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ABSTRACT

Over the last decade, many interesting route planning problems can be solved by finding the
shortest path in a weighted graph that represents a transportation network. Such networks are
private transport networks or timetabled public transportation networks. In the shortest path
problem, every network type requires different algorithms to compute one or more than one
shortest path. However, routing in a public transportation network is completely different and
is much more complex than routing in a private transport network, and therefore different

algorithms are required.

For large networks, the standard shortest path algorithms - Dijkstra’s algorithm (1959) and
Bellman’s algorithm (1958)- are too slow. Consequently, faster algorithms have been designed
to speed up the search. However, these algorithms often consider only the simplest scenario of
finding an optimal route on a graph with static real edge costs. But real map routing problems
are often not that simple — it is often necessary to consider time-dependent edge costs. For
example, in public transportation routing, consideration of the time-dependent model of these

networks is mandatory.

However, there are a number of transportation applications that use informed search algorithms
(where the algorithm uses heuristics that guide the search toward the destination), rather than
one of the standard static shortest path algorithms. This is primarily due to shortest paths
needing to be rapidly identified either because an immediate response is required. For example,
the A* algorithm (Nilsson, 1971) is widely used in artificial intelligence. Heuristic information
(in the form of estimated distance to the destination) is used to focus the search towards the
destination node. This results in finding the shortest path faster than the standard static search

algorithms.



Road traffic congestion has become an increasingly significant problem in a modern society.
In a dynamic traffic environment, traffic conditions are time-dependent. For instance, when
travelling from home to the work, although an optimal route can be planned prior to departure
based on the traffic conditions at that time, it may be necessary to adjust the route while en
route because traffic conditions change all the time. In some cases, it is necessary to modify
the travelling route from time to time and re-plan a new route from the current location to the
destination, based on the real-time traffic information. The challenge lies in the fact that any
modification to the optimal route to adapt to the dynamic environment necessitates speeding
up of the search efforts. Among the algorithms suggested for the dynamic shortest path problem
is the algorithm of Lifelong Planning A* algorithm (LPA*) (Koenig, Likhachev and Furcy,
2004). This algorithm has been given this name because of its ability to reuse information from
previous searches. It is used to adjust a shortest path to adapt to the dynamic transportation

network.

Search space and fast shortest path queries can be used for finding fastest updated route on
road and bus networks. Consequently, the efficient processing of both types of queries is of
first-rate significance. However, most search methods focus only on one type of query and do
not efficiently support the other. To address this challenge, this research presents the first novel
approach; an Optimised Lifelong Planning A* (OLPA¥*) algorithm. The OLPA* used an
appropriate data structure to improve the efficiency of the dynamic algorithms implementation
making it capable of improving the search performance of the algorithm to solve the dynamic
shortest path problem, which is where the traveller may have to re-compute the shortest path

while travelling in a dynamic transportation environment.



This research has also proposed bi-directional LPA* (BLPA*) algorithm. The proposed
algorithm BLPA™* used bi-directional search strategy and the main idea in this strategy is to
divide the search problem into two separate problems. One search proceeds forwards from the
start node, while the other search proceeds backwards from the end node. The solution requires
the two search problems to meet at one middle node. The BLPA* algorithm has the same
overall structure as the LPA* algorithm search, with some differences that the BLPA* contains

a priority queue for each direction.

This research presented another algorithm that designed to adaptively derive the shortest path
to the desired destination by making use of previous search results and reducing the total
execution time by using the benefits of a bi-directional search strategy . This novel algorithm
has been called the bi-directional optimised Lifelong A* algorithm (BiOLPA¥*). It was
originally proposed for road transport networks and later also applied to public transportation
networks. For the road transport network, the experimental results demonstrate that the
proposed incremental search approach considerably outperforms the original approach method,
which recomputed the shortest path from scratch each time without utilization of the previous
search results. However, for public transportation, the significant problem is that it is not
possible to apply a bi-directional search backwards using estimated arrival time. This has been
further investigated and a better understanding of why this technique fails has been documented.
While the OLPA* algorithms give an impressive result when applied on bus network compared
with original A* algorithms, and our experimental results demonstrate that the BIOLPA*
algorithm on road network is significantly faster than the LPA*, OLPA™* and the A* algorithms,

not only in terms of number of expansion nodes but also in terms of computation time.
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CHAPTER 1

INTRODUCTION

1.1 Shortest Path Problem

The Shortest Path (SP) problem is essentially, an optimisation problem (Dimitris, et al, 2013;
Vitaly et al, 2005; Frank, et al, 2014; Hazem et al, 2007; Songhua et al, 2010 and Yue et al,
2006). The aim of the shortest path problem is to find the optimal path from the source to the
destination. “Optimal” can refer to the shortest time, shortest distance, or least total path cost.
This research study has focused on finding the optimal path with the shortest time duration.
Shortest path problems have a wide-range of applications in areas such as communications
(Yue etal, 2006), vehicle navigation systems (Dimitris, et al, 2013; Frank et al, 2014) and game
development (Steve and Nathan, 2013). This research study has focused on the area of
transportation in urban environments (vehicle navigation systems).Vehicle navigation systems
depend on three main tasks: positioning (locating the vehicle using GPS), routing (computing
an optimal route from a source location to a destination location using algorithms), and
guidance (providing visual and audio feedback on the route). This research focused on the task
of the routing algorithms. Many interesting route-planning problems can be solved by finding
the optimal path in a weighted graph representing a transportation network. Such networks are

natural road networks or timetabled networks of public transportation.

1.2 Dynamic Traffic Routing



Traffic congestion is a serious problem that affects the mobility of people in society. People
live in one area of the city and work in another. They also visit friends and family living in
different parts of the country. Intelligent Transportation Systems (ITS) have worked towards
improving the efficiency of the transportation networks using advanced processing and
communication technology. The analysis and operation of these systems necessitates a variety

of models and algorithms.

When a traveller travels from home to work, he/she can plan his optimal route before his
departure, based on the current traffic conditions of the transportation network. However, it
may not be the final optimal route due to frequent changes in traffic conditions. Therefore, the
route needs to be modified while en-route, and a new path planned from the current location to

the destination based on current real-time traffic conditions.

Dynamic shortest paths route finding is a fundamental problem in the field of ITS applications.
The proposed dynamic shortest path algorithms (developed during this research project) will
decrease the search efforts and reduce the computational time when finding alternative paths
(due to incidents, for example). Dynamic routing requires the re-planning of a route based on
updated dynamic information becoming available during travel. In this research, dynamic
information is referred to as time-dependent deterministic information (not stochastic
information where random events become available over time rather than at the time of

departure from the node).

This research used Nottingham city’s network as an experimental study to evaluate the
proposed algorithms (road and bus networks). Nottingham city’s network has been used by
other researchers as their case study. Wu and Hartley (2005) investigated some of the

approaches to solving the shortest path(s) problem in a stochastic time-dependent scheduled



transportation network. In (2004), they also developed two different solutions — single-purpose
shortest path algorithms and the K shortest path algorithm (is an extension algorithm of
the shortest path routing algorithm in a given network. K shortest path algorithm is used to find
more than one path. Some experiments have conducted based on the public transportation
network of Nottingham City. However, they did not consider updating routes based on updated
traffic information. Similarly, the optimal dynamic paths in Nottingham’s bus network cannot
be satisfactorily solved by navigation systems (e.g., Google Maps), as they are not able to
update routes based on current and dynamic traffic conditions. For bus network route
optimisation in Nottingham city, Google Maps finds the routes based on the scheduled

timetable only (Driving Directions and Maps ,2014).

