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22 Abstract

23 To compare different cropping systems, it is crucial to describe explicitly the associated 

24 cropping practices. A set of 31 indicators, and six composite indexes, addressing farm 

25 structure, crop diversification, soil disturbance, organic matter inputs, nitrogen fertilisation, 

26 crop protection, and yield was used to describe 59 winter wheat fields belonging to 

27 conventional, no-till and organic systems, in Switzerland. The aim of this study was to 

28 investigate the complementarity and redundancy of the indicators and their potential to 

29 characterise these cropping systems. In general, weak correlations were observed between the 

30 studied indicators, showing the importance of using a set of indicators to fully characterise 

31 cropping practices. The complex indicators were often correlated with simpler ones, but it 

32 cannot be excluded that they can prove to be more useful in different contexts. Retaining a 

33 combination of simple and complex indicators to obtain a broad picture of cropping practices 

34 is thus recommended. The indicators highlighted differences but also similarities between the 

35 three systems. For example, the input of organic matter and crop rotation diversification were 

36 similar between the three systems. In contrast, total nitrogen fertilisation (lower for organic 

37 systems) and soil disturbance (lower for no-till systems) were different. A high within-system 

38 variability was observed for some indicators, suggesting that using quantitative indicators 

39 rather than simple classifications based on a general description of the systems allows a better 

40 characterisation of these systems. Overall, the use of indicators has the potential to improve 

41 our understanding of the influence of cropping practices on the soil and environment.

42

43 Keywords

44 field level indicators, composite indexes, crop diversification, organic matter inputs, soil 

45 disturbance intensity, on-farm study
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46 1. Introduction

47 Agriculture is characterised by a wide range of soil management and cropping practices, such 

48 as choice of cultivated crop and cultivar, crop rotation, tillage intensity and implements, 

49 nutrient management, crop protection and irrigation. As alternatives to what can be called 

50 'conventional' cropping practices, different cropping systems have been developed, especially 

51 to reduce the impact of agriculture on the environment. Among others, organic farming and 

52 no-till agriculture are alternative systems which are increasingly adopted. Organic farming is 

53 principally based on the exclusive utilisation of organic fertilisers and treatments: synthetic 

54 substances are prohibited but soil tillage and mechanical weeding is allowed (Reganold and 

55 Wachter, 2016; Migliorini and Wezel, 2017). No-till farming implies the absence of any 

56 tillage interventions prior to seeding and should ensure at least 30% soil cover throughout the 

57 year (Soane et al., 2012). No-till systems could fulfil the principles of conservation agriculture 

58 if they insure sufficient soil cover (by residues or crops) and a diversified crop sequence 

59 (FAO, 2018). 

60 Many studies have aimed at comparing these systems to assess if yield can be maintained 

61 compared to conventional systems. Based on a meta-analysis, it has been shown that no-till 

62 alone tends to reduce yield by about 10%, but this decrease can be mitigated when no-till is 

63 associated with crop residue retention and improved crop rotation (Pittelkow et al., 2015a). In 

64 organic farming, a yield decline of about 20% compared to conventional systems is typically 

65 observed (Mäder et al., 2002; de Ponti et al., 2012; Seufert et al., 2012; Ponisio et al., 2015; 

66 Seufert and Ramankutty, 2017). Moreover, a recent meta-analysis has shown that temporal 

67 yield stability of conventional fields was higher than that of organic fields (Knapp and van der 

68 Heijden, 2018). However, precautions must be taken when comparing these systems as 

69 observed differences could be induced by confounding factors (e.g. soil or climatic factors), 

70 or fundamental differences in the system design such as differences in crop rotation 

71 (Kirchmann et al., 2016). Most often, systems are compared by 'labels' without specifying to 
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72 which extent these systems actually differ in terms of cropping practices (Armengot et al., 

73 2011; Therond et al., 2017). However, information on cropping practices is crucial when it 

74 comes to understand and explain the observed effects on yield, plant performance or soil 

75 properties. The amount of organic amendments, the intensity of tillage, the extent of fertiliser 

76 inputs, the number and amount of pesticides used, and the crop diversity may vary drastically 

77 within a given type of cropping system. 

78 Indicators of agricultural practices can be used to achieve such a description. Many sets of 

79 indicators aiming at describing farming and cropping systems exist, from simple ones to 

80 complex multi-dimensional assessment tools (Bockstaller et al., 1997; Bockstaller et al., 2008; 

81 Pelzer et al., 2012). The choice of the indicators depends on the objective of the study. In 

82 many studies, indicators are chosen to characterise the sustainability of the system or the 

83 intensity of management and practices (i.e. land-use intensity LUI) (e.g. Bechini and Castoldi, 

84 2009; Geiger et al., 2010; Gaudino et al., 2014; Smith et al., 2017). These primary indicators 

85 can then be combined to obtain secondary composite indexes (Nardo et al., 2005; Castoldi 

86 and Bechini, 2010; Blüthgen et al., 2012) to reduce the dimensionality of the data and allow 

87 more straightforward interpretations of the results. A drawback of this is obviously the loss of 

88 information and the potential concealing of trade-offs between practices. Different methods to 

89 build these composite indexes exists (Nardo et al., 2005), the two most common being 

90 additive aggregation of indicators after normalisation (e.g. Herzog et al., 2006; Blüthgen et 

91 al., 2012) and the use of multivariate analyses such as PCA (e.g. Armengot et al., 2011; 

92 Nkurunziza et al., 2017). However, the collection of the data needed to implement such 

93 indicators is a daunting task and thus simple and reliable indicators, based on data that is 

94 reasonably easy to obtain, are required.

95 Here, we present results from an on-farm study conducted in Switzerland in 2016-2017, on 

96 winter wheat fields belonging to three cropping systems, conventional, no-till and organic. A 

97 survey was conducted to gather information about management and cropping practices at field 
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98 and farm scale. Based on these data, 31 indicators of different complexity levels were 

99 computed to cover the main characteristics of the cropping systems. For three thematic 

100 categories of indicators, composite indexes were computed using the multivariate and additive 

101 aggregation methods.

102 The aims of this study were a) to assess the complementarity and redundancy of the 31 chosen 

103 indicators and of the composite indexes and b) to evaluate the potential of these indicators to 

104 characterise the three cropping systems.

105

106 2. Materials and Methods

107 2.1 Farm and field selection

108 Sixty farms (one field per farm) distributed over the Swiss plateau (Supplementary Material 

109 Figure S1 and Table S1) were selected for this on-farm study conducted in 2016-2017. Three 

110 different cropping systems were studied, with 20 fields selected for each system. The first 

111 group of 20 fields corresponded to 'conventional' system, with soil tillage and potential use of 

112 synthetic substances. The second group consisted of 'no-till' fields, i.e. without any soil tillage 

113 except for occasional use of strip till (mainly 0-1 time over 5 years, max 2-3 times), and 

114 potential use of synthetic substances. The third group contained fields in organic farms, with 

115 more or less deep and intense soil tillage, but no use of synthetic substances. All farms had to 

116 comply to their specific cropping system for more than five years. All conventional and no-till 

117 farms followed the ‘Proof of Ecological Performance’ guidelines from the Swiss Federal 

118 Office for Agriculture, which include a balanced nutrient budget, diversified crop distribution 

119 (at least four different main crops per year), proper soil protection, targeted selection and use 

120 of pesticide treatments and biodiversity promoting surfaces (FOAG, 2018a). Organic farms 

121 followed the guidelines of Bio Suisse, which is the federation of Swiss organic farmers. 

122 Prerequisites were that the fields should have been seeded with winter wheat in autumn 2015 

123 and be larger than 1 ha. Winter wheat fields were targeted as this is the most frequent crop in 
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124 Switzerland, representing more than 20% of the arable surface (FSO, 2016). The most 

125 common crop rotation in the type of farms studied here has a cereal crop every two years; and 

126 the most cultivated crops outside from cereals are maize (silage or grain), rapeseed and sugar 

127 beet. Fields belonging to Cambisols with minimum 10% to maximum 40% of clay were 

128 targeted (Figure S2).

129 In order to check for a potential sampling effect on differences between cropping systems, 

130 information about six pedoclimatic variables (clay and silt content (0-20 cm), altitude, mean 

131 annual temperature and precipitation) were also gathered. Temperature and precipitation data 

132 were taking from the closest available weather station for each field.

133

134 2.2 Cropping practice indicators

135 Cropping practices were characterised according to 31 indicators, grouped into six thematic 

136 categories, as described below and summarised in Table 1. The data needed to compute these 

137 indicators were gathered from the farmers through a survey. Most questions were closed 

138 questions, i.e. several options of pre-defined answers were given. Information about the 

139 general farm structure and the specific cropping practices of the selected winter wheat field 

140 were collected (Table S2). Two types of time periods were used to collect data on cropping 

141 practices of the winter wheat field: detailed information on all cropping practices including 

142 dates of treatment for the crop cultivation year (winter wheat 2015-2016, period going from 

143 the harvest of the previous crop to the harvest of the winter wheat), and information on the 

144 five-year crop rotation, gathered for the wheat year and the four preceding years (2012-2016) 

145 (Table 1 and S2). The used indicators were chosen among published indicators or standard 

146 farm or field descriptors. These indicators differed in their complexity, i.e. the amount of 

147 information needed to compute them.
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148 Because survey results could not be obtained from one of the farms, all analyses involving 

149 cropping practice indicators were performed on 59 values (19 for the 'conventional' group, 20 

150 for the 'no-till' group and 20 for the 'organic' group).

151

152 Farm structure

153 For this category, the indicators concerned the farm scale, whereas the five other categories 

154 refer to field scale. Farm structure was described by three indicators: utilised agricultural area, 

155 including fallow surface ('UAA', in ha), annual working unit ('AWU', full time equivalent, a 

156 value of 1 corresponds to 1 person working full time on the farm the whole year) and 

157 livestock unit per hectare of UAA ('LSU', a value of 1 corresponds to 1 dairy cow per hectare) 

158 (Table 1). In addition, the diversity at the farm level in the year 2016 including crops, leys and 

159 fallows, was assessed (‘farmDiv’). 

