equations. It is not the explained variance (r2) of the indirect model.
Abbreviations: ACCTRUNK =mean daily trunk acceleration; ACCWRIST =mean daily high pass filter vector magnitude wrist acceleration signal; ACCHR = combined heart
rate and movement sensing; BBVS =Biobank Validation Study; DLW = doubly labelled water; PAEE = physical activity energy expenditure; RMSE = root mean square
error; SE = standard error.
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values. Shrinking of the range of harmonized values towards the
mean when compared to the original data and the criterion will have
implications for dose-response analyses which aim to assess the
shape of any relationship across the full exposure range. It was
noticeable that the indirect model for harmonizing MVPA to PAEE
via ACCTRUNK had the most attenuated beta coefficient resulting in
a very narrow range of PAEE values and the widest confidence
intervals for the applied example of studying the PAEE association
with BMI. A key finding was that associations between PAEE and
BMI were similar for data harmonized using both direct and
indirect models; the two techniques may therefore be inferentially
equivalent but depending upon the validity of the original method,
neither may result in data inferentially equivalent to the true level of
exposure. The utility of all harmonization equations is influenced
by the quality of the data being harmonized and the pre-existing
error of the methods used in the bridge equations.

For analyses which depend upon absolute agreement between
harmonized data and the latent truth, even greater caution is required
as most values from indirect harmonization were biased at group-
level. The bias was typically <15% and did not appear to be related to
the combined explained variance. The biases observedmay therefore
reflect differences in the populations from which the bridge equa-
tions and the data undergoing harmonization are sourced. Perhaps
most strikingly, the criterion measures of PAEE in the BBVS and
Brage et al. (2015) differed on average by 22%. The Brage et al.
(2015) participants were younger and had lower BMI so these are
likely to be true differences, even though some of the bias observed
may be due to minor differences in the criterion method used to
estimate PAEE in the two studies, e.g. different RMR protocols. We
examined the effect of using alternative bridge equations from
potentially incompatible measurement tools and populations by
deriving two indirect models for harmonizing the RPAQCambridge

Index to PAEE. The indirect model using a Bridge Equation AC
derived from the Fenland Study resulted in biased group-level
estimates, whereas the ‘non-ideal’ Bridge Equation AC derived
from published data using the EPIC-PAQ in the less active European
population did not. It is possible that the lower PAEE in this latter
population counteracted any bias resulting from the higher PAEE in
the second Bridge Equation from Brage et al. (2015). The contrast
may also be partially attributable to differences between RPAQ and
EPIC-PAQ. Any incompatibility of the populations and assessment
methods from which the two bridge equations are derived must
therefore be considered alongside the data being harmonized.

Further work is necessary to examine the suitability of com-
bining bridge equations from different populations and the gener-
alizability of the resulting indirect models, but our findings suggest
that harmonization is sensitive to differences in the true level of
exposure between participants in the bridge equation studies and
those in the dataset being harmonized.

One potential solution to population differences could be the
addition of covariates to indirect models, or, if the sample is large
enough, stratification of results by covariates. However, this would
require some existing published bridge equations to be re-derived,
and limit future harmonization to datasets with compatible covari-
ates. Moreover, adding covariates to the prediction likely requires
that these are always adjusted for in subsequent association analy-
ses, as associations may otherwise be driven by the covariates
(i.e., confounded). In addition and on a more practical level, it is
often the case that regression equations are not published, and
this limits harmonization efforts despite some of the necessary
fieldwork having been conducted. Populating the network of bridge
equations between methods, and making this discoverable, is
therefore an important task. We have added beta and alpha
coefficients alongside their standard errors of the bridge equations

Figure 3 — Association (beta coefficients and 95% confidence intervals) between PAEE and BMI, by exposure estimation method (Fenland Study,
n = 1695 subsample with wrist acceleration). Note: Associations are adjusted for age and sex. Abbreviations: ACCTRUNK =mean daily trunk acceleration;
ACCHR = combined ACCTRUNK and heart rate sensing; ACCHREUROPE = combined heart rate and movement sensing from European population;
BMI = body mass index; ACCWRIST =mean daily high-pass filtered vector magnitude wrist acceleration; HR = heart rate; PAEE = physical activity
energy expenditure. *In the absence of doubly labelled water-assessed PAEE in a large cohort, a silver standard (ACCHR) has been used for comparison
for the cross-sectional association.
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used in the present study to the online repository Diet, Anthro-
pometry, and Physical Activity Measurement Toolkit (www.
measurement-toolkit.org) which enables sharing of such results
and which should increase the visibility and use of population-
specific harmonization models.

