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This Supplementary Information provides details of the theoretical derivation of the mean field model
(Section I), the simulation procedures (Section II), the procedure for determining the Gaussian stiffness
(Section III), and supporting results and figures (Section IV).

I. ANALYTICAL MODEL DERIVATION

We consider a fluid membrane discretised into small patches of size a2 ≈ 25nm2. Each patch represents
one component. Different component types are denoted by an index j and the membrane is defined by
a unit composition vector f = [f1, f2, f3, ...] specifying the fractions of different component types within
the membrane. Components can represent membrane lipids, embedded transmembrane receptors, or
inert membrane proteins. Each component type also has a spontaneous curvature c0,j and (mean and
Gaussian) bending rigidity moduli κj , κ̄j associated with it.

A. Curvature free energy

The theory is based on a Helfrich Hamiltonian for the curvature free energy density:

Hc =
κ

2
(2C − c0)2 + κ̄K , (1)

with C and K the local mean and Gaussian curvature of the membrane, and c0 the local preferred
curvature. The total elastic free energy of a membrane of size A is usually obtained by integrating Eq.
(1),

Fc =

∫
Hc dA . (2)

Such integral form implies a strong assumption of locality: all variables pertinent to the elastic free
energy are local. The integral form is valid as a macroscopic (thermodynamic) descriptor of an elastic
membrane. On a microscopic level however, the atomistic nature implies that the above integral should
be computed as a sum over individual discreet building blocks.

The lipid bilayer membrane is made of finite sized components – lipids. The thickness of the bilayer
is around 5nm, therefore, the smallest length scale, where the local picture of the Helfrich integral is
expected to apply, is of the order of membrane thickness a = 5nm. We discretise the Hefrich integral
into a sum over N components of size a2

Fc =

N∑
j′

Hc,j′ a
2 , (3)
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with Hc,j′ the curvature free energy density of component j′, Eq. (1). An implicit assumption remains:
neighbouring components in the membrane are independent. We have not specified the nature of the
component, it could represent a lipid patch, a protein surrounded with a few lipids or a protein cluster,
for example. The component size could also be larger than 5nm, however, in that case the component
does not directly map to a transmembrane protein, but a multitude of proteins and lipids. Choosing
the component size at the lower limit (5nm) ensures that each component contains at most a few closely
packed proteins; lateral extension of a transmembrane proteins typically being around 2nm. For sim-
plicity we use a picture where each component represents either pure lipids or a single transmembrane
protein (surrounded by a few lipids), but the theory can be applied also to multi-protein components.

B. Mean field

In the system under study the membrane is either flat or wrapped around a particle. In the following
we assume a constant mean curvature approximation: the mean curvature of each component of the
membrane is a constant and fully determined by the shell radius: Cj = −1/Rw. Equivalently for the
flat membrane the mean curvature of all components is zero: C = 0. This approximation amounts to
neglecting correlations between local mean curvature and spontaneous curvature of the membrane. For
example a stoichiometric mixture of components with equal positive and negative spontaneous curvatures
in a flat membrane would yield an overall flat membrane of zero mean curvature. However, the mean-field
formalism constrains every component of a flat membrane to a zero mean curvature and the free energy
is overstated. In the following, all bending moduli are assumed to be the same: κ = κj and κ̄ = κ̄j .
If the bending moduli are not the same the mean curvature Cj would not only be correlated to the
spontaneous curvature c0,j , but also to the bending rigidity κj , which would lead to further deviation of
the optimal membrane shape from the perfectly spherical shell assumed in the mean-field picture.

The membrane contains a mixture of multiple types of components. Because all components are
assumed to have the same imposed mean and Gaussian curvature, Cj′ = C and Kj′ = K, Eq. (3) can
be equally written as a sum over n component types j

Fc =

n∑
j

NjHc,j a
2 = N

n∑
j

fjHc,j a
2 , (4)

with Nj the number of components of type j present in the membrane, N =
∑
j Nj the total number

of components and the component composition fractions fj = Nj/N . We use the notation where prime
indices j′ refer to a specific component located in the membrane, while normal indices j denote a
component type. The elastic mean-field free energy of a membrane size A with curvature C, using Eqs.
(1) and (4), is

Fc(A,C,K) = A

n∑
j

fj

[κ
2

(2C − c0,j)2 + κ̄K
]
. (5)

C. Mean field 2: alternative approach.

An alternative approach would relax the requirement that the membrane mean curvature is imposed
on every component. Instead, the mean curvature is imposed only "on average" over all components
in the membrane. This limit assumes no penalty to spatial mean curvature fluctuations: Eqs. (1) and
(2) are applied directly to a total membrane patch area A. This is equivalent to Eq. (4) with a single
large "component" of size A. The spontaneous curvature of the total patch is defined as the average over
individual component spontaneous curvatures