160

161 Crop diversification

162 Crop diversification was addressed using five indicators. The number of years in ley 

163 (‘nbLeys’), the number of legumes (‘nbLeg’) and cover crops (‘nbCC’) occurrence during the 

164 five-year crop rotation 2012-2016 was quantified. Legumes species count included main 

165 crops as well as cover crops. The number of cover crops was also compared to the potential 

166 maximum number of cover crops that could have been cultivated given the crop rotation. It 

167 was assumed that a cover crop could be cultivated whenever there were more than eight 

168 weeks between the harvest of the previous crop and the seeding of the new one, based on 

169 standard harvest and seeding dates. Crop diversity (‘cropDiv’) was then computed as the 

170 number of different crops (main and cover) cultivated during the five years. A crop rotation 

171 diversification index (‘rDiversification’) was derived following the Indigo method 

172 (Bockstaller and Girardin, 2000), adapted here for a five-year duration. This indicator takes 
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173 into account crop rotation diversity, identity of the preceding crop and the time to the previous 

174 wheat crop.

175

176 Soil disturbance and protection

177 A total of seven indicators were selected to assess soil disturbance and protection. Field traffic 

178 (‘traffic’) was the number of interventions on the field, all type of interventions included, 

179 during the wheat cultivation period 2015-2016. The number of tillage (‘nbTill’) and 

180 mechanical weeding (‘nbWeed’) operations during that period were also used as indicators. 

181 Then, the mean number of tillage and weeding interventions over the five-year crop rotation 

182 (‘nbTW’) was computed. Fifth, a simple soil protection index (‘soilP’) was derived from the 

183 IDEA method (Zahm et al., 2008), based only on the type of soil tillage adopted in the last 

184 five years. It consisted in attributing a weight to each type of tillage (plough=0.5, reduced 

185 tillage=3, no-till=5) for each year of the crop rotation, and then averaging it. Soil tillage 

186 intensity rating (‘stir’) was computed for the wheat cultivation period, based on the 

187 disturbance induced by each tillage implement ('Soil Tillage Intensity Rating STIR' method 

188 from the RUSLE2 framework, USDA, 2012). In this method, a tillage intensity coefficient is 

189 attributed to each type of tillage implement as a function of tillage depth, area, speed and 

190 intensity. A list of such coefficients for different machines and interventions are available 

191 from the RUSLE2 method. The total tillage intensity was computed as the sum of these 

192 coefficients for all the interventions done during seedbed preparation and weeding. Last, the 

193 mean soil cover (‘sCover’) provided by crop residues or cover crops during the pre-sowing 

194 period (from the harvest of the preceding crop to the seeding of the winter wheat in 2015) was 

195 assessed using the soil cover indicator described by Büchi et al. (2016). It is based on standard 

196 values of soil cover by crop residues after harvest and incorporation rate by tillage 

197 implements. A minimal threshold value of 30% cover is generally seen as providing proper 

198 soil protection (Armand et al., 2009; Lilley and Moore, 2009; FAO, 2018).
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199

200 Organic matter inputs and nitrogen fertilisation

201 The topic of organic matter was represented by five indicators. First, crop residue 

202 management (‘resExp’) was evaluated by the frequency of crop residue exportation during the 

203 five-year crop rotation. Second, the number of organic amendment inputs (‘nbOrg’) over the 

204 crop rotation was counted. Third, an estimation of the corresponding quantity of stable 

205 organic matter input (‘qOrg’, kg OM/ha) was computed on a dry matter basis, using isohumic 

206 coefficients of each type of amendment (e.g. manure, slurry, compost) (Table S3). Fourth, the 

207 amount of organic matter inputs coming from aboveground crop residues (‘cropOrg’, kg 

208 OM/ha) were derived from the 'Indigo' method (Bockstaller et al., 1997). Fifth, the total 

209 organic matter input (‘totOrg’, kg OM/ha) was estimated, by adding inputs coming from crop 

210 residues to inputs coming from amendments.

211 Nitrogen fertilisation during the wheat cultivation year was described, first, by the amount of 

212 nitrogen coming from mineral fertilisers (‘minN’), second by the amount of available nitrogen 

213 coming from organic amendments (e.g. manure, slurry, compost) (‘orgN’), and third, by the 

214 total amount of available nitrogen (‘totN’), taking into account mineral and organic sources. 

215 For organic amendments, the nitrogen available for the crop was extracted from the Swiss 

216 principles of agricultural crop fertilisation (Sinaj and Richner, 2017), except for digestate 

217 (CSICM, 2010) and ramial chipped wood (CTACF, 2006) (Table S3).

218

219 Crop protection 

220 The frequency of pesticide treatments during the cultivation year 2015-2016 was evaluated by 

221 five indicators. First, the number of herbicide treatments (‘nbHerb’), number of fungicide 

222 treatments (‘nbFung’) and total number of treatments (‘nbTreat’, i.e. herbicide, fungicide, 

223 molluscicide, insecticide, growth regulator) were computed. When several products were 

224 applied together, each product counted as a separated treatment. Then, an herbicide (‘rHerb’) 
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225 and total (‘rTreat’) relative treatment frequency index was computed, based on the index 

226 developed in France (Hossard et al., 2017). This index is computed as the sum of the ratio of 

227 applied treatment dose over recommended dose, over all treatment applications. The 

228 recommended dose of each product was extracted from the website of the Swiss Federal 

229 Office for Agriculture (FOAG, 2018b). When a range of doses was indicated, the mean value 

230 was used.

231

232 Yield

233 Wheat yield in 2016 as recorded by the farmer was considered (‘yield’, t/ha), as well as 

234 relative yield (‘relY’) over the five-year crop rotation. The farmers generally estimated yield 

235 as the ratio between the total amount of wheat grain sold and the cultivation surface. Relative 

236 yield was computed as the mean ratio of effective yield (as recorded by the farmers) over 

237 Swiss reference yield of the different crops (Sinaj and Richner, 2017). Each crop has a unique 

238 reference yield value for Switzerland, determined for conventional practices.

239

240 2.3 Composite intensity indexes

241 Two composite indexes were computed based on subsets of indicators to characterise the 

242 intensity of cropping practices, using two different methods.

243 Multivariate approach index IPCA

244 The first method consisted in using as composite index, thereafter called IPCA, the first 

245 principal component of a PCA performed on the selected indicators, after standardisation of 

246 the variables (e.g. Armengot et al., 2011).

247 Additive aggregation index Iadd

248 In the second method, the composite index, thereafter called Iadd, is based on an additive 

249 combination of the indicators after normalisation, as in Herzog et al. (2006). For each 
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250 indicator, normalisation was done following Herzog et al. (2006), to scale the values between 

251 0 and 1, 1 representing the highest and more intense value: 

252 nI = (yi-ymin)/(ymax-ymin) (1)

253 where nI is the normalised indicator, yi the individual values, ymin the minimal value and ymax 

254 the maximal value. In order to reduce the influence of outliers, we followed the 

255 recommendation of Nardo et al. (2005) and replaced the yi values higher than the 97.5% or 

256 lower than the 2.5% percentiles by these threshold values. The composite index Iadd was then 

257 obtained by averaging the normalised indicators, with similar weight for all indicators. 

258 Iadd = (2)
∑𝑛

𝑖 = 1𝑛𝐼

𝑛

259 where n is the number of indicators to aggregate.

260 In contrast to the PCA method, which is ‘neutral’, here a decision about the direction of each 

261 indicator must be done prior to the aggregation. ‘Direction’ is meant as a statement about 

262 which values (high or low, or sometimes even intermediate) represent the most intense 

263 practice. While this could be relatively straightforward for some indicators, as for example for 

264 the number of pesticide treatments, it could be more debatable for some others, for example 

265 for the input of organic matter. The direction of the intensity gradient could also depend on 

266 the intended use of the index: an index to interpret environmental impact could be built 

267 differently from and index to interpret soil organic carbon stocks. Thus, in some cases, 

268 individual indicators need to be reversed to have all indicators pointing in the same direction. 

269 This was done here by using 1-nI rather than nI in the final aggregation (Table 2). 

270

271 These two composite indexes were computed for the three categories Crop diversification, 

272 Soil disturbance and protection and Organic matter inputs and nitrogen fertilisation. No 

273 composite index was computed for the Crop protection category as the indicators total number 
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274 of treatments ‘nbTreat’ and total treatment frequency index ‘rTreat’ already represented an 

275 aggregated information about different pesticide treatment applications. 

276 For each category, the indicators included in the composite indexes were chosen in order to 

277 exclude highly correlated indicators (Kendall's rank correlation τ>0.7, see section 2.4) and 

278 indicators of high complexity (requiring a lot of information to be computed), in order to 

279 study if composite indexes based on simple indicators provide the same type of information as 

280 complex indicators. The indexes obtained with each method were compared with each other 

281 as well as with the more complex indicators in the same category, if available (Table 2). The 

282 indicators used to compute the composite indexes, and their direction for the computation of 

283 the additive aggregation index Iadd, are shown in Table 2. 

284

285 2.4 Data analyses

286 Differences between the three cropping systems for pedoclimatic variables, primary cropping 

287 practice indicators and composite indexes were analysed using analyses of variance, with 

288 cropping system as the main factor. Significant analyses of variance (p<0.05) were followed 

289 by Tukey HSD post hoc test for pairwise comparison. 

290 For each thematic category, correlation between indicators was assessed with Kendall’s rank 

291 correlation method. In addition, principal component analyses were performed, after 

292 standardisation of the data, using the 'vegan' R package (Oksanen et al., 2017). 

293 Following the same method, a principal component analysis was performed using all primary 

294 farm and field indicators. 

