

Shortest Path Algorithms for Dynamic Transportation

Networks

Wedad Alhoula

A thesis submitted in partial fulfilment of the requirements of The Nottingham

Trent University for the degree of Doctor of Philosophy

PhD

May 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/211242274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Over the last decade, many interesting route planning problems can be solved by finding the

shortest path in a weighted graph that represents a transportation network. Such networks are

private transport networks or timetabled public transportation networks. In the shortest path

problem, every network type requires different algorithms to compute one or more than one

shortest path. However, routing in a public transportation network is completely different and

is much more complex than routing in a private transport network, and therefore different

algorithms are required.

For large networks, the standard shortest path algorithms - Dijkstra’s algorithm (1959) and

Bellman’s algorithm (1958)- are too slow. Consequently, faster algorithms have been designed

to speed up the search. However, these algorithms often consider only the simplest scenario of

finding an optimal route on a graph with static real edge costs. But real map routing problems

are often not that simple – it is often necessary to consider time-dependent edge costs. For

example, in public transportation routing, consideration of the time-dependent model of these

networks is mandatory.

However, there are a number of transportation applications that use informed search algorithms

(where the algorithm uses heuristics that guide the search toward the destination), rather than

one of the standard static shortest path algorithms. This is primarily due to shortest paths

needing to be rapidly identified either because an immediate response is required. For example,

the A* algorithm (Nilsson, 1971) is widely used in artificial intelligence. Heuristic information

(in the form of estimated distance to the destination) is used to focus the search towards the

destination node. This results in finding the shortest path faster than the standard static search

algorithms.

Road traffic congestion has become an increasingly significant problem in a modern society.

In a dynamic traffic environment, traffic conditions are time-dependent. For instance, when

travelling from home to the work, although an optimal route can be planned prior to departure

based on the traffic conditions at that time, it may be necessary to adjust the route while en

route because traffic conditions change all the time. In some cases, it is necessary to modify

the travelling route from time to time and re-plan a new route from the current location to the

destination, based on the real-time traffic information. The challenge lies in the fact that any

modification to the optimal route to adapt to the dynamic environment necessitates speeding

up of the search efforts. Among the algorithms suggested for the dynamic shortest path problem

is the algorithm of Lifelong Planning A* algorithm (LPA*) (Koenig, Likhachev and Furcy,

2004). This algorithm has been given this name because of its ability to reuse information from

previous searches. It is used to adjust a shortest path to adapt to the dynamic transportation

network.

Search space and fast shortest path queries can be used for finding fastest updated route on

road and bus networks. Consequently, the efficient processing of both types of queries is of

first-rate significance. However, most search methods focus only on one type of query and do

not efficiently support the other. To address this challenge, this research presents the first novel

approach; an Optimised Lifelong Planning A* (OLPA*) algorithm. The OLPA* used an

appropriate data structure to improve the efficiency of the dynamic algorithms implementation

making it capable of improving the search performance of the algorithm to solve the dynamic

shortest path problem, which is where the traveller may have to re-compute the shortest path

while travelling in a dynamic transportation environment.

This research has also proposed bi-directional LPA* (BLPA*) algorithm. The proposed

algorithm BLPA* used bi-directional search strategy and the main idea in this strategy is to

divide the search problem into two separate problems. One search proceeds forwards from the

start node, while the other search proceeds backwards from the end node. The solution requires

the two search problems to meet at one middle node. The BLPA* algorithm has the same

overall structure as the LPA* algorithm search, with some differences that the BLPA* contains

a priority queue for each direction.

This research presented another algorithm that designed to adaptively derive the shortest path

to the desired destination by making use of previous search results and reducing the total

execution time by using the benefits of a bi-directional search strategy . This novel algorithm

has been called the bi-directional optimised Lifelong A* algorithm (BiOLPA*). It was

originally proposed for road transport networks and later also applied to public transportation

networks. For the road transport network, the experimental results demonstrate that the

proposed incremental search approach considerably outperforms the original approach method,

which recomputed the shortest path from scratch each time without utilization of the previous

search results. However, for public transportation, the significant problem is that it is not

possible to apply a bi-directional search backwards using estimated arrival time. This has been

further investigated and a better understanding of why this technique fails has been documented.

While the OLPA* algorithms give an impressive result when applied on bus network compared

with original A* algorithms, and our experimental results demonstrate that the BiOLPA*

algorithm on road network is significantly faster than the LPA*, OLPA* and the A* algorithms,

not only in terms of number of expansion nodes but also in terms of computation time.

ACKNOWLEDGMENTS

In the name of Allah, the Entirely Merciful, the Especially Merciful.

“I only intend reform as much as I am able. And my success is not but through Allah.

Upon him I have relied, and to Him I return. “ Surah Hud (88)

“We raise in degrees whom we will, but over every possessor of knowledge is one

[more] knowing.” Surah Yusuf (76)

The research work which resulted in this thesis has been carried out under the supervision of

Dr. Joanna Hartley. I am most grateful for her continuous support of my Ph.D. study and related

research, for her patience, motivation, and immense knowledge. Her guidance helped me in all

the time of research and writing of this thesis. I could not have imagined having a better advisor

and mentor for my Ph.D. study.

I wish to express my sincere thanks to my parents for their continual encouragement and

support throughout this work. I am extremely thankful and indebted to my husband Mr Abdul

Hakim for taking care of my children (Sarah, Mohammad, Sereen, Haroon and Sally) and for

the unceasing encouragement, patience, motivation, support and attention throughout this

research.

I am also grateful to all my brothers and sisters especially Mr Abdul Aziz and Dr. Aisha for

their supporting me spiritually throughout writing this thesis and my life in general. I must also

acknowledge the support given by my close friend Dr. Hayat AlZahrani, for her encouragement

regarding this project and my life in general.

COPYRIGHT

The copy of the work has been supplied on the understanding that it is copyright material, and

that no quotation from the research may be published without proper acknowledgment. The

work described in this thesis is the intellectual property of the author.

LIST OF CONTENTS
LIST OF CONTENTS .. 1

List of Figures ... IX

List of Tables .. XIII

List of Abbreviations ... XIV

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Shortest Path Problem .. 1

1.2 Dynamic Traffic Routing.. 1

1.3 Motivation .. 3

1.4 Blocked links and alternative route ... 12

1.5 Objectives ... 12

1.6 Original Contributions ... 13

1.6.1 Overview ... 13

1.6.2 Optimised LPA* Algorithm .. 13

1.6.3 Bi-directional OLPA* Algorithm ... 14

1.6.4 Novel Autonomous Search Strategy ... 14

1.6.5 Bi-directional LPA* Algorithm .. 14

1.7 Outline of the thesis .. 15

CHAPTER 2 .. 17

TRANSPORTATION NETWORK... 17

2.1 Overview of a Graph Theory ... 17

2.1.1 Definition of a Graph ... 17

2.1.2 Definition of a Path .. 21

2.1.3 Length of a path ... 21

2.1.4 Distance of a path ... 21

2.1.5 Shortest path ... 22

2.2 Graph Representation in Memory .. 22

2.2.1 Adjacency List .. 22

2.2.2 Adjacency Matrix ... 23

2.3 Transportation Network .. 24

2.4 Network Model .. 27

2.4.1 Time-Expanded Model .. 27

2.4.2 Time-Dependent Model. .. 27

2.5 Summary .. 28

CHAPTER 3 .. 30

SHORTEST PATH PROBLEM IN TRANSPORTATION NETWORKS 30

3.1 Introduction ... 30

3.2 Search Strategies ... 30

3.2.1 Uninformed Search .. 31

3.2.1.1 Depth-First Search .. 31

3.2.1.2 Breadth-First Search .. 32

3.2.2 Informed (Heuristic) Search ... 33

3.2.2.1 Decompose the Search Problem ... 33

3.2.2.2 Limit the Search Links (Hierarchical Search Method) ... 35

3.2.2.3 Limit the Search Area ... 35

3.3 Classical Algorithms ... 36

3.3.1 Dijkstra’s algorithm ... 36

3.3.1.1 K-Shortest Path Algorithm .. 38

3.3.1.2 Label Setting Algorithm ... 41

3.3.1.3 Label Correcting Algorithm .. 42

3.3.2 A* Algorithm .. 42

3.4 Properties of Search Algorithms ... 45

3.5 Incremental search .. 46

3.5.1 Dynamic Traffic Routing... 46

3.5.2 Dynamic Time-Dependent Shortest Path... 47

3.5.3 Dynamic Stochastic Shortest Path .. 48

3.5.4 Incremental Dynamic Time-Dependent Shortest Path ... 49

3.5.5 Incremental DynamicSWSF-FP Shortest Path Algorithm... 51

3.6 Summary .. 52

CHAPTER 4 ... Error! Bookmark not defined.

DYNAMIC SINGLE PAIR SHORTEST PATH PROBLEM Error! Bookmark not defined.

4.1 Introduction .. Error! Bookmark not defined.

4.2 Lifelong Planning A* Algorithm ... Error! Bookmark not defined.

4.2.1 Node Expansion ... Error! Bookmark not defined.

4.2.2 Link cost changes .. Error! Bookmark not defined.

4.3 Optimization of Lifelong Planning A* Algorithm Error! Bookmark not defined.

4.3.1 A heuristic search .. Error! Bookmark not defined.

4.3.2 Priority Queue and Priority Queue Dictionary Error! Bookmark not defined.

4.3.2.1 Priority Queue Dictionary ... Error! Bookmark not defined.

4.3.3.2 Binary Heap .. Error! Bookmark not defined.

4.4 The difference between LPA* algorithm and OLPA* algorithm.Error! Bookmark not defined.

4.5 Details of the OLPA* Algorithm .. Error! Bookmark not defined.

4.6 Development of an Interactive Environment Error! Bookmark not defined.

4.7 Experimental Studies ... Error! Bookmark not defined.

4.7.1 Experimental Dataset of Nottingham road Network Error! Bookmark not defined.

4.7.2 Experimental Dataset of Nottingham Bus Network Error! Bookmark not defined.

4.7.3 Experimental Evaluation .. Error! Bookmark not defined.

4.7.3.1 Performance of the OLPA* and the LPA* Algorithms on Nottingham Road
Network ... Error! Bookmark not defined.

4.7.3.2 Performance of the OLPA* and the A* Algorithms on Nottingham Road Network
 ... Error! Bookmark not defined.

4.7.3.3 Performance of the LPA* and the OLPA* Algorithms on Nottingham bus Network
 ... Error! Bookmark not defined.

4.7.3.4 Performance of the OLPA* and the A* Algorithms on Bus Network Error! Bookmark
not defined.

4.8 Summary ... Error! Bookmark not defined.

CHAPTER 5 ... Error! Bookmark not defined.

BI-DIRECTIONAL OLPA* SEARCH ALGORITHM Error! Bookmark not defined.

5.1 Introduction .. Error! Bookmark not defined.

5.2 Extend OLPA* to Bi-directional LPA* algorithm. Error! Bookmark not defined.

5.2.1 Heuristic searches ... Error! Bookmark not defined.

5.2.2 A New Bi-directional Search Strategy Error! Bookmark not defined.

5.2.3 Bi-directional Lifelong Planning A*: The Variables Error! Bookmark not defined.

5.2.3.1 Node Expansion .. Error! Bookmark not defined.

5.2.3.2 The Termination Conditions ... Error! Bookmark not defined.

5.2.4 Bi-directional Lifelong Planning A*: The Algorithm Error! Bookmark not defined.

5.3 Demonstration of Updated Route for Dynamic Network Error! Bookmark not defined.

5.3.1 Stage 1- Initial Shortest Path Search Error! Bookmark not defined.

5.3.2 Stage 2- Updated Shortest Path Search Error! Bookmark not defined.

5.4 Summary ... Error! Bookmark not defined.

CHAPTER 6 ... Error! Bookmark not defined.

SHORTEST PATH PROBLEM IN DYNAMIC TRANSPORTATION NETWORK Error!
Bookmark not defined.

6.1 Introduction .. Error! Bookmark not defined.

6.2 Experimental Evaluation ... Error! Bookmark not defined.

6.3 Investigation Results for the BiOLPA* algorithm on the Bus network Error! Bookmark not
defined.

6.4 Analysing the Results of BiOLPA* on Bus Network. Error! Bookmark not defined.

6.5 Summary ... Error! Bookmark not defined.

CHAPTER 7 ... Error! Bookmark not defined.

BIDIRECTIONAL LPA* SEARCH ALGORITHM Error! Bookmark not defined.

7.1 Introduction .. Error! Bookmark not defined.

7.2 Extend LPA* to Bi-directional LPA* algorithm Error! Bookmark not defined.

7.3 Bidirectional Search strategy .. Error! Bookmark not defined.

7.4 The difference between the BLPA* and the BiOLPA* algorithms Error! Bookmark not
defined.

7.5 Experimental Evaluation ... Error! Bookmark not defined.

7.6 Summary ... Error! Bookmark not defined.

CHAPTER 8 .. 54

CONCLUSION AND FUTURE WORK ... 54

8.1. Introduction .. 54

8.1.1 Optimised LPA* Algorithm .. 54

8.1.2 Bi-directional OLPA* Algorithm ... 55

8.1.3 Bi-directional LPA* algorithm ... 56

8.2 Future work ... 57

8.2.1 Data Source ... 57

8.2.2 Travel Time Prediction Method ... 58

8.2.3 Stochastic Link Travel Time ... 58

REFERENCES .. 59

APPENDIX .. 72

1. List of Publications ... 105

A) Conference Presentation ... 105

B) Conference Publication ... 105

C) Ready papers for submission .. 105

List of Figures

Figure 1.1 Two applications offering routing services .. 5

Figure 1. 2 Combination Incremental search and Heuristic search. .. 10

Figure 2. 1 A directed graph. ... 18

Figure 2. 2 An undirected graph .. 18

Figure 2. 3 A weighted graph. ... 19

Figure 2. 4 A path in a directed graph. .. 21

Figure 2. 5 An undirected graph with 4 nodes and 4 links .. 23

Figure 2. 6 A diagram of adjacency list. .. 23

Figure 2. 7 An example of adjacency matrix. .. 24

Figure 2. 8 The time-expanded graph (a) and the time-dependent graph (b) of a timetable with

three stations A, B, C. .. 28

Figure 3. 1 Depth-first search. ... 32

Figure 3. 2 Breadth-first search. .. 33

Figure 3. 3 Bidirectional search (taken from Audrey Carpenter, n.d). 34

Figure 3. 4 Dijkstra’s algorithm. .. 38

Figure 3. 5 Directed graph. .. 40

Figure 3. 6 Consistent heuristic function ... 44

Figure 4. 1 Start Distance, Heuristic .. Error! Bookmark not defined.

Figure 4. 2 First Search of the LPA* Iteration # 1................... Error! Bookmark not defined.

Figure 4. 3 First Search of the LPA* Iteration # 2................... Error! Bookmark not defined.

Figure 4. 4 First Search of the LPA* Iteration # 3................... Error! Bookmark not defined.

Figure 4. 5 First Search of the LPA* Iteration # 4.................. Error! Bookmark not defined.

Figure 4. 6 First Search of the LPA* Optimal Route Error! Bookmark not defined.

Figure 4. 7 Second Search of the LPA* Iteration # 1 Error! Bookmark not defined.

Figure 4. 8 Second Search of the LPA* Iteration # 2 Error! Bookmark not defined.

file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc2853805
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc2853806
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794089
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794090
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794091
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794092
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794093
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794094
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794095

Figure 4. 9 Second Search of the LPA* Iteration # 3 Error! Bookmark not defined.

Figure 4. 10 Second Search of the LPA* Iteration # 4 Error! Bookmark not defined.

Figure 4. 11 Second Search of the LPA* Updated Route........ Error! Bookmark not defined.

Figure 4. 12 Basic dict operations.. Error! Bookmark not defined.

Figure 4. 13 A binary heap .. Error! Bookmark not defined.

Figure 4. 14 Inserting a node in the binary heap...................... Error! Bookmark not defined.

Figure 4. 15 Final place of inserted a node in the binary heap. Error! Bookmark not defined.

Figure 4. 16 Removing a node in the binary heap. Error! Bookmark not defined.

Figure 4. 17 Optimized Lifelong Planning A* algorithm Error! Bookmark not defined.

Figure 4. 18 Software interface of the OLPA* algorithm Error! Bookmark not defined.

Figure 4. 19 OSM for the road network of Nottingham Error! Bookmark not defined.

Figure 4. 20 Part of the OSM of the bus network Error! Bookmark not defined.

Figure 4. 21 First Search of the OLPA* and LPA*: Computation Time vs. Number of

Expansion Nodes ... Error! Bookmark not defined.

Figure 4. 22 Second Search of the OLPA* and LPA*: Computation Time vs. Number of

Expansion Nodes ... Error! Bookmark not defined.

Figure 4. 23 First Search of the OLPA* and A*: Computation Time vs. Number of Expansion

Nodes ... Error! Bookmark not defined.

Figure 4. 24 Expanded node using LPA* and OLPA* algorithms Error! Bookmark not

defined.

Figure 4. 25 Second Search of the OLPA* and A*: Computation Time vs. Number of

Expansion Nodes ... Error! Bookmark not defined.

Figure 4. 26 Second Search: Number of Expansion Nodes of OLPA* vs. A* algorithm Error!

Bookmark not defined.

Figure 4. 27 First Search of the OLPA* and LPA*: Computation Time vs. Number of

Expansion Nodes ... Error! Bookmark not defined.

Figure 4. 28 Second Search of the OLPA* and LPA*: Computation Time vs. Number of

Expansion Nodes ... Error! Bookmark not defined.

Figure 4. 29 First Search of the OLPA* and A*: Computation time vs. Number of Expansion

Nodes ... Error! Bookmark not defined.

Figure 4. 30 Second Search of the OLPA* and A*: Computation Time vs. Number of

Expansion Nodes ... Error! Bookmark not defined.

file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794096
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794097
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc3794098

Figure 5. 1 Distance used in the new search heuristic Error! Bookmark not defined.

Figure 5. 2 Bi-directional OLPA* ... Error! Bookmark not defined.

Figure 5. 3 Locations of start node and destination node. Error! Bookmark not defined.

Figure 5. 4 Initial node expansion by the A* algorithm. Error! Bookmark not defined.

Figure 5. 5 Initial node expansion by the LPA* algorithm..... Error! Bookmark not defined.

Figure 5. 6 Initial node expansion by OLPA* algorithm........ Error! Bookmark not defined.

Figure 5. 7 Initial node expansion by BiOLPA* algorithm. ... Error! Bookmark not defined.

Figure 5. 8 Initial shortest path. .. Error! Bookmark not defined.

Figure 5. 9 A random accident event at point C on the initial route. Error! Bookmark not

defined.

Figure 5. 10 Blocked link along the route upon arriving at point C. Error! Bookmark not

defined.

Figure 5. 11 Updated node expansion by the A* algorithm. ... Error! Bookmark not defined.

Figure 5. 12 Update node expansion by the LPA* algorithm.. Error! Bookmark not defined.

Figure 5. 13 Updated node expansion by the OLPA* algorithm. Error! Bookmark not

defined.

