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Abstract: We introduce a new high-energy X-ray diffraction tomography technique for 
volumetric materials characterization. In this method, a conical shell beam is raster scanned 
through the samples. A central aperture optically couples the diffracted flux from the samples 
onto a pixelated energy-resolving detector. Snapshot measurements taken during the scan 
enable the construction of depth-resolved dark-field section images. The calculation of d-
spacing values enables the mapping of material phase in a volumetric image. We demonstrate 
our technique using five ~15 mm thick, axially separated samples placed within a polymer 
tray of the type used routinely in airport security stations. Our method has broad analytical 
utility due to scalability in both scan size and X-ray energy. Additional application areas 
include medical diagnostics, materials science, and process control. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The high penetration power of X-rays is the basis for projection radiography and X-ray 
computed tomography. These modalities are highly developed and deployed routinely within 
security screening, industrial inspection, and medical diagnostics. Within this broad 
application space, there are many critical spatial imaging tasks, which would also benefit 
from the identification of material phase attributed to components within a volume. The 
spectroscopic analysis of transmitted X-rays can provide some useful materials discrimination 
information [1]. However, such methods are limited fundamentally, as the image forming X-
rays incident on a detector have propagated along linear paths without interacting with the 
sample. Conversely, crystallography deals with the collection of coherently scattered or 
diffracted X-rays from a sample to enable structural analysis or ‘molecular fingerprinting’. 
Traditional XRD instruments or diffractometers may be categorized into either angular [2] or 
energy dispersive [3–6] modalities. The former employs monochromatic radiation to measure 
the diffraction angle, 2θ, subtended by the diffracted flux (from a sample) and the primary 
beam, while the latter measures the energy or wavelength, λ, at a fixed, known diffraction 
angle. Bragg’s condition, λ = 2d sin θ, enables lattice parameters, e.g. d-spacings, to be 
calculated in each case. Laboratory scale instruments employ typically bright X-ray sources, 
e.g. 40 mA at ~40 kV. The amount of diffracted flux from a sample is relatively small and 
<<1% in comparison with the incident primary flux. Even with the use of a bright source and 
carefully prepared samples, the measurement time can range from minutes to hours. 

Ultimately, the driver for our work is the detection and identification of homemade 
explosives (HMEs) and narcotics within the carry-on and checked luggage security at 
airports. A practical scanner requires exposure times of the order of seconds or less per 
measurement. There has been a considerable effort in developing high-energy methods 
utilizing novel X-ray beam topologies [2,3,7–12] and/or post-sample encoders [4,5,12–15]. 
Focal construct geometry (FCG) is an example of the former, which exploits the ‘lensing’ of 
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diffracted flux by extended gauge volumes produced by a conical shell beam of radiation 
incident on a sample. This technology is capable of providing depth-resolved material 
specific signatures without prior knowledge of the sample location [12]. We demonstrate an 
augmented version of this imaging architecture that produces a volumetric reconstruction of a 
heterogeneous phantom to validate our theoretical treatments. 

The organization of our paper is as follows. Section 2 presents the methods and includes 
the theory background; our new tomographic approach and describes the experiment 
conditions. Section 3 presents our experiment results and discussion. Section 4 summarizes 
our conclusions, discusses the implications of our findings and the future direction of the 
work. 

2. Methods 

2.1 Theory background 

FCG employs a conical shell X-ray beam to produce bright material specific patterns in the 
diffracted flux from samples. The extended annular gauge volumes provide a relative increase 
in the total number of crystallites of the correct orientation that satisfy Bragg’s condition. The 
result is a significant increase in the diffracted intensity, resulting in reduced exposure times 
and/or a lower X-ray power burden. This beam topology has been implemented in energy [3] 
and angular dispersive modes [2,8–11], used to identify liquid samples [8] and shown to deal 
favorably with crystallographic textures [2,3,9,10] (i.e. preferred orientation and large grain 
size) that are known to be problematic [16,17]. Other implementations include the production 
of absorption tomography [18] and angular dispersive tomography [19] via raster scanning of 
annular projections over two orthogonal axes. Recently, we have demonstrated snapshot FCG 
[12] providing depth-resolved XRD patterns from a single stationary exposure. This paper 
describes a tomographic method in which a raster scanning snapshot FCG probe directly 
measures XRD sections to enable material specific volumetric visualizations. 

