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SUMMARY. This paper addresses the problem of dynamical systems with parameters varying in
time (transient systems). A method to predict their behaviour is proposed. This class of transient
systems can be seen as the evolution of an ordinary steady system into another ordinary steady
system, for both of which the classical theory of dynamical systems holds. The evolution from a
steady system to the other is driven by a transient force, which is regarded as a map between the two
steady systems. We apply our method to a system which is subjected to a transient excitation, that is
neither constant nor periodic, to simulate the effect of switching-on procedures.

1 INTRODUCTION
Dynamical systems are extremely pervasive in science and technology and are used to model

natural and engineering phenomena. Very often mathematical models are autonomous, i.e. they do
not entail an explicit dependence on time. Such a definition can be extended to include systems
with periodic excitation as well, since time can be added as an extra-variable with constant time-
derivative [1, 2]. In dissipative dynamical systems, which are of great use in engineering, it is
possible to introduce a qualitative distinction between steady states and transient states. A steady
state is characterised by recurrent behaviour, i.e. a particular point in the phase space is a steady
state if the system, after sufficient time, returns arbitrarily close to the point [3]. This definition
includes fixed points, limit cycles, quasi-periodic and chaotic steady states. A point in the phase
space is a transient state if it is not a steady state. Both steady and transient states are typical of
dissipative dynamical systems with time-invariant parameters and constant or periodic excitations,
i.e. autonomous or periodically forced systems which therefore can be called ‘steady systems’. It is
apparent that many interesting phenomena cannot be described as steady systems since their explicit
dependence on time is a crucial feature.

Transient systems, as opposed to steady systems, are the topic of a recent work by Galvanetto
and Magri [4]. They are characterised by system and/or excitation parameters which change in
time. Galvanetto and Magri [4], however, have studied only the effects of ‘switching-off’ and ‘pure
transient’ forces. In the present paper, we limit our attention to a system which is transient because
subjected to non-periodic excitations to simulate switching-on procedures.

2 A CLASSIFICATION OF TRANSIENT FORCES
We consider engineering systems which can be modelled with nonlinear ordinary differential

equations, such as:
dx

dt
= f(x, γ), (1)
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where x is the state vector, γ is the set of system parameters, and t is the time. If the system is forced
then an additional term appears in eq. (1):

dx

dt
= f(x, γ) + a · p(t), (2)

where a is the excitation amplitude and p(t) is a normalised periodic function of time such that
p(t) = p(t + T ), where T is the period. The unforced system is characterised by the set of system
parameters, γ; whereas the forced system is additionally characterised by the excitation parameters
such as a and those contained in the definition of p(t). If both the system and excitation parameters
are constant, the system is called a steady system. On the other hand, if the system parameters
and/or the excitation parameters change in time, the system described by either eq. (1) or (2) is a
transient system. In mechanics usual system parameters are mass, damping, stiffness; and excitation
parameters can be the amplitude, frequency and phase of the excitation.

In this paper, we will assume that the system can operate in two steady conditions: one with
no excitation, represented by eq. (1), and the second under the action of a periodic excitation, rep-
resented by eq. (2). Also, we will assume that in both conditions there exists only one acceptable
functioning mode. For example, an acceptable functioning mode can be an attracting fixed point,
when the excitation is not present, or a stable limit cycle, when the periodic excitation is present.
Moreover, in the unforced system a safe zone exists around the stable fixed point, within its basin
of attraction. The safe zone represents all configurations that the system can safely assume when
in action and affected by perturbations or imperfections that keep it slightly away from the stable
fixed point. Likewise, for a periodically forced system a safe zone exists around the stable limit
cycle, within its basin of attraction. In this case, the safe zone represents all configurations that the
system can safely assume when in action and affected by perturbations or imperfections that keep
the system away from the stable limit cycle [5, 6].

We assume that the safe zones are limited sets so that they are contained by boundaries of finite
length.

The idea of [4] and this work is that a transient problem can be regarded as a map between two
steady systems: one is the initial system and the other the final system. We apply this idea to a case
of transient problem in which the system parameters are constant and only the excitation amplitude,
a(t), can vary. The periodic function p(t) is chosen to be a harmonic function with constant angular
frequency, p(t) = cos(ωt). Hence, the transition between the two steady systems is driven by a
transient force with a known time-varying amplitude. In [4] only switching-off and transient forces
were considered. In this paper we investigate switching-on forces (fig. 1) to extend the study by
Galvanetto and Magri [4].