In this thesis, three dynamic shortest path algorithms have been developed and evaluated. These
efficient algorithms find the fastest alternative paths to a goal node when random traffic
incidents occur. The problem that is being solved is finding the updated quickest route (least
travel time) from the source node to the destination node. These algorithms have been

successfully tested in both road and bus networks.

1.3 Motivation

The main challenge of finding the optimal route while traveling is related to the fact that real-
time traffic information is not static data. The computed shortest path needs to be updated based
on current traffic conditions. However, some travel link times will remain the same and will
not need to be updated. Consequently, it is possible to use the unchanged links of a previous
search to speed-up the new search and reduce the computational time. This is necessary as a
driver does not like to wait while his route is being computed, particularly in the case of

emergency situations. Therefore, the planning of alternative routes must be done very fast.


https://en.wikipedia.org/wiki/Shortest-path_routing
https://en.wikipedia.org/wiki/Network_theory

The main challenge of this research is to produce a new more efficient technique, which can
use the benefits from the previous search information and subsequently, reduce the route

computation time.

Many of the studies on routing techniques have investigated how to solve shortest path-
planning problems on static networks (e.g., Dijkstra’s algorithm (1959) and Bellman’s
algorithm (1958)). Where there are changes based on the updated dynamic information, these
algorithms need to search for an updated route from scratch. However, this can be inefficient
when dealing with a large network with frequent changes. A complete update of the best
shortest path can be considered inefficient because some of the previous information results
can be reused. Many of these standard algorithms use either the Breadth First Search (BFS), or
Depth First Search (DFS) approach. These are uninformed search algorithms (also called blind
algorithms) because they don’t have any knowledge about the problem domain (except for the
source and destination locations). These algorithms are very inefficient, as they update routes

from scratch (Miller and Shaw, 2001).

In some cases, the updated route has to be computed in a few seconds. Moreover, when large
real road networks are involved in an application, the determination of the shortest path in a
large network is very intensive. The increasing popularity of online navigation systems using
road networks (e.g., Google Maps, OpenTripPlanner and OpenStreetMap) has recently
attracted a considerable interest from the scientific researchers. Distance and shortest path
queries are an integral part of applications such as Google Maps and GPS navigator. A distance
query returns the length from a start node to a goal node, while the shortest path query

calculates the shortest actual route starting from a start node to a goal node. Figure 1.1a



illustrates GoogleMaps, the most popular web mapping service, while Figure 1.1b shows a

GPS navigator for cars developed by TomTom.

) 1155
» u - TOMToM
=

(@) Google Map

(b) TomTom navigator for cars

Figure 1.1 Two applications offering routing services

This research, will focus on a search space instead of a distance query that returns the number
of node expansions from a start node to a goal node. The classic solution for both search space
and shortest path queries is Dijkstra’s algorithm (1959). Google Maps and most navigation
applications (e.g., OpenTripPlanner) initially used Dijkstra’s algorithm (1959) to find the most
efficient route. (Lanning, Harrell and Wang, 2014) Dijkstra’s algorithm works on a static
network (where the edge weights on the network are static and deterministic). It works by
examining the closest node to the start node. However, despite its simplicity, Dijkstra’s

algorithm is inefficient for large road networks. This algorithm has high time complexity and



takes up a larger amount of storage space. A more detailed description of Dijkstra’s algorithm

has been provided in section 3.3.1.

To achieve better performance, a variety of speeding up techniques have been proposed (Bast
et al., 2014) (Sommer, 2014; Wu. L et al., 2012). In particular in relation to search space, the
first improvement of Dijkstra’s algorithm was bi-directional search (Pohl, 1969); starting the
search from a start node and an additional search from a goal node, performed in a backwards
direction, with the termination search occurring when both directions meet. The Bounded-hop
Method reduces search space (Cohen et al., 2002; Akiba et al., 2014; Abraham et al., 2011). In
the field of shortest path queries, the most efficient method is the Hierarchical method family,
which pre-computes a hierarchy of shortcuts and applies it to process the queries (Geisberger
et al., 2008; Sanders and Schultes, 2005; Zhu et al., 2013). All approaches focus on a single

type of query, either search space or shortest path.

However, there are a number of transportation applications that use informed search
algorithms, rather than one of the standard static shortest path algorithms. This is primarily due
to shortest paths needing to be rapidly identified either because an immediate response is
required (e.g., in-vehicle route guidance systems) or because the shortest path needs to be
recomputed repeatedly (e.g., vehicle routing and scheduling). For this reason, a number of
different heuristic shortest path algorithms have been investigated for the purpose of reducing
the execution time of the shortest path algorithms. For example, the A* algorithm (Nilsson,
1971) is widely used in artificial intelligence. Heuristic information (in the form of estimated
distance to the destination) is used to focus the search towards the destination node. This results

in finding the shortest path faster than the standard static search algorithms.



The A* algorithm is not the best approach for route finding under dynamic traffic conditions,
because the A* algorithm re-computes the shortest route from scratch. A solution to this
problem is to change the A* algorithm from a re-plan strategy to a reuse strategy, in order for
it to be suitable for any updated dynamic data. (Russell and Norvig 2009). Reuse planning
attempts to use as many calculations of the previous plan as possible. Re-planning does not

have this requirement (Koenig et al, 2005).

Another approach to speed up searches is an incremental search. An incremental search is a
search technique for re-planning and reuses the previous search. This results in finding
solutions faster than when solving each search problem from scratch. Some existing
incremental shortest path algorithms can use the benefit (of previous search information) to
reduce the computation time (e.g., D* algorithm (1994), Focused D* algorithm (1995) and D*-
Lite (2002)). These algorithms are used when there is incomplete information (e.g., unknown
destination). They can find the shortest paths from the source node to all other nodes in the
graph and are able to quickly recalculate the route. Ramalingam and Reps’ algorithm
(Ramalingam, 1996) (RR for short, also known as the DynamicSWSF-FP algorithm) starts
searching from the destination node to all other nodes. After dynamic changes have occurred,
the algorithm updates only the nodes whose link travel time has changed. The DynamicSWSF-
FP algorithm is the most useful when finding the distance from the destination node to multiple
nodes after update associated with traffic information. Such an incremental approach is often

used in robotics, navigation, and planning.

It is clear that heuristic search algorithms are guaranteed to find the shortest path faster than
static search algorithms. Incremental search algorithms are guaranteed to find the shortest paths

faster than algorithms that solve each path re-planning problem from scratch. Koenig, et al,



(2005) developed the LPA* algorithm. It is a fully dynamic shortest path algorithm that is used
to incrementally find the shortest path from a known source to a known destination in a given
graph (as links or nodes are removed or added, or the travel time of the links changes). The
LPA* algorithm is a reusing method rather than a re-planning method. It combines the
DynamicSWSF-FP and A* algorithms. The combination of these two algorithms results in
speeding up the search and reducing the computation search time. It is able to adjust the shortest
path to adapt to the dynamic transportation network and is guaranteed to find the shortest path

faster than both the DynamicSWSF-FP and A* algorithms methods individually.

However, when used in very large networks, this algorithm needs to be made more efficient.
Therefore, this thesis has further developed the LPA* algorithm, as a fast re-planning method
named Optimised LPA* (OLPA*). The name was chosen because it is able to reduce the
running time by improving the search performance of the LPA* algorithm. The OLPA*
algorithm uses a priority queue dictionary instead of an open set. The priority queue dictionary
(pqdict) is implemented based on the heap data structure of (key, priority value) the pairs. The
priority queues dictionary is useful in applications where the priorities of items may frequently
change (e.g., optimisation algorithms, simulations, etc.) (Beazley, 2015). The set of
predecessors of the node were implemented as a priority queue dictionary (pqdict) rather than
an open set, and this is a novel idea. It provides O(1) to search and retrieve items with the
highest priority regardless of the number of items in the queue. This is instead of O(n) in terms

of big O notation.

