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Aryl Oligogermanes as Ligands for Transition Metal Complexes 

Kirill V. Zaitsev,*[a] Kevin Lam,[b] Viktor A. Tafeenko,[a] Alexander A. Korlyukov[c] and Oleg Kh. 

Poleshchuk[d, e] 

 

Abstract: The ligand properties of a series of aryl oligogermanes 

R3Ge-GeAr3, 3-7 (Me3Ge-GePh3 (3), Me3Ge-Ge(pTol)3 (4), Ph3Ge-

GePh3 (5), (C6F5)3Ge-GePh3 (6), Ph3Ge-GeMe2GePh3 (7)), for the 

synthesis of transition metal carbonyl complexes such as R3Ge-

GeAr2(R’C6H4-η
6)M(CO)3 (M = Cr, 3a-7a; M = Mo, 3b; M = W, 3c) 

were investigated. The complexes were obtained, using several 

different synthetic approaches, in moderate yields. The 

physicochemical properties of these newly synthesised complexes 

were investigated by IR, UV/vis, NMR spectroscopy, 

electrochemistry and DFT calculations. The molecular structures of 

3c, 4a and 5a were studied by single crystal X-ray diffraction 

analysis. A comparative analysis of the donor- and acceptor 

properties of aryl oligogermanes, as ligands for transition metal 

carbonyl complexes, is reported. 

Introduction 

Recently, derivatives of Group 14 bearing element – element 

bonds (E(IV) = Si, Ge, Sn, Pb) have attracted significant 

attention due to their unique physical properties (conductivity, 

light absorbance, luminescence etc.). These unique properties 

are due to the presence of a σ-conjugation between the E atoms 

within the framework of the molecule (Scheme 1).[1] The number 

of E atoms in the chain, their nature, the electronic properties of 

their substituents and the conformation of the molecule 

significantly affect on the σ-conjugation. The ability to finely tune 

the electronic properties of these new catenated derivatives 

would open the door to the preparation materials displaying new 

physical properties. Biding transition metals (M) to catenated 

Group 14 derivatives should impact on the σ-delocalisation and 

therefore, also on the physical properties of the complex.[2] In 

addition, several possible modes of bonding between the metal 

and the Group 14 ligand could be expected, each of them 

having a different impact on the σ-conjugation. A few 

compounds, containing a covalent bond between the E atom 

and a transition metal, have been reported in the literature 

(leading references for Si derivatives with M = rare earth 

metals;[3] Ti, Zr, Hf;[4] Ta;[5] Cr, Mo, W;[6] Fe;[7] Pd;[8] Pt;[9] Au;[10] 

for special interest to Ge derivatives for Hf, Zr;[4] W, Cr;[11] Pt;[9b, 

12] Pd;[13] Au;[14] for Sn derivatives with Ti;[4, 15] Mo, W;[16] Fe[17] 

etc.). In the present study, we are reporting the impact of the 

different types of bonding, including when the metallic fragment 

is connected to an organic group (ηn-coordination), on the 

physical properties of the new compounds. Only a few studies 

on η5-C5R5 (Cp) catenated Ge derivatives[18] and Cr[η6-

C6H5GeMe2]2[19] have been reported to date while molecular 

oligostannanes (Cp[28] derivatives). Polysilanes[29] and 

oligosilane[20] complexes have been extensively studied 

(complexed with η4-butadiene,[21] η5-half-sandwich,[6c, 22] 

ferrocenyl[23] or other Cp ligands,[24] (η6-aryl)M(CO)3,[25] sandwich 

Cr complexes,[26] η7-derivatives[27]). Only molecular 

oligogermanium complexes bearing transition metals remain to 

be studied to complete the series. To the best of our knowledge, 

only 6 articles describing complexes of arylmonogermanes with 

M(CO)3 have been reported up to this day.[19, 30] 
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Scheme 1. Schematic representation of σ-conjugation between Group 14 E 

atoms. 

 Arene chromium tricarbonyl complexes are valuable 

compounds that are used in organic synthesis and catalysis,[31] 

the preparation of materials with non-linear properties,[32] etc. In 

general, a Cr(CO)3 group, coordinated to an arene, acts as a 

strong electron withdrawing substituent which reduces the 

electron density of the aryl group. A priori, M(CO)3 would exhibit 

similar electron-withdrawing properties with a magnitude 
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comparable to that of a nitro group.[33] When the arene bears a 

functional group Y, such as in (η6-C6H5Y)Cr(CO)3, the extent of 

the charge transfer to the metal strongly depends on the 

electron donating or electron withdrawing properties of the group 

Y. This has been shown by infrared spectroscopy and is 

supported by theoretical calculations. In this work, we are 

reporting the synthesis of the aryloligogermane carbonyl 

complexes 3a-c, 4a-7a (Scheme 2) as well as an investigation 

about their structure – physical properties relationships. 

Oligogermanes Me3Ge-GePh3 (3), Me3Ge-Ge(pTol)3 (4), Ph3Ge-

GePh3 (5), (C6F5)3Ge-GePh3 (6), and [Ph3Ge]2GeMe2 (7) were 

used as simple and easily available model-compounds, differing 

in their number of Ge atoms and in the steric and electronic 

properties of the substituents on their Ge centers. 

 

Scheme 2. Structures of the compounds under investigation. 

 

Scheme 3. Synthesis of 5a and 7a using Cr(CO)6 (1a) in decalin.

Results and Discussion 

Synthesis. The synthesis of the new organometallic complexes 

required the use of different metallic precursors, Cr(CO)6 (1a) 

and M(CO)3(NCMe)3 (M = Cr (2a), M = Mo (2b), M = W (2c)). 

As a first attempt to prepare the new compounds, the 

thermolysis of Cr(CO)6, in a solvent with a high boiling point 

such as decalin,[34] in the presence of the corresponding arene 

(aryloligogermane 5 and 7) and dimethyl succinate as an agent 

promoting the abstraction of the CO the chromium center,[35] was 

investigated (Scheme 3).  

Unfortunately, a significant amount of unreacted starting 

material was recovered at the end of the reaction, even when 

the reaction time was extended to 12h and only a low 

conversion was achieved (29-33%) resulting in low yields in 5a 

and 7a. Using an excess of 1a did not improve the yield either. 

The thermolysis approach has shown the have serious 

drawbacks. In addition to giving low yields in 5a and 7a, harsh 

reaction conditions have to be used to overcome the low 

reactivity of Cr(CO)6 and tedious chromatographic separations 

are often needed to get the pure compounds. 

In order to improve the yields and simplify the isolation of 

the desired compounds, a new set of conditions was 

investigated. Cr(CO)6 (1a) was reacted with Ph3GeGePh3 (5) 

and (C6F5)3GeGePh3 (6) in a refluxing mixture of (nBu)2O/THF 

(10:1)[34, 36] (Scheme 4). Similar conditions have been reported 

before for the synthesis of Group 14 derivatives using DME[37] or 

dyglime.[38] When the unsymmetrical donor-acceptor digermane 

6 was used, the product 6a was exclusively formed, where the 

Cr(CO)3 coordinates to the electron-rich aromatic ring. The 

isolation of pure 5a and 6a were easily performed by column 

chromatography (for details, see Experimental part). 

Unfortunately, once again, the target compounds were isolated 

in low yields. When benzene was used as the eluent for the 

chromatographic separation of 6a, a transmetallation was 

observed leading to the formation of (η6-C6H6)Cr(CO)3; therefore, 

a mixture of ether and petroleum ether should be used instead 

of benzene for the isolation of the pure complexes. The yield of 

the desired complex also depends on the structure of the 

oligogermane used in the complexation reaction. The use of an 

oligogermane bearing at least one electron withdrawing group 

generally results in even lower yields.
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Scheme 4. Synthesis of 5a and 6a using Cr(CO)6 (1a) in (nBu)2O. 

 

Scheme 6. Synthesis of complexes 3a-c, 4a and 7a using M(CO)3(NCMe)3 (2a-c).  

When W(CO)6 was subjected to the same reaction conditions, in 

the presence of Me3GeGePh3 (3), the desired complex 

Me3GeGePh2(η6-Ph)Cr(CO)3 (3c) was isolated only in a trace 

amount; the major compound being the initial ligand 3. A 

possible reason would be the decomposition of the W complex 

under high-temperature conditions. Therefore, in order to 

perform the reaction at lower temperatures, 2a-c, 

M(CO)3(NCMe)3M(CO)6, in which three carbonyl groups have 

been substituted by more labile MeCN were used instead of 1a-

c (M = Cr, Mo, W).[30b, 35b, 39] 

 The compounds 2a-c are easy to prepare (Scheme 5) and 

can either be isolated in high yields or used without isolation.[40] 

 

Scheme 5. Synthesis of 2a-c. 

As expected, using M(CO)3(NCMe)3 as more reactive 

starting materials, allowed to prepare the desired complexes, 

with improved yields, by refluxing 2a-c, in THF for 1 h, in the 
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presence of aryl oligogermanes (Scheme 6). For these reactions, 

the conversion of the starting material proved to be much higher 

(54-68 %). Increasing the reaction time (up to 3 h) resulted only 

in a decrease of the yields, most probably, again, due to the 

thermal instability of Cr complexes. No conversion was observed 

when the reaction was carried out either in MeCN (under reflux 

for 12 h) or in THF at room temperature (for up to 3 days), 

indicating that acetonitrile is a strong donating ligand than the 

arenes (see below). 

