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Abstract 

Generalized anxiety disorder (GAD) is highly prevalent and incapacitating. Here we 

used the Carioca High-Conditioned Freezing (CHF) rats, a previously validated 

behaviorally selected animal model for GAD, to identify biomarkers and structural 

changes in the hippocampus that could be part of the underlying mechanisms of their 

high-anxiety profile. Spatial and fear memory was assessed in the Morris water maze 

and passive avoidance test. Serum corticosterone levels, immunofluorescence for 

glucocorticoid receptors (GR) in the dentate gyrus (DG), and western blotting for 

hippocampal brain derived neurotrophic factor (BDNF) were performed. 

Immunohistochemistry for markers of cell proliferation (bromodeoxiuridine/Ki-67), 

neuroblasts (doublecortin), and cell survival were undertaken in the DG, along with 

spine staining (Golgi) and dendritic arborization tracing. Hippocampal GABA release 

was assessed by neurochemical assay. 

Fear memory was higher among CHF rats whilst spatial learning was preserved. Serum 

corticosterone levels were increased, with decreased GR expression. No differences 

were observed in hippocampal cell proliferation/survival, but the number of newborn 

neurons was decreased, along with their number and length of tertiary dendrites. 

Increased expression of proBDNF and dendritic spines was observed; lower ratio of 

GABA release in the hippocampus was also verified. These findings suggest that 

generalized anxiety/fear could be associated with different hippocampal biomarkers, 

such as increased spine density, possibly as a compensatory mechanism for the 

decreased hippocampal number of neuroblasts and dendritic arborization triggered by 

high corticosterone. Disruption of GABAergic signaling and BDNF impairment are also 
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proposed as part of the hippocampal mechanisms possibly underlying the anxious 

phenotype of this model. 

Keywords: fear memory; anxiety; adult hippocampal neurogenesis; BDNF; dendritic 

arborization; dendritic spines. 
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1. Introduction 

 Anxiety disorders, such as generalized anxiety disorder (GAD), are among the 

most prevalent psychiatric conditions [1]. GAD is characterized by generalized, chronic 

and excessive worry and anxiety, accompanied by disruptive somatic symptoms and 

cardiovascular changes [2]. It has been associated with significantly reduced quality of 

life [3], and it is estimated to be as incapacitating as depressive disorders [4]. Effective 

interventions require the investigation of the underlying structural and functional 

psychobiology of this condition, with appropriate animal models being a key tool for 

this. 

 As proposed for psychiatric disorders in general, GAD is a multifactorial 

condition, with disruptive functioning of different brain areas – such as the prefrontal 

and cingulate cortex, as well as the amygdala [5] - possibly participating together in its 

etiology and development. Furthermore, hippocampal abnormalities in GAD patients 

have also been proposed [6]. In rodents, some of the neurobiological aspects 

demonstrated to be involved in anxiety also include those related to hippocampal 

function and plasticity, such as components of the GABAergic and glutamatergic 

systems [7], the expression of brain-derived neurotrophic factor (BDNF) [8], 

spinogenesis [9], as well as adult hippocampal neurogenesis (AHN) [10]. In addition, 

anxiety has been linked with elevated glucocorticoid levels [11], which have also been 

associated with reduced dendritic arborization in the hippocampus [12]. 

 The hippocampus is a crucial structure for contextual fear learning, which is in 

turn considered an appropriate paradigm for establishing animal models of GAD [2, 13, 
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14]. The present work investigated biomarkers of hippocampal plasticity in the Carioca 

