2 3	1	Title
4 5 6	2	Potential of indicators to unveil the hidden side of cropping system classification: differences
7 8	3	and similarities in cropping practices between conventional, no-till and organic systems
9 10	4	
11 12	5	Authors
13 14	6	Lucie Büchi ^{1,2,*} , Florent Georges ¹ , Florian Walder ³ , Samiran Banerjee ³ , Thomas Keller ^{3,4} ,
15 16 17	7	Johan Six ⁵ , Marcel van der Heijden ³ , Raphaël Charles ^{1,6}
18 19	8	
20 21	9	Affiliation
22 23	10	¹ Plant Production Systems, Agroscope, Nyon, Switzerland
24 25	11	² Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
26 27	12	³ Agroecology and Environment, Agroscope, Zurich, Switzerland
28 29 20	13	⁴ Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
30 31 32	14	⁵ Environmental Systems Sciences, Swiss Federal Institute of Technology, ETH Zurich,
33 34	15	Zurich, Switzerland
35 36	16	⁶ Research Institute of Organic Agriculture FiBL, Lausanne, Switzerland
37 38	17	
39 40	18	*Corresponding author: L.A.Buchi@greenwich.ac.uk
41 42	19	
43 44 45	20	
46 47	21	
48 49		
50 51		
52 53		
54 55		
56 57		
58		

Abstract

4 5	23	To compare different cropping systems, it is crucial to describe explicitly the associated	
6 7	24	cropping practices. A set of 31 indicators, and six composite indexes, addressing farm	
8 9	25	structure, crop diversification, soil disturbance, organic matter inputs, nitrogen fertilisation,	
) 1 2	26	crop protection, and yield was used to describe 59 winter wheat fields belonging to	
2 3 4	27	conventional, no-till and organic systems, in Switzerland. The aim of this study was to	
5 6	28	investigate the complementarity and redundancy of the indicators and their potential to	
7 8	29	characterise these cropping systems. In general, weak correlations were observed between the	le
9 0	30	studied indicators, showing the importance of using a set of indicators to fully characterise	
1 2	31	cropping practices. The complex indicators were often correlated with simpler ones, but it	
3 4	32	cannot be excluded that they can prove to be more useful in different contexts. Retaining a	
5 6 7	33	combination of simple and complex indicators to obtain a broad picture of cropping practice	S
/ 8 0	34	is thus recommended. The indicators highlighted differences but also similarities between th	e
)) 1	35	three systems. For example, the input of organic matter and crop rotation diversification wer	e
2 3	36	similar between the three systems. In contrast, total nitrogen fertilisation (lower for organic	
4 5	37	systems) and soil disturbance (lower for no-till systems) were different. A high within-system	n
6 7	38	variability was observed for some indicators, suggesting that using quantitative indicators	
8 9	39	rather than simple classifications based on a general description of the systems allows a bette	er
00 01	40	characterisation of these systems. Overall, the use of indicators has the potential to improve	
02 03	41	our understanding of the influence of cropping practices on the soil and environment.	
04 05 06	42		
00 07 08	43	Keywords	
09 10	44	field level indicators, composite indexes, crop diversification, organic matter inputs, soil	
11 12	45	disturbance intensity, on-farm study	
13 14			
15 16			
17 18			2

1. Introduction

Agriculture is characterised by a wide range of soil management and cropping practices, such as choice of cultivated crop and cultivar, crop rotation, tillage intensity and implements, nutrient management, crop protection and irrigation. As alternatives to what can be called 'conventional' cropping practices, different cropping systems have been developed, especially to reduce the impact of agriculture on the environment. Among others, organic farming and no-till agriculture are alternative systems which are increasingly adopted. Organic farming is principally based on the exclusive utilisation of organic fertilisers and treatments: synthetic substances are prohibited but soil tillage and mechanical weeding is allowed (Reganold and Wachter, 2016; Migliorini and Wezel, 2017). No-till farming implies the absence of any tillage interventions prior to seeding and should ensure at least 30% soil cover throughout the vear (Soane et al., 2012). No-till systems could fulfil the principles of conservation agriculture if they insure sufficient soil cover (by residues or crops) and a diversified crop sequence (FAO, 2018).

Many studies have aimed at comparing these systems to assess if yield can be maintained compared to conventional systems. Based on a meta-analysis, it has been shown that no-till alone tends to reduce yield by about 10%, but this decrease can be mitigated when no-till is associated with crop residue retention and improved crop rotation (Pittelkow et al., 2015a). In organic farming, a yield decline of about 20% compared to conventional systems is typically observed (Mäder et al., 2002; de Ponti et al., 2012; Seufert et al., 2012; Ponisio et al., 2015; Seufert and Ramankutty, 2017). Moreover, a recent meta-analysis has shown that temporal yield stability of conventional fields was higher than that of organic fields (Knapp and van der Heijden, 2018). However, precautions must be taken when comparing these systems as observed differences could be induced by confounding factors (e.g. soil or climatic factors), or fundamental differences in the system design such as differences in crop rotation (Kirchmann et al., 2016). Most often, systems are compared by 'labels' without specifying to

which extent these systems actually differ in terms of cropping practices (Armengot et al., 2011; Therond et al., 2017). However, information on cropping practices is crucial when it comes to understand and explain the observed effects on yield, plant performance or soil properties. The amount of organic amendments, the intensity of tillage, the extent of fertiliser inputs, the number and amount of pesticides used, and the crop diversity may vary drastically within a given type of cropping system.

Indicators of agricultural practices can be used to achieve such a description. Many sets of indicators aiming at describing farming and cropping systems exist, from simple ones to complex multi-dimensional assessment tools (Bockstaller et al., 1997; Bockstaller et al., 2008; Pelzer et al., 2012). The choice of the indicators depends on the objective of the study. In many studies, indicators are chosen to characterise the sustainability of the system or the intensity of management and practices (i.e. land-use intensity LUI) (e.g. Bechini and Castoldi, 2009; Geiger et al., 2010; Gaudino et al., 2014; Smith et al., 2017). These primary indicators can then be combined to obtain secondary composite indexes (Nardo et al., 2005; Castoldi and Bechini, 2010; Blüthgen et al., 2012) to reduce the dimensionality of the data and allow more straightforward interpretations of the results. A drawback of this is obviously the loss of information and the potential concealing of trade-offs between practices. Different methods to build these composite indexes exists (Nardo et al., 2005), the two most common being additive aggregation of indicators after normalisation (e.g. Herzog et al., 2006; Blüthgen et al., 2012) and the use of multivariate analyses such as PCA (e.g. Armengot et al., 2011; Nkurunziza et al., 2017). However, the collection of the data needed to implement such indicators is a daunting task and thus simple and reliable indicators, based on data that is reasonably easy to obtain, are required.

95 Here, we present results from an on-farm study conducted in Switzerland in 2016-2017, on
96 winter wheat fields belonging to three cropping systems, conventional, no-till and organic. A
97 survey was conducted to gather information about management and cropping practices at field
95 4

and farm scale. Based on these data, 31 indicators of different complexity levels were computed to cover the main characteristics of the cropping systems. For three thematic categories of indicators, composite indexes were computed using the multivariate and additive aggregation methods. The aims of this study were a) to assess the complementarity and redundancy of the 31 chosen indicators and of the composite indexes and b) to evaluate the potential of these indicators to characterise the three cropping systems. 2. Materials and Methods 2.1 Farm and field selection Sixty farms (one field per farm) distributed over the Swiss plateau (Supplementary Material Figure S1 and Table S1) were selected for this on-farm study conducted in 2016-2017. Three different cropping systems were studied, with 20 fields selected for each system. The first group of 20 fields corresponded to 'conventional' system, with soil tillage and potential use of synthetic substances. The second group consisted of 'no-till' fields, i.e. without any soil tillage except for occasional use of strip till (mainly 0-1 time over 5 years, max 2-3 times), and potential use of synthetic substances. The third group contained fields in organic farms, with more or less deep and intense soil tillage, but no use of synthetic substances. All farms had to comply to their specific cropping system for more than five years. All conventional and no-till farms followed the 'Proof of Ecological Performance' guidelines from the Swiss Federal Office for Agriculture, which include a balanced nutrient budget, diversified crop distribution (at least four different main crops per year), proper soil protection, targeted selection and use of pesticide treatments and biodiversity promoting surfaces (FOAG, 2018a). Organic farms followed the guidelines of Bio Suisse, which is the federation of Swiss organic farmers. Prerequisites were that the fields should have been seeded with winter wheat in autumn 2015 and be larger than 1 ha. Winter wheat fields were targeted as this is the most frequent crop in

Switzerland, representing more than 20% of the arable surface (FSO, 2016). The most common crop rotation in the type of farms studied here has a cereal crop every two years; and the most cultivated crops outside from cereals are maize (silage or grain), rapeseed and sugar beet. Fields belonging to Cambisols with minimum 10% to maximum 40% of clay were targeted (Figure S2). In order to check for a potential sampling effect on differences between cropping systems, information about six pedoclimatic variables (clay and silt content (0-20 cm), altitude, mean annual temperature and precipitation) were also gathered. Temperature and precipitation data were taking from the closest available weather station for each field. 2.2 Cropping practice indicators Cropping practices were characterised according to 31 indicators, grouped into six thematic categories, as described below and summarised in Table 1. The data needed to compute these indicators were gathered from the farmers through a survey. Most questions were closed questions, i.e. several options of pre-defined answers were given. Information about the general farm structure and the specific cropping practices of the selected winter wheat field were collected (Table S2). Two types of time periods were used to collect data on cropping practices of the winter wheat field: detailed information on all cropping practices including dates of treatment for the crop cultivation year (winter wheat 2015-2016, period going from the harvest of the previous crop to the harvest of the winter wheat), and information on the five-year crop rotation, gathered for the wheat year and the four preceding years (2012-2016) (Table 1 and S2). The used indicators were chosen among published indicators or standard farm or field descriptors. These indicators differed in their complexity, i.e. the amount of information needed to compute them.

Because survey results could not be obtained from one of the farms, all analyses involving
cropping practice indicators were performed on 59 values (19 for the 'conventional' group, 20
for the 'no-till' group and 20 for the 'organic' group).

64 151

66 152 Farm structure

For this category, the indicators concerned the farm scale, whereas the five other categories refer to field scale. Farm structure was described by three indicators: utilised agricultural area, including fallow surface ('UAA', in ha), annual working unit ('AWU', full time equivalent, a value of 1 corresponds to 1 person working full time on the farm the whole year) and livestock unit per hectare of UAA ('LSU', a value of 1 corresponds to 1 dairy cow per hectare) (Table 1). In addition, the diversity at the farm level in the year 2016 including crops, leys and fallows, was assessed ('farmDiv').

83 160

35 161 <u>Crop diversification</u>

Crop diversification was addressed using five indicators. The number of years in ley ('nbLeys'), the number of legumes ('nbLeg') and cover crops ('nbCC') occurrence during the five-year crop rotation 2012-2016 was quantified. Legumes species count included main crops as well as cover crops. The number of cover crops was also compared to the potential maximum number of cover crops that could have been cultivated given the crop rotation. It was assumed that a cover crop could be cultivated whenever there were more than eight weeks between the harvest of the previous crop and the seeding of the new one, based on standard harvest and seeding dates. Crop diversity ('cropDiv') was then computed as the number of different crops (main and cover) cultivated during the five years. A crop rotation diversification index ('rDiversification') was derived following the Indigo method (Bockstaller and Girardin, 2000), adapted here for a five-year duration. This indicator takes

into account crop rotation diversity, identity of the preceding crop and the time to the previous wheat crop.

Soil disturbance and protection

A total of seven indicators were selected to assess soil disturbance and protection. Field traffic ('traffic') was the number of interventions on the field, all type of interventions included, during the wheat cultivation period 2015-2016. The number of tillage ('nbTill') and mechanical weeding ('nbWeed') operations during that period were also used as indicators. Then, the mean number of tillage and weeding interventions over the five-year crop rotation ('nbTW') was computed. Fifth, a simple soil protection index ('soilP') was derived from the IDEA method (Zahm et al., 2008), based only on the type of soil tillage adopted in the last five years. It consisted in attributing a weight to each type of tillage (plough=0.5, reduced tillage=3, no-till=5) for each year of the crop rotation, and then averaging it. Soil tillage intensity rating ('stir') was computed for the wheat cultivation period, based on the disturbance induced by each tillage implement ('Soil Tillage Intensity Rating STIR' method from the RUSLE2 framework, USDA, 2012). In this method, a tillage intensity coefficient is attributed to each type of tillage implement as a function of tillage depth, area, speed and intensity. A list of such coefficients for different machines and interventions are available from the RUSLE2 method. The total tillage intensity was computed as the sum of these coefficients for all the interventions done during seedbed preparation and weeding. Last, the mean soil cover ('sCover') provided by crop residues or cover crops during the pre-sowing period (from the harvest of the preceding crop to the seeding of the winter wheat in 2015) was assessed using the soil cover indicator described by Büchi et al. (2016). It is based on standard values of soil cover by crop residues after harvest and incorporation rate by tillage implements. A minimal threshold value of 30% cover is generally seen as providing proper soil protection (Armand et al., 2009; Lilley and Moore, 2009; FAO, 2018).