Figure 5. 14 Updated node expansion by the BiOLPA* algorithm. Error! Bookmark not

defined.

Figure 5. 15 The updated shortest route is depicted by a blue square line in place of the

blocked link at C. ... Error! Bookmark not defined.

Figure 5. 16 Final optimal route. .. Error! Bookmark not defined.

Figure 6. 1 First Search: Computation time versus number of expansion nodes of BiOLPA*

and OLPA*. ... Error! Bookmark not defined.

Figure 6. 2 Second Search: Computation time versus number of expansion nodes of

BiOLPA* and OLPA*. .. Error! Bookmark not defined.

Figure 6. 3 First search: Number of expansions of BiOLPA* versus OLPA Error! Bookmark

not defined.

Figure 6. 4 Second search: Number of expansions of BiOLPA* versus OLPA*.............Error!

Bookmark not defined.

file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc7079918
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc7079918
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc7079919
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc7079919
file://nasstudusers/4$/n0284347/NEW%20new%20thesis/Ya%20Allah/Ya%20Allah%20.docx#_Toc7079920

Figure 6. 5 The updated shortest route depicted by a blue square line. .. Error! Bookmark not

defined.

Figure 6. 6 Second search with an accident away from the goal node of the OLPA* versus A*

.. Error! Bookmark not defined.

Figure 6. 7 Second search with an accident away from the goal node of the BiOLPA* versus

A* ... Error! Bookmark not defined.

Figure 6. 8 Second search with an accident away from the goal node of the BiOLPA* versus

OLP* .. Error! Bookmark not defined.

Figure 6. 9 Second search with an accident away from the goal node of the BiOLPA* versus

LPA* .. Error! Bookmark not defined.

Figure 6. 10 Second search with an accident close to the goal node of the OLPA* versus A*

.. Error! Bookmark not defined.

Figure 6. 11 Second search with an accident close to the goal node of the BiOLPA* versus

A* ... Error! Bookmark not defined.

Figure 6. 12 Second search with an accident close to the goal node of the BiOLPA* versus

OLPA* ... Error! Bookmark not defined.

Figure 6. 13 Second search with an accident close to the goal node of the BiOLPA* versus

LPA* .. Error! Bookmark not defined.

Figure 7. 1 Bi-directional Lifelong Planning A* Error! Bookmark not defined.

Figure 7. 2 First Search: Computation time versus number of expansions by BLPA* and

BiOLPA* ... Error! Bookmark not defined.

Figure 7. 3 Second Search: Computation time versus number of expansions by BLPA* and

BiOLPA* ... Error! Bookmark not defined.

List of Tables

Table 4. 1 Comparison between the LPA* and the OLPA* algorithm .. Error! Bookmark not
defined.

Table 7. 1 The difference between the BLPA* and BiOLPA* algorithms .. Error! Bookmark
not defined.

List of Abbreviations

Cases

BFS : Breadth-First Search

BiOLPA* : Bi-directional of the OLPA* Algorithm

BLPA* : Bi-directional of the LPA* Algorithm

DFS: Depth-First Search

DSP : Dynamic Shortest Path

DynamicSWSF-FP : Ramalingam and Reps’ algorithm

FIFO : Last In, First Out

ITS : Intelligent Transportation Systems

KSP : Set of K-Shortest Paths

LC: Label Correcting Algorithm

LPA* : Lifelong Planning A* Algorithm

LS: Label-Setting Algorithm

OLPA* : Optimised LPA* Algorithm

rhs: Right Hand Search (one-step look-ahead value)

RR L: Ramalingam and Reps’ Algorithm

SP : Shortest Path

SSHP : Stochastic Shortest Path Algorithm

TDSP : Time-Dependent Shortest Path Algorithm

CHAPTER 1

INTRODUCTION

1.1 Shortest Path Problem

The Shortest Path (SP) problem is essentially, an optimisation problem (Dimitris, et al, 2013;

Vitaly et al, 2005; Frank, et al, 2014; Hazem et al, 2007; Songhua et al, 2010 and Yue et al,

2006). The aim of the shortest path problem is to find the optimal path from the source to the

destination. “Optimal” can refer to the shortest time, shortest distance, or least total path cost.

This research study has focused on finding the optimal path with the shortest time duration.

Shortest path problems have a wide-range of applications in areas such as communications

(Yue et al, 2006), vehicle navigation systems (Dimitris, et al, 2013; Frank et al, 2014) and game

development (Steve and Nathan, 2013). This research study has focused on the area of

transportation in urban environments (vehicle navigation systems).Vehicle navigation systems

depend on three main tasks: positioning (locating the vehicle using GPS), routing (computing

an optimal route from a source location to a destination location using algorithms), and

guidance (providing visual and audio feedback on the route). This research focused on the task

of the routing algorithms. Many interesting route-planning problems can be solved by finding

the optimal path in a weighted graph representing a transportation network. Such networks are

natural road networks or timetabled networks of public transportation.

1.2 Dynamic Traffic Routing

Traffic congestion is a serious problem that affects the mobility of people in society. People

live in one area of the city and work in another. They also visit friends and family living in

different parts of the country. Intelligent Transportation Systems (ITS) have worked towards

improving the efficiency of the transportation networks using advanced processing and

communication technology. The analysis and operation of these systems necessitates a variety

of models and algorithms.

When a traveller travels from home to work, he/she can plan his optimal route before his

departure, based on the current traffic conditions of the transportation network. However, it

may not be the final optimal route due to frequent changes in traffic conditions. Therefore, the

route needs to be modified while en-route, and a new path planned from the current location to

the destination based on current real-time traffic conditions.

Dynamic shortest paths route finding is a fundamental problem in the field of ITS applications.

The proposed dynamic shortest path algorithms (developed during this research project) will

decrease the search efforts and reduce the computational time when finding alternative paths

(due to incidents, for example). Dynamic routing requires the re-planning of a route based on

updated dynamic information becoming available during travel. In this research, dynamic

information is referred to as time-dependent deterministic information (not stochastic

information where random events become available over time rather than at the time of

departure from the node).

This research used Nottingham city’s network as an experimental study to evaluate the

proposed algorithms (road and bus networks). Nottingham city’s network has been used by

other researchers as their case study. Wu and Hartley (2005) investigated some of the

approaches to solving the shortest path(s) problem in a stochastic time-dependent scheduled

transportation network. In (2004), they also developed two different solutions – single-purpose

shortest path algorithms and the K shortest path algorithm (is an extension algorithm of

the shortest path routing algorithm in a given network. K shortest path algorithm is used to find

more than one path. Some experiments have conducted based on the public transportation

network of Nottingham City. However, they did not consider updating routes based on updated

traffic information. Similarly, the optimal dynamic paths in Nottingham’s bus network cannot

be satisfactorily solved by navigation systems (e.g., Google Maps), as they are not able to

update routes based on current and dynamic traffic conditions. For bus network route

optimisation in Nottingham city, Google Maps finds the routes based on the scheduled

timetable only (Driving Directions and Maps ,2014).

In this thesis, three dynamic shortest path algorithms have been developed and evaluated. These

efficient algorithms find the fastest alternative paths to a goal node when random traffic

incidents occur. The problem that is being solved is finding the updated quickest route (least

travel time) from the source node to the destination node. These algorithms have been

successfully tested in both road and bus networks.

1.3 Motivation

The main challenge of finding the optimal route while traveling is related to the fact that real-

time traffic information is not static data. The computed shortest path needs to be updated based

on current traffic conditions. However, some travel link times will remain the same and will

not need to be updated. Consequently, it is possible to use the unchanged links of a previous

search to speed-up the new search and reduce the computational time. This is necessary as a

driver does not like to wait while his route is being computed, particularly in the case of

emergency situations. Therefore, the planning of alternative routes must be done very fast.

https://en.wikipedia.org/wiki/Shortest-path_routing
https://en.wikipedia.org/wiki/Network_theory

The main challenge of this research is to produce a new more efficient technique, which can

use the benefits from the previous search information and subsequently, reduce the route

computation time.

Many of the studies on routing techniques have investigated how to solve shortest path-

planning problems on static networks (e.g., Dijkstra’s algorithm (1959) and Bellman’s

algorithm (1958)). Where there are changes based on the updated dynamic information, these

algorithms need to search for an updated route from scratch. However, this can be inefficient

when dealing with a large network with frequent changes. A complete update of the best

shortest path can be considered inefficient because some of the previous information results

can be reused. Many of these standard algorithms use either the Breadth First Search (BFS), or

Depth First Search (DFS) approach. These are uninformed search algorithms (also called blind

algorithms) because they don’t have any knowledge about the problem domain (except for the

source and destination locations). These algorithms are very inefficient, as they update routes

from scratch (Miller and Shaw, 2001).

In some cases, the updated route has to be computed in a few seconds. Moreover, when large

real road networks are involved in an application, the determination of the shortest path in a

large network is very intensive. The increasing popularity of online navigation systems using

road networks (e.g., Google Maps, OpenTripPlanner and OpenStreetMap) has recently

attracted a considerable interest from the scientific researchers. Distance and shortest path

queries are an integral part of applications such as Google Maps and GPS navigator. A distance

query returns the length from a start node to a goal node, while the shortest path query

calculates the shortest actual route starting from a start node to a goal node. Figure 1.1a

illustrates GoogleMaps, the most popular web mapping service, while Figure 1.1b shows a

GPS navigator for cars developed by TomTom.

This research, will focus on a search space instead of a distance query that returns the number

of node expansions from a start node to a goal node. The classic solution for both search space

and shortest path queries is Dijkstra’s algorithm (1959). Google Maps and most navigation

applications (e.g., OpenTripPlanner) initially used Dijkstra’s algorithm (1959) to find the most

efficient route. (Lanning, Harrell and Wang, 2014) Dijkstra’s algorithm works on a static

network (where the edge weights on the network are static and deterministic). It works by

examining the closest node to the start node. However, despite its simplicity, Dijkstra’s

algorithm is inefficient for large road networks. This algorithm has high time complexity and

(b) TomTom navigator for cars
(a) Google Map

Figure 1.1 Two applications offering routing services

takes up a larger amount of storage space. A more detailed description of Dijkstra’s algorithm

has been provided in section 3.3.1.

To achieve better performance, a variety of speeding up techniques have been proposed (Bast

et al., 2014) (Sommer, 2014; Wu. L et al., 2012). In particular in relation to search space, the

first improvement of Dijkstra’s algorithm was bi-directional search (Pohl, 1969); starting the

search from a start node and an additional search from a goal node, performed in a backwards

direction, with the termination search occurring when both directions meet. The Bounded-hop

Method reduces search space (Cohen et al., 2002; Akiba et al., 2014; Abraham et al., 2011). In

the field of shortest path queries, the most efficient method is the Hierarchical method family,

which pre-computes a hierarchy of shortcuts and applies it to process the queries (Geisberger

et al., 2008; Sanders and Schultes, 2005; Zhu et al., 2013). All approaches focus on a single

type of query, either search space or shortest path.

However, there are a number of transportation applications that use informed search

algorithms, rather than one of the standard static shortest path algorithms. This is primarily due

to shortest paths needing to be rapidly identified either because an immediate response is

required (e.g., in-vehicle route guidance systems) or because the shortest path needs to be

recomputed repeatedly (e.g., vehicle routing and scheduling). For this reason, a number of

different heuristic shortest path algorithms have been investigated for the purpose of reducing

the execution time of the shortest path algorithms. For example, the A* algorithm (Nilsson,

1971) is widely used in artificial intelligence. Heuristic information (in the form of estimated

distance to the destination) is used to focus the search towards the destination node. This results

in finding the shortest path faster than the standard static search algorithms.

The A* algorithm is not the best approach for route finding under dynamic traffic conditions,

because the A* algorithm re-computes the shortest route from scratch. A solution to this

problem is to change the A* algorithm from a re-plan strategy to a reuse strategy, in order for

it to be suitable for any updated dynamic data. (Russell and Norvig 2009). Reuse planning

attempts to use as many calculations of the previous plan as possible. Re-planning does not

have this requirement (Koenig et al, 2005).

Another approach to speed up searches is an incremental search. An incremental search is a

search technique for re-planning and reuses the previous search. This results in finding

solutions faster than when solving each search problem from scratch. Some existing

incremental shortest path algorithms can use the benefit (of previous search information) to

reduce the computation time (e.g., D* algorithm (1994), Focused D* algorithm (1995) and D*-

Lite (2002)). These algorithms are used when there is incomplete information (e.g., unknown

destination). They can find the shortest paths from the source node to all other nodes in the

graph and are able to quickly recalculate the route. Ramalingam and Reps’ algorithm

(Ramalingam, 1996) (RR for short, also known as the DynamicSWSF-FP algorithm) starts

searching from the destination node to all other nodes. After dynamic changes have occurred,

the algorithm updates only the nodes whose link travel time has changed. The DynamicSWSF-

FP algorithm is the most useful when finding the distance from the destination node to multiple

nodes after update associated with traffic information. Such an incremental approach is often

used in robotics, navigation, and planning.

It is clear that heuristic search algorithms are guaranteed to find the shortest path faster than

static search algorithms. Incremental search algorithms are guaranteed to find the shortest paths

faster than algorithms that solve each path re-planning problem from scratch. Koenig, et al,

(2005) developed the LPA* algorithm. It is a fully dynamic shortest path algorithm that is used

to incrementally find the shortest path from a known source to a known destination in a given

graph (as links or nodes are removed or added, or the travel time of the links changes). The

LPA* algorithm is a reusing method rather than a re-planning method. It combines the

DynamicSWSF-FP and A* algorithms. The combination of these two algorithms results in

speeding up the search and reducing the computation search time. It is able to adjust the shortest

path to adapt to the dynamic transportation network and is guaranteed to find the shortest path

faster than both the DynamicSWSF-FP and A* algorithms methods individually.

However, when used in very large networks, this algorithm needs to be made more efficient.

Therefore, this thesis has further developed the LPA* algorithm, as a fast re-planning method

named Optimised LPA* (OLPA*). The name was chosen because it is able to reduce the

running time by improving the search performance of the LPA* algorithm. The OLPA*

algorithm uses a priority queue dictionary instead of an open set. The priority queue dictionary

(pqdict) is implemented based on the heap data structure of (key, priority value) the pairs. The

priority queues dictionary is useful in applications where the priorities of items may frequently

change (e.g., optimisation algorithms, simulations, etc.) (Beazley, 2015). The set of

predecessors of the node were implemented as a priority queue dictionary (pqdict) rather than

an open set, and this is a novel idea. It provides 𝑂𝑂(1) to search and retrieve items with the

highest priority regardless of the number of items in the queue. This is instead of 𝑂𝑂(𝑛𝑛) in terms

of big 𝑂𝑂 notation.

The main reason for choosing the incremental LPA* algorithm is, firstly, that it finds the

shortest path from the known start node to the known goal node. The D*, Focused D*, D*-Lite

(2002)) and the DynamicSWSF-FP algorithms do not search from two known locations.

Secondly, when the first shortest path gets blocked, the LPA* algorithm is able to take

advantage of the previous calculations. The A* and the Dijkstra’s algorithms do not take this

advantage from the previous calculations. The A* and the Dijkstra’s algorithms need to re-

compute the route from scratch.

This research has also focused on how to reduce search space, which can further speed up the

search. For this important point, this thesis has proposed a novel algorithm that is able to speed

up the search via a heuristic search method. This is the bi-directional heuristic search algorithm

(Pohl, 1969). A bi-directional method is used to reduce the search space and time by searching

forward from the start and backward from the goal, simultaneously. When the two search

frontiers intersect, the algorithm can reconstruct a single path that extends from the start nodes

through the frontier intersection to the destination. For example, in a search problem modelled

by a tree with branching factor 𝑏𝑏 and solution depth 𝑑𝑑, a bi-directional search will expand

2𝑏𝑏𝑑𝑑/2states instead of the 𝑏𝑏𝑑𝑑 required by a unidirectional search. The bi-directional Dijkstra’s

algorithm is an example of this technique. (Padua, 2011).

This thesis has also proposed a novel algorithm called the Bi-directional Lifelong A* algorithm

(BiOLPA*). The BiOLPA* algorithm searches forwards from the start node and backwards

from the destination node using a novel search strategy. This proposed search strategy is called

the autonomous strategy. It improves the strategy of node selection in the algorithm and

increases the search speed by searching forwards and backwards simultaneously, searching

alternatively such as via Poul’s strategy (1969), or based on the number of nodes in both

priority queues. The side that has the fewest number of nodes in the priority queue is started

and expanded first. This strategy was proposed by Poul (1971), named the cardinality

comparison strategy. In this strategy, the algorithm will decide the direction (forward or

backward) based on the number of nodes in both priority queues. The side that has the fewest

number of nodes in the priority queue will start to expand first. This thesis proposes a novel

strategy called an autonomous strategy. We chose this name because we do not implement

exactly in the program which direction to start to search first, and the algorithm itself decides

based on the heuristic values. The autonomous strategy chooses the most promising node that

has the highest probability of being on the shortest path and has the smallest 𝑓𝑓(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) in

relation to both priority queues as shown in (1.1).

f(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) = g(𝑛𝑛) + h(𝑛𝑛) 1.3)

For more details, see section 5.2.1.2. However, the BiOLPA* algorithm can adjust the shortest

path to adapt to the dynamic transportation network and guarantee to find the shortest path

faster than both the OLPA* and the bi-directional search methods individually because it

combines their techniques.

Consequently, in this research, a novel algorithm has been developed that combines an

incremental search algorithm with a bi-directional heuristic search approach. See Figure 1.2.

How to search efficiently using heuristics to
guide the search

How to search efficiently by re-using
information from previous search results

Figure 1. 2 Combination incremental search and heuristic search.

Two different ways of decreasing the search efforts for determining the shortest path have been

investigated.

 • Firstly, some of the edge costs are not affected by the changes, and thus do not need to be

recomputed. Heuristic function knowledge, in the form of approximations of the goal distance,

can be used to speed up the search. This is what the OLPA* algorithm does.

• Secondly, the heuristic searching strategy, using the heuristics from the start node to the goal

node and the heuristics from the goal node to the start node, will reduce the search space and

then speed up the search by half. This is what the bi-directional search method does.

This research also presents a bi-directional implementation of the LPA* algorithm. Named the

BLPA* algorithm, the proposed algorithm combines the benefits of the bi-directional search

and re-uses a previous calculation in an updated search method. The BLPA* algorithm uses

Pohl’s bi-directional strategy (1971), also named a “cardinality comparison strategy”

(monotonicity hypothesis). Cardinality comparison strategy chooses the direction with the

smaller priority queue, rather than simply alternating the directions. This thesis demonstrates

that the two ways of decreasing the search effort are efficient by developing the BiOLPA*

algorithm that combines both and can update the route faster than either the OLPA* algorithm

or bi-directional search method. However, navigation systems such as GoogleMaps have never

published information about their routing algorithms. Therefore, the proposed algorithms will

be compared with other published algorithms such as the A* and LPA* algorithms and their

variants in terms of performance (number of node expansion and computation time).