〈c0〉 =
1

N

N∑
j′

c0,j′ =

n∑
j

fjc0,j , (6)

with fj the membrane composition vector. Similarly for the mean square spontaneous curvature: 〈c20〉 =∑n
j fjc

2
0,j . The Hellfrich expression (3) using the mean spontaneous curvature becomes

F̃c(A,C,K)/A =
κ

2
(2C − 〈c0〉)2 + κ̄K =

κ

2

(
4C2 − 4C〈c0〉+ 〈c0〉2

)
+ κ̄K . (7)
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We compare the above result to the previous mean-field expression (Eq. (5)) applied to a membrane
area A:

Fc(A,C,K)/A =

n∑
j

fj

[κ
2

(4C2 − 4Cc0,j + c20,j) + κ̄K
]

=
κ

2

(
4C2 − 4C〈c0〉+ 〈c20〉

)
+ κ̄K , (8)

These two free energy expressions are related through a fluctuation term

F̃c(A,C,K) = Fc(A,C,K)−Aκ
2

(
〈c0〉2 − 〈c20〉

)
. (9)

Importantly, the above fluctuation term refers to spatial fluctuations in the spontaneous curvature of
membrane components. It does not refer to mean curvature of the membrane; thermal fluctuations of
the local membrane bending are implicitly included in the starting Helfrich expression, Eq. (1).

The two mean-field expression, Eqs. (7) and (8), conveniently provide a lower and upper bound to the
free energy of the membrane patch of size A with some average imposed mean and Gaussian curvature C
and K. The upper bound (8) is reached in the limit of an infinite membrane surface tension (curvature
imposed on every component), while the lower bound (8) is realised in the case of an 1D membrane (a
chain of components) with zero surface tension (total curvature of the membrane imposed only at the
boundary). For a 2D membrane with zero surface tension the geometric constraints on bending likely
prevent the lower bound of being reached. Entropy of partial ordering of components affects the 2D
membrane, but not the 1D chain, because any permutation of components along a chain will result in
the same curvature energy (unless the curvature is so large that the chain folds onto itself).

In the following the upper estimate for the mean-field free energy (Eq. (5)) will be used for all
theoretical predictions. The reason for this choice is that the nanoparticle binds to the membrane via
receptor attachments and the membrane envelope will likely be tightly wrapped around the particle.

D. Endocytosis free energy

We attempt to analytically calculate the free energy change upon a particle endocytosis. As stated
above, the membrane is composed of different component types with a component vector f and spon-
taneous curvature vector c0 specifying the spontaneous curvature of all component types. Additionally
each component type also has an interaction with a particle captured by the vector ε. We assume a
simple square well interaction potential where ε specifies the well depth. The surface tension and density
ρ of the membrane is assumed to be constant. All three vectors (f , c0, ε) are of length n with n the
number of distinct components in the membrane.

The following notation is used:

• e.g. A,N, f – standard letters refer to the initial flat membrane before endocytosis

• e.g. Ã, Ñ , f̃ – letters with a tilde refer to the membrane that remains flat after the full endocytosis
has taken place

• e.g. Aw, Nw, f
w – letters with w script refer to the membrane wrapped around the particle after

the full endocytosis has taken place.

Initially, the membrane is flat with a total area A and f is the component composition in the membrane.
Upon particle endocytosis a small membrane area Aw = 4πR2

w is wrapped around a particle with a
membrane shell radius Rw. The remaining membrane area Ã = A− Aw remains flat. The composition
of the wrapped part fw is in general different from the remaining flat membrane f̃ . Therefore, the two
conservation laws are: Area conservation

A = Ã+Aw (10)

and component number conservation: N = Ñ +Nw, which applies to every component type, hence,

fA = f̃Ã+ fwAw . (11)

We have assumed that the membrane surface tension and 2D component density ρ = N
A = Ñ

Ã
= Nw

Aw
=

const. remains unchanged during the endocytosis.
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Furthermore, we assume that lateral component diffusion is fast compared to the endocytosis timescale.
Under these conditions the components can be treated as independently adsorbing to the particle. The
process of endocytosis is rather complicated, however, we are only interested in the free energy change
between the initial and final state. We assume that during all of the endocytosis process the (partially)
wrapped part of the membrane is in contact with the remainder of the membrane (the reservoir). There-
fore, the wrapped components composition is given by the generalised Langmuir adsorption isotherm:

fw
j =

eβ(µ̃j−Fc,j(Rw)−εj)∑
j e
β(µ̃j−Fc,j(Rw)−εj)