473		
474		
475 476	199	
477 478	200	Organic matter inputs and nitrogen fertilisation
479 480	201	The topic of organic matter was represented by five indicators. First, crop residue
481 482	202	management ('resExp') was evaluated by the frequency of crop residue exportation during the
483 484	203	five-year crop rotation. Second, the number of organic amendment inputs ('nbOrg') over the
485 486 487	204	crop rotation was counted. Third, an estimation of the corresponding quantity of stable
488 489	205	organic matter input ('qOrg', kg OM/ha) was computed on a dry matter basis, using isohumic
490 491	206	coefficients of each type of amendment (e.g. manure, slurry, compost) (Table S3). Fourth, the
492 493	207	amount of organic matter inputs coming from aboveground crop residues ('cropOrg', kg
494 495	208	OM/ha) were derived from the 'Indigo' method (Bockstaller et al., 1997). Fifth, the total
496 497	209	organic matter input ('totOrg', kg OM/ha) was estimated, by adding inputs coming from crop
498 499	210	residues to inputs coming from amendments.
500 501 502	211	Nitrogen fertilisation during the wheat cultivation year was described, first, by the amount of
502 503 504	212	nitrogen coming from mineral fertilisers ('minN'), second by the amount of available nitrogen
505 506	213	coming from organic amendments (e.g. manure, slurry, compost) ('orgN'), and third, by the
507 508	214	total amount of available nitrogen ('totN'), taking into account mineral and organic sources.
509 510	215	For organic amendments, the nitrogen available for the crop was extracted from the Swiss
511 512	216	principles of agricultural crop fertilisation (Sinaj and Richner, 2017), except for digestate
513 514	217	(CSICM, 2010) and ramial chipped wood (CTACF, 2006) (Table S3).
515 516 517	218	
518 519	219	Crop protection
520 521	220	The frequency of pesticide treatments during the cultivation year 2015-2016 was evaluated by
522 523	221	five indicators. First, the number of herbicide treatments ('nbHerb'), number of fungicide
524 525	222	treatments ('nbFung') and total number of treatments ('nbTreat', i.e. herbicide, fungicide,
526 527	223	molluscicide, insecticide, growth regulator) were computed. When several products were
528 529	224	applied together, each product counted as a separated treatment. Then, an herbicide ('rHerb')

532			
533			
534 535	225	and total ('rTreat') relative treatment frequency index was computed, based on the index	
536 537	226	developed in France (Hossard et al., 2017). This index is computed as the sum of the ratio of	
538 539	227	applied treatment dose over recommended dose, over all treatment applications. The	
540 541	228	recommended dose of each product was extracted from the website of the Swiss Federal	
542 543	229	Office for Agriculture (FOAG, 2018b). When a range of doses was indicated, the mean value	
544 545 546	230	was used.	
547 548	231		
549 550	232	Yield	
551 552	233	Wheat yield in 2016 as recorded by the farmer was considered ('yield', t/ha), as well as	
553 554	234	relative yield ('relY') over the five-year crop rotation. The farmers generally estimated yield	
555 556 557	235	as the ratio between the total amount of wheat grain sold and the cultivation surface. Relative	
558 559	236	yield was computed as the mean ratio of effective yield (as recorded by the farmers) over	
560 561	237	Swiss reference yield of the different crops (Sinaj and Richner, 2017). Each crop has a unique	
562 563	238	reference yield value for Switzerland, determined for conventional practices.	
564 565	239		
566 567	240	2.3 Composite intensity indexes	
568 569	241	Two composite indexes were computed based on subsets of indicators to characterise the	
570 571	242	intensity of cropping practices, using two different methods.	
572 573 574	243	Multivariate approach index I _{PCA}	
575 576	244	The first method consisted in using as composite index, thereafter called I_{PCA} , the first	
577 578	245	principal component of a PCA performed on the selected indicators, after standardisation of	
579 580	246	the variables (e.g. Armengot et al., 2011).	
581 582	247	Additive aggregation index I _{add}	
583 584	248	In the second method, the composite index, thereafter called I_{add} , is based on an additive	
585 586 587	249	combination of the indicators after normalisation, as in Herzog et al. (2006). For each	
588 589 590		10)

indicator, normalisation was done following Herzog et al. (2006), to scale the values between 0 and 1, 1 representing the highest and more intense value:

52
$$nI = (y_i - y_{min})/(y_{max} - y_{min})$$
 (1)

where nI is the normalised indicator, y_i the individual values, y_{min} the minimal value and y_{max} the maximal value. In order to reduce the influence of outliers, we followed the recommendation of Nardo et al. (2005) and replaced the y_i values higher than the 97.5% or lower than the 2.5% percentiles by these threshold values. The composite index Iadd was then obtained by averaging the normalised indicators, with similar weight for all indicators.

$$I_{add} = \frac{\sum_{i=1}^{n} nI}{n}$$
(2)

where n is the number of indicators to aggregate.

In contrast to the PCA method, which is 'neutral', here a decision about the direction of each indicator must be done prior to the aggregation. 'Direction' is meant as a statement about which values (high or low, or sometimes even intermediate) represent the most intense practice. While this could be relatively straightforward for some indicators, as for example for the number of pesticide treatments, it could be more debatable for some others, for example for the input of organic matter. The direction of the intensity gradient could also depend on the intended use of the index; an index to interpret environmental impact could be built differently from and index to interpret soil organic carbon stocks. Thus, in some cases, individual indicators need to be reversed to have all indicators pointing in the same direction. This was done here by using 1-nI rather than nI in the final aggregation (Table 2).

These two composite indexes were computed for the three categories Crop diversification, Soil disturbance and protection and Organic matter inputs and nitrogen fertilisation. No

composite index was computed for the Crop protection category as the indicators total number of treatments 'nbTreat' and total treatment frequency index 'rTreat' already represented an aggregated information about different pesticide treatment applications. For each category, the indicators included in the composite indexes were chosen in order to exclude highly correlated indicators (Kendall's rank correlation $\tau > 0.7$, see section 2.4) and indicators of high complexity (requiring a lot of information to be computed), in order to study if composite indexes based on simple indicators provide the same type of information as complex indicators. The indexes obtained with each method were compared with each other as well as with the more complex indicators in the same category, if available (Table 2). The indicators used to compute the composite indexes, and their direction for the computation of the additive aggregation index I_{add} , are shown in Table 2. 2.4 Data analyses Differences between the three cropping systems for pedoclimatic variables, primary cropping practice indicators and composite indexes were analysed using analyses of variance, with cropping system as the main factor. Significant analyses of variance (p<0.05) were followed by Tukey HSD post hoc test for pairwise comparison. For each thematic category, correlation between indicators was assessed with Kendall's rank correlation method. In addition, principal component analyses were performed, after standardisation of the data, using the 'vegan' R package (Oksanen et al., 2017). Following the same method, a principal component analysis was performed using all primary farm and field indicators. The results obtained for the farm structure indicators were compared to Eurostat data (Eurostat, 2018) to situate the studied farms relative to other European countries. Data from the 2010 Eurostat survey were used as they also included data from Switzerland. The proportion of area under organic farming (%UAA) in 2016 was also shown for comparison purpose.

709 710		
711 712	300	All statistical analyses were performed using R 3.5.1 (R Core Team, 2018).
713	301	
715 716	302	3. Results
717 718 710	303	3.1 Field characteristics
719 720 721	304	Of the 60 fields, the most frequent soil texture (ISSS texture triangle) was clay loam (31
722 723	305	fields), followed by loam (13), light clay (12), silty clay loam (2) and silty clay (1) (Figure
724 725	306	S2). The proportions of these textures did not differ between cropping systems (Chi-square
726 727	307	test, p=0.646). Altitude ranged between 356 m and 754 m above sea level, mean annual
728 729	308	temperature (2015-2016) between 9.3 °C and 11.7 °C, and mean annual precipitation (2015-
730 731	309	2016) between 680 mm and 1322 mm. However, the three cropping systems did not show
732 733	310	significant differences for these variables (p>0.05, based on analyses of variance). Thus, no
734 735 736	311	confounding effect of the pedoclimatic variables could be seen here.
737 738	312	
739 740	313	3.2 Complementarity versus redundancy of indicators of different complexity
741 742	314	Farm structure
743 744	315	At the farm level, the indicators were generally not correlated, except for utilised agricultural
745 746	316	area UAA and working units AWU which showed a slight positive correlation (Kendall's rank
747 748	317	correlation τ =0.50, p<0.001), also visible in the PCA (Figure 1A). Farm scale diversity
749 750 751	318	farmDiv was also significantly positively correlated with UAA but the correlation was weak
751 752 753	319	(τ=0.26, p<0.007).
754 755	320	
756 757	321	Crop diversification
758 759	322	Overall, the Crop diversification indicators showed some complementarity and were not
760 761	323	highly correlated with each other (Figure 1B). Compared to the simpler indicators, the
762 763	324	complex crop rotation diversification indicator rDiversification takes into account different
764 765 766	325	type of information (i.e. crop rotation diversity, identity of the preceding crop and the time to 13
767		

the previous wheat crop). It was slightly correlated with crop diversity cropDiv (Kendall's rank correlation τ =0.30, p<0.004), but not with all the other indicators presented here (Figure 1B). Crop diversity was positively correlated with the number of cover crops nbCC (τ =0.60, p<0.001) and negatively correlated with the number of leys nbLeys (τ =-0.53, p<0.001). The number of leys was also correlated with nbCC (τ =-0.54, p<0.001) and the number of legumes nbLeg (τ =-0.44, p<0.001).

The composite indexes were computed using nbCC, nbLeys, nbLeg and cropDiv. The index based on the PCA I_{PCA} was positively correlated with nbLeys and nbLeg but negatively with nbCC and cropDiv (Figure S3). In contrast, the index based on the additive aggregation I_{add} was, by construction, positively correlated with the four indicators. These two composite indexes I_{PCA} and I_{add} were not correlated with each other, but I_{add} was weakly correlated with the complex crop rotation diversification indicator (τ =0.21, p=0.027).

6 338

339 Soil disturbance and protection

The indicators linked to soil disturbance and protection showed high redundancy, with almost all indicators significantly correlated with each other (Figure 1C). In particular, the complex soil tillage intensity indicator stir was correlated with all the others, with some correlations higher than 0.6. For example, the simple soil protection indicator soilP, which relies only on the general type of tillage (plough, minimum or no-till) applied each year, was correlated with the stir indicator (τ =-0.47, p<0.001), which integrated more specific information about crop management. The other complex indicator linked to soil cover sCover was also correlated with all the other except traffic. The sum of tillage and mechanical weeding interventions in 2016 nbTW was highly correlated with the mean number of tillage nbTill and weeding nbWeed interventions over the five-year crop rotation (τ =0.73, p<0.001), showing that, in this study, most farmers were consistent through time in terms of interventions (i.e. tillage and weed management).

Given these high correlations between indicators, only four basic indicators were used to compute the composite indexes (traffic, nbTill, nbWeed and soilP). The index based on the PCA I_{PCA} was positively correlated with traffic, nbTill and nbWeed but negatively with soilP (Figure S3). A similar result was obtained for the index based on the additive aggregation I_{add} . These two composite indexes I_{PCA} and I_{add} were highly correlated with each other (τ =0.91, p<0.001), and with the complex indicators stir (τ =0.68 and 0.64, p<0.001) and sCover (τ =-0.35 and -0.34, p<0.001).

Organic matter inputs and nitrogen fertilisation

Some significant correlations were observed between indicators linked to organic matter and N inputs (Figure 1D). The number of organic amendments nbOrg was not related with the amount of organic matter provided qOrg (τ =0.17, p=0.124). The total amount of organic matter input totOrg was highly correlated with qOrg (τ =0.72, p<0.001), as the input through crop residues cropOrg was small compared to the total quantity. In turn, the organic matter coming from crop residues cropOrg was correlated with the less complex crop residue exportation indicator resExp (τ =-0.37, p<0.001). Total nitrogen fertilisation totN was highly correlated (τ =0.72, p<0.001) with mineral fertilisation minN, as the amount provided by organic fertilisation orgN was low. This category thus contained two indicators which were computed as the sum of two others (totOrg = cropOrg+qOrg and totN = minN+orgN), and these showed high correlations with one of their components, totOrg with qOrg and totN with minN. They were thus not used to compute the composite indexes. Here, the index based on the PCA I_{PCA} was positively correlated with resExp, nbOrg and orgN, and negatively with qOrg, cropOrg and minN (Figure S3). The index based on the additive aggregation I_{add} was positively correlated with all indicators except cropOrg. These two composite indexes IPCA and I_{add} were slightly correlated with each other ($\tau=0.25$, p=0.005), but not with totOrg. I_{PCA} , but not I_{add} , was significantly correlated with totN (τ =-0.45, p<0.001).

886		
887		
880	378	
800		
891	379	<u>Crop protection</u>
892		
893	380	Crop protection indicators were highly correlated to each other (Figure 1E). The total number
894		
895	381	of treatments nbTreat was correlated with its two main components, the number of herbicides
896		
897	382	nbHerb (τ =0.72, p<0.001) and of fungicides nbFung (τ =0.55, p<0.001).
898	202	
099	383	In this study, adding a level of complexity to the crop protection indicators, by passing from
901	281	the number of posticide treatments to an integration of applied doses did not bring new
902	304	the number of pesticide treatments to an integration of applied doses did not of ing new
903	385	insights (Figure 1F). The number of herbicide treatments nhHerb was highly correlated to the
904	505	insights (1 igure 12). The number of heroleide redunents horiero was highly correlated to the
905	386	relative frequency index rHerb ($\tau=0.90$ p<0.001) a similar result was observed for the total
906	200	
907	387	number of treatments nbTreat and its relative frequency index rTreat (τ =0.90, p<0.001).
908		
909 910	388	
911		
912	389	Yield
913		
914	390	Overall, wheat grain yield in 2016 was positively correlated with the relative yield indicator
915		
916	391	obtained over the five-year crop rotation relY (τ =0.58, p<0.001) (Figure 1F). However, the
917 Q18	202	= -0.29 and (-0.29 and (-0.29
919	392	correlation coefficient for the no-till systems (t =0.28, non-significant, p=0.08) was much
920	393	lower than for the conventional ($\tau=0.54$, $n=0.001$) and organic systems ($\tau=0.58$, $n<0.001$)
921	575	Now of that for the conventional ($t = 0.54$, $p = 0.001$) and organic systems ($t = 0.56$, $p < 0.001$).
922	394	This was probably due to the high variability in fungicide use among no-till systems, which
923		
924	395	had a strong impact on 2016 wheat yield given the high disease pressure induced by the wet
925		
920 927	396	spring.
928		
929	397	
930		
931	398	3.3 Potential of indicators to characterise cropping systems
932		
933	399	Of the 31 primary indicators, 20 showed significant differences between the three cropping
934	100	
936	400	systems (p<0.05, Supplementary Material Table S4). Looking at the pairwise difference tests
937	401	showed that the pattern of difference between avatems (i.e. which avatems are significantly
938	401	showed that the pattern of difference between systems (<i>i.e.</i> which systems are significantly
939	402	different from the other(s)) varied widely depending on the indicators (Table 3)
940	102	anterent nom the other(5), varied wheely depending on the indicators (14010-5).
941	403	
942		17
943 Q11		10
344		

404 <u>Farm structure</u>

The farm structure indicators did not generally differ between systems (Table 3). The test for livestock unit LSU gave a significant p-value (p=0.035, Table S4), but the post hoc test did not reveal pairwise significant differences at a threshold of 0.05 (Table 3). The tendency was however to a lower livestock value for no-till systems compared to conventional (p=0.077) and organic ones (p=0.053) (Table S4). Utilised agricultural area UAA, annual work unit AWU and diversity at the farm level in 2015-2016 farmDiv showed no differences between cropping systems (Table S4).