The main reason for choosing the incremental LPA* algorithm is, firstly, that it finds the
shortest path from the known start node to the known goal node. The D*, Focused D*, D*-L.ite

(2002)) and the DynamicSWSF-FP algorithms do not search from two known locations.



Secondly, when the first shortest path gets blocked, the LPA* algorithm is able to take
advantage of the previous calculations. The A* and the Dijkstra’s algorithms do not take this
advantage from the previous calculations. The A* and the Dijkstra’s algorithms need to re-

compute the route from scratch.

This research has also focused on how to reduce search space, which can further speed up the
search. For this important point, this thesis has proposed a novel algorithm that is able to speed
up the search via a heuristic search method. This is the bi-directional heuristic search algorithm
(Pohl, 1969). A bi-directional method is used to reduce the search space and time by searching
forward from the start and backward from the goal, simultaneously. When the two search
frontiers intersect, the algorithm can reconstruct a single path that extends from the start nodes
through the frontier intersection to the destination. For example, in a search problem modelled
by a tree with branching factor b and solution depth d, a bi-directional search will expand
2b%/?states instead of the b® required by a unidirectional search. The bi-directional Dijkstra’s

algorithm is an example of this technique. (Padua, 2011).

This thesis has also proposed a novel algorithm called the Bi-directional Lifelong A* algorithm
(BiOLPA¥*). The BiOLPA™* algorithm searches forwards from the start node and backwards
from the destination node using a novel search strategy. This proposed search strategy is called
the autonomous strategy. It improves the strategy of node selection in the algorithm and
increases the search speed by searching forwards and backwards simultaneously, searching
alternatively such as via Poul’s strategy (1969), or based on the number of nodes in both
priority queues. The side that has the fewest number of nodes in the priority queue is started
and expanded first. This strategy was proposed by Poul (1971), named the cardinality

comparison strategy. In this strategy, the algorithm will decide the direction (forward or



backward) based on the number of nodes in both priority queues. The side that has the fewest
number of nodes in the priority queue will start to expand first. This thesis proposes a novel
strategy called an autonomous strategy. We chose this name because we do not implement
exactly in the program which direction to start to search first, and the algorithm itself decides
based on the heuristic values. The autonomous strategy chooses the most promising node that
has the highest probability of being on the shortest path and has the smallest f(value) in

relation to both priority queues as shown in (1.1).

f(value) = g(n) + h(n) 1.3)

For more details, see section 5.2.1.2. However, the BIOLPA™* algorithm can adjust the shortest
path to adapt to the dynamic transportation network and guarantee to find the shortest path
faster than both the OLPA* and the bi-directional search methods individually because it

combines their techniques.

Consequently, in this research, a novel algorithm has been developed that combines an

incremental search algorithm with a bi-directional heuristic search approach. See Figure 1.2.

Artificial Intelligence Algorithm Theory
|"" heuristic ( | incremental "'II
search \ / search |
\"~-.._ v /"//
How to search efficiently using heuristics to How to search efficiently by re-using
guide the search information from previous search results

Figure 1. 2 Combination incremental search and heuristic search.



Two different ways of decreasing the search efforts for determining the shortest path have been

investigated.

* Firstly, some of the edge costs are not affected by the changes, and thus do not need to be
recomputed. Heuristic function knowledge, in the form of approximations of the goal distance,

can be used to speed up the search. This is what the OLPA* algorithm does.

» Secondly, the heuristic searching strategy, using the heuristics from the start node to the goal
node and the heuristics from the goal node to the start node, will reduce the search space and

then speed up the search by half. This is what the bi-directional search method does.

This research also presents a bi-directional implementation of the LPA* algorithm. Named the
BLPA* algorithm, the proposed algorithm combines the benefits of the bi-directional search
and re-uses a previous calculation in an updated search method. The BLPA* algorithm uses
Pohl’s bi-directional strategy (1971), also named a *“cardinality comparison strategy”
(monotonicity hypothesis). Cardinality comparison strategy chooses the direction with the
smaller priority queue, rather than simply alternating the directions. This thesis demonstrates
that the two ways of decreasing the search effort are efficient by developing the BIOLPA*
algorithm that combines both and can update the route faster than either the OLPA™* algorithm
or bi-directional search method. However, navigation systems such as GoogleMaps have never
published information about their routing algorithms. Therefore, the proposed algorithms will
be compared with other published algorithms such as the A* and LPA* algorithms and their

variants in terms of performance (number of node expansion and computation time).



1.4 Blocked links and alternative route

To improve the effectiveness of travel information in real-world scenarios, determining solely
the shortest path is not enough. There is a need to compute an alternative route. For example,
when some links on the computed shortest path are blocked, it is necessary to update the
shortest path and find an alternative route to the goal node. Most commercial route planning
applications and navigation systems recommend alternative paths that might be longer than the

shortest path (Chondrogiannis et al, 2015).

For example, the exist LPA* algorithm, in case of a blocked link that is close to a goal node
and there is no alternative route available close to the blocked link, the second search (updated
route) will take a long time to find a goal node because the LPA* algorithm will have lost its
benefits from reusing the previous calculation. In this case, the A* algorithm that updated the
route from scratch will be faster than the LPA* algorithm. This research shows that the
BiOLPA* algorithm outperforms the existing LPA* and A* algorithms, and always updates

the route faster than all existing algorithms regardless of the location of the blocked link.

1.5 Objectives

This research project aims to reduce the search space and speed up the computation time in
dynamic networks when determining the optimal route and computing an alternative route
(when network changes have occurred). The proposed approaches focus on both the search

pace and shortest path queries.

The algorithms were tested on the road and bus timetable networks in the context of

Nottingham’s urban network.



1. Speeding up the search process by making use of the previous search results and using
appropriate data structures to improve the efficiency of the dynamic algorithms. This
objective was implemented by improving the LPA* into the developed OLPA*
algorithm.

2. Reducing the search space by three ways. Firstly, a bi-directional search method is
used. Secondly, the previous information results are used (OLPA* algorithm). Thirdly,
a novel search strategy (autonomous strategy) is used to improve the strategy of node
selection within the algorithm. This search process helps the search to avoid node re-
expansion from both directions and therefore speeds up the search for the shortest path
more. These points can be achieved by proposing a novel algorithm called the

BiOLPAX* algorithm.

1.6 Original Contributions

1.6.1 Overview

This project proposes two novel efficient algorithms in two types of networks (road and bus
timetable). These algorithms are significantly more efficient than standard algorithms, not only

in terms of reducing route computation time, but also with regards to reducing the search space.

1.6.2 Optimised LPA* Algorithm

This research has developed the Optimised Lifelong Planning A* (OLPA*) algorithm, a fast

re-planning method that is an improvement of the LPA* algorithm. The OLPA* algorithm is



faster than the LPA* algorithm. It reduces route computation time in the first search (when
finding the optimal route) and in the second search (when some links are blocked and an
alternative route needs to be computed). This algorithm has been implemented and applied to

both road and bus timetable networks.
1.6.3 Bi-directional OLPA* Algorithm

This research has also proposed the bi-directional optimised Lifelong A* algorithm BiOLPA*
algorithm, which is designed to reduce the search space to speed up route computation time,
by benefiting from bi-directional heuristic searching and the use of previous information
results. Using the autonomous strategy, the BIOLPA* algorithm has been implemented in the

road and bus timetable networks.
1.6.4 Novel Autonomous Search Strategy

This search has presented a novel search strategy (autonomous strategy) to enhance the
intelligence of node selection in the algorithm. The strategy determines the best selection of
either the forward or backward direction. This search method has contributed to increased
search speed instead of using forward and backward searching alternatively. This selection
process avoids nodes from re-expansion from both the forward or backward direction, and

therefore produces the shortest path more quickly.