A switching-on transient force brings an unforced system to a forced condition in a finite time.
This is the subject of the present study. During this time, the amplitude of the transient force varies
from zero, at the beginning of the transient, to a0 6= 0, at the end of the transient. The switching-on
problem is depicted in the sketch of fig. 1. The initial system is represented by eq. (1) and the final
system by eq. (2). A switching-off transient force brings a forced system to an unforced condition in
a finite time. During this time, the amplitude of the transient force varies from the value a0 6= 0, at
the beginning of the transient, to zero, at the end of the transient. A full-transient force acts between
two unforced systems for a finite time. During this time, the amplitude of the transient force varies
continuously assuming the value 0 both at the beginning and the end of the transient. Both initial and
final system are given by eq. (1). Similarly, the full-transient force can act also between two forced
systems for a finite time. In this case the full-transient force can be viewed as a perturbation to the
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Figure 1: Sketch of a generic transient system with switching-on transient force. The stable mani-
folds of a saddle point are drawn in the phase plane of the unforced system.

steady excitation during which it can vary continuously assuming the value 0 both at the beginning
and the end of the transient. In this case both initial and final system are given by eq. (2).

The transient problem is therefore characterised by a finite duration in time and it is bound by
two steady systems. For switching-on transient forces as well as switching-off and transient forces
[4], the theory of dynamical systems can be applied to the two steady systems, which exist before
and after the transient, so that we can have a complete description of the dynamical features of the
steady systems: attractors, basins of attraction, basin boundaries, etc.

In many engineering applications it is essential to determine if a transient between two steady
conditions brings the system to an acceptable functioning mode or not. Therefore, the engineering
point of view of a switching-on transient problem can be described in the following way: given an
engineering system in a safe zone around a fixed point, if a driving switching-on force acts, will the
system after the transient be operating in an acceptable condition? In other words, can we determine
the set of initial conditions (at t = 0) which, under the action of the switching-on transient force,
give origin to a trajectory ending up in the safe zone of the final system (for t > tend, where tend
is the end of the transient duration)? The problem is illustrated in the sketch of fig. 2. In general,
we can locate the steady states of the final system [7, 8], in particular its saddles (points or cycles)
with the relevant stable manifolds. One of the stable steady states is acceptable and its safe region
will therefore be inside its basin of attraction. To answer the afore-mentioned question, we have to
integrate backward in time all points belonging to the boundary of the safe zone from tend to t = 0
under the action of the time-varying-amplitude (transient) force. The image at t = 0 of the boundary
of the safe zone of the final system (called transformed boundary in the remainder of the paper) will
provide the boundary, in the initial condition plane (t = 0), of the set of safe points, called safe
transient initial conditions. These are the points of the initial system that, if the transient force is
activated, give origin to trajectories ending up in the safe region of the final system. It is particularly
important to find if there exists an intersection between the safe zone of the initial system, that
surrounds the acceptable functioning mode of the initial system, and the image at t = 0 of the safe
zone of the final system (obviously contained in the transformed boundary), as shown in fig. 3. If
such an intersection is empty then it is not possible to transfer the system from the initial safe zone
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safe zone to the final one under the action of the considered transient force [4].
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to the final one under the action of the transient force.

3 A NONLINEAR SYSTEM AS A PROTOTYPE
In the present section we introduce a simple model as a prototype which satisfies all assumptions

made in sec. 2. The main idea presented in sec. 2 will be applied to the prototype in sec. 4. This
system is a nonlinear oscillator, chosen for its simplicity, and it is characterised by (at least) two
coexisting attractors, one of which is representing an acceptable solution whereas the other is a
solution which is assumed to be not acceptable.