High-Conditioned Freezing rats (CHF), an established and validated animal model of 

generalized anxiety. The CHF rodent population is an experimental group behaviorally 

selected for high freezing response in contextual fear conditioning [15]. A previous 

work established the CHF as a behaviorally validated model for the study of 

spontaneous high-anxiety [16], as differences were found only in anxiety-related 

paradigms and not in the forced swimming test of depression or the object recognition 

test, used as a paradigm for measuring cognitive skills. However, spatial and fear 

memory had yet to be investigated in this model. For these purposes, in the present 

work animals were exposed to the Morris water maze (MWM) and passive avoidance 

test (PAT). Importantly, the neural aspects underlying their anxious phenotype 

remained unclear. To investigate some of the possible hippocampal-related aspects 

underlying this model, 5-bromodeoxiuridine (BrdU) and Ki-67 were utilized as markers 

of proliferating cells in the dentate gyrus (DG), and immunohistochemical analysis of 

doublecortin (DCX) was performed to label neuroblasts [17] and to characterize 

dendritic arborization of these newly born neurons. BrdU positive cells in hippocampal 

sections of animals sacrificed 5 weeks after the last injection of this marker were taken 

as a measure of newborn cell survival. 

As corticosterone levels are believed to modulate hippocampal function, serum 

corticosterone and expression of glucocorticoid receptors (GR) in the DG were 

determined. In addition, levels of hippocampal precursor proBDNF  were identified and 

expression of dendritic spines was evaluated, as well as GABA release.  

We propose that generalized anxiety can result in part from multiple structural 

and biochemical plastic mechanisms in the hippocampus possibly orchestrated to 
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protect the individual from chronic exposure to high corticosterone levels, but leading to 

facilitation of fear memory retention.  

 

2. Materials and Methods 

2.1. Animals 

 Experimental procedures followed the Brazilian Society of Neuroscience and 

Behavior (SBNeC) guidelines, in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals (NIH Publications). Handling and 

methods of sacrifice were approved by the Committee for Animal Care and Use of the 

CCS/UFRJ (protocol # IBCCF002). Experimental animals (Carioca High-Freezing 

[CHF], a line of Wistar rats selectively bred for their high conditioned freezing response 

in contextual fear learning) were obtained as described previously [15]. Briefly, albino 

Wistar rats were exposed to the contextual fear conditioning paradigm, and selectively 

bred for differences in defensive freezing behaviour in response to the conditioned 

context. Significant differences in freezing response were acquired after three 

generations of selective breeding (S3). In order to preserve the spontaneous differences 

between the experimental and the control groups, the animals used herein were not 

exposed to contextual fear conditioning or any aversive stimuli prior to 

experimentation. However, other individuals from all breeding generations were tested 

in the contextual fear conditioning paradigm for confirmation of the fear trait across 

generations. Breeding generations S9, S13 and S14 were used in the present study (Fig. 

1). 

--------------------------------------------------------------- 
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INSERT FIGURE 1 HERE 

---------------------------------------------------------------- 

 

 The control group (CT) was composed of the offspring of randomized cross-

breeding populations, thus encompassing animals with high, low and average 

conditioned freezing responses. Two- to three-month-old males were used, kept in 

acrylic cages (31 cm x 38 cm) in groups of 6 under a 12 h light/dark cycle, with food 

and water ad libitum. The animals’ dark/light cycle was inverted one week prior to 

behavioral testing, and procedures occurred during their dark cycle. Animals were used 

once in each experiment, except for those exposed to the MWM, which underwent the 

PAT 3 days after the MWM probe trial. Since both groups were exposed simultaneously 

to the same environmental conditions and experimental design, it is expected that 

baseline differences between the two groups are preserved.  

2.2. Behavioral Analysis 

2.2.1. Morris water maze 

 A polyethylene tank (1200 mm diameter x 500 mm height) and crystal acrylic 

platform (130 mm diameter x 300 mm height) were used. Experimental procedures 

followed those described elsewhere [18]. To verify locomotor activity, animals (n = 12 

CHF/ 12 CT) were individually placed in the tank with transparent water and allowed to 

swim for 2 minutes or until they reached the platform. Five trials were performed, each 

with the platform placed in different locations; latency was registered. On days 2 - 6, 

animals performed 5 trials, each with different starting points. During these, water in the 

tank received non-toxic white paint treatment, and the platform was placed 2 cm below 
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water level. On day 7, the platform was removed and the probe trial was performed. 

Animals’ performance was recorded and later analyzed by AnyMaze software (version 

4.84).  