295 The results obtained for the farm structure indicators were compared to Eurostat data 

296 (Eurostat, 2018) to situate the studied farms relative to other European countries. Data from 

297 the 2010 Eurostat survey were used as they also included data from Switzerland. The 

298 proportion of area under organic farming (%UAA) in 2016 was also shown for comparison 

299 purpose.
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300 All statistical analyses were performed using R 3.5.1 (R Core Team, 2018). 

301

302 3. Results

303 3.1 Field characteristics

304 Of the 60 fields, the most frequent soil texture (ISSS texture triangle) was clay loam (31 

305 fields), followed by loam (13), light clay (12), silty clay loam (2) and silty clay (1) (Figure 

306 S2). The proportions of these textures did not differ between cropping systems (Chi-square 

307 test, p=0.646). Altitude ranged between 356 m and 754 m above sea level, mean annual 

308 temperature (2015-2016) between 9.3 °C and 11.7 °C, and mean annual precipitation (2015-

309 2016) between 680 mm and 1322 mm. However, the three cropping systems did not show 

310 significant differences for these variables (p>0.05, based on analyses of variance). Thus, no 

311 confounding effect of the pedoclimatic variables could be seen here.

312

313 3.2 Complementarity versus redundancy of indicators of different complexity

314 Farm structure

315 At the farm level, the indicators were generally not correlated, except for utilised agricultural 

316 area UAA and working units AWU which showed a slight positive correlation (Kendall's rank 

317 correlation τ=0.50, p<0.001), also visible in the PCA (Figure 1A). Farm scale diversity 

318 farmDiv was also significantly positively correlated with UAA but the correlation was weak 

319 (τ=0.26, p<0.007).

320

321 Crop diversification

322 Overall, the Crop diversification indicators showed some complementarity and were not 

323 highly correlated with each other (Figure 1B). Compared to the simpler indicators, the 

324 complex crop rotation diversification indicator rDiversification takes into account different 

325 type of information (i.e. crop rotation diversity, identity of the preceding crop and the time to 
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326 the previous wheat crop). It was slightly correlated with crop diversity cropDiv (Kendall's 

327 rank correlation τ=0.30, p<0.004), but not with all the other indicators presented here (Figure 

328 1B). Crop diversity was positively correlated with the number of cover crops nbCC (τ=0.60, 

329 p<0.001) and negatively correlated with the number of leys nbLeys (τ=-0.53, p<0.001).  The 

330 number of leys was also correlated with nbCC (τ=-0.54, p<0.001) and the number of legumes 

331 nbLeg (τ=-0.44, p<0.001). 

332 The composite indexes were computed using nbCC, nbLeys, nbLeg and cropDiv. The index 

333 based on the PCA IPCA was positively correlated with nbLeys and nbLeg but negatively with 

334 nbCC and cropDiv (Figure S3). In contrast, the index based on the additive aggregation Iadd 

335 was, by construction, positively correlated with the four indicators. These two composite 

336 indexes IPCA and Iadd were not correlated with each other, but Iadd was weakly correlated with 

337 the complex crop rotation diversification indicator (τ=0.21, p=0.027).

338

339 Soil disturbance and protection

340 The indicators linked to soil disturbance and protection showed high redundancy, with almost 

341 all indicators significantly correlated with each other (Figure 1C). In particular, the complex 

342 soil tillage intensity indicator stir was correlated with all the others, with some correlations 

343 higher than 0.6. For example, the simple soil protection indicator soilP, which relies only on 

344 the general type of tillage (plough, minimum or no-till) applied each year, was correlated with 

345 the stir indicator (τ=-0.47, p<0.001), which integrated more specific information about crop 

346 management. The other complex indicator linked to soil cover sCover was also correlated 

347 with all the other except traffic. The sum of tillage and mechanical weeding interventions in 

348 2016 nbTW was highly correlated with the mean number of tillage nbTill and weeding 

349 nbWeed interventions over the five-year crop rotation (τ=0.73, p<0.001), showing that, in this 

350 study, most farmers were consistent through time in terms of interventions (i.e. tillage and 

351 weed management). 
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352 Given these high correlations between indicators, only four basic indicators were used to 

353 compute the composite indexes (traffic, nbTill, nbWeed and soilP). The index based on the 

354 PCA IPCA was positively correlated with traffic, nbTill and nbWeed but negatively with soilP 

355 (Figure S3). A similar result was obtained for the index based on the additive aggregation Iadd. 

356 These two composite indexes IPCA and Iadd were highly correlated with each other (τ=0.91, 

357 p<0.001), and with the complex indicators stir (τ=0.68 and 0.64, p<0.001) and sCover (τ=-

358 0.35 and -0.34, p<0.001).

359

360 Organic matter inputs and nitrogen fertilisation

361 Some significant correlations were observed between indicators linked to organic matter and 

362 N inputs (Figure 1D). The number of organic amendments nbOrg was not related with the 

363 amount of organic matter provided qOrg (τ=0.17, p=0.124). The total amount of organic 

364 matter input totOrg was highly correlated with qOrg (τ=0.72, p<0.001), as the input through 

365 crop residues cropOrg was small compared to the total quantity. In turn, the organic matter 

366 coming from crop residues cropOrg was correlated with the less complex crop residue 

367 exportation indicator resExp (τ=-0.37, p<0.001). Total nitrogen fertilisation totN was highly 

368 correlated (τ=0.72, p<0.001) with mineral fertilisation minN, as the amount provided by 

369 organic fertilisation orgN was low. This category thus contained two indicators which were 

370 computed as the sum of two others (totOrg = cropOrg+qOrg and totN = minN+orgN), and 

371 these showed high correlations with one of their components, totOrg with qOrg and totN with 

372 minN. They were thus not used to compute the composite indexes. Here, the index based on 

373 the PCA IPCA was positively correlated with resExp, nbOrg and orgN, and negatively with 

374 qOrg, cropOrg and minN (Figure S3). The index based on the additive aggregation Iadd was 

375 positively correlated with all indicators except cropOrg. These two composite indexes IPCA 

376 and Iadd were slightly correlated with each other (τ=0.25, p=0.005), but not with totOrg. IPCA, 

377 but not Iadd, was significantly correlated with totN (τ=-0.45, p<0.001). 
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378

379 Crop protection

380 Crop protection indicators were highly correlated to each other (Figure 1E). The total number 

381 of treatments nbTreat was correlated with its two main components, the number of herbicides 

382 nbHerb (τ=0.72, p<0.001) and of fungicides nbFung (τ=0.55, p<0.001).

383 In this study, adding a level of complexity to the crop protection indicators, by passing from 

384 the number of pesticide treatments to an integration of applied doses did not bring new 

385 insights (Figure 1E). The number of herbicide treatments nbHerb was highly correlated to the 

386 relative frequency index rHerb (τ=0.90, p<0.001), a similar result was observed for the total 

387 number of treatments nbTreat and its relative frequency index rTreat (τ=0.90, p<0.001).

388

389 Yield

390 Overall, wheat grain yield in 2016 was positively correlated with the relative yield indicator 

391 obtained over the five-year crop rotation relY (τ=0.58, p<0.001) (Figure 1F). However, the 

392 correlation coefficient for the no-till systems (τ=0.28, non-significant, p=0.08) was much 

393 lower than for the conventional (τ=0.54, p=0.001) and organic systems (τ=0.58, p<0.001). 

394 This was probably due to the high variability in fungicide use among no-till systems, which 

395 had a strong impact on 2016 wheat yield given the high disease pressure induced by the wet 

396 spring. 

397

398 3.3 Potential of indicators to characterise cropping systems

399 Of the 31 primary indicators, 20 showed significant differences between the three cropping 

400 systems (p<0.05, Supplementary Material Table S4). Looking at the pairwise difference tests 

401 showed that the pattern of difference between systems (i.e. which systems are significantly 

402 different from the other(s)) varied widely depending on the indicators (Table 3).
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404 Farm structure

405 The farm structure indicators did not generally differ between systems (Table 3). The test for 

406 livestock unit LSU gave a significant p-value (p=0.035, Table S4), but the post hoc test did 

407 not reveal pairwise significant differences at a threshold of 0.05 (Table 3). The tendency was 

408 however to a lower livestock value for no-till systems compared to conventional (p=0.077) 

409 and organic ones (p=0.053) (Table S4). Utilised agricultural area UAA, annual work unit 

410 AWU and diversity at the farm level in 2015-2016 farmDiv showed no differences between 

411 cropping systems (Table S4).

412

413 Crop diversification

414 The number of leys, legumes and cover crops in the five-year crop rotation differed between 

415 the three cropping systems (Table 3). The number of years with leys nbLeys was higher in the 

416 organic system than conventional and no-till systems. This pointed to a difference in crop 

417 rotation between this system on one side and conventional and no-till systems on the other 

418 side (Figure S4). For the number of legumes nbLeg, the lowest value was observed in 

419 conventional fields, compared to no-till and organic systems. Finally, no-till systems had 

420 more often cover crops (nbCC) than organic systems, while conventional systems were 

421 intermediate between no-till and organic, and not significantly different from both (Table 3). 

422 Compared to the potential maximum number of cover crop cultivation (computed based on 

423 the five-year crop rotation), conventional systems reached 38% of cover crop potential, no-till 

424 57% and organic 44%. Organic systems had generally a lower number of potential cover crop 

425 cultivation slots compared to conventional and no-till, due to the higher presence of leys, 

426 which explained its higher percentage of actual to potential cover crops compared to 

427 conventional systems. 