1.4 Blocked links and alternative route

 To improve the effectiveness of travel information in real-world scenarios, determining solely

the shortest path is not enough. There is a need to compute an alternative route. For example,

when some links on the computed shortest path are blocked, it is necessary to update the

shortest path and find an alternative route to the goal node. Most commercial route planning

applications and navigation systems recommend alternative paths that might be longer than the

shortest path (Chondrogiannis et al, 2015).

For example, the exist LPA* algorithm, in case of a blocked link that is close to a goal node

and there is no alternative route available close to the blocked link, the second search (updated

route) will take a long time to find a goal node because the LPA* algorithm will have lost its

benefits from reusing the previous calculation. In this case, the A* algorithm that updated the

route from scratch will be faster than the LPA* algorithm. This research shows that the

BiOLPA* algorithm outperforms the existing LPA* and A* algorithms, and always updates

the route faster than all existing algorithms regardless of the location of the blocked link.

1.5 Objectives

This research project aims to reduce the search space and speed up the computation time in

dynamic networks when determining the optimal route and computing an alternative route

(when network changes have occurred). The proposed approaches focus on both the search

pace and shortest path queries.

The algorithms were tested on the road and bus timetable networks in the context of

Nottingham’s urban network.

1. Speeding up the search process by making use of the previous search results and using

appropriate data structures to improve the efficiency of the dynamic algorithms. This

objective was implemented by improving the LPA* into the developed OLPA*

algorithm.

2. Reducing the search space by three ways. Firstly, a bi-directional search method is

used. Secondly, the previous information results are used (OLPA* algorithm). Thirdly,

a novel search strategy (autonomous strategy) is used to improve the strategy of node

selection within the algorithm. This search process helps the search to avoid node re-

expansion from both directions and therefore speeds up the search for the shortest path

more. These points can be achieved by proposing a novel algorithm called the

BiOLPA* algorithm.

1.6 Original Contributions

 1.6.1 Overview

 This project proposes two novel efficient algorithms in two types of networks (road and bus

timetable). These algorithms are significantly more efficient than standard algorithms, not only

in terms of reducing route computation time, but also with regards to reducing the search space.

 1.6.2 Optimised LPA* Algorithm

This research has developed the Optimised Lifelong Planning A* (OLPA*) algorithm, a fast

re-planning method that is an improvement of the LPA* algorithm. The OLPA* algorithm is

faster than the LPA* algorithm. It reduces route computation time in the first search (when

finding the optimal route) and in the second search (when some links are blocked and an

alternative route needs to be computed). This algorithm has been implemented and applied to

both road and bus timetable networks.

 1.6.3 Bi-directional OLPA* Algorithm

This research has also proposed the bi-directional optimised Lifelong A* algorithm BiOLPA*

algorithm, which is designed to reduce the search space to speed up route computation time,

by benefiting from bi-directional heuristic searching and the use of previous information

results. Using the autonomous strategy, the BiOLPA* algorithm has been implemented in the

road and bus timetable networks.

 1.6.4 Novel Autonomous Search Strategy

This search has presented a novel search strategy (autonomous strategy) to enhance the

intelligence of node selection in the algorithm. The strategy determines the best selection of

either the forward or backward direction. This search method has contributed to increased

search speed instead of using forward and backward searching alternatively. This selection

process avoids nodes from re-expansion from both the forward or backward direction, and

therefore produces the shortest path more quickly.

 1.6.5 Bi-directional LPA* Algorithm

This research has also proposed the bi-directional LPA* (BLPA*) algorithm that benefits from

the bi-directional heuristic search, the use of previous calculations and Pohl’s (1971) bi-

directional strategy named the “cardinality comparison strategy” (monotonicity hypothesis).

The cardinality comparison strategy chooses the direction with the smaller priority queue,

rather than simply alternating the directions. The BLPA* algorithm has been implemented and

compared with the BiOLPA* algorithm.

1.7 Outline of the thesis

 We have organised the rest of the thesis in the following way.

Chapter 2: This chapter introduces the background of the graph theory, graph representation

in the memory, fundamental concepts (i.e. the definition of a graph, the degree of a graph, and

the definition of a path) at the beginning of this chapter. In the discussion of the degree of a

graph, dense graph and sparse graph have been defined and used in the data model discussion.

 Chapter 3: The chapter classifies the common search strategies, including uninformed search,

informed search, and incremental search. The two classic SP algorithms (Dijkstra's and the A*

algorithms) will be presented in detail. Some related research on the time-dependent shortest

path (TDSP) and stochastic shortest path (SSHP) problems will be also put forward. The

incremental shortest path algorithms, the Dynamic SWSF-FP Algorithm and the LPA*

algorithm, will be explained and discussed in detail.

Chapter 4: Introduces the dynamic single pair shortest path problem. A novel contribution to

the OPLA* algorithm will be presented and discussed in details. A demonstration of updated

routes using the OLPA*, A* and LPA* algorithms for road and bus networks will also be

illustrated and discussed.

Chapter 5: In this chapter, a novel algorithm for dynamic road networks will be presented,

and the BiOLPA* algorithm will also be presented and discussed in detail. A demonstration of

an updated route using BiOLPA*, A*, LPA* and OLPA* for the road network has been

illustrated and discussed. As part of this contribution, this chapter introduced a novel search

strategy (called Autonomous strategy) to enhance the intelligence of node selection in the

algorithm.

Chapter 6: In this chapter, a novel BiOLPA* algorithm has been implemented in both road

and bus networks. The experimental results have demonstrated the evaluation of the BiOLPA*

compared with the A*, LPA* and OLPA* algorithms in term of computation time and number

of node expansions in both road and bus networks.

Chapter 7: This chapter produced a new BLPA* algorithm, and the experimental results

demonstrated the evaluation of the BLPA* algorithm compared with the BiOLPA* algorithm.

Chapter 8: Finally, the conclusion has been presented and possible future research work

discussed in this chapter.

CHAPTER 2

TRANSPORTATION NETWORK

2.1 Overview of a Graph Theory

In this chapter, some fundamental concepts of graph theory are introduced. In graph theory,

the shortest path problem is the problem of finding a path between two vertices (or nodes) in

a graph such that the sum of the weights of its constituent edges is minimized. The concepts in

this chapter are essential for understanding later discussions involving graphs.

2.1.1 Definition of a Graph
A graph is a mathematical structure consisting of a set of nodes or vertices, connected by a

set of links, known as edges, this research, a graph G = (V, E) where

 V is a set of nodes.

 E is a set of edges.

 Each edge is a pair of nodes.

The graph can be directed or undirected.

Directed graph

 A directed graph is a graph consisting of a set of nodes that are connected by a group of links

and all links have a specific direction. In a directed graph, edges are written using parentheses

to denote ordered pairs. For example, edge (1,2) is directed from 1 to 2, which is different than

the directed edge (2,1) from 2 to 1. Directed graphs are drawn with arrowheads on the links, as

shown in Figure 2.1 (Sedgewick and Wayne, 2011).

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#weighted_graph

Example: The Figure 2.1 shows the following graph:

• V = {1,2,3,4,5,6}

• E = {{1,2}, {1,3}, {2,3}, {2,5}, {3,4}, {4,6}, {5,6}}

• G = (V, E)

Figure 2. 1 A directed graph.

 Undirected graph

An undirected graph is a graph consisting of a set of nodes that are connected by a group of

links, where all the edges are two ways (bidirectional). For example, an undirected edge {2,5}

from node 2 to node 5 is the same link {5,2} from node 5 to node 2.

The following Figure illustrates an undirected graph; the edges are typically drawn as lines

between pairs of nodes. (Sedgewick and Wayne, 2011).

 Figure 2. 2 An undirected graph

2

1

3 4

6

5

2

1

3 4

6

5

Weighted graphs

A weighted graph is a graph for which each edge has an associated weight or cost. The edge’s

cost can be real numbers, which represent a concept such as distance or affinity. Figure 2.3

shows a weighted graph, which shows the cost of (1 → 2) = 4.

Figure 2. 3 A weighted graph.

A Degree of a Graph

In graph theory, the degree of a node of a graph is the number of links incident to the node.

The degree of a node 𝑣𝑣 is denoted 𝒅𝒅𝒅𝒅𝒅𝒅(𝒗𝒗), and the maximum degree of a graph 𝐺𝐺, denoted

by 𝛥𝛥(𝐺𝐺), and then 𝛥𝛥(𝐺𝐺) = max {d (v) | v ∈ V}.

The minimum degree of a graph, denoted by 𝛿𝛿(𝐺𝐺), and then 𝛿𝛿(𝐺𝐺) = min {d (v) | v ∈ V}.

In Figure 2.3 the maximum degree is 6 and the minimum degree is 0 (Diestel, 2005).

 The degree sum formula of a given a graph 𝐺𝐺 (𝑉𝑉,𝐸𝐸)

 � deg(𝑣𝑣) = 2|𝐸𝐸|
𝑣𝑣∈𝑉𝑉

 (2.1)

1

2

1

3 4

6

5
4

3

6

2

The average degree of 𝐺𝐺 is

 𝑑𝑑 (𝐺𝐺) =
1

|𝑉𝑉|
 �𝑑𝑑(𝑣𝑣)
𝑣𝑣∈𝑉𝑉

 (2.2)

clearly,

 𝛿𝛿 (𝐺𝐺) ≤ 𝑑𝑑 (𝐺𝐺) ≤ 𝛥𝛥(𝐺𝐺)

 (2.3)

The average degree globally quantifies what is measured locally by the node degrees, the

number of edges of 𝐺𝐺 per node. Occasionally it is convenient to express this ratio directly, as

𝜀𝜀 (𝐺𝐺) = |𝐸𝐸|/|𝑉𝑉|. The quantities 𝑑𝑑 and 𝜀𝜀 are intimately related. Indeed, if we sum up all of the

node degrees in G, we count every link exactly twice, once from each of its ends. Consequently,

 |𝐸𝐸| =
1
2

 �𝑑𝑑(𝑣𝑣) =
1

2
𝑣𝑣∈𝑉𝑉

𝑑𝑑(𝐺𝐺) × |𝑉𝑉| (2.4)

 and thus 𝜀𝜀 (𝐺𝐺) = 1
2

 𝑑𝑑 (𝐺𝐺) (2.5)

 Graphs with a number of edges that are roughly quadratic in their order are usually called

dense graphs. A dense graph is a graph where |𝐸𝐸| = |𝑉𝑉|2 (i.e. the number of edges is about

equal to the number of nodes squared). While graphs where |𝐸𝐸| = |𝑉𝑉| (i.e. the number of

edges is equal to the number of nodes) called sparse graph. Clearly, the average degree 𝑑𝑑 (𝐺𝐺)

for a dense graph will be much greater than that of a sparse graph.

2.1.2 Definition of a Path

A path in a graph represents a route to get from an origin node to a destination node by crossing

edges in the graph. For example, in the directed graph G = (V, E) in Figure 2.1, there are many

paths from node 1 to node 6. One such path is highlighted in blue:

Figure 2. 4 A path in a directed graph.

2.1.3 Length of a path

The length of a path is the number of links that are used to create a connection between

nodes.

 Example as shown in Figure 2.4

 The length of the blue path is 4

2.1.4 Distance of a path

Given a graph G, the distance 𝐷𝐷(𝑣𝑣, 𝑏𝑏) between node 𝑣𝑣 and node 𝑏𝑏 is the length of the shortest

path from 𝑣𝑣 to 𝑏𝑏, considering all possible paths in G from 𝑣𝑣 to 𝑏𝑏. The distance between any

vertex and itself is 0. If there is no path from 𝑣𝑣 to 𝑏𝑏 then 𝐷𝐷(𝑣𝑣, 𝑏𝑏) is infinity (∞).

 Examples as shown in Figure 2.4

2

1

3 4

6

5

 the distance from node 1 to node 6 is 3. There is only one path from node 1 to node 6

with length 3, and this path is {(1 → 3), (3 → 4), (4 → 6)}. All other paths are longer

than this path.

2.1.5 Shortest path

A shortest route or path in graph theory is a solution to find the path between two nodes in a

graph such that the sum of the costs of its constituent links is minimized. This is an essential

concept of graph theory widely practiced. It has proven to be an effective solution to problems

regarding several fields, such as communication, routing, road networks. (Sedgewick and

Wayne, 2011).

2.2 Graph Representation in Memory

Graph algorithms need efficient access to the graph nodes and edges that are stored in the

memory. In typical graph implementations, nodes are implemented as structures or objects and

the set of edges establish relationships (connections) between the nodes. There are several

possibilities to represent a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) in memory. Let the set of nodes be 𝑉𝑉 =

 {1, 2, . . . , 𝑛𝑛} with edges 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉, the following two are the most commonly used

representations of the graph.

2.2.1 Adjacency List

In graph theory and computer science, an adjacency list consists of a list of all nodes in a given

graph. each node in the graph associated with the collection of its neighbouring nodes or links.

The adjacency list for Figure 2.5 can be described in Figure 2.6.

3

1

4 2

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Computer_science

Figure 2. 5 An undirected graph with 4 nodes and 4 links

Figure 2. 6 A diagram of adjacency list.

2.2.2 Adjacency Matrix

An adjacency Matrix is another form of graph representation in a memory. The adjacency

matrix is a two-dimensional array with rows and columns sorted by the graph vertexes, where

each entry 𝑥𝑥𝑖𝑖𝑖𝑖 is equal to 1 if there exists an edge = (vi, vj) ∈ E and 0 otherwise.

Node vi and vj are defined as adjacent if they are joined by a link. For a simple graph with no

self-loops, the adjacency matrix must have 0s in the diagonal. Figure 2.5 can be described as

an Adjacency Matrix as shown in Figure 2.7.

1 3 4

2 4

3 1 4

4 1 2 3

 X = �
0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

�

Figure 2. 7 An example of adjacency matrix.

2.3 Transportation Network

A transportation network is a type of directed, weighted graph. In a road network, nodes

represented as junctions and edges are the road links between them. For bus timetable network,

nodes represented as stops and edges are the links between them. The weights represent travel

time between the nodes. This representation is an attempt to quantify the street system for use

in a mathematical model.

However, a suitable data structure is required to represent the transportation network in the

computer’s memory. Comparing the two data structures, the adjacency list is easy to find

successors of a node, easy to find all neighbouring nodes and the memory space efficient as it

only stores connected nodes, and it does not necessitate space to represent edges which are not

present. Based on big O notation that is (used to classify algorithms according to how their

running time or space requirements grow as the input size grows. Mohr, (2014)) the space

complexity of an adjacency list is 𝑂𝑂(|𝐸𝐸| + |𝑉𝑉|), where 𝑉𝑉 is the number of nodes and 𝐸𝐸 is the

number of edges in the graph. On the other hand, the adjacency matrix representations contain

0s in the diagonal which are useless in storage, and then the adjacency matrix need more

memory to store a large graph, space complexity of adjacency matrix is 𝑂𝑂(|𝑉𝑉|2).

https://en.wikipedia.org/wiki/Computational_complexity_theory

Using a naive linked list implementation on a 32-bit computer, an adjacency list for an

undirected graph requires around 16 × (|𝐸𝐸| + |𝑉𝑉|) bytes of storage space. In contrast, the

adjacency matrix requires only one bit at each entry, it can be represented in a very compact

way, occupying only |𝑉𝑉|2/8 bytes of contiguous space. First, we assume that the adjacency list

occupies more memory space than that of an adjacency matrix. Then;

 16 × (|𝐸𝐸| + |𝑉𝑉|) ≥ |𝑉𝑉|2/8

 (2.6)

Based on Equation 2.2 in Section 2.1.1, we have,

 16 × (
1
2

 𝑑𝑑(𝐺𝐺) × |𝑉𝑉| + |𝑉𝑉|) ≥ |𝑉𝑉|2/8

 (2.7)

Where 𝑑𝑑 (𝐺𝐺) is the average degree of 𝐺𝐺.

 𝑑𝑑(𝐺𝐺) ≥ |𝑉𝑉|−128
64

 (2.8)

This means that the adjacency list representation occupies more space when Equation 2.8 holds.

Firstly, in reality, most transportation networks are large-scale sparse graphs with many nodes

but relatively few edges as compared with the maximum number possible (|𝑉𝑉| × (|𝑉𝑉| − 1) for

maximum). That is, there are no more than 5 links (𝛥𝛥(𝐺𝐺) ≈ 5) Linked to each node. In most

situations, there are usually 2, 3 or 4 (𝛿𝛿 (𝐺𝐺) = 2) links, although the maximum links are |𝑉𝑉|−

1 for each node. Secondly, road networks often have regular network structures and a normal

layout, particularly for well-planned modern cities. Thirdly, most transportation networks are

near connected graphs, in which any pair of points is traversable along a route. Assuming the

average degree of a road network is 5, Equation 2.8 holds only if |V| ≤ 448. In the real life,

most road networks contain thousands of nodes where |V|> 448. As a result, Equation 2.3

cannot hold. Thus, the adjacency list representation occupies less storage space than that of an

adjacency matrix. For example, consider a road network containing 10000 nodes. The

adjacency matrix size will be 10000 * 10000 around 10 megabytes of memory space is required

to store the network, and this is a huge waste of memory. It will most likely take more

computational time to manipulate such a large array.

Moreover, the different data structures also facilitate different operations. It is easy to find

successors of a node, easy to find all neighbouring nodes in the adjacency list representation

by simply reading its adjacency list. While the adjacency matrix, we must search over an entire

row, spending 𝑂𝑂(𝑉𝑉) time, since all |𝑉𝑉| entries in row 𝑣𝑣 of the matrix must be examined in order

to see which links exist. This is inefficient for sparse graphs since the number of outgoing edges

𝑣𝑣𝑣𝑣 may be much less than |𝑉𝑉|. Although the adjacency matrix is inefficient for sparse graphs,

it does have an advantage when checking for the existence of an edge 𝑣𝑣𝑣𝑣 → 𝑣𝑣𝑣𝑣, since this can

be completed in 𝑂𝑂(1) time by simply looking up the array entry [𝑣𝑣𝑣𝑣; 𝑣𝑣𝑣𝑣]. On the other hand,

the same operation using an adjacency list data structure requires 𝑂𝑂(𝑣𝑣𝑣𝑣) time since each of the

𝑣𝑣𝑣𝑣 → 𝑣𝑣𝑣𝑣 edges in the node list for 𝑉𝑉 must be examined to see if the target node is existing.

However, the main operation in a route search is to find the successors of a given node and the

main concern is to determine all of its adjacent nodes. Moreover, the main operation of LPA*

algorithm is finding the successors and the predecessors of a given node. The adjacency list is

more feasible for this operation.

 Based on the above discussions, it is clear to see that the adjacency list is most suitable for

representing a transportation network since it not only reduces the storage space in the main

memory, but it also facilitates the routing computation time.

2.4 Network Model

To deal with dynamic travel time the concept of dynamic graph model was introduced in two

major approaches: Time-expanded model and time-dependent model. Road and bus timetable

networks can be modelled as directed graphs. For bus networks, each node indicates to the bus-

stop location, and the edges of the graph correspond to the route links. The cost of the link is

presented as travel time.