A potential limitation of the current work is that only simple
linear bridge equations were combined and that the participants in the
studies used were all from the same region of the UK; the generaliz-
ability of the technique to other populations therefore remains unclear.
While it was a strength of this work that we conducted indirect
harmonization with several different combinations of methods, there
are many more methods in use and the viability of this process with
other combinations, particularly when both bridge equations have
weak r2 is difficult to judge. In this study we were able to assess the
validity of indirect harmonization using the equivalent direct rela-
tionship from a study with gold-standard measures. This will not be
possible in most other scenarios as direct models would be unavail-
able—the exact problem that indirect harmonization tries to resolve.
In these circumstances it is not possible to assess the precision ormean
bias of indirectly harmonized estimates; the variance explained by the
two bridge equations provides an indication, but additional research is
required to examine this formally.

Conclusion

In summary, indirect models can harmonize data to compatible
format when direct models are not available, and can therefore
improve the inclusivity and resolution of data in analyses integrat-
ing information from different sources. This network harmoniza-
tion approach has greater validity when the original data and bridge
equations are stronger (i.e., more variance explained). Further work
is required to examine the sources of bias, address difficulties when
generalizing population-specific equations, and increase both the
number and discoverability of bridge equations in the network.

Acknowledgments

We are indebted to the volunteers who took part in the Fenland Study and the
BiobankValidation Study.We thank theMRCEpidemiologyUnit functional
group teams for study co-ordination, data collection, IT and datamanagement
in this study, as well as the principal investigators of the Fenland Study and
the Biobank Validation Study. In particular we would like to thank Tom
White, Stefanie Hollidge and Lewis Griffiths for assistance with physical
activity data processing, and Eirini Trichia from theMRCEpidemiologyUnit
for processing the FFQ data with the FETA package. We would also like to
thank the stable isotope team from the MRC Elsie Widdowson Laboratory:
Priya Singh, Elise Orford, and Kevin Donkers for the DLW preparation and
analysis. David Vaughan from the MRC Epidemiology Unit is acknowl-
edged for his assistance in creating the instrument library on www.
measurement-toolkit.org. This work was funded by UK Medical Research
Council (MC_UU_12015/3) and the NIHR Biomedical Research Centre in
Cambridge (IS-BRC-1215-20014). UK Biobank is acknowledged for con-
tributing to the costs of the fieldwork. Newcastle University andMedImmune
are acknowledged for contributing to the costs of the doubly labelled water
measurements. The funders had no role in the design, conduct, analysis, and
decision to publish results from this study.

References

Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett Jr.,
D.R., Tudor-Locke, C., . . . Leon, A.S. (2011). 2011 Compendium of

Physical Activities: a second update of codes and MET values.
Medicine & Science in Sports & Exercise, 43(8), 1575–1581.
PubMed ID: 21681120 doi:10.1249/MSS.0b013e31821ece12

Atkin, A.J., Biddle, S.J.H., Broyles, S.T., Chinapaw, M., Ekelund, U.,
Esliger, D.W., . . . van Sluijs, E.M.F. (2017). Harmonising data on the
correlates of physical activity and sedentary behaviour in young
people: methods and lessons learnt from the international Children’s
Accelerometry database (ICAD). International Journal of Behavioral
Nutrition and Physical Activity, 14(1), 174. PubMed ID: 29262830
doi:10.1186/s12966-017-0631-7

Aune, D., Norat, T., Leitzmann, M., Tonstad, S., & Vatten, L.J. (2015).
Physical activity and the risk of type 2 diabetes: a systematic review
and dose-response meta-analysis. European Journal of Epidemiol-
ogy, 30(7), 529–542. PubMed ID: 26092138 doi:10.1007/s10654-
015-0056-z

Besson, H., Brage, S., Jakes, R.W., Ekelund, U., &Wareham, N.J. (2010).
Estimating physical activity energy expenditure, sedentary time, and
physical activity intensity by self-report in adults. The American
Journal of Clinical Nutrition, 91(1), 106–114. PubMed ID: 19889820
doi:10.3945/ajcn.2009.28432