413 <u>Crop diversification</u>

The number of leys, legumes and cover crops in the five-year crop rotation differed between the three cropping systems (Table 3). The number of years with levs nbLevs was higher in the organic system than conventional and no-till systems. This pointed to a difference in crop rotation between this system on one side and conventional and no-till systems on the other side (Figure S4). For the number of legumes nbLeg, the lowest value was observed in conventional fields, compared to no-till and organic systems. Finally, no-till systems had more often cover crops (nbCC) than organic systems, while conventional systems were intermediate between no-till and organic, and not significantly different from both (Table 3). Compared to the potential maximum number of cover crop cultivation (computed based on the five-year crop rotation), conventional systems reached 38% of cover crop potential, no-till 57% and organic 44%. Organic systems had generally a lower number of potential cover crop cultivation slots compared to conventional and no-till, due to the higher presence of leys, which explained its higher percentage of actual to potential cover crops compared to conventional systems. Crop diversity cropDiv and crop rotation diversification rDiversification were not different

 $\frac{1000}{1001}$ 429 among the three cropping systems (Table 3, Figure 2A).

Soil disturbance and protection

All Soil disturbance and protection indicators except field traffic showed differences between systems (Table 3). The number of tillage nbTill and mechanical weeding nbWeed intervention during the period 2015-2016 differed between systems, with higher number of tillage operations in the organic than conventional systems. Only the organic systems included mechanical weeding. For the mean number of tillage and weeding interventions over the five-year crop rotation nbTW, and for the tillage intensity rating stir (Figure 2B), the highest values were observed for the organic system, followed by conventional, and then by no-till systems. The soil protection index soilP and soil cover sCover had higher values in the no-till systems compared to the conventional and organic ones. The estimated soil cover during the post-harvest, pre-sowing, period was significantly higher in no-till systems, with a mean value of 56%, than in conventional and organic systems (28% and 18% respectively). No differences between cropping systems were observed regarding total field traffic during the wheat cultivation period 2015-2016, with around 10 interventions on average. In addition, the use of these Soil disturbance and protection indicators allowed to identify an outlier in the no-till farms, corresponding to the misclassification of one of the farms. For this farm, the actual cropping practices adopted by the farmer did not match the 'no-till' classification the farmer announced during the initial selection, as he practiced some minimum tillage. Organic matter inputs and nitrogen fertilisation

The indicators linked to nitrogen all differentiated the organic systems compared to conventional and no-till systems (Table 3). As expected, no mineral nitrogen fertilisation was reported in organic system, while no-till and conventional systems showed similar values of mineral fertiliser minN (Table 3, Figure 2D). The opposite was observed for available

1063		
1064		
1065 1066	456	nitrogen coming from organic amendments orgN, with higher value observed for organic
1067 1068	457	systems compared to conventional and no-till systems. In total, conventional and no-till
1069	458	systems, with on average 160 and 147 equivalent kg N/ha, showed higher amount of available
1071 1072	459	N than organic system (61 equivalent kg N/ha on average).
1073 1074 1075	460	None of the five indicators linked to organic matter showed significant differences between
1076 1077	461	cropping systems at p<0.05 (Table 3, Figure 2C). However, the p-value for the number of
1078 1079	462	organic amendments nbOrg was at 0.055, indicating a tendency of organic systems to have a
1080 1081	463	larger number of inputs (but not higher quantity).
1082 1083	464	
1084 1085	465	Crop protection
1086 1087	466	All Crop protection indicators varied between cropping systems (Table 3). As expected, no
1089	467	treatment was recorded in the organic system. No-till systems showed significantly more
1090 1091 1092	468	herbicide treatments than the conventional ones. The highest number of fungicide treatments
1093 1094	469	was in conventional system. In total, conventional and no-till had comparable number of
1095 1096	470	pesticide treatments (3 in average), higher than in organic system. The two relative treatment
1097 1098	471	frequency indexes (rHerb and rTreat) showed similar tendency as the corresponding number-
1099 1100	472	based indicators (nbHerb and nbTreat) (Figure 2E, Table 3).
1101 1102	473	
1103 1104 1105	474	Yield
1106 1107	475	Overall, mean wheat grain yield in 2016, as reported by the farmers, reached about 4.6 t/ha (at
1108 1109	476	14% humidity). This represented about 80% of the wheat yield usually observed in the same
1110 1111	477	fields, for all three cropping systems. The reduced yield was due to an extremely wet spring in
1112 1113	478	2016. Indeed, the cumulated precipitation in April-May 2016 was 240 mm (Changins, west of
1114 1115	479	Switzerland) and 252 mm (Reckenholz, north-east), whereas the 30-year averages (1981-
1116 1117	480	2010) for April-May at the same stations are 153 mm and 193 mm. Wheat yield in 2016 was
1118 1119 1120 1121	481	higher in the conventional and no-till systems than in organic farming (Table 3). Relative 19

yields over the crop rotation (2012-2016) differed significantly among all three cropping systems (Figure 2F): compared to the Swiss reference yields (for conventional practices), the mean relative yield was 1.05 for the conventional system, 0.93 for no-till and 0.70 for organic systems. This means that conventional yield in our study were on average 5% higher than Swiss reference yield for the same crops, for the period 2012-2016. When comparing the three systems together, taking the conventional system as the reference, no-till yield reached 90% of the conventional yield, while organic yield was at 67% of the conventional one. For no-till and organic fields, no relationship between relative yield and time since the start of respectively no-till and organic practice could be observed (Figure S5). Multivariate analysis of primary indicators The principal component analysis performed on all the primary indicators allowed to distinguish the three cropping systems on the three first components, despite high variability within each system (Figure 3). The organic system was the most clearly delineated group, while overlap was observed between conventional and no-till. The first axis (explaining 30% of variance) placed the conventional system intermediate between no-till and organic, while the second axis (explaining 11% of variance) rather separated conventional system from no-till and organic (Figure 3). The three indicators contributing most to the first axis were mineral nitrogen fertilisation minN, number of herbicide treatments nbHerb and number of weeding interventions nbWeed. For the second axis, the three most contributing indicators were number of fungicide treatments nbFung, soil protection soilP and field traffic (Figure 3). Composite intensity indexes Significant differences between the three cropping systems were observed for five out of the six composite indexes (Figure 4, Table 3). For the Crop diversification category, the two composite indexes IPCA and Iadd were different between systems, but the index based on PCA

showed higher values for the organic systems, while the index based on additive aggregation
was lower for the conventional systems (Figure 4). For Soil disturbance and protection, the
two composite indexes I_{PCA} and I_{add} differentiated the three systems, with higher values for
the organic system, followed by conventional, and then by no-till systems (Figure 4). For
Organic matter inputs and nitrogen fertilisation, I_{PCA} showed higher values in the organic
systems, while I_{add} was not different between the three systems (Figure 4).

515 3.4 Comparison with other European countries

Figure 5 shows the position of Switzerland and of the studied farms among 31 other European countries, according to the three farm structure indicators. Unfortunately, it was not possible to find separated data for conventional, no-till and organic systems, and thus our results are compared to overall European data. The mean utilised agricultural area in Switzerland is in the middle of the European distribution, whereas our study included somewhat larger farms. Annual working units were also similar to what is seen in other European countries. In comparison with Europe, the area under organic farming (%UAA) in Switzerland in 2016 (13.5%) is at the sixth position, with the highest value recorded in the neighbouring country of Austria (21.3%).

To compare the cropping practices applied in Switzerland to what is done in Europe, we used the survey conducted by Herzog et al. (2006) in seven European countries (i.e. Belgium, Czech Republic, Estonia, France, Germany, Netherlands and Switzerland) to provide relevant insights. As the indicators used in this survey were not directly comparable to ours, we used this paper as a reference to give an idea of where Switzerland is situated compared to the other countries for conventional systems. This showed that, for nitrogen fertilisation on arable crops [kg N/ha], number of herbicide, fungicide and total treatments, Switzerland ranked in the middle of the seven studied countries, with ranks between 3.5 and 5. For crop diversity, Switzerland ranked at the 2nd position, after Germany (Supplementary material Figure S6).

4. Discussion 4.1 Selection, definition and comparison of primary cropping practice indicators and composite intensity indexes In this study, the indicators were chosen to cover the main characteristics of cropping systems, especially at the field level, taking into account the potential availability and reliability of the data needed to compute the indicators. The topics covered here were similar to those appearing in other similar studies (e.g. Nkurunziza et al., 2017 and Gaudino et al., 2014), but included only so called 'driving forces' or 'causal' indicators (Bockstaller et al., 2015). Among the topics not addressed here, irrigation indicators were not included as generally not practiced on winter wheat fields in Switzerland. Indicators linked to P and K fertilisation, and five-year N fertilisation were not included either, but should be considered in a further development of this study. In Switzerland, P and K fertilisers are generally not applied annually but on a larger time scale, according to the duration of crop rotation or to the frequency of soil analysis. Thus the short term of this study would not have allowed to capture accurately P and K fertilisation practices. A crucial question that arises when defining quantitative indicators is also the number of years which should be taken into account for computation. Indicators based on the studied cultivation year are easier to compute as they require information that the farmer is likely to access easily or remember accurately. On the other hand, indicators based on a longer time scale should better capture the usual practices and are more pertinent for some practices such as organic amendment inputs, which are often not applied each year. In addition, longer time scale indicators would be more pertinent to explain slowly changing characteristics such as soil organic carbon content. They are, however, more difficult to compute because they

require information spread over several years. Therefore, the multiyear indicators presented here were based on less detailed information, likely to be easily retrieved from the farmers. In this study, the utilisation of one year and five-year indicators allowed to show that the wheat cultivation year studied seemed representative of the practices observed at the crop rotation scale. The same approach was adopted by Nkurunziza et al. (2017), with detailed data collected for the year of the study, and more general information collected for the preceding years.

The studied indicators also differed in their complexity, i.e. the amount of data, reference values and assumptions needed to compute them. In this study, most of the complex indicators integrating several data and reference values were correlated with simpler indicators based on less data. (e.g. soil tillage intensity with the number of tillage and weeding interventions, soil cover with the simple soil protection indicator). The most complex indicators required a lot of reference data (e.g. reference yields, isohumic coefficients, ...) to be computed, which induced a necessary simplification of the complex farm practices, and increased indicator uncertainty. However, the set of indicators was tested here in one specific context, and we cannot exclude that complex indicators could prove to be necessary if tested with other data. For example, here the relative phytosanitary treatment frequency index, taking into account the applied dose and area (% of field treated), was highly redundant with the number of treatments. This shows that in our specific study, most of pesticide applications were done at the full recommended dose and on the whole field. However, in other contexts it is highly likely that the more complex frequency index would provide more detailed information on the practices.

584 We also tested the potential of composite indexes to provide additional or simplify redundant 585 information compared to the primary indicators. Many studies recommend using simple as

well as composite indicators to best describe cropping systems (Herzog et al., 2006: Bockstaller et al., 2008: Castoldi and Bechini, 2010). Composite indexes have the advantage to sum up different information into one unique variable and so to facilitate overall conclusions and comparison between systems (e.g. Armengot et al., 2011, Blüthgen et al., 2012), while simple indicators remain essential to interpret the results more precisely. Many methods to build composite indexes exist (Nardo et al., 2005; Sadok et al., 2008), and two commonly used methods were investigated in this study. Our results showed that the interpretation of the indexes could depend on the calculation method used. So, care should be taken when using composite indexes, and referring back to the individual components of the composite indexes is necessary to insure the proper interpretation of the results (Herzog et al., 2006). A good example of the problems which can occur when using the PCA method appeared for the Crop diversification category. While all the four individual indicators considered (frequency of leys, legumes, cover crops, and crop diversity) contribute to a higher diversification of the system, the first axis of the PCA composed a gradient with high diversity and cover crop frequency on one side, and high number of leys on the other side. This method here could not take into account the fact that different practices can achieve the same purpose, diversification in this case. Thus, this unconstrained method cannot guarantee that the composite index really shows the intended gradient. The PCA index can nevertheless be often meaningfully interpreted. In this case, cover crops contributed to higher diversity and thus pointed in the same direction, whereas the presence of rotational leys reduced diversity on a given time period by decreasing the number of main crops and cover crops that can be cultivated during this period. However, both can contribute to overall diversification. In contrast, in the additive aggregation method, the direction of interpretation of the individual indicators is *a priori* decided, which allows to construct meaningful gradients, even if the direction of some indicators is sometimes debatable. However, for the Soil disturbance and protection category, both methods produced

similar composite indexes, showing that the PCA method could also be useful, provided that the produced gradient is carefully checked. The PCA method is thus highly dependent on the dataset on which it is based, while the additive aggregation method is mostly dependent on the computation procedure, such as the normalisation or weighing method used. Depending on the utilisation of the composite indexes, one or the other method should be preferred. For example, when the objective is to aggregate further these indexes to produce a unique multifunctionality index, the additive aggregation method is preferable for the first step, as it allows controlling the direction of the indexes, and thus insuring proper interpretation of the overall index. In contrast, the PCA method is more useful to explore datasets without preconceived ideas about underlying data structure and relationships between indicators. 4.2 Potential of indicators to characterise cropping systems Farm level indicators Including indicators common to European or international frameworks allowed to situate our study in a broader context, which could help the interpretation of the results. The farms in this study appear larger than the Swiss and European average. This could be partly explained by the fact that only lowland farms were selected for this study, excluding hill and mountain farms, which are generally smaller. This could also explain the lower values of livestock units in our study compared to the Swiss mean, but these values were in the range of what is seen in Europe. In Switzerland, most conventional farms follow the 'Proof of Ecological Performance' (PEP) guidance, which ensure, in principle, an equalised nutrient balance, diversified crop rotation and proper soil protection and pesticide treatment use (FOAG, 2018a). In this study, all conventional and no-till farms followed these prescriptions. This could explain some similarities between the conventional, no-till and organic systems, for example in terms of organic amendment inputs or crop rotation diversification. The application of these PEP guidelines in Switzerland could perhaps also explain the highest crop