Using an excess of 2a (up to 2 eq.) resulted in the sole 

formation of mono-Cr complexes (in the case of 7a) without any 

traces of di-Cr complexes. In the case of Mo, the complex 3b 

has shown to be unstable and to decompose quickly during the 

various attempts to isolate it. Mo derivatives are known for their 

low stability.[41] When other derivatives, such as M(CO)3(Py)3
[35b] 

were used as starting materials, under the same conditions, in 

the presence of Ph3GeGeMe3 (3), only traces of the desired 

compounds were observed.  

When comparing the three methods used for the synthesis 

of 3a-c and 4a-7a, namely thermolysis of M(CO)6 in 

decalin/dimethyl succinate, reflux of M(CO)6 in (nBu)2O/THF and 

reflux of M(CO)3(NCMe)3 in THF. Among these three options, 

the latest one seems to be the most successful, leading to the 

formation of the desired complexes in higher yields. 

All studied the complexes, 3a, 3c, 4a-7a, are yellow 

powders, which are stable under an inert atmosphere, but get 

slowly oxidised (and become greenish) upon exposure to air for 

several months. In stark contrast, solutions of these compounds 

have shown to be much more air-sensitive. All of the newly 

synthesized derivatives are soluble in aromatic hydrocarbons 

(benzene, toluene), acetone, ethers (THF, diethyl ether) but are 

insoluble in n-hexane and decompose very quickly in chloroform 

(or CDCl3). Among the possible decomposition pathways, the 

rupture of the Cr-Ar bond is the most probable, especially under 

harsh conditions. The rupture of the Ge-Ge bond was also 

observed when NMR was used to monitor the stability of the 

solutions of 6a in C6D6. After 3 days, the formation of 6, 

(C6F5)3GeGePh3, and (C6F5)3GeH was observed. 

All compounds were characterized by elemental analysis, 

IR and NMR spectroscopy, mass-spectrometry[42] and in the 

case of 3c, 4a and 5a by single crystal X-ray diffraction (XRD) 

analysis. The deviations in elemental analysis data are 

explained by the sensitivity of the compounds and by the partial 

combustion due to the presence of transition metals. 

Solid state structure. A search in the CSD (Cambridge 

Structural Database) (June 2018) for structures of 

aryloligogermanes coordinated with M(CO)3 returned no result. 

Therefore, the structural investigation of 3c, 4a and 5a by XRD 

reported in this work (Figures 1-3; Supporting Information, Table 

S1) represents a significant contribution to the chemistry of 

Group 14 derivatives. Moreover, only one structure of 

monogermanium compound, N(CH2CH2O)3Ge(η6-

Ph)Cr(CO)3,[30d] has ever been studied by XRD to date. 

For all of the structures studied in this work, the metal-

ligand core shown to adopt the well-known “piano stool” 

geometry.[43] 

 

Figure 1. Molecular structure of Me3GeGePh2(η6-Ph)W(CO)3 (3c). 

Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms 

are omitted for clarity. Selected bond lengths (Å) and bond angles (deg): 

Ge(1)-Ge(2) 2.4266(9), W-Cav(arene) 2.341(6), W-Cav(centroid) 1.867(6), W-

COav 1.967(7), Ge(1)-Cav 1.949(6), Ge(2)-Cav 1.957(6), Ge(2)-C(16) 1.972(6), 

C-Oav 1.155(8); C-W-Cav(CO) 87.4 (3), C-Ge(1)-Ge(2)av 110.8(2), C-Ge(1)-Cav 

108.1(3), C-Ge(2)-Ge(1)av 112.64(19), C-Ge(2)-Cav 106.2(2). 

In 3c, the W(CO)3 group in relation to the coordinated C6H5 

ring adopts an anti-eclipsed-conformation (Scheme 6; torsion 

angles CGe-Ccentroid-W-CO are 55.4(7) and 71.1(7)o; 60o for ideal 

anti- and 0o for ideal syn-). Due to the electronic interactions, a 

syn-eclipsed-conformation is typical for monosubstituted bearing 

an electron donating group R’ (η6-R’C6H5)M(CO)3,. An electron-

donating R’ increases the electron density in ortho- and para-

positions of the η6-Ar ring, where the octahedral set of Cr orbitals 

are overlapping.[44] Usually, an anti-eclipsed conformation is due 

to steric reasons, but in our case, additional orbital interactions 

between the d orbitals of the Cr and the σ-orbital of Ge-Ar and 

Ge-Ge bonds may be observed (Scheme 7). The maximal 

overlapping (torsion angle M-CArGe-Ge-Ge 180o is the most 

profitable) is observed in 5a (see below); in 3c a torsion angle of 

55.2(7)ois found, indicating that they are electronic interactions 

between all parts of the molecule. The conformation along the 

Ge-Ge bond is staggered (torsion angles C-Ge-Ge-Cav are 

78.27/41.71o). 

In 4a, the conformation of the Cr(CO)3 group in relation to 

the coordinated C6H5 ring is close to be anti-eclipsed (torsions 

CArGe-Ccentroid-Cr-CO are 52.9(8) and 68.7(8)o). The torsion angle 

of Cr-CArGe-Ge-Ge is 46.5(8)o, indicating weak interactions 

between Cr and Ge2. DFT calculations for 4a (see below) 

showed that in the gas phase this torsion angle is 155o, 

indicating an effect of the crystal packing on the conformation. 

The conformation along the Ge-Ge bond is staggered (torsion 

angles C-Ge-Ge-Cav are 70.5(8)/49.5(8)o). 
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Scheme 7. Conformations of substituents in relation to η6-benzene. 

 

Figure 2. Molecular structure of compound Me3GeGe(pTol)2(η6-pTol)Cr(CO)3 

(4a). Displacement ellipsoids are shown at 50% probability level. Hydrogen 

atoms are omitted for clarity. Selected bond lengths (Å) and bond angles 

(deg): Ge(1)-Ge(2) 2.4284(6), Ge(1)-Cav 1.952(5), Ge(1)-C(8) 1.970(4), Ge(2)-

Cav 1.932(7), Cr(1)-COav 1.828(9), Cr(1)-Cav(arene) 2.212(5), Cr-Cav(centroid) 

1.715(5), C-Oav 1.163(8); C-Cr-Cav(CO) 88.2(3), C-Ge(1)-Ge(2)av 112.66(13), 

C-Ge(1)-Cav 106.1(2), C-Ge(2)-Ge(1)av 110.49(19), C-Ge(2)-Cav 108.5(3). 

The structure of the complex 5a differs from the ones of 3c 

and 4a. The conformation of the Cr(CO)3 group in relation to the 

coordinated C6H5 ring is distorted and staggered (torsion angles 

CArGe-Ccentroid-Cr-CO are 27.6(9) and 95.6(9)o), indicating electron 

interactions between Cr(CO)3 and Ge2. The torsion angles Cr-

CArGe-Ge-Ge is 159.7(9)o, showing a very high interaction 

between Cr, η6-Ph and Ge2. This significant observed difference, 

in 5a, may be explained by the presence of Ph groups at both 

Ge atoms, what is known to affect the electronic structure of the 

molecule strongly.[45], [46] The conformation along the Ge-Ge 

bond is staggered (torsion angles C-Ge-Ge-Cav are 

59.6(9)/60.4(9)o). 

 

 

Figure 3. Molecular structure of compound Ph3GeGePh2(η6-Ph)Cr(CO)3 (5a). 

Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms 

are omitted for clarity. Selected bond lengths (Å) and bond angles (deg): 

Ge(1)-Ge(2) 2.4316(13), Ge(1)-Cav 1.955(9), Ge(2)-Cav 1.953(10), Ge(2)-C(31) 

1.974(9), Cr(1)-Cav(arene) 2.209(11), Cr-Cav(centroid) 1.698(11), Cr-COav 

1.842(11), C-Oav 1.157(13); C-Cr-Cav(CO) 88.1(5), C-Ge(1)-Ge(2)av 110.0(3), 

C-Ge(1)-Cav 108.9(4), C-Ge(2)-Ge(1)av 109.0(3), C-Ge(2)-Cav 109.9(4). 

In all of the structures studied, 3c, 4a, and 5a, the η6-

coordinated arene ring is almost planar (the maximal deviations 

from the mean square plane are 0.022(9) Å in 3c (C(19)-para to 

Ge toward to W), 0.008(9) Å in 4a (C(8)-ipso and C(9)-ortho to 

Ge out of Cr) and 0.012(9) Å in 5a (C(35)-meta to Ge out of 

Cr).[43] In every case, the nearest Ge atom is slightly moved out 

of the plane of the η6-Ar in the direction above M(CO)3 (0.228(9) 

Ǻ for 3c, 0.131(9) Ǻ for 4a, 0.101(9) Ǻ for 5a; the angles of 

deviation α are 6.4(7), 3.6(8), 3.0(9)o, respectively) due to the 

electronic effects (Scheme 7), indicating a π-donor effect of the 

oligogermyl substituent. In 4a, the methyl group of the p-tolyl 

ring is almost in the plane of aryl group (the deviation is only 

0.001(9) Å). 

The presence of the M(CO)3 increases the nonequivalence 

of the aryl C-C bonds (approaching a hexadienyl character) and 

leads tp an elongation of C1-C2 bond (Scheme 8), whereas the 

electron density is partially transfered from the Ge-Ge bond 

(HOMO-3, HOMO-4, HOMO-5; Figs. S26-S28, ESI) to the η6-

arene ring (LUMO+3, LUMO+4, LUMO+5; Figs. S32-S34, ESI). 

This was observed for each of the new complexes studied 

(Scheme 9), indicating that the presence of a M(CO)3 moiety 
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lowers the bond order of the aromatic ring due to its acceptor 

properties. 

