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Abstract: 
Cysteine proteases are implicated in a wide range of biological processes, which 

makes them an important factor in the pathogenesis of many diseases. 

Dysregulation of protease activity can lead to various diseases such as cancer, 

osteoporosis, neurological disorders and cardiovascular diseases. Furthermore, 

cysteine proteases have been proved to play a critical role in the life cycle of 

parasitic infections, an issue that grows every year due to increasing human 

migration. Therefore, cysteine proteases show great potential as targets for 

medicinal chemists.  

The following work aims to address this area of research through the synthesis of 

non-natural amino acid derived thiosulfonate warheads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 



 

Table of Contents: 
 

1 Introduction ............................................................................................................. 1 

   1.1 Motivation .......................................................................................................... 1 

   1.2 Active site and structure .................................................................................... 1 

   1.3 Cysteine proteases in cancer ............................................................................ 3 

   1.4 Cysteine proteases in parasitic infections ......................................................... 4 

   1.5 Current inhibitors ............................................................................................... 7 

   1.6 Thiosulfonates ................................................................................................... 9 

2 Results .................................................................................................................. 12 

    2.1 Exploring efficient thiosulfonate synthesis methods ....................................... 12 

    2.2 Methyl warhead design .................................................................................. 19 

    2.3 Backbone synthesis ....................................................................................... 20 

3 Conclusions and future work ................................................................................. 22 

4 Experimental ......................................................................................................... 23 

 

References                                                                                                                34 

 

 

 

 

 

 

 

 

 

 

 

 

ii 



 

List of Figures: 
 

Catalytic cycle of cysteine protease active site .......................................................... 2 

Representation of enzyme-substrate complex and the seven binding sites ............... 3 

Life cycle of Chagas disease ...................................................................................... 5 

Structures of Benznidazole and Nifurtimox ................................................................ 6 

Structure of K11777 ................................................................................................... 6 

Structures of currently used inhibitors ........................................................................ 7 

Mechanism of K11777 and thiosulfonate inhibitor ...................................................... 9 

Thiosulfonate forming hydrogen bonds to His159 ...................................................... 10 

 

 

List of schemes: 
 

Warhead synthesis ................................................................................................... 12 

Optimising thioacetate to thiol conversion to avoid undesired disulphide formation . 13 

Thiosulfonate formation using sulfonyl chlorides ...................................................... 13 

One pot thiosulfonate formation ............................................................................... 14 

Mechanism of sulfone formation upon oxidation with Oxone ................................... 17 

Sulfinate salt method ................................................................................................ 18 

Synthesis route for methylated warhead .................................................................. 20 

Backbone synthesis ................................................................................................. 21 

 

 
 
 
 
 

iii 



 

List of abbreviations:  
Boc: N-tert-butoxycarbonyl 

CDC: Centre for disease control 

DCM: Dichloromethane 

DiPEA: N,N-diisopropylethylamine 

DMF: N,N-Dimethylformamide 

DMSO: Dimethyl sulfoxide 

MeCN: Acetonitrile  

MMTS: Methyl Methanethiosulfonate 

TBDMS: tert-Butyldimethylsilyl Ether 

TFA: Trifluoroacetic acid 

THF: Tetrahydrofuran 

WHO: World Health Organisation 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iv 



 

 



1 
 

1 Introduction 
 

1.1  Motivation: 
 

Proteases are a large family of peptide-bond hydrolysing enzymes. They are present 

in all eukaryotic organisms and regulate a vast number of processes such as cell 

death, proliferation, migration and protein turnover.1 Dysregulation of these 

proteolytic enzymes can lead to the disruption of the biological processes they 

control. 

Among these enzymes, cysteine proteases have been recognised as causal agents 

in human pathologies.2 Furthermore, cathepsins have an essential role in the 

infectivity and life cycle of protozoa such as Plasmodium falciparum (Malaria), 

Trypanosoma brucei (African sleeping sickness) and Trypanosoma cruzi (Chagas 

disease), making them promising drug targets.3  

 

1.2 Active site and structure:  
 

Proteases hydrolyse peptide bonds and can be classified into five major classes: 

aspartic, threonine, serine, cysteine and metalloproteases.1 All papain-like cysteine 

proteases are composed of a left (-L) and a right (-R) domain. The L-domain 

contains three D-helices while the R-domain is a E-barrel closed at the bottom by a 

D-helix. The two domains form a cleft in the middle where the active site is situated.4 

Cysteine proteases are characterised by their highly conserved active site consisting 

of a cysteine, histidine and asparagine residue1 (figure 1). 
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Figure 1: Catalytic cycle of cysteine protease active site. 

 

Cys25 and His159 are thought to be catalytically active as a thiolate-imidazolium ion 

pair.1 The Asn175 forms a hydrogen bond to the His159 imidazole and orientates it in 

the optimum positions for various steps of the catalytic mechanism. The nucleophilic 

active site thiol can attack the carbonyl of the scissile bond (Figure 1, a) and form a 

tetrahedral intermediate (Figure 1, b) which collapses yielding a thioester (Figure 1, 

c). The thioester finally gets hydrolysed to yield the carboxylic acid and the active 

site nucleophilic thiol. 4 By contrast, other enzymes such as serine and threonine 

proteases have a nucleophilic oxygen in their active site. This key distinction can be 

used when designing a specific inhibitor that can differentiate between enzyme 

classes and interact only with the active site thiol of cysteine proteases.  

According to the nomenclature of Schecter and Berger5 there are seven subsites in 

the binding area of cysteine proteases. Four on the acyl side (S4, S3, S2, S1) and 
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three (S1’, S2’, S3’) on the amino side of the scissile bond (Figure 2).  The S2, S1 

and S1’ subsites are the three well defined sites where residues can interact with the 

enzyme by both their main and side chain. It is worth noting that the S2 binding site 

is the largest and most defined in papain cysteine proteases and thus the interaction 

between the S2 site and the complementary P2 residue is key in determining 

inhibitor specificity.6  

 
Figure 2: Representation of enzyme-substrate complex and the seven binding subsites.  

 

Cathepsins are proteases found in all animals and most other organisms. Most of the 

members of this group become activated at low pH and their activity lies almost 

entirely within the acidic environment of the lysosomes.  There are 11 cysteine 

cathepsins expressed in the human genome1. Most cathepsins have structures 

composed of two domains (left and right domain) and the active site cleft in the 

middle. Depending where they cleave their substrates, cathepsins can be classified 

as exopeptidases (Cathepsin B, C and X) or endopeptidases (Cathepsin L, F and 

K).6 A typical feature cathepsin B-like cysteine proteases is the existence of an 

occluding loop between conserved Pro-Tyr103 motif and Cys128. This loop contains 

two histidine residues (His110 and His111) which anchor the C-terminal carboxyl group 

of peptide and protein substrates and are responsible for the dipeptidyl 

carboxypeptidase activity of the enzyme (removes C-terminal dipeptides)7. 