1476		
1477 1478 1479	638	diversity observed by Herzog et al. (2006), whereas Switzerland was in line with the other
1480 1481	639	studied countries for nitrogen inputs and pesticide treatments.
1482 1483	640	
1485 1486	641	Primary cropping practice indicators and composite intensity indexes
1487 1488	642	The set of the 31 indicators used here allowed to characterise the three cropping systems
1489 1490	643	studied. Around one third of them did not show differences between systems, while the others
1491 1492	644	showed a variety of patterns of differences between systems. An important intra-system
1493 1494	645	variability was also observed for most of the indicators. This demonstrates the importance of
1495 1496	646	using cropping practice indicators rather than cropping system classification to assess and
1497 1498	647	understand the impact of practices, particularly in broadly defined cropping systems
1499 1500	648	(Armengot et al., 2011; Nkurunziza et al., 2017; Therond et al., 2017).
1501 1502 1503	649	
1504 1505	650	The three simpler Crop diversification indicators differentiated the three systems, while
1506 1507	651	diversity and rotation diversification were similar between systems, with high within-system
1508 1509	652	variability. However, overall, the indicators pointed to a lower diversification of conventional
1510 1511	653	systems, which was confirmed by the composite index based on additive aggregation. This
1512 1513	654	shows that no-till systems including cover crops as well as organic systems with rotational
1514 1515	655	leys allow to increase diversification, a key factor of sustainable agriculture intensification
1516 1517 1518	656	(Smith et al., 2017).
1518 1519 1520	657	The Soil disturbance and protection category was the one showing the major differences
1521 1522	658	between systems. As expected, no-till systems had higher soil protection values compared to
1523 1524	659	conventional and organic systems. Interestingly, these indicators also separated organic
1525 1526	660	systems, and the composite indexes clearly showed the same pattern. To compensate for the
1527 1528	661	absence of herbicide use, intense mechanical weeding was generally observed in organic
1529 1530	662	fields, which yielded to higher values of soil perturbation indicators compared to conventional
1531 1532 1533 1534	663	fields. This poses the question of the balance of the benefits of reduced pesticide products 26

utilisation and the potential negative effects of increased soil disturbance in organic farming. Minimum soil tillage in organic farming is a challenge, but the development of more specific and efficient tillage implements and the adoption of cover crop cultivation, which was low in our studied organic farms, will probably allow a reduction of soil tillage intensity in organic farming (Buchanan et al., 2016; Cooper et al., 2016). In contrast, indicators linked to Organic matter inputs, included the composite index based on additive aggregation, were similar between the three cropping systems. This finding is surprising as organic systems are generally thought to provide more organic matter to the soil, through organic amendments or inputs due to the introduction of leys in the rotation. In the organic system, the level of fertilisation was generally low, with an estimated N input to the 2016 wheat (61 kgN/ha, from organic source) less than half the Swiss (conventional) reference standard for N fertilisation of winter wheat (140 kgN/ha), while conventional and no-till systems showed similar, higher, values (160 kgN/ha and 147 kgN/ha, from both mineral and organic sources).

Crop protection indicators also allowed the differentiation of both no-till and organic systems compared to conventional ones. As expected, no pesticide treatments were used in the organic fields which were thus easily identified. The frequency of herbicide treatments was higher in no-till compared to conventional systems. The higher reliance on total herbicides in no-till system has been documented (Melander et al., 2013), and remains the principal environmental challenge with no-till. Minimum tillage, such as shallow tillage (5 cm) or strip till, along with the intensification of cover crop utilisation, could be a way of reducing herbicide use while preserving soil, which is a solution currently considered by some farmers. Less fungicide treatments were applied in no-till fields, reflecting the fact that they were more often managed according to so called extensive farming programs that forbids the use of pesticides other than herbicides. Except from farmers adopting no-till practices to save labour time, no-till farmers

are generally adopting these practices to reduce the impact of agriculture on the environment, which explain their higher compliance with these extensive farming programs.

Overall, the organic system was the most homogeneous one in terms of cropping practices, which can be explained by the fact that this system has more specific rules than the no-till or conventional systems and bans several practices, principally mineral fertilisation and chemical crop protection. In contrast, conventional and no-till systems showed higher overlap in their practices, especially in terms of crop diversity, rotation diversification and fertilisation. This showed that, in this study, focusing on the 'no-till' criterion did not implicitly co-select other specific cropping practices.

Yield and relative yield cannot be considered as cropping practices like the other indicators presented here, but are the main outcomes of these practices and fundamental to interpret their sustainability. The no-till fields showed a mean decrease of yield of 10% compared to conventional ones on the five-year crop rotation, which is similar to what has been previously shown (Pittelkow et al., 2015a). This difference was, however, not significant for the 2016 wheat yield, and was partially linked to the compliance of farmers with the extensive farming programs mentioned earlier. Indeed, extensive conventional fields showed lower yield than intensive conventional ones, and thus more similar to no-till yields. In contrast, no difference was observed for extensive and intensive no-till yields. A yield decrease in the initial years of transition to no-till is generally expected, while the yield gap generally fills up after some years (Soane et al., 2012; Pittelkow et al., 2015b). The cover crop frequency tended to be higher in new no-till systems, pointing probably to a growing awareness of the importance of integrating no-till in an ensemble of sustainable practices amongst the younger no-till farmers compared to pioneer ones. A relative mean yield decrease of about 33% was observed in organic fields compared to conventional ones, which is slightly higher than what has been

shown in global meta-analyses (~26% for cereals with high variability, de Ponti et al., 2012;
Seufert et al., 2012). The yield difference between organic and conventional systems was
even higher when looking only at the 2016 wheat yield, which showed a decrease of 40%.
The 2016 spring was very wet and favourable to diseases, which could have been more
detrimental for organic fields. Despite the low mean yield in the organic system, it is
worthwhile mentioning that the highest organic yields were higher than some of the yields
obtained in conventional or no-till systems. This showed that depending on the conditions and
on the practices implemented, organic yield could achieve a reasonable productivity.

4.3 Conclusions

In this study, we employed 31 quantitative primary indicators and six composite indexes to describe the cropping practices in three different systems, i.e. conventional, no-till and organic systems. The set of indicators presented here integrates indicators of different complexity and time scale. It allows to characterise the three cropping systems and highlight differences as well as similarity within systems and within system variability. The composite indexes, based on simple primary indicators, proved to be useful to synthesise information of different indicators and delineate the systems. However, the method used to compute the indexes has an influence on their interpretation and should be carefully chosen. Here, the more complex primary indicators were often correlated with simpler ones or with the composite indexes, challenging their usefulness, but it cannot be excluded that they can prove to be more useful for different datasets or contexts. Retaining a combination of simple and more complex indicators to obtain a broad picture of the cropping practices adopted is thus recommended.

This study has demonstrated that an exhaustive and explicit description of the cropping
 practices involved in what is generally classified as different cropping systems is crucial to
 better understand the potential influence of these systems on yield or soil properties. For

example, knowing the tillage intensity applied in organic fields would be of crucial
importance to analyse and predict soil organic matter evolution. While the comparison of
systems in terms of yield, soil properties or their influence on the environment is highly
relevant, this study has shown that it is crucial to describe precisely and quantitatively the
cropping practices involved to avoid any misinterpretation based on supposed or nonacknowledged differences.

¹ 749 **Acknowledgements**

The authors thank Cindy Bally, Thibault Granger, Julia Hess, Marcel Meyer, Kexing Liu, Joel
Hofer and all the persons who helped for field and lab work. Many thanks also to the two
anonymous reviewers who provided relevant comments on previous versions of the
manuscript. This study was funded by the Swiss National Science Foundation in the
framework of the National Research Program 'Sustainable Use of Soil as a Resource' (NRP
68) [grant 406840-161902].

1771			
1772			
1773 1774	758	References	
1775 1776	759	Agroscope, 1996. Méthodes de référence des stations de recherche Agroscope, volume 1:	
1777 1778	760	Analyse de terre et du substrat pour conseil de fumure.	
1779 1780 1781	761	Armand, R., Bockstaller, C., Auzet, AV., Van Dijk, P., 2009. Runoff generation related to	
1782 1783	762	intra-field soil surface characteristics variability. Application to conservation tillage	
1784 1785	763	context. Soil Till. Res. 102, 27–37.	
1786 1787	764	Armengot, L., José-María, L., Blanco-Moreno, J.M., Bassa, M., Chamorro, L., Sans, F.X.,	
1788 1789	765	2011. A novel index of land use intensity for organic and conventional farming of	
1790 1791	766	Mediterranean cereal fields. Agron. Sustain. Dev. 31:699.	
1792 1793 1794	767	Bechini, L., Castoldi, N., 2009. On-farm monitoring of economic and environmental	
1794 1795 1796	768	performances of cropping systems: results of a 2-year study at the field scale in northe	rn
1797 1798	769	Italy. Ecol. Indic. 9:1096–1113.	
1799 1800	770	Blüthgen, N., Dormann, C.F., Prati, D., et al., 2012. A quantitative index of land-use intensit	ty
1801 1802	771	in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol., 13:207	
1803 1804	772	220.	
1805 1806	773	Bockstaller, C., Girardin, P., 2000. Using a crop sequence indicator to evaluate crop rotation	15,
1807 1808 1809	774	in: 3rd International Crop Science Congress 2000 ICSC. Hambourg, p. 195.	
1810 1811	775	Bockstaller, C., Girardin, P., Van der Werf, H.G.M., 1997. Use of agroecological indicators	
1812 1813	776	for the evaluation of farming systems. Eur. J. Agron. 7, 261–270.	
1814 1815	777	Bockstaller, C., Guichard, L., Makowski, D., Aveline, A., Girardin, P., Plantureux, S., 2008.	
1816 1817	778	Agri-environmental indicators to assess cropping and farming systems. A review.	
1818 1819	779	Agron. Sustain. Dev. 28, 139-149.	
1820 1821	780	Buchanan, A.L., Kolb, L.N., Hooks, C.R.R., 2016. Can winter cover crops influence weed	
1823 1824	/81	density and diversity in a reduced tillage vegetable system? Crop Prot. 90, 9-16.	
1825 1826			
1827 1828			31
1829			

1830			
1831			
1832 1833	782	Büchi, L., Valsangiacomo, A., Burel, E., Charles, R., 2016. Integrating simulation data from	n a
1834 1835	783	crop model in the development of an agri-environmental indicator for soil cover in	
1836 1837	784	Switzerland. Eur. J. Agron. 76, 149–159.	
1838 1839	785	Castoldi, N., Bechini, L., 2010. Integrated sustainability assessment of cropping systems with	th
1840 1841	786	agro-ecological and economic indicators in northern Italy. Eur. J. Agron. 32:59-72.	
1843 1844	787	Cooper, J., Baranski M., et al. 2016. Shallow non-inversion tillage in organic farming	
1845 1846	788	maintains crop yields and increases soil C stocks: a meta-analysis. Agron. Sustain. De	ev.
1847 1848	789	36, 1–20.	
1849 1850	790	CSICM, 2010. Directive suisse 2010 de la branche sur la qualité du compost et du digestat.	
1851 1852	791	Commission suisse de l'inspectorat du compostage et de la méthanisation, 40 pp.	
1853 1854	792	CTACF, 2006. Mise en oeuvre de la technique du Bois Raméal Fragmenté (BRF) en	
1855 1856	793	agriculture wallonne. Centre des Technologies Agronomiques Communauté Français	e,
1858 1859	794	168 pp.	
1860 1861	795	de Ponti, T., Rijk, B., van Ittersum, M.K., 2012. The crop yield gap between organic and	
1862 1863	796	conventional agriculture. Agric. Syst. 108, 1-9.	
1864 1865	797	Eurostat, 2018. Key to European Statistics. Agriculture Data [online]. Available at:	
1866 1867	798	http://ec.europa.eu/eurostat/web/agriculture/data/main-tables (accessed 01.06.18.).	
1868 1869	799	FAO, 2018. Food and Agriculture Organization of the United Nations: Conservation	
1870 1871	800	Agriculture [online]. Available at: http://www.fao.org/conservation-agriculture	
1872 1873	801	[accessed 12.07.18].	
1875 1876	802	FOAG, 2018a. Federal Office for Agriculture. Prestations écologiques requises [online].	
1877 1878	803	Available at:	
1879 1880	804	https://www.blw.admin.ch/blw/fr/home/instrumente/direktzahlungen/oekologischer-	
1881 1882	805	leistungsnachweis.html [accessed 23.07.2018].	
1883 1884	806	FOAG, 2018b. Federal Office for Agriculture. Index des produits phytosanitaires [online].	
1885 1886	807	Available at: https://www.psm.admin.ch/fr/produkte [accessed 23.07.2018].	27
1888			52