Brage, S., Brage, N., Franks, P.W., Ekelund, U., &Wareham, N.J. (2005).
Reliability and validity of the combined heart rate and movement
sensor Actiheart. European Journal of Clinical Nutrition, 59(4), 561–
570. PubMed ID: 15714212 doi:10.1038/sj.ejcn.1602118

Brage, S., Brage, N., Franks, P.W., Ekelund, U., Wong, M.Y., Andersen,
L.B., . . . Wareham, N.J. (2004). Branched equation modeling of
simultaneous accelerometry and heart rate monitoring improves
estimate of directly measured physical activity energy expenditure.
Journal of Applied Physiology, 96(1), 343–351. PubMed ID:
12972441 doi:10.1152/japplphysiol.00703.2003

Brage, S., Ekelund, U., Brage, N., Hennings, M.A., Froberg, K., Franks,
P.W., & Wareham, N.J. (2007). Hierarchy of individual calibration
levels for heart rate and accelerometry to measure physical activity.
Journal of Applied Physiology, 103(2), 682–692. PubMed ID:
17463305 doi:10.1152/japplphysiol.00092.2006

Brage, S., Westgate, K., Franks, P.W., Stegle, O., Wright, A., Ekelund, U.,
& Wareham, N.J. (2015). Estimation of free-living energy expendi-
ture by heart rate and movement sensing: a doubly-labelled water
study. PLoS ONE, 10(9), e0137206. PubMed ID: 26349056 doi:10.
1371/journal.pone.0137206

Elia, M., & Livesey, G. (1988). Theory and validity of indirect calorimetry
during net lipid synthesis. The American Journal of Clinical Nutri-
tion. doi: 10.1093/ajcn/47.4.591

Fortier, I., Burton, P.R., Robson, P.J., Ferretti, V., Little, J., L’Heureux, F.,
. . . Hudson, T.J. (2010). Quality, quantity and harmony: the
DataSHaPER approach to integrating data across bioclinical studies.
International Journal of Epidemiology, 39(5), 1383–1393. PubMed
ID: 20813861 doi:10.1093/ije/dyq139

Goldberg, G.R., Prentice, A.M., Davies, H.L., & Murgatroyd, P.R.
(1988). Overnight and basal metabolic rates in men and women.
European Journal of Clinical Nutrition, 42(2), 137–144. PubMed
ID: 3378547

Golubic, R., May, A.M., Benjaminsen Borch, K., Overvad, K., Charles,
M.-A., Diaz, M.J.T., . . . Brage, S. (2014). Validity of electronically
administered recent physical activity questionnaire (RPAQ) in ten
European countries. PLoS ONE, 9(3), e92829. PubMed ID:
24667343 doi:10.1371/journal.pone.0092829

Granda, P., & Blasczyk, E. (2011). Data harmonization. Guidelines for
best practice in cross-cultural surveys. 3rd ed. Retrieved from http://
ccsg.isr.umich.edu/index.php/chapters/data-harmonization-chapter

Haugen, H.A., Melanson, E.L., Tran, Z.V, Kearney, J.T., & Hill, J.O.
(2003). Variability of measured resting metabolic rate. The American

JMPB Vol. 3, No. 1, 2020

Physical Activity Data Harmonization 17

Brought to you by CAMBRIDGE UNIVERSITY | Unauthenticated | Downloaded 11/12/20 11:47 AM UTC