Cathepsin L has an endopeptidase activity and will selectively cleave peptides with 

aromatic residues in the P2 position and hydrophobic residues in the P3 position.8 

These differences can be exploited to design a more specific inhibitor that can target 

individual cysteine proteases.  

 
1.3  Cysteine proteases in cancer:  
 

The broad range of the biological processes that cathepsins are involved in indicates 

their importance within the organism. Aberrant cathepsin activity has been shown to 



4 
 

contribute to many diseases such as: osteoporosis, arthritis, obesity, cystic fibrosis, 

many types of cancer and parasitic pathogenesis.9  

In many cancer types, increased levels of cathepsins correlate to increased 

malignancy. Dysregulation of cysteine protease activity is crucial for tumourgenesis. 

Cathepsins recycle proteins for cancer cell survival and proliferation, and they modify 

tumour microenvironment which leads to invasion and disease progression. They 

also contribute to activation of growth factors, immune system regulation and 

metastasis. Therefore, cysteine cathepsins represent an important class of proteins 

that facilitate cancer progression.10  

The attempt of cancer treatment via protease inhibition was done via matrix 

metalloproteases (MMPs) 11. However, MMPs failed in clinical trials which led to the 

termination of their use. These molecules reached phase III in clinical trials but were 

terminated due to their activity against both pro and anti-tumorigenic proteases. 

Furthermore, they proved to be effective only against early stages of cancer and had 

considerable toxicity in some patients. A critical advantage that cystine protease 

inhibitors have over MMPIs is that in addition to increased expression, aberrant 

cathepsins also change their position from being in the lysosome to moving onto the 

cell surface. The tumour environment is acidic so the cathepsins can work outside 

the cell. This may allow differential targeting of tumour-specific cathepsins through 

inhibitor design towards the tumour microenvironment. For example, inhibitors which 

are poorly cell permeable may prove advantageous as they would leave cathepsins 

that function normally untouched.11 

Some cathepsins have been shown to have a role in acquired radiation and 

chemotherapy resistance and their inhibition has improved the outcome of such 

treatments.9 Furthermore, whist cathepsins can exhibit tumour-promoting activity, 

there are also cysteine cathepsins which have shown tumour supressing activity, 

highlighting the need for higher selectivity. 

 

 

1.4  Cysteine proteases in parasitic infections: 
 
Cysteine proteases are fundamental to the metabolism of many tropical parasites 

and cysteine protease inhibitors have been shown to stop parasitic infections both in 

cell cultures and animal models.12 
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Chagas disease is the leading cause of heart disease in South America, causing 

over 15.000 deaths each year and it is caused by the protozoan parasite 

Trypanosoma cruzi. 13 

 
 
Figure 3: Life cycle of Chagas disease (https://www.cdc.gov/parasites/chagas/biology.html). 

 

The cysteine protease Cruzain is essential for T. cruzi as it is involved in all stages of 

the parasite’s life cycle (Figure 3) – infection, growth, nutrition and immune system 

evasion.14 An advantage of cysteine protease inhibitors is that by selectively 

targeting Cruzain, the infection can be stopped at any stage during its life cycle, not 

only when its most infective. The World Health Organisation (WHO) recommended 

two drugs for the treatment of the disease: nifurtimox and benznidazole (Figure 4). 

However, they are less effective once the infection reaches the chronic phase and 

display severe side effects.15 
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Figure 4: Structures of Benznidazole and Nifurtimox. 

 

K11777 (Figure 5) is a vinyl sulfone inhibitor that has shown good efficacy in mouse 

and dog models, low toxicity, and selectivity towards Cruzain over mammalian 

cysteine proteases.16 It is also important to note that K11777 achieved the removal 

of both parasite adult worms and drastically reduced the quantity of eggs present in 

the liver and spleen, proving that a protease inhibitor can target the parasitic 

infection regardless of the stage in its lifecycle.2  A factor contributing to K11777’s 

high efficacy is that Cruzain has a strong preference for large hydrophobic residues 

in the P2 position, as this determines specificity by interacting with the S2 binding 

pocket of the cysteine protease family. Furthermore, although the P3 position is of 

little importance to binding, modifying it influences a number of properties including 

hepatotoxicity, lipophilicity and pharmacokinetics. It was determined that including 

the N-methylpiperazine in the P3 position would increase the bioavailability by 

increasing absorption in the small intestine. 

 

 
 
Figure 5: Structure of K11777 

 

 



7 
 

1.5  Current inhibitors:  
 

 
 
Figure 6: Structures of currently used inhibitors: nitrile (AAE-581), epoxysuccinyl (E-64, JPM-OEt), 

vinyl sulfones (WRR-483). 

 
Several small molecules have been designed to selectively target and inhibit the 

activity of cysteine proteases.  The main classes of inhibitors that have been tested 

on animal models and in clinical trials are nitriles, vinyl sulfones and epoxysuccinyl-

derived molecules.1 These can be either broad spectrum inhibitors or specific for 

particular members of the cysteine protease family. Many of these inhibitors are 

composed of a “backbone” that confers specificity for the required cysteine protease 

type and an electrophilic warhead that can react with the active site thiol. Figure 6 

shows some of the inhibitors that are most widely used. Although most of these 

inhibitors show promising activity in vitro, when tested in vivo they were not as 

effective. For example, Cathepsin K inhibitors such as AAE-581 accumulate in the 

lysosome due to their lipophilic profile and end up inhibiting off-target enzymes such 

as Cathepsin S.10 
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E-64 is an epoxysuccinyl based inhibitor and it was extracted from Aspergillus 
japonicus.10 E-64 is an irreversible, broad spectrum inhibitor, which was tested on 

Japanese adults with muscular dystrophy, but the drug was stopped at phase III due 

to off-target activity. The studies showed that E-64 had good efficacy but it would 

also covalently bind other proteases that were closely related to the cathepsin 

family.9 Further modifications to the molecule have yielded more specific and less 

toxic inhibitors such as JPM-OEt but they are yet to be tested in clinical trials.17 The 

vinyl sulfone K11777 has shown remarkable efficacy and low toxicity in animal 

models and is currently undergoing clinical trials. WRR-483 is a derivative of K11777 

in which the P2 residue was changed from a phenylalanine to an arginine in the 

hope of achieving higher selectivity. Although the attempt to make the inhibitor more 

selective proved successful, the overall efficacy was decreased by putting an 

arginine in the P2 position. Considering its potential, low toxicity and high potency, 

we have chosen to use vinyl sulfone inhibitor K11777 as a foundation for the design 

of the thiosulfonate inhibitor.  
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1.6  Thiosulfonates: 
 

 

 
  

 
Figure 7: Mechanism of K11777 cysteine protease inhibitor compared to proposed thiosulfonate 

mechanism. 