428 Crop diversity cropDiv and crop rotation diversification rDiversification were not different 

429 among the three cropping systems (Table 3, Figure 2A). 
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430

431 Soil disturbance and protection

432 All Soil disturbance and protection indicators except field traffic showed differences between 

433 systems (Table 3). The number of tillage nbTill and mechanical weeding nbWeed intervention 

434 during the period 2015-2016 differed between systems, with higher number of tillage 

435 operations in the organic than conventional systems. Only the organic systems included 

436 mechanical weeding. For the mean number of tillage and weeding interventions over the five-

437 year crop rotation nbTW, and for the tillage intensity rating stir (Figure 2B), the highest 

438 values were observed for the organic system, followed by conventional, and then by no-till 

439 systems. The soil protection index soilP and soil cover sCover had higher values in the no-till 

440 systems compared to the conventional and organic ones. The estimated soil cover during the 

441 post-harvest, pre-sowing, period was significantly higher in no-till systems, with a mean value 

442 of 56%, than in conventional and organic systems (28% and 18% respectively). 

443 No differences between cropping systems were observed regarding total field traffic during 

444 the wheat cultivation period 2015-2016, with around 10 interventions on average.

445 In addition, the use of these Soil disturbance and protection indicators allowed to identify an 

446 outlier in the no-till farms, corresponding to the misclassification of one of the farms. For this 

447 farm, the actual cropping practices adopted by the farmer did not match the ‘no-till’ 

448 classification the farmer announced during the initial selection, as he practiced some 

449 minimum tillage. 

450

451 Organic matter inputs and nitrogen fertilisation

452 The indicators linked to nitrogen all differentiated the organic systems compared to 

453 conventional and no-till systems (Table 3). As expected, no mineral nitrogen fertilisation was 

454 reported in organic system, while no-till and conventional systems showed similar values of 

455 mineral fertiliser minN (Table 3, Figure 2D). The opposite was observed for available 
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456 nitrogen coming from organic amendments orgN, with higher value observed for organic 

457 systems compared to conventional and no-till systems. In total, conventional and no-till 

458 systems, with on average 160 and 147 equivalent kg N/ha, showed higher amount of available 

459 N than organic system (61 equivalent kg N/ha on average). 

460 None of the five indicators linked to organic matter showed significant differences between 

461 cropping systems at p<0.05 (Table 3, Figure 2C). However, the p-value for the number of 

462 organic amendments nbOrg was at 0.055, indicating a tendency of organic systems to have a 

463 larger number of inputs (but not higher quantity).

464

465 Crop protection

466 All Crop protection indicators varied between cropping systems (Table 3). As expected, no 

467 treatment was recorded in the organic system. No-till systems showed significantly more 

468 herbicide treatments than the conventional ones. The highest number of fungicide treatments 

469 was in conventional system. In total, conventional and no-till had comparable number of 

470 pesticide treatments (3 in average), higher than in organic system. The two relative treatment 

471 frequency indexes (rHerb and rTreat) showed similar tendency as the corresponding number-

472 based indicators (nbHerb and nbTreat) (Figure 2E, Table 3).

473

474 Yield

475 Overall, mean wheat grain yield in 2016, as reported by the farmers, reached about 4.6 t/ha (at 

476 14% humidity). This represented about 80% of the wheat yield usually observed in the same 

477 fields, for all three cropping systems. The reduced yield was due to an extremely wet spring in 

478 2016. Indeed, the cumulated precipitation in April-May 2016 was 240 mm (Changins, west of 

479 Switzerland) and 252 mm (Reckenholz, north-east), whereas the 30-year averages (1981-

480 2010) for April-May at the same stations are 153 mm and 193 mm. Wheat yield in 2016 was 

481 higher in the conventional and no-till systems than in organic farming (Table 3). Relative 
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482 yields over the crop rotation (2012-2016) differed significantly among all three cropping 

483 systems (Figure 2F): compared to the Swiss reference yields (for conventional practices), the 

484 mean relative yield was 1.05 for the conventional system, 0.93 for no-till and 0.70 for organic 

485 systems. This means that conventional yield in our study were on average 5% higher than 

486 Swiss reference yield for the same crops, for the period 2012-2016. When comparing the 

487 three systems together, taking the conventional system as the reference, no-till yield reached 

488 90% of the conventional yield, while organic yield was at 67% of the conventional one. For 

489 no-till and organic fields, no relationship between relative yield and time since the start of 

490 respectively no-till and organic practice could be observed (Figure S5).

491

492 Multivariate analysis of primary indicators

493 The principal component analysis performed on all the primary indicators allowed to 

494 distinguish the three cropping systems on the three first components, despite high variability 

495 within each system (Figure 3). The organic system was the most clearly delineated group, 

496 while overlap was observed between conventional and no-till. The first axis (explaining 30% 

497 of variance) placed the conventional system intermediate between no-till and organic, while 

498 the second axis (explaining 11% of variance) rather separated conventional system from no-

499 till and organic (Figure 3). The three indicators contributing most to the first axis were 

500 mineral nitrogen fertilisation minN, number of herbicide treatments nbHerb and number of 

501 weeding interventions nbWeed. For the second axis, the three most contributing indicators 

502 were number of fungicide treatments nbFung, soil protection soilP and field traffic (Figure 3). 

503

504 Composite intensity indexes

505 Significant differences between the three cropping systems were observed for five out of the 

506 six composite indexes (Figure 4, Table 3). For the Crop diversification category, the two 

507 composite indexes IPCA and Iadd were different between systems, but the index based on PCA 
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508 showed higher values for the organic systems, while the index based on additive aggregation 

509 was lower for the conventional systems (Figure 4). For Soil disturbance and protection, the 

510 two composite indexes IPCA and Iadd differentiated the three systems, with higher values for 

511 the organic system, followed by conventional, and then by no-till systems (Figure 4). For 

512 Organic matter inputs and nitrogen fertilisation, IPCA showed higher values in the organic 

513 systems, while Iadd was not different between the three systems (Figure 4).

514

515 3.4 Comparison with other European countries

516 Figure 5 shows the position of Switzerland and of the studied farms among 31 other European 

517 countries, according to the three farm structure indicators. Unfortunately, it was not possible 

518 to find separated data for conventional, no-till and organic systems, and thus our results are 

519 compared to overall European data. The mean utilised agricultural area in Switzerland is in 

520 the middle of the European distribution, whereas our study included somewhat larger farms. 

521 Annual working units were also similar to what is seen in other European countries. In 

522 comparison with Europe, the area under organic farming (%UAA) in Switzerland in 2016 

523 (13.5%) is at the sixth position, with the highest value recorded in the neighbouring country of 

524 Austria (21.3%). 

525 To compare the cropping practices applied in Switzerland to what is done in Europe, we used 

526 the survey conducted by Herzog et al. (2006) in seven European countries (i.e. Belgium, 

527 Czech Republic, Estonia, France, Germany, Netherlands and Switzerland) to provide relevant 

528 insights. As the indicators used in this survey were not directly comparable to ours, we used 

529 this paper as a reference to give an idea of where Switzerland is situated compared to the 

530 other countries for conventional systems. This showed that, for nitrogen fertilisation on arable 

531 crops [kg N/ha], number of herbicide, fungicide and total treatments, Switzerland ranked in 

532 the middle of the seven studied countries, with ranks between 3.5 and 5. For crop diversity, 

533 Switzerland ranked at the 2nd position, after Germany (Supplementary material Figure S6).
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534

535

536 4. Discussion

537 4.1 Selection, definition and comparison of primary cropping practice indicators and 

538 composite intensity indexes

539 In this study, the indicators were chosen to cover the main characteristics of cropping 

540 systems, especially at the field level, taking into account the potential availability and 

541 reliability of the data needed to compute the indicators. The topics covered here were similar 

542 to those appearing in other similar studies (e.g. Nkurunziza et al., 2017 and Gaudino et al., 

543 2014), but included only so called ‘driving forces’ or ‘causal’ indicators (Bockstaller et al., 

544 2015). Among the topics not addressed here, irrigation indicators were not included as 

545 generally not practiced on winter wheat fields in Switzerland. Indicators linked to P and K 

546 fertilisation, and five-year N fertilisation were not included either, but should be considered in 

547 a further development of this study. In Switzerland, P and K fertilisers are generally not 

548 applied annually but on a larger time scale, according to the duration of crop rotation or to the 

549 frequency of soil analysis. Thus the short term of this study would not have allowed to capture 

550 accurately P and K fertilisation practices.   

551

552 A crucial question that arises when defining quantitative indicators is also the number of years 

553 which should be taken into account for computation. Indicators based on the studied 

554 cultivation year are easier to compute as they require information that the farmer is likely to 

555 access easily or remember accurately. On the other hand, indicators based on a longer time 

556 scale should better capture the usual practices and are more pertinent for some practices such 

557 as organic amendment inputs, which are often not applied each year. In addition, longer time 

558 scale indicators would be more pertinent to explain slowly changing characteristics such as 

559 soil organic carbon content. They are, however, more difficult to compute because they 
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560 require information spread over several years. Therefore, the multiyear indicators presented 

561 here were based on less detailed information, likely to be easily retrieved from the farmers. In 

562 this study, the utilisation of one year and five-year indicators allowed to show that the wheat 

563 cultivation year studied seemed representative of the practices observed at the crop rotation 

564 scale. The same approach was adopted by Nkurunziza et al. (2017), with detailed data 

565 collected for the year of the study, and more general information collected for the preceding 

566 years.

567

568 The studied indicators also differed in their complexity, i.e. the amount of data, reference 

569 values and assumptions needed to compute them. In this study, most of the complex 

570 indicators integrating several data and reference values were correlated with simpler 

571 indicators based on less data. (e.g. soil tillage intensity with the number of tillage and weeding 

572 interventions, soil cover with the simple soil protection indicator). The most complex 

573 indicators required a lot of reference data (e.g. reference yields, isohumic coefficients, …) to 

574 be computed, which induced a necessary simplification of the complex farm practices, and 

575 increased indicator uncertainty. However, the set of indicators was tested here in one specific 

576 context, and we cannot exclude that complex indicators could prove to be necessary if tested 

577 with other data. For example, here the relative phytosanitary treatment frequency index, 

578 taking into account the applied dose and area (% of field treated), was highly redundant with 

579 the number of treatments. This shows that in our specific study, most of pesticide applications 

580 were done at the full recommended dose and on the whole field. However, in other contexts it 

581 is highly likely that the more complex frequency index would provide more detailed 

582 information on the practices.