2.4.1 Time-Expanded Model

A node exists for every event at allocation and links represents the time between these events. In Figure

2.8 (a) where time-expanded model models multi nodes at each bus-stop and each node

corresponds to a time (arrival or departure), and each link has a static travel time. To allow

transfers with waiting. Dijkstra's algorithm can be used to compute the shortest paths (Patrice

and Sang, 1998; Frank et al, 2000; Matthias et al, 2001).

2.4.2 Time-Dependent Model.

Each geographic location is represented as a single node and all dynamic data is stored in the

links themselves. The time-dependent model reduces the number of nodes compared to the

time-expanded modal, which indicates to be efficient. Figure 2.8 (b) shows the stops graph

model uses one node per station and edge models a connection between two stops, the main

advantage of this model reduces the number of nodes. (Ariel and Raphael, 1990; and 1991;

Hart et al, 1968; Gerth and Riko, 2004).

(a) (b)

Figure 2. 8 The time-expanded graph (a) and the time-dependent graph (b) of a timetable with
three stations A, B, C.

There are three trains that connect A with B (elementary connections u, v, w), one train from

C via B to A (x, y) and one train from C to B (z). (Daniel Delling, 2007)

 In this research, and due to the large network, we select the time-dependent approach. Also,

the bus timetable network is modelled as time-dependent so, that stations graph model uses

exactly one node per bus-stop.

2.5 Summary

In this chapter, some important information about graph theory is discussed. Because

transportation networks are a specialized type of graph, some essential knowledge of graph

theory is needed. Some fundamental concepts, such as the definition of a graph, the degree of

a graph, and the definition of a path, are introduced at the beginning of this chapter. In the

discussion of the degree of a graph, the dense graph and sparse graph are defined and used in

the data model discussion.

 Two types of data models for graph representation are explained, the adjacency matrix and

adjacency list. The discussion includes a description of each model, an analysis of the space

complexity, storage space requirements and an examination of suitable operations for each

model. Based on the discussion, an adjacency list is regarded as the best representation of the

transportation network considering its own characteristics. This research uses the adjacency

list to construct the topology of the experimental road and bus network in order to implement

the proposed algorithms.

CHAPTER 3

SHORTEST PATH PROBLEM IN TRANSPORTATION

NETWORKS

3.1 Introduction

The field of the shortest path problem has been widely researched, since it is a principal issue

in transportation networks. Considerable research in computer science and Artificial

Intelligence has addressed the question of what criteria ensures a good algorithm for (rapidly)

finding a solution path in a given transportation network. This has resulted in the development

of several methods for speeding up searches by reducing the search time of the resulting path.

This includes using inadmissible heuristics (Pohl, 1970; Pohl, 1973) and searches with a limited

look-ahead value (Korf, 1990; Ishida and Korf, 1991; Koenig, 2001). All of the shortest path

algorithms presented in this chapter assume that there are used in a directed graphs with a non-

negative edges cost, because the field of study is that of a transportation network.

3.2 Search Strategies

There are different strategies for exploring a search space that will be considered in this chapter.

This section will focus, in more detail, on an uninformed search (where the algorithm does not

make use of any means of estimating how close the search process is to a destination), an

informed search (where the algorithm uses heuristics that guide the search toward the

destination) and incremental search (a search technique for reusing information from previous

searches to find the updated shortest path solutions faster than is possible by solving each

search problem from scratch).

3.2.1 Uninformed Search
 3.2.1.1 Depth-First Search

Depth-First Search (DFS) is an unformed search algorithm. It starts by selecting an arbitrary

node as a root in a given graph. It examines the nodes as far as possible along each path and

then backtracks until it finds an unexplored path. This is then explored. The algorithm does this

until the entire graph has been explored. An example has been shown in Figure 3.1. The depth-

first search starts at node 1. It must always be assumed that the left hand side edges in the

shown graph are chosen before the right hand side edges. It is important to make sure that the

nodes visited are marked using a stack (LIFO (Last In, First Out)). This will prevent the search

from visiting the same node more than once, which may end up in an infinite loop. Two principal

operations will be used:

• Push adds nodes to the collection.

• Pop removes the most recently added nodes that were not yet removed.

In Figure 3.1, DFS will visit the nodes in the following order: 1, 2, 4, 5, 3 and 6.

https://en.wikipedia.org/wiki/Algorithm

Figure 3. 1 Depth-first search.

3.2.1.2 Breadth-First Search

Breadth-First Search (BFS) is also an unformed search algorithm. It starts by selecting an

arbitrary node as the root in a given graph. It examines the neighbouring nodes first, before

moving to the next level’s neighbours (searching level-by-level). The BFS uses a simple

queue FIFO, so then the nodes that were inserted first in the queue will be removed first. This

makes the current node 'visited' until all of its neighbours (vertices that are directly connected

to it) are also marked. An example has been shown in Figure 3.2. The BFS starts at node 1, and

visits its child nodes 2, before moving onto 3. It stores the nodes in the order in which they

were visited. This will allow the child nodes of 2 to be visited first (i.e. 4 and 5), and then the

child node of 3 (i.e. 6). In Figure 3.2, BFS will visit the nodes in the following order: 1, 2, 3,

4, 5 and 6.

1

2 3

54

Searching Level 1

6

Searching Level 2

Searching Level 3

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

Figure 3. 2 Breadth-first search.

3.2.2 Informed (Heuristic) Search

The main advantage of heuristic strategies is that the search scale can be limited. Many shortest

path algorithms based on a restricted searching area have been proposed. For example, the

restricted ellipse searching area algorithm. The restricted ellipse area algorithm was first

presented by Nordbeck and Bengt (1969), and then extended by Weihong (1995), also in

Xingxing and Weihong (1996). The core of the algorithm is that the search area can be reduced

greatly, because the set of search nodes is limited to the restricted ellipse searching area.

However, the algorithm still involves a large amount of computation and has a high processing

time. Consequently, it is not suitable for this application (Fu and Rilett, 2005). There are a

number of transportation applications that require the use of a heuristic shortest path algorithm

(rather than standard algorithms or optimal algorithms), such as when a shortest path needs to

be recalculated repeatedly, for vehicle routing and scheduling. These types of heuristic search

attempt to use different sources of additional information to reduce the search efforts. They can

be classified into three strategies: decompose the search problem, limit the links searched, and

limit the search area,

 3.2.2.1 Decompose the Search Problem

This strategy of decomposing the research problem has been divided into two sections: the bi-

directional search method and sub-goal method.

 3.2.2.1.1 Bi-directional search method

This method is also called a forward and backward search process. The main idea in this

strategy is to divide the search problem into two separate problems. One search proceeds

forwards from the start node, while the other search proceeds backwards from the end node.

The solution requires the two search problems to meet at one middle node.

Figure 3. 3 Bidirectional search (taken from Audrey Carpenter, n.d).

Bi-directional searching was first proposed by Ira Pohl (1969). He showed that both a forward

and backward search can be independently searched simultaneously, instead of two

independent searches. Therefore, he combined the two searches into a bi-directional search

with each contributing to part of the solution. Figure 3.3 shows a bi-directional search from a

source node and from a destination node without finding a path.

Many algorithms use a bi-directional technique to speed up their search. Modifying A* into a

bi-directional heuristic search is a possible way to improve performance. The main motivation

for using A* in a bi-directional setting is the possible reduction of the number of expanded

nodes. In fact, recent results show that the combination of the A* algorithm with a bi-

directional search is able to significantly reduce the number of expanded nodes (Whangbo,

2007; Klunder and Post, 2006; Pijls and Post, 2009b).

 3.2.2.1.2 Sub-Goal Method

http://slideplayer.com/user/5477639/
https://en.wikipedia.org/wiki/Bidirectional_search#CITEREFPohl1971

Sub-goal are nodes that are located between the origin node and destination node. To find the

shortest path from an origin node to a destination node, the problem can be decomposed into

two or more smaller problems. For example, if there is one sub-goal node, the problem divides

into two smaller problems: one is to find the SP from the source node to the sub-goal node

while the other is to find the SP from that sub-goal to the destination node. The efficiency of

this strategy depends on the number and location of the sub-goal nodes (Fu and Rilett, 2005).

3.2.2.2 Limit the Search Links (Hierarchical Search Method)

The main idea of the hierarchical search method is to skip the examination of the links that

have a low possibility of being either on the shortest path or used in a specific situation. Firstly,

the algorithm concentrates on the essential feature of the problem without considering the lower

level details, as it completes the details later. This strategy is similar to when drivers try to find

a route between two locations on the map. Firstly, the driver will find the main roads in the

area to the origin location and destination location. Secondly, the driver will try to find the

access road to the main road from the source to the goal (Fu and Rilett, 2005).

3.2.2.3 Limit the Search Area

The main idea in this strategy is to use some of the information about the attributes of the SPs

from the source location to the destination location to constrain the shortest path within a

limitation area. This strategy comes in two types: the branch pruning method or A* algorithm.

3.2.2.3.1 Branch Pruning Method

 The main idea is to limit the search by excluding the intermediate nodes which have little

chance of being on the shortest path to the destination node. In a real-world transportation

network, each road is connected to the neighbouring locations and travel time on the road is

correlated with its distance. This attribute allows the search area to be constrained within an

exact area surrounding the source location and destination location. The locations outside this

area are assumed to have less possibility of being on the shortest path and hence will be skipped

in further examination (Fu and Rilett, 2005).

3.2.2.3.2 A* Algorithm

The A* algorithm is one of the most known search algorithms in Artificial Intelligence (Nilsson,

1971). It uses a heuristic function to guide the search. At each iteration, it selects the most

promising node according to an evaluation function 𝑓𝑓(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣), which includes the real cost of

going to that node and an estimate of the cost from that node to the goal. More details about

how the A* algorithm works is in Section 3.3.2.

3.3 Classical Algorithms
3.3.1 Dijkstra’s algorithm

Dijkstra’s (1959) algorithm is a single source shortest path algorithm. It is used to find the

shortest path from a single source node to all other nodes on a directed graph with non-negative

edges cost only. Dijkstra’s algorithm works on a static network (where the edge weights on the

network are static and deterministic). Similar to the BFS strategy, it works by examining the

closest node to the start node. However, Dijkstra’s algorithm uses a weighted graph and a

priority queue to decide which is the most promising node (the node’s link that has the

minimum weight) to be expanded first.

A priority queue is an abstract data type (similar to the general queue and stack data structures).

However, in a priority queue, each node has a “priority” associated with it. A node with high

priority is examined before a node with a low priority. If two nodes have the same priority,

they are examined based on their order in the queue.

https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Dijkstra’s algorithm uses two data structures during the search to manage node expansions:

priority queue (Q) and an array (A), which keeps the record of the total distance from the source

location (𝒔𝒔) to all other nodes in the graph. When Dijkstra’s algorithm starts the search, the

g(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) of the source node will be 0, (the distance from the source node itself), 𝑨𝑨 (𝒔𝒔) = 𝟎𝟎.

For all other nodes 𝑵𝑵, is set to infinity 𝑨𝑨 (𝑵𝑵) =∞ . The priority queue is constricted, which

contains all of the nodes of the graph. The loop is executed when there are no nodes in the

priority queue and the goal node has not been selected for expansion. In each iteration, the node

with the minimum priority (smallest distance 𝐴𝐴 (𝑁𝑁)) is removed from the priority queue for

expansion. Dijkstra algorithm used the following formula to check the node.

If the distance from the source node itself A(S) + the cost link to travel from S to N is less than

the distance label for N.

𝐴𝐴(𝑆𝑆) + 𝐴𝐴(𝑆𝑆,𝑁𝑁) < 𝐴𝐴(𝑁𝑁) (3.1)

 In this case, a different path from the source node (𝑆𝑆) to the current node (𝑁𝑁) has been found.

The distance of this node will be updated,

 𝐴𝐴(𝑁𝑁) = 𝐴𝐴(𝑆𝑆) +(cost of link to travel from 𝑆𝑆 𝑡𝑡𝑡𝑡 𝑁𝑁). The algorithm will repeat the process

until there are no nodes in the 𝑄𝑄 or the destination node is picked from the 𝑄𝑄.

 Figure 3.4 shows the pseudo-code of Dijkstra’s algorithm. In the pseudo-code, G is the input

graph, S is the source location, Q is the priority queue and A is the array.

{1} Dijkstra (G, S)

{2} A(S) = 0

{3} Q = G (N)

{4} While (Q ! = ∅)

{5} Do U= extraxtMin (Q)

{6} For each link U to N outgoing from U

{7} If (A (U) + cost of link < A (N))

{8} A (N) = A (U) +cost of link

{9} DecreasePriority (Q, N)

Figure 3. 4 Dijkstra’s algorithm.

Analysis of Space Complexity

Since array A has been adopted, the space complexity is 𝑂𝑂(𝐸𝐸), where T is the edge number of

the directed graph. In the worst case, if 𝐸𝐸 = 𝑛𝑛2 , the space complexity is 𝑂𝑂 (𝑛𝑛2).

Analysis of Time Complexity

Dijkstra algorithm is shown in Figure 3.4. The algorithm first calls A(S) the time complexity

of {2} is 𝑂𝑂(𝑛𝑛) and the time complexity of {3} is (𝑛𝑛) ;

Then, the time complexity is 𝑂𝑂 (𝑛𝑛2). For {4}, the first cycle number is node 𝑛𝑛 .The second

cycle number obtained is 𝑛𝑛 − 1 In each iteration, the node with the minimum priority smallest

distance 𝐴𝐴 (𝑁𝑁)) is removed from the priority queue for expansion. Then the time complexity

is (𝑛𝑛 − 1) + (𝑛𝑛 − 2) + ⋯+ 1, that is 𝑂𝑂 (𝑛𝑛2).

In the road network of a city, the nodes are uniformly distributed in the plane and the nearby

nodes are connected by edges. In this case, the number of visited nodes grows with the square

of O (n). The computation time therefore takes a long time and becomes slower.

3.3.1.1 K-Shortest Path Algorithm

To improve the effectiveness of travel information, there is a need to generate alternative routes

for users of public transportation. For example, when the shortest path between the source node

and the destination node is congested, it is necessary to compute the second shortest path. If

the shortest path is not available, then a third shortest path may be needed. This set of

alternative paths is known as the set of K-Shortest Paths (KSP) (Meena and Geethanjali, 2010).

There are many papers concerning several algorithms used for solving the KSP (Palmgren and

Yuan, 1998) but not many papers deal with the application to real-world problems. The

computational complexity of applying the KSP algorithm in a large network remains a big

problem in terms of efficiency.

Several algorithms can be used to solve the KSP. Two examples of algorithms that calculate a

list of the KSP between nodes in a weighted directed graph are Yen’s (1971) algorithm and

Lawler’s (1972) algorithms. Yen’s algorithm is a classical algorithm for finding the KSP

between a pair of nodes in a directed graph. Firstly, it used Dijkstra’s algorithm as a standard

shortest-path algorithm to compute the best path from a source location to a destination

location. For example, the following graph, see Figure 3.5 - three KSP, was computed from the

source node (A) to the destination node (E).

The best shortest path is: ABDE (the cost time is 11 min).

This is the first shortest path called A1, and it will be stored in list A. After that, Yen’s algorithm

takes every node in the computed path except for the destination node and computes another

shortest path (called a spur) from each selected node to the destination node.

A

D

E

B

C
9min

7min

2min
4min

4min

8min 6min
5min5min 3min

Figure 3. 5 Directed graph.

For such node, the path from the source node to the current node is the root path, which is

AB. Node A of A1 becomes the super node with a root path itself. Two main restrictions

come with the super path. Firstly, it must not pass through any node on the root path. Secondly,

it must not branch from the current node on the link used by the first shortest path (previously

found) with the same root. Therefore, the link AB will be removed and Dijkstra’s algorithm

is used to compute another spur path, ACDE (the cost time is 12min).

This is the second shortest path called A2, and it will be stored in the list B. Node B of A2

becomes the spur node with a root path of BD. However, the same process is repeated. The

link BD will be removed and Dijkstra’s algorithm is to compute another spur path which is

ABCE (the cost time is 18min). This is the third shortest path called A3; node D of A3

becomes the spur node with a root path DE. All such paths are stored in list B. Within this

third iteration, we will choose from list B the paths which have the lowest cost in order of their

shortest time.

The first path is ABDE

The second path is ACDE

The third shortest path is ABCE

Lawler’s algorithm is used to find k-shortest paths. Lawler’s algorithm presents an adjustment

to Yen’s algorithm. Therefore, Lawler’s algorithm computes only new paths from the nodes

that were on the spur path of the previous shortest path. The improved efficiency of Lawler’s

algorithm can be clarified by, when finding more than two k-shortest paths, the next k-shortest

paths will, on average, branch from the middle of the path. Therefore nearly a 50%

improvement in speed is achieved over Yen’s algorithm (Martins and Pascoal, 2003; Meena

and Geethanjali, 2010).

Other types of algorithm are commonly used to solve the shortest path problem. These

algorithms are known as labelling algorithms. The algorithms work in such a way that in

finding the shortest distance from the source node to every other node in the network, each

node (𝑛𝑛) has a distance label (𝐷𝐷𝐷𝐷[𝑛𝑛]) which represents the shortest distance from the source

node to node (𝑛𝑛). The algorithms have a list that contains nodes whose distance labels are not

the shortest distance. There are two classes; label setting algorithms and label correcting

algorithms. Each algorithm has a different way to remove nodes from the list and to find the

shortest path. .

3.3.1.2 Label Setting Algorithm

The Label-Setting Algorithm (LS) is used to find the shortest path from the source location to

every other node, by remove the node with the smallest distance label from the list during each

iteration of the algorithm. Once the node is removed from the list, it will not be inserted again,

and the algorithm stops after 𝑛𝑛 iterations, when the list is empty. This algorithm can be

determine and find the shortest path when the label of that destination location is set.

Therefore, LS are very suitable for applications such as route guidance systems where the

objective is to find the shortest path between two specific locations (Fu and Rilett, 2005).

The time complexity of the algorithm is based how the list is stored and how the minimum

distance is found. The simple algorithm is attributed to Dijkstra’s algorithm, which finds the

shortest path in 𝑂𝑂 (𝑁𝑁2) time for N iterations. Irrespective of the data structures and search

algorithms that are used to solve the shortest path problem, using a label sitting algorithm

examines all nodes once. Hence the time complexity of the label sitting algorithm is 𝑂𝑂 (𝑁𝑁2)

(Hribar et al, 1995).

3.3.1.3 Label Correcting Algorithm

Label correcting (LC) algorithms takes a constant amount of time per iteration to compute the

paths but vary in the number of repetitions needed to complete the shortest path calculation. In

each iteration, the node removed from the list does not essentially have the shortest distance

label. Thus, the removed node may be re-entered at later time in the list. The LC cannot provide

the shortest path between two nodes before the shortest path to every node in the network is

known. This makes the algorithms more suitable in cases when the KSP from the source

location needs to be found. Consequently, label-correcting algorithms are usually used in

transportation planning applications when multiple routes have to be known (Fu and Rilett,

2005). The time complexity of the algorithm is 𝑂𝑂(𝐸𝐸 𝑁𝑁) times where E is a number of edges

and for N iterations (Hribar, et al, 1995).