(12)

with

Fc,j(Rw) = Fc
a2

A
= a2

n∑
j

fj

[κ
2

(2/Rw + c0,j)
2 + κ̄/R2

w

]
(13)

the curvature free energy (5) per single component of lateral size a2. εj is the component-particle
interaction energy and µ̃j is the chemical potential of component type j in the flat membrane area Ã.
The chemical potential consists of the ideal contribution (logarithm of the density) and the excess part
which contains the curvature free energy of a component embedded in a flat membrane. In general there
are other contribution to the excess chemical potential, such as component interactions and membrane
surface tension contribution. However, we assume that all other contributions remain constant upon
particle wrapping, or at leat are negligible compared to the curvature contribution, and we only consider
the curvature free energy changes.

The chemical potential is

µ̃j = kBT ln(f̃j) + f0
c,j , (14)

with f0
c,j ≡ fc,j(∞) the curvature free energy in a flat membrane (Rw →∞). The adsorbed composition

can, therefore, be written as

fw
j =

f̃j e
β(f0

c,j−fc,j(Rw)−εj)∑
j f̃j e

β(f0
c,j−fc,j(Rw)−εj)

= f̃jK̃j . (15)

where in the last step we have defined an equilibrium constant

K̃j =
eβ(f0

c,j−fc,j(Rw)−εj)∑
j f̃j e

β(f0
c,j−fc,j(Rw)−εj)

(16)

specifying how strong individual component types adsorb to the particle. The equilibrium constant K̃j is
not to be confused with the Gaussian curvatureK. Another conservation relation emerges:

∑
j f̃jK̃j = 1.

Using Eqs. (10, 11, 15) we can write the composition of the remaining membrane as:

f̃j =
fj

1 + Aw

A (K̃j − 1)
. (17)

The total free energy change upon a particle endocytosis can be written in terms of individual contri-
butions due to membrane curvature, binding to the particle, mixing entropy and surface tension Π:

∆F = ∆Fc + ∆ε− T∆S + ΠAw . (18)

The change in the curvature free energy upon endocytosis is obtained by the free energy of the wrapped
membrane shell and the remaining flat membrane, minus the initial state which is a flat membrane of
area A

∆Fc = Fw
c + F̃c − Fc = Aw

κ

2

∑
j

fw
j (2/Rw + c0,j)

2 + Ã
κ

2

∑
j

f̃j(c0,j)
2 −Aκ

2

∑
j

fj(c0,j)
2 + 4πκ̃ . (19)

This expression was obtained using Eq. (5) with the mean curvature determined by the shell radius
C = −1/Rw for an endocytosed shell, and C = 0 for a flat membrane. The contribution of the Gaussian
curvature is 4πκ̃ due to Gauss-Bonnet theorem.
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The change in binding interaction energy between membrane components and the particle is trivial:

∆ε =
Aw

∆a

∑
j

fw
j εj (20)

because the component-particle interaction vector ε is a constant and interaction is only present in the
final fully wrapped endocytosed state.

Lastly, the membrane is assumed to be in a fluid state. The mixing entropy of components is given
by the Gibbs expression for the entropy per component: s = −kB

∑
j fj ln(fj), where we remember fj

as the fraction of component j in the membrane and kB is the Boltzmann constant. fj can also be seen
as the probability that a randomly chosen component is of type j. The difference in entropy of mixing
of different component types upon endocytosis is

∆S = Sw + S̃ − S = −kB

a2

Aw

∑
j

fw
j ln fw

j + Ã
∑
j

f̃j ln f̃j −A
∑
j

fj ln fj

 (21)

using the Gibbs entropy per single component and entropy extensivity S = A
a2 s.

These relations Eqs. (18-21) result in a closed form expression for the endocytosis free energy as a
function of the membrane composition f , curvature vector c0, interaction vector ε and the wrapped
membrane shell radius Rw:

∆F (f , c0, ε, Rw) = Aw

∑
j

fjKj

[
εj
a2

+
2κ

Rw

(
1

Rw
+ c0,j

)
+
kBT

a2
ln(Kj)

]
+AwΠ + 4πκ̄+AwO(Aw/A) .

(22)
The first term inside the square brackets captures the binding of components to the particle, the second
terms curvature mismatch penalty, and the third term the effect of the membrane composition change
between the flat membrane and the wrapped part with the equilibrium constant

Kj =
e
−β

[
εj+

2κa2

Rw
(1/Rw+c0,j)

]
∑
j fj e

−β
[
εj+

2κa2

Rw
(1/Rw+c0,j)

] . (23)

The pre-factor Aw = 4πR2
w is the wrapped membrane area and a2 the individual component lateral size.