Furthermore, a deviation from the ideal sp2 hybridization 

for the arene carbon atoms bonded to Ge is observed. 

Table 1. Comparison structural parameters of complexes 3c, 4a, 5a with parent oligogermanes 3, 4 and 5. 

Compound [a] d(Ge-Ge) d(Ge-C) d(GeM-C) C-Ge-GeM C-Ge-C C-GeM-Ge C-GeM-C 

Me3GeGePh3 (3) [47] 2.418(1) 1.943(4) 1.957(2) 110.2(1) 108.7(1) 110.3(1) 108.6(1) 

3c 2.4266(9) 1.949(6) 1.972(6) 110.8(2) 108.1(3) 112.64(19) 106.2(2) 

 

Me3GeGe(pTol)3 (4) [48] 2.4292(7) 1.936(7) 1.948(4) 115.6(2) 107.2(4) 110.90(12) 107.97(17) 

4a 2.4284(6) 1.932(7) 1.970(4) 110.49(19) 108.5(3) 112.66(13) 106.1(2) 

 

Ph3GeGePh3 (5) [49] 2.437 1.959 1.959 110.80 108.10 110.80 108.10 

5a 2.4316(13) 1.955(9) 1.974(9) 110.0(3) 108.9(4) 109.0(3) 109.9(4) 

[a] Bond lengths (Å) and bond angles (deg); GeM is a nearest to M(CO)3 germanium atom; average values are used 

 

 

Scheme 8. Donor effects of oligogermyl substituent. 

 

Scheme 9. Values of d(C-C) bond lengths in η6-arene for 3c, 4a and 5a. 

The Ge-Ge bond is cisoid- in relation to the M(CO)3 group 

in 3c (the value of the torsion angle for Ge-Ge-C(16)Ar-W is 

55.2(7)o) and 4a (torsion Ge-Ge-C(8)Ar-Cr is 46.5(8)o), whereas 

in 5a this same bond is transoid- (torsion Ge-Ge-C(31)Ar-Cr is 

159.6(9)o). These data, along with the conformation of M(CO)3 

along the Ar group, indicate that there is a stronger electron 

interaction between the octahedrally directed metal’s orbitals 

and the η6-arene in 5a. The values of the torsion angles for Ge-

Ge-CAr-CAr and Ge-Ge-CAr-M (-39.2(7)/55.2(7)o for 3c; 46.0(8)/-

46.5(8)o for 4a; -67.1(9)/-159.6(9)o for 5a) indicate the presence 

of a σ-π-conjugation between the Ge-Ge bond and the η6-Ar 

fragments (90o for an ideal conjugation). 

In all of the structures 3c, 4a and 5a the values of d(C-O) 

are very similar (1.155(8) vs. 1.163(8) vs. 1.157(13) Å), showing 

acceptor properties across the different oligogermanes and 

metals. The values of d(Cr-CO) in 4a and 5a are almost identical 

(1.828(9) vs. 1.842(11) Å). Variation of the substituents on the 

Ge atom or of the nature of M resulted only in small changes of 

the main structural parameters, i.e. Ge-Ge bond length 

(2.4266(9) vs. 2.4284(6) vs. 2.4316(13) Å in 3c, 4a, 5a, 

respectively) and Ge-C bond length (for example, Ge-CArM 

1.972(6) vs. 1.970(6) vs. 1.974(9) Å). The length of d(Ge-CArM) is 

longer than the other Ge-C bonds; this could be due to steric 

reasons (introduction of a more voluminous M(CO)3) and 

electronic effects similar to what has been earlier observed for 

donor-acceptor oligogermanes.[46, 50] In general, the geometry at 

each of Ge atom may be described as a slightly distorted 

tetrahedral. 

A comparison between the structural parameters of 

complexes 3c, 4a, 5a and the ones of the parent oligogermanes 

3,[47] 4[48] and 5,[49] respectively (Table 1), shows minimal 

differences, indicating a strong mutual influence of the Ge2, aryl 

and M(CO)3 fragments in the molecule, where the acceptor 

properties of M(CO)3 fragments are counterbalanced by a Ge2 

donation. 

Structure in solution. The NMR spectra of complexes 3a-3c 

and 4a-7a were recorded in C6D6 or acetone-d6. Due to the 

weaker π-acceptor properties of the η6-coordinated arene ligand 

in comparison with CO, a quenching of the ring current is 

observed in such compounds. The electron density is 

transferred from arene to the M(CO)3. This phenomenon is 

reflected in the NMR spectra by upfield shifts of the coordinated 

aryl group signals in comparison with the parent oligogermanes 

3-7. In 1H NMR (C6D6) the signals of the η6-coordinated Ar 

appeared between δ 4.0-5.3 ppm (an upfield shift of ca. 2 ppm), 

and the signals of the uncoordinated Ar were shifted toward 

downfield by ca. 0.2 ppm in comparison with the free 

oligogermane (for details, see Experimental Part and Supporting 

Information, Figs. S1-S16). A comparison with the parent (η6-

C6H6)Cr(CO)3 (vs. δ 4.31 ppm)[51] showed that for oligogermanes 

3a-7a the proton signals are shifted toward lower fields. 

Furthermore, the signals for each position of the coordinated Ar 

group (ortho-, para- and meta-) appeared as well resolved 

multiplets (doublets, triplets etc., 3JH-H = 6.6 Hz, 4JH-H = 1.0 Hz). 

The weakest upfield shifts were observed for Mo and the largest 

ones for W (3b vs. 3a vs. 3c). 

The 13C NMR spectra of Cr compounds have shown a single 

signal for CO (δ 232.1-234.1 ppm), indicating the rapid (on the 
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NMR time scale) rotation along the M-Arcentroid axis resulting in 

the equivalence of the 3 carbonyls. The 13C NMR spectra are 

characterized by the presence of 4 signals typical for 

coordinated carbon arene at δ 110.6-90.8 ppm (upfield shift of 

ca. 35 ppm in comparison with non-coordinated Ar); ipso-, 

Table 2. Data of the UV/vis spectra according to experiment and DFT Calculations for the compounds 4, 4’, 4’’, 4’’’ and 4a. 

compound λexp, nm [a] λcalc, nm [b] transition 

Me3GeGe(pTol)3 (4) [c] 232 (2.3) 229 (0.282) HOMO→LUMO+2 

(η6-pTol)Cr(CO)3 (4’) 220 (1.74) - - 

253 (0.76) 286 (0.2228) HOMO→LUMO+1, HOMO-1→LUMO 
 

317 (0.95) [d] 
 

321 (0.0017) 
327 (0.0030) 
343 (0.0010) 

HOMO-2→LUMO+1 
HOMO-2→LUMO 

HOMO-1→LUMO+1 

(η6-Me3Ger)Cr(CO)3 (4’’) - 288 (0.2091) 
322 (0.0022) 
327 (0.0019) 

HOMO→LUMO+1, HOMO-1→LUMO 
HOMO-2→LUMO+1 

HOMO→LUMO+1, HOMO-2→LUMO 

MeGe(pTol)2(η6-pTol)Cr(CO)3 (4’’’) - 295 (0.1044) 
318 (0.0037) 
323 (0.0032) 
333 (0.0028) 
337 (0.0027) 
350 (0.0025) 
382 (0.0025) 
391 (0.0071) 

HOMO-1→LUMO+1 
HOMO-2→LUMO+2 
HOMO-1→LUMO+2 
HOMO-1→LUMO+1 
HOMO-2→LUMO+1 
HOMO→LUMO+2 
HOMO-1→LUMO 
HOMO→LUMO 

Me3GeGe(pTol)2(η6-pTol)Cr(CO)3 (4a) 233 (4.55) - - 
 

267 (0.80) 
279 (0.0132) 
298 (0.1452) 

HOMO-3→LUMO 
HOMO-1→LUMO+1 

 
321 (0.87) 

326 (0.0029) 
328 (0.0156) 
336 (0.0092) 
357 (0.0016) 
383 (0.0024) 
394 (0.0107) 

HOMO-2→LUMO+1 
HOMO-1→LUMO+2 
HOMO-2→LUMO+1 
HOMO→LUMO+1 
HOMO-1→LUMO 
HOMO→LUMO 

[a] Absorptivity ε (104 M-1 cm-1) in parentheses; data in CH2Cl2. [b] Oscillator strength in parentheses. [c] Data from [48]. [d] Data from [52]. 

 

ortho-meta- and para-carbon signals are easily distinguished. In 

general these signals are shifted toward lower fields in 

comparison with the parent C6H6Cr(CO)3 (vs. δ 92.36 ppm).[51] 

DFT calculations. Theoretical investigation has been 

performed for the model compounds Me3GeGe(pTol)2(η6-

pTol)Cr(CO)3 (4a), (η6-TolH)Cr(CO)3 (4’), Me3Ge(η6-

pTol)Cr(CO)3 (4’’), MeGe(pTol)2(η6-pTol)Cr(CO)3 (4’’’) and 

Me3GeGe(pTol)3 (4) (Supporting Information, Figs. S17-S62, 

Tables S2-S4); the results obtained are typical for all series of 

compounds 3a-7a. 

According to the calculations using B3LYP/6-311+G(2d,p) 

in THF, 4a has three bands, active in IR for the carbonyl groups, 

1960 and 1884/1855 cm-1. This correlates well with the 

experimental results (1961, 1887 cm-1, see below), confirming 

the validity of the model used. In the gas phase, using 6-31G(d), 

a different set of values (2107, 2056/2052 cm-1) was obtained, 

showing the high dependence of these values on the solvent 

used. These calculations have also shown that the presence of 

a Ge2 fragment increases the donor properties of the aryl group 

(vs. 2117, 2066/2060 cm-1 for (η6-TolH)Cr(CO)3 (4’)). 