583

584 We also tested the potential of composite indexes to provide additional or simplify redundant 

585 information compared to the primary indicators. Many studies recommend using simple as 
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586 well as composite indicators to best describe cropping systems (Herzog et al., 2006: 

587 Bockstaller et al., 2008: Castoldi and Bechini, 2010). Composite indexes have the advantage 

588 to sum up different information into one unique variable and so to facilitate overall 

589 conclusions and comparison between systems (e.g. Armengot et al., 2011, Blüthgen et al., 

590 2012), while simple indicators remain essential to interpret the results more precisely. Many 

591 methods to build composite indexes exist (Nardo et al., 2005; Sadok et al., 2008), and two 

592 commonly used methods were investigated in this study. 

593 Our results showed that the interpretation of the indexes could depend on the calculation 

594 method used. So, care should be taken when using composite indexes, and referring back to 

595 the individual components of the composite indexes is necessary to insure the proper 

596 interpretation of the results (Herzog et al., 2006). A good example of the problems which can 

597 occur when using the PCA method appeared for the Crop diversification category. While all 

598 the four individual indicators considered (frequency of leys, legumes, cover crops, and crop 

599 diversity) contribute to a higher diversification of the system, the first axis of the PCA 

600 composed a gradient with high diversity and cover crop frequency on one side, and high 

601 number of leys on the other side. This method here could not take into account the fact that 

602 different practices can achieve the same purpose, diversification in this case. Thus, this 

603 unconstrained method cannot guarantee that the composite index really shows the intended 

604 gradient. The PCA index can nevertheless be often meaningfully interpreted. In this case, 

605 cover crops contributed to higher diversity and thus pointed in the same direction, whereas the 

606 presence of rotational leys reduced diversity on a given time period by decreasing the number 

607 of main crops and cover crops that can be cultivated during this period. However, both can 

608 contribute to overall diversification. In contrast, in the additive aggregation method, the 

609 direction of interpretation of the individual indicators is a priori decided, which allows to 

610 construct meaningful gradients, even if the direction of some indicators is sometimes 

611 debatable. However, for the Soil disturbance and protection category, both methods produced 
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612 similar composite indexes, showing that the PCA method could also be useful, provided that 

613 the produced gradient is carefully checked. The PCA method is thus highly dependent on the 

614 dataset on which it is based, while the additive aggregation method is mostly dependent on 

615 the computation procedure, such as the normalisation or weighing method used. Depending 

616 on the utilisation of the composite indexes, one or the other method should be preferred. For 

617 example, when the objective is to aggregate further these indexes to produce a unique 

618 multifunctionality index, the additive aggregation method is preferable for the first step, as it 

619 allows controlling the direction of the indexes, and thus insuring proper interpretation of the 

620 overall index. In contrast, the PCA method is more useful to explore datasets without 

621 preconceived ideas about underlying data structure and relationships between indicators.

622

623 4.2 Potential of indicators to characterise cropping systems

624 Farm level indicators

625 Including indicators common to European or international frameworks allowed to situate our 

626 study in a broader context, which could help the interpretation of the results. The farms in this 

627 study appear larger than the Swiss and European average. This could be partly explained by 

628 the fact that only lowland farms were selected for this study, excluding hill and mountain 

629 farms, which are generally smaller. This could also explain the lower values of livestock units 

630 in our study compared to the Swiss mean, but these values were in the range of what is seen in 

631 Europe. In Switzerland, most conventional farms follow the ‘Proof of Ecological 

632 Performance’ (PEP) guidance, which ensure, in principle, an equalised nutrient balance, 

633 diversified crop rotation and proper soil protection and pesticide treatment use (FOAG, 

634 2018a). In this study, all conventional and no-till farms followed these prescriptions. This 

635 could explain some similarities between the conventional, no-till and organic systems, for 

636 example in terms of organic amendment inputs or crop rotation diversification. The 

637 application of these PEP guidelines in Switzerland could perhaps also explain the highest crop 
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638 diversity observed by Herzog et al. (2006), whereas Switzerland was in line with the other 

639 studied countries for nitrogen inputs and pesticide treatments.

640

641 Primary cropping practice indicators and composite intensity indexes

642 The set of the 31 indicators used here allowed to characterise the three cropping systems 

643 studied. Around one third of them did not show differences between systems, while the others 

644 showed a variety of patterns of differences between systems. An important intra-system 

645 variability was also observed for most of the indicators. This demonstrates the importance of 

646 using cropping practice indicators rather than cropping system classification to assess and 

647 understand the impact of practices, particularly in broadly defined cropping systems 

648 (Armengot et al., 2011; Nkurunziza et al., 2017; Therond et al., 2017).

649

650 The three simpler Crop diversification indicators differentiated the three systems, while 

651 diversity and rotation diversification were similar between systems, with high within-system 

652 variability. However, overall, the indicators pointed to a lower diversification of conventional 

653 systems, which was confirmed by the composite index based on additive aggregation. This 

654 shows that no-till systems including cover crops as well as organic systems with rotational 

655 leys allow to increase diversification, a key factor of sustainable agriculture intensification 

656 (Smith et al., 2017).

657 The Soil disturbance and protection category was the one showing the major differences 

658 between systems. As expected, no-till systems had higher soil protection values compared to 

659 conventional and organic systems. Interestingly, these indicators also separated organic 

660 systems, and the composite indexes clearly showed the same pattern. To compensate for the 

661 absence of herbicide use, intense mechanical weeding was generally observed in organic 

662 fields, which yielded to higher values of soil perturbation indicators compared to conventional 

663 fields. This poses the question of the balance of the benefits of reduced pesticide products 
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664 utilisation and the potential negative effects of increased soil disturbance in organic farming. 

665 Minimum soil tillage in organic farming is a challenge, but the development of more specific 

666 and efficient tillage implements and the adoption of cover crop cultivation, which was low in 

667 our studied organic farms, will probably allow a reduction of soil tillage intensity in organic 

668 farming (Buchanan et al., 2016; Cooper et al., 2016).

669 In contrast, indicators linked to Organic matter inputs, included the composite index based on 

670 additive aggregation, were similar between the three cropping systems. This finding is 

671 surprising as organic systems are generally thought to provide more organic matter to the soil, 

672 through organic amendments or inputs due to the introduction of leys in the rotation. In the 

673 organic system, the level of fertilisation was generally low, with an estimated N input to the 

674 2016 wheat (61 kgN/ha, from organic source) less than half the Swiss (conventional) 

675 reference standard for N fertilisation of winter wheat (140 kgN/ha), while conventional and 

676 no-till systems showed similar, higher, values (160 kgN/ha and 147 kgN/ha, from both 

677 mineral and organic sources). 

678 Crop protection indicators also allowed the differentiation of both no-till and organic systems 

679 compared to conventional ones. As expected, no pesticide treatments were used in the organic 

680 fields which were thus easily identified. The frequency of herbicide treatments was higher in 

681 no-till compared to conventional systems. The higher reliance on total herbicides in no-till 

682 system has been documented (Melander et al., 2013), and remains the principal environmental 

683 challenge with no-till. Minimum tillage, such as shallow tillage (5 cm) or strip till, along with 

684 the intensification of cover crop utilisation, could be a way of reducing herbicide use while 

685 preserving soil, which is a solution currently considered by some farmers. Less fungicide 

686 treatments were applied in no-till fields, reflecting the fact that they were more often managed 

687 according to so called extensive farming programs that forbids the use of pesticides other than 

688 herbicides. Except from farmers adopting no-till practices to save labour time, no-till farmers 
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689 are generally adopting these practices to reduce the impact of agriculture on the environment, 

690 which explain their higher compliance with these extensive farming programs.

691

692 Overall, the organic system was the most homogeneous one in terms of cropping practices, 

693 which can be explained by the fact that this system has more specific rules than the no-till or 

694 conventional systems and bans several practices, principally mineral fertilisation and chemical 

695 crop protection. In contrast, conventional and no-till systems showed higher overlap in their 

696 practices, especially in terms of crop diversity, rotation diversification and fertilisation. This 

697 showed that, in this study, focusing on the 'no-till' criterion did not implicitly co-select other 

698 specific cropping practices.

699

700 Yield and relative yield cannot be considered as cropping practices like the other indicators 

701 presented here, but are the main outcomes of these practices and fundamental to interpret their 

702 sustainability. The no-till fields showed a mean decrease of yield of 10% compared to 

703 conventional ones on the five-year crop rotation, which is similar to what has been previously 

704 shown (Pittelkow et al., 2015a). This difference was, however, not significant for the 2016 

705 wheat yield, and was partially linked to the compliance of farmers with the extensive farming 

706 programs mentioned earlier. Indeed, extensive conventional fields showed lower yield than 

707 intensive conventional ones, and thus more similar to no-till yields. In contrast, no difference 

708 was observed for extensive and intensive no-till yields. A yield decrease in the initial years of 

709 transition to no-till is generally expected, while the yield gap generally fills up after some 

710 years (Soane et al., 2012; Pittelkow et al., 2015b). The cover crop frequency tended to be 

711 higher in new no-till systems, pointing probably to a growing awareness of the importance of 

712 integrating no-till in an ensemble of sustainable practices amongst the younger no-till farmers 

713 compared to pioneer ones. A relative mean yield decrease of about 33% was observed in 

714 organic fields compared to conventional ones, which is slightly higher than what has been 
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715 shown in global meta-analyses (~26% for cereals with high variability, de Ponti et al., 2012; 

716 Seufert et al., 2012). The yield difference between organic and conventional systems was 

717 even higher when looking only at the 2016 wheat yield, which showed a decrease of 40%. 