2.2.2. Passive avoidance test 

 The apparatus consisted of an aluminum arena containing a safe platform (200 

mm x 75 mm) and a grid area (200 mm x 225 mm) where electrical stimulation could be 

administered. On day 1, each animal (n = 19 CHF/ 18 CT) was placed in the platform 

and a 0.5 mA footshock was administered for 1s every time it stepped down. The 

amount of footshocks received until the animal remained in the platform for 2 

uninterrupted minutes was registered (acquisition index). On day 2, each animal was 

placed again on the platform and the latency to step down was registered (retention 

index). Maximum time established = 120 s. 

2.3. Neurobiological Analysis 

2.3.1. BrdU administration 

 Animals received three intraperitoneal injections of BrdU (100 mg/kg) 

administered at 10 mg/ml, approximately every 16 h. Animals were perfused 24 h (n = 

08 CHF/ 05 CT) or 5 weeks (n = 03 CHF/ 03 CT) after the last injection. 

2.3.2. Euthanasia and brain sectioning 

 Animals used for immunohistochemistry were anesthetized and perfused 

through the left ventricle of the heart with saline and 4 % paraformaldehyde in 0.1 M 

phosphate buffer. Brains were removed and cryoprotected in 30 % sucrose for 1 week. 

Serial 40 µm coronal brain sections were obtained on a cryostat and stored in TBS-AF 
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(tris buffered saline + anti-freezing solution of 0.05 % sodium azide, 30 % glycerol and 

15 % sucrose) at 4 °C. 

2.3.3. BrdU immunohistochemistry 

 Sections were washed (n = 08 CHF/ 05 CT for analysis of cell proliferation; n = 

03 CHF/ 03 CT for analysis of cell survival), exposed to 1 % hydrogen peroxide for 30 

minutes, washed again and kept for 30 minutes at 37 °C in 2 N HCl, following 2 x 10-

minute immersions in 0.1 M borate buffer at room temperature. Sections were washed 

and exposed to 3 % normal horse serum (NHS) (Vector Laboratories, S-2000) for 2 h. 

Sections were incubated overnight with anti-BrdU primary antibody (Serotec 

MCA2060B; 1:500 in 3 % NHS), washed, and incubated with goat anti-rat secondary 

antibody (Vector Laboratories, BA-9400; 1:250 in 3 % NHS) for 2 h. Sections were 

washed, and incubated in ABC complex (Vector Laboratories, PK-6100, Vectastain® 

Elite ABC-Peroxidase Kits; 1:1,000) for 2 h. Following washes, the reaction was 

revealed by diaminobenzidine (DAB) (Sigma, D5637-5G). Slides were mounted in 

Entellan (Merck, HX075822).  

 

2.3.4. Ki-67/ DCX immunohistochemistry 

 Sections were washed, exposed to 1 % hydrogen peroxide for 30 minutes, 

washed and kept for 2 h in 15 % NHS. Sections were incubated overnight with anti-Ki-

67 primary antibody (ABCAM, AB16667; 1:500 in 10 % NHS) (n = 08 CHF/ 08 CT) or 

anti-DCX primary antibody Santa Cruz, SC-8066; 1:200 in 10 % NHS) (08 CHF/ 08 

CT). Sections were washed, and incubated with horse anti-rabbit biotinylated secondary 

antibody (Vector Laboratories, BA-1100; 1:200 in 10 % NHS), in the case of Ki-67, or 
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with peroxidase horse anti-goat antibody (Vector Laboratories, PI-9500; 1:200), for 

DCX staining. Finally, Ki-67 sections were washed, and incubated in ABC 1:1000 for 2 

h. Revelation and mounting followed procedures described for BrdU immunostaining.  

2.3.5. Stereological analysis 

 Cells were counted by stereology [19], in a 1-in-6 series of sections (240µl 

apart), starting rostrally and progressing caudally, through a 40x objective. The DG was 

traced using a semiautomatic stereology system (StereoInvestigator, MicroBrightfield) 

and a 2.5x objective. For each section, the system was set to randomly place a 50 µm x 

50 µm counting frame throughout the traced DG. Only those stained cells that were 

either within the counting frame or touching the green border of the counting frame 

were counted. The total number of positive cells was estimated using the optical 

fractionator method, by relating the number of cells counted to the DG sectional 

volume. 