Finally, the last term O(Aw/A) captures all terms of order Aw/A and higher. For a large membrane
Aw � A these terms can be neglected.

E. Detailed derivation of endocytosis free energy

Here we provide a step by step derivation procedure of the endocytosis free energy Eq. (22) from Eqs.
(18-21).

Firstly, we focus on the curvature free energy change Eq. (19). Inserting Eqs. (15) and (17) and
Ã = A−Aw, rearranging and canceling out a few terms we find

∆Fc = 2Awκ
∑
j

fjK̃j

1 + Aw

A (K̃j − 1)

(
1/R2

w + c0,j/Rw

)
. (24)

The interaction energy contribution Eq. (20) is slightly rewritten by inserting Eqs. (15) and (17):

∆ε =
Aw

a2

∑
j

εj
fjK̃j

1 + Aw

A (K̃j − 1)
(25)

Finally, the entropy change Eq. (21) is also rewritten by inserting Eqs. (15) and (17) and Ã = A−Aw:

∆S

kB
= −Aw

a2

∑
j

fj

1 + Aw

A (K̃j − 1)

[
K̃j ln K̃j +

(
1− A

Aw
− K̃j

)
ln

(
1 +

Aw

A
(K̃j − 1)

)]
(26)
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We now take the limit of a large membrane: Aw/A → 0. This implies: c̃j → cj (from Eq. (17)) and
K̃j → Kj (from Eq. (16)) where the equilibrium constant Kj is defined as:

Kj =
eβ(f0

c,j−fc,j(Rw)−εj)∑
j fj e

β(f0
c,j−fc,j(Rw)−εj)

=
e
−β

[
εj+

2κa2

Rw
(1/Rw+c0,j)

]
∑
j fj e

−β
[
εj+

2κa2

Rw
(1/Rw+c0,j)

] . (27)

In the second step in the above equation the Helfrich free energy per component (Eq. (13)) was inserted.
Taking the limit Aw/A→ 0 the curvature free energy (24) becomes:

∆Fc = 2Awκ
∑
j

fjKj

(
1/R2

w + c0,j/Rw

)
+AwO(Aw/A) . (28)

The interaction energy (25):

∆ε =
Aw

a2

∑
j

εjfjKj +AwO(Aw/A) . (29)

and the entropy (26) can be simplified by expanding the logarithm to the first order and using equalities∑
j fj = 1 and

∑
j fjKj = 1 :

∆S

kB
= −Aw

a2

∑
j

fjKj lnKj +AwO(Aw/A) . (30)

O(Aw/A) captures all terms of order Aw/A and higher. Summing up the individual contributions (Eq.
(18)) the final result (Eq. (22)) follows.

II. SIMULATION MODEL

FIG. S1: Simulation model. (a) The membrane is composed of three types of beads: non-binding lipid beads
(’m’) of zero spontaneous curvature, cargo-binding receptor beads (’r’) of spontaneous curvature c0,r, and inert
(non-binding) inclusions (’i’) of spontaneous curvature c0,i [1]. The cargo (modelled as generic nanoparticle) is
much bigger than either of the membrane beads. (b) Cargo binds to membrane receptors, deforms the membrane,
and in case of 20% of inert inclusions of negative curvature becomes completely wrapped by the membrane and
buds off, while in the case of 20% of inert inclusions of positive curvature it stays partially wrapped without
being endocytosed within the time of the simulation of 107 time steps.

The membrane is modelled using a coarse grained one-particle thick model [1], which we implemented in
the LAMMPS Molecular Dynamics package [2]. In short, in this model each membrane bead is described
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by its position and an axial vector. The beads interact with a combination of an attractive potential that
depends on the inter-bead distance and drives the membrane self-assembly, and an angular potential that
depends on the angle between the axial vectors of neighbouring beads and mimics membrane bending
rigidity. The spontaneous curvature per bead is implemented via a preferred angle between two axial
vectors, θ0, and is related to it via c0 ≈ 2 sin(θ0/d0). d0 ≈ rbead−bead

cut is the average distance between
membrane beads, for membrane with very low tension the average distance will be located roughly at the
minimum of the attractive potential. Following the notation from the original paper [1], we choose the
parameters εbead−bead = 4.34kBT, ξ = 4, µ = 3, rbead−bead

cut = 1.12σ for all the membrane components,
which positions our membrane in the fluid phase of the phase space. Using thermodynamic integration
and theoretical considerations we determined the bending and Gaussian rigidity of this membrane model,
κ = −κ̄ = 22kBT , see Section III for details of the calculation. The mixing curvature terms between
membrane beads i, j of different spontaneous curvatures are assumed to be symmetric c0,ij =

c0,ii+c0,jj
2 ,

and hence, the spontaneous curvature does not lead to phase separation of components of different
curvatures.