3.3.2 A* Algorithm

The A* algorithm is normally used to solve an optimal route problem from a start location to

a goal location. The evaluation function 𝑓𝑓 is a sum of the two functions:

• The path cost function, which is the cost from the source node to the current node

(denoted by g(𝑛𝑛)).

• An admissible “heuristic estimate” of distance to the destination (denoted by h(𝑛𝑛))

Each node 𝑛𝑛 maintains f(𝑛𝑛) where f(𝑛𝑛) = g(𝑛𝑛)+h(𝑛𝑛). The function 𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) is

an estimate of this cost and is used by A* to decide which node should be expanded next.

In comparison, Dijkstra’s algorithm visits all nodes in every direction. This results in a large

area being explored by expanding unnecessary nodes before the destination is found. However,

the A* algorithm focuses the search towards the goal by using a heuristic function.

The heuristic function ℎ(𝑛𝑛) has two important properties: it is admissible and consistent.

ℎ(𝑛𝑛) is an admissible heuristic if in place for every node 𝑛𝑛, ℎ(𝑛𝑛) ≤ ℎ∗(𝑛𝑛). Where ℎ∗(𝑛𝑛) is

the real cost to reach the destination state from 𝑛𝑛, so, the heuristic function never overestimates

the real cost. The other important property is that the heuristic function ℎ(𝑛𝑛) is consistent if,

for every node 𝑛𝑛, travelling through any successor n' of n will result in: (where 𝒄𝒄 is the link-

cost between node n and n’, and 𝑫𝑫 is the destination node)

 ℎ(𝑛𝑛) ≤ 𝑐𝑐 (𝑛𝑛,𝑛𝑛′) + ℎ(𝑛𝑛′).

This can be viewed as a kind of triangle inequality as seen in Figure 3.6. Each side of a triangle

cannot be larger than the sum of the other two. Every consistent heuristic function is also

admissible (Russell and Norvig, 2003).

ℎ(𝑛𝑛)

𝑛𝑛

𝑛𝑛′

𝑐𝑐(𝑛𝑛,𝑛𝑛′)

′

Figure 3. 6 Consistent heuristic function

The A* algorithm uses two data structures to manage node expansion during the search: open

list and closed list. The open list is a priority queue that allows A* to always expand the node

with the smallest f(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣). Therefore, A* avoids considering directions with non-favourable

results and the search direction can efficiently lead to the destination. In this way, computation

time is reduced. Thus, the A* algorithm is faster than Dijkstra's algorithm for finding the

shortest path between a single pair of nodes. A closed list stores the nodes that have already

been expanded. The major benefit of a closed list is that it allows A* to avoid node re-expansion.

 By using a heuristic function, A* significantly reduces the number of nodes visited. Finding a

solution without the loss of the solution optimality will depend on the type of heuristics used

(i.e. an admissible will generate an optimal solution). In the worst-case scenario, the number

of nodes visited will be exponential to the length of the optimal solution.

 As discussed in Rios and Chaimowicz (2010), when the A* algorithm starts the search, the

g(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) for the source node will be 0. Then the algorithm will insert this node into the open

list. The loop is executed while there are no nodes in this list and the destination node has not

been selected for expansion from the open list. In each iteration, the node with the

smallest f(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) is removed from the open list for expansion. Its successors are generated and

inserted into the open list. It is possible for one or more of these successors’ nodes to be present

already in the open list. In this case, a different path from the start node to the current node has

been found. If the new cost is smaller, then the g(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) of the node will be updated, and the

expanded node is inserted into the closed list.

There are essentially two termination conditions for the A* algorithm. Firstly, if the open list

is empty, then there are no more nodes to be expanded. This means that there is no solution for

the problem, as there has been no path found. Secondly, if the destination state is selected for

expansion from the open list, then an optimal solution has been found (if the heuristic is

admissible and consistent).

3.4 Properties of Search Algorithms

The efficiency of the search algorithm is a critical problem in pathfinding since it relates to the

practicality and effectiveness of the search algorithms. The properties of search algorithms

involve two aspects: time complexity and memory space requirements. However, advances in

computer hardware have made it possible to provide sufficient memory in most computational

environments. The main concern is now the time complexity of the algorithm. This is how

much time the algorithm requires in relation to the depth of the solution (usually proportional

to the number of nodes visited.).

Dijkstra's algorithm does not search directly to the destination. It searches in all directions. This

results in the algorithm expanding unnecessary nodes. Based on Figure 3.4, the pseudo-code

of Dijkstra's algorithm from step {5} to step {9} takes up the most computation time. In step

{5}, the algorithm finds the node that contains the shortest distance which requires |N| times

comparison in the first iteration. For the comparison operation, steps from {7} to {9}, all links

that are connected to the current node are examined, which takes |E| time. Thus, with a network

consisting of 𝑁𝑁 nodes, Dijkstra’s algorithm has a computational complexity of 𝑂𝑂 (|𝑁𝑁2| + |𝐸𝐸|)

= 𝑂𝑂 (𝑁𝑁2).

The time complexity of the A* algorithm is based on a heuristic function. In this case, it’s often

more meaningful to measure the running time in terms of the branching factor of the tree (𝑏𝑏)

and search depth (i.e., the levels traversed in searching the tree. Once the algorithm finds the

destination, the algorithm stops) (𝑑𝑑) then the time complexity of the A* algorithm is 𝑂𝑂(𝑑𝑑𝑏𝑏)

.This assumes that the destination exists. If not, then the algorithm will not terminate (Wu,

2006). Based on the above time complexity comparison, A* is an efficient algorithm to solve

the shortest path problem, because in such a tree, if we examine every node at depth < 𝑑𝑑 before

we find the destination node, we'll end up visiting 𝑂𝑂(𝑑𝑑𝑏𝑏) nodes before the algorithm stops.

Then the algorithm visits a subset of the graph with |𝑁𝑁| = 𝑂𝑂(𝑑𝑑𝑏𝑏) (where now N includes only

the nodes the algorithm visit). It is clear to see that 𝑂𝑂(𝑑𝑑𝑏𝑏) is more efficient than 𝑂𝑂 (𝑁𝑁2).

However, finding the nearest node with the smallest cost is time-consuming in large paths. The

A* algorithm is suitable when the nodes change at an infrequent rate. Therefore, re-computing

the path at each change is not a serious problem. On the other hand, if used with real-time

traffic information, where the link cost can change frequently and randomly, having to re-plan

with every modification becomes unacceptable. Therefore, A* is not optimised for pathfinding

cases in dynamic traffic conditions, because, A* re-computes the shortest route from scratch.

A solution to this problem is to change A* from a re-plan strategy to a reuse strategy, for it to

be suitable for dynamic data (Russell and Norvig, 2009).

3.5 Incremental search
 3.5.1 Dynamic Traffic Routing

There are many situations where it is important that the path searches are fast. For example, a

commuter will spend a lot of time travelling to their destination. These high travel times are

due to blocks in links in the route, which results from high traffic flow, incidents, events or

road construction.

In Section 2.3, the transportation network is defined for a dynamic transportation network and

changes in traffic conditions are considered as changes in the link-costs where the blocked link

occurs. Since traffic conditions continually change over time, the centralised navigation service

has to monitor the traffic fluctuations over a day-long interval and detect any congestion in

order to allow drivers to take preventive action. By using dynamic shortest path algorithms,

navigation services can also help a traveller to plan an alternative optimal route to their

destination based on the updated traffic conditions. This re-routing feature enables the

algorithms to be used in real-time traffic routing software.

In dynamic transportation networks, cost changes can be classified as either deterministic time-

dependent or stochastic. In a deterministic time-dependent shortest path (TDSP) problem, the

travel times on the edges are functions of time and the network is known as a dynamic (or time-

dependent) network.

3.5.2 Dynamic Time-Dependent Shortest Path

It should be noted that some standard shortest path algorithms can be used to compute shortest

paths in time-dependent (but not in stochastic) networks (Dreyfus, 1969; Orda and Rom, 1990;

Kaufman and Smith, 1993; Ziliaskopoulos and Mahassani, 1993; Chabini, 1997). For example,

Sung et al (2000) suggested another model and solution for the TDSP problem, where the travel

time in a network depends on the time interval. They proposed a model for time-dependent

networks where the flow-speed of each link depends on the time interval, using an algorithm

based on Dijkstra's label-setting algorithm. This algorithm will compute the travel time of each

link according to the flow-speed at the time of passing the link. Cook and Halsely (1966)

extended Bellman Ford’s (1958) principle from finding the single source shortest path in a

weighted directed graph to finding the shortest path between any two nodes in a time-dependent

network. Dreyfus (1969) proposed that Dijkstra's labelling algorithm can be modified to

compute the time-dependent shortest path problem when the edges' weights in the network are

not static.

3.5.3 Dynamic Stochastic Shortest Path

Another type of dynamic transportation network is called a stochastic network. Nielsen (2004)

noted that if a network follows a probabilistic distribution of travel times for different parts of

the network, then the network is called a stochastic network. The link costs in this type of

network are random variables (each assigned a probability). This type of network can be used

in transportation networks, particularly when disruption to traffic networks has happened. As

travel time in transportation networks is unpredictable, this type of network is suitable for

transportation networks where one of the links may be blocked at any given time. This

stochasticity means that the travel time can be only be estimated.

Much research has been carried out in relation to solving the SSP problem. For example, Frank

(1969) computed the SP by replacing all of the links with their expected values and then using

standard algorithms to solve the shortest path problem. Mirchandani (1976) developed some

methods to compute the expected shortest travel time between two nodes in the network when

the travel times were random variables. The most significant sources of randomness were the

unpredictable disruptions to traffic networks.

3.5.4 Incremental Dynamic Time-Dependent Shortest Path

Dynamic shortest paths route finding is a fundamental problem in the field of ITS applications.

Dynamic routing requires the re-planning of a route based on updated dynamic information

becoming available during travel. In this research, dynamic information is referred to as time-

dependent deterministic information (not stochastic information where random events become

available over time rather than at the time of departure from the node). This research focuses

on the Dynamic Shortest Path (DSP) algorithm itself. The DSP algorithm uses current traffic

conditions to dynamically maintain the optimal path en route.

With a single cost of a link change, usually, only a small portion of the network is affected. For

this reason, it is reasonable to update the portion of the network that is affected by the link-cost

change and to avoid computing the shortest path from scratch.

Incremental search methods are used to solve dynamic shortest path problems. It is a search

technique for re-planning. The reuse of the previous search is faster than computing the shortest

path from scratch. Although incremental search methods are not widely used in artificial

intelligence, several incremental search methods have been suggested in the algorithms’

literature (Terrovitis, et al, 2005; Spira and Pan, 1975; MarchettiSpaccamela, 1993; Franciosa

et al., 2001; Frigioni et al, 1996; Edelkamp, 1998; Al-Ansari, 2001). These algorithms differ

in their purpose; some solve single source shortest path problems and others solve all-pairs

shortest path problems. They also differ in the performance measure that they use; when they

update the optimal route, which kinds of graph topology and edge costs they apply, and how

the graph topology and link costs can change over time (Frigioni et al., 1998). If arbitrary

sequences of link-cost insertions, deletions, or link-cost changes are allowed then the dynamic

shortest path problem is called a fully dynamic shortest-path problem. It is called a semi-

dynamic shortest path problem if only the link-cost increment (or decrement) is allowed

(Frigioni et al., 2000). Stentz (1994) presented a dynamic version of A* algorithm called D*

algorithm. The algorithm dynamically adapts to random changes in traffic conditions. Stentz,

(1995) also introduced a version called Focused D* algorithm, which reduced the computation

time by two to three times by reducing the number of node expansions. This was achieved by

using heuristics that guided the search direction. If there is no change on the route during the

traverse, then the solution is identical to the A* algorithm. The D* and Focused D* algorithms

are used when there is incomplete information (e.g., unknown destination). They can find

shortest paths from the source node to all other nodes in the graph and are able to quickly

recalculate the route.

There are also incremental search methods, such as Ramalingam and Reps’ algorithm

(Ramalingam, 1996). RR for short, also known as the DynamicSWSF-FP algorithm, is a fully

dynamic shortest-path algorithm and reuses information from previous searches to find the

shortest paths. When compared to other similar path-planning problems and solutions, the

DynamicSWSF-FP algorithm is potentially faster as it does not solve each path-planning

problem from scratch. The DynamicSWSF-FP algorithm starts the search from the destination

node to all other nodes and thus maintains estimates of the destination distances rather than the

start distances. The main advantage of using the DynamicSWSF-FP algorithm to solve the

dynamic shortest path problem is that it uses a clever way of identifying the links-costs that

have not changed and re-computes only the ones that have changed. Therefore, the

DynamicSWSF-FP algorithm performs best in cases where only a small number of link-costs

change. More details about the DynamicSWSF-FP algorithm will be discussed in the next

section.

3.5.5 Incremental DynamicSWSF-FP Shortest Path Algorithm

In dynamic transportation networks, only a small portion of the network’s links’ costs change

between each update. The cost for some links stay the same as before and thus do not need to

be re-calculated. A complete update of the best shortest path can be considered inefficient when

dealing with a large network, because the previous information results can be reused.

Incremental search methods, such as the DynamicSWSF-FP algorithm (Ramalingam, 1996),

reuse information from previous searches to find shortest paths for a series of similar path-

planning problems. This use of previous searches means that the incremental search algorithm

is faster than using other algorithms (e.g., Dijkstra algorithm and A* algorithm) which solve

each path-planning problem from scratch.

The DynamicSWSF-FP algorithm runs the same basic algorithm each time at the cost of any

link on the computed shortest path changes. The problem with reusing previous information

results is how to detect these changes. The DynamicSWSF-FP algorithm uses a clever way

(uses rhs-value for short, also known as the one-step look ahead value) to determine which link

is affected and needs to get updated. The rhs-value is equal to the cost from the current node to

the parent node plus the cost to travel from the current node to the child node. By comparing

this value with the original cost between the parent and child nodes, the algorithm can detect

link cost changes.

 Suppose that 𝑆𝑆 indicate the finite set of nodes 𝑠𝑠 of the graph and 𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐(𝑠𝑠) ⊆ 𝑆𝑆 indicate the set

of successors of node 𝑠𝑠 ∈ 𝑆𝑆. Similarly, 𝑝𝑝𝑝𝑝𝑣𝑣𝑑𝑑(𝑠𝑠) ⊆ 𝑆𝑆 denotes the set of predecessors of node

s∈S. In this case, 0 < 𝑐𝑐 (𝑠𝑠, 𝑠𝑠’) ≤ ∞ denotes the cost of moving from node s to node 𝑠𝑠 ’ ∈

𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐(𝑠𝑠)and 𝑔𝑔(𝑠𝑠) denotes the start distance of node 𝑠𝑠 ∈ 𝑆𝑆. (Koenig, Likhachev and Furcy,

(2004); Wu (2006))

 There are two estimates in the DynamicSWSF-FP lifetime:

• 𝑔𝑔(𝑠𝑠) is the start cost of each node 𝑠𝑠, which is equal to the g(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) of Dijkstra's

algorithm.

• rhs (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) is the one-step look-ahead value based on each g-value and thus is

potentially better informed than the g-value (Koenig, Likhachev and Furcy, 2004).

rhs(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) is computed from the following relationship:

The DynamicSWSF-FP algorithm uses a priority queue that always contains nodes with a

g(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) that needs to be updated to make them locally consistent. Local consistency checks

prevent the expansion of the same node twice (node re-expansion). This is very important for

improved the efficiency. Nodes are locally consistent, which means that the g-value of all nodes

is equal to their start distances, and if some of the link’s costs are updated then the g(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

of the affected nodes will be changed. These changes will make the nodes become locally

inconsistent (Koenig, Likhachev and Furcy, 2004). The DynamicSWSF-FP algorithm uses a

priority queue that contains the nodes whose g-value needs to be updated in order to make them

locally consistent. Then the shortest path can be updated dynamically.

3.6 Summary

The chapter classifies the common search strategies including uninformed search, informed

search, and incremental search. Two classical shortest path algorithms (Dijkstra's and the A*

algorithms) are shown to be the typical solution for static environments. The A* algorithm is

𝑝𝑝ℎ𝑠𝑠(𝑠𝑠) = �
0 𝑣𝑣𝑓𝑓𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑣𝑣𝑛𝑛𝑠𝑠′∈𝑝𝑝𝑠𝑠𝑝𝑝𝑑𝑑(𝑠𝑠) �𝑔𝑔(𝑠𝑠’) + 𝑐𝑐(𝑠𝑠′, 𝑠𝑠)� otherwise

(3.4.2.1)

most suitable for calculating the shortest path between single pair nodes using a static approach,

due to its improved speed. However, the A* algorithm is not optimised for pathfinding cases

under dynamic traffic conditions. This is because it has to recalculate the optimal route from

scratch each time there is a change in traffic. And so, in order to satisfy the requirement of

applications for real-world traffic networks, the DSP problem has been discussed. Some related

research on the TDSP and SSHP problems have been briefly introduced in order to identify the

research area in this thesis, which assumes that the dynamic information is referred to as time-

dependent information. To solve a Dynamic Shortest Path problem to a known destination, an

efficient and dynamic algorithm is required to solve the single pair shortest path problem. The

dynamic algorithms discussed in this chapter are focused on finding the shortest route from the

source location to an unknown destination. The DynamicSWSF-FP algorithm is shown to be

the most efficient approach in most dynamic environments, when finding the distance from

multiple nodes to the destination node after each change to the path. However, this means that

it is not able to deal with the dynamic single pair shortest path problem.

The next chapter presents the first proposed OLPA* algorithm and the experimental results.

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1. Introduction

This research has presented new efficient algorithms in the context of dynamic route planning.

These algorithms are significantly more efficient than any other previous algorithm. Three

novel algorithms have been proposed based on the existing Lifelong Planning A* algorithm to

solve the optimal route problem in a dynamic environment where the traveller has to re-

compute the shortest path while travelling. The experimental results show that the most

efficient of our new algorithms outperforms the previous algorithms.

8.1.1 Optimised LPA* Algorithm

This research presents the first novel approach; an optimised version of the LPA* algorithm,

making it capable of improving the search performance of the algorithm to solve the dynamic

shortest path problem, which is where the traveller may have to re-compute the shortest path

while travelling in a dynamic transportation environment. To examine the efficiency of the

OLPA* algorithm, the experiments were performed using the real-world road networks of

Nottingham city. This algorithm was also implemented in a public transportation network. .

This research used 108 bus lines in two directions (inbound/outbound).

To simulate real-time traffic conditions, this research used an accident event that was simulated

arbitrarily along the path as a cost of some node changes to adapt to the random changes in

traffic conditions.

The experimental results show that OLPA* algorithm has greater efficiency when implemented

in both road and bus networks. In the road networks (according to Section 4.7.3.1, the results

indicate that the OLPA* algorithm reduces the computation time by up to less than 3 seconds

to expand 15000 nodes, while the LPA* algorithm spent 120 seconds to expand 15000 nodes

(see Figures 4.20 and 4.21). Both algorithms LPA* and OLPA* examined the same number of

nodes in the first search and in the second search. A* expanded 30000 nodes in 15 seconds.