2.3.6. Corticosterone radioimmunoassay 

 Animals (n = 10 CHF/ 10 CT) were euthanized by decapitation, and blood was 

collected for hormone concentration analysis. Serum was obtained after centrifugation 

of the blood at 1,200 g for 20 minutes and stored at -20 °C. Serum corticosterone was 

determined using a specific coated tube RIA kit; intra- and inter-assay coefficients of 

variation were 4.0 - 12.2 % and 4.8 - 14.9 %, respectively, and sensitivity was 5.7 

ng/mL (Coat-a-Count Rat Corticosterone, Siemens Medical Solutions Diagnostics). 

Procedures followed the manufacturer’s recommendations. 
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2.3.7. GR immunofluorescence 

 Sections were washed and exposed to 5 % bovine serum albumin (BSA) for 1 h, 

following overnight incubation with anti-GR primary antibody (Santa Cruz GR (H-

300): sc-8992; 1:200) (n = 09 CHF/ 12 CT). Sections were then washed and incubated 

with anti-rabbit secondary antibody (Alexa 555; 1:500) in a dark chamber. Slides were 

mounted in N-propyl galate and imaged through a 40x objective with a fluorescent 

microscope (Zeiss Axioskop, Axiovision software). GR expression in the DG was 

analyzed with ImageJ software (http://rsbweb.nih.gov/ij/) and expressed as Corrected 

Total Cell Fluorescence (CTCF). 

2.3.8. Dendrite visualization and quantitative morphometric analysis 

 Granule neurons expressing DCX were imaged using a 40x objective, and 

micrographs were acquired using a Zeiss AxioCam MR Rev3 camera, following 

procedures previously described [20]. Dendrites were traced, categorized and analyzed 

using the NeuronJ plugin for ImageJ (http://rsbweb.nih.gov/ij/) by a blinded 

experimenter (8 neurons traced per animal; n = 08 CHF/ 08 CT). 

.   

2.3.9. Dendritic spine density 

 Animals (04 CHF/ 04 CT) were euthanized by decapitation, and brain 

hemispheres underwent Golgi impregnation method (Kit FD Rapid GolgiStainTM - 

PK401), following the manufacturer’s instructions. Sections were obtained in a cryostat 

(100 µm; -22 ºC). After staining completion, slides were mounted in Entellan, and kept 

protected from light. Tertiary dendritic shafts (8 per animal) were visualized using a 63x 

objective (Axiovert 35 microscope) and imaged by a Zeiss Axiocam MRm camera. 

http://rsbweb.nih.gov/ij/
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Individual spines were distinguished by contrast adjustment and quantified in ImageJ 

software. 

2.3.10. BDNF expression 

 Hippocampi of both groups (n = 04 CHF/ 04 CT) were dissected and transferred 

to lysis buffer. The tissue was sonicated (3 cycles of 10 s at 50 Hz) and protein 

concentration was determined [21]. Samples were diluted in lysis and sample buffer to a 

final concentration of 3µg protein/µl, and heated for 5 minutes at 100 °C. Samples were 

loaded on a 10 % polyacrylamide gel and later transferred to a PVDF membrane at 10 V 

for 40 minutes, using a semi-dry system (Bio-Rad 170-3940). Next, the membrane was 

washed, blocked for 2 h with 2 % BSA, and incubated overnight with anti-BDNF 

primary antibody (Santa Cruz (N-20): sc-546, 1:1,000). After washing, it was incubated 

for 2 h with anti-rabbit HRP-conjugated secondary antibody (Sigma, A0545, 1:10,000). 