 

In this work, thiosulfonates will be explored as novel warheads for use as cysteine 

protease inhibitors. Methylmethanethiosulfonate (MMTS) is the simplest 

thiosulfonate and it is a cysteine protease inhibitor used to measure protease activity 

in biological assays. MMTS has also displayed anti-cancer and anti-bacterial 

activity.18 A very important aspect of thiosulfonates is their selective interactions with 

protein thiols. This can be of great value in the synthesis of specific inhibitors. 

Therefore, we have chosen to include a thiosulfonate warhead in our inhibitors 

(Figure 7) in order to specifically target cysteine proteases over other classes of 

enzymes that are present in the body. Furthermore, previous work in the Liskamp 

group (not published) has shown that replacing the aromatic moiety in the P1’ 

position for an aliphatic moiety in thiosulfonates enhanced the potency of the 
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inhibitors. This was thought to be through down-regulating the reactivity of the 

warhead. Taking this together with the backbone of K11777, a cysteine protease 

inhibitor that made it to late stage clinical trials shows potential for a successful line 

of inhibitors. K11777 will provide an ideal reference compound allowing conclusion to 

be drawn solely on the effect of the warhead and not backbone alterations. 

The rationale behind the backbone design is that having N-methylpiperazine in the 

P3 position increases the inhibitor’s assimilation in the small intestine, while the 

homophenylalanine side chain takes advantage of the P2 specificity of cathepsin-L 

like cysteine proteases, thus conferring the inhibitor specificity towards a certain 

member within the protease family.  

 
Figure 8: Thiosulfonate forming hydrogen bonds to His159 (shown in red) of the cysteine protease 

active site.  

 

The novel thiosulfonate warheads build on this specificity as other enzymes such as 

serine and threonine proteases have a nucleophilic oxygen in their active site. These 

oxygen-centred nucleophiles are hard nucleophilic centres while the active site thiol 

of cysteine proteases offers a soft nucleophile. Thiosulfonates aim to exploit this 

difference as the bivalent sulphur of the thiosulfonate moiety offers a soft 

electrophile, thus increasing the selectivity towards the soft sulphur-centred 

nucleophile of cysteine proteases. Furthermore, modelling studies have shown that 

the hexavalent sulphur forms favourable interactions (hydrogen bonds) with His159 of 

the cysteine protease active site (Figure 8).  
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Previous work within the Liskamp group (unpublished) has shown that improving the 

stability of the thiosulfonates by down-regulating their reactivity has previously been 

shown to increase the potency. Other methods to expand on this observation will 

also be explored such as further substitution of the thiosulfonate warhead on the 

carbon adjacent to the bivalent sulphur. The strategy is expected to decrease the 

rate of a nucleophilic attack on the bivalent sulphur, thus improving stability, which is 

expected to translate into improved potency as previous inhibitors could be degraded 

before reaching the target enzyme.   
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2 Results: 
2.1 Exploring efficient thiosulfonate synthesis methods: 

 
The main aim of the project was to deliver an efficient synthesis towards the 

warhead component which would be coupled to the inhibitor backbone later. The 

synthesis for this component can be seen in Scheme 1.  

 

 
 
Scheme 1: Warhead synthesis: a) Boc2O, NaOH, THF, 97%; b) MeI, K2CO3, DMF, 95%; c) NaBH4, 

LiCl, EtOH, THF, 70%; d) MsCl, NEt3, DCM, 75%; e) Cs2CO3, AcSH, DMF, 38%; f) LiAlH4, THF, -

78ºC, 94%; g) C16H11BrSO2, DCM, 0ºC, 20%.  

 

This method offers a quick and efficient route to the synthesis of thiosulfonate 

warheads that can then be incorporated in the main inhibitor via peptide coupling. By 

analogy to K11777, it was decided that the synthesis would be started from 

homophenylalanine which could be derivatised to obtain the thiosulfonate warhead 

along with the P1 residue. Synthesis was started from commercially available 

homophenylalanine 1 which was Boc protected to obtain compound 2. The 

carboxylic acid was then converted to a methyl ester by alkylation under basic 

conditions to avoid Boc deprotection. Methyl ester 3 was then reduced to an alcohol. 

Following this, a functional group transformation converting alcohol 4 to a good 

leaving group was required, hence mesylation to 5 was chosen. The mesylate was 

required for a subsequent conversion to thioacetate 6 via an SN2 reaction that would 
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introduce the sulphur functionality. At this stage, the thioacetate needed to be 

converted to a thiol. Initially, hydrolysis using EtOH, KOH and 2% water was 

attempted. This method yielded disulphide 9 as the major by-product (scheme 2) due 

to oxidation of the free thiol by atmospheric oxygen. Although all efforts were made 

to exclude oxygen from the reaction, it was determined that the basic conditions 

were accelerating this unwanted side reaction. Thus, as avoiding these conditions 

may improve the yield, reduction utilising LiAlH4 was used. 

 

 
 
Scheme 2: Optimising thioacetate to thiol conversion to avoid undesired disulphide formation: a) 

EtOH, KOH, 2% water, 20% 7 and 80% 9. b) unwanted disulphide bond formation. 

 

The reduction using LiAlH4 was successful with a 94% yield and was kept in the final 

synthetic route. The final step (scheme 1, g) is crucial to the synthesis as it forms the 

aliphatic thiosulfonate. Previously, sulfonyl chlorides were explored within the 

Liskamp group for this reaction, but it was found that this formed the symmetrical 

disulphide 12 as the major product, as shown in Scheme 3.   

 

 
 
Scheme 3: Thiosulfonate formation using sulfonyl chlorides; a) DCM, DiPEA, 0qC, b) unwanted side 

reaction with second equivalent of thiol. 

 

It was hypothesised that this unwanted side-reaction is happening because the rate 

of formation of disulphide (step b, k2) is faster than the rate of thiosulfonate formation 
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(step a, k1). Thus, sulfonyl bromides were introduced to try and increase the rate of 

k1 relative to k2, and favouring formation of thiosulfonate over disulphide. The use of 

sulfonyl bromides yielded a higher conversion to thiosulfonate with trace amount of 

disulphide by-product. With a successful, high yielding synthesis towards aliphatic 

thiosulfonates, we envisioned the final step (scheme 1, g) could be optimised to a 

one pot reaction allowing rapid expansion of the substrate scope.  

Initially, it was hypothesised that the conditions in scheme 4 would be possible for 

sulfonyl bromide formation in situ and the introduction of the thiol in a one pot 

manner. If this proved to be successful, then substrate scope could be rapidly 

expanded in a one pot manner by varying the thiol starting material to generate a 

range of sulfonyl bromides in situ. 