For 4a, due to the presence of the metal, an electron 

acceptor, the HOMO is mainly localised on the Cr(CO)3 fragment 

(bonding Cr-CO), whereas the HOMO-1, HOMO-2 are mainly 

localised on the TolCr(CO)3. The lower energy HOMO-3 orbital 

is bonding and localised on the Ge-Ge fragment; the other 

bonding orbitals, HOMO-4, HOMO-5, HOMO-6, HOMO-7 are all 

located on the non-coordinated Tol rings. Furthermore, the 

LUMO as well as the LUMO+1, are π-antibonding orbitals are 

localised on the non-coordinated Tol rings. The LUMO+2 is 

characterised by a contribution to the antibonding orbital on 

TolCr(CO)3. The higher energy orbital LUMO+3 is mainly 

localised on the (Tol)Cr(CO)3 fragment. All of this indicates a full 

conjugation between the different parts of the molecule and a 

distribution of the electron density over the whole molecule. This 

situation differs significantly from what is observed for the parent 

aryloligogermanes, where the HOMO is mainly localised on the 

Ge-Ge bond and the LUMO on Ar substituents,[45], [46] as it was 

confirmed for 4. It means that the electron density is transferred 

from Ge2 to ArCr(CO)3 through an intramolecular conjugation. 

Calculations of the UV/vis spectra were performed for 4, 4’, 

4’’, 4’’’ and 4a (Table 2). 

The UV/vis spectra of (η6-C6H6)Cr(CO)3
[25c, 52-53] exhibits 3 

bands, corresponding respectively to a π-π* transition (~ 220 nm 

with ε~1-3x104 M-1 cm-1), a M→ArH charge transfer (~250 nm 

with ε<104 M-1 cm-1) and a M→π* CO charge transfer (~ 315 nm 

with ε~104 M-1 cm-1).[38a, 53c] 

The most hypsochromic bands of the UV/vis absorption 

spectrum (220 nm for 4’; 233 nm for 4a) correspond to an 

intraligand charge transfers (ILCT) for Ar, where the transition is 

occurring from a low HOMO (such as HOMO-4 and lower) to a 

higher LUMO (such as LUMO+5 and higher), which are located 

on the Ar groups. Due to DFT restrictions, these transitions have 

not been taken into account during the calculations. 

The data obtained for 4a show an orbital mixing and all 

bands are significantly bathochromically shifted in comparison 

with the model compounds. The following bands attributions 

could be made: 267 nm (metal-to-arene charge transfer, MACT, 

from Ge2 to Ar, and MACT from TolCr(CO)3 to the antibonding 

orbital of Tol; in general from a lower HOMO to LUMO and near) 

and 321 nm (metal-to-carbonyl charge transfer, MCCT,[54] from 

TolCr(CO)3 to the antibonding orbital of Cr(CO)3; in general from 

a lower HOMO to higher LUMO orbitals). 
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UV/vis spectroscopy. UV/vis spectroscopy is an 

important method for the characterization of catenated Group 14 

compounds and for the estimation of their HOMO-LUMO 

transitions gap. For the compounds 3a-7a, one might expect a 

shift on the bands compared to the parent compounds. The 

introduction of aromatic groups within an oligogermane 

framework is known to lead to a bathochromic shift of the UV/vis 

absorbance bands due to the σ-π-conjugation. The effect of the 

insertion of transitional metal fragments remains less evident to 

predict. 

The σ-σ* transition in the Ge-Ge bonds is usually observed 

around 230-250 nm for di- and trigermanes with a very high 

absorptivity (ε~2-5x104 M-1 cm-1).  

 

Table 3. UV/vis spectroscopy data for 3a-7a and related compounds. 

compound [a] λ (nm), σ→σ* [b] λ (nm), ILCT [b] λ (nm), MACT [b] λ (nm), MCCT [b] reference 

(η6-EtO2CC6H5)Cr(CO)3  223 (2.23) 255 (0.82) 323 (1.00) [52] 

(η6-C6H6)Cr(CO)3  213 (3.00) 256 (0.75) 317 (1.06) [52] 

(η6-MeC6H5)Cr(CO)3  220 (1.74) 253 (0.76) 317 (0.95) [52] 

(η6-Et3SiC6H5)Cr(CO)3  212 (2.17) 256 (0.71) 317 (1.03) [52] 

Me3SiSiMe2(η6-C6H5)Cr(CO)3  231 (1.9) 256 318 (1.1) [25c] 

Me3SiSiMe2(η6-C6H5)Mo(CO)3  232 (1.9) 286 (4.1) 326 (2.1) [25c] 

Me3SiSiMe2(η6-C6H5)W(CO)3  232 (2.1) 278 (5.1) 321 (1.9) [25c] 

PhSiMe2SiMe2(η6-C6H5)Mo(CO)3 [c]  213 (2.87)  327 (1.56) [53d] 

Me3GeGePh3 (3) 230     [55] 

Me3GeGePh2(η6-C6H5)Cr(CO)3 (3a)  232 (2.47) 263 (0.53) 320 (0.67) this work 

Me3GeGePh2(η6-C6H5)W(CO)3 (3c)  233 (1.96) 291 (0.38) 322 (0.46) this work 

Me3GeGe(pTol)3 (4) 232 (2.3)  - - [48] 

Me3GeGePh2(η6-C6H5)Cr(CO)3 (4a)  233 (4.55) 267 (0.80) 321 (0.87) this work 

Ph3GeGePh3 (5) 241  - - [56] 

Ph3GeGePh2(η6-C6H5)Cr(CO)3 (5a)  238 (3.57) 267 (1.64) (sh) 322 (0.64) this work 

(C6F5)3GeGePh3 (6) 226 (3.70)  - - [46] 

(C6F5)3GeGePh2(η6-C6H5)Cr(CO)3 (6a)  234 (2.15) 261 (0.78) 322 (0.41) this work 

Ph3GeGeMe2GePh3 (7) [d] 245 (3.02)  - - [57] 

Ph3GeGeMe2GePh2(η6-C6H5)Cr(CO)3 (7a)  244 (3.60) 261 (2.10) (sh) 321 (0.38) this work 

[a] Performed in solution in CH2Cl2 unless otherwise stated. [b] ε (104 M-1 cm-1) in parentheses. [c] Solution in THF. [c] Solution in cyclohexane. 
Table 4. IR spectroscopy data for arene chromium tricarbonyl complexes. 

Compound νCO, cm-1 solvent reference Compound νCO, cm-1 solvent reference 

Cr(CO)6 1987 hydrocarbons [58] Cr(CO)3(η6-C6H5Cl) 1991, 
1929, 1925 

cyclohexane [34] 

fac-Cr(CO)3(PF3)3 2062, 1998 not given [59] Cr(CO)3(η6-C6H5NMe2) 1969, 
1894, 1888 

cyclohexane [34] 

fac-Cr(CO)3[(MeO)3P]3 1962, 1875 CS2 [60] Cr(CO)3(η6-C6H5COOMe) 1990, 1927 cyclohexane [34] 
1966, 

1888/1879 
hexadecane [61] Cr(CO)3(η6-C6H5COOMe) 1992, 1929 heptane [54] 

fac-Cr(CO)3[Me3P]3 1939, 1849 not given [62] Cr(CO)3(η6-PhSiMe3) 1987, 1911 cyclohexane [30a] 
1935, 1842 hexadecane [61] Cr(CO)3(η6-PhGeMe3) 1985, 1910 cyclohexane [30a] 

fac-Cr(CO)3[NH3]3 1911, 1887 MeCN [63] Cr(CO)3(η6-PhGeMe2Ph) 1980, 
1915/1870 

nujol [30c] 

fac-Cr(CO)3[NCMe]3 1910, 1782 nujol [40b] Cr(CO)3(η6-PhSnMe3) 1984, 1908 cyclohexane [30a] 
fac-Cr(CO)3[Py]3 1910, 1778 not given [64] Cr(CO)3(η6-PhSiMe2SiMe3) 1977, 1911 isooctane [25c] 

Cr(CO)3(η6-С6H5CH3) 1983, 1914 cyclohexane [53b] Cr(CO)3(η6-
PhSiMe2SiMe2C≡CPh) 

1972, 1906 hexane [25d] 

1962, 1893 nujol [65] Cr(CO)3(η6-
PhSiMe2SiMe2SiMe2C≡CPh) 

1975, 1909 hexane [25d] 

Cr(CO)3(η6-С6H5OCH3) 1980, 1908 cyclohexane [34] Cr(CO)3(η6-PhGePh2GeMe3) 
(3a) 

1974, 1897 nujol this work 

1975/1945, 
1903/1857 

nujol [66] Cr(CO)3(η6-
pTol)Ge(pTol)2GeMe3 (4a) 

1970, 1894 nujol this work 

Cr(CO)3(η6-C6H6) 1982, 1915 cyclohexane [34] Cr(CO)3(η6-PhGePh2GePh3) 
(5a) 

1975, 1900 nujol this work 

1978, 1910 nujol [67] Cr(CO)3(η6-
PhGePh2Ge(C6F5)3) (6a) 

1976, 1901 nujol this work 

Cr(CO)3(η6-C6H5F) 1990, 
1929, 1926 

cyclohexane [34] Cr(CO)3(η6-
PhGePh2GeMe2GePh3) (7a) 