For the loading control, the membrane was stripped with glycine buffer for 30 minutes 

at room temperature, blocked with 5 % milk for 30 minutes, washed and incubated with 

anti-α-tubulin primary antibody for 30 minutes (Sigma, T5168, 1:50,000). Next, it was 

washed and incubated for 30 minutes with anti-mouse HRP-conjugated secondary 

antibody (Sigma, A5278, 1:5,000). All reactions were detected by chemiluminescence 

(Millipore, Luminata® system). 

2.3.11. GABA release 

 Hippocampi of both groups (n = 05 CHF/ 06 CT) were dissected and sectioned 

(400 µm). Loading was made with reaction solution (GABA 100 µM + 3H-GABA 0.25 

µCi). Slices were washed 3 x with Hank`s at 37 °C. The supernatant was collected in 6 

series, with 5 - minute intervals. Two Hank’s washing series were collected, as well as 
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two with high potassium Hank’s, and the last two with Hank’s. Total GABA is 

represented by lysate GABA + released GABA. Radioactivity was quantified by liquid 

scintillation counting. 

2.4. Preparation of figures 

 Digital images were created by using GIMP 2.8.6 (GNU Image Manipulation 

Program; www.gimp.org) and assembled into final figures. General adjustments of 

contrast and brightness were made where appropriate. 

2.5. Statistics 

 Data were analyzed in GraphPad Prism 5 using Student’s t-test for unpaired 

samples (expressed as mean ± S.E.M), one- and two-way analysis of variance 

(ANOVA) with post-hoc Bonferroni test. Differences were considered significant when 

p ≤ 0.05. 

 

3. Results 

3.1. Spatial learning is preserved in CHF rats 

 A reliable model of anxiety should only feature aspects directly related to the 

phenotype it intends to reproduce. Therefore, to strengthen the characterization of the 

CHF as a strict model for anxiety without signs of cognitive degeneration/impairment, 

animals were tested in the MWM. With regard to the latency to reach the invisible 

platform, there was a significant effect of day (F (4,352) = 11.3739; p < 0.0001), but no 

effect of groups (F (1,13) = 0.1039; p = 0.752) or of the interaction (F (4,352) = 0.8974; 

p = 0.466) (Fig. 2A), showing that both groups similarly improved their performance 
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along the test days and trials. Accordingly, there was a significant effect of total 

distance travelled with regard to day (F (4,568) = 26.6464; p < 0.0001), but not to 

groups (F (1,22) = 3.1891; p = 0.088) or to the interaction (F (4,568) = 0.7712; p = 

0.544) (Fig. 2B), suggesting that both CT and CHF rats present decreased distance 

travelled along trials (Fig. 2C), and thus are not impaired in this spatial learning task.  

--------------------------------------------------------------- 

INSERT FIGURE 2 HERE 

---------------------------------------------------------------- 

 No differences were observed between CT and CHF rats with regard to the 

number of entries in the target zone in the probe trial (7.833 ± 0.4578 CT, n = 12; 10.17 

± 1.296 CHF, n = 12; p = 0.1037) (Fig. 3A), demonstrating that spatial memory is 

preserved in the anxious group, despite their chronic stress phenotype. Interestingly, the 

latency to enter the target zone was significantly decreased among CHF animals (3.858 

± 0.7718 s CT, n = 12; 1.900 ± 0.2923 CHF, n = 12; p = 0.0268) (Fig. 3B). They also 

spent less time in this quadrant (23.45 ± 1.307 CT, n = 12; 17.84 ± 1.373 CHF, n = 12; 

p = 0.0073) (Fig. 3C), showing more exploration of other locations of the tank when 

facing the absence of the safe platform. No differences were observed in the visible 

platform trials (Supplementary data S1). 

--------------------------------------------------------------- 

INSERT FIGURE 3 HERE 

---------------------------------------------------------------- 
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3.2. CHF rats display enhanced fear memory 

 The enhanced ability to recall aversive information in emotional contexts is a 

phenomenon observed among anxious patients [22, 23]. To test the hypothesis of 

enhanced ability to form and/or store aversive memories among CHF animals, the PAT 

was used. No difference was observed in the number of shocks administered on day 1 

(2.611 ± 0.2003 CT, n = 18; 2.211 ± 0.1636 CHF, n = 19; p = 0.1287) (Fig. 4A), 

showing similar capacity for aversive learning in both groups. However, CHF animals 

presented a significantly increased latency to step down from the platform (64.94 ± 

12.57 s CT, n = 18; 107.7 ± 7.096 s CHF, n = 19; p = 0.0049) (Fig. 4B), demonstrating 

enhanced rate of fear memory retention. 