1.6.5 Bi-directional LPA* Algorithm



This research has also proposed the bi-directional LPA* (BLPA¥*) algorithm that benefits from
the bi-directional heuristic search, the use of previous calculations and Pohl’s (1971) bi-
directional strategy named the “cardinality comparison strategy” (monotonicity hypothesis).
The cardinality comparison strategy chooses the direction with the smaller priority queue,
rather than simply alternating the directions. The BLPA* algorithm has been implemented and

compared with the BIOLPA™* algorithm.

1.7 Outline of the thesis

We have organised the rest of the thesis in the following way.

Chapter 2: This chapter introduces the background of the graph theory, graph representation
in the memory, fundamental concepts (i.e. the definition of a graph, the degree of a graph, and
the definition of a path) at the beginning of this chapter. In the discussion of the degree of a
graph, dense graph and sparse graph have been defined and used in the data model discussion.
Chapter 3: The chapter classifies the common search strategies, including uninformed search,
informed search, and incremental search. The two classic SP algorithms (Dijkstra's and the A*
algorithms) will be presented in detail. Some related research on the time-dependent shortest
path (TDSP) and stochastic shortest path (SSHP) problems will be also put forward. The
incremental shortest path algorithms, the Dynamic SWSF-FP Algorithm and the LPA*

algorithm, will be explained and discussed in detail.

Chapter 4: Introduces the dynamic single pair shortest path problem. A novel contribution to
the OPLA™* algorithm will be presented and discussed in details. A demonstration of updated
routes using the OLPA*, A* and LPA* algorithms for road and bus networks will also be

illustrated and discussed.



Chapter 5: In this chapter, a novel algorithm for dynamic road networks will be presented,
and the BIOLPA™* algorithm will also be presented and discussed in detail. A demonstration of
an updated route using BiOLPA*, A*, LPA* and OLPA* for the road network has been
illustrated and discussed. As part of this contribution, this chapter introduced a novel search
strategy (called Autonomous strategy) to enhance the intelligence of node selection in the

algorithm.

Chapter 6: In this chapter, a novel BIOLPA* algorithm has been implemented in both road
and bus networks. The experimental results have demonstrated the evaluation of the BIOLPA*
compared with the A*, LPA* and OLPA* algorithms in term of computation time and number

of node expansions in both road and bus networks.

Chapter 7: This chapter produced a new BLPA* algorithm, and the experimental results

demonstrated the evaluation of the BLPA* algorithm compared with the BiOLPA* algorithm.

Chapter 8: Finally, the conclusion has been presented and possible future research work

discussed in this chapter.



CHAPTER 2

TRANSPORTATION NETWORK

2.1 Overview of a Graph Theory

In this chapter, some fundamental concepts of graph theory are introduced. In graph theory,
the shortest path problem is the problem of finding a path between two vertices (or nodes) in
a graph such that the sum of the weights of its constituent edges is minimized. The concepts in

this chapter are essential for understanding later discussions involving graphs.

2.1.1 Definition of a Graph
A graph is a mathematical structure consisting of a set of nodes or vertices, connected by a

set of links, known as edges, this research, a graph G = (V, E) where
> Vs aset of nodes.
> Eisaset of edges.
> Each edge is a pair of nodes.

The graph can be directed or undirected.

Directed graph

A directed graph is a graph consisting of a set of nodes that are connected by a group of links
and all links have a specific direction. In a directed graph, edges are written using parentheses
to denote ordered pairs. For example, edge (1,2) is directed from 1 to 2, which is different than
the directed edge (2,1) from 2 to 1. Directed graphs are drawn with arrowheads on the links, as

shown in Figure 2.1 (Sedgewick and Wayne, 2011).


https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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Example: The Figure 2.1 shows the following graph:
e V={1,2345,6}

« E={{12}, {13}, {2,3}, {2,5}, {3.4}, {4.6}, {5,6}}

« G=(V,E)

Figure 2. 1 A directed graph.

Undirected graph

An undirected graph is a graph consisting of a set of nodes that are connected by a group of
links, where all the edges are two ways (bidirectional). For example, an undirected edge {2,5}

from node 2 to node 5 is the same link {5,2} from node 5 to node 2.

The following Figure illustrates an undirected graph; the edges are typically drawn as lines

between pairs of nodes. (Sedgewick and Wayne, 2011).

Figure 2. 2 An undirected graph



Weighted graphs
A weighted graph is a graph for which each edge has an associated weight or cost. The edge’s
cost can be real numbers, which represent a concept such as distance or affinity. Figure 2.3

shows a weighted graph, which shows the cost of (1 - 2) = 4.

Figure 2. 3 A weighted graph.

A Degree of a Graph

In graph theory, the degree of a node of a graph is the number of links incident to the node.
The degree of a node v is denoted deg(v), and the maximum degree of a graph G, denoted
by A(G), and then A(G) = max {d (v) | v € V}.

The minimum degree of a graph, denoted by §(G), and then §(G) = min {d (v) | v € V}.

In Figure 2.3 the maximum degree is 6 and the minimum degree is 0 (Diestel, 2005).

The degree sum formula of a given a graph G (V,E)

Z deg(v) = 2|E| (2.1)

vev



The average degree of G is

_ 1 22
46) = ;d(m
clearly,
§(G) < d(G) < AG) (2.3)

The average degree globally quantifies what is measured locally by the node degrees, the
number of edges of G per node. Occasionally it is convenient to express this ratio directly, as
e (G) = |E|/|V|. The quantities d and ¢ are intimately related. Indeed, if we sum up all of the

node degrees in G, we count every link exactly twice, once from each of its ends. Consequently,

1
El =5 Y d(s) = d(6) x IV @4

vev

and thus £ (G) = % d (G) (2.5)

Graphs with a number of edges that are roughly quadratic in their order are usually called
dense graphs. A dense graph is a graph where |E| = |V|? (i.e. the number of edges is about
equal to the number of nodes squared). While graphs where |[E| = |V| (i.e. the number of
edges is equal to the number of nodes) called sparse graph. Clearly, the average degree d (G)

for a dense graph will be much greater than that of a sparse graph.



2.1.2 Definition of a Path

A path in a graph represents a route to get from an origin node to a destination node by crossing
edges in the graph. For example, in the directed graph G = (V, E) in Figure 2.1, there are many

paths from node 1 to node 6. One such path is highlighted in blue:

O G
NG

Figure 2. 4 A path in a directed graph.
2.1.3 Length of a path

The length of a path is the number of links that are used to create a connection between
nodes.
Example as shown in Figure 2.4

» The length of the blue path is 4

2.1.4 Distance of a path

Given a graph G, the distance D (a, b) between node a and node b is the length of the shortest
path from a to b, considering all possible paths in G from a to b. The distance between any
vertex and itself is 0. If there is no path from a to b then D(a, b) is infinity (o).

Examples as shown in Figure 2.4



> the distance from node 1 to node 6 is 3. There is only one path from node 1 to node 6
with length 3, and this path is {(1 - 3),(3 = 4), (4 — 6)}. All other paths are longer

than this path.