718 The 2016 spring was very wet and favourable to diseases, which could have been more 

719 detrimental for organic fields. Despite the low mean yield in the organic system, it is 

720 worthwhile mentioning that the highest organic yields were higher than some of the yields 

721 obtained in conventional or no-till systems. This showed that depending on the conditions and 

722 on the practices implemented, organic yield could achieve a reasonable productivity.

723

724 4.3 Conclusions

725 In this study, we employed 31 quantitative primary indicators and six composite indexes to 

726 describe the cropping practices in three different systems, i.e. conventional, no-till and 

727 organic systems. The set of indicators presented here integrates indicators of different 

728 complexity and time scale. It allows to characterise the three cropping systems and highlight 

729 differences as well as similarity within systems and within system variability. The composite 

730 indexes, based on simple primary indicators, proved to be useful to synthesise information of 

731 different indicators and delineate the systems. However, the method used to compute the 

732 indexes has an influence on their interpretation and should be carefully chosen. Here, the 

733 more complex primary indicators were often correlated with simpler ones or with the 

734 composite indexes, challenging their usefulness, but it cannot be excluded that they can prove 

735 to be more useful for different datasets or contexts. Retaining a combination of simple and 

736 more complex indicators to obtain a broad picture of the cropping practices adopted is thus 

737 recommended.

738 This study has demonstrated that an exhaustive and explicit description of the cropping 

739 practices involved in what is generally classified as different cropping systems is crucial to 

740 better understand the potential influence of these systems on yield or soil properties. For 
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741 example, knowing the tillage intensity applied in organic fields would be of crucial 

742 importance to analyse and predict soil organic matter evolution. While the comparison of 

743 systems in terms of yield, soil properties or their influence on the environment is highly 

744 relevant, this study has shown that it is crucial to describe precisely and quantitatively the 

745 cropping practices involved to avoid any misinterpretation based on supposed or non-

746 acknowledged differences.

747
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890 Table and figure legends

891

892 Table 1 List of the 31 cropping practice indicators used to describe cropping systems. ‘Time 

893 scale’ indicates if the indicator is computed with data coming only from the focal year 2015-

894 2016 ('1 y') or from data collected for the five-year crop rotation ('5 y'). 

895

896 Table 2 List of primary indicators selected for the computation of the two composite indexes, 

897 for each thematic category, and complex or compound primary indicators used for 

898 comparison. Indicators preceded by a ‘-‘ were reversed for the computation of the additive 

899 aggregation index Iadd. See Table 1 for the meaning of the indicator abbreviations.

900

901 Table 3 Mean values of the 31 primary indicators and six composite indexes for the three 

902 cropping systems, and patterns of differences between systems as indicated by the Tukey 

903 HSD post-hoc pairwise tests. 'conv': conventional farming, 'nt': no-till farming, 'org': organic 

904 farming.

905

906 Figure 1 Principal component analyses (field projection, scaling 2) on the indicator subsets, 

907 A. Farm structure, B. Crop diversification, C. Soil disturbance and protection, D. Organic 

908 matter inputs and nitrogen fertilisation, E. Crop protection. As for yield only two indicators 

909 were used, F. shows the pairwise relationship between wheat yield 2016 [t/ha] and relative 

910 yield over the five-year crop rotation. The plain line shows the linear regression between these 

911 two variables. The dashed horizontal line shows the Swiss reference yield for winter wheat (6 

912 t/ha) and the dashed vertical line a relative yield which is equal to reference yields on average. 

913 Blue points correspond to conventional systems, red points to no-till systems and green points 

914 to organic systems. Correspondence between abbreviations and indicator names are given in 

915 Table 1.
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916

917 Figure 2 Differences between cropping systems for six indicators. A. crop rotation 

918 diversification (rDiversification), B. soil tillage intensity (stir), C. quantity of organic 

919 amendment inputs (qOrg) [kg OM/ha], D. total nitrogen fertilisation (totN) [kg N/ha], E. 

920 relative herbicide treatment intensity (rHerb), F. relative yield (relY). 'conv': conventional 

921 systems, 'nt': no-till systems, 'org': organic systems. Different letters above the boxes show 

922 significant (p<0.05) pairwise differences between systems.

923

924 Figure 3 Principal component analysis on the 31 indicators, showing the two first principal 

925 components, explaining respectively 30% and 11%. A. Field projection (scaling 2) on the 1st 

926 and 2nd principal components, B. Indicator projection (scaling 1) on the 1st and 2nd principal 

927 components. Blue points correspond to conventional systems, red points to no-till systems and 

928 green points to organic systems. Correspondence between abbreviations and indicator names 

929 are given in Table 1.

930

931 Figure 4 Differences between cropping systems for the composite indexes. Upper row, 

932 indexes based on the PCA method, lower row indexes based on the additive aggregation. First 

933 column (A and D) shows the Crop diversification category, the middle column (B and E), the 

934 Soil disturbance and protection category, and the last column (C and F), the Organic matter 

935 inputs and nitrogen fertilisation category.

936

937 Figure 5 Comparison of the three farm structure indicators and of area under organic farming 

938 (% UAA) with mean data from Switzerland and European countries. Data were obtained from 

939 the Eurostat website. Blue points correspond to conventional systems, red points to no-till 

940 systems and green points to organic systems. On each box, ‘CH’ shows the position of 

941 Switzerland in the European dataset.
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942

943

944 Supplementary Material

945 Table S1 List and description of the 60 farms included in the study. ‘Mean temperature’ and 

946 ‘Rainfall’ are given as average values over the two years 2015 and 2016. ‘Soil texture’ gives 

947 texture classes according to the ISSS system. ‘Program’ refers to compliance to specific 

948 ‘integrated’ (no pesticides except herbicides) or ‘organic’ programs in 2016. ‘UAA’ is for 

949 utilised agricultural area. ‘Fertilisation’ indicates what kind of fertilisation was used during 

950 the five-year crop rotation: ‘min’ = mineral only, ‘org’ = organic only, ‘min-org’ = mixed 

951 mineral and organic. The conventional farm indicated in light grey was removed from the 

952 analyses due to missing survey data.

953

954 Table S2 Data collected in the questionnaire survey (rows), filled in by the farmers, and used 

955 to compute the 31 cropping practice indicators (columns). The crosses indicate which data has 

956 been used for which indicator.

957

958 Table S3 Isohumic coefficients and nitrogen availability of organic amendments used in the 

959 computation of the organic amendment inputs (qOrg), total organic inputs (totOrg), nitrogen 

960 organic fertilisation (orgN) and total nitrogen fertilisation indicators (totN).

961

962 Table S4 Mean values and standard errors of the 31 indicators for the three cropping systems, 

963 and p-values from the overall analysis of variance ('global') and from the Tukey HSD post-

964 hoc pairwise test. 'conv': conventional farming, 'nt': no-till farming, 'org': organic farming.
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966 Figure S1 Map of Switzerland showing the geographic position of the 60 fields. Blue points 

967 correspond to conventional systems, red points to no-till systems and green points to organic 

968 systems.

969

970 Figure S2 Texture triangle (ISSS system) showing the texture (0-20 cm) of the 60 fields. Blue 

971 points correspond to conventional systems, red points to no-till systems and green points to 

972 organic systems.

973

974 Figure S3 Principal component analyses (field projection, scaling 2) used for the computation 

975 of the composite indexes for A. Crop diversification, B. Soil disturbance and protection, and 

976 C. Organic matter inputs and nitrogen fertilisation. Blue points correspond to conventional 

977 systems, red points to no-till systems and green points to organic systems. Correspondence 

978 between abbreviations and indicator names are given in Table 1.

979

980 Figure S4 A. Crop frequency for the studied fields, for the three cropping systems ('conv': 

981 conventional, 'nt': no till, 'org': organic). Crops are grouped into types. B. Categorisation of 

982 the crop rotation along three main types: 1. rotations with a cereal every two years, 2. 

983 rotations including leys, and 3. other type of rotations. 

984

985 Figure S5 Relative yield indicator as a function of time since the beginning of A. no-till 

986 practice and B. organic practice. In panel A, the numbers above the points indicate the 

987 number of cover crops cultivated the past 5 years (number of cover crop ‘nbCC’ indicator).

988

989 Figure S6 Comparison of Switzerland with six other European countries in terms of crop 

990 diversity, nitrogen fertilisation and pesticide inputs. On each box, ‘CH’ shows the position of 

991 Switzerland. On the left of each box, the two-letter code of each other country is indicated, 
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992 BE: Belgium, CZ: Czech Republic, EE: Estonia, FR: France, DE: Germany, NL: Netherlands. 