The cargo nanoparticle interacts with the membrane receptors via a shifted Lennard-Jones potential,
where the cargo-receptor interaction strength is controlled by the binding affinity ε. The interaction
between the cargo and any of the non-receptor beads is governed only by volume exclusion described by
the Weeks-Chandler-Anderson potential:

UWCA(r) = εWCA

[
1 + 4

(
σ

r −Rp

)12

− 4

(
σ

r −Rp

)6
]
, (31)

for 0 ≤ r − Rp ≤ 21/6σ and UWCA(r) = 0 otherwise. r is the bead to particle centre-of-mass distance,
Rp and σ are the nanoparticle and bead radius, respectively. We chose the interaction strength εWCA =
εbead−bead.

The interaction potential between nanoparticle and ‘receptor’ membrane beads is modelled as a cut-
and-shifted Lennard Jones potential

Ubead−particle(r) = 4ε∗

[(
σ

r −Rp

)12

−
(

σ

r −Rp

)6
]

+ Ucs , (32)

for r −Rp ≤ 2.6σ and 0 otherwise. Ucs = −Ubead−particle(2.6σ).
We simulated a flat square portion of a membrane made of 49920 beads with periodic boundary

conditions in a NpH ensemble with pressure p = −10−4kBT/σ
3 to model a membrane with very low

tension. The simulation box height was fixed at Lz = 200. The surface tension of the membrane is
therefore Π = −pLz = 2·10−2kBT/σ

2. The component size being σ ≈ 5nm results in Π ≈ 10−3kBT/nm2,
which is at a lower end of biological surface tensions [3]. All the particles in the system are in addition
subject to random noise implemented via the Langevin thermostat with friction coefficient set to unity:
γ = m/τ , where m is the bead mass (set to unity) and τ the simulation unit of time. To capture the
correct dynamics the cargo nanoparticle parameters are rescaled accordingly: mass of nanoparticle is
mp = 8(Rp/σ)3 and nanoparticle friction coefficient γp = 2Rp/σ.

The initial condition of all simulations is a flat membrane with beads arranged on a hexagonal lattice
with a randomly chosen permutation of bead identities (types) and the location of the cargo particle’s
centre of mass Rp + 2σ above the membrane. All quantities are expressed in terms of the membrane
bead diameter σ, which corresponds to σ = 5nm in physical units. The bead density for a flat membrane
was measured to be ρbeads = 1.21σ−2, which provides a mapping with a theoretical component size
a = σ/

√
1.21.

The endocytosis is monitored through the wrapping coverage of the cargo by the membrane beads,
where the wrapping is defined as:

wj =
N contact
j

√
3

8π(Rp/σ + 1)2
, (33)

withN contact
j being the number of membrane beads of type j whose centre-of-mass distance to the particle

centre is less than Rp +σ. The total wrapping is w =
∑
j wj . Since we sometimes observe uptake of non-

completely wrapped nanoparticles (w < 1), we chose to consider a nanoparticle endocytosed if w > 0.8
and its centre-of-mass is located below the fully healed mother membrane. The length of each simulation
was 107 steps with a time step of 0.008τ , where τ is the unit of time.
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A. determining phase boundaries

For the simulation data points the phase boundaries were determined by simulating the cargo-
membrane system for a range of cargo-receptor interaction energies ε (Figure 3(a)) and finding the
minimal interaction energy ε∗ where the cargo becomes endocytosed (w > 0.8 and particle centre-of-
mass below the fully healed mother membrane). The procedure was then repeated for different receptor
curvatures. Analogously, the same procedure was done in Figure 3(b) where we were looking for a
minimal fraction of receptors where the endocytosis occurs, at various fraction of inert inclusions and
inclusion curvatures. The search step sizes were δε = 0.1kBT and δfr = 0.01.

For the analytical phase boundaries shown on Figures 3 and 4 we numerically self-consistently solve the
Eq. (22) by keeping ∆F = 0. We employ FindRoot function in Wolfram Mathematica to find the value
of the interaction energy ε (Figure 3A) or the receptor fraction fr (Figure 3B) for which the expression
in Eq. (22) equals to zero.