2.1.5 Shortest path

A shortest route or path in graph theory is a solution to find the path between two nodes in a
graph such that the sum of the costs of its constituent links is minimized. This is an essential
concept of graph theory widely practiced. It has proven to be an effective solution to problems
regarding several fields, such as communication, routing, road networks. (Sedgewick and

Wayne, 2011).

2.2 Graph Representation in Memory

Graph algorithms need efficient access to the graph nodes and edges that are stored in the
memory. In typical graph implementations, nodes are implemented as structures or objects and
the set of edges establish relationships (connections) between the nodes. There are several
possibilities to represent a graph G = (V,E) in memory. Let the set of nodes be V =
{1,2,...,n} with edges E € V x V, the following two are the most commonly used

representations of the graph.
2.2.1 Adjacency L.ist

In graph theory and computer science, an adjacency list consists of a list of all nodes in a given
graph. each node in the graph associated with the collection of its neighbouring nodes or links.

The adjacency list for Figure 2.5 can be described in Figure 2.6.

G- .
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Figure 2. 5 An undirected graph with 4 nodes and 4 links

1 — |3 4

2 —> |4

3 — |1 4

4 —» |1 2 3

Figure 2. 6 A diagram of adjacency list.

2.2.2 Adjacency Matrix

An adjacency Matrix is another form of graph representation in a memory. The adjacency
matrix is a two-dimensional array with rows and columns sorted by the graph vertexes, where
each entry x;; is equal to 1 if there exists an edge = (vi,vj) € E and 0 otherwise.

Node vi and vj are defined as adjacent if they are joined by a link. For a simple graph with no

self-loops, the adjacency matrix must have Os in the diagonal. Figure 2.5 can be described as

an Adjacency Matrix as shown in Figure 2.7.
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Figure 2. 7 An example of adjacency matrix.

2.3 Transportation Network

A transportation network is a type of directed, weighted graph. In a road network, nodes
represented as junctions and edges are the road links between them. For bus timetable network,
nodes represented as stops and edges are the links between them. The weights represent travel
time between the nodes. This representation is an attempt to quantify the street system for use

in a mathematical model.

However, a suitable data structure is required to represent the transportation network in the
computer’s memory. Comparing the two data structures, the adjacency list is easy to find
successors of a node, easy to find all neighbouring nodes and the memory space efficient as it
only stores connected nodes, and it does not necessitate space to represent edges which are not
present. Based on big O notation that is (used to classify algorithms according to how their
running time or space requirements grow as the input size grows. Mohr, (2014)) the space
complexity of an adjacency listis O(|E| + |V|), where V' is the number of nodes and E is the
number of edges in the graph. On the other hand, the adjacency matrix representations contain
Os in the diagonal which are useless in storage, and then the adjacency matrix need more

memory to store a large graph, space complexity of adjacency matrix is O(|V|?).
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Using a naive linked list implementation on a 32-bit computer, an adjacency list for an
undirected graph requires around 16 x (|E| + |V]|) bytes of storage space. In contrast, the
adjacency matrix requires only one bit at each entry, it can be represented in a very compact
way, occupying only |V|%/8 bytes of contiguous space. First, we assume that the adjacency list

occupies more memory space than that of an adjacency matrix. Then;

16 x (|E| + [VI) = |V[*/8 (2.6)

Based on Equation 2.2 in Section 2.1.1, we have,

1
16 X (5 d(G) x |V| + |V]) = |V|*/8 27
Where d (G) is the average degree of G.
d(G) === (2.8)

64

This means that the adjacency list representation occupies more space when Equation 2.8 holds.
Firstly, in reality, most transportation networks are large-scale sparse graphs with many nodes
but relatively few edges as compared with the maximum number possible (|[V| x (|[V| —1) for
maximum). That is, there are no more than 5 links (4(G) = 5) Linked to each node. In most
situations, there are usually 2, 3or 4 (6 (G) = 2) links, although the maximum links are |V| —
1 for each node. Secondly, road networks often have regular network structures and a normal
layout, particularly for well-planned modern cities. Thirdly, most transportation networks are
near connected graphs, in which any pair of points is traversable along a route. Assuming the
average degree of a road network is 5, Equation 2.8 holds only if [V| < 448. In the real life,
most road networks contain thousands of nodes where |V|> 448. As a result, Equation 2.3

cannot hold. Thus, the adjacency list representation occupies less storage space than that of an



adjacency matrix. For example, consider a road network containing 10000 nodes. The
adjacency matrix size will be 10000 * 10000 around 10 megabytes of memory space is required
to store the network, and this is a huge waste of memory. It will most likely take more

computational time to manipulate such a large array.

Moreover, the different data structures also facilitate different operations. It is easy to find
successors of a node, easy to find all neighbouring nodes in the adjacency list representation
by simply reading its adjacency list. While the adjacency matrix, we must search over an entire
row, spending O (V) time, since all |V| entries in row v of the matrix must be examined in order
to see which links exist. This is inefficient for sparse graphs since the number of outgoing edges
vj may be much less than |V|. Although the adjacency matrix is inefficient for sparse graphs,
it does have an advantage when checking for the existence of an edge vi — vj, since this can
be completed in 0(1) time by simply looking up the array entry [vi; vj]. On the other hand,
the same operation using an adjacency list data structure requires O (vj) time since each of the
vi — vj edges in the node list for V must be examined to see if the target node is existing.
However, the main operation in a route search is to find the successors of a given node and the
main concern is to determine all of its adjacent nodes. Moreover, the main operation of LPA*
algorithm is finding the successors and the predecessors of a given node. The adjacency list is

more feasible for this operation.

Based on the above discussions, it is clear to see that the adjacency list is most suitable for
representing a transportation network since it not only reduces the storage space in the main

memory, but it also facilitates the routing computation time.



2.4 Network Model

To deal with dynamic travel time the concept of dynamic graph model was introduced in two
major approaches: Time-expanded model and time-dependent model. Road and bus timetable
networks can be modelled as directed graphs. For bus networks, each node indicates to the bus-
stop location, and the edges of the graph correspond to the route links. The cost of the link is

presented as travel time.

2.4.1 Time-Expanded Model

A node exists for every event at allocation and links represents the time between these events. In Figure
2.8 (a) where time-expanded model models multi nodes at each bus-stop and each node
corresponds to a time (arrival or departure), and each link has a static travel time. To allow
transfers with waiting. Dijkstra's algorithm can be used to compute the shortest paths (Patrice

and Sang, 1998; Frank et al, 2000; Matthias et al, 2001).

2.4.2 Time-Dependent Model.

Each geographic location is represented as a single node and all dynamic data is stored in the
links themselves. The time-dependent model reduces the number of nodes compared to the
time-expanded modal, which indicates to be efficient. Figure 2.8 (b) shows the stops graph
model uses one node per station and edge models a connection between two stops, the main
advantage of this model reduces the number of nodes. (Ariel and Raphael, 1990; and 1991;

Hart et al, 1968; Gerth and Riko, 2004).
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Figure 2. 8 The time-expanded graph (a) and the time-dependent graph (b) of a timetable with
three stations A, B, C.

There are three trains that connect A with B (elementary connections u, v, w), one train from

CviaBto A (x, y) and one train from C to B (z). (Daniel Delling, 2007)

In this research, and due to the large network, we select the time-dependent approach. Also,
the bus timetable network is modelled as time-dependent so, that stations graph model uses

exactly one node per bus-stop.

2.5 Summary

In this chapter, some important information about graph theory is discussed. Because
transportation networks are a specialized type of graph, some essential knowledge of graph
theory is needed. Some fundamental concepts, such as the definition of a graph, the degree of
a graph, and the definition of a path, are introduced at the beginning of this chapter. In the
discussion of the degree of a graph, the dense graph and sparse graph are defined and used in
the data model discussion.