993 The data come from Herzog et al. (2006).

994

2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419



42

995 Table 1

Indicator Abbreviation
Time 
scalea  

Farm structure
utilised agricultural area [ha] UAA -
annual working unit AWU - a value of 1 corresponds to 1 person working full time on the farm
livestock unit LSU - a value of 1 corresponds to 1 dairy cow per hectare
diversity at farm level 2016 farmDiv 1 y nb of crops, meadows or fallows at the farm level in 2016
Crop diversification
number of years with ley nbLeys 5 y nb of years with ley in the 5 year rotation
number of legume crops nbLeg 5 y nb of legume cultivation (main and cover crop) in the 5 year rotation
number of cover crops nbCC 5 y nb of cover crop cultivation in the 5 year rotation
crop diversity at field level (rotation) cropDiv 5 y nb of crops in the 5 year rotation
crop rotation diversification rDiversification 5 y index taking into account crop diversity, preceding crop and time to previous wheat
Soil disturbance and protection
field traffic traffic 1 y nb of machinery passages (tillage, seeding, weeding, treatments, fertilisation)
number of tillage 2015-2016 nbTill 1 y
number of weeding 2015-2016 nbWeed 1 y
number of tillage and weeding interventions 
2012-2016 nbTW 5 y mean number of tillage and weeding interventions over the crop rotation
soil protection index soilP 5 y index linked to the type of tillage (plough, minimum, no till)
soil tillage intensity stir 1 y index based on the soil disturbance intensity of each implement (e.g plough=81)
soil cover sCover 1 y mean soil cover during the period preceding wheat seeding
Organic matter inputs and nitrogen fertilisation
crop residue exportation resExp 5 y nb of time residues were exported during the 5 year crop rotation
number of organic amendments nbOrg 5 y nb of organic amendements
organic amendment inputs [kg OM/ha] qOrg 5 y quantity of organic matter inputs through amendements
organic input from crops [kg OM/ha] cropOrg 5 y quantity of organic matter inputs through crop residues
total organic inputs (amendment + crop 
residues) [kg OM/ha] totOrg 5 y total quantity of organic inputs
mineral nitrogen fertilisation [kg N/ha] minN 1 y quantity of mineral nitrogen fertilisers
organic nitrogen fertilisation [kg N/ha] orgN 1 y quantity of available nitrogen through organic fertilisation
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total nitrogen fertilisation [kg N/ha] totN 1 y
Crop protection
number of herbicide treatment nbHerb 1 y nb of herbicide treatments
number of fungicide treatment nbFung 1 y nb of fungicide treatments
total number of treatments nbTreat 1 y total number of treatments (herbicide, fungicide, molluscicide, growth regulator)
herbicide treatment frequency index rHerb 1 y sum of the ratios of applied herbicide dose over recommended dose
total treatment frequency index rTreat 1 y sum of the ratios of applied treatment dose over recommended dose
Yield
wheat yield 2016 [t/ha] yield 1 y
relative yield 2012-2016 relY 5 y mean of the ratios of effective yield over Swiss reference yield
a 1 or 5 y: 1 year (from the harvest of the preceding crop to the wheat harvest) or 5 years (crop rotation)
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999 Table 2

Thematic category Primary indicators used for composite intensity indexes  Complex primary indicators
Crop diversification +nbLeys +nbLeg +nbCC +cropDiv rDiversification
Soil disturbance and protection +traffic +nbTill +nbWeed -soilP stir sCover
Organic matter inputs and nitrogen fertilisation +resExp +nbOrg +qOrg -cropOrg +minN +orgN totOrg totN
Crop protection - rTreat
Yield -      relY  

1000  
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1001 Table 3
Indicator Abbreviation Overall means Differences between systems
  conv nt org all different a conv different b nt different c org different d no difference
Farm structure      
utilised agricultural area [ha] UAA 62 44 41 X
annual working unit AWU 2.6 1.9 2.0 X
livestock unit LSU 0.70 0.27 0.73 X
diversity at farm level 2016 farmDiv 6.58 6.25 7.15 X
Crop diversification
nb years with ley nbLeys 0.26 0.30 1.25 X
nb legume crops nbLeg 1.16 2.05 2.35 X
nb cover crops nbCC 1.16 1.90 0.85   X *   X *
crop diversity at field level (rotation) cropDiv 4.63 5.00 4.30 X
crop rotation diversification rDiversification 6.17 7.18 7.00 X
composite index based on PCA -0.08 -0.22 0.30 X
composite index based on additive 
aggregation 0.28 0.40 0.39 X
Soil disturbance and protection
field traffic traffic 10.5 9.1 9.8 X
nb tillage 2015-2016 nbTill 1.32 0.40 2.55 X
nb weeding 2015-2016 nbWeed 0.00 0.00 2.35 X
nb tillage and weeding interventions 2012-
2016 nbTW 2.32 0.18 4.06 X
soil protection index soilP 1.63 4.72 1.82 X
soil tillage intensity stir 94 24 139 X
soil cover sCover 0.28 0.56 0.18 X
composite index based on PCA 0.02 -0.52 0.50 X
composite index based on additive 
aggregation 0.41 0.13 0.57 X
Organic matter inputs and nitrogen fertilisation
crop residue exportation resExp 2.37 1.60 2.75 X
nb organic amendments nbOrg 5.05 5.05 5.40 X
organic amendment inputs [kg OM/ha] qOrg 465 435 470 X
organic input from crops [kg OM/ha] cropOrg 683 726 708 X
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total organic inputs [kg OM/ha] totOrg 1148 1161 1178 X
mineral nitrogen fertilisation [kg N/ha] minN 141 127 0 X
organic nitrogen fertilisation [kg N/ha] orgN 19 20 61 X
total nitrogen fertilisation [kg N/ha] totN 160 147 61 X
composite index based on PCA -0.29 -0.32 0.59 X
composite index based on additive 
aggregation 0.40 0.35 0.36 X
Crop protection
nb herbicide treatment nbHerb 1.11 2.30 0.00 X
nb fungicide treatment nbFung 1.16 0.30 0.00 X
total number of treatments nbTreat 3.11 2.70 0.00 X
herbicide treatment frequency index rHerb 1.18 2.32 0.00 X
total treatment frequency index rTreat 2.77 2.71 0.00 X
Yield
wheat yield 2016 [t/ha] yield 5.6 4.9 3.4 X
relative yield 2012-2016 relY 1.05 0.93 0.70 X     

1002 a significant differences between the three groups
1003 b significant differences between conv-nt and conv-org, but not nt-org
1004 c significant differences between nt-conv and nt-org, but not conv-org
1005 d significant differences between org-conv and org-nt, but not conv-nt
1006 * significant difference between nt-org, but not between conv-nt and conv-org
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Table S1 List and description of the 60 farms included in the study. ‘Mean temperature’ and ‘Rainfall’ are 

given as average values over the two years 2015 and 2016. ‘Soil texture’ gives texture classes according to the 

ISSS system. ‘Program’ refers to compliance to specific ‘integrated’ (no pesticides except herbicides) or 

‘organic’ programs in 2016. ‘UAA’ is for utilised agricultural area. ‘Fertilisation’ indicates what kind of 

fertilisation was used during the five-year crop rotation: ‘min’ = mineral only, ‘org’ = organic only, ‘min-org’ 

= mixed mineral and organic. The conventional farm indicated in light grey was removed from the analyses

due to missing survey data. 

Cropping system Canton Altitude [m] Mean temp [°C] Rainfall [mm] Soil texture Program UAA [ha] Fertilisation Livestock unit

conv GE 476 11.3 879 light clay integrated 102 min-org 0.5<>1

conv GE 427 10.8 793 silty clay loam integrated 84 min 0<>0.5

conv GE 361 11.7 680 loam integrated 110 min 0<>0.5

conv GE 423 11.3 786 loam none 190 min-org 0.5<>1

conv GE 427 11.7 680 clay loam integrated 63 min 0

conv VD 485 10.6 743 clay loam none 106 min 0<>0.5

conv VD 457 11.5 1035 clay loam none 63 min-org >1

conv VD 754 9.9 1002 loam integrated 33 min-org 0.5<>1

conv VD 437 10.4 778 clay loam none 45 min 0<>0.5

conv VD 554 10.1 805 loam none 43 min-org 0<>0.5

conv AG 383 10.2 934 loam integrated 25 min-org 0<>0.5

conv LU 479 9.3 1080 loam none 30 min-org >1

conv LU 506 9.3 1080 clay loam - - - -

conv ZH 408 10.4 967 clay loam none 18 min-org 0<>0.5

conv ZH 518 10.4 1322 clay loam none 33 min-org >1

conv ZH 435 10.6 982 clay loam integrated 41 min-org 0

conv ZH 429 10.6 982 clay loam none 23 min-org 0<>0.5

conv ZH 576 10.4 1322 clay loam none 31 min-org >1

conv ZH 390 10.0 1007 clay loam none 73 min-org >1

conv ZH 442 10.3 1181 light clay none 62 min-org 0.5<>1

nt GE 441 11.4 793 clay loam integrated 57 min-org 0<>0.5

nt GE 403 11.7 680 silty clay integrated 48 min-org 0

nt GE 361 11.7 680 silty clay loam none 107 min-org 0

nt GE 356 11.7 680 loam none 76 min-org 0

nt GE 427 11.3 786 clay loam none 25 min 0<>0.5

nt VD 429 11.3 1109 clay loam integrated 66 min 0<>0.5

nt VD 686 9.7 1013 light clay integrated 144 min-org 0.5<>1

nt VD 486 10.9 839 loam integrated 17 min-org 0<>0.5

nt VD 590 10.3 792 loam integrated 68 min 0

nt VD 584 10.4 778 light clay integrated 31 min-org 0

nt AG 383 10.2 934 loam integrated 29 min-org 0.5<>1

nt LU 504 9.3 1080 clay loam integrated 13 min-org 0<>0.5

nt LU 506 9.3 1080 clay loam none 30 min-org 0<>0.5

nt ZH 408 10.4 967 clay loam none 26 min-org 0<>0.5

nt ZH 518 10.4 1322 clay loam integrated 35 min-org 0.5<>1

nt ZH 457 10.6 982 clay loam integrated 13 min-org 0

nt ZH 429 10.6 982 light clay none 31 min 0

nt ZH 576 10.4 1322 light clay integrated 29 min-org >1

nt ZH 390 10.0 1007 clay loam none 34 min-org 0<>0.5

nt ZH 442 10.3 1181 light clay integrated 12 min-org 0

org GE 437 11.3 879 clay loam organic 87 org 0<>0.5

org GE 437 11.3 879 light clay organic 71 org 0

org GE 435 11.4 793 clay loam organic 20 org 0

org VD 733 10.1 805 loam organic 28 org 0.5<>1

org VD 613 10.3 792 clay loam organic 46 org 0<>0.5

org VD 443 10.9 839 clay loam organic 27 org 0

org VD 456 11.6 1063 clay loam organic 47 org 0

org VD 618 10.3 792 clay loam organic 76 org 0

org VD 442 10.4 778 clay loam organic 46 org 0.5<>1

org FR 449 10.9 839 loam organic 40 org 0.5<>1

org AG 425 10.2 934 clay loam organic 20 org >1

org LU 554 9.3 1080 loam organic 119 org 0.5<>1

org LU 506 9.3 1080 clay loam organic 15 org 0.5<>1

org ZH 408 10.4 967 clay loam organic 36 org >1

org ZH 518 10.4 1322 light clay organic 22 org >1

org ZH 465 10.6 982 clay loam organic 18 org 0

org ZH 429 10.6 982 clay loam organic 18 org >1

org ZH 576 10.4 1322 light clay organic 25 org >1

org ZH 442 10.3 1181 light clay organic 29 org 0.5<>1

org TG 416 10.0 1007 light clay organic 21 org >1



Table S2 Data collected in the questionnaire survey (rows), filled in by the farmers, and used to compute the 32 cropping practice 

indicators (columns). The crosses indicate which data has been used for which indicator.
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General information at farm level

utilised agricultural area [ha] X

annual working unit X

livestock unit X

all main crops present on the farm in 2015-2016 X

Detailed management practices for the wheat cultivation year (2015-2016)