The OLPA* algorithm is faster than both the LPA* and the A* algorithms. When using bus

networks, the results show that the running time of the OLPA* algorithm ranges under one

second with a different number of expanded nodes, while for the LPA* algorithm, the

computation time increases with the increase in the number of nodes expanded. Compared with

the A* algorithm, the OLPA* algorithm expands less than 1000 nodes in less than 0.1 seconds

in the second search compared to the first search (Figure 4.25) of 17000 nodes. It is easy to see

the advantage of using the previous calculation. It makes the search faster and is significantly

able to reduce the search space. Consequently, the OLPA* algorithm has greater efficiency

when implemented in both road and bus networks.

8.1.2 Bi-directional OLPA* Algorithm

This research has proposed a second novel approach that works in the private transport

network. The proposed algorithm combines the OLPA* algorithm and Bi-directional approach,

named the Bi-directional Lifelong Planning A* algorithm (BiOLPA*). To examine the

efficiency of the novelty approaches, the experiments were performed using the real-world

road networks of Nottingham city. The Nottingham road map contains 38344 nodes and 48545

links.

To simulate real-time traffic conditions, this research used an accident event that was simulated

arbitrarily along the path as a cost of some node changes. The accident event was used to

simulate the situation of a node submitted en-route for a new optimal route in order to adapt to

the random changes in traffic conditions. The experiment result showed that, in all cases, the

BiOLPA* algorithm is more efficient than the OLPA*, LPA* and A* algorithms. BiOLPA* is

significantly superior to the OLPA*, LPA* and A* algorithms, in terms of the number of

expansion nodes as well as in terms of computation time. The experiment results indicated that

the number of examined nodes in the BiOLPA* algorithm is a significantly reduced number of

expiation nodes compared to the OLPA*, LPA* and A* algorithms. In addition, the BiOLPA*

algorithm has good performance when it comes to reducing the computation time y up to 0.001

(according to Figure 6.11). Regardless of the location of the accident, if it is close or away from

the goal in all cases, the BiOLPA* algorithm is more efficient than the OLPA*, LPA* and A*

algorithms. BiOLPA* is significantly faster than the OLPA*, LPA* and A* algorithms, in

terms of the number of expansion nodes as well as in terms of computation time.

8.1.3 Bi-directional LPA* algorithm

To evaluate the BiOLPA* algorithm’s ability to reduce the number of expansion nodes, this

research implemented the Bi-directional LPA* algorithm. It is a new algorithm alternatively

named the BLPA* algorithm. The BLPA* algorithm used the cardinality comparison strategy

to select the search direction (forward or backwards), rather than simply alternating the

directions. The BiOLPA* algorithm used a novel search strategy (called an autonomous

strategy) to enhance the intelligence of node selection in the algorithm. The strategy determines

the best selection of either the forward or backward direction. This contributes to speeding up

the search process instead of each of the forward and backward searches alternatively. This

selection process avoids accessing many unnecessary nodes from both the forward or backward

direction, and therefore makes the search for the shortest path converge to the goal node more

quickly. The experimental results shows that the BiOLPA* algorithm is more efficient than the

proposed BLPA* algorithm in terms of the number of nodes expanded and in terms of the

computation time. The optimal solutions obtained by the BiOLPA* and OLPA* algorithms are

better than the best solutions obtained by the existing LPA* and A* algorithms.

 8.2 Future work

The proposed dynamic shortest-paths algorithms in this thesis have been presented and

originally extensively developed as a means for the simplified implementation of the state

dynamic algorithm in context of Nottingham’s urban network. Further development should be

addressed to improve the obtained results.

8.2.1 Data Source

 There is a developing need for the improvement of the efficiency of urban traffic data to ensure

the sustainability of modern cities. To simulate real-time traffic conditions, future work will

include the SCOOT system to obtain real time traffic data. The idea of using the SCOOT data

is to know the time, location and duration of a blocked link. Future work will include real time

bus information. Using real time bus information will allow us to obtain a more accurate

prediction for travel time, better suggestions for an alternative route and therefore, a better

suggestion for starting the search from a backward search.

8.2.2 Travel Time Prediction Method

Travel time indicates the time spent travelling along a path. Travel time data is very important

to improve the performance of the proposed algorithms in this research. It is quite important

for the route guidance system and for the traveller to make a quick decisions to save their time.

Based on accurate travel time predictions, travellers can change their departure time and choose

the path that has the optimal expected arrival time. As to the in-vehicle route guidance system,

it can benefit from accurate travel time prediction technologies, provide alternative route for

travellers and avoid potential congestion areas. It is better to evaluate the total performance of

the dynamic algorithms.

The future work will consider using the travel time prediction method, which provides the

traveller with useful information to help them make a quick decision and to save their time by

changing their departure time, to change their route or to cancel the trip. Predicting travel time

accurately is done by considering both the traffic condition of a time range in a day and the

traffic patterns of vehicle in a week.

8.2.3 Stochastic Link Travel Time

It would be interesting to apply the proposed algorithms on both a dynamic and stochastic link.

That way, the road travel time is not only dynamic, but also contains an amount of uncertainty,

with the edge’s cost in the network being random variables with a probability. This type of

network is useful in transportation networks, particularly when the disruption to traffic

networks has happened. Therefore, travel time in transportation networks is unpredictable and

this type of network is suitable for transportation networks where one of the routes can be

blocked at any given time. The travel time can only be estimated. In future work, the dynamic

information is referred to as stochastic information, where random events become available

over time rather than at the time of departure from the node.

REFERENCES
Abraham, I., Delling, D., Goldberg, A. and Werneck, R. (2011). A Hub-based Labelling

Algorithm for Shortest Paths in Road Networks. In Pardalos, P.M. and Rebennack, S. (eds.),

Proceedings of the 10th International Symposium on Experimental Algorithms, (SEA’11),

Kolimpari, Greece, May 5-7, 2011. Berlin, Heidelberg: Springer-Verlag, pp. 230–241.

Akiba, T., Iwata, Y., Kawarabayashi, K. and Kawata, Y. (2014). Fast Shortest-path Distance

Queries on Road Networks by Pruned Highway Labelling. In McGeoch, C.C. and Meyer, U.

(eds.), 2014 Proceedings of the 16th Workshop on Algorithm Engineering and Experiments,

(ALENEX). Portland, Oregon, Jan 5, 2014. Philadelphia: Society for Industrial and Applied

Mathematics, pp.147– 154.

Ausiello, G., Italiano, G., Marchetti Spaccamela, A. and Nanni, U. (1991). Incremental

Algorithms for minimal length paths. Journal of Algorithms, 12(4), pp.615-638.

Bast, H., Delling, D., Goldberg, A., Muller-Hahnemann,M., Pajor, T., Sanders, P.,Wagner, D.
and Werneck , R .(2014) Route Planning in Transportation Networks. Technical Report
MSRTR-2014-4, Microsoft Research.

Bast, H., Funke, S., Sanders, P. and Schultes, D. (2007). Fast Routing in Road Networks With

Transit Nodes. Science, 316(5824), p.566.

Bast, H. (2009). Car or Public Transport – Two Worlds. In Albers, S., Alt, H. and Näher, S.

(eds), Efficient Algorithms, Lecture Notes in Computer Science, 5760. Berlin, Heidelberg:

Springer, pp. 355–367.

Beazley, D. (2015). Python Cookbook, 3rd ed. Cambridge, Mass.: The MIT Press

Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1), pp.87-90.

Bertsekas, D. (1991). Linear Network Optimization. Cambridge, Mass.: The MIT Press.

Betsy, G. and Sangho, K. (2013). Spatio-temporal Networks Modelling and Algorithms .

London Library of Congress Control Number.

Chaudhuri, S. and Zaroliagis, C. (2000). Shortest Paths in Digraphs of Small Treewidth.

Part I: Sequential Algorithms. Algorithmica, 27(3), pp.212-226.

Chen, H. and Chang, M. (2000). Dynamic user‐optimal departure time/route choice problem

with time-window. Journal of the Chinese Institute of Engineers, 23(1), pp.71-81.

Cherkassky, B., Goldberg, A. and Radzik, T. (1996). Shortest paths algorithms: Theory and

experimental evaluation. Mathematical Programming, 73(2), pp.129-174.

Chondrogiannis, L., Panagiotis, B., Johann, G., and Ulf, L. (2015) Alternative Routing: K-

Shortest Paths with Limited Overlap. Faculty of Computer Science Free University of Bozen-

Bolzano, Italy.

Cohen,E., Halperin, E., Kaplan, H. and Zwick, U. (2002). Reachability and Distance
Queries via 2-hop Labels. In Proceedings of the 13th ACM-SIAM Symposium on Discrete

Algorithms, SODA’02, pp. Jan 6-10, 2002.

Cooke, K. and Halsey, E. (1966). The shortest route through a network with time-dependent

internodal transit times. Journal of Mathematical Analysis and Applications, 14(3), pp.493-

498.

Cormen, T., Leiserson, C., Rivest, R. and Stein, C. (2014). Introduction to algorithms.

Cambridge, Mass.: The MIT Press.

Daniel, D. and Wagner, D. (2009). Time-Dependent Route Planning. In Ahuja,

R.K., Möhring, R.H. and Zaroliagis, C. (eds.), Robust and Online Large-Scale Optimization,

Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, pp. 207–230.

Denardo, E. and Fox, B. (1979). Shortest-Route Methods: 1. Reaching, Pruning, and

Buckets. Operations Research, 27(1), pp.161-186.

Deo, N. and Pang, C. (1984). Shortest-path algorithms: Taxonomy and annotation. Networks,

14(2), pp.275-323.

Diestel, R. (2005). Graph Theory. 3rd ed. Berlin, New York: Springer-Verlag .

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,

1(1), pp.269-271.

Ding, J.W., Wang, C.F., Meng, F.H. and Wu, T.Y. (2010) Real-time vehicle route guidance

using vehicle-to-vehicle communication. IET Communications 4(7), pp. 870-883

Dreyfus, S. (1969). An Appraisal of Some Shortest-Path Algorithms. Operations Research,

17(3), pp.395-412.

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/

Driving Directions and Maps (2014) Google Map [online] Available from:

https://www.drivingdirectionsandmaps.com/ [Accessed 24 May 2015].

Fan, Y., Kalaba, R. and Moore, J. (2005). Shortest paths in stochastic networks with correlated

link costs. Computers & Mathematics with Applications, 49(9-10), pp.1549-1564.

Feuerstein, E. and Marchetti-Spaccamela, A. (1993). Dynamic algorithms for shortest paths in

planar graphs. Theoretical Computer Science, 116(2), pp.359-371.

Franciosa, P., Frigioni, D. and Giaccio, R. (2001). Semi-dynamic breadth-first search in

digraphs. Theoretical Computer Science, 250(1-2), pp.201-217.

Frank, H. (1969). Shortest Paths in Probabilistic Graphs. Operations Research, 17(4), pp.583-

599.

Frigioni, D., Marchetti-Spaccamela, A. and Nanni, U. (1998). Semidynamic Algorithms for

Maintaining Single-Source Shortest Path Trees. Algorithmic, 22(3), pp.250-274.

Frigioni, D., Marchetti-Spaccamela, A. and Nanni, U. (2000). Fully Dynamic Algorithms

for Maintaining Shortest Paths Trees. Journal of Algorithms, 34(2), pp.251-281.

Fu, L., Sun, D. and Rilett, L. (2006). Heuristic shortest path algorithms for transportation

applications: State of the art. Computers & Operations Research, 33(11), pp.3324-3343.

George, B. and Kim, M. (2013). Representation Graphs [online] Available from:

https://www.khanacademy.org/computing/computer-science/algorithms/graph-

representation/a/representing-graphs [Accessed 24 May 2015].

George, B. (1962). Linear Programming and Extensions. Princeton University Press.

https://www.drivingdirectionsandmaps.com/
https://www.khanacademy.org/computing/computer-science/algorithms/graph-%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20representation/a/representing-graphs
https://www.khanacademy.org/computing/computer-science/algorithms/graph-%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20representation/a/representing-graphs

Geisberger, R., Sanders, P., Schultes, D. and Delling, D. (2008) Contraction Hierarchies :

Faster and Simpler Hierarchical Routing in Road Networks. In Proceedings of the 7th

International Workshop on Experimental Algorithms, (WEA’08), Provincetown, MA, May 30

- June 01, 2008. Berlin, Heidelberg: Springer-Verlag, pp.319–333.

Giacomo, N., Daniel, D., Leo, L. and Dominik, S. (2011) Bidirectional A∗ Search for Time-

Dependent Fast Paths. France.

Giorgio, G. and Stefano, P, (1984). Shortest path methods in transportation methods. In

Florian, M (ed.) Transportation Planning Models. Elsevier Science Publishers B.V.

Giorgio, G. and Stefano, P, (1986). Shortest path methods: A unifying approach.

Mathematical Programming Study, 26, p. 38{64}.

Golden, B. (1976). Technical Note—Shortest-Path Algorithms:A

Comparison. Operations Research, 24(6), pp.1164-1168.

Goodwin, P. (2004). The Economic Cost of Road Traffic Congestion. London: Rail Freight

Group.

 Google Maps™ (n.d.). Driving Directions and Maps [online] Available from:

www.drivingdirectionsandmaps.com/ and www.Drivingdirectionsandmaps.com [Accessed 15

May 2018].

Google Maps. (n.d.). Transit – [online] Available from https://www.google.com/transit

[Accessed 12 Feb 2018].

Hall, R. (1986). The Fastest Path through a Network with Random Time-Dependent Travel

Times. Transportation Science, 20(3), pp.182-188.

Hart, P., Nilsson, N. and Raphael, B. (1968). A Formal Basis for the Heuristic

http://www.drivingdirectionsandmaps.com/
https://www.google.com/transit

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2), pp.100-107

Hribar, M and Taylor, V. (1995). Choosing a shortest Path Algorithm [online] Available

from:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.1097 [Accessed

24 May 2013].

Harrie, L. (2010). Lecture Notes in GIS Algorithms. GIS Centre and Department of Earth and

Ecosystem Sciences, Lund University.

Huang, Y. W., Jing, N. and Rundensteiner, E.A. (1995) Route guidance support in intelligent

transportation systems: an encoded path view approach. University of Michigan Technical

Report

Ikeda, T., Hsu, M.-Y., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Tenmoku, K. and

Mitoh, K. (1994). A fast algorithm for finding better routes by AI search techniques. In

Proceedings of VNIS'94 -Vehicle Navigation and Information Systems Conference, Yokohama,

Japan, 31 Aug.-2 Sept. 1994. IEEE. pp, 291–296

Jacob, R., Marathe, M. and Nagel, K. (1999). A computational study of routing algorithms for

realistic transportation networks. Journal of Experimental Algorithmic, 4, p.6.

Jamali, M. (n.d). Learning to Solve Stochastic Shortest Path Problems. [online] Available from

http://www.cs.sfu.ca/~sja25/personal/resources/SSP.pdf [Accessed 26 August 2013].

James, B.H. and Kwa, B.S. (1989). An admissible bidirectional staged heuristic search

algorithm. Artificial Intelligence, 38, pp. 95-109.

Karaş, I.R. and Atila, U. (2011) A Genetic Algorithm Approach for Finding the Shortest

Driving Time on Mobile Devices. Scientific Research and Essays, 6(2), pp. 394-405.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.1097
http://www.cs.sfu.ca/%7Esja25/personal/resources/SSP.pdf

Kaufman, D. and Smith, R. (1993). Fastest Paths in Time-Dependent Networks for Intelligent

Vehicle-Highway Systems Application. I V H S Journal, 1(1), pp.1-11.

Keyur, R. and Mukesh, Z. (2011). A- star Algorithm for Energy Efficient Routing in Wireless

Sensor Network. Department of computer Engineering.

Klunder, G. and Post, H. (2006). The shortest path problem on large-scale real-road

networks. Networks, 48(4), pp.182-194.

Koenig, S. (2001). Incremental A*. Los Angeles: Computer Science Department, USC.

Koenig, S., Likhachev, M. and Furcy, D. (2004). Lifelong Planning A∗. Artificial Intelligence,

155(1-2), pp.93-146.

Kotusevski, G. and Hawick, K. (2009). A Review of Traffic Simulation Software. Aukland,

New Zealand: Institute of Information and Mathematical Sciences, Massey University.

Kwa, J. (1989). BS∗: An admissible bidirectional staged heuristic search Algorithm. Artificial

Intelligence, 38(1), pp.95-109.

Lanning, D., Harrell, G. and Wang, J. (2014). Dijkstra’s Algorithm and Google Maps.Valdosta,

Georgia: Department of Math and CS Valdosta State University.

Lawler, E. (2001). Combinatorial Optimization Networks and Matroids. United States of

America: Dover.

Lester, P. (2005). A* Path finding for Beginners. United States of America.

Lucotte, M. and Sang Nguyen (eds.). (1998). Equilibrium and Advanced Transportation

Modelling. Kluwer Academic Publishers Group.

Loui, R. (1983). Optimal paths in graphs with stochastic or multidimensional

weights. Communications of the ACM, 26(9), pp.670-676.

Magzhan, K. and Jani, H.M. (2013). A Review and Evaluations of Shortest Path

Algorithms. International Journal of Scientific & Technology Research, 2(6), pp. 99–

104.

Martins, E. and Pascoal, M. (2003). A new implementation of Yens ranking loop less paths

algorithm. Quarterly Journal of the Belgian, French and Italian Operations Research Societies,

1(2).

McDermott, J. (1980). Principles of artificial intelligence. Artificial Intelligence, 15(1-

2).

Meena, S, and Geethanjali, N. (2010) A Survey on Shortest Path Routing Algorithms for

Public Transport Travel. Global Journal of Computer Science and Technology, 9(75).

Mirchandani, P. (1976). Shortest distance and reliability of probabilistic networks. Computers

& Operations Research, 3(4), pp.347-355.

Mirchandani, P. and Soroush, H. (1985). Optimal paths in probabilistic networks: A case with

temporary preferences. Computers & Operations Research, 12(4), pp.365-381.

Mohr, A. (2007). Quantum Computing in Complexity Theory and Theory of Computation’
[online] Available from: ttps://pdfs.semanticscholar.org/pdf . [Accessed: 7 June 2014].

Murthy, I. and Sarkar, S. (1996). A Relaxation-Based Pruning Technique for a Class of

Stochastic Shortest Path Problems. Transportation Science, 30(3), pp.220-236.

http://www.austinmohr.com/Work_files/complexity.pdf

Murthy, I. and Sarkar, S. (1997). Exact algorithms for the stochastic shortest path Problem with

a decreasing deadline utility function. European Journal of Operational Research, 103(1),

pp.209-229

Negnevitsky, M. (2011). Artificial Intelligence: A Guide to Intelligent Systems.3rd ed. Addison

Wesley.

Nielsen, R. L. (2004). Route Choice in Stochastic Time-Dependent Networks. PhD Thesis,

Department of Operations Research University of ARHUS.

Nilsson, N. (1980). Principles of Artificial Intelligence. San Francisco: Morgan Kaufmann.

Nottingham City Council (2016) Open Data Nottingham [online] Available from
(http://www.opendatanottingham.org.uk/dataset.aspx?id=2.) [Accessed 11 May 2016]

Nordbeck, S. and Bengt, R. (1969). Computer Cartography Shortest Route Programs. Sweden:

The Royal University of Lund.