Two types of data models for graph representation are explained, the adjacency matrix and
adjacency list. The discussion includes a description of each model, an analysis of the space

complexity, storage space requirements and an examination of suitable operations for each



model. Based on the discussion, an adjacency list is regarded as the best representation of the
transportation network considering its own characteristics. This research uses the adjacency
list to construct the topology of the experimental road and bus network in order to implement

the proposed algorithms.



CHAPTER 3

SHORTEST PATH PROBLEM IN TRANSPORTATION

NETWORKS

3.1 Introduction

The field of the shortest path problem has been widely researched, since it is a principal issue
in transportation networks. Considerable research in computer science and Artificial
Intelligence has addressed the question of what criteria ensures a good algorithm for (rapidly)
finding a solution path in a given transportation network. This has resulted in the development
of several methods for speeding up searches by reducing the search time of the resulting path.
This includes using inadmissible heuristics (Pohl, 1970; Pohl, 1973) and searches with a limited
look-ahead value (Korf, 1990; Ishida and Korf, 1991; Koenig, 2001). All of the shortest path
algorithms presented in this chapter assume that there are used in a directed graphs with a non-

negative edges cost, because the field of study is that of a transportation network.

3.2 Search Strategies

There are different strategies for exploring a search space that will be considered in this chapter.
This section will focus, in more detail, on an uninformed search (where the algorithm does not
make use of any means of estimating how close the search process is to a destination), an
informed search (where the algorithm uses heuristics that guide the search toward the

destination) and incremental search (a search technique for reusing information from previous



searches to find the updated shortest path solutions faster than is possible by solving each

search problem from scratch).

3.2.1 Uninformed Search
3.2.1.1 Depth-First Search

Depth-First Search (DFS) is an unformed search algorithm. It starts by selecting an arbitrary
node as a root in a given graph. It examines the nodes as far as possible along each path and
then backtracks until it finds an unexplored path. This is then explored. The algorithm does this
until the entire graph has been explored. An example has been shown in Figure 3.1. The depth-
first search starts at node 1. It must always be assumed that the left hand side edges in the
shown graph are chosen before the right hand side edges. It is important to make sure that the
nodes visited are marked using a stack (LI1FO (Last In, First Out)). This will prevent the search
from visiting the same node more than once, which may end up in an infinite loop. Two principal
operations will be used:

e Push adds nodes to the collection.

e Pop removes the most recently added nodes that were not yet removed.

In Figure 3.1, DFS will visit the nodes in the following order: 1, 2, 4, 5, 3 and 6.
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Figure 3. 1 Depth-first search.

3.2.1.2 Breadth-First Search

Breadth-First Search (BFS) is also an unformed search algorithm. It starts by selecting an
arbitrary node as the root in a given graph. It examines the neighbouring nodes first, before
moving to the next level’s neighbours (searching level-by-level). The BFS uses asimple
queue FIFO, so then the nodes that were inserted first in the queue will be removed first. This
makes the current node ‘visited' until all of its neighbours (vertices that are directly connected
to it) are also marked. An example has been shown in Figure 3.2. The BFS starts at node 1, and
visits its child nodes 2, before moving onto 3. It stores the nodes in the order in which they
were visited. This will allow the child nodes of 2 to be visited first (i.e. 4 and 5), and then the
child node of 3 (i.e. 6). In Figure 3.2, BFS will visit the nodes in the following order: 1, 2, 3,

4,5 and 6.

Searching Level 1

—_—

Searching Level 2

—_— 2 3

Searching Level 3
—_—


https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

Figure 3. 2 Breadth-first search.

3.2.2 Informed (Heuristic) Search

The main advantage of heuristic strategies is that the search scale can be limited. Many shortest
path algorithms based on a restricted searching area have been proposed. For example, the
restricted ellipse searching area algorithm. The restricted ellipse area algorithm was first
presented by Nordbeck and Bengt (1969), and then extended by Weihong (1995), also in
Xingxing and Weihong (1996). The core of the algorithm is that the search area can be reduced
greatly, because the set of search nodes is limited to the restricted ellipse searching area.
However, the algorithm still involves a large amount of computation and has a high processing
time. Consequently, it is not suitable for this application (Fu and Rilett, 2005). There are a
number of transportation applications that require the use of a heuristic shortest path algorithm
(rather than standard algorithms or optimal algorithms), such as when a shortest path needs to
be recalculated repeatedly, for vehicle routing and scheduling. These types of heuristic search
attempt to use different sources of additional information to reduce the search efforts. They can
be classified into three strategies: decompose the search problem, limit the links searched, and

limit the search area,

3.2.2.1 Decompose the Search Problem

This strategy of decomposing the research problem has been divided into two sections: the bi-
directional search method and sub-goal method.

3.2.2.1.1 Bi-directional search method

This method is also called a forward and backward search process. The main idea in this

strategy is to divide the search problem into two separate problems. One search proceeds



forwards from the start node, while the other search proceeds backwards from the end node.

The solution requires the two search problems to meet at one middle node.

Figure 3. 3 Bidirectional search (taken from Audrey Carpenter, n.d).

Bi-directional searching was first proposed by Ira Pohl (1969). He showed that both a forward
and backward search can be independently searched simultaneously, instead of two
independent searches. Therefore, he combined the two searches into a bi-directional search
with each contributing to part of the solution. Figure 3.3 shows a bi-directional search from a
source node and from a destination node without finding a path.

Many algorithms use a bi-directional technique to speed up their search. Modifying A* into a
bi-directional heuristic search is a possible way to improve performance. The main motivation
for using A* in a bi-directional setting is the possible reduction of the number of expanded
nodes. In fact, recent results show that the combination of the A* algorithm with a bi-
directional search is able to significantly reduce the number of expanded nodes (Whangbo,

2007; Klunder and Post, 2006; Pijls and Post, 2009b).

3.2.2.1.2 Sub-Goal Method
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Sub-goal are nodes that are located between the origin node and destination node. To find the
shortest path from an origin node to a destination node, the problem can be decomposed into
two or more smaller problems. For example, if there is one sub-goal node, the problem divides
into two smaller problems: one is to find the SP from the source node to the sub-goal node
while the other is to find the SP from that sub-goal to the destination node. The efficiency of

this strategy depends on the number and location of the sub-goal nodes (Fu and Rilett, 2005).

3.2.2.2 Limit the Search Links (Hierarchical Search Method)

The main idea of the hierarchical search method is to skip the examination of the links that
have a low possibility of being either on the shortest path or used in a specific situation. Firstly,
the algorithm concentrates on the essential feature of the problem without considering the lower
level details, as it completes the details later. This strategy is similar to when drivers try to find
a route between two locations on the map. Firstly, the driver will find the main roads in the
area to the origin location and destination location. Secondly, the driver will try to find the

access road to the main road from the source to the goal (Fu and Rilett, 2005).

3.2.2.3 Limit the Search Area

The main idea in this strategy is to use some of the information about the attributes of the SPs
from the source location to the destination location to constrain the shortest path within a

limitation area. This strategy comes in two types: the branch pruning method or A* algorithm.

3.2.2.3.1 Branch Pruning Method

The main idea is to limit the search by excluding the intermediate nodes which have little
chance of being on the shortest path to the destination node. In a real-world transportation
network, each road is connected to the neighbouring locations and travel time on the road is

correlated with its distance. This attribute allows the search area to be constrained within an



exact area surrounding the source location and destination location. The locations outside this
area are assumed to have less possibility of being on the shortest path and hence will be skipped

in further examination (Fu and Rilett, 2005).