=> for each intervention:

date X

intervention type (tillage, weeding, seeding, treatment, fertilisation) X X X X X X X X X X X X X

implement X X

product (type, quantity) X X X X X

Historical data on the 5 year rotation (2012-2016), at field level

=> for each year:

main crop X X X X X X X

estimated yield [t/ha] X X

organic fertilisation (type, quantity) X X X

cover crop (presence or not, species) X X X

type of soil tillage (no till, reduced, plough) X

estimated number of tillage and weeding interventions X

management of crop residue (exported or left on the field) X X X



Table S3 Isohumic coefficients and nitrogen availability of organic amendments used in the computation of the organic amendment 

inputs (qOrg), total organic inputs (totOrg), nitrogen organic fertilisation (orgN) and total nitrogen fertilisation indicators (totN).

References

CSICM, 2010. Directive suisse 2010 de la branche sur la qualité du compost et du digestat. Commission suisse de l'inspectorat du compostage 

et de la méthanisation, 40 pp.

CTACF, 2006. Mise en oeuvre de la technique du Bois Raméal Fragmenté (BRF) en agriculture wallonne. Centre des Technologies 

Agronomiques Communauté Française, 168 pp.

Sinaj, S., Richner, W., 2017. Principes de fertilisation des cultures agricoles en Suisse (PRIF 2017). Recherche Agronomique Suisse 8(6).

source of organic matter dry organic mattera isohumic coefficient total nitrogena part of available nitrogenb

[kg/t or *kg/m3] [kg/t or *kg/m3]

cow slurry 50* 0.10 4.3* 0.45

cow manure 150 0.50 4.9 0.15

fattening cow slurry 65* 0.10 4.3* 0.45

fattening cow manure 155 0.35 5.4 0.20

pig slurry 33* 0.10 4.7* 0.50

pig manure 40 0.35 7.8 0.35

poultry manure 330 0.25 27.0 0.35

horse manure 270 0.40 5.6 0.10

compost 214 0.25 7.0 0.05

composted manure 200 0.65 4.9 0.15

liquid digestate 50* 0.28 4.0 0.50

ramial chipped wood (BRF) 422 0.50 1.6* 0.00
adry organic matter and total nitrogen are given in kg/t, except for values marked with *, in kg/m3
bpart of total nitrogen available for the crop the year of application

Most coefficients were extracted from the Swiss principles of agricultural crop fertilisation (Sinaj and Richner, 2017) or extrapolated 

from similar products, except for digestate isohumic coefficient (CSICM, 2010) and for the ramial chipped wood coefficients (CTACF, 

2006)



Table S4 Mean values and standard errors of the 31 indicators for the three cropping systems, and p-values from the overall analysis of 

variance ('global') and from the Tukey HSD post-hoc pairwise test. 'conv': conventional farming, 'nt': no-till farming, 'org': organic farming.

Indicator conv nt org p-values

mean se mean se mean se anova nt-conv org-convorg-nt

Farm structure

utilised agricultural area [ha] 62 10 44 8 41 6 0.142 0.278 0.149 0.932

annual working unit 2.6 0.5 1.9 0.4 2.0 0.2 0.464 0.466 0.617 0.966

livestock unit 0.70 0.17 0.27 0.09 0.73 0.14 0.035 0.077 0.991 0.053

diversity at farm level 2016 6.58 0.34 6.25 0.45 7.15 0.55 0.376 0.870 0.659 0.350

Crop diversification

nb years with ley 0.26 0.18 0.30 0.18 1.25 0.22 0.001 0.990 0.002 0.003

nb legume crops 1.16 0.22 2.05 0.29 2.35 0.22 0.004 0.038 0.004 0.667

nb cover crops 1.16 0.22 1.90 0.32 0.85 0.20 0.013 0.101 0.663 0.011

crop diversity at field level (rotation) 4.63 0.24 5.00 0.23 4.30 0.18 0.082 0.466 0.538 0.066

crop rotation diversification 6.17 0.27 7.18 0.55 7.00 0.41 0.218 0.228 0.364 0.952

Soil disturbance and protection

field traffic 10.5 0.5 9.1 0.3 9.8 0.5 0.081 0.065 0.503 0.468

nb tillage 2015-2016 1.32 0.15 0.40 0.13 2.55 0.27 0.000 0.005 0.000 0.000

nb weeding 2015-2016 0.00 0.00 0.00 0.00 2.35 0.26 0.000 1.000 0.000 0.000

nb tillage and weeding interventions 2012-2016 2.32 0.20 0.18 0.08 4.06 0.46 0.000 0.000 0.000 0.000

soil protection index 1.63 0.15 4.72 0.10 1.82 0.23 0.000 0.000 0.713 0.000

soil tillage intensity 94 7 24 3 139 6 0.000 0.000 0.000 0.000

soil cover 0.28 0.05 0.56 0.05 0.18 0.03 0.000 0.000 0.244 0.000

Organic matter inputs and nitrogen fertilisation

crop residue exportation 2.37 0.32 1.60 0.37 2.75 0.38 0.072 0.288 0.731 0.063

nb organic amendments 5.05 0.05 5.05 0.05 5.40 0.18 0.055 1.000 0.096 0.087

organic amendment inputs [kg OM/ha] 465 105 435 130 470 150 0.979 0.986 1.000 0.980

organic input from crops [kg OM/ha] 683 37 726 32 708 41 0.712 0.690 0.880 0.936

total organic inputs [kg OM/ha] 1148 113 1161 134 1178 140 0.986 0.997 0.985 0.995

mineral nitrogen fertilisation [kg N/ha] 141 7 127 8 0 0 0.000 0.217 0.000 0.000

organic nitrogen fertilisation [kg N/ha] 19 7 20 6 61 5 0.000 0.978 0.000 0.000

total nitrogen fertilisation [kg N/ha] 160 6 147 4 61 5 0.000 0.201 0.000 0.000

Crop protection

nb herbicide treatment 1.11 0.11 2.30 0.24 0.00 0.00 0.000 0.000 0.000 0.000

nb fungicide treatment 1.16 0.33 0.30 0.18 0.00 0.00 0.001 0.016 0.001 0.569

total number of treatments 3.11 0.54 2.70 0.26 0.00 0.00 0.000 0.678 0.000 0.000

herbicide treatment frequency index 1.18 0.20 2.32 0.23 0.00 0.00 0.000 0.000 0.000 0.000

total treatment frequency index 2.77 0.43 2.71 0.24 0.00 0.00 0.000 0.988 0.000 0.000

Yield

wheat yield 2016 [t/ha] 5.6 0.4 4.9 0.3 3.4 0.2 0.000 0.174 0.000 0.001

relative yield 2012-2016 1.05 0.03 0.93 0.03 0.70 0.03 0.000 0.020 0.000 0.000



Figure S1 Map of Switzerland showing the geographic position of the 60 fields. Blue points correspond to conventional 

systems, red points to no till systems and green points to organic systems.



Figure S2 Texture triangle (ISSS system) showing the texture (0-20 cm) of the 60 fields. Blue points 

correspond to conventional systems, red points to no till systems and green points to organic systems.



Figure S3 Principal component analyses (field projection, scaling 2) used for the computation of the composite indexes for A. Crop diversification, B. 

Soil disturbance and protection, and C. Organic matter inputs and nitrogen fertilisation. Blue points correspond to conventional systems, red points to 

no-till systems and green points to organic systems. Correspondence between abbreviations and indicator names are given in Table 1.



Figure S4 A. Crop frequency for the studied fields, for the three cropping 

systems ('conv': conventional, 'nt': no till, 'org': organic). Crops are grouped 

into types. B. Categorisation of the crop rotation along three main types: 1. 

rotations with a cereal every two years, 2. rotations including leys, and 3. 

other type of rotations.

Cereal: winter or spring wheat, barley, oat, spelt, rye, triticale

Oilseed: rapeseed, sunflower, flax

Maize: grain maize, silage maize, sorghum

Root: potato, sugarbeet

Legume: soybean, peas, faba bean, lentil, bean, clover



Figure S5 Relative yield indicator as a function of time since the beginning of A. no till practice and B. organic practice. In panel A, 

the numbers above the points indicate the number of cover crops cultivated the past 5 years (number of cover crop ‘nbCC’ indicator).



Figure S6 Comparison of Switzerland with six other 

European countries in terms of crop diversity, nitrogen 

fertilisation and pesticide inputs. On each box, ‘CH’ shows 

the position of Switzerland. On the left of each box, the two 

letter code of each other country is indicated, BE: Belgium, 

CZ: Czech Republic, EE: Estonia, FR: France, DE: 

Germany, NL: Netherlands. The data come from Herzog et 

al. (2006).
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