 
 

Scheme 4: One pot cyclohexane thiosulfonate formation; a) NBS, 2M-HBr, MeCN; b) addition of 

RSH. 
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The one-pot method was attempted with the conditions shown in scheme 4. 

However, this yielded only trace amount of thiosulfonate and symmetrical disulphide 
as the major product. It was thought that this was due to the sulfonyl bromide being 

formed too slowly or not at all and so reaction conditions were screened as shown in 

table 1. Using conditions presented in entry 1, symmetrical disulphide of the starting 

thiol was observed as the major product. At first, this was thought to happen due to 

the fact that the sulfonyl bromide is not being formed prior to the addition of thiol. 

 

 

 
 

 
Table 1: Scanning conditions for sulfonyl halide. 

 

The number of equivalents of NBS was increased in order to ensure that the sulfonyl 

bromide was properly formed before the addition of the thiol (table 1, entry 2). As this 

was met with limited success, it was thought that the thiol was being oxidised by the 

extra equivalents of oxidant added. Hence, as presented in entry 3, we eliminated 

the acid. This was done in consideration to the fact that the NBS supplies 

oxidant/bromide and H2O is the oxygen source. Hence, it was assumed there is no 

need for acid in the mechanism. However, this caused the sulfonyl halide to not be 

formed at all, implying that the acid was required for successful bromination and 

sulfonyl bromide formation.  

As multiple mechanisms can be drawn to produce the sulfonyl bromide under the 

previously mentioned conditions, reaction control through regulation of number of 

Entry Reaction conditions Sulfonyl halide Yield (%) 

1 NBS (3 eq.), 2M-HBr (2% vol.), MeCN 25 - 30 

2 NBS (4 eq.), 2M-HBr (2% vol.), MeCN 15 - 20 

3 NBS (4 eq.), MeCN: H2O (50:50) - 

4 Oxone (2.5 eq.), KBr (1 eq.), MeCN trace 

5 Oxone (3.5 eq.), KBr (1 eq.), MeCN 15 - 20 

6 Oxone (1.5 eq.), KBr (0.5 eq.), MeCN trace 

7 Oxone (2.5 eq.), KBr (1 eq.), MeCN, DiPEA - 

8 Oxone (2.5 eq.), KI (1 eq.), MeCN              - 
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equivalents was difficult to achieve. As excess oxidant could instantly oxidise the 

second thiol upon addition, other oxidants with a more specific mechanism were 

considered.  

A literature review found Oxone20 (KHSO5) as an oxidant which may be suitable for 

the transformation of thiols to sulfonyl bromides. Upon examination of the 

mechanism presented in scheme 4, it can be seen that the advantage of this method 

is that the outcome could be, in theory, easily controlled by varying the amount of 

oxidant/reagents. Furthermore, the desired sulfonyl halide is produced while the 

symmetrical disulphide 18 is being consumed as part of this cycle. Thus, even if the 

unwanted side-reaction produces symmetrical disulphide (as in Scheme 3, b), this 

will be consumed with the addition of Oxone and KX. So, by carefully controlling the 

equivalents of oxidant and acid added, we can eliminate undesired disulphide by-

products formed through oxidation of the second thiol by excess oxidant. Oxone 

reacts with the KX to produce hypohalous acid (HOX). Next, the hypohalous acid 

reacts with the unreacted thiol to produce a sulfinyl halide 17 which then reacts with 

another equivalent of thiol and is converted to disulphide 18. The disulphide reacts 

with one equivalent of hypohalous acid to give compound 19 which reacts with 

another equivalent of HOX to form 20. Compound 20 then rearranges to the 

symmetrical thiosulfonate 21. This can then react with a second equivalent of KX 

and form the sulfonyl halide 22 which we need for our one pot procedure.  As can be 

seen from the mechanism, for every two equivalents of Oxone and one equivalent of 

potassium halide added to the reaction, we get one equivalent of HOX. Tuning the 

number of equivalents of oxidant added, we can ensure that upon addition, the 

second equivalent of thiol will not be instantly oxidised to the symmetrical disulphide 

upon addition. Work started with addition of the equivalents used cited by 

Madabhushi et al (entry 4, table 1) but this only yielded trace sulfonyl halide. The 

next logical step was to add more equivalents of Oxone (entry 5) and acid so that the 

reaction goes all the way to compound 22. This gave a 15-20% yield for sulfonyl 

halide formation in separate steps but only trace amount of product when attempted 

in a one pot reaction. 

Considering that the quantity of KX determine the amount of HOX going into the 

reaction, the amount of potassium halide used to test how this would influence the 

outcome (entry 6). Only trace amounts of sulfonyl halide were observed meaning, in 

this case, at least one equivalent of KX is required to form the sulfonyl halide. 
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Next, DiPEA was added in an attempt to increase the nucleophilicity of the second 

thiol, and thus increase the reaction rate of thiosulfonate formation and avoid thiol 

oxidation due to excess oxidant. This reaction only yielded trace amounts of sulfonyl 

bromide. Next, the use of iodide for the formation of the thiosulfonate was attempted 

in order to increase the leaving group ability hence reaction rate in an effort to 

increase the formation of thiosulfonate with respect to competing side reactions. As 

presented in entry 8, when Oxone and potassium iodide were used, neither sulfonyl 

iodide or starting material were observed. Finally, since most of the changes proved 

to be unsuccessful or hard to trace/follow, the initial conditions were kept, and the 

reaction was done in separate steps.  

 

 
 

Scheme 5: Mechanism of sulfone formation upon oxidation with Oxone. 

 

Although the route provided in scheme 1 was successful for cyclohexane thiol 

warhead, when it was used to prepare the cyclopentane thiol, symmetrical disulphide 

was observed as a main product and only trace amounts of the desired warhead was 
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obtained.  The reasons for this observation are not yet clear as the chemistry of the 

cyclopentane and cyclohexane systems was not thought to differ drastically. 

Cuevas et al21 describe a method of making sulfonyl halides by using iPrOH as a 

source of oxygen. However, the use of iPrOH makes filtering of the product 

inefficient and other methods of purification proved unsuccessful and no clear 

product could be identified. 

Moving forward, it was decided to try and obtain the thiosulfonate by using a 

sulfinate salt with the aim of applying this to a wider substrate scope, as the sulfonyl 

bromides were only efficient when generating the cyclohexane derivative. The 

advantage of this method is the increased stability of the sulfinate salt over the 

sulfonyl bromide, making it potentially easier to work it. Furthermore, the starting 

material is now the symmetrical disulphide rather than the thiol, meaning the strict 

anaerobic conditions are not required to ensure the thiol is not oxidised to an 

unwanted disulphide. The reduction of sulfonyl chloride with Na2CO3 and NaHCO3 

was carried out at 50ºC and the mixture was allowed to stir for 30 mins. Next, 

sulfonyl chloride was added followed by the disulphide. The reaction was allowed to 

stir overnight, and an 1H NMR spectrum of the product was obtained but no 

thiosulfonate was observed.  