III. DETERMINING GAUSSIAN BENDING STIFFNESS

The standard bending rigidity κ can be obtained from the fluctuation spectrum of the membrane. the
Gaussian bending rigidity κ̄, however, is trickier to calculate. We obtain the Gaussian bending rigidity of
the membrane model both by theoretical considerations and by performing thermodynamic integration.
Both approaches are presented below, theoretical considerations yield κ̄ = −κ and thermodynamic
integration κ̄ ≈ −κ ≈ −22kBT which also agrees with the value obtained from the membrane fluctuation
spectrum [1]. We, therefore, use κ̄ = −κ = 22kBT when comparing analytical and simulation results.

A. Thermodynamic integration

We performed Monte Carlo simulations with thermodynamic integration scheme to calculate the mean
κ and Gaussian κ̄ bending rigidity of the membrane. Three sets of simulations with different membrane
topologies were performed: flat membrane (periodic boundary in lateral directions), cylindrical mem-
brane (periodic boundary in the cylinder axis) and spherical membrane. N = 5000 beads were used for
all simulations and no applied external pressure, 5 · 105 MC cycles were used for all simulations, unless
noted otherwise. The radius of the cylindrical membrane was half the radius of a spherical membrane
Rc = Rs/2. Such a choice allows us to directly determine the bending rigidities from the free energies of
the three different membrane configurations

κ =
Fc − Ff

8π
, κ̄ =

Fs − Fc

4π
, (34)

where Ff , Fc and Fs are the free energies of the membrane in the flat, cylindrical and spherical configu-
ration, respectively.

The flat membrane 2D density was measured to be ρbeads = 1.206 at vanishing tension (no applied
lateral pressure). Therefore we chose the spherical membrane radius as Rs =

√
N

4πρ and the cylindrical
membrane radius Rc = Rs/2, with the cylinder height chosen to conserve the number of beads hz,c =

N
2πRcρbeads

.
The reference state of the thermodynamic integration is a 2D ideal gas with density ρbeads = 1.206

confined to lie on a flat, cylindrical or spherical surface. The free energy of the thermodynamic integration
proceeded in two steps. First the bead-bead interaction potential strength was increased from 0 (ideal
gas) to εbead−bead = 4.34kBT . A total of 201 simulations were performed for each topology with the
interaction parameter linearly spaced εi,bead−bead = εbead−bead

i
200 . The first calculation (i = 0) was

performed at ε0,bead−bead = 0.001kBT . The results of these simulations are shown on Figure S2a). The
integration was performed on the energy differences between different membrane topologies which avoids
the problem of integrand divergence at ε ∼ 0. The thermodynamic integration using Simpson’s rule
yields bending rigidities κ2D = 23.2kBT and κ̄2D = −25.5kBT . Note that the membrane beads were
confined to a 2D surface.

In the second thermodynamic integration step the membrane beads are relaxed to allow for fluctuations
in the direction normal to the membrane. A harmonic confining potential U(r) = k

2 r
2 is introduced for

each bead, with r the normal distance between the bead and the confining surface. The confining
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FIG. S2: Thermodynamic integration results. Average potential energy difference between different membrane
topologies as a function of the thermodynamic integration parameter λ. Ef , Ec and Es denote the potential
energies of the three distinct topologies (flat, cylindrical, spherical). (a) The first thermodynamic integration step:
changing the bead-bead interaction λ = εi,bead−bead/εbead−bead, and (b) The second thermodynamic integration
step: changing the harmonic confining potential λ = ki/kmax.

surfaces are identical to the surfaces used above (flat, cylinder, sphere). 25 values for the confining
potential strength k are logarithmically spaced between kmin = 0.01kBT/σ

2 and kmax = 10000kBT/σ
2.

Thermodynamic integration yields the correction to the bending rigidities: κrelax = −2.0kBT and κ̄relax =
3.0kBT .

The bending rigidities of the membrane are therefore:

κ = κ2D + κrelax = 21.2kBT , (35)
κ̄ = κ̄2D + κ̄relax = −22.5kBT . (36)

The value for κ obtained by thermodynamic integration agrees well with the bending rigidity calculated
from the fluctuation spectrum κfs ≈ 22kBT [1].

B. Analytical considerations

The Gaussian bending rigidity can also be estimated assuming a simple microscopic model of the
membrane. The membrane consists of a monolayer of beads. Individual beads are not deformable and
have cylindrically symmetry around a director axis. Nearest neighbour beads i, j have a harmonic pair
potential with spring constant k for the director bending

Uij =
k

2
(θij − θ0)2 , (37)

where θij is the angle between the directors of the two beads and θ0 is a constant specifying the preferred
orientation between the two beads. Mean distance between nearest neighbours is do and each bead
has z nearest neighbours. The angle between neighbouring beads is related to the membrane curvature:
sin(θij/2) = d0/(2Rij) from which we obtain for small curvatures θij ≈ d0/Rij = d0Cij , with Rij = 1/Cij
the radius of the curved membrane with curvature Cij . Therefore, the above equation can be rewritten
to