2.2 New imaging technique 

The FCG snapshot probe shown in Fig. 1 employs a post sample encoding-aperture optically 
coupled to a pixelated energy resolving detector. No prior positional information is required 
to provide depth-resolved XRD patterns. Diffracted rays propagate from within the shell 
beam’s intersection with a sample (or gauge volume) onto a spatially resolving detection 
surface via a circular aperture. The linear distances xD and yD specify a position on the 
detection surface with respect to an origin defined by the piercing point of the shell beam 
symmetry axis, as shown in Fig. 1. The polar coordinates are given by  

 tan D
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where α is the polar angle subtended at the center of the circular beam footprint and r is the 
polar radius. The separation between the detector and aperture is specified as a focal length f 
= D-A, as shown in Fig. 1. The diffraction angle 2θ is a function of the focal length f, the 
radius of the detected photon r and the half-opening angle of the conical shell beam φ as 
given by 
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The global Cartesian coordinate system (xg,yg,zg) can describe the spatial distribution of 
coherent scatter measurements and or d-spacing information via Eq. (4) so enabling the 
construction of a volumetric data set. 

2.3 Experiment conditions 

Experiments were conducted using an IXS series VGA X-ray source operating at 160 kV 
accelerating voltage and 5 mA current. A conical shell beam was produced with the aid of a 
bespoke tungsten optic with a mean half-opening angle φ = 2.5° where φmax = 2.55°, φmin = 
2.45°. A pinhole aperture of radius 0.75 mm in a 4 mm thick lead sheet, was placed 785 mm 
from the X-ray source. Scattered X-rays were detected using a 250 μm pitch (802 pixels) 
20x20x1 mm3 cadmium telluride (CdTe) energy resolving detector placed at 895 mm from 
the X-ray source. The aperture-to-detector separation or focal length f = 110 mm is fixed 
throughout the experiments. The energy resolution of the detector ΔE at FWHM was 
estimated to be ~850 eV at 60 keV [20]. The phantom consisted of a polymer ‘security’ tray 
(see Fig. 2.) containing five ~15 mm thick, 90 mm diameter Petri dish samples (detailed in 
Table 1) positioned ~500 mm (z-axis) from the X-ray focus. The incident beam diameter is 
~44 mm with a wall thickness of ~0.9 mm. The symmetry axis of the shell beam is orthogonal 
to the (xg,yg) plane. A two-axis raster scan comprises stepwise translation of the polymer tray 
along the x-axis with synchronized translation of the snapshot probe back and forth along the 
y-axis. In this way diffracted flux measurements from each detector pixel were integrated for 
1 second over successive axial intervals of Δyt = 25 mm. At the end of each (y-axis) linear 
scan the polymer tray was stepped by Δxt = 25 mm before scanning the probe along the 
reverse (y-axis) direction. This sampling regime enabled the collection of 576 
measurements/pixel over a total inspection area in the translation plane of ~600x600 mm2. 

Table 1. Details of the five samples used in the experiments. 

Material ID Sample material Thickness (mm) 
Crystallographic 

texture 
ICDD standard 

card number 

a, b Sodium chloride 15 Large grain size 00-001-0993 

C Calcite 15 Near NIST standard 00-005-0586 
D Calcium hydroxide 15 Near NIST standard 00-004-0733 

E Aluminum oxide 15 Near NIST standard 01-070-5679 
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4. Conclusions and future work 

We have demonstrated coherent scattering tomography by raster scanning a conical shell 
beam through five spatially distributed samples contained on a polymer inspection tray. 
Measuring the angle of incidence and the energy of the diffracted photons from the samples, 
via a pinhole aperture optically coupled to a pixelated energy-resolving detector, enabled the 
calculation of material phase. Successive, depth-resolved snapshot exposures of 1 second 
enabled the (x,y,z) coordinate positions of the diffracted photons to be calculated and a 
volumetric image to be presented. Prior knowledge of sample position(s) was not required to 
calculate material specific lattice spacing information or d-spacing values in our experiment. 
Our imaging architecture can be setup to provide much greater spatial detail by reducing the 
snapshot pitch. By hypothesis, we anticipate the staring mode resolution [12] of the probe will 
limit spatial resolving power. 

We believe our approach is potentially beneficial for fields including medicine and 
industrial process control. However, its application to checkpoint security scenarios is of 
immediate relevancy where ongoing work is optimizing our method for speed of operation. 
The materials information provided by our probe is orthogonal to the conventional Z-effective 
and density data provided by dual-energy computed tomography, as employed in checkpoint 
screening systems. Combining our XRD tomographic probe with dual-energy CT will provide 
new opportunities to further improve probability of detection and reduce false alarms in the 
presence of stream-of-commerce clutter. 
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