Oliveir, R.L. and Chaimowicz, L. (2010). A Parallel Bidirectional Heuristic Search

Algorithm. Brazil: Universidade Federal de Minas Gerais (UFMG).

Orda, A. and Rom, R. (1990). Shortest-path and minimum-delay algorithms in networks

with time-dependent edge-length. Journal of the ACM, 37(3), pp.607-625.

Padua, D. (ed.) (2011). Encyclopaedia of Parallel Computing, University of Illinois at
Urbaba-Champaign, USA: Springer.

http://www.opendatanottingham.org.uk/dataset.aspx?id=2

Pape, U. (1974). Implementation and efficiency of Moore-algorithms for the shortest route

problem. Mathematical Programming, 7(1), pp.212-222.

Pijls, W. and Post, H. (2009a). A new bidirectional search algorithm with shortened

postprocessing. European Journal of Operational Research, 198(2), pp.363-369.

Pijls, W. and Post, H. (2009b). Yet another bidirectional algorithm for shortest paths.

Technical Report EI 2009-10, Erasmus University Rotterdam, Econometric Institute.

Pohl, I. (1969). Bi-directional and heuristic search in path problems. Technical Report 104,

SLAC (Stanford Linear Accelerator Center), Stanford, California.

Pohl, I. (1971). Bi-directional Search. In Meltzer, B. and Michie, D. (eds.), Machine

Intelligence, 6. Edinburgh: Edinburgh University Press, pp. 127-140.

Ramalingam, G. and Reps, T. (1996). An Incremental Algorithm for a Generalization of the

Shortest-Path Problem. Journal of Algorithms, 21(2), pp.267-305.

Rios, L. and Chaimowicz, L. (2010). A survey and classification of A* based best-first heuristic

search algorithms. SBIA'10 Proceedings of the 20th Brazilian conference on Advances in

artificial intelligence. São Bernardo do Campo, Brazil, October 23 - 28, 2010. Berlin,

Heidelberg: Springer-Verlag, pp. 253-262.

Russell, S. and Norvig, S. (2009). Artificial Intelligence: A Modern Approach. 3rd ed. Prentice

Hall.

Sanders. P and Schultes. D. (2005). Highway Hierarchies Hasten Exact Shortest Path Queries.

In ESA'05 Proceedings of the 13th annual European conference on Algorithms. Palma de

Mallorca, Spain, October 03 - 06, 2005. Berlin, Heidelberg: Springer-Verlag, pp. 568-579.

Sedgewick, R. and Wayne, K. (2011). Algorithms. 4th ed. Addison Wesley.

Sigal, C., Pritsker, A. and Solberg, J. (1980). The Stochastic Shortest Route

Problem. Operations Research, 28(5), pp.1122-1129.

Sloot, P. and Abramson, D. (2003). Computational science-- ICCS 2003. Berlin, Heidelberg:

Springer.

Sommer, C. (2014). Shortest-path Queries in Static Networks. ACM Computing Surveys, 46(4),

pp.1–31.

Spira, P. and Pan, A. (1975). On finding and updating spanning trees and shortest paths,
SIAM Journal on Computing 4, pp. 375–380.

Stentz, A. (1994). The D* Algorithm for real-time planning of optimal traverses, Tech

Report CMU-RI-TR-94-37, Robotics Institute, Carnegie Mellon University, October 1994

http://www.ri.cmu.edu/pubs/pub_356.html

Stentz, A. (1995). The Focussed D* Algorithm for real-time planning of optimal traverses. In

IJCAI'95 Proceedings of the 14th international joint conference on Artificial intelligence -

Volume 2. Montreal, Quebec, Canada, August 20 - 25, 1995. San Francisco: Morgan

Kaufmann, pp. 1652-1659.

Sung, K., Bell, M., Seong, M. and Park, S. (2000). Shortest paths in a network with time-

dependent flow speeds. European Journal of Operational Research, 121(1), pp. 32-39.

Sven, K, Likhachev, M, Liu, Y. and Furcy, D. (2005). Life Planning A*. Los Angeles:

Computer Science Department, USC.

Tang, F. (2013). Analysis of Algorithms [online] Available from
https://www.cpp.edu/~ftang/courses/CS240/lectures/analysis.htm [Accessed 11 May
2018]

http://www.ri.cmu.edu/pubs/pub_356.html
https://www.cpp.edu/%7Eftang/courses/CS240/lectures/analysis.htm

Terrovitis, M., Bakiras, S., Papadias, D. and Mouratidis, K. (2005). Constrained Shortest
Path Computation. Lecture Notes in Computer Science, 3633, pp. 181-199.

VI Tran, N., Nha, V., Djahel, S. and Murphy, J.(2012). A Comparative Study of Vehicles

Routing for Route Planning in Smart Cities. Ireland: School of Computer Science and

Informatics.

Wegener, A., Piorkowski, M., Raya, M., Hellbruck, H., Fischer, S. and Hubaux, J.-P. (2008).

TraCI. In CNS '08 Proceedings of the 11th communications and networking simulation

symposium. Ottawa, Canada, April 14 - 17, 2008. New York: ACM Press, pp. 155-163

Weihong, C. (1995). Research on Spatial Data Structure. China: Science and Technology

Press

Whangbo, T. K. (2007). Efficient Modified Bidirectional A* Algorithm for Optimal Route-

Finding. In IEA/AIE'07 Proceedings of the 20th international conference on Industrial,

engineering, and other applications of applied intelligent systems. Kyoto, Japan, June 26 - 29,

2007. Berlin, Heidelberg: Springer-Verlag, pp. 344-353.

Williams, S.G.D . (2008). Using the A-Start Path Finding Algorithm for Solving General and

Constrained Inverse Kinematics Problem.

Wu, L., Xiao, X., Deng, D., Cong. G., Zhu, A. and Zhou, S. (2012). Shortest Path and Distance

Queries on Road Networks: An Experimental Evaluation. Proceedings of the VLDB

Endowment, 5(5), pp. 406–417.

Wu, Q. (2006). Incremental Routing Algorithms for Dynamic Transportation Networks.

MsC Thesis, Calgary University.

Xi, C., Qi, F. and Wei, L. (2006). A new Shortest Path Algorithm based on Heuristic

Strategy. Huazhong University of Science and Technology.

Xingxing, C. and Weihong, C. (1996). An Experimental Study of Rapid Reacting System of

City. Remote Sensing of Environment China, 11(3), pp. 227-233.

Yen, J. (1971). Finding the Shortest Loop less Paths in a Network. Management Science,

17(11), pp.712-716.

Zhan, F. and Noon, C. (1998). Shortest Path Algorithms: An Evaluation Using Real

Road Networks. Transportation Science, 32(1), pp.65-73.

Zhan, F. and Noon, C. (1997). Three faster shortest path algorithms on real mad

networks: data structures and procedures, Journal of Geographic Information and

Decision Analysis, 1(1), pp. 69-82.

Zhu, A., Ma, H., Xiao, X., Luo, S., Tang, Y. and Zhou, S. (2013). Shortest Path and Distance

Queries on Road Networks: Towards Bridging Theory and Practice Proceedings of the 2013

ACM SIGMOD International Conference on Management of Dat.

New York, USA, June 22 - 27, 2013. New York: ACM, pp. 857-868

APPENDIX
APPENDIX 1

 Using Label setting algorithm to find K-Shortest Path Algorithm

 To improve the effectiveness of travel information, there is a need to generate alternative

routes for users of public transportation. For example, when the shortest path between the

source nodes to the destination node is blocked, because there is a traffic jam or an incident,

it is necessary to compute the second shortest path. If this shortest path is not available for

some reason, a third shortest path may be needed. This set of alternative paths is known as

the set of k-shortest paths (KSP) (Meena and Geethanjali, 2010).

The project starts to find K-Shortest Paths using bus timetable with two different networks, in

a static network and time-dependent network. Two implementations have been tested based on

Label Setting shortest path algorithm to produce the best possible performance. The suitability

of each method was judged in term of minimum run-time and the quality of the obtainable

solution

The overall approach and objective of this section are to evaluate two k-shortest paths (KSP)

implementations. Two methods have been tested under Microsoft Visual C++ 2012

environment and based on k-shortest paths algorithm using a MySQL database, and standard

template library to implement the algorithm. The first method used the k-shortest path

algorithm on a static directed graph to compute the optimal route and used the real timetable

data to further optimize the route. The second method used the k-shortest path algorithm

directly on the timetable data. For a static network, a directed graph was stored in a text file,

representing a real road network. For a time-dependent network, the public transportation

network was stored in a database. The database contains bus timetables based on the real word

transportation in Nottingham city.

In term of performance two methods are compared by used a batch mode command line

executable, which executed several thousand times with a unique command line in each case

Network Model

A model describes how to create a graph from the timetables such that we can answer queries

in this graph by shortest path computations. Both the road network and public transportation

can be modelled as directed graphs. For road networks, each node corresponds to the bus-stop

location, where two or more road links meet, and the edges of the graph correspond to the route

links. The cost of the link is presented as travel time. The shortest route in the graph

corresponds to the quickest path to get from source to destination.

However, there are two ways to model public transportation networks. It can be modelled as a

time-expanded model, where each node corresponds to a particular time event (arrival or

departure), and each link has a constant travel time. To allow transfers with waiting, additional

transfer nodes are added. By adding transfer links from arrival nodes only to transfer link after

a minimum transfer duration passed, realistic transfers are ensured. The advantages of this

model are its simplicity, as all links cost are a simple value, and Dijkstra algorithm can be used

to compute shortest paths (Patrice Marcotte and Sang Nguyen, 1998 and Frank, Wagner, and

Karsten Weihe, 2000, Matthias Müller–Hannemann and Karsten Weihe, 2001). Also, public

transportation networks can be modelled by time-dependent model. The time-dependent model

reduces the number of nodes in comparison to the time –expanded modal, which showed to be

efficient. In the time-dependent model, the station graph model uses one node per bus-stop,

where time- expanded model models multi nodes at each bus-stop (Ariel Orda and Raphael

Rom 1990, and Ariel Orda and Raphael Rom 1991, and Karl Nachtigall, 1995 and Gerth Brodal

and Riko Jacob, 2004).

In this research, Public transportation networks are modelled in a similar way to road networks,

except that we have to deal with scheduled bus timetables. And considers the time-dependent

model that stations graph model uses exactly one node per bus-stop, to avoid parallel edges

which cause more complex edges weights. Each bus-stop except the last one, the timetable

includes a departure time, and for each station, except the source location, the timetable

includes an arrival time.

Modelling of Bus Timetables

 To represent a bus transportation network, bus timetables need to be modelled.

Table 1 Timetable of Bus 1 (https://www.nct.co.uk/)

To represent the cost travel time that takes to travel between to stations, an edge is put into the

directed graph to represent a connection between two bus stations.

Network Representation

A weighted directed graph G (N, E) is presented as a public transportation network, where N

is a set of nodes and E is a set of edges. Each node in G corresponds to a certain transport

station. In this search, we assume, for simplification, that there is only one kind of public

transportation which the bus, so each node corresponds to a bus stop. We also assume that bus

stops are represented with numbers from 1 to n. The directed edge (i, j) ∈ E is an element of

the set E, also has a cost or length 𝑣𝑣𝑣𝑣𝑣𝑣 ≥ 0

 Figure 1, shows a very simple example of the public transportation presented as a graph,

where nodes showed as circles and edges are shown as lines with arrows connected between

nodes.

Experimentation

The first implementation has two parts. The first part finds the KSP in static networks. A

directed graph stored in a text file was used to represent a real road network. The second part

used the real timetable data to further optimize the route. (Figure 2)

Start

Read Input
data from

User Input

Journey
Request

9:00

2

3 4

1

5

9:05

9:07 am

Bus-link

 Figure 1: Representation of a simple transportation network

9:10
 9:15

9:17

The second implementation finds the KSP in a time-dependent (dynamic) network. The public

transportation network is stored in a database, which contains bus timetables based on the real

world transportation network of Nottingham city. So, this program will find the KSP directly

on the timetable data.

Evaluation Results

 Compute K Shortest Path

 Based on the following example inputs 3 7

6
1

7

5
8

3

2

3

No

Stop

Figure 3: Methodology flow chart of dynamic network implementation

Start

Yes

No

Is all the
data

retrieved?

Read Input
data from the

database

User Input

Create Graph

Compute KSP

Display KSP

Journey Request

 Journey Request include (Source Location / Destination Location /
No of Route / Travel Time)

 Enter Source location : 1
 Enter Destination location: 10
 Enter Travel time : 09:48
 Enter Number of route(s) (K): 3

First Implementation:

KSP for Static and Dynamic Network;

Firstly, the program will display

KSP for Static Network:

1 KSP

2 KSP

3KSP

And then will read these paths on the bus timetable database and display the result.

1 KSP

2 KSP

 3KSP

The second Implementation

KSP for Time-Dependent Network using timetable data directly

1 KSP

2 KSP

 3KSP

Compute the Execution Time of the Program

Experimental results are reported in this section, comparing the performance of the two

implementations KSP for static and dynamic network and KSP for the dynamic network using

timetable data directly, based on the public transportation network of Nottingham City. The

programs used a batch mode command line executable, which is executed several thousand

Figure 4: Directed Graph

times with a unique command line in each case. And using the network with 20 nodes the

average runtime for the KSP for the static and time-dependent network is 62 second while the

average runtime for the KSP for the dynamic network using timetable data is 61 second for

finding 3 to 4 shortest paths.

The last comparison that we have conducted was the evaluation of computational runtime

between different network size in both static and time-dependent network and the time-

dependent network can be found in figure 5.

Performance of the KSP Algorithm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Small(S) Small(T) Meduim(s) Meduim(T) Large(S) Large(T)

Number of Node VS Execution Time

K=1 K=2 K=3Number of routes (K)

(S) Static and Time-Dependent Network / (T) Time-Dependent Network

Figure 5: The Execution time of the program

Experimental Results for the KSP Algorithm

The KSP algorithm using static and time-dependent network takes a longer execution time, and

the execution time increases significantly with the increase of the length of the journey and the

value of K. Taking the travel plan in Figure 3 as an example again, the performance for the

KSP algorithm using different networks as follow:

 1. When K=2, finding two shortest path from bus stop 1 to bus stop 10, the developed KSP

algorithm (using the time-dependent network) spends 1.39 seconds with the large network.

And compared with the results of the KSP algorithm using the static time-dependent network,

the execution time using large network takes 1.69 seconds.

2. To find three shortest paths (K=3) from stop 1 to bus stop 10, the KSP algorithm (using

the time-dependent network) spends 1.41 seconds. Again, compared with the results of using

static and time-dependent network takes 1.71 seconds.

Analysis of the KSP Algorithm

The time complexity of KSP algorithms is higher than shortest path algorithms, and it differs

with different algorithms in different networks. However, labelling KSP algorithms using time-

dependent network take longer execution time but the time complexity can be reduced by an

advanced data structure. There are few data structures that give the best theoretical

performance. Fibonacci heap (1984) is the best for a general network: O (e + n log n). Balanced

binary trees (1998) also have good complexity: O (e log n + n log n) (Giorgio, and Stefano

(1984), Giorgio and Stefano (1986), Bruce (1976) and Pape (1974)).

It is clear to see that the program which used a time-dependent network (read bus timetable

travel time directly) gives the accurate optimal route and presents the result in shortest time for

different network’s size.

The KSP algorithm developed in this work is based on the label setting algorithm, so the

computational complexity is similar to the generalized Dijkstra’s algorithm.

The main advantages of the algorithm are that if only one route from a source location to the

single destination location is required, the algorithm can be completed when the label of that

destination location is set. Therefore, the label setting algorithms are very suitable for

applications such as route guidance system where the objective is to find KSP between two

specific locations. (Fu and Rilett, 2005). The time complexity of the algorithm is O (n^2) for n

iterations (Hribar, et al, 1995).

Summary

This section started to find K-Shortest Paths using two different networks, in the static network

and time-dependent network. Two implementations have been tested based on Label Setting

shortest path algorithm to produce the best possible performance. The suitability of each

method was judged in term of minimum run-time and the quality of the obtainable solution.

There is another problem arises in public transportation networks. Route planning on time-

dependent networks is the fact that traffic conditions are not static. In the next section, we will

consider the traffic condition. Since the traffic condition changes continually over time, the

optimal route will change based on time traffic conditions that provided.

The next step collects traffic data and implements the developed algorithm to Nottingham

Public Transportation Network

APPENDIX 2

Finding k-Shortest Path Algorithm by using Traffic Data

1. Introduction

Section 1: has shown that a suitable method to find the shortest path in the real world bus

networks is k- shortest path algorithm using the time-dependent network.

 In these days, due to failure, maintenance or other reasons related to traffic or weather

condition, different kind of uncertainties are frequently encountered in practice and must be

taken into account. Based on the real world transportations networks in Nottingham city. There

is a developing need for the improvement of the efficiency of urban traffic data in order to

ensure the sustainability of modern cities. The requirement for the development of any traffic

telematics application is the availability of real-time traffic data. In this research will use traffic

data underlying the operation of SCOOT-Urban Traffic Control System at Nottingham city.

The SCOOT is an adaptive system optimising the split, cycle and offset times of traffic signals

[1996].

In this section, the different types of traffic data are available in the context of Nottingham city

network are collected using SCOOT Urban Traffic Control System and implemented for the

shortest path algorithm. The main task is to find the optimal route from starting place to a

destination on a roadmap. As road traffic conditions may change during the bus journey such

as increase of the congestion level or random incidents etc. The best route should be re-

evaluated as soon as an update in traffic conditions available.

Nha and his group (2012) considered that “choosing an appropriate route planning algorithm

among the existing algorithms in the literature to apply it in real road networks is an important

task for any transportation application”. This section firstly implements shortest path algorithm

using traffic data (traffic congestion and random incidents).

SCOOT (Split Cycle and Offset Optimization Technique)

SCOOT data is the main source of traffic information in Nottingham city. SCOOT is an Urban

Traffic Control system developed in the UK for optimizing network traffic performance, and

SCOOT utilizes a model of the controlled network in which traffic flows from the online

inductive loop detectors are fed. From this, SCOOT produces a large variety of traffic status

messages at regular time intervals.

M02 SCOOT message

This research proposed to use M02 class message which associated with the model information.

The M02 message allows the user to assess the situation of the traffic network. M02 provides

a straightforward way for link's travel time estimation. Anderson (1997), Carden et al (1989).

The following format message of M02

M02 Link <LINK> PERIOD aaaa STP bbbbbb DLY*10 ccccccc

 FLO dddddd CONG eeeeee RAW ffffff FLTS gggggg

PERIOD is the time in seconds over which the figures were collected

STP is the approximate number of vehicle stops per hour

DLY is the approximate delay in vehicle hours per hour

FLO is the approximate flow of vehicles per hour

CONG is SCOOT congestion in intervals/hour

RAW is congestion at the detector in intervals/hour

FLTS is number of faulty links in period

This research used M02 message to collect traffic data (traffic congestion and random incidents)

of link N10161E in Nottingham city network as an example which can be found in figure 6.