--------------------------------------------------------------- 

INSERT FIGURE 4 HERE 

---------------------------------------------------------------- 

3.3. Basal serum corticosterone levels are increased in CHF animals 

 Although corticosteroids do not directly regulate emotional behavior, they are 

believed to weaken or strengthen certain neural pathways, leading to altered behavioral 

outcomes [24] [25]. As shown in Fig. 5A, basal corticosterone levels were significantly 

higher in CHF animals (118.9 ± 27.97 CT; 339.0 ± 49.38 ng / mL CHF; n = 10; p = 

0.0011), consistent with the anxious behavioral profile displayed by the experimental 

group.   

--------------------------------------------------------------- 

INSERT FIGURE 5 HERE 
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---------------------------------------------------------------- 

3.4. CHF rats have decreased expression of GR in the DG 

 Considering that, at high circulating levels, corticosteroids enhance the 

acquisition, conditioning and consolidation of stressful experiences via GR [26], 

analysis of this receptor expression was performed. A significant decrease was verified 

in the DG of CHF animals (CTCF, 3,604 ± 298.3 CT, n = 12; 2,385 ± 266.5 CHF, n = 9; 

p = 0.0085) (Fig. 5B), probably resulting from a negative feedback loop from the 

increased corticosterone levels. 

3.5. Hippocampal cell proliferation and survival are not altered in CHF rats 

 A reduction in AHN has also been proposed to underlie dysfunctionality in 

anxiety disorders [27]. As a first step to investigate this aspect in CHF rats, 

quantification of cell proliferation markers in the DG was performed. As shown in Fig. 

6A, no differences were found in the total estimated number of BrdU+ (cells / mm3: 

3,061 ± 483.0 CT, n = 5; 3,545 ± 396.3 CHF, n = 8; p = 0.4592) or Ki-67+ cells (cells / 

mm3: 2,097 ± 214.7 CT, n = 8; 2,563 ± 291.1 CHF, n = 8; p = 0.2184). In addition, 

quantification of BrdU+ cells in animals sacrificed 5 weeks after the last injection 

revealed no differences in cell survival between groups (cells / mm3: 2,721 ± 542.6 CT, 

n = 3; 2,519 ± 341.2 CHF, n = 3; p = 0.7693) (Fig. 6B). This shows that the behavioural 

profile observed in the CHF group may be due to other mechanisms rather than cell 

proliferation and survival in the DG. 

--------------------------------------------------------------- 

INSERT FIGURE 6 HERE 
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---------------------------------------------------------------- 

3.6. Hippocampal number of neuroblasts is decreased in CHF rats 

 Analysis of DCX, a microtubule-associated protein expressed exclusively in 

immature neurons, was performed to verify differences in newborn neurons. Indeed, 

DCX quantification revealed a decrease in the number of neuroblasts in the DG of CHF 

rats (cells / mm3: 16,310 ± 1630 CT, n = 8; 11,870 ± 1115 CHF, n = 8; p = 0.0411) (Fig. 

7), suggesting a possible decrease in AHN in the CHF group.  