Uij =
kd2

0

2
(Cij − c0)2 , (38)

with the spontaneous curvature c0 = θ0/d0.
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Using this microscopic model we can calculate the macroscopic bending rigidities κ and κ̄ by comparing
the energy of bending obtained from the microscopic model with the Helfrich hamiltonian. For a flat
membrane Cij = 0 the microscopic model yields the membrane elastic energy per bead

Uflat =
z

2

kd2
0

2
(c0)2 . (39)

The prefactor z
2 is simply the number of pair interactions per bead. Cylindrical membrane yields the

elastic energy of

U cylinder
bend =

z

4

kd2
0

2
(c0)2 +

z

4

kd2
0

2
(1/Rc − c0)2 (40)

using a mean-field like approximation where half of the nearest neighbours are parallel Cij = C1 = 0
and the other half are confined to a curvature of Cij = C2 = 1/Rc with Rc the cylinder radius and C1,
C2 the principal curvatures of the membrane. Lastly, spherical membrane results in

U sphere
bend =

z

2

kd2
0

2
(1/Rs − c0)2 (41)

because all nearest neighbours feel the same bending curvature Cij = C1 = C2 = 1/Rs and Rs is the
sphere radius.

The Helfrich expression for the elastic free energy density is

H =
κ

2
(2C − c0)2 + κ̄K (42)

where C = (C1 + C2)/2 is the mean curvature of the membrane and K = C1C2 the Gaussian curvature
with C1 and C2 the principal curvatures of the membrane. For a flat membrane Helfrich yields Hflat =
κ
2 (c0)2, cylindrical Hcylinder = κ

2 (1/Rc − c0)2 and spherical Hsphere = κ
2 (2/Rs − c0)2 + κ̄/R2

s .
The elastic energy obtained from the microscopic model must be the same as the Helfrich expression

for all three membrane topologies up to a common additive constant. Assuming that the membrane
curvature radii considered are always large as compared to the microscopic bead size, d0/R ∼ 0, the
local configuration of beads will not be affected by the curvature and the number of neighbours per bead
z can be treated as a constant. Hence, the only possible relation connecting Eqs. (39-42) is

κ = −κ̄ =
zkd2

0

4
(43)

and U = H + κ
2 c

2
0.

Therefore, for a membrane composed of a monolayer of cylindrically symmetric beads and small
curvatures the Gaussian bending rigidity is opposite of the mean bending rigidity κ̄ = −κ. This result
is supported by the thermodynamic integration discussed above. We therefore use the value of bending
rigidities of κ̄ = −κ = 22kBT for both the mean and Gaussian bending rigidity when comparing analytical
and simulation results of nanoparticle endocytosis.

IV. SUPPORTING RESULTS

A. Membrane stability

Analytical model can provide insight into membrane stability depending on the composition of curved
inclusions. We consider only the membrane, without cargo, and determine the thermodynamic stability
of a flat membrane with respect to budding and formation of a separate vesicle. Eq. (22) is solved
numerically to obtain inert inclusion curvature as a function of the vesicle radius Rw: c0,i(Rw|∆F = 0)
in the limiting case of zero free energy cost of forming the vesicle. Phase diagrams on Figure S3 show
that a flat membrane with zero total spontaneous curvature is thermodynamically stable if the absolute
value of spontaneous curvature of individual components is not large. The larger the fraction of curved
components fi the lower the limiting value of spontaneous curvature c0,i. On the other hand, flat
membranes with non-zero total spontaneous curvature are, as expected, always unstable with respect to
a formation of a vesicle.
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FIG. S3: phase diagram of membrane stability. a) shows the linear and b) the logarithmic plot of the same
data. Solid lines correspond to a membrane with a fraction fi of inclusions with absolute spontaneous curvature
c0,i. Any point above the solid line thermodynamically unstable with respect to the vesicle formation and the
flat membrane is only metastable. In the limit of large vesicles (Rw → ∞) the lines converge to zero (c0,i → 0)
meaning that a flat membrane is always thermodynamically unstable. Dot-dashed lines show the corresponding
phase plots where two types of inclusions are present such that the total spontaneous curvature of the membrane
is zero: c0,i′ = −c0,i and fi′ = fi. In this case the phase plots converge to a finite value of spontaneous
curvature for large vesicles indicating that a flat membrane is thermodynamically stable. Parameters: fr = 0.0,
κ = −κ̄ = 22kBT .
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FIG. S4: Recruiting of different types membrane inclusions. The turquoise hexagons on all three plots correspond
to data on Figure 5A in the main text for a) fi = fi′ = 0, b) fi = fi′ = 0.1 and c) fi = fi′ = 0.3. The grey
stars, blue circles, pink and purple triangles show the fraction of beads of specific type in contact with the
nanoparticle. Clearly, the receptor beads and negatively curved inclusions are recruited to the particle, while
membrane beads and positively curved inclusions are expelled. Receptor fraction fr = 0.2 and membrane bead
fraction is fm = 1− fr − 2fi.