3.2.2.3.2 A* Algorithm

The A* algorithm is one of the most known search algorithms in Artificial Intelligence (Nilsson,
1971). It uses a heuristic function to guide the search. At each iteration, it selects the most
promising node according to an evaluation function f (value), which includes the real cost of
going to that node and an estimate of the cost from that node to the goal. More details about

how the A* algorithm works is in Section 3.3.2.

3.3 Classical Algorithms

3.3.1 Dijkstra’s algorithm

Dijkstra’s (1959) algorithm is a single source shortest path algorithm. It is used to find the
shortest path from a single source node to all other nodes on a directed graph with non-negative
edges cost only. Dijkstra’s algorithm works on a static network (where the edge weights on the
network are static and deterministic). Similar to the BFS strategy, it works by examining the
closest node to the start node. However, Dijkstra’s algorithm uses a weighted graph and a
priority queue to decide which is the most promising node (the node’s link that has the
minimum weight) to be expanded first.

A priority queue is an abstract data type (similar to the general queue and stack data structures).
However, in a priority queue, each node has a “priority” associated with it. A node with high
priority is examined before a node with a low priority. If two nodes have the same priority,

they are examined based on their order in the queue.
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Dijkstra’s algorithm uses two data structures during the search to manage node expansions:
priority queue (Q) and an array (A), which keeps the record of the total distance from the source
location (s) to all other nodes in the graph. When Dijkstra’s algorithm starts the search, the
g(value) of the source node will be 0, (the distance from the source node itself), 4 (s) = 0.
For all other nodes N, is set to infinity A (N) =co . The priority queue is constricted, which
contains all of the nodes of the graph. The loop is executed when there are no nodes in the
priority queue and the goal node has not been selected for expansion. In each iteration, the node
with the minimum priority (smallest distance A (N)) is removed from the priority queue for
expansion. Dijkstra algorithm used the following formula to check the node.

If the distance from the source node itself A(S) + the cost link to travel from Sto N is less than
the distance label for N.

A(S) + A(S,N) < A(N) (3.1)

In this case, a different path from the source node (S) to the current node (N) has been found.

The distance of this node will be updated,

A(N) = A(S) +(cost of link to travel from S to N). The algorithm will repeat the process

until there are no nodes in the Q or the destination node is picked from the Q.

Figure 3.4 shows the pseudo-code of Dijkstra’s algorithm. In the pseudo-code, G is the input

graph, S is the source location, Q is the priority queue and A is the array.

{1} Dijkstra (G, S)
{2} A(S)=0

{33 Q=G(N)

{43} While (Q ! = 9)




{5} Do U= extraxtMin (Q)

{6} For each link U to N outgoing from U
{7} If (A (U) + cost of link < A (N))

{8} A (N) = A (U) +cost of link

{9} DecreasePriority (Q, N)

Figure 3. 4 Dijkstra’s algorithm.

Analysis of Space Complexity

Since array A has been adopted, the space complexity is O(E), where T is the edge number of
the directed graph. In the worst case, if E = n? , the space complexity is 0 ( n?).

Analysis of Time Complexity

Dijkstra algorithm is shown in Figure 3.4. The algorithm first calls A(S) the time complexity
of {2} is O(n) and the time complexity of {3} is (n) ;

Then, the time complexity is O (n?). For {4}, the first cycle number is node n .The second
cycle number obtained is n — 1 In each iteration, the node with the minimum priority smallest
distance A (N)) is removed from the priority queue for expansion. Then the time complexity
is(n —1) + (n — 2) +--+ 1, thatis 0 (n?).

In the road network of a city, the nodes are uniformly distributed in the plane and the nearby
nodes are connected by edges. In this case, the number of visited nodes grows with the square

of O (n). The computation time therefore takes a long time and becomes slower.

3.3.1.1 K-Shortest Path Algorithm

To improve the effectiveness of travel information, there is a need to generate alternative routes

for users of public transportation. For example, when the shortest path between the source node



and the destination node is congested, it is necessary to compute the second shortest path. If
the shortest path is not available, then a third shortest path may be needed. This set of
alternative paths is known as the set of K-Shortest Paths (KSP) (Meena and Geethanjali, 2010).
There are many papers concerning several algorithms used for solving the KSP (Palmgren and
Yuan, 1998) but not many papers deal with the application to real-world problems. The
computational complexity of applying the KSP algorithm in a large network remains a big

problem in terms of efficiency.

Several algorithms can be used to solve the KSP. Two examples of algorithms that calculate a
list of the KSP between nodes in a weighted directed graph are Yen’s (1971) algorithm and
Lawler’s (1972) algorithms. Yen’s algorithm is a classical algorithm for finding the KSP
between a pair of nodes in a directed graph. Firstly, it used Dijkstra’s algorithm as a standard
shortest-path algorithm to compute the best path from a source location to a destination
location. For example, the following graph, see Figure 3.5 - three KSP, was computed from the

source node (A) to the destination node (E).

The best shortest path is: A>B->D->E (the cost time is 11 min).
This is the first shortest path called A1, and it will be stored in list A. After that, Yen’s algorithm
takes every node in the computed path except for the destination node and computes another

shortest path (called a spur) from each selected node to the destination node.
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Figure 3. 5 Directed graph.

For such node, the path from the source node to the current node is the root path, which is
A->B. Node A of Al becomes the super node with a root path itself. Two main restrictions
come with the super path. Firstly, it must not pass through any node on the root path. Secondly,
it must not branch from the current node on the link used by the first shortest path (previously
found) with the same root. Therefore, the link A-> B will be removed and Dijkstra’s algorithm
is used to compute another spur path, A>C->D->E (the cost time is 12min).

This is the second shortest path called A2, and it will be stored in the list B. Node B of A2
becomes the spur node with a root path of B->D. However, the same process is repeated. The
link B->D will be removed and Dijkstra’s algorithm is to compute another spur path which is
A->B->C->E (the cost time is 18min). This is the third shortest path called A3; node D of A3
becomes the spur node with a root path D->E. All such paths are stored in list B. Within this
third iteration, we will choose from list B the paths which have the lowest cost in order of their

shortest time.



The first path is A>B>D->E
The second path is A>C—>D->E

The third shortest path is A>B>C->E

Lawler’s algorithm is used to find k-shortest paths. Lawler’s algorithm presents an adjustment
to Yen’s algorithm. Therefore, Lawler’s algorithm computes only new paths from the nodes
that were on the spur path of the previous shortest path. The improved efficiency of Lawler’s
algorithm can be clarified by, when finding more than two k-shortest paths, the next k-shortest
paths will, on average, branch from the middle of the path. Therefore nearly a 50%
improvement in speed is achieved over Yen’s algorithm (Martins and Pascoal, 2003; Meena
and Geethanjali, 2010).

Other types of algorithm are commonly used to solve the shortest path problem. These
algorithms are known as labelling algorithms. The algorithms work in such a way that in
finding the shortest distance from the source node to every other node in the network, each
node (n) has a distance label (DL[n]) which represents the shortest distance from the source
node to node (n). The algorithms have a list that contains nodes whose distance labels are not
the shortest distance. There are two classes; label setting algorithms and label correcting
algorithms. Each algorithm has a different way to remove nodes from the list and to find the

shortest path. .