1890		
1891 1892	808	FSO, 2016. Federal Statistical Office. Relevé des structures agricoles 2016 [online]. Available
1893 1894	809	at: https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/press-
1895 1896	810	releases.assetdetail.2348899.html [accessed 03.02.2019].
1897 1898 1800	811	Gaudino, S., Goia, I., Borreani, G., Tabacco, E., Sacco, D., 2014. Cropping system
1900 1901	812	intensification grading using an agro-environmental indicator set in northern Italy. Ecol.
1902 1903	813	Indic. 40:76-89.
1904 1905	814	Geiger, F., Bengtsson, J., Berendse, F., et al., 2010. Persistent negative effects of pesticides on
1906 1907	815	biodiversity and biological control potential on European farmland. Basic Appl. Ecol.
1908 1909	816	11:97-105.
1910 1911	817	Herzog, F., Steiner, B., Bailey, D., Baudry, J., Billeter, R., Bukacek, R., De Blust, G., De
1912 1913	818	Cock, R., Dirksen, J., Dormann, C.F., De Filippi, R., Frossard, E., Liira, J., Schmidt, T.,
1914 1915	819	Stöckli, R., Thenail, C., van Wingerden W., Bugter, R. 2006. Assessing the intensity of
1916 1917 1019	820	temperate European agriculture at the landscape scale. Eur. J. Agron. 165-181.
1910 1919 1920	821	Hossard, L., Guichard, L., Pelosi, C., Makowski, D., 2017. Lack of evidence for a decrease in
1921 1922	822	synthetic pesticide use on the main arable crops in France. Sci. Total Environ. 575:152-
1923 1924	823	161.
1925 1926	824	Kirchmann, H., Kätterer, T., Bergström, L., Börjesson, G., Bolinder, M.A., 2016. Flaws and
1927 1928	825	criteria for design and evaluation of comparative organic and conventional cropping
1929 1930	826	systems. Field Crops Res. 186, 99-106.
1931 1932	827	Knapp, S., van der Heijden, M.G., 2018. A global meta-analysis of yield stability in organic
1933 1934	828	and conservation agriculture. Nat. Commun. 9, 3632.
1935 1936 1937	829	Lilley, J.M., Moore, A.D., 2009. Trade-offs between productivity and ground cover inmixed
1938 1939	830	farming systems in the Murrumbidgee catchment of New South Wales. Anim. Prod. Sci.
1940 1941	831	49, 837–851.
1942 1943	832	Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U., 2002. Soil fertility and
1944 1945	833	biodiversity in organic farming. Science 296, 1694–1697.
1946 1947		33

1948		
1949		
1950	834	Melander, B., Munier-Jolain, N., Charles, R., Wirth, J., Schwarz, J., van der Weide, R.,
1951		
1952	835	Bonin, L., Kryger Jensen, P., Kudsk, P., 2013. European perspectives on the adoption of
1954		
1955	836	non-chemical weed management in reduced tillage systems for arable crops. Weed
1956		
1957	837	Technol. 27, 231–240.
1958	020	Mielieniei D. Weel A. 2017 Comming and dimension animainles and anasticas of anomia
1959	020	Mighorini, P., wezer, A., 2017. Converging and diverging principles and practices of organic
1960	839	agriculture regulations and agroecology A review Agron Sustain Dev 37-63
1962	057	agriculture regulations and agrocology. A review. Agron. Sustain. Dev. 57-65.
1963	840	Nardo M., Saisana M., Saltelli A., Tarantola S., 2005. Tools for composite indicators
1964		
1965	841	building. Joint Research Center, European Commission, Ispra (Italy), p. 134.
1966		
1968	842	Nkurunziza, L., Changtham, I.R., Watson, C.A., Marstorp, H., Oborn, I., Bergkvist, G.,
1969	042	Denstagen I 2017 Understending offerte ef multiple form menogement prostiges en
1970	043	Bengisson, J., 2017. Understanding effects of multiple farm management practices on
1971	844	barley performance Eur J Agron 90 43-52
1972	011	
1974	845	Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin,
1975		
1976	846	P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H, Szoecs, E., Wagner,
1977	0.47	
1978	847	H., 2017. Vegan: Community Ecology Package. R package version 2.4-2.
1980	848	Pelzer E Fortino G Bockstaller C Angevin F Lamine C Moonen C Vasileiadis V
1981	0.0	
1982	849	Guérin, D., Guichard, L., Reau, R., Messéan, A., 2012. Assessing innovative cropping
1983		
1985	850	systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi.
1986	051	East India 19, 171, 192
1987	831	Ecol. Indic. 18, 1/1-182.
1988	852	Pittelkow C.M. Liang X. Linguist B.A. van Groenigen K.I. Lee, I. Lundy M.E. van
1989	002	Theomotic, Chin, Liang, Th, Linquist, Lin, van Groemgen, Thei, Lee, e., Lanay, Mill, van
1991	853	Gestel, N., Six, J., Venterea, R.T., van Kessel, C., 2015a. Productivity limits and
1992		
1993	854	potentials of the principles of conservation agriculture. Nature 517, 365-368.
1994	055	
1995	833	Pitteikow, C.M., Linquist, B.A., Lundy, M.E., Liang, A., Van Groenigen, K.J., Lee, J., Van
1997	856	Gestel N Six J Venterea R T van Kessel C 2015b When does no-till vield more?
1998	000	
1999	857	A global meta-analysis. Field Crop Res. 183, 156-168.
2000		
2001		
2003		
2004		
2005		34
2006		

2007 2008		
2009 2010	858	Ponisio, L.C., M'Gonigle, L.K., Mace, K.C., Palomino, J., de Valpine, P., Kremen, C., 2015.
2011 2012	859	Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282,
2013 2014	860	20141396.
2015 2016 2017	861	R Core Team, 2018. R: A language and environment for statistical computing. R Foundation
2017	862	for Statistical Computing, Vienna, Austria, http://www.R-project.org
2010 2020 2021	863	Reganold, J.P., Wachter, J.M. 2016. Organic agriculture in the twenty-first century. Nat.
2022 2023	864	Plants 2, 15221.
2024 2025	865	Sadok, W., Angevin, F., Bergez, J E., Bockstaller, C., Colomb, B., Guichard, L., Reau, R.,
2026 2027	866	Doré, T., 2008. Ex ante assessment of the sustainability of alternative cropping systems:
2028 2029	867	guidelines for identifying relevant multi-criteria decision aid methods. Agron. Sustain.
2030 2031	868	Dev. 28, 163–174.
2032 2033	869	Seufert, V., Ramankutty, N., Foley, J.A., 2012. Comparing the yields of organic and
2034 2035 2036	870	conventional agriculture. Nature 485, 229-232.
2030 2037 2038	871	Seufert, V., Ramankutty, N., 2017. Many shades of gray-The context-dependent
2039 2040	872	performance of organic agriculture. Science Advances 3, e1602638.
2041 2042	873	Sinaj, S., Richner, W., 2017. Principes de fertilisation des cultures agricoles en Suisse (PRIF
2043 2044	874	2017). Agrarforschung 8(6).
2045 2046	875	Smith, A., Snapp, S.S., Chikowo, R., Thorne, P., Bekunda, M., Glover, J., 2017. Measuring
2047 2048	876	sustainable intensification in smallholder agroecosystems: a review. Glob. Food Secur.
2049 2050	877	12, 127–138.
2051 2052 2053	878	Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., Roger-Estrade, J., 2012. No-till
2055 2054 2055	879	in northern, western and south-western Europe: a review of problems and opportunities
2056 2057	880	for crop production and the environment. Soil Till. Res. 118, 66-87.
2058 2059	881	Therond, O., Duru, M., Roger-Estrade, J., Richard, G., 2017. A new analytical framework of
2060 2061	882	farming system and agriculture model diversities. A review. Agron. Sustain. Dev.
2062 2063	883	37:21.
2064 2065		35

2066		
2067		
2068	884	USDA, 2012. Revised Universal Soil Loss Equation, Version 2 (RUSLE2). Natural Resources
2070 2071	885	Conservation Service.
2072 2073	886	Zahm, F., Viaux, P., Vilain, L., Girardin, P., Mouchet, C., 2008. Assessing farm sustainability
2074 2075	887	with the IDEA method - From the concept of agriculture sustainability to case studies
2076 2077	888	on farms. Sust. Dev. 16:271-281.
2078 2079	889	
2080		
2081		
2083		
2084		
2085		
2086		
2087		
2000		
2090		
2091		
2092		
2093		
2094		
2096		
2097		
2098		
2099		
2100		
2101		
2103		
2104		
2105		
2106		
2107		
2109		
2110		
2111		
2112		
2113		
2115		
2116		
2117		
2118		
∠119 2120		
2121		
2122		
2123		36
2124		

Table and figure legends Table 1 List of the 31 cropping practice indicators used to describe cropping systems. 'Time scale' indicates if the indicator is computed with data coming only from the focal year 2015-2016 ('1 y') or from data collected for the five-year crop rotation ('5 y'). Table 2 List of primary indicators selected for the computation of the two composite indexes, for each thematic category, and complex or compound primary indicators used for comparison. Indicators preceded by a '-' were reversed for the computation of the additive aggregation index I_{add} . See Table 1 for the meaning of the indicator abbreviations. **Table 3** Mean values of the 31 primary indicators and six composite indexes for the three cropping systems, and patterns of differences between systems as indicated by the Tukey HSD post-hoc pairwise tests. 'conv': conventional farming, 'nt': no-till farming, 'org': organic farming.

Figure 1 Principal component analyses (field projection, scaling 2) on the indicator subsets, A. Farm structure, B. Crop diversification, C. Soil disturbance and protection, D. Organic matter inputs and nitrogen fertilisation, E. Crop protection. As for yield only two indicators were used, F. shows the pairwise relationship between wheat yield 2016 [t/ha] and relative yield over the five-year crop rotation. The plain line shows the linear regression between these two variables. The dashed horizontal line shows the Swiss reference yield for winter wheat (6 t/ha) and the dashed vertical line a relative yield which is equal to reference yields on average. Blue points correspond to conventional systems, red points to no-till systems and green points to organic systems. Correspondence between abbreviations and indicator names are given in Table 1.

Figure 2 Differences between cropping systems for six indicators. A. crop rotation diversification (rDiversification), B. soil tillage intensity (stir), C. quantity of organic amendment inputs (qOrg) [kg OM/ha], D. total nitrogen fertilisation (totN) [kg N/ha], E. relative herbicide treatment intensity (rHerb), F. relative yield (relY). 'conv': conventional systems, 'nt': no-till systems, 'org': organic systems. Different letters above the boxes show significant (p<0.05) pairwise differences between systems. Figure 3 Principal component analysis on the 31 indicators, showing the two first principal components, explaining respectively 30% and 11%. A. Field projection (scaling 2) on the 1st and 2nd principal components, B. Indicator projection (scaling 1) on the 1st and 2nd principal components. Blue points correspond to conventional systems, red points to no-till systems and green points to organic systems. Correspondence between abbreviations and indicator names are given in Table 1. Figure 4 Differences between cropping systems for the composite indexes. Upper row, indexes based on the PCA method, lower row indexes based on the additive aggregation. First column (A and D) shows the Crop diversification category, the middle column (B and E), the Soil disturbance and protection category, and the last column (C and F), the Organic matter inputs and nitrogen fertilisation category. Figure 5 Comparison of the three farm structure indicators and of area under organic farming (% UAA) with mean data from Switzerland and European countries. Data were obtained from

the Eurostat website. Blue points correspond to conventional systems, red points to no-till

940 systems and green points to organic systems. On each box, 'CH' shows the position of

941 Switzerland in the European dataset.

Supplementary Material Table S1 List and description of the 60 farms included in the study. 'Mean temperature' and 'Rainfall' are given as average values over the two years 2015 and 2016. 'Soil texture' gives texture classes according to the ISSS system. 'Program' refers to compliance to specific 'integrated' (no pesticides except herbicides) or 'organic' programs in 2016. 'UAA' is for utilised agricultural area. 'Fertilisation' indicates what kind of fertilisation was used during the five-year crop rotation: 'min' = mineral only, 'org' = organic only, 'min-org' = mixed mineral and organic. The conventional farm indicated in light grey was removed from the analyses due to missing survey data. Table S2 Data collected in the questionnaire survey (rows), filled in by the farmers, and used to compute the 31 cropping practice indicators (columns). The crosses indicate which data has been used for which indicator. Table S3 Isohumic coefficients and nitrogen availability of organic amendments used in the computation of the organic amendment inputs (qOrg), total organic inputs (totOrg), nitrogen organic fertilisation (orgN) and total nitrogen fertilisation indicators (totN). Table S4 Mean values and standard errors of the 31 indicators for the three cropping systems, and p-values from the overall analysis of variance ('global') and from the Tukey HSD post-hoc pairwise test. 'conv': conventional farming, 'nt': no-till farming, 'org': organic farming.

Figure S1 Map of Switzerland showing the geographic position of the 60 fields. Blue points correspond to conventional systems, red points to no-till systems and green points to organic systems.

Figure S2 Texture triangle (ISSS system) showing the texture (0-20 cm) of the 60 fields. Blue
points correspond to conventional systems, red points to no-till systems and green points to
organic systems.

Figure S3 Principal component analyses (field projection, scaling 2) used for the computation of the composite indexes for A. Crop diversification, B. Soil disturbance and protection, and C. Organic matter inputs and nitrogen fertilisation. Blue points correspond to conventional systems, red points to no-till systems and green points to organic systems. Correspondence between abbreviations and indicator names are given in Table 1.

Figure S4 A. Crop frequency for the studied fields, for the three cropping systems ('conv':
conventional, 'nt': no till, 'org': organic). Crops are grouped into types. B. Categorisation of
the crop rotation along three main types: 1. rotations with a cereal every two years, 2.
rotations including leys, and 3. other type of rotations.

985 Figure S5 Relative yield indicator as a function of time since the beginning of A. no-till 986 practice and B. organic practice. In panel A, the numbers above the points indicate the 987 number of cover crops cultivated the past 5 years (number of cover crop 'nbCC' indicator).