1972, 1896 nujol this work 

fac-Mo(CO)3(NCMe)3 1915, 1783 nujol [40b], [68] Mo(CO)3(η6-C6H5SiMe3) 1983, 1913 petroleum 
ether 

[53d] 

fac-Mo(CO)3(PMe3)3 1927, 1828 not given [69] Mo(CO)3(η6-PhSiMe2SiMe3) 1981, 1912 isooctane [25c] 
Mo(CO)3(η6-C6H6) 1987, 1916 heptane [70] Mo(CO)3(η6-

PhSiMe2SiMe2Ph) 
1953, 1871 KBr [53d] 

1985, 1912 nujol [30e] Mo(CO)3(η6-C6H5GeMe3) 1986/1958, 
1909/1867 

nujol [30e] 

Mo(CO)3(η6-C6H5Me) 1980, 1910 nujol [30e] Mo(CO)3(η6-C6H5SnMe3) 1979/1951, 
1909/1862 

nujol [30e] 

Mo(CO)3(η6-C6H5SiMe3) 1986/1944, 
1916/1874 

nujol [30e] Mo(CO)3(η6-
PhGePh2GeMe3) (3b) 

1978, 1900 nujol this work 

       

fac-W(CO)3(NCMe)3 1885, 1778 nujol [40b] W(CO)3(η6-C6H6) 1968, 1886 CH2Cl2 [71] 
fac-W(CO)3[(MeO)3P]3 1973, 

1894/1880 
hexadecane [61] W(CO)3(η6-MeC6H5) 1985, 1910 heptane [72] 

fac-W(CO)3[Me3P]3 1940, 1845 hexadecane [61] W(CO)3(η6-PhSiMe2SiMe3) 1980, 1909 isooctane [25c] 
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    W(CO)3(η6-PhGePh2GeMe3) 
(3c) 

1980, 1904 nujol this work 

 

Due to solubility reasons, all UV/vis spectra in this work were 

recorded in CH2Cl2 which allows getting data at λ>230 nm. For 

oligogermane 3a-7a, three major bands were observed. Other 

bands were presents but were either weak or overlapped with 

the main absorptions or with the solvent. 

The comparison of UV/vis spectra of the compounds 

obtained within this study with the spectra of the initial 

oligogermanes shows that the introduction of a Cr(CO)3 group 

has a strong influence on the absorption (Table 3; DFT section 

above). The bands corresponding to the σ→σ* transition in the 

parent oligogermanes did not appear due to a mixing of the MO. 

The two bands corresponding to an ILCT and a MACT in the 

parent chromium complexes are significantly bathochromically 

shifted in 3a-7a; at the same time, the bands located at λ 320-

322 nm (MCCT) are weakly redshifted. This indicates an 

increase of the donor properties of the η6-Ar ligand (HOMO 

increase) due to the presence of a Ge2 group. The weak bands 

at 260-270 nm (MACT) appeared as a shoulder for Cr and as a 

distinct peak for the heavier Mo[25c] and W analogues.[73] This 

indicates an orbital mixing of the Ge-Ge σ-bond, π-aryl and π-

CO, where Ge-Ge acts as a strong electronic donor. This band 

may be attributed to a transfer of electronic density from Ge-Ge 

to Ar. 

For the complexes studied, the nature of the metal M 

(compare 3a and 3c) has shown to have little effect on the UV 

properties; only the MACT is significantly bathochromically 

shifted when replacing Cr by Mo or W.[74] 

In contrast with the free molecular oligogermanes[75], [48] all 

complexes showed a total absence of luminescence both in 

solution and in solid form. The presence of transition metal 

fragments, M(CO)3 (M = Cr, Mo, W), within the complexes, 

results in a quenching of the emissive properties. The electronic 

conjugation between Ge2, η6-arene and M(CO)3 occurs through 

direct interaction between a filled Cr d-orbitals and a σ* of Ge2 

bond, metal-ring σ-π-delocalization (π-conjugation) and a back-

donation from Cr d-orbitals to a π*-orbitals of the arene and a 

donation from Ar to Cr (due to the withdrawing effect of Cr(CO)3). 

This resulted in a bathochromic shift of the metal absorption 

bands (at 220 nm) with a small increase in absorbance. 

IR spectroscopy and donor properties. For each of the 

compounds studied, the IR spectrum contains the expected 2 

bands in the carbonyl region: a non-degenerate symmetric A1 (at 

higher wave numbers, νCO ~2000-1970 cm-1) and a doubly-

degenerated asymmetric E (νCO ~1950-1900 cm-1) vibration 

(local C3v symmetry)[76] (Table 4). Experimentally, there is no 

possible splitting of the E bands, which may be observed due to 

a small perturbation of the general symmetry of the arene 

substituent[77] (compared with DFT calculations, see above). The 

analysis of the IR data (mainly, A1 band) could be used to 

assess the donor (a decrease of the IR value) or the acceptor 

(an increase of the IR value) properties of a ligand. A strong 

dependence of the IR bands on the solvent has also been 

observed. Broadened red shifted bands are observed in polar 

solvents due to Lewis acidic interaction between the solvent and 

the carbonyl ligands.[51] 

Comparing the IR data for the compounds 3a-c, 4a-7a with 

the parent compound (η6-C6H6)Cr(CO)3 shows a decrease of the 

stretching absorption due to the electron donating properties of 

the catenated Group 14 fragment; its insertion within the Ar 

framework results in a small increase in the σ-donating 

properties and a decrease of the π-acceptor ability. Using data 

from the literature and the ones obtained through this work 

(Table 4) helps to place the aryloligogermanes among ligands 

that increase the π-back acceptor properties: [Py]3 < [MeCN]3 < 

[NH3]3 < [PMe3]3 < [P(OMe)3]3 < ArGeAr2GeR3 < [CO]3 < [PF3]3. 

The catenated germanium fragment may be considered as a 

donor group: NMe2 < Ar3GeGeR2GeR3 < Ar3GeGeR3 ≤ 

Ar(SiR2)2SiR’3 < OMe < ArSiR2SiR’3 < Ar2GeMe2 < Me < H < 

PhSnMe3 < PhGeMe3 < PhSiMe3 < CO2Me < F< Cl. Also, the Ge 

atoms have shown to exhibit greater electron donating abilities 

than Si. Increasing the length of the Ge chain increased the 

donor properties of the aryloligogermane. This suggests that 

Ge2 fragments have σ- as well as π-donating properties. 

In comparison, it is known that the introduction of disilane 

fragment decreases the donor properties of the Ar ligand 

(Me3Si(η6-Ph)Mo(CO)3 and PhSiMe2SiMe2(η6-Ph)Mo(CO)3 in 

KBr: 1946, 1865 vs. 1953, 1871 cm-1).[53d] 

The comparison of the IR data between 3a-7a (a weak 

increase of the donor properties in 6a<5a<3a<7a<4a) shows a 

similar trend as the one observed in other spectroscopies. A 

similar trend could be observed when comparing the NMR 

chemical shifts of the 13CO groups, where increased donor 

properties correspond to a deshielding.[78] Increasing the donor 

properties in η6-coordinated Ar groups results to a decrease of 

the acceptor properties (4a in Tol vs. Ph in 3a); the same effect 

is observed when increasing the Ge chain length (Ge3 in 7a vs. 

Ge2 3a) and during the metal transition W<Mo<Cr. Varying the 

nature of the substituent on the Ge atom, neighbouring the η6-

coordinated Ar group also influence on the donor properties, but 

this effect remains relatively weak; therefore, the introduction of 

an electron withdrawing groups resulted only in a small 

decrease of the donor properties (3a vs. 5a; 5a vs. 6a). 

Changing the nature of substituent on the central Ge atom has a 

more significant effect (when comparing PhGeMe3 with 

Ph2GeMe2, Table 3). Therefore, in order to maximise the donor 

properties of the complex, one has to use long chained 

oligogermane, containing aryl groups bearing electron donating 

groups. 

Electrochemistry. In this work, compound 4a was studied 

as a typical example of the new complexes (Figure 4). 

Compound 4a displays a reversible one-electron oxidation 

of the organometallic centre Cr(0)→Cr(1+)[44, 79] that leads to the 

formation of a stable cation-radical (on the voltammetric 

experiment timescale);[80] the presence of the a Ge-Ge donor 

group offer an additional stabilization to the cationic oxidized 

product;[81] no further oxidation has been observed. This differs 

from the parent oligogermanes, where an irreversible Ge-Ge 

oxidation is observed usually. The oxidation of the chromium 

center into a cationic specie is pushing any possible further 

oxidation towards higher potentials, making a second oxidation 
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of the compound much more difficult. The oxidation of 4a has 

the shape of a typical slow electron transfer and occurs at E1/2 = 

0.32 V vs. Fc/Fc+. The oxidation of the parent compound (η6-

MeC6H5)Cr(CO)3 has been reported to occur at E1/2 = 0.38 V vs. 

Fc/Fc+,[53b, 78-79] indicating that the presence of the Ge2 fragment 

in conjugation with (η6-MeC6H5)Cr(CO)3 framework resulted in a 

slight HOMO destabilization.[82] This decrease of the oxidation 

potential differs only slightly from what was observed for 

monogermanium fragments (E1/2 0.827 V vs. Ag/AgCl (0.377 V 

vs. Fc/Fc+) for Me2Ge[(η6-Ph)Cr(CO)3]).[44] Based on the 

electrochemical data, the effect of a Ge2 fragment is 

comparable to the introduction of four methyl groups on the η6-

benzene ring (for (η6-Me4C6H2-1,2,4,5)Cr(CO)3 E1/2 = 0.33 V vs. 