The system is governed by the following equation:

m
d2x

dt2
+ c

dx

dt
− k1x+ k2x

2 + k3x
3 = a · p(t), (3)

where a · p(t) is a function of time and represents the forcing term which may contain the transient
force. The system parameters have the following values: m = 1, c = 0.25, k1 = k2 = k3 = 1.
The unforced nonlinear oscillator has three fixed points whose coordinates are x1 = 0, x2 = (−1 +√
5)/2 ≈ 0.618 and x3 = (−1 −

√
5)/2 ≈ −1.618. The potential V of the restoring force is as

follows:

V (x) = −k1
x2

2
+ k2

x3

3
+ k3

x4

4
+ constant, (4)

which is shown in fig. 4. The constant in eq. (4) is assumed to be nought. The fixed point at the origin
is a saddle point and x2,3 are two point attractors (local minima of V (x)). The stable manifolds of
the saddle point divide the phase plane of the unforced system in the two basins of attraction of
the fixed points x2,3, as shown in fig. 5. If a small-amplitude harmonic external force is added
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Figure 4: Potential of the restoring force.

to the system the fixed points are transformed in limit cycles of the same nature: the saddle point
becomes a saddle limit cycle and the two point attractors become two attracting limit cycles. The
stable manifolds of the saddle cycle divide the phase space of the forced system in the two basins of
attraction of the attracting limit cycles. A Poincaré section of the phase space with angle phase of
zero radians would provide a figure similar to that of the basins of attraction of the unforced system,
so that fig. 5 is a good approximation of the basins of attractions of the forced system.

It is assumed that the fixed point x2 = (−1 +
√
5)/2 and the corresponding stable limit cycle

represent the acceptable functioning modes of the system, whereas the fixed point x3 = −(1+
√
5)/2

and the corresponding stable limit cycle represent the unacceptable functioning modes. The system
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Figure 5: Basins of attraction of the attracting fixed points: the black region is the basin of x2 and
the white region is the basin of x3[4].

is off when the external force a · p(t) is equal to zero for a certain interval of time. The system is on
if a · p(t) is an harmonic force with constant amplitude, a · p(t) = a0 cos(ωt).

The transition between the states off and on of the system takes place with a continuous variation
in time of the amplitude a(t), which is a function of time only during the transient and is constant
before and after it.

The switching-on problem (fig. 1) is defined as follows:

1. the initial system is unforced, a(t) = 0 when t < 0;

2. a(t) = a0

(
t

tend

)
when 0 ≤ t ≤ tend;

3. the final system is forced with constant amplitude, a(t) = a0 when t > tend.

This problem is the subject of the present study. We chose the force amplitude to increase linearly,
but any other continuous variation could be assumed. In fact, other force variation laws have been
considered but no significant difference in the results from the linear case has been observed.

For completeness sake, we report also the definitions of swithicing-off and transient forces, as
describe in [4]. The switching-off problem is defined as follows:

1. the initial system is forced with constant amplitude, a(t) = a0, when t < 0;

2. a(t) = a0

(
1− t

tend

)
when 0 ≤ t ≤ tend;

3. the final system is unforced, a(t) = 0 when t > tend;

where tend is the end of the transient, and 0 ≤ t ≤ tend represents the duration of the transient.

Lastly, the full-transient problem is defined as follows:

1. the initial system is unforced, a(t) = 0, when t < 0;

2. the force varies continuously when 0 ≤ t ≤ tend;

3. the final system is unforced when t > tend.
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4 NUMERICAL RESULTS
The prototype model presented in sec. 3 is subjected to the switching-on force described in

sec. 2. However, the method we propose can be applied conceptually in the same manner to other
types of transient systems, once one knows i) the duration of the transient; ii) the mathematical law
which describes the transient state; iii) the initial and final steady systems.

The transient-force parameters are ω = 3 rad/s and a0 = 0.2. In all examples of the present
section the safe region of the initial system is chosen to coincide with the basin of attraction of the
relevant acceptable attractor. At the beginning of the transient the forcing amplitude is zero and
it increases linearly in time reaching the value a0 after tend seconds. We want to know the set of
conditions in the initial phase plane (at t = 0) from which it is safe to switch on the excitation. The
black line of fig. 6a represents the boundary of the safe zone of the forced system. This is the basin
boundary (computed with a simple brute force technique) limited laterally by the line x = −0.5.
The points of the boundary are integrated backward in time under the action of the excitation which,
backward in time, is decreasing (fig. 1). More precisely, the integration backward in time of the
boundary of the safe region of the forced system is performed choosing as initial conditions a set of
closely spaced points along the black curve in fig. 6a and integrating the following system:

ẋ = −v, (5)
v̇ = −

(
a(t) cos(ωt)− cv + x− x2 − x3)

)
, (6)

a(t) = a0

(
1− t

tend

)
, (7)

0 ≤ t ≤ tend, tend = 2π/ω. (8)

The integration of the above equations provides the transformed boundary shown as a black curve
in fig. 6b. The same fig. 6b shows in grey the basin of attraction of the unforced system (initial
system): there are points of the basin of attraction of the unforced system that are not safe in the
transient case and, vice versa, points out of the basin of the unforced system which are safe with
the transient switching-on force, as shown in fig. 6b-c and 7 . Figure 6c shows a magnified view of
of fig. 6b. Two relevant points are chosen in order to show the effect of the transient force during
the switching-on procedure. Point A (black circle) is inside the region of plane contained within the
transformed boundary but outside the basin of attraction of the unforced system. Conversely, point
B (black square) lies outside the region limited by the black curve but inside the basin of attraction
of the unforced system. Therefore, if the periodic forcing were not switched on (no transient proce-
dure), point A would be attracted by the unacceptable fixed point because it lies outside the basin of
attraction of the unforced system. Contrariwise, point B would be attracted by the acceptable fixed
point because B lies within the basin of attraction of the unforced system. This is not the case if the
effect of the transient force with time-varying amplitude is considered. Time integration confirms
this as shown in fig. 7. Results from time integration are shown both in the phase plane (fig. 7a) and
as time histories (fig. 7b). The transient force representing the switching-on procedure, acts up to the
vertical dotted lines in fig. 7b. The time integration shows that point A converges to the acceptable
periodic attractor, whereas point B to the unacceptable periodic attractor of the final system. This is
because point A belongs to the set of safe transient initial conditions, whereas point B does not. The
engineering significance is that not all points which are safe when the system is off are also safe as
conditions from which switching on the system.
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4.1 Remarks on computations
The basin boundaries shown in this paper in some cases are those of a planar unforced system

and in other cases belong to a three dimensional forced system. In the first case the basin boundaries
are accurately located by selecting a large number of closely spaced initial conditions along the
direction of the eigenvector corresponding to the stable manifold and integrating them backward
in time [7, 8]. In the second case a brute force technique is used to find the basins of attraction
and therefore the boundaries are approximately located with a bisection method applied to pairs of
adjacent points of a grid in the plane of initial conditions. The basin boundaries of the 3-D systems
could be computed in a more accurate way [7, 8, 9], but that would not contribute in any significant
manner to the present work.

The reverse time integration has been carried out by changing the signs of the differential equa-
tions rather than by using a negative time step increment. This has been done to maintain in the re-
verse time integration the usual accuracy and stability properties of the time integration algorithms,
which are usually implemented for forward integration.

5 CONCLUSIONS
This paper presents an approach to tackle transient problems by extending the tools and concepts

of the theory of dynamical systems. In [4] and the present work we consider systems that are
transient because subjected to transient forces. A transient force drives a system from a known
initial steady state to a target final steady state in a finite time. The type of force considered in
this work is a switching-on force which represents a generic switching-on procedure of a dynamical
system. In other words, this type of force drives an unforced system to a forced condition.

The crucial point of this approach is to interpret the action of a transient force as that of a map
acting between the two steady systems. The safe zone, e.g. part of the basin of attraction of a desired
attractor, of the target system is mapped backward in time by integration. Doing so, we determine
the set of initial conditions which, under the action of the transient force, give origin to a trajectory
ending up in the safe zone of the target final steady system.

This conceptual method has been tested out on a simple mathematical model: a one-degree-of-
freedom nonlinear oscillator.

The idea presented in the paper has been explained by assuming the system to be three-dimensional
with states x, v and t. If the dimension of the system is larger, we lose the possibility to visualise the
entire safe zones. The detection of the intersection would become a trickier problem, as the number
of degrees of freedom increases. Moreover, the boundary of the safe zones would be of larger di-
mension as well. Therefore, the integration backward in time should be applied to a larger number
of points, making the procedure more time-consuming.

The method presented, however, can be applied to any transient system, as defined by the au-
thors, once one knows: i) the duration of the transient; ii) the mathematical law which describes the
transient system; iii) the initial and final steady systems.
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