3.3.1.2 Label Setting Algorithm

The Label-Setting Algorithm (LS) is used to find the shortest path from the source location to
every other node, by remove the node with the smallest distance label from the list during each

iteration of the algorithm. Once the node is removed from the list, it will not be inserted again,



and the algorithm stops after n iterations, when the list is empty. This algorithm can be
determine and find the shortest path when the label of that destination location is set.
Therefore, LS are very suitable for applications such as route guidance systems where the
objective is to find the shortest path between two specific locations (Fu and Rilett, 2005).

The time complexity of the algorithm is based how the list is stored and how the minimum
distance is found. The simple algorithm is attributed to Dijkstra’s algorithm, which finds the
shortest path in O (N?2) time for N iterations. Irrespective of the data structures and search
algorithms that are used to solve the shortest path problem, using a label sitting algorithm
examines all nodes once. Hence the time complexity of the label sitting algorithm is O (N?)

(Hribar et al, 1995).

3.3.1.3 Label Correcting Algorithm

Label correcting (LC) algorithms takes a constant amount of time per iteration to compute the
paths but vary in the number of repetitions needed to complete the shortest path calculation. In
each iteration, the node removed from the list does not essentially have the shortest distance
label. Thus, the removed node may be re-entered at later time in the list. The LC cannot provide
the shortest path between two nodes before the shortest path to every node in the network is
known. This makes the algorithms more suitable in cases when the KSP from the source
location needs to be found. Consequently, label-correcting algorithms are usually used in
transportation planning applications when multiple routes have to be known (Fu and Rilett,
2005). The time complexity of the algorithm is O(E N) times where E is a number of edges

and for N iterations (Hribar, et al, 1995).

3.3.2 A* Algorithm



The A* algorithm is normally used to solve an optimal route problem from a start location to

a goal location. The evaluation function f is a sum of the two functions:

e The path cost function, which is the cost from the source node to the current node

(denoted by g(n)).
e Anadmissible “heuristic estimate” of distance to the destination (denoted by h(n))

Each node n maintains f(n) where f(n) = g(n)+h(n). The function f(n) = g(n) + h(n)is

an estimate of this cost and is used by A* to decide which node should be expanded next.

In comparison, Dijkstra’s algorithm visits all nodes in every direction. This results in a large
area being explored by expanding unnecessary nodes before the destination is found. However,

the A* algorithm focuses the search towards the goal by using a heuristic function.
The heuristic function h(n) has two important properties: it is admissible and consistent.

h(n) is an admissible heuristic if in place for every node n, h(n) < h*(n). Where h*(n) is
the real cost to reach the destination state from n, so, the heuristic function never overestimates
the real cost. The other important property is that the heuristic function h(n) is consistent if,
for every node n, travelling through any successor n' of n will result in: (where c is the link-

cost between node n and n’, and D is the destination node)
h(n) < c (n,n") + h(n").

This can be viewed as a kind of triangle inequality as seen in Figure 3.6. Each side of a triangle
cannot be larger than the sum of the other two. Every consistent heuristic function is also

admissible (Russell and Norvig, 2003).

c(n,n") h(n)



Figure 3. 6 Consistent heuristic function

The A* algorithm uses two data structures to manage node expansion during the search: open
list and closed list. The open list is a priority queue that allows A* to always expand the node
with the smallest f(value). Therefore, A* avoids considering directions with non-favourable
results and the search direction can efficiently lead to the destination. In this way, computation
time is reduced. Thus, the A* algorithm is faster than Dijkstra's algorithm for finding the
shortest path between a single pair of nodes. A closed list stores the nodes that have already

been expanded. The major benefit of a closed list is that it allows A* to avoid node re-expansion.

By using a heuristic function, A* significantly reduces the number of nodes visited. Finding a
solution without the loss of the solution optimality will depend on the type of heuristics used
(i.e. an admissible will generate an optimal solution). In the worst-case scenario, the number

of nodes visited will be exponential to the length of the optimal solution.

As discussed in Rios and Chaimowicz (2010), when the A* algorithm starts the search, the
g(value) for the source node will be 0. Then the algorithm will insert this node into the open
list. The loop is executed while there are no nodes in this list and the destination node has not
been selected for expansion from the open list. In each iteration, the node with the

smallest f(value) is removed from the open list for expansion. Its successors are generated and



inserted into the open list. It is possible for one or more of these successors’ nodes to be present
already in the open list. In this case, a different path from the start node to the current node has
been found. If the new cost is smaller, then the g(value) of the node will be updated, and the

expanded node is inserted into the closed list.

There are essentially two termination conditions for the A* algorithm. Firstly, if the open list
is empty, then there are no more nodes to be expanded. This means that there is no solution for
the problem, as there has been no path found. Secondly, if the destination state is selected for
expansion from the open list, then an optimal solution has been found (if the heuristic is

admissible and consistent).

3.4 Properties of Search Algorithms

The efficiency of the search algorithm is a critical problem in pathfinding since it relates to the
practicality and effectiveness of the search algorithms. The properties of search algorithms
involve two aspects: time complexity and memory space requirements. However, advances in
computer hardware have made it possible to provide sufficient memory in most computational
environments. The main concern is now the time complexity of the algorithm. This is how
much time the algorithm requires in relation to the depth of the solution (usually proportional

to the number of nodes visited.).

Dijkstra's algorithm does not search directly to the destination. It searches in all directions. This
results in the algorithm expanding unnecessary nodes. Based on Figure 3.4, the pseudo-code
of Dijkstra’s algorithm from step {5} to step {9} takes up the most computation time. In step
{5}, the algorithm finds the node that contains the shortest distance which requires |N| times

comparison in the first iteration. For the comparison operation, steps from {7} to {9}, all links



that are connected to the current node are examined, which takes |E| time. Thus, with a network
consisting of N nodes, Dijkstra’s algorithm has a computational complexity of 0 (|N?| + |E|)
=0 (N?).

The time complexity of the A* algorithm is based on a heuristic function. In this case, it’s often
more meaningful to measure the running time in terms of the branching factor of the tree (b)
and search depth (i.e., the levels traversed in searching the tree. Once the algorithm finds the
destination, the algorithm stops) (d) then the time complexity of the A* algorithm is 0(d?)
.This assumes that the destination exists. If not, then the algorithm will not terminate (Wu,
2006). Based on the above time complexity comparison, A* is an efficient algorithm to solve
the shortest path problem, because in such a tree, if we examine every node at depth < d before
we find the destination node, we'll end up visiting 0(d?) nodes before the algorithm stops.
Then the algorithm visits a subset of the graph with [N] = 0(d?) (where now N includes only
the nodes the algorithm visit). It is clear to see that 0 (d?) is more efficient than 0 (N?).
However, finding the nearest node with the smallest cost is time-consuming in large paths. The
A* algorithm is suitable when the nodes change at an infrequent rate. Therefore, re-computing
the path at each change is not a serious problem. On the other hand, if used with real-time
traffic information, where the link cost can change frequently and randomly, having to re-plan
with every modification becomes unacceptable. Therefore, A* is not optimised for pathfinding
cases in dynamic traffic conditions, because, A* re-computes the shortest route from scratch.
A solution to this problem is to change A* from a re-plan strategy to a reuse strategy, for it to

be suitable for dynamic data (Russell and Norvig, 2009).

3.5 Incremental search
3.5.1 Dynamic Traffic Routing



There are many situations where it is important that the path searches are fast. For example, a
commuter will spend a lot of time travelling to their destination. These high travel times are
due to blocks in links in the route, which results from high traffic flow, incidents, events or
road construction.

In Section 2.3, the transportation network is defined for a dynamic transportation network and
changes in traffic conditions are considered as changes in the link-costs where the blocked link
occurs. Since traffic conditions continually change over time, the centralised navigation service
has to monitor the traffic fluctuations over a day-long inter