Fc/Fc+). Furthermore, these data indicate that the HOMO 

orbitals of Cr(CO)3 are located on of the whole molecule. The 

parent digermane 4 is oxidized, irreversibly, at a much higher 

potential Eox 1.65 V vs. Ag/AgCl[48] (1.20 V vs. Fc/Fc+). 

 

Figure 4. Electrochemical data for Me3GeGe(pTol)2(η6-pTol)Cr(CO)3 

(4a) 1.00 mM in [TBA][PF6] in CH2Cl2. Sweeping rate: 250 mV/s. 

Conclusions 

Several synthetic routes for the synthesis 3a-3c, 4a-7a, R3Ge-

GeAr2(R’C6H4-η6)M(CO)3, were developed and studied. Among 

them, the reaction between aryloligogermane and 

M(CO)3(NCMe)3 was found to be the most efficient one. The 

analysis of the experimental and literature data for (η6-

arene)M(CO)3 complexes, including derivatives of catenated 

Group 14 compounds, has shown that electronic interactions (π-, 

d- and σ-interactions) between all parts of the molecule (Ge-Ge, 

arene, M(CO)3) are observed and affect the physical properties 

of the whole molecule even though it remains weak. 

Oligogermanyl substituents on the aromatic ring have shown to 

behave similarly to usual electron donating substituents. 

Therefore complexes such as R3Ge-GeAr2(R’C6H4-η6)M(CO)3 

are typical donor-acceptor compounds. Introduction of 

oligogermanyl groups bathochromically shifted UV/vis 

absorption bands, due to a significant mixing of the atomic 

orbitals. The electrochemical oxidation of (η6-ArGe2R5)M(CO)3 is 

reversible since to the oxidation is happening on the metallic 

centre M rather than on the Ge-Ge bond. 

Experimental Section 

Experimental Details. All manipulations were performed under a dry, 

oxygen-free argon atmosphere using standard Schlenk techniques. 1H 

NMR (400.130 MHz), 13C NMR (100.613 MHz) and 19F (376.498 MHz) 

spectra were recorded with a Bruker 400 or Agilent 400MR 

spectrometers at 298 K. Chemical shifts are given in ppm relative to 

internal Me4Si (1H and 13C NMR spectra) or external CFCl3 (19F NMR 

spectra). Mass spectra (EI-MS, 70 eV) were recorded on a quadrupole 

mass spectrometer FINNIGAN MAT INCOS 50 with direct insertion; all 

assignments were made with reference to the most abundant isotopes. 

High-resolution mass spectra (HRMS) were measured on a Bruker 

micrOTOF II instrument using electrospray ionization (ESI). Elemental 

analyses were carried out in the Microanalytical Laboratory of the 

Chemistry Department of the Moscow State University using 

HeraeusVarioElementar instrument. UV/visible spectra were obtained 

using two ray spectrophotometer Evolution 300 «Thermo Scientific» with 

cuvette of 1.00 cm long. The IR spectra were recorded by using a 200 

Thermo Nicolet apparatus. Flash chromatography was performed using 

SiO2 (0.015-0.040 mm). 

Solvents were dried by standard methods and distilled prior to use. 

Tetrahydrofuran, diethyl ether were stored under solid KOH and then 

distilled over sodium/benzophenone. Toluene and n-hexane were 

refluxed and distilled over sodium. Dichloromethane and acetonitrile were 

distilled over CaH2. C6D6 was distilled over sodium under argon.  

Starting materials, Me3GeGePh3 (3),[56b] Me3GeGe(pTol)3 (4),[48] 

Ph3GeGePh3 (5),[56b, 83] (C6F5)3GeGePh3 (6)[46] were synthesized 

according to the literature procedures. Metal carbonyls, M(CO)6 (M = Cr 

(1a), M = Mo (1b), M = W (1c)), were sublimed under vacuum before 

using. Other reagents were used as supplied. 

Attention! The work with metal carbonyl compounds should be performed 

under special conditions (under fume hood) due to volatility and 

formation of CO. 

X-Ray crystallography. Crystal data for 3c, 4a and 5a are given in 

Table S1. These data have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publications no. 1865890 

(3c), 1865473 (4a), 1865889 (5a). They can be obtained free of charge 

from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

Electrochemistry. Electrochemical measurements were carried out 

using an Autolab 302N potentiostat interfaced through Nova 2.0 software 

to a personal computer. Electrochemical measurements were performed 

in a glovebox under oxygen levels of less than 5 ppm using solvent that 

had been purified by passing through an alumina-based purification 

system. Diamond-polished glassy carbon electrodes of 3 mm diameter 

were employed for cyclic voltammetry (CV) scans. CV data were 

evaluated using standard diagnostic criteria for diffusion control and for 

chemical and electrochemical reversibility. The experimental reference 

electrode was a silver wire coated with anodically deposited silver 

chloride and separated from the working solution by a fine glass frit. The 

electrochemical potentials in this article are referenced to 

ferrocene/ferrocenium couple. The ferrocene potential was obtained by 

its addition to the analyte solution. 

Data for initial compounds 

Me3GeGePh3 (3). 1H NMR (400.130 MHz, C6D6): δ = 7.55-7.50 (m, 6H), 

7.16-7.10 (m, 9H) (aromatic protons), 0.36 (s, 9H, GeMe3) ppm. 13C NMR 

http://www.ccdc.cam.ac.uk/data_request/cif
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(100.613 MHz, C6D6): δ = 138.49 (ipso-C6H5), 135.61 and 128.67 (o- and 

m-C6H5), 128.84 (p-C6H5), -0.88 (GeMe3) ppm. 

Ph3GeGePh3 (5). 1H NMR (400.130 MHz, C6D6): δ = 7.60-7.56 (m, 12H), 

7.09-7.01 (m, 18H) (aromatic protons) ppm. 13C NMR (100.613 MHz, 

C6D6): δ = 137.92 (ipso-C6H5), 135.98 and 128.74 (o- and m-C6H5), 

129.19 (p-C6H5) ppm. 

(C6F5)3GeGePh3 (6). 1H NMR (400.130 MHz, C6D6): δ = 7.41-7.33 (m, 

6H), 7.06-6.98 (m, 3H), 6.95-6.87 (m, 6H) (aromatic protons) ppm. 13C 

NMR (100.613 MHz, C6D6): δ = 135.08 and 128.73 (o- and m-C6H5), 

133.21 (ipso-C6H5), 130.13 (p-C6H5) ppm. 19F NMR (376.498 MHz, 

C6D6): δ = -124.52 – (-124.60) (2F), 149.03 – (-149.13) (1F), -159.68 – (-

159.78) (2F) ppm. 

Synthesis of Ph3GeGeMe2GePh3 (7). At -78 the solution of nBuLi in 

hexane (2.5 M, 2.0 mL, 5.00 mmol) was added dropwise to the solution 

of Ph3GeH (1.52 g, 5.00 mmol) in ether (50 mL). After stirring at the same 

temperature for 2 h the solution of Ph3GeLi generated in situ was used 

further without isolation. Then Me2GeCl2 (0.43 g, 2.50 mol) was added to 

the solution of Ph3GeLi obtained as described above, reaction mixture 

was slowly warmed to room temperature and stirred overnight. Then 

water (50 mL) was added, aqueous phase was extracted with ether 

(3x20 mL), combined organic phases were dried over MgSO4, and then 

all volatile materials were removed under reduced pressure. After 

recrystallization from toluene/n-heptane mixture compound 7 (1.49 g, 

84 %) was isolated as white crystals. 1H NMR (400.130 MHz, C6D6): δ = 

7.46-7.39 (m, 12H), 7.14-7.03 (m, 18H) (aromatic protons), 0.70 (s, 6H, 

GeMe2) ppm. 13C NMR (100.613 MHz, C6D6): δ = 138.10 (ipso-C6H5), 

135.85 and 128.61 (o- and m-C6H5), 128.84 (p-C6H5), -2.00 (GeMe2) ppm. 

The 13C NMR data in CDCl3 corresponds to known from the literature.[84] 

HRMS (ESI), m/z [M-H]+, calcd. 709.6045, found 709.6036. 

Synthesis of the initial complexes 

Synthesis of fac-(MeCN)3M(CO)3 (M = Cr (2a), Mo (2b), W (2c)). 

Synthesis was performed using literature procedure,[40] by refluxing 

corresponding M(CO)6 in MeCN, what allows to obtain (MeCN)3M(CO)3 

(72 % for 2a; 67 % for 2b; 76 % for 2c) as a yellow powder. 