Figure S6 Comparison of Switzerland with six other European countries in terms of crop
 diversity, nitrogen fertilisation and pesticide inputs. On each box, 'CH' shows the position of
 Switzerland. On the left of each box, the two-letter code of each other country is indicated,

2361			
2362			
2363 2364	992	BE: Belgium, CZ: Czech Republic, EE: Estonia, FR: France, DE: Germany, NL: Netherland	ls.
2365	993	The data come from Herzog et al. (2006)	
2366	<i>,,,,</i>		
2368	994		
2369			
2370			
2371			
2372			
2373			
2374			
2375			
2377			
2378			
2379			
2380			
2381			
2383			
2384			
2385			
2386			
2387			
2388			
2390			
2391			
2392			
2393			
2394			
2395			
2397			
2398			
2399			
2400			
2401			
2402			
2404			
2405			
2406			
2407			
2408			
2410			
2411			
2412			
2413			
2414 2/15			
2416			
2417			
2418			41
2419			

Table 1

			Time	
Inc	dicator	Abbreviation	scaleª	
Fa	arm structure			
uti	ilised agricultural area [ha]	UAA	-	
an	nnual working unit	AWU	-	a value of 1 corresponds to 1 person working full time on the farm
liv	vestock unit	LSU	-	a value of 1 corresponds to 1 dairy cow per hectare
div	versity at farm level 2016	farmDiv	1 y	nb of crops, meadows or fallows at the farm level in 2016
Cr	rop diversification			
nu	umber of years with ley	nbLeys	5 y	nb of years with ley in the 5 year rotation
nu	umber of legume crops	nbLeg	5 y	nb of legume cultivation (main and cover crop) in the 5 year rotation
nu	umber of cover crops	nbCC	5 y	nb of cover crop cultivation in the 5 year rotation
cre	op diversity at field level (rotation)	cropDiv	5 y	nb of crops in the 5 year rotation
cre	op rotation diversification	rDiversification	5 y	index taking into account crop diversity, preceding crop and time to previous whea
So	oil disturbance and protection		-	
fie	eld traffic	traffic	1 y	nb of machinery passages (tillage, seeding, weeding, treatments, fertilisation)
nu	umber of tillage 2015-2016	nbTill	1 y	
nu	umber of weeding 2015-2016	nbWeed	1 y	
nu	umber of tillage and weeding interventions		-	
20	012-2016	nbTW	5 y	mean number of tillage and weeding interventions over the crop rotation
SO	bil protection index	soilP	5 y	index linked to the type of tillage (plough, minimum, no till)
SO	bil tillage intensity	stir	1 y	index based on the soil disturbance intensity of each implement (e.g plough=81)
SO	bil cover	sCover	1 y	mean soil cover during the period preceding wheat seeding
Or	rganic matter inputs and nitrogen fertilisation			
cre	op residue exportation	resExp	5 y	nb of time residues were exported during the 5 year crop rotation
nu	umber of organic amendments	nbOrg	5 y	nb of organic amendements
or	ganic amendment inputs [kg OM/ha]	qOrg	5 y	quantity of organic matter inputs through amendements
or	ganic input from crops [kg OM/ha]	cropOrg	5 y	quantity of organic matter inputs through crop residues
to	tal organic inputs (amendment + crop	totOrg	E v	total quantity of organia inputa
res	siques) [kg OM/na]	iolOrg minN	э у 1 у	ioial quantity of organic inputs
mi	ineral nitrogen tertilisation [kg N/ha]	minin	1 y	quantity of mineral nitrogen tertilisers
or	ganic nitrogen tertilisation [kg N/na]	orgin	ТУ	quantity of available nitrogen through organic tertilisation

2461				
2462				
2463 2464	total nitrogen fertilisation [kg N/ha]	totN	1 y	
2465	Crop protection			
2466	number of herbicide treatment	nbHerb	1 y	nb of herbicide treatments
2467	number of fungicide treatment	nbFung	1 y	nb of fungicide treatments
2468	total number of treatments	nbTreat	1 y	total number of treatments (herbicide, fungicide, molluscicide, growth regulator)
2469	herbicide treatment frequency index	rHerb	1 y	sum of the ratios of applied herbicide dose over recommended dose
2470	total treatment frequency index	rTreat	1 y	sum of the ratios of applied treatment dose over recommended dose
2471	Yield			
2472	wheat yield 2016 [t/ha]	vield	1 v	
2473	relative yield 2012-2016	relY	5 y	mean of the ratios of effective yield over Swiss reference yield
2474		all a second a discount of	- 1	

^a 1 or 5 y: 1 year (from the harvest of the preceding crop to the wheat harvest) or 5 years (crop rotation)

Table 2

2506	Thematic category	Primary in	ndicators us	Complex primary indicators					
2507	Crop diversification	+nbLeys	+nbLeg	+nbCC	+cropDiv			rDiversification	1
2508	Soil disturbance and protection	+traffic	+nbTill	+nbWeed	-soilP			stir	sCover
2509	Organic matter inputs and nitrogen fertilisation	+resExp	+nbOrg	+qOrg	-cropOrg	+minN	+orgN	totOrg	totN
2510	Crop protection	-						rTreat	
2511	Yield	-						relY	
251000									
2513									
2514									
2515									
2516									
2517									
2518									
2519									
2520									
2521									
2522									
2523									
2524									
2525									
2526									
2527									
2528									
2529									
2530									
2531									
2532									
2533									
2534									
2535									
2536									
2537									
2538									
2539									
2540									
2541									
2542									