 

 
Scheme 6: Sulfinate salt method: a) NCS, 2M-HCl, MeCN; b) Na2SO3, NaHCO3, 50ºC 
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2.2 Methyl warhead design:  

 

Based on the arguments above, alternative methods to modify the thiosulfonate 

warhead were pursued. Rather than expanding the substrate scope at the primed 

side, focus now turned towards controlling reactivity by steric control. Previous work 

within the Liskamp group (not published) found that the thiosulfonate warhead is 

highly tuneable and aliphatic analogues are the most promising due to their 

decreased reactivity profiles. To push this concept further it was suggested that 

introduction of a methyl substituted in the position adjacent to the bivalent sulphur 

might decrease the rate of nucleophilic attack, and thus increasing the stability of the 

inhibitor. The increase in stability is anticipated to be met with an increased in 

potency as this trend has been observed in previous work done within the Liskamp 

group (not published).  

The synthesis used D-threonine as a starting point. This amino acid is commercially 

available, cheap and the easy functionalisation of the carboxylic acid opens up a 

wide range of possibilities in terms of non-natural amino acids for future warhead 

design. In this instance, the final compound was desired to have a 

homophenylalanine side chain. To achieve this, the carboxylic acid was converted 

into a methyl ester (step a, scheme 7). Next, the amine and alcohol functionalities 

were protected using Boc and TBDMS respectively, yielding compound 27. 

Reduction of the methyl ester directly to an aldehyde using DIBAL-H in a controlled 

manner was attempted. This reagent had no effect and only starting material could 

be observed even with extra equivalents of DIBAL-H. Consequently, it was decided 

to reduce the methyl ester to a primary alcohol 28 using LiAlH4 and then oxidise to 

aldehyde 29 using Swern conditions. 

The resulting aldehyde was checked by use of LCMS and TLC and the purity was 

sufficient for addition in the subsequent Wittig reaction. Due to time constraints, the 

synthesis will be carried further by a MSci student, but the subsequent steps will be 

briefly discussed.  

With compound 30 in hand, the next step will be the hydrogenation of the alkene to 

an alkane, providing the key building block of homophenylalanine with a single 

methyl substituent next to the alcohol functionality. This will be followed by TBAF 

removal of the TBDMS protecting group to yield the secondary alcohol 31. Next, the 
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mesylate functionality will be installed to provide a good leaving group for the next 

step of the synthesis. Following this, the thioacetate moiety will be introduced and 

reduced to give the corresponding thiol 34, which can be coupled to a sulfonyl halide 

to form the thiosulfonate warhead 35. 

 
Scheme 7: Synthesis route for methylated warhead: a) Thionyl chloride, MeOH, 70qC, 2h, 95%; b) 

Boc2O, DiPEA, DMF, 95%; c) TBDMS-Cl, Imidazole, DMF, 3h, 25%; d) LiAlH4, dry THF, -78qC, 95%; 

e) Oxalyl chloride, DMSO, Triethylamine, -78qC, dry THF; f) Triphenyl phosphine ylide, dry DCM, 

product formation observed by LCMS; g) H2, Pd/C; h)MsCl, NEt3, DCM; i) Cs2CO3, AcSH, DMF; k) 

LiAlH4, THF l) Sulfonyl bromide, DCM.  

 

2.3  Backbone synthesis: 
 

Finally, the backbone was synthesised alongside the warhead fragment in 

anticipation of the final compound coupling.  The backbone component was kept 

identical to K11777 in order to be able to draw direct comparisons between the 

newly synthesised inhibitors and the reference vinyl sulfone inhibitor, observing only 

the effect of the warhead on the overall stability and potency of the molecule. The 

backbone was synthesised using the route presented in scheme 8. The synthesis 

was started from commercially available Boc-Phenylalanine and the carboxylic acid 
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was converted into benzyl ester 37. Next, the Boc protecting group was removed so 

that the N-methylpiperazine group could be installed. This was done in two 

subsequent steps, first using Triphosgene and NaHCO3 to generate isocyanate, 

followed by addition of N-methylpiperazine. Finally, the benzyl ester was removed 

using hydrogen with a palladium/carbon catalyst and compound 40 was obtained.  

 

 
 

Scheme 8: Backbone synthesis: a) Benzyl bromide, K2CO3, DMF, 83%; b) 50% TFA, DCM, 0qC, 

100%; c) Triphosgene, NaHCO3, N-methylpiperazine, DCM, 0qC 70%; d) H2, Pd/C, DCM, 100%. 
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3 Conclusions and future work: 
 
To conclude, an efficient and reproducible synthesis towards thiosulfonates for 

incorporating into cysteine protease inhibitors. In an attempt to improve upon this, 

work was undertaken to develop a one pot aliphatic thiosulfonate synthesis method 

which proved unsuccessful. Thus, future work to expand the substrate scope of the 

aliphatic thiosulfonates will focus on the previously validated step-wise approach.  

A new synthesis towards further substituted thiosulfonates, expected to enhance 

stability and potency of the novel warhead, has been initiated. The key methyl non-

natural amino acid derived building block was isolated. This synthesis will also be 

applied starting from D-allo-threonine which will reverse the stereochemistry of the 

key methyl substituent in order to determine if this has any effect on final inhibitors.  

Future work will introduce the thiosulfonate moiety into this new building block 

leading towards a new generation of thiosulfonate cysteine protease inhibitors.  

The backbone of these inhibitor constructs has been successfully synthesised and 

future work will couple this with the new warhead moieties for further testing. This 

testing will include stability tests to determine the effect of both aliphatic substituents 

and further substituted methyl warhead on stability. Enzymatic testing will be carried 

out to correlate these results with the observed potency of the compounds and finally 

application to parasitic infected models will be performed.  
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4 Experimental: 

 

Materials:  
 

All reagents and starting materials were obtained from either Sigma-Aldrich® or 

Fluorochem Ltd. and of the highest available quality, utilized without further 

purification, unless specified otherwise.  

All solvents were obtained from Fisher Scientific. Where necessary (under strict 

anhydrous conditions) solvents were obtained from a dry, distilled source. All 

deuterated solvents were obtained from Cambridge Isotope Laboratories, Inc. 