Synthesis of the target aryloligogermane carbonyl complexes 

Me3GeGePh2(Ph-η6)Cr(CO)3 (3a). Solid (MeCN)3Cr(CO)3 (2a) (0.34 g, 

1.31 mmol) was added to the solution of Me3GeGePh3 (3) (0.46 g, 1.09 

mmol) in THF (20 mL), the mixture obtained was refluxed for 1 h. Then 

all volatile materials were removed under reduced pressure and the 

residue was purified by flash-chromatography (SiO2, petroleum 

ether/toluene 4:1) giving target compound 3a (Rf 0.3, 0.25 g, 42 %) as a 

yellow powder. 1H NMR (400.130 MHz, C6D6): δ = 7.59-7.53 (m, 4H), 

7.26-7.17 (m, 6H) (aromatic protons), 5.03 (dd, 3JH-H= 6.6 Hz, 4JH-H= 1.0 

Hz, 2H, о-C6H5*Cr(CO)3), 4.56 (tt, 3JH-H= 6.3 Hz, 4JH-H= 1.0 Hz, 1Н, p-

C6H5*Cr(CO)3), 4.23 (t, 3JH-H= 6.3 Hz, 2Н, m-C6H5*Cr(CO)3), 0.49 (s, 9H, 

GeMe3) ppm. 13C NMR (100.613 MHz, C6D6): δ = 233.52 (Cr(CO)3), 

136.94 (ipso-C6H5), 135.61 and 128.84 (o- and m-C6H5), 129.43 (p-C6H5), 

100.25 (ipso-C6H5*Cr(CO)3), 100.11 and 90.79 (o- and m-C6H5*Cr(CO)3), 

94.80 (p-C6H5*Cr(CO)3), -0.49 (GeMe3) ppm. MS (EI) m/z (%): 558 ([M]+, 

2), 474 ([M – 3CO]+, 100), 422 ([M – Cr(CO)3]+, 42), 412 ([M – CO - 

GeMe3]+, 22), 356 ([M – 3CO - GeMe3]+, 4), 304 ([Ph3Ge]+, 34), 227 

([Ph2Ge]+, 24), 52 ([Cr]+, 3). UV/vis (CH2Cl2), λmax, nm (ε, М-1 cm-1): 232 

(sh) (2.47x104), 263 (sh) (0.53x104), 320 (0.67x104). IR (KBr) ν, cm-1: 

1971 (s) (A1, CO), 1910/1894 (s) (E, CO). IR (nujol) ν, cm-1: 1974 (s) (A1, 

CO), 1897 (s) (E, CO). HRMS (ESI), m/z [M-H]+, calcd. 556.7121, found 

556.7107. С24H24CrGe2O3 (557.7200): Calcd. С 51.68, H 4.34; Found: C 

51.26, H 4.12 %. 

Me3GeGePh2(Ph-η6)Mo(CO)3 (3b). Analogously to 3a using 

Mo(CO)3(NCMe)3 (2b) (0.70 g, 2.30 mmol) and Me3GeGePh3 (3) (0.89 g, 

2.11 mmol). The reaction was accompanied by a noticeable 

decomposition (precipitation of a black precipitate). After evaporation, 

dissolving in ether and passing through a pad of SiO2, 1H NMR analysis 

of the mixture obtained indicates the presence of initial compound 3 

(major) and complex 3b (trace amounts). For complex 3b: 1H NMR 

(400.130 MHz, C6D6): δ = 5.22 (dd, 3JH-H= 6.5 Hz, 4JH-H= 0.8 Hz, 2H, o-

C6H5*Mo(CO)3), 4.75 (tt, 3JH-H= 6.5 Hz, 4JH-H= 0.8 Hz, 1H, p-

C6H5*Mo(CO)3), 4.44 (t, 3JH-H= 6.5 Hz, 2H, m-C6H5*Mo(CO)3) ppm. Other 

signals are overlapped with the signals of Me3GeGePh3 (3). IR (nujol) ν, 

cm-1: 1978 (s) (A1, CO), 1900 (s) (E, CO). HRMS (ESI), m/z [M-H]+, calcd. 

600.6565, found 600.6548. 

Me3GeGePh2(Ph-η6)W(CO)3 (3c). Method 1. Analogously to 3a using 

W(CO)3(NCMe)3 (2c) (0.78 g, 1.99 mmol) and Me3GeGePh3 (3) (0.59 g, 

1.40 mmol). After chromatography (SiO2) initial 3 (0.27 g, Rf 0.6, 

ether/petroleum ether 1:4) and target complex 3c (0.14 g, 27 %, 

conversion 54 %, Rf 0.3, ether/petroleum ether 1:3, orange powder) were 

isolated. 

Method 2. Solid W(CO)6 (1c) (0.42 g, 1.19 mmol) was added to the 

solution of Me3GeGePh3 (3) (0.50 g, 1.19 mmol) in a mixture of 

(nBu)2O/THF (10:1) (30 mL). The mixture obtained was frozen in liquid 

nitrogen, evacuated in high pressure and warmed to room temperature 

(procedure was repeated three times). Then it was refluxed on oil bath 

(150 oC) for 5 h, whereas significant decomposition (black precipitate) 

was observed. Then all volatile materials were removed under reduced 

pressure, the residue was dissolved in ether and the residue was passed 

through a pad of SiO2 indicating the decomposition. 1H NMR (400.130 

MHz, C6D6): δ = 7.57-7.53 (m, 6H), 7.24-7.17 (m, 4H) (aromatic protons), 

4.98 (dd, 3JH-H= 6.3 Hz, 4JH-H= 1.2 Hz, 2H, o-C6H5*W(CO)3), 4.50 (tt, 3JH-

H= 6.3 Hz, 4JH-H= 1.2 Hz, 1H, p-C6H5*W(CO)3), 4.17 (tt, 3JH-H= 6.3 Hz, 4JH-

H= 1.2 Hz, 2H, m-C6H5*W(CO)3), 0.45 (s, 9H, GeMe3) ppm. 13C NMR 

(100.613 MHz, C6D6): δ = 209.95 (W(CO)3), 136.98 (ipso-C6H5), 135.50 

and 128.91 (o- and m-C6H5), 129.54 (p-C6H5), 97.63 (ipso-C6H5*W(CO)3), 

97.23 and 89.19 (o- and m-C6H5*W(CO)3), 91.86 (p-C6H5*W(CO)3), -0.57 

(GeMe3) ppm. MS (EI) m/z (%): 690 ([M]+, 4), 606 ([M – 3CO]+, 22), 544 

([M – CO - GeMe3]+, 16), 488 ([M – 3CO - GeMe3]+, 2), 422 ([M – 

W(CO)3]+, 46), 304 ([Ph3Ge]+, 100), 227 ([Ph2Ge]+, 27), 52 ([Cr]+, 2). 

UV/vis (CH2Cl2), λmax, nm (ε, М-1 cm-1): 233 (sh) (1.96x104), 291 

(0.38x104), 322 (0.46x104). IR (nujol) ν, cm-1: 2924 (s), 2862 (m), 1980 

(s) (A1, CO), 1904 (s) (E, CO), 1460 (m). HRMS (ESI), m/z [M-H]+, calcd. 

688.5565, found 688.5567. С24H24Ge2O3W (689.5634): Calcd. С 41.80, 

H 3.51; Found: C 39.68, H 2.87 %. 

Me3GeGe(pTol)2(pTol-η6)Cr(CO)3 (4a). Analogously to 3a using 

Cr(CO)3(NCMe)3 (2a) (0.27 g, 1.04 mmol) and Me3GeGe(pTol)3 (4) (0.48 

g, 1.04 mmol). After chromatography (SiO2) initial 4 (0.15 g, Rf 0.8, 

toluene/petroleum ether 1:3) and target complex 4a (0.24 g, 56 %, Rf 0.3, 

toluene/petroleum ether 1:3, conversion 68 %) were isolated as yellowish 

crystals. 1H NMR (400.130 MHz, C6D6): δ = 7.58, 7.11 (2d, JH-H = 6.7 Hz, 

each 4H, 2p-C6H4), 5.23, 4.23 (2d, JH-H = 5.1 Hz, each 2H, p-

C6H4*Cr(CO)3), 2.10 (s, 6H, 2C6H4Me), 1.58 (s, 3H, C6H4Me*Cr(CO)3), 

0.58 (s, 9H, GeMe3) ppm. 13C NMR (100.613 MHz, C6D6): δ = 234.06 

(Cr(CO)3), 139.17, 133.52 (2 ipso-C6H4Me-p), 135.64, 129.72 (2 o-

C6H4Me-p), 110.60, 98.21 (2 ipso-C6H4Me-p*Cr(CO)3), 101.05, 91.98 (2 

o-C6H4Me-p*Cr(CO)3), 21.31 (C6H4Me-p), 20.26 (C6H4Me-p*Cr(CO)3), -

0.46 (GeMe3) ppm. MS (EI) m/z (%): 600 ([M]+, 2), 516 ([M – 3CO]+, 100), 

464 ([M – Cr(CO)3]+, 454 ([M – CO - GeMe3]+, 18), 398 ([M – 3CO - 

GeMe3]+, 1), 38), 346 ([(pTol)3Ge]+, 14), 255 ([(pTol)2Ge]+, 32), 52 ([Cr]+, 

4). IR (THF) ν, cm-1: 1961 (s) (A1, CO), 1887 (s) (E, CO). IR (nujol) ν, cm-

1: 1970 (s) (A1, CO), 1894 (s) (E, CO). UV/vis (CH2Cl2), λmax, nm (ε, М-1 

cm-1): 233 (sh) (4.55x104), 267 (sh) (0.80x104), 321 (0.87x104). HRMS 
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(ESI), m/z [M-H]+, calcd. 598.7924, found 598.7911. С27H30CrGe2O3 

(599.7998): Calcd. С 54.07, H 5.04; Found: C 52.78, H 4.22 %. 

Ph3GeGePh2(Ph-η6)Cr(CO)3 (5a). Method 1. Dimethyl succinate (0.46 g, 

3.10 mmol) and Cr(CO)6 (1a) (0.76 g, 3.44 mmol) were added to the 

suspension of Ph3GeGePh3 (5) (1.90 g, 3.10 mmol) in decalin (20 mL). 

Reaction mixture was frozen in liquid nitrogen, evacuated in vacuum and 

warmed to room temperature (three times); then it was heated at 190 oC 

for 2 h. Then all volatile materials were removed under high vacuum, 

residue was purified by chromatography (SiO2, petroleum ether, then 

petroleum ether/benzene 3:2), giving target compound 5a (Rf 0.4, 0.18 g, 

28 %, conversion 29 %) as a yellow powder and unreacted Ph3GeGePh3 

(5a) (Rf 0.7 in benzene, 1.37 g).  