Table 3

conv nt org all different * conv different * org differen	Indicator	Abbreviation	Overall	means		Differences be	tween systems					
Fam structureutilised agricultural area [ha]MVU261.92.0livestock unitLSU0.700.270.73diversity at fam level 2016fammDiv6.806.257.15Crop diversity at fam level 2016mDive0.267.15Nb game cropsnbLeg0.262.35Xnb cover cropsnbLeg1.162.002.35Xcrop diversity at field level (rotation)crop Div4.635.004.30crop diversity at field level (rotation)ropDiv6.177.187.00crop objete index based on PCA0.280.30XX*aggregationnDNersification6.177.187.00soli disturbance and protectionnDNersification6.177.187.00field trafficnDNersification0.280.30Xsoli disturbance and protectionnDNersification0.280.39Xfield trafficnDNersification0.000.002.55Xsoli protection indexsoliPro1.320.18XXsoli protection indexsoliPro1.320.18XXsoli coverScoverScoverXXXsoli diversificationrefific1.320.66XXregregationcomposite index based on PCAsoliProtection indexSoliProtection indexSoliProtection indexXsoli protection indexsoliProtection index based on PCA			conv	nt	org	all different ^a	conv different ^b	nt different ^c	org different ^d	no difference		
utilised agricultural area [ha]UAA624441annual working unitAWU2.61.92.0livestock unitLGU0.730.73diversity at ram level 2016farmDiv6.586.257.15Crop diversityat farm level 2016nbLeys0.260.301.25Xnb yeass with leynbLeys0.260.301.25Xnb cover cropsnbLeys1.162.052.35XX*crop diversity at field level (rotation)roDCV1.611.900.85XX*crop obtation diversificationrDVersification6.177.187.00X*X*composite index based on PCA0.804.30XX*X*Soli disturbance and protectiontraffic10.59.19.8XX*X*billage 2015-2016nbTill1.320.402.55XXX*billinge and weeding interventions 2012-nbTill2.321.82XX*X*billinge index based on PCA2.321.82XXX*composite index based on additivesoli Protection2.321.82XXX*soli protection indexsoli Protection inde	Farm structure											
annual working unitAWU2.61.92.0livestock unitLSU0.700.720.73diversify af fam level 2016fam Div6.587.15Crop diversificationmbLeys0.260.301.25Xnb geame cropsnbLeg1.161.900.85Xnb core cropsnbCC1.161.900.85X*crop diversificationcrop Div6.635.004.30X*crop rotation diversificationrDiversification6.717.187.00composite index based on PCA soli diversification0.280.400.39Xsoli protection lexnbTW2.320.402.55Xsoli diversificationraffic1.059.109.8Xsoli diversificationnbTW2.320.402.55Xsoli disturbance and protectionnbTW2.321.82Xnb tillage 2015-2016nbTW2.321.82Xnb tillage and weeding interventions 2012- soli coversoli PCA solier1.634.721.82Xsoli protection indexsoli PC0.020.520.50XXsoli coversolor PCA composite index based on PCA composite index based on Additive soli cover0.410.130.57Xsoli coversolor matter inputs and nikrogen fertilisation1.634.541.54Xsoli coversolor PCA composite index based on Additive soli cover <td>utilised agricultural area [ha]</td> <td>UAA</td> <td>62</td> <td>44</td> <td>41</td> <td></td> <td></td> <td></td> <td></td> <td>Х</td>	utilised agricultural area [ha]	UAA	62	44	41					Х		
Ivestock unitLSU0.700.270.73diversity at fam level 2016farmDiv6.586.257.15Crop diversificationnbLeys0.260.301.25Xnb legume cropsnbLeg1.162.052.35Xnb cover cropsnbLCC1.161.900.304.30crop diversify at field level (rotation)roDiver sification6.177.187.00crop otiversify at field level (rotation)roDiver sification6.177.187.00composite index based on PCA0.280.400.39Xcomposite index based on additive0.280.400.39Xaggregationroffic1.520.400.39Xfield trafficnbTill1.320.402.35Xnb tillage 2015-2016nbTill1.320.402.35Xnb tillage and weeding interventions 2012nbTill1.320.402.35Xsoil protection indexsoilP0.39XXsoil coverscover0.290.212.35Xsoil obtection indexsoilP0.000.002.35Xsoil obtection indexsoilP0.290.52XXsoil coverscover0.200.210.50Xcomposite index based on PCAcomposite index based on PCA1.330.57Xcomposite index based on PCAcomposite index based on additive0.220.50X	annual working unit	AWU	2.6	1.9	2.0					х		
diversity at farm level 2016farm Div6.586.257.15Crop diversiticationnbLeys0.260.301.25Xnb gears with leynbLey0.260.301.25Xnb cover cropsnbCC1.162.052.35Xcrop diversity at field level (rotation)cropDiv4.635.004.33X*crop rotation diversificationcrop Diversification0.080.020.30X*X*crop rotation diversificationDiversification0.080.220.30XX*composite index based on Additive aggregation	livestock unit	LSU	0.70	0.27	0.73					х		
Crop diversificationnb years with leynbLeys0.260.301.25Xnb legume cropsnbLeg1.162.052.35Xnb cover cropsnbCC1.161.900.85X*X*crop diversity at field level (rotation)cropDiv4.635.004.30X*X*composite index based on PCA-0.08-0.220.30XXcomposite index based on additive-0.08-0.220.30XXaggregation-0.080.400.39XXSoil disturbance and protectiontraffic10.59.19.8XXfield traffictraffic10.59.19.8XXnb weeding 2015-2016nbWeed0.002.35XXnb tillage and weeding interventions 2012- 2016nbWeed0.002.35XXsoil protection indexsoil1.634.721.82XXsoil protection indexsolir0.280.50XXXsoil protection indexsolir0.280.50XXXsoil coverscover0.280.50XXXgregationresksed on PCA0.130.75XXcomposite index based on PCAcomposite index based on PCA0.501.55Xsoil protection indexscover0.280.50XXgregationresksed on PCA0.55	diversity at farm level 2016	farmDiv	6.58	6.25	7.15					х		
nb years with leynbLeys0.260.301.25Xnb legume cropsnbLeQ1.162.052.35Xnb cover cropsnbCC1.161.900.85X*crop diversity at field level (rotation)roDPi/v4.635.004.30X*crop diversity at field level (rotation)roDPi/v4.635.004.30X*X*crop diversiticationroDiversificationrDiversification6.177.187.00Xcomposite index based on PCA composite index based on additive aggregation0.280.400.39XXSoli disturbance and protectiontraffic10.59.19.8XXfield trafficnbTill1.320.402.55XXnb weeding 2015-2016 nb tillage and weeding interventions 2012- 2016nbTill9.8XXsoil protection index as soil protection index as group at index based on PCA composite index based on Additive	Crop diversification											
nb legume cropsnbLeg1.162.052.35Xnb cover cropsnbCC1.161.900.85X*X*r crop diversity at field level (rotation)cropDiv4.635.004.305.00X*X*crop otation diversificationrDiversification6.177.187.00XXcomposite index based on PCA0.280.400.39XXcomposite index based on additive aggregation0.280.400.39XXSoil disturbance and protectiontraffic10.59.19.8XXnb tillage 2015-2016 nb tillage and weeding interventions 2012- 2016nbTill1.320.402.55XXsoil protection index asoil protection indexsoilP1.634.721.82XXsoil tillage intensity aggregationstir9424139XXsoil cover composite index based on additive aggregationScoler0.280.500.18Xsoil tillage intensity aggregationstir9424139XXcomposite index based on additive aggregationcover0.280.500.57Xorganic matter inputs and nitrogen fertilisationresExp2.371.602.75Xorganic amendments organic amendmentsnbOrg6.355.40XXorganic amendments organic amendmentsresExp2.76708X	nb years with ley	nbLeys	0.26	0.30	1.25				Х			
nb cover cropsnbCC1.161.900.85X*X*X*crop diversity at field level (rotation)ropDiv4.635.004.30	nb legume crops	nbLeg	1.16	2.05	2.35		Х					
crop diversity at field level (rotation)crop Div4.635.004.30crop rotation diversificationrDiversification7.187.00composite index based on PCA-0.08-0.220.30Xcomposite index based on additive-0.08-0.220.30Xaggregation-0.280.400.39XSoli disturbance and protectiontraffic10.59.19.8field trafficnb Till1.320.402.55Xnb weeding 2015-2016nbTill1.320.002.35Xnb weeding interventions 2012- 2016nbTW2.321.82Xsoil protection indexsoilP1.634.721.82Xsoil coverscover0.280.501.8Xsoil coverscover0.280.50XXorganic matter inputs and nitrogen fertilisation0.410.130.57Xcomposite index based on additive aggregationnbCrg5.355.40Xorganic mendmentsnbCrg5.355.40Xcomposite index based on Additive aggregationnbCrg5.355.40composite index based on Additive aggregationqrogs5.355.40composite index based on Additive aggregationqrogs5.355.40composite index based on Additive aggregationqrogs5.355.40composite index based on Additive aggregationqrogs5.355.40	nb cover crops	nbCC	1.16	1.90	0.85			X *	X *			
crop rotation diversificationrDiversification6.177.187.00composite index based on PCA composite index based on additive aggregation-0.08-0.220.30XSoli disturbance and protection0.880.400.39Xfield traffictraffic10.59.19.8nb tillage 2015-2016 nb tillage and weeding interventions 2012- 2016nbTU2.320.402.55Xsoli protection indexsoli PC0.002.35XXsoli protection indexsoli PC0.001.834.06Xsoli coversoli PC0.280.660.18Xsoli coverscover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.280.560.18Xsoli coverscover0.280.560.18XXcomposite index based on PCA composite index based on additive aggregation0.410.130.57Xcomposite index based on PCA composite index based on additive aggregation0.410.130.57Xcomposite index based on Additive aggregation1.602.751.602.75composite index based on additive aggregation0.605.655.401.60composite index based on additive aggregation0.607.657.68composite index based on Additive aggregation0.655.401.60corp residue exportation i nb organic	crop diversity at field level (rotation)	cropDiv	4.63	5.00	4.30					Х		
composite index based on PCA composite index based on additive aggregation-0.08-0.220.30XSoil disturbance and protection0.280.400.39XSoil disturbance and protectiontraffic10.59.19.8nb tillage 2015-2016 n by weeding 2015-2016 nb tillage and weeding interventions 2012- 2016nbWeed0.000.002.35Xnb tillage and weeding interventions 2012- 2016nbTW2.320.184.06XXsoil protection indexsoilP1.634.721.82XXsoil coverscover0.280.560.18XXsoil coverscover0.280.50XXorganic index based on additive aggregation-0.620.50XXorganic matter inputs and nitrogen fertilisationresExp2.371.602.75roop residue exportationresExp2.371.602.75nb organic amendmentsnbOrg5.055.4014organic input from crops [kg OM/ha]qOrg683726708	crop rotation diversification	rDiversification	6.17	7.18	7.00					Х		
composite index based on additive aggregation0.280.400.39XSoil disturbance and protection0.010.519.19.8field traffictraffic10.59.19.8nb tillage 2015-2016nbTill1.320.402.55Xnb weeding 2015-2016nbWeed0.000.002.35Xnb tillage and weeding interventions 2012- 2016nbTW2.320.184.06Xsoil protection indexsoilP1.634.721.82Xsoil tillage intensitystir9424139Xsoil coversCover0.280.560.18Xcomposite index based on additive aggregation0.410.130.57XOrganic matter inputs and nitrogen fertilisationresExp2.371.602.75cop residue exportationresExp2.375.055.40organic amendmentsnbOrg5.055.40organic input from crops [kg OM/ha]qOrg68.3726organic input from crops [kg OM/ha]copOrp68.3726	composite index based on PCA		-0.08	-0.22	0.30				Х			
Soil disturbance and protectionfield traffictraffic10.59.19.8nb tillage 2015-2016nbTill1.320.402.55Xnb weeding 2015-2016nbWeed0.000.002.35Xnb tillage and weeding interventions 2012- 2016nbTW2.320.184.06Xsoil protection indexsoilP1.634.721.82Xsoil tillage intensitystir9424139Xsoil coverScOver0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.410.130.57XOrganic matter inputs and nitrogen fertilisation resExp2.371.602.75Xnb organic amendmentsnbOrg5.055.40Xorganic input from crops [kg OM/ha] organic input from crops [kg OM/ha]qOrg683726708	composite index based on additive aggregation		0.28	0.40	0.39		Х					
field traffictraffic10.59.19.8nb tillage 2015-2016nbTill1.320.402.55Xnb weeding 2015-2016nbWeed0.000.002.35Xnb tillage and weeding interventions 2012- 2016nbTW2.320.184.06Xsoil protection indexsoilP1.634.721.82Xsoil tillage intensitystir942.42139Xsoil cover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.020.520.50XOrganic matter inputs and nitrogen fertilisationresExp2.371.602.75Xroop crain camendment inputs [kg OM/ha]qOrg683726708	Soil disturbance and protection											
nb tillage 2015-2016 nb weeding 2015-2016 nb tillage and weeding interventions 2012- 2016nbWeed0.002.002.35X2016nbTW2.320.184.06XXsoil protection index soil tillage intensitysoilP1.634.721.82Xsoil coversCover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregationv0.02-0.520.50XCorporaic matter inputs and nitrogen fertilisationv0.410.130.57XCorporaic matter inputs and nitrogen fertilisationresExp2.371.602.75xrogranic amendment inputs [kg OM/ha]qOrg653708708	field traffic	traffic	10.5	9.1	9.8					х		
nb weeding 2015-2016 nb tillage and weeding interventions 2012- 2016nbWeed0.000.002.35X2016nbTW2.320.184.06Xsoil protection index soilPsoilP1.634.721.82Xsoil tillage intensitystir9424139Xsoil coversCover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.010.130.57XOrganic matter inputs and nitrogen fertilisationresExp2.371.602.75rop residue exportationresExp2.375.055.40organic amendmentsnbOrg5.055.40100organic input from crops [kg OM/ha]qOrg465435470organic input from crops [kg OM/ha]cropOrg683726708	nb tillage 2015-2016	nbTill	1.32	0.40	2.55	Х						
nb tillage and weeding interventions 2012- 2016nbTW2.320.184.06Xsoil protection indexsoilP1.634.721.82Xsoil tillage intensitystir9424139Xsoil coversCover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.02-0.520.50XOrganic matter inputs and nitrogen fertilisation0.410.130.57Xcrop residue exportation organic amendmentsresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40organic input from crops [kg OM/ha]qOrg683726708	nb weeding 2015-2016	nbWeed	0.00	0.00	2.35				Х			
2016nbTW2.320.184.06Xsoil protection indexsoilP1.634.721.82Xsoil tillage intensitystir9424139Xsoil coversCover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.02-0.520.50XOrganic matter inputs and nitrogen fertilisation crop residue exportationresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40Letter inputs fertilisationorganic input from crops [kg OM/ha]qOrg465435470organic input from crops [kg OM/ha]cropOrg683726708	nb tillage and weeding interventions 2012-											
soil protection indexsoilP1.634.721.82Xsoil tillage intensitystir9424139Xsoil coversCover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.02-0.520.50XOrganic matter inputs and nitrogen fertilisation crop residue exportationresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40organic amendment inputs [kg OM/ha]qOrg465435470organic input from crops [kg OM/ha]cropOrg683726708	2016	nbTW	2.32	0.18	4.06	Х						
soil tillage intensitystir9424139Xsoil coversCover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.02-0.520.50XOrganic matter inputs and nitrogen fertilisation0.410.130.57XCrop residue exportationresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40organic amendment inputs [kg OM/ha]qOrg465435470organic input from crops [kg OM/ha]cropOrg683726708	soil protection index	soilP	1.63	4.72	1.82			Х				
soil coversCover0.280.560.18Xcomposite index based on PCA composite index based on additive aggregation0.02-0.520.50Xorganic matter inputs and nitrogen fertilisation0.410.130.57Xcrop residue exportation nb organic amendmentsresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40organic amendment inputs [kg OM/ha]qOrg465435470organic input from crops [kg QM/ha]cropOrg683726708	soil tillage intensity	stir	94	24	139	Х						
composite index based on PCA composite index based on additive aggregation0.02-0.520.50XOrganic matter inputs and nitrogen fertilisation0.410.130.57XOrganic matter inputs and nitrogen fertilisationresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40organic amendment inputs [kg OM/ha]qOrg465435470organic input from crops [kg OM/ha]cropOrg683726708	soil cover	sCover	0.28	0.56	0.18			Х				
aggregation0.410.130.57XOrganic matter inputs and nitrogen fertilisationcrop residue exportationresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40organic amendment inputs [kg OM/ha]qOrg465435470organic input from crops [kg OM/ha]cropOrg683726708	composite index based on PCA		0.02	-0.52	0.50	Х						
Organic matter inputs and nitrogen fertilisation crop residue exportation resExp 2.37 1.60 2.75 nb organic amendments nbOrg 5.05 5.05 5.40 organic amendment inputs [kg OM/ha] qOrg 465 435 470 organic input from crops [kg OM/ha] cropOrg 683 726 708	aggregation		0.41	0.13	0.57	х						
crop residue exportationresExp2.371.602.75nb organic amendmentsnbOrg5.055.055.40organic amendment inputs [kg OM/ha]qOrg465435470organic input from crops [kg OM/ha]cropOrg683726708	Organic matter inputs and nitrogen fertilisation											
nb organic amendments nbOrg 5.05 5.40 organic amendment inputs [kg OM/ha] qOrg 465 435 470 organic input from crops [kg OM/ha] cropOrg 683 726 708	crop residue exportation	resExp	2.37	1.60	2.75					х		
organic amendment inputs [kg OM/ha] qOrg 465 435 470 organic input from crops [kg OM/ha] cropOrg 683 726 708	nb organic amendments	nbOrg	5.05	5.05	5.40					X		
organic input from crops [kg OM/ha] cropOrg 683 726 708	organic amendment inputs Ikg OM/hal	aOra	465	435	470					x		
	organic input from crops [kg OM/ha]	cropOra	683	726	708					x		
										45		

2585									
2586	total organic inputs [kg OM/ba]	totΩra	1148	1161	1178				×
2587	mineral nitragen fertilization [kg N/ba]	minN	1140	107	0			×	Х
2588	mineral milrogen tertilisation [kg N/ha]	ITHITHN	141	127	0			~	
2589	organic nitrogen fertilisation [kg N/ha]	orgN	19	20	61			X	
2590	total nitrogen fertilisation [kg N/ha]	totN	160	147	61			Х	
2591	composite index based on PCA		-0.29	-0.32	0.59			Х	
2592	composite index based on additive		0.40	0.25	0.26				V
2593	aggregation		0.40	0.55	0.30				^
2594	Crop protection								
2595	nb herbicide treatment	nbHerb	1.11	2.30	0.00	Х			
2596	nb fungicide treatment	nbFung	1.16	0.30	0.00		Х		
2597	total number of treatments	nbTreat	3.11	2.70	0.00			Х	
2598	herbicide treatment frequency index	rHerb	1.18	2.32	0.00	Х			
2599	total treatment frequency index	rTreat	2.77	2.71	0.00			Х	
2600	Yield								
2601	wheat yield 2016 [t/ha]	yield	5.6	4.9	3.4			Х	
2602	relative yield 2012-2016	relY	1.05	0.93	0.70	Х			

^a significant differences between the three groups

^b significant differences between conv-nt and conv-org, but not nt-org

^c significant differences between nt-conv and nt-org, but not conv-org

^d significant differences between org-conv and org-nt, but not conv-nt * significant difference between nt-org, but not between conv-nt and conv-org

PC1

Relative yield 2012-2016 (relY)

PC1

PC1

% area organic farming

Table S1 List and description of the 60 farms included in the study. 'Mean temperature' and 'Rainfall' are given as average values over the two years 2015 and 2016. 'Soil texture' gives texture classes according to the ISSS system. 'Program' refers to compliance to specific 'integrated' (no pesticides except herbicides) or 'organic' programs in 2016. 'UAA' is for utilised agricultural area. 'Fertilisation' indicates what kind of fertilisation was used during the five-year crop rotation: 'min' = mineral only, 'org' = organic only, 'min-org' = mixed mineral and organic. The conventional farm indicated in light grey was removed from the analyses due to missing survey data.