Solvents were evaporated under reduced pressure at 40°C. Reactions in solution 

were monitored by LCMS. Liquid chromatography mass spectrometry (LCMS) was 

carried out on a Thermo Scientific LCQ Fleet quadrupole mass spectrometer with a 

Dionex Ultimate 3000 LC using a Dr. Maisch Reprosil Gold 120 C18 column (110 Å, 

3 μm, 150×4.0 mm). 1H NMR data was acquired on a Bruker 400 MHz spectrometer 

in MeOD/CDCl3 as solvent. Chemical shifts (δ) are reported in parts per million 

(ppm) relative to the solvent residual signal, MeOD (4.87 ppm)/CDCl3(7.26 ppm). 13C 

NMR data was acquired on a Bruker 400 MHz spectrometer at 101 MHz in 

CDCl3/MeOD as solvent. Chemical shifts (δ) are reported in ppm relative to the 

solvent residual signal, MeOD (49.00 ppm). All automated column chromatography 

purifications were conducted with the Biotage® Isolera One® automated 

chromatograph. Products were purified on Biotage® SNAP Ultra cartridges pre-

packed with Biotage® HP-sphereTMSpherical silica and the gradient determined by 

TLC plate Rf value measurement input. UV absorption was detected with Biotage® 

IsoleraTMSpektra UV detector at both UV1 (254 nm) and UV2 (280 nm) to identify 

fractions for collection. 
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Boc-homophenylalanine (2): Homophenylalanine (25 mmol, 4.48 g, 1 eq) was 

dissolved in 250 mL THF and Boc2O (30 mmol, 6.54 g, 1.2 eq) was added followed 

by NaOH (25 mmol, 0.99 g, 1 eq). H2O was added to the mixture to aid the solvation 

of NaOH. The reaction was allowed to stir overnight, and completion was confirmed 

by TLC (10% EtOAc/ Pet Et). Solution was concentrated in vacuo, taken up in 

EtOAc, the aqueous layer was acidified to pH 4 using citric acid and washed with 

EtOAc (3x), Brine (1x) and dried over MgSO4.  The product was obtained as a 

colourless oil in a 97% yield. Characterization is in accordance with literature. 22  

1H NMR (400 MHz, Chloroform-d) δ 7.47 – 7.04 (m, 5H), 5.15 (d, J = 8.4 Hz, 1H), 

4.38 (m, 1H), 2.72 (m, 2H), 2.20 (m, 1H), 2.03 – 1.87 (m, 1H), 1.44 (s, 9H). 

 
13C NMR (101 MHz, CDCl3) δ 128.48, 128.43, 126.15, 125.81, 60.53, 53.21, 34.13, 

31.64, 28.32, 28.23, 27.42. 

 

 

Methyl ester (3) : Compound 2 was dissolved in 250 mL DMF and MeI was added 

(67 mmol, 4.17 mL, 3 eq) followed by K2CO3 (67 mmol, 9.25 g, 3 eq). The reaction 

was allowed to stir for 5 hours. The solution was then concentrated in vacuo, taken 

up in EtOAc, the aqueous layer back extracted with EtOAc and the combined 

organics were washed with KHSO4 (3x), water (1x), brine (1x) and dried over 

MgSO4. The product was obtained as a colourless oil in a 95% yield. 

Characterization is in accordance with literature. 23 
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1H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.01 (m, 5H), 5.08 (d, J = 8.5 Hz, 1H), 

4.36 (d, J = 7.6 Hz, 1H), 3.71 (s, 3H), 2.67 (t, J = 9.4 Hz, 2H), 2.24 – 1.81 (m, 2H), 

1.45 (s, 9H). 

 
13C NMR (101 MHz, CDCl3) δ 129.14, 128.68, 128.47, 128.39, 126.14, 53.25, 52.25, 

34.37, 31.64, 28.33, 28.24, 28.04. 

 

LC-MS: RT (min): 6.93 (ESI-MS (m/z): 293.50 [M+H]+. 

 

 

 

Alcohol (4): Compound 3 was dissolved in 105 mL EtOH and LiCl (65 mmol, 2.80 g, 

2.5 eq) was added followed by 75 mL of THF (3 mL/mmol). Finally, NaBH4 (65 mmol, 

2.48 g, 2.5 eq) was added and the reaction was allowed to stir overnight and 

followed by TLC. The solution was then quenched with NH4Cl and diluted with 

EtOAc. The aqueous was back extracted with EtOAc (3x), washed with brine (1x) 

and dried over MgSO4. Product was obtained as a yellow oil in a 70% yield. 

Characterization is in accordance with literature. 24 

1H NMR (400 MHz, Chloroform-d) δ 7.18–7.30 (5H, m), 4.64 (1H, s), 3.56–3.71 (2H, 

m), 2.65–2.73 (2H, m), 2.22 (1H, s), 1.74–1.86 (2H, m),1.82 (1H, m), 1.45 (9H, s). 

 
13C NMR (101 MHz, CDCl3) δ 128.51, 128.48, 128.33, 126.02, 125.91, 66.02, 52.60, 

33.28, 32.40, 28.82, 28.39, 28.24. 

 

LC-MS: RT (min): 6.31 (ESI-MS (m/z): 265.67 [M+H]+. 
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Mesylate (5): Alcohol 4 was dissolved in 150 mL DCM and Triethylamine (20 mmol, 

2.83 mL, 5 eq) was added dropwise and the reaction was allowed to stir for 15 mins. 

Methylsulfonate chloride (15 mmol, 0.93 g, 3 eq) was added and the reaction was 

stirred for 1 hour and followed by TLC (50% EtOAc/Pet Et). Upon completion, the 

solution was concentrated in vacuo, taken up in EtOAc, washed with KHSO4 (3x), 

the aqueous was back extracted with DCM (3x), combined organics were washed 

with brine (1x) and dried over MgSO4. The product was obtained as a colorless oil in 

a 75% yield.  

1H NMR (400 MHz, Chloroform-d) δ 7.45 – 6.99 (m, 5H), 4.81 – 4.50 (m, 1H), 4.21 

(d, 7.5 Hz,  2H), 3.87 (s, 1H), 3.00 (s, 3H), 2.86 – 2.58 (m, 2H), 1.87 (m, 2H), 1.46 (s, 

9H). 

 
13C NMR (101 MHz, CDCl3) δ 128.57, 128.43, 128.37, 126.22, 126.18, 71.13, 37.34, 

33.00, 32.09, 28.48, 28.35, 28.14. 

 

 

Thioacetate (6): Cs2CO3 (10 mmol, 3 g, 1eq) was dissolved in 100 mL DMF and 

Thioacetic acid (20 mmol, 1.32 mL, 2eq) was added under N2 atmosphere and 

allowed to stir for 10 minutes. Mesylate 5 was dissolved in minimal amount of DMF 

and added to the mixture. The flask was covered in aluminum foil and the reaction 

was stirred for 3 hours.  Upon completion, the solution was concentrated in vacuo, 

taken in up EtOAc, washed with water (3x), brine (1x) and dried over MgSO4. 