 Figure 6: link N10161E in Nottingham city map

 Example parameters that reported by M02, it shows the congestion level of this link in
exact time see the example below

Fr 10:03:30 M02 N10161E PERIOD 300 STP 302 DLY*10 24 FLO 345 CONG 12
 RAW 0 FLTS 0

Random incident refers to anything that stops the traffic flow. Such as in the real world could

be roadworks or just bad weather conditions causing very slow speeds. Example parameters

that reported by M02, it shows a random incident that happened in this link see figure 7. a

 Fr 10:34:28 I04 N10161E ---- Incident CLEARED………………………
 Fr 10:34:28 I08 N10161E 1 Duration 16 minutes………………………

Figure 7, a: format of a random incident message

2. Experimentation

This part implements available traffic data for the k-shortest path algorithm. The program will

find k-shortest path based on bus timetable and dynamic parameters (traffic congestion, random

incident). The program has been tested under Microsoft Visual C++ 2013 environment and

based on k-shortest paths algorithm using a MySQL database, and standard template library to

implement the algorithm. Figure 7,b: is a flowchart describing how the program works.

Yes No

Yes
Display
message
indicates that
there is delay
time because
incident
Happened Add
incident
duration time to

No

Start

Yes

No

Is all the
data

retrieved

Read Input
data from the

database

User Input

Create Graph

Compute KSP based on the bus timetable

Display

Journey
Request

Check traffic data

If the
paths
have an
accident

If the
paths
Congestio

No

Display message
indicates that
there is delay time
because
congesting Add
congestion period
time to travel time

First of all, the program works on the Nottingham city transportation network, and MPhil work

works with the network has around 100 nodes (bus stops) and 1276 edges (routes).

Step 1: the program will read entered data in MySQL, and finding first k-shortest paths based

on the developed label-setting algorithm using bus timetable.

Step 2: after presented the k-shortest paths, the program will check traffic data (traffic

congestion and random incident) for each path. If the path is blocked because traffic jam or

incident the program will display reorder of the paths based on changes in travel time and

present a new arrival time because the bus will stop for the fixed period of time. This time will

add to origin arrival time in bus timetable. So, for example, if there is an incident happened

then the duration time if the incident will add to travel time to generate a new arrival time. See

figure 7 which shows that there is an incident in the link E10161E at 10:34:28 and the duration

time is 16 minute.

Evaluation Results

The program will use a user interface called Navigation System for Nottingham City and will

ask the user to enter travel information, see the following example.

Based on the following example inputs

Enter Source location: Canning Circus, Canning Circus (Stop CC08)

Enter Destination location: Whitemoor (Nottingham), Aspley Lane (Stop WM18)

Enter Travel time: 09:00

Enter Number of route(s) (K): 3

 The program will compute k shortest path based on the entered data above, and display the
result.

The first shortest path is

Canning Circus, Canning Circus (Stop CC08) ---Bus78 Radford (Nottingham), Boden Street (Stop
RA33) ---Bus78 Radford (Nottingham), Peveril Street (Stop RA19) ---Bus77 Radford
(Nottingham), Hartley Road (Stop RA49) ---Bus78 Radford (Nottingham), Player Street (Stop RA30)
---Bus78 Radford (Nottingham), Gregory Boulevard (Stop RA31) ---Bus78 Bobbers Mill,
Chadwick Road (Stop RA32) ---Bus78Whitemoor (Nottingham), Aspley Lane (Stop WM18)

Departure time is 09:05

Arrival time is 09:47

The second shortest path is

Canning Circus, Canning Circus (Stop CC08) ---Bus77 Radford (Nottingham), Boden Street (Stop
RA33) ---Bus77 Radford (Nottingham), Peveril Street (Stop RA19) ---Bus77 Radford
(Nottingham), Hartley Road (Stop RA49) ---Bus77 Radford (Nottingham), Player Street (Stop RA30)
---Bus77 Radford (Nottingham), Gregory Boulevard (Stop RA31) ---Bus77 Bobbers Mill,
Chadwick Road (Stop RA32) ---Bus78Whitemoor (Nottingham), Aspley Lane (Stop WM18)

Departure time is 09:08

Arrival time is 09:50

The third shortest path is

Canning Circus, Canning Circus (Stop CC08) ---Bus78 Radford (Nottingham), Boden Street (Stop
RA33) ---Bus78 Radford (Nottingham), Peveril Street (Stop RA19) ---Bus77 Radford
(Nottingham), Hartley Road (Stop RA49) ---Bus78 Radford (Nottingham), Player Street (Stop RA30)
---Bus78 Radford (Nottingham), Gregory Boulevard (Stop RA31) ---Bus78 Bobbers Mill,
Chadwick Road (Stop RA32) ---Bus78Whitemoor (Nottingham), Aspley Lane (Stop WM18)

Departure time is 09:15

Arrival time is 10:00

After checking traffic data

The first shortest path is

Canning Circus, Canning Circus (Stop CC08) ---Bus78 Radford (Nottingham), Boden Street (Stop
RA33) ---Bus78 Radford (Nottingham), Peveril Street (Stop RA19) ---Bus77 Radford
(Nottingham), Hartley Road (Stop RA49) ---Bus78 Radford (Nottingham), Player Street (Stop RA30)

---Bus78 Radford (Nottingham), Gregory Boulevard (Stop RA31) ---Bus78 Bobbers Mill,
Chadwick Road (Stop RA32) ---Bus78Whitemoor (Nottingham), Aspley Lane (Stop WM18)

Departure time is 09:05

Delay time due to congestion

Arrival time is 09:47 + 5 min= 09:52

The second shortest path is

Canning Circus, Canning Circus (Stop CC08) ---Bus78 Radford (Nottingham), Boden Street (Stop
RA33)---Bus78 Radford (Nottingham), Peveril Street (Stop RA19) ---Bus77 Radford
(Nottingham), Hartley Road (Stop RA49)---Bus78 Radford (Nottingham), Player Street (Stop
RA30)---Bus78 Radford (Nottingham), Gregory Boulevard (Stop RA31) ---Bus78 Bobbers Mill,
Chadwick Road (Stop RA32) ---Bus78Whitemoor (Nottingham), Aspley Lane (Stop WM18)

Departure time is 09:15

Arrival time is 10:00

The third shortest path is

Canning Circus, Canning Circus (Stop CC08) ---Bus77 Radford (Nottingham), Boden Street (Stop
RA33) ---Bus77 Radford (Nottingham), Peveril Street (Stop RA19) ---Bus77 Radford
(Nottingham), Hartley Road (Stop RA49) ---Bus77 Radford (Nottingham), Player Street (Stop RA30)
---Bus77 Radford (Nottingham), Gregory Boulevard (Stop RA31) ---Bus77 Bobbers Mill,
Chadwick Road (Stop RA32) ---Bus78Whitemoor (Nottingham), Aspley Lane (Stop WM18)

Departure time is 09:08

There is 16 min delay time due to the incident in the path

Arrival time is 09:50 + 16 min= 10:05

After running program, there is a delay incurred by the occurrence of traffic congestion and

random incidents on the paths. The traffic data impact on the overall increase in travel time.

The example shows that the k shortest paths is reorder based on traffic changes in the paths.

Simulation of Urban Mobility (SUMO) is chosen for simulating the studied algorithms in

this research since it offers an open source package, which is highly portable, applicable for

microscopic road traffic to manage each vehicle in the network (Kotusevski and Hawick

(2009)). Moreover, SUMO supports Traci interface which provides the way to change vehicle

route during runtime (Wegener and et. at 2008).

The German Aerospace Centre began developing SUMO in 2001 and then it has developed

and evolved into a suite of traffic modelling utilities which includes a road network. SUMO

was improved as the aim that its prospective users will suggest and implement developments

to the simulator helping to build a realistic model. SUMO is not a traffic simulator only, but a

suite of applications that allows the user to export/import a road network and define its

corresponding traffic demand. (Smith, Djahel, and Murphy (n. d)). There are three modules in

the SUMO package:

Firstly, SUMO, which reads the input information, processes the simulation and produces

 Output files. It’s called graphical interface SUMO –GUI.

 Secondly, NETCONVERT, it reads the input data, and computes it for SUMO and writes

 the result into different output formats, like XML, or VISUM- networks.

 Moreover, it’s responsible for creating traffic light phases.

 Thirdly, DUAROUTER, which is a command line application that, given the departure

 time, source and destination, computes the routes through the map network itself

using Dijkstra's algorithm.

This research focuses on the use of a simulator to find the shortest path and simulate

Nottingham city network based on the collected data. It uses "NETCONVERT" to import

Nottingham city map from Open Street Map and converted it to be in an appropriate format

see figure 8 and figure 9. Traffic demand and routes for each vehicle should be also created.

These routing tools take the network and trips to produce route file that contains the routing

information for each for each bus and their stops see figure 10.

Figure 10: Buses Routes with their stops

Figure 9: Nottingham city map after converting to SUMO network

Figure 8: Nottingham city map in open street map

Performance Evaluation

The flowchart in figure 11 describes how k shortest path algorithm interacts with the dynamic

environment. This research used Nottingham city network and adapt the best routes assigned

to a bus according to the updates in congestion level and random incidents collected from the

SCOOT system. The program has three main steps which are explained as follows.

The timetable data and traffic data are stored in MySQL database, congestion level and the

random incident will represent as any number that indicates that link has congestion except

number 0 that indicates that is no congestion. Also, in a random incident.

Step 1:

 Compute first best shortest path from a source location to destination location according

to the developed k-shortest path algorithm.

Step 2:

 Re-calculate the best route due to an update in traffic condition. In this case, traffic

conditions are checked for an update. If there is an update impacting it will check if the bus on

the trigger link then, the program will remove this link and re-apply the algorithm again and

compute another shortest path from the current location. And if the bus is not on the trigger

link the bus will carry in its trip.

Step 3:

 Has the bus arrived at the destination? If no, step 2 is repeated until the Bus arrived its

goal location.

Yes

yes Is the
destination
reached?

Simulation step

Is the bus
on trigger
Link

Start

Yes No
If the path on
trigger link has
an accident
occurs

Simulation step

Find First Shortest Path based on the bus timetable

Check traffic data

If the path
on trigger
link has a
congestion

No

Remove this link
d fi d th

No

No

 In our simulation and based on the location information, we define routes and positions of

bus stops and let vehicles ("busses") stop at these positions for a pre-given time in the

configuration files named map.sumocf.xml, map.rou.xml and map.add.xml.

Firstly, we find the shortest path from origin bus stop to the requested destination bus stop. The

route is then assigned for the bus which will follow it as it is simulated by SUMO. The program

checks the events variable if any road (link) in the shortest path is blocked because of traffic

congestion or random incident. In this case, the program checks if the bus on the trigger link.

The K-shortest path algorithm is applied again to re-compute the path from the current location

of the bus to the destination. This process will have repeated until the bus arrives at its

destination. To do so, our program uses TRACI interface to inform SUMO to change the route

which is an already assigned to a bus. In this way, we can update the bus route during runtime.

The program is written in Python. Below figure 12 is part of the code in which label set is a

function to find the shortest path from node (start) to the node (target) in the map.

Algorithm 2 in figure 13 calls the label-setting algorithm to compute the shortest path from

start node to end node. After finding the route, this route is created in SUMO and is assigned

to a bus using TRACI API.

Figure 12: Algorithm 1 main Function

Figure 13: Algorithm 2 calculating the shortest path based on the data stored in MySQL

Summary

This chapter implemented k-shortest path algorithms in dynamic road network using available

traffic data (traffic congestion and random incident). The simulation tool we used to simulate

a road network is SUMO. To update the bus route during simulation runtime to avoid the delay

incurred by the occurrence of traffic congestion or random incidents on the roads, we proposed

to use TRACI (Traffic Control Interface) API in Python to alter the state of buses during

simulation run time.

APPENDIX 3

Data Structure that used in the thesis.

Python Dictionary

In OLPA* and BiOLPA* algorithms, we used a dictionary of a set, because in the open set

there is no key is provided, and we don't need to associate values with keys such as in LPA*

algorithm. Dictionaries are another example of a data structure and it is used to associate things

you want to store to keys you need to get them. A dictionary (or dict) is for matching some

items (called "keys") to other items (called "values"). In bidirectional, I use the term "key" to

denote the key (1 or -1) of the direction of search (forward, or backward) to decide the direction

in which to process the search.

The key, 𝑘𝑘(𝑑𝑑, 𝑠𝑠), of node 𝑠𝑠 is a vector with two components, while 𝑑𝑑 (direction process) the

best selection of either the forward or backward direction by expanding most promising node

from both searches.

Key 𝑘𝑘(𝑑𝑑, 𝑠𝑠) = [𝑘𝑘1(𝑑𝑑, 𝑠𝑠); 𝑘𝑘2(𝑑𝑑, 𝑠𝑠)],

 Where 𝑘𝑘1(𝑑𝑑, 𝑠𝑠) = 𝑀𝑀𝑣𝑣𝑛𝑛 (𝑔𝑔(𝑑𝑑, 𝑠𝑠), 𝑝𝑝ℎ𝑠𝑠(𝑑𝑑, 𝑠𝑠)) + ℎ(𝑑𝑑, 𝑠𝑠)

And 𝑘𝑘2(𝑑𝑑, 𝑠𝑠) = 𝑀𝑀𝑣𝑣𝑛𝑛(𝑔𝑔(𝑑𝑑, 𝑠𝑠), 𝑝𝑝ℎ𝑠𝑠(𝑑𝑑, 𝑠𝑠)).

Basic dict operations

Add or change an item in dict x

X [‘key’] = 20.5

 if this key is already existing in the dict then change this key value to the new value 20.5. If

this key is not existing in the dict then add this new key value to that dict.

Remove item from dict x

del x [‘key’]

Get a length of dict x

Len (x)

Check membership in x (only looks in keys, not values)

Item in x

Item not in x

 Delete all items from dict x

X . clear ()

Delete dict x

del x

So now how to access keys and values in a dict

X . keys () # returns list of keys in x

X . values () # returns list of values in x

X . items () # returns list of key-value tuple pairs in x

Python Class Implementation

The key components of any object-oriented software design are the utilization of organized,

efficient data structures, referred to as objects. These objects are implemented using class

definitions. The main benefit of using the objects to model the problem domain is that they

reflect the physical reality. In this project’s case, the topology of the network is stored in a

linked list, which is implemented as a class. In addition, all algorithms are also implemented

as classes, including A*, LPA*, OLPA*, BLPA*and BiOLPA* algorithms. The example

below describes a part of a route class. It contains all variables that are used to support the

different algorithms.

class Router:

 def Euclidean (self, v1, v2):

 return sqrt (sum ((c1 - c2) ** 2 for (c1, c2) in zip (v1, v2)))

 def reconstruct path (

 start,

 goal,

 pivot):

Creating a Bus network

Figure 14: Method to import CSV file and building bus network

Get Max Speed

Bus 1 Lines

Stop code, stop name, time

1. List of Publications

A) Conference Presentation

Alhoula, W (2014) Static and Time-Dependent Shortest Path through an Urban Environment

Time-Dependent Shortest Path. Science and Information Technology Conference 2014 May 7-

8, 2014 | NTU, UK (Top Ten Poster)

B) Conference Publication

• Hartley, J. and Alhoula, W (2014) Static and Time-Dependent Shortest Path through

an Urban Environment Time-Dependent Shortest Path. Science and Information

Conference 2014 August 27-29, 2014 | London, UK

• Hartley, J. and Alhoula, W (2018) Fast Replanning Incremental Shortest Path

algorithm for Dynamic Transportation Networks. Computing Conference 2019, to be

held from 16-17 July 2019 in London, United Kingdom. (acceptance enclosed)

C) Ready papers for submission

• Hartley, J. and Alhoula, W (2018) Improved Fast Replanning Incremental Shortest

Path algorithm for Dynamic Networks. (Ready for submission).

• Hartley, J. and Alhoula, W (2018) A Review Of Shortest Path Algorithms for Public

Transportation Network (Ready for submission).

	LIST OF CONTENTS
	List of Figures
	List of Tables
	List of Abbreviations
	CHAPTER 1
	INTRODUCTION
	1.1 Shortest Path Problem
	1.2 Dynamic Traffic Routing
	1.3 Motivation
	1.4 Blocked links and alternative route
	1.5 Objectives
	1.6 Original Contributions
	1.6.1 Overview
	1.6.2 Optimised LPA* Algorithm
	1.6.3 Bi-directional OLPA* Algorithm
	1.6.4 Novel Autonomous Search Strategy
	1.6.5 Bi-directional LPA* Algorithm

	1.7 Outline of the thesis
	CHAPTER 2
	TRANSPORTATION NETWORK
	2.1 Overview of a Graph Theory
	2.1.1 Definition of a Graph
	2.1.2 Definition of a Path
	2.1.3 Length of a path
	2.1.4 Distance of a path
	2.1.5 Shortest path

	2.2 Graph Representation in Memory
	2.2.1 Adjacency List
	2.2.2 Adjacency Matrix

	2.3 Transportation Network
	2.4 Network Model
	2.4.1 Time-Expanded Model
	2.4.2 Time-Dependent Model.

	2.5 Summary
	CHAPTER 3
	SHORTEST PATH PROBLEM IN TRANSPORTATION NETWORKS
	3.1 Introduction
	3.2 Search Strategies
	3.2.1 Uninformed Search
	3.2.1.1 Depth-First Search
	3.2.1.2 Breadth-First Search

	3.2.2 Informed (Heuristic) Search
	3.2.2.1 Decompose the Search Problem
	3.2.2.1.1 Bi-directional search method
	3.2.2.1.2 Sub-Goal Method

	3.2.2.2 Limit the Search Links (Hierarchical Search Method)
	3.2.2.3 Limit the Search Area
	3.2.2.3.1 Branch Pruning Method
	3.2.2.3.2 A* Algorithm

	3.3 Classical Algorithms
	3.3.1 Dijkstra’s algorithm
	3.3.1.1 K-Shortest Path Algorithm
	3.3.1.2 Label Setting Algorithm
	3.3.1.3 Label Correcting Algorithm

	3.3.2 A* Algorithm

	3.4 Properties of Search Algorithms
	3.5 Incremental search
	3.5.1 Dynamic Traffic Routing
	3.5.2 Dynamic Time-Dependent Shortest Path
	3.5.3 Dynamic Stochastic Shortest Path
	3.5.4 Incremental Dynamic Time-Dependent Shortest Path
	3.5.5 Incremental DynamicSWSF-FP Shortest Path Algorithm

	3.6 Summary
	CHAPTER 8
	CONCLUSION AND FUTURE WORK
	8.1. Introduction
	8.1.1 Optimised LPA* Algorithm
	8.1.2 Bi-directional OLPA* Algorithm
	8.1.3 Bi-directional LPA* algorithm

	8.2 Future work
	8.2.1 Data Source
	8.2.2 Travel Time Prediction Method
	8.2.3 Stochastic Link Travel Time

	REFERENCES
	APPENDIX
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3

	1. List of Publications
	A) Conference Presentation
	B) Conference Publication
	C) Ready papers for submission