Cropping system	Canton	Altitude [m]	Mean temp [°C]	Rainfall [mm]	Soil texture	Program	UAA [ha]	Fertilisation	Livestock unit
conv	GE	476	11.3	879	light clay	integrated	102	min-org	0.5<>1
conv	GE	427	10.8	793	silty clay loam	integrated	84	min	0<>0.5
conv	GE	361	11.7	680	loam	integrated	110	min	0<>0.5
conv	GE	423	11.3	786	loam	none	190	min-ora	0.5<>1
conv	GE	427	11.7	680	clay loam	integrated	63	min	0
conv	VD	485	10.6	743	clay loam	none	106	min	0<>0.5
conv	VD	457	11.5	1035	clay loam	none	63	min-ora	>1
CONV		754	99	1002	loam	integrated	33	min-org	0.5~~1
CONV		/37	10.4	778	clav loam	none	45	min	0.0<>1
conv		554	10.4	805	loam	none	43 13	min-ora	0<>0.5
conv		202	10.1	000	loam	intograted	4J 25	min org	0<>0.5
	AG	470	10.2	1090	loam	niegraleu	20	min-org	0<>0.0
CONV		479	9.3	1000	olay loom	none	30	min-org	>1
CONV	70	300	9.3	1000	ciay ioam	-	-	-	-
CONV		408	10.4	907	clay loam	none	10	min-org	0<>0.5
CONV	ZH	518	10.4	1322	clay loam	none	33	min-org	>1
CONV	ZH	435	10.6	982	clay loam	Integrated	41	min-org	0
conv	ZH	429	10.6	982	clay loam	none	23	min-org	0<>0.5
conv	ZH	576	10.4	1322	clay loam	none	31	min-org	>1
conv	ZH	390	10.0	1007	clay loam	none	73	min-org	>1
conv	ZH	442	10.3	1181	light clay	none	62	min-org	0.5<>1
nt	GE	441	11.4	793	clay loam	integrated	57	min-org	0<>0.5
nt	GE	403	11.7	680	silty clay	integrated	48	min-org	0
nt	GE	361	11.7	680	silty clay loam	none	107	min-org	0
nt	GE	356	11.7	680	loam	none	76	min-org	0
nt	GE	427	11.3	786	clay loam	none	25	min	0<>0.5
nt	VD	429	11.3	1109	clay loam	integrated	66	min	0<>0.5
nt	VD	686	9.7	1013	light clay	integrated	144	min-org	0.5<>1
nt	VD	486	10.9	839	loam	integrated	17	min-org	0<>0.5
nt	VD	590	10.3	792	loam	integrated	68	min	0
nt	VD	584	10.4	778	light clay	integrated	31	min-org	0
nt	AG	383	10.2	934	loam	integrated	29	min-org	0.5<>1
nt	LU	504	9.3	1080	clay loam	integrated	13	min-org	0<>0.5
nt	LU	506	9.3	1080	clay loam	none	30	min-org	0<>0.5
nt	ZH	408	10.4	967	clay loam	none	26	min-org	0<>0.5
nt	ZH	518	10.4	1322	clay loam	integrated	35	min-org	0.5<>1
nt	ZH	457	10.6	982	clay loam	integrated	13	min-org	0
nt	ZH	429	10.6	982	light clay	none	31	min	0
nt	ZH	576	10.4	1322	light clay	integrated	29	min-ora	>1
nt	ZH	390	10.0	1007	clav loam	none	34	min-ora	0<>0.5
nt	7H	442	10.3	1181	light clay	integrated	12	min-org	0
ora	GE	437	11.3	879	clav loam	organic	87	ora	0<>0.5
ora	GE	437	11.3	879	light clay	organic	71	org	0
org	GE	435	11.4	793	clav loam	organic	20	org	0
org	VD	733	10.1	805	loam	organic	28	org	0.5<>1
org	VD	613	10.3	792	clay loam	organic	46	org	0<>0.5
org		443	10.0	830	clay loam	organic	27	org	0
org		456	11.6	1063	clay loam	organic	Δ7	org	0
org		618	10.3	7000	clay loam	organic	76	org	0
org		442	10.3	792	clay loam	organic	10	org	05-01
org		442	10.4	820	loom	organic	40	org	0.5<>1
org		449	10.9	039	loan	organic	40	org	0.0<>1
org	AG	420	10.2	934 1090	loom	organic	20	org	>1
org		506	9.0 0.2	1000	olovicom	organic	119	org	0.0<>1
ug		300	9.3	1080	ciay ioam	organic	10	org	I <>C.U
org	ZH	408	10.4	907	ciay loam	organic	30	org	>1
org	ZH	518	10.4	1322	light clay	organic	2Z	org	>1
org	ZH	465	10.6	982	ciay loam	organic	18	org	U
org	ZH	429	10.6	982	ciay loam	organic	18	org	>1
org	ZH	5/6	10.4	1322	light clay	organic	25	org	>1
org	ZH	442	10.3	1181	light clay	organic	29	org	0.5<>1
org	T(3	416	10.0	1007	light clay	organic	21	ora	N1

Table S2 Data collected in the questionnaire survey (rows), filled in by the farmers, and used to compute the 32 cropping practice indicators (columns). The crosses indicate which data has been used for which indicator.

	farm structure	utilised agricultural area	annual working unit		uiveisity at lariii level 2010 cron diversification	nd vers with lev	nb legumes	nb cover crop	crop diversity at field level (rotation)	crop rotation diversification	soil disturbance and protection	field traffic	nb tillage 2015-2016	nb weeding 2015-2016	nb tillage and weeding interventions 2012-2016	soil protection index	soil tillage intensity	soil cover ormanis mattar incuts and nitrorean fartilisation	organic matter inputs and mugen remisauor crob residue exportation	nb organic amendments	organic amendment inputs	organic input from crops	total organic inputs	mineral nitrogen fertilisation	organic nitrogen fertilisation	total nitrogen fertilisation	crop protection	nb herbicide treatment	nb fungicide treatment	total number of treatments	herbicide treatment frequency index	total treatment frequency index	y eid wheat vield 2016	relative vield 2012-2016	
General information at farm level																																			
utilised agricultural area [ha]		Х																																	
annual working unit			Х																																
livestock unit				X																															
all main crops present on the farm in 2015-2016			_		X				-	-	-	_	-				_	_		_	-	-	-				_	_	_	_	_	_		-	
Detailed management practices for the wheat cultivation year (2015-2016) => for each intervention:	-						-	-									_									_	_	-	_		-	_			_
date																		Х																	
intervention type (tillage, weeding, seeding, treatment, fertilisation)												Х	Х	Х			Х	X						Х	Х	Х		Х	Х	Х	Х	Х			
implement																	Х	X																	
product (type, quantity)																	_							Х	Х	Х		_	_	_	Х	Х			
Historical data on the 5 year rotation (2012-2016), at field level																																			_
=> for each year:	_					_	_	_	_	_	_	_							_	_	_	_	_	_										_	
main crop	_					X	(X		X	X		_	_					_	_	_	_	X	X								_		_	X	
estimated yield [t/ha]	_					_	_	_	_	_	_	_							_	<u> </u>	_			_									X		
organic fertilisation (type, quantity)					_	_		-		-		_							_	X	X		X											_	
cover crop (presence or not, species)					_	_	_	X	X	X		_	_						_	_	_	_	_								_			_	
type of soil tillage (no till, reduced, plough)				_	_	_	_	-	-	-	_	-	-			Х			_	_	_	_	-	-	-			_	_		_			-	
estimated number of tillage and weeding interventions				_	_	_	_	-		-	_	-			Х						_			-	-			_			_			_	
management of crop residue (exported or left on the field)																			X	(X	X												

Table S3 Isohumic coefficients and nitrogen availability of organic amendments used in the computation of the organic amendment inputs (qOrg), total organic inputs (totOrg), nitrogen organic fertilisation (orgN) and total nitrogen fertilisation indicators (totN).

source of organic matter	dry organic matter ^a	isohumic coefficient	total nitrogen ^a	part of available nitrogen ^b
	[kg/t or *kg/m3]		[kg/t or *kg/m3]	
cow slurry	50*	0.10	4.3*	0.45
cow manure	150	0.50	4.9	0.15
fattening cow slurry	65*	0.10	4.3*	0.45
fattening cow manure	155	0.35	5.4	0.20
pig slurry	33*	0.10	4.7*	0.50
pig manure	40	0.35	7.8	0.35
poultry manure	330	0.25	27.0	0.35
horse manure	270	0.40	5.6	0.10
compost	214	0.25	7.0	0.05
composted manure	200	0.65	4.9	0.15
liquid digestate	50*	0.28	4.0	0.50
ramial chipped wood (BRF)	422	0.50	1.6*	0.00

^adry organic matter and total nitrogen are given in kg/t, except for values marked with *, in kg/m3

^bpart of total nitrogen available for the crop the year of application

Most coefficients were extracted from the Swiss principles of agricultural crop fertilisation (Sinaj and Richner, 2017) or extrapolated from similar products, except for digestate isohumic coefficient (CSICM, 2010) and for the ramial chipped wood coefficients (CTACF, 2006)

References

- CSICM, 2010. Directive suisse 2010 de la branche sur la qualité du compost et du digestat. Commission suisse de l'inspectorat du compostage et de la méthanisation, 40 pp.
- CTACF, 2006. Mise en oeuvre de la technique du Bois Raméal Fragmenté (BRF) en agriculture wallonne. Centre des Technologies Agronomiques Communauté Française, 168 pp.

Sinaj, S., Richner, W., 2017. Principes de fertilisation des cultures agricoles en Suisse (PRIF 2017). Recherche Agronomique Suisse 8(6).

Table S4 Mean values and standard errors of the 31 indicators for the three cropping systems, and p-values from the overall analysis of variance ('global') and from the Tukey HSD post-hoc pairwise test. 'conv': conventional farming, 'nt': no-till farming, 'org': organic farming.

Indicator	conv		nt o		org		p-values				
	mean	se	mean	se	mean	se	anova	nt-conv	org-cor	nvorg-nt	
Farm structure											
utilised agricultural area [ha]	62	10	44	8	41	6	0.142	0.278	0.149	0.932	
annual working unit	2.6	0.5	1.9	0.4	2.0	0.2	0.464	0.466	0.617	0.966	
livestock unit	0.70	0.17	0.27	0.09	0.73	0.14	0.035	0.077	0.991	0.053	
diversity at farm level 2016	6.58	0.34	6.25	0.45	7.15	0.55	0.376	0.870	0.659	0.350	
Crop diversification											
nb years with ley	0.26	0.18	0.30	0.18	1.25	0.22	0.001	0.990	0.002	0.003	
nb legume crops	1.16	0.22	2.05	0.29	2.35	0.22	0.004	0.038	0.004	0.667	
nb cover crops	1.16	0.22	1.90	0.32	0.85	0.20	0.013	0.101	0.663	0.011	
crop diversity at field level (rotation)	4.63	0.24	5.00	0.23	4.30	0.18	0.082	0.466	0.538	0.066	
crop rotation diversification	6.17	0.27	7.18	0.55	7.00	0.41	0.218	0.228	0.364	0.952	
Soil disturbance and protection											
field traffic	10.5	0.5	9.1	0.3	9.8	0.5	0.081	0.065	0.503	0.468	
nb tillage 2015-2016	1.32	0.15	0.40	0.13	2.55	0.27	0.000	0.005	0.000	0.000	
nb weeding 2015-2016	0.00	0.00	0.00	0.00	2.35	0.26	0.000	1.000	0.000	0.000	
nb tillage and weeding interventions 2012-2016	2.32	0.20	0.18	0.08	4.06	0.46	0.000	0.000	0.000	0.000	
soil protection index	1.63	0.15	4.72	0.10	1.82	0.23	0.000	0.000	0.713	0.000	
soil tillage intensity	94	7	24	3	139	6	0.000	0.000	0.000	0.000	
soil cover	0.28	0.05	0.56	0.05	0.18	0.03	0.000	0.000	0.244	0.000	
Organic matter inputs and nitrogen fertilisation											
crop residue exportation	2.37	0.32	1.60	0.37	2.75	0.38	0.072	0.288	0.731	0.063	
nb organic amendments	5.05	0.05	5.05	0.05	5.40	0.18	0.055	1.000	0.096	0.087	
organic amendment inputs [kg OWha]	465	105	435	130	470	150	0.979	0.986	1.000	0.980	
organic input from crops [kg OM/ha]	683	37	726	32	708	41	0.712	0.690	0.880	0.936	
total organic inputs [kg OM/ha]	1148	113	1161	134	1178	140	0.986	0.997	0.985	0.995	
mineral nitrogen fertilisation [kg N/ha]	141	7	127	8	0	0	0.000	0.217	0.000	0.000	
organic nitrogen fertilisation [kg N/ha]	19	7	20	6	61	5	0.000	0.978	0.000	0.000	
total nitrogen fertilisation [kg N/ha]	160	6	147	4	61	5	0.000	0.201	0.000	0.000	
Crop protection											
nb herbicide treatment	1.11	0.11	2.30	0.24	0.00	0.00	0.000	0.000	0.000	0.000	
nb fungicide treatment	1.16	0.33	0.30	0.18	0.00	0.00	0.001	0.016	0.001	0.569	
total number of treatments	3.11	0.54	2.70	0.26	0.00	0.00	0.000	0.678	0.000	0.000	
herbicide treatment frequency index	1.18	0.20	2.32	0.23	0.00	0.00	0.000	0.000	0.000	0.000	
total treatment frequency index	2.77	0.43	2.71	0.24	0.00	0.00	0.000	0.988	0.000	0.000	
Yield											
wheat yield 2016 [t/ha]	5.6	0.4	4.9	0.3	3.4	0.2	0.000	0.174	0.000	0.001	
relative vield 2012-2016	1.05	0.03	0.93	0.03	0.70	0.03	0.000	0.020	0.000	0.000	

Figure S1 Map of Switzerland showing the geographic position of the 60 fields. Blue points correspond to conventional systems, red points to no till systems and green points to organic systems.

Figure S2 Texture triangle (ISSS system) showing the texture (0-20 cm) of the 60 fields. Blue points correspond to conventional systems, red points to no till systems and green points to organic systems.

Figure S3 Principal component analyses (field projection, scaling 2) used for the computation of the composite indexes for A. Crop diversification, B. Soil disturbance and protection, and C. Organic matter inputs and nitrogen fertilisation. Blue points correspond to conventional systems, red points to no-till systems and green points to organic systems. Correspondence between abbreviations and indicator names are given in Table 1.

Figure S4 A. Crop frequency for the studied fields, for the three cropping systems ('conv': conventional, 'nt': no till, 'org': organic). Crops are grouped into types. B. Categorisation of the crop rotation along three main types: 1. rotations with a cereal every two years, 2. rotations including leys, and 3. other type of rotations.

Cereal: winter or spring wheat, barley, oat, spelt, rye, triticale Oilseed: rapeseed, sunflower, flax Maize: grain maize, silage maize, sorghum Root: potato, sugarbeet

Legume: soybean, peas, faba bean, lentil, bean, clover

Figure S5 Relative yield indicator as a function of time since the beginning of A. no till practice and B. organic practice. In panel A, the numbers above the points indicate the number of cover crops cultivated the past 5 years (number of cover crop 'nbCC' indicator).

Figure S6 Comparison of Switzerland with six other European countries in terms of crop diversity, nitrogen fertilisation and pesticide inputs. On each box, 'CH' shows the position of Switzerland. On the left of each box, the two letter code of each other country is indicated, BE: Belgium, CZ: Czech Republic, EE: Estonia, FR: France, DE: Germany, NL: Netherlands. The data come from Herzog et al. (2006).

Reference

Herzog, F., Steiner, B., Bailey, D., Baudry, J., Billeter, R., Bukacek, R., De Blust, G., De Cock, R., Dirksen, J., Dormann, C.F., De Filippi, R., Frossard, E., Liira, J., Schmidt, T., Stöckli, R., Thenail, C., van Wingerden W., Bugter, R. 2006. Assessing the intensity of temperate European agriculture at the landscape scale. Europ. J. Agron. 165-181.