Purification by column chromatography (0 -> 10% EtOAc/Pet Et) yielded the desired 
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product as a dark red oil in a 38% yield. Characterization is in accordance with 

literature. 25 

 

1H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.01 (m, 5H), 4.53 (d, 1H), 3.80 (br s, 

1H), 3.21–3.01 (m, 2H), 2.75–2.60 (m, 2H), 2.35 (s, 3H), 1.87–1.74 (m, 2H), 1.45 (s, 

9H);  

 
13C NMR (101 MHz, CDCl3) δ 128.44, 128.36, 128.25, 125.98, 125.70, 36.45, 36.19, 

33.94, 32.36, 30.58, 28.78, 28.38, 28.00. 

 

 

 

Thiol (7): Thioacetate 6 was dissolved in dry THF and the solution was cooled down 

to 0 C. LiAlH4 (1.2 mmol, 1.28 mL, 2 eq) was added dropwise under N2 atmosphere 

and the reaction was followed by TLC. Upon completion, the solution was quenched 

with water and the solvent was evaporated to about half the volume. The solution 

was then diluted in EtOAc, washed with KHSO4 (3x), the aqueous was back 

extracted with EtOAc (2x), the combined organics were washed with brine (1x) and 

dried over MgSO4. The product was obtained as a brown oil in a 92% yield.  

1H NMR (400 MHz, Chloroform-d) δ 7.23 (d, J = 26.1 Hz, 0H), 4.67 (d, J = 8.6 Hz, 

1H), 3.83 (dt, J = 32.3 Hz, 1H), 2.71 – 2.54 (m, 2H), 2.89 – 2.67 (m, 2H), 2.09 (s, 

1H), 1.96 – 1.68 (m, 2H), 1.46 (s, 9H). 

 
13C NMR (101 MHz, CDCl3) δ 128.48, 128.43, 128.35, 126.04, 125.97, 51.20, 34.95, 

32.39, 29.76, 28.47, 28.40, 28.35. 

 

LC-MS: RT (min): 7.15 (ESI-MS (m/z): 243.00 [M+H]+. 
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Cyclohexane warhead (8): Thiol 7 was dissolved in 15 mL DCM and the solution 

was cooled to 0qC. Cyclohexane sulfonyl bromide was added dropwise and the 

solution was removed from ice and allowed to stir at room temperature for 30 

minutes. Reaction was followed via TLC (30% EtOAc/Pet Et). Upon completion, the 

solution was washed 3x KHSO4, the organic layers were collected, dried over 

MgSO4 and concentrated in vacuo. The product was obtained as a yellow oil in a 

20% yield. 

 
1H NMR (400 MHz, Chloroform-d) δ 7.31 – 7.25 (m, 2H), 7.22 – 7.15 (m, 3H), 4.68 

(d, J = 8.8 Hz, 1H), 3.90 – 3.82 (m, 1H), 3.39 (dd, J = 13.4, 4.1 Hz, 1H), 3.18 (dd, J = 

13.8, 7.0 Hz, 1H), 3.17 – 3.11 (m, 1H), 2.68 (dtd, J = 16.2, 13.9, 7.4 Hz, 2H), 2.31 – 

2.22 (m, 2H), 1.91 (ddt, J = 11.5, 4.7, 2.2 Hz, 2H), 1.87 – 1.76 (m, 2H), 1.75 – 1.67 

(m, 1H), 1.63 – 1.49 (m, 2H), 1.46 (s, 9H), 1.37 – 1.26 (m, 2H), 1.26 – 1.15 (m, 1H). 

 
13C NMR (101 MHz, CDCl3) δ 155.36, 140.96, 128.53, 128.38, 126.14, 79.76, 71.37, 

50.06, 41.17, 35.88, 32.26, 28.38, 26.36, 26.21, 25.17, 25.11, 25.04. 

   

LC-MS: RT (min): 5.64 (ESI-MS (m/z): 428.61 [M+H]+. 

 

 

Thr-OMe (25) : D-Threonine (25 mmol, 2.97 g, 1 eq) was dissolved in 150 mL MeOH 

and the solution was cooled to 0 C. Thionyl Chloride (100 mmol, 7.26 mL, 4 eq) was 

added dropwise and the reaction was allowed to stir for 1 hour at 0 C and overnight 

at 70ºC under reflux. Upon completion, the solution was concentrated in vacuo and 
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the methylated product was obtained in a 95% yield. Characterization is in 

accordance with literature. 26 

1H NMR (400 MHz, Methanol-d4) δ 4.30 (dd, J = 6.6, 4.2 Hz, 1H), 3.97 (d, J = 4.1 Hz, 

1H), 3.87 (s, 3H), 1.35 (d, J = 6.6 Hz, 3H). 

 
13C NMR (101 MHz, MeOD) δ 64.98, 58.43, 52.33, 19.14. 
 

[α]D = + 5.76o 

 

IR: 2839, 1743, 1583, 1504 cm-1. 

 

 

Boc-Thr-OMe (26) : Compound 25 was dissolved in 250 mL THF and Boc2O (36 

mmol, 7.85 g, 1.2 eq) was added followed by the dropwise addition of DiPEA (90 

mmol, 15.6 mL, 3 eq). The mixture was stirred overnight at room temperature and 

followed by TLC (15% EtOAc/ Pet Et). Upon completion, the solution was acidified to 

pH 3 using KHSO4, washed with EtOAc (3x) and dried over MgSO4. Product was 

obtained as a colorless oil in an 85% yield. Characterization is in accordance with 

literature. 27 

1H NMR (400 MHz, Chloroform-d) δ 5.47 (d, J = 9.2 Hz, 1H), 4.31 (q, J = 6.6 Hz, 

2H), 3.77 (s, 3H), 2.88 (d, J = 5.4 Hz, 1H), 1.46 (s, 9H), 1.25 (d, J = 6.4 Hz, 3H). 

 
13C NMR (101 MHz, CDCl3) δ 67.90, 58.80, 52.37, 28.24, 27.79, 27.34, 19.85. 
 

LC-MS: RT (min): 5.22 (ESI-MS (m/z): 233.58 [M+H]+. 

 

[α]D = + 29.22o 

 

IR: 3425, 2979, 1747, 1693, 1504 cm-1. 
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Boc-Thr-OTBDMS (27) : Compound 26 was dissolved in 150 mL of DMF and 

Imidazole (87.6 mmol, 6.02 g, 3 eq) was added followed by tert-Butyldimethylsilyl 

chloride (35 mmol, 5.27 g, 1.2 eq). The reaction was allowed to stir for 1.5 hours and 

was followed by TLC (10% EtOAc/Pet Et). Upon completion, the mixture was 

washed with diethyl ether (3x), brine (1x) and dried over MgSO4. Purification by 

column chromatography (0 -> 5% EtOAc/Pet Et) yielded compound 18 in a 25% 

yield.  