B. Kinetics of endocytosis

On Figure S4 we show additional simulation results complementing Figure 4 in the main text. Fur-
thermore, Figure. S5 shows the scaling of endocytosis rate with the particle size. The system size effects
on Figure S6 demonstrate that the endocytosis rate also depends on the total membrane size. The shift,
however, seems to be roughly constant for particle larger than Rp > 10σ. Lateral pressure is kept
constant in all simulations, the membrane surface tension, however, can also depends on
the total simulated membrane size, (TC) cite system size effects in membrane surface ten-
sion, not sure about this, ask Daan, to which we attribute the shift in endocytosis rate with system
size. The increases selectivity effect discussed on Figure 5 of the main text remains regardless of the
membrane size, as long as L � Rp. Note that the bead size in real units is about σ ≈ 5nm, therefore,
at the largest simulated membrane the size would be ≈ 3µm; a length-scale comparable to the total cell
membrane.
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FIG. S6: Membrane size effect The endocytosis rate for different initial system sizes L. The number of
membrane beads in the simulation is N = 15

13
L2, the fraction 1513 was chosen because it well approximates the

factor ≈ 2/
√

3 which arises when positioning beads on a triangular lattice. a) fi = 0, b) fi = fi′ = 0.2. Other
parameters, cr = 0.4, ci = 0.2, The data at L = 312σ corresponds to the main plot of Figure 5 in the main text.

To further rationalise the enhanced sensitivity to cargo size when inclusions of both curvatures are
present in the same amount, let us analyse the energetics of the neck of the membrane bud. The neck
will be composed of two principal curvatures - the curvature parallel to the cargo-membrane contact
line, and the curvature perpendicular to it. Following [4], we define the effective adhesive length, Radh,
which for the parameters used in Figure 5 of the main text is approximately Radh =

√
2κ/|W | ≈ 5σ,

with κ = 22kBT and the effective adhesion |W | = ε
σ2

fre
−βε

1+fre−βε
≈ 2kBT/σ

2. The adhesive length Radh

determines the principal curvature perpendicular to the contact line in the neck C1 = 1/Radh, while
the principal curvature parallel to the contact line is determined by the particle size C2 = −1/Rp. For
large cargoes, when Rp � Radh, the mean curvature in the neck is positive, which makes it populated
by positive inclusions, hampering endocytosis. For cargoes that satisfy Rp ≈ Radh, the mean curvature
in the neck vanishes, and the negatively curved inclusions can freely diffuse into the membrane area
wrapped around the cargo, enhancing endocytosis. This analysis is supported by monitoring the neck
region composition shown on Figure S7. For large particles (Rp = 32σ) the neck composition is strongly
dominated by positive inclusions, while for small particles (Rp = 5σ) the neck region has approximately
equal fraction of both positive and negative inclusions. Interestingly, the composition of the wrapped
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shell shows opposite tendency: For large particles the fraction of inclusion types adsorb is approximately
the same, while for small particles the adsorption of positive inclusions is suppressed.
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FIG. S7: Analysis of the composition of the membrane neck as the endocytosis proceeds. In a)
and b) the circles denote the composition of the membrane shell wrapped around the cargo while the crosses
show the composition of the membrane neck. Receptor beads are coloured blue, negative inclusions are pink
color and positive inclusions purple. The cut-through snapshots parallel to the membrane plane on c) and d)
correspond to plots on a and b), respectively, at cargo wrapping of approximately w = 0.75. The color scheme
matches the symbol colors in a) and b), membrane (lipid) beads are colored grey. Note that the cargo size in
c) has depicted using a significantly smaller radius for better visualisation of the wrapped membrane shell. The
wrapped shell is defined as all beads within distance 1.5σ of the particle surface. The neck region is defined as
all particles between a distance 1.5σ−8σ of the particle surface. Grey stars show the total cargo wrapping (right
axis) indicating the progression of endocytosis. Parameters correspond to Figure 5 in the main text: fr = 0.4,
interaction ε∗r = 2.5kBT and curvature c0,r = 0. The inclusion fraction is fi = fi′ = 0.2 with opposite spontaneous
curvatures c0,i = −c0,i′ = 0.34/σ.
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