www.measurement-toolkit.org
www.measurement-toolkit.org
www.measurement-toolkit.org
www.measurement-toolkit.org
http://www.ncbi.nlm.nih.gov/pubmed/21681120?dopt=Abstract
https://doi.org/10.1249/MSS.0b013e31821ece12
http://www.ncbi.nlm.nih.gov/pubmed/29262830?dopt=Abstract
https://doi.org/10.1186/s12966-017-0631-7
http://www.ncbi.nlm.nih.gov/pubmed/26092138?dopt=Abstract
https://doi.org/10.1007/s10654-015-0056-z
https://doi.org/10.1007/s10654-015-0056-z
http://www.ncbi.nlm.nih.gov/pubmed/19889820?dopt=Abstract
https://doi.org/10.3945/ajcn.2009.28432
http://www.ncbi.nlm.nih.gov/pubmed/15714212?dopt=Abstract
https://doi.org/10.1038/sj.ejcn.1602118
http://www.ncbi.nlm.nih.gov/pubmed/12972441?dopt=Abstract
https://doi.org/10.1152/japplphysiol.00703.2003
http://www.ncbi.nlm.nih.gov/pubmed/17463305?dopt=Abstract
https://doi.org/10.1152/japplphysiol.00092.2006
http://www.ncbi.nlm.nih.gov/pubmed/26349056?dopt=Abstract
https://doi.org/10.1371/journal.pone.0137206
https://doi.org/10.1371/journal.pone.0137206
https://doi.org/10.1093/ajcn/47.4.591
http://www.ncbi.nlm.nih.gov/pubmed/20813861?dopt=Abstract
https://doi.org/10.1093/ije/dyq139
http://www.ncbi.nlm.nih.gov/pubmed/3378547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24667343?dopt=Abstract
https://doi.org/10.1371/journal.pone.0092829
http://ccsg.isr.umich.edu/index.php/chapters/data-harmonization-chapter
http://ccsg.isr.umich.edu/index.php/chapters/data-harmonization-chapter


Journal of Clinical Nutrition, 78(6), 1141–1144. PubMed ID:
14668276 doi:10.1093/ajcn/78.6.1141

Henry, C.J. (2005). Basal metabolic rate studies in humans: measurement
and development of new equations. Public Health Nutrition, 8(7A),
1133–1152. PubMed ID: 16277825 doi:10.1079/PHN2005801

Jequier, E. (2002). Pathways to obesity. International Journal of Obesity
and Related Metabolic Disorders, 26(Suppl. 2), S12–S17. doi:10.
1038/sj.ijo.0802123

Keogh, R.H., & White, I.R. (2014). A toolkit for measurement error
correction, with a focus on nutritional epidemiology. Statistics in
Medicine, 33(12), 2137–2155. PubMed ID: 24497385 doi:10.1002/
sim.6095

Kilpelainen, T.O., Qi, L., Brage, S., Sharp, S.J., Sonestedt, E., Demerath,
E., . . . Loos, R.J. (2011). Physical activity attenuates the influence of
FTO variants on obesity risk: a meta-analysis of 218, 166 adults and
19, 268 children. PLoS Med, 8(11), e1001116. PubMed ID:
22069379 doi:10.1371/journal.pmed.1001116

Lu, G., & Ades, A.E. (2004). Combination of direct and indirect evidence
in mixed treatment comparisons. Statistics in Medicine, 23(20),
3105–3124. PubMed ID: 15449338 doi:10.1002/sim.1875

Nielsen, S., Hensrud, D.D., Romanski, S., Levine, J.A., Burguera, B., &
Jensen, M.D. (2000). Body composition and resting energy expendi-
ture in humans: role of fat, fat-free mass and extracellular fluid.
International Journal of Obesity and Related Metabolic Disorders,
24(9), 1153–1157. PubMed ID: 11033984 doi:10.1038/sj.ijo.
0801317

Peters, T., Brage, S., Westgate, K., Franks, P.W., Gradmark, A., Tormo
Diaz, M.J., . . . Wareham, N. (2012). Validity of a short questionnaire
to assess physical activity in 10 European countries. European
Journal of Epidemiology, 27(1), 15–25. PubMed ID: 22089423
doi:10.1007/s10654-011-9625-y

Schoeller, D.A., Ravussin, E., Schutz, Y., Acheson, K.J., Baertschi, P., &
Jequier, E. (1986). Energy expenditure by doubly labeled water:

validation in humans and proposed calculation. American Journal
of Physiology, 250(5), R823–R830. doi:10.1152/ajpregu.1986.
250.5.R823

Spurr, G.B., Prentice, A.M., Murgatroyd, P.R., Goldberg, G.R., Reina,
J.C., & Christman, N.T. (1988). Energy expenditure from minute-by-
minute heart-rate recording: comparison with indirect calorimetry.
The American Journal of Clinical Nutrition, 48(3), 552–559. PubMed
ID: 3414570 doi:10.1093/ajcn/48.3.552

van Hees, V.T., Gorzelniak, L., Dean Leon, E.C., Eder, M., Pias, M.,
Taherian, S., . . . Brage, S. (2013). Separating movement and gravity
components in an acceleration signal and implications for the assess-
ment of human daily physical activity. PLoS ONE, 8(4), e61691.
PubMed ID: 23626718 doi:10.1371/journal.pone.0061691