Method 2. Analogously to 3c (Method 2) using Cr(CO)6 (1a) (0.31 g, 1.40 

mmol) and Ph3GeGePh3 (5) (0.80 g, 1.32 mmol) in (nBu)2O/THF (10:1) 

mixture (20 mL), heating for 26 h. The residue was purified by 

chromatography (SiO2, Rf 0.3, benzene/petroleum ether 1:3) giving 5a 

(0.31 g, 32 %) as a yellow powder. 1H NMR (400.130 MHz, C6D6): δ = 

7.75-7.70 (m, 4H), 7.61-7.54 (m, 6H), 7.14-7.06 (m, 15H) (aromatic 

protons), 5.05 (d, JH-H = 6.3 Hz, 2H, o-C6H5*Cr(CO)3), 4.48 (t, JH-H = 6.3 

Hz, 1H, p-C6H5*Cr(CO)3), 4.14 (t, JH-H = 6.3 Hz, 2H, m-C6H5*Cr(CO)3) 

ppm. 13C NMR (100.613 MHz, C6D6): δ = 233.10 (Cr(CO)3), 136.84 

(Ge(p-C6H5)2(Ph*Cr(CO)3)), 136.14 (Ge(p-C6H5)3), 135.94 and 128.90 

(Ge(o- and m-C6H5)3), 135.79 (Ge(ipso-C6H5)3), 129.89 and 129.52 

(Ge(o- and m-C6H5)2(Ph*Cr(CO)3)), 128.53 (Ge(ipso-

C6H5)2(Ph*Cr(CO)3)), 100.60 (Ge(ipso-C6H5)*Cr(CO)3)), 99.82 and 90.74 

(Ge(o- and m-C6H5)*Cr(CO)3)), 94.27 (Ge(p-C6H5)*Cr(CO)3)) ppm. MS 

(EI) m/z (%): 744 ([M]+, 2), 660 ([M – 3CO]+, 43), 608 ([M – Cr(CO)3]+, 38), 

412 ([M – CO - GePh3]+, 2), 357 ([M – 3CO - GePh3]+, 2), 304 ([Ph3Ge]+, 

100), 227 ([Ph2Ge]+, 21), 151 ([PhGe + H]+, 18), 52 ([Cr]+, 2). UV/vis 

(CH2Cl2), λmax, nm (ε, М-1 cm-1): 238 (sh) (3.57x104), 267 (sh) (1.04x104), 

322 (0.64x104). IR (nujol) ν, cm-1: 2932 (s), 1975 (s) (A1, CO), 1900 (s) (E, 

CO), 1454 (s), 1370 (m). HRMS (ESI), m/z [M-H]+, calcd. 742.9208, 

found 742.9211. С39H30CrGe2O3 (743.9282): Calcd. С 62.97, H 4.06; 

Found: C 60.72, H 3.66 %. 

(C6F5)3GeGePh2(Ph-η6)Cr(CO)3 (6a). Analogously to 3c (Method 2) 

using Cr(CO)6 (1a) (0.15 g, 0.69 mmol) and (C6F5)3GeGePh3 (6) (0.58 g, 

0.66 mmol) in (nBu)2O/THF (10:1) mixture (20 mL), heating for 30 h. The 

residue was purified by chromatography (SiO2, Rf 0.3, ether/petroleum 

ether 1:3), giving 6a (0.11 g, 16 %) as an orange powder. 1H NMR 

(400.130 MHz, C6D6): δ = 7.58-7.54 (m, 4H), 7.04-7.00 (m, 6H) (aromatic 

rotons), 4.91 (d, 3JH-H = 6.3 Hz, 2H, о-C6H5*Cr(CO)3), 4.35 (t, 3JH-H = 6.3 

Hz, 1H, p-C6H5*Cr(CO)3), 4.06 (t, 3JH-H = 6.3 Hz, 2H, m-C6H5*Cr(CO)3) 

ppm. 13C NMR (100.613 MHz, C6D6): δ = 232.17 (Cr(CO)3), 149.85-

149.66, 147.42-147.24, 144.88-144.78, 142.39-142.13, 139.16-138.85, 

136.63-136.27 (6m, Ge(C6F5)3), 135.19 and 129.04 (o- and m-C6H5), 

131.25 (ipso-C6H5), 130.86 (p-C6H5), 97.79 and 90.94 (o- and m-

C6H5*Cr(CO)3), 95.16 (ipso-C6H5*Cr(CO)3), 93.51 (p-C6H5*Cr(CO)3) ppm. 
19F NMR (376.498 MHz, C6D6): δ = -124.29 – (-124.34) (2F), 148.61 – (-

148.72) (1F), -159.46 – (-159.56) (2F) ppm. MS (EI) m/z (%): 1014 ([M]+, 

1), 930 ([M – 3CO]+, 32), 878 ([M – Cr(CO)3]+, 22), 575 ([(C6F5)3Ge]+, 8), 

304 ([Ph3Ge]+, 100), 167 ([C6F5]+, 16), 52 ([Cr]+, 2). UV/vis (CH2Cl2), λmax, 

nm (ε, М-1 cm-1): 234 (sh) (2.15x104), 261 (0.78x104), 322 (0.41x104). IR 

(nujol) ν, cm-1: 2852 (s), 1976 (s) (A1, CO), 1901 (s) (E, CO), 1650 (m), 

1462 (s), 1372 (m), 1082 (s). HRMS (ESI), m/z [M-H]+, calcd. 1012.7777, 

found 1012.7782. С39H15CrF15Ge2O3 (1013.7851): Calcd. С 46.20, H 

1.49; Found: C 44.64, H 1.07 %. 

Ph3GeGeMe2GePh2(Ph-η6)Cr(CO)3 (7a). Method 1. Dimethyl succinate 

(0.30 g, 2.02 mmol, 2.0 eq.) and Cr(CO)6 (1a) (0.49 g, 2.22 mmol, 2.2 

eq.) were added to the suspension of [Ph3Ge]2GeMe2 (7) (0.72 g, 1.01 

mmol, 1.0 eq.) in decalin (20 mL). Reaction mixture was frozen in liquid 

nitrogen, evacuated in vacuum and warmed to room temperature (three 

times); then it was heated at 190 oC for 2 h. Then all volatile materials 

were removed under high vacuum, residue was purified by 

chromatography (SiO2), giving unreacted [Ph3Ge]2GeMe2 (7) (0.48 g, Rf 

0.6, ether/petroleum ether 1:3) and target compound 7a (0.10 g, 34%, Rf 

0.3, ether/petroleum ether 1:2, conversion 33 %) as a yellow powder.  

Method 2. Trigermane [Ph3Ge]2GeMe2 (7) (0.24 g, 0.33 mmol) was 

added to the solution of Cr(CO)3(NCMe)3 (2a) (0.19 g, 0.73, 2.2 eq.) in 

THF (20 mL), the solution was refluxed for 2 h, then all volatile materials 

were removed under reduced pressure. The residue was purified by 

chromatography (SiO2, ether/petroleum ether 1:2) giving initial compound 

7 (Rf 0.7, 0.09 g) and target complex 7a as a yellow powder (Rf 0.2, 0.08 

g, 44 %, conversion 63 %). 1H NMR (400.130 MHz, C6D6): δ = 7.44-7.34 

(m, 10H), 7.15-7.07 (m, 15H) (aromatic protons), 4.80 (d, JH-H = 5.9 Hz, 

2H, o-C6H5*Cr(CO)3), 4.53 (br t, JH-H = 5.9 Hz, 1H, p-C6H5*Cr(CO)3), 4.17 

(br t, J = 5.9 Hz, 2H, m-C6H5*Cr(CO)3), 0.81 (s, 6H, GeMe2) ppm. 13C 

NMR (100.613 MHz, C6D6): δ = 233.36 (Cr(CO)3), 137.62 (Ge(ipso-

C6H5)3), 136.52 (Ge(ipso-C6H5)2Ph*Cr(CO)3), 135.91 and 128.81 (Ge(o- 

and m-C6H5)2Ph*Cr(CO)3), 135.78 and 128.71 (Ge(o- and m-C6H5)3), 

129.53 (Ge(p-C6H5)2Ph*Cr(CO)3), 129.01 (Ge(p-C6H5)3), 100.54 

(Ge(ipso-C6H5)*Cr(CO)3), 99.95 and 90.80 (Ge(o- and m-C6H5)*Cr(CO)3), 

94.52 (Ge(p-C6H5)*Cr(CO)3), -1.68 (GeMe2) ppm. UV/vis (CH2Cl2), λmax, 

nm (ε, М-1 cm-1): 244 (sh) (3.60x104), 261 (sh) (2.10x104), 321 (0.38x104). 

IR (nujol) ν, cm-1: 2942 (s), 1972 (s) (A1, CO), 1896 (s) (E, CO), 1452 (m). 

MS (EI) m/z (%): 847 ([M]+, 1), 763 ([M – 3CO]+, 22), 711 ([M – Cr(CO)3]+, 

100), 407 ([Ph3GeGeMe2]+, 12), 304 ([Ph3Ge]+, 22), 52 ([Cr]+, 2). HRMS 

(ESI), m/z [M-H]+, calcd. 845.6298, found 845.6281. С41H36CrGe3O3 

(846.6372): Calcd. С 58.16, H 4.29; Found: C 60.12, H 4.52 %. 
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