1H NMR (400 MHz, Methanol-d4) δ 4.35 (dd, J = 6.3, 2.5 Hz, 1H), 4.07 (d, J = 2.4 Hz, 

1H), 3.65 (s, 3H), 1.39 (s, 9H), 1.12 (d, J = 6.3 Hz, 3H), 0.79 (s, 9H), 0.02 (s, 3H), -

0.05 (s, 3H). 

 
13C NMR (101 MHz, MeOD) δ 68.74, 59.47, 51.35, 27.69, 27.56, 27.31, 25.25, 

24.88, 24.85, 19.77, -5.54, -6.41. 
 

LC-MS: RT (min): 8.09 (ESI-MS (m/z): 347.58 [M+H]+. 

 

[α]D = + 3.34o 

 

IR: 2929, 2856, 1754, 1716, 1495, 1391. 

 

 

 

 

Alcohol (28) : Compound 27 was dissolved in dry tetrahydrofuran (THF) and the 

solution was cooled down to -78 C using dry ice/acetone. Lithium aluminium hydride 

(LiAlH4 1.0M in THF) was added dropwise under N2 atmosphere and the solution 

https://www.sigmaaldrich.com/catalog/product/aldrich/190500?lang=en&region=US
https://www.sigmaaldrich.com/catalog/product/aldrich/190500?lang=en&region=US
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was allowed to stir for 1 hour and was followed by TLC (20% EtOAc/ Pet Et). 

Reaction completion was confirmed by LCMS and the product was obtained as a 

colourless oil in quantitative yield.  

1H NMR (400 MHz, Methanol-d4) δ 4.11 – 3.99 (m, 1H), 3.97 – 3.85 (m, 1H), 3.53 – 

3.44 (m, 2H), 1.40 (s, 9H), 1.09 (d, J = 8.3 Hz, 3H), 0.90 – 0.83 (m, 1H), 0.05 (s, 3H), 

0.03 (s, 3H). 

 
13C NMR (101 MHz, MeOD) δ 65.81, 61.68, 56.92, 27.85, 27.44, 27.23, 25.13, 

25.06, 24.91, 18.98, -4.86, -6.03. 
 

LC-MS: RT (min): 7.67 (ESI-MS (m/z): 319.67 [M+H]+. 

 

 
Alkene (30): Oxalyl Chloride (2.5 eq, 3.75 mmol) was dissolved in 25 mL dry DCM, 

cooled down to -78ºC and dry DMSO (5 eq, 7.5 mmol) was added dropwise. The 

solution was allowed to stir for 30 minutes, after which alcohol 19 (1 eq, 1.5 mmol) 

was added dropwise and allowed to stir for 45 minutes before adding NEt3. The 

reaction was followed by TLC (20% EtOAc) and LCMS. Upon completion, the 

solution was diluted with DCM, washed with 1M HCl (1x), NaHCO3 (1x), H2O (1x) 

and dried over MgSO4. The aldehyde was concentrated in vacuo and used directly 

for the Wittig reaction. The triphenylphosphine ylide was dissolved in dry THF, 

cooled to 0ºC, NaH (60% mineral oil, 1.2 eq, 5.1 mmol) was added and stirred for 1 

hour.  The freshly made aldehyde was dissolved in THF and added dropwise to the 

solution. Reaction was followed via TLC (20% EtOAc) and LCMS. Upon completion, 

the product was washed with 1M HCl (1x), Brine (1x), dried over MgSO4. The 

product was obtained as a dark orange solid.  

 

LC-MS: RT (min): 8.10 (ESI-MS (m/z): 392.63 [M+H]+. 
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Boc-Phe-OBn (37) : Boc protected amino acid 36 was dissolved 250 mL DMF and 

Benzyl bromide (24 mmol, 2.85 mL, 1.5 eq) was added, followed by K2CO3 (64 

mmol, 8.84 g, 4 eq) and allowed to stir overnight. The reaction was followed by TLC 

(15% EtOAc/Pet Et) and concentrated in vacuo, taken up in EtOAc, washed with 

water (2x), back extracted with EtOAc and dried over MgSO4. Product was obtained 

as colourless oil in an 83% yield. Characterization is in accordance with literature. 28 

1H NMR (400 MHz, Chloroform-d) δ 7.42 – 7.19 (m, 10H), 5.16 – 5.07 (m, 2H), 4.98 

(d, J = 8.5 Hz, 1H), 4.67 – 4.54 (m, 1H), 3.07 (m, 2H), 1.41 (s, 9H). 

 

13C NMR (101 MHz, CDCl3) δ 129.52, 129.48, 129.41, 129.36, 128.66, 128.59, 

128.27, 127.63, 126.98, 126.29, 67.11, 54.46, 38.28, 28.62, 28.31, 28.25. 

 

 

MPip-Phe-OBn (39): Compound 38 was dissolved in 100 mL DCM and 100 mL 

NaHCO3 were added followed by Triphosgene (6.64 mmol, 2.10 mL, 0.5 eq). The 

reaction was allowed to stir for 1 hour and was followed by TLC (20% EtOAc/Pet Et).  

1-Methylpiperazine was added dropwise and the solution was allowed to stir 

overnight. Once the reaction was completed, the aqueous layer was back extracted 

with DCM and the combined organics were washed with Brine (1x) and dried over 

MgSO4. Purification by column chromatography (0 -> 5% MeOH/DCM) yielded the 

product as a yellow oil in a 70% yield. Characterization is in accordance with 

literature. 29 

1H NMR (400 MHz, Chloroform-d) δ 7.57 – 6.82 (m, 10H), 5.23 – 5.05 (m, 2H), 4.85 

(s, 2H), 3.36 (d, J = 5.1 Hz, 4H),3.10 (m,2H) 2.38 (d, J = 5.2 Hz, 4H), 2.31 (s, 3H). 
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LC-MS: RT (min): 5.39 (ESI-MS (m/z): 381.92 [M+H]+. 

 

 

MPip-Phe-OH (40) : Compound 39 was dissolved in EtOH/AcOH (1%) and Pd/C 

was added under a H2 atmosphere. The reaction was allowed to stir for 3 hours and 

the product was obtained in a quantitive yield. Characterization is in accordance with 

literature. 30 

1H NMR (400 MHz, Chloroform-d) δ 7.34 – 7.11 (m, 5H), 4.56 (m, 1H), 3.74 – 3.36 

(m, 4H), 3.09 (d, J = 7.4 Hz, 2H), 2.73 (s, 4H), 2.51 (s, 3H). 

 
13C NMR (101 MHz, CDCl3) δ 129.63, 128.13, 127.11, 126.48, 126.43, 55.74, 55.23, 

53.20, 44.86, 44.06, 8.59. 

 

LC-MS: RT (min): 4.39 (ESI-MS (m/z): 291.83 [M+H]+. 
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