Wareham, N.J., Jakes, R.W., Rennie, K.L., Schuit, J., Mitchell, J.,
Hennings, S., & Day, N.E. (2003). Validity and repeatability of a
simple index derived from the short physical activity questionnaire
used in the European Prospective Investigation into Cancer and
Nutrition (EPIC) study. Public Health Nutrition, 6(4), 407–413.
PubMed ID: 12795830 doi:10.1079/PHN2002439

Watson, L.P., Raymond-Barker, P., Moran, C., Schoenmakers, N.,
Mitchell, C., Bluck, L., . . . Murgatroyd, P.R. (2014). An approach
to quantifying abnormalities in energy expenditure and lean mass
in metabolic disease. European Journal of Clinical Nutrition, 68(2),
234–240. PubMed ID: 24281313 doi:10.1038/ejcn.2013.237

White, T., Westgate, K., Hollidge, S., Venables, M., Olivier, P., Wareham,
N., & Brage, S. (2019). Estimating energy expenditure fromwrist and
thigh accelerometry in free-living adults: a doubly labelled water
study. International Journal of Obesity . epub ahead of print. PubMed
ID:30940917 doi:10.1038/s41366-019-0352-x

White, T., Westgate, K., Wareham, N.J., & Brage, S. (2016). Estimation of
physical activity energy expenditure during free-living from wrist
accelerometry in UK adults. PLoS ONE, 11(12), e0167472. PubMed
ID: 27936024 doi:10.1371/journal.pone.0167472

JMPB Vol. 3, No. 1, 2020

18 Pearce et al.

Brought to you by CAMBRIDGE UNIVERSITY | Unauthenticated | Downloaded 11/12/20 11:47 AM UTC

http://www.ncbi.nlm.nih.gov/pubmed/14668276?dopt=Abstract
https://doi.org/10.1093/ajcn/78.6.1141
http://www.ncbi.nlm.nih.gov/pubmed/16277825?dopt=Abstract
https://doi.org/10.1079/PHN2005801
https://doi.org/10.1038/sj.ijo.0802123
https://doi.org/10.1038/sj.ijo.0802123
http://www.ncbi.nlm.nih.gov/pubmed/24497385?dopt=Abstract
https://doi.org/10.1002/sim.6095
https://doi.org/10.1002/sim.6095
http://www.ncbi.nlm.nih.gov/pubmed/22069379?dopt=Abstract
https://doi.org/10.1371/journal.pmed.1001116
http://www.ncbi.nlm.nih.gov/pubmed/15449338?dopt=Abstract
https://doi.org/10.1002/sim.1875
http://www.ncbi.nlm.nih.gov/pubmed/11033984?dopt=Abstract
https://doi.org/10.1038/sj.ijo.0801317
https://doi.org/10.1038/sj.ijo.0801317
http://www.ncbi.nlm.nih.gov/pubmed/22089423?dopt=Abstract
https://doi.org/10.1007/s10654-011-9625-y
https://doi.org/10.1152/ajpregu.1986.250.5.R823
https://doi.org/10.1152/ajpregu.1986.250.5.R823
http://www.ncbi.nlm.nih.gov/pubmed/3414570?dopt=Abstract
https://doi.org/10.1093/ajcn/48.3.552
http://www.ncbi.nlm.nih.gov/pubmed/23626718?dopt=Abstract
https://doi.org/10.1371/journal.pone.0061691
http://www.ncbi.nlm.nih.gov/pubmed/12795830?dopt=Abstract
https://doi.org/10.1079/PHN2002439
http://www.ncbi.nlm.nih.gov/pubmed/24281313?dopt=Abstract
https://doi.org/10.1038/ejcn.2013.237
http://www.ncbi.nlm.nih.gov/pubmed/30940917?dopt=Abstract
https://doi.org/10.1038/s41366-019-0352-x
http://www.ncbi.nlm.nih.gov/pubmed/27936024?dopt=Abstract
https://doi.org/10.1371/journal.pone.0167472