--------------------------------------------------------------- 

INSERT FIGURE 7 HERE 

---------------------------------------------------------------- 

3.7. Neuroblasts in CHF rats display altered dendritic morphology 

 Given that the dendritic field largely defines the synaptic input of the cell [20], 

and thus, its functionality, the dendritic architecture of these young neurons was 

analyzed. As shown in figure 8, the analysis of dendrite number and length revealed 

alterations in the dendritic morphometry of newly born neurons of CHF animals, 

especially in total dendrite number (6.938 ± 0.3164 CT, n = 64; 5.719 ± 0.2611 CHF, n 

= 64; p = 0.0036, fig. 8A) and length of dendrites (µm: 336.9 ± 17.21 CT, n = 64; 289.2 

± 13.75 CHF, n = 64; p = 0.0324, fig. 8B). Further investigation revealed that decreased 

dendritic arborization was due to reduced tertiary dendrite number (3.906 ± 0.3147 CT, 

n = 64; 2.703 ± 0.2604 CHF, n = 64; p = 0.0038, fig. 8A) and length (µm: 183.1 ± 16.90 

CT, n = 64; 138.3 ± 14.77 CHF, n = 64; p = 0.0482, fig. 8B). This parallels with studies 

showing an association between stress and modifications in dendritic architecture, 



20 

 

especially dendritic retraction in the hippocampus [12, 28-31], and may suggest a 

protective response to reduce the contact surface of the neuron with the neurochemical 

environment altered by the chronic stress condition these animals present.  

 No differences were seen in the length of primary dendrites (µm: 40.96 ± 3.598 

CT, n = 64; 38.14 ± 3.393 CHF, n = 64; p = 0.5691, fig. 8a) or in the number (2.031 ± 

0.02192 CT, n = 64; 2.016 ± 0.01563 CHF, n = 64; p = 0.5627, fig. 8a) or length (µm: 

112.5 ± 7.136 CT, n = 64; 112.1 ± 6.952 CHF, n = 64; p = 0.9706, fig. 8b) of secondary 

dendrites.  

--------------------------------------------------------------- 

INSERT FIGURE 8 HERE 

---------------------------------------------------------------- 

3.8. CHF animals have more dendritic spines in the DG 

 Dendritic arborization, however, is not the only important morphological 

indicator of the ability of a neuron to receive synaptic inputs. Another important aspect 

is the expression of dendritic spines, micro-specializations of the dendritic shafts to 

establish functional contacts with other cells. Alterations in spine density are associated 

with changes in synaptic strength [32], especially in the context of excitatory synapses 

[33], which are crucial for memory formation [34-36]. In contrast to what was observed 

for dendritic architecture of neuroblasts, quantitative analysis of dendritic spines in 

tertiary branches of DG neurons revealed that CHF rats displayed higher dendritic spine 

linear density compared to the CT group (spines / 10 µm: 14.64 ± 0.4105 CT, n = 32; 

17.10 ± 0.5231 CHF, n = 32; p = 0.0005) (Fig. 9), supporting the hypothesis that the 
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anxious group displays enhanced hippocampal machinery for certain plasticity-related 

functions. 

--------------------------------------------------------------- 

INSERT FIGURE 9 HERE 

---------------------------------------------------------------- 

3.9. Expression of hippocampal proBDNF in the CHF group is increased 

 Other parameters of hippocampal plasticity were also investigated, in the search 

for neural aspects that could, at least partly, explain the enhanced fear memory and 

anxiety traits displayed by the CHF model. One of these parameters was hippocampal 

BDNF expression, known to underlie newborn cell survival, synaptic formation and 

plasticity [37]. A significant increase in hippocampal expression of proBDNF (32kDa) 

was observed in CHF animals (0.1731 ± 0.05977 CT, n = 4; 1.107 ± 0.1659 CHF, n = 4; 

p = 0.0018) (Fig. 10), a feature that could contribute to the preserved cell survival rates 

found and for the enhanced retention of fear memory if it also reflects increased 

cleavage into mature BDNF. 

--------------------------------------------------------------- 

INSERT FIGURE 10 HERE 

---------------------------------------------------------------- 
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3.10. The hippocampus of CHF animals release less GABA under stimulation with 

K+ 

 Since the GABAergic system exerts a classic inhibitory effect, with its receptors 

being the target of widely used anxiolytic drugs [38], it was considered important to 

investigate some functional aspect of this system in the CHF model. For this, a 

neurochemical assay of GABA release was performed. Results showed that, under 

stimulation with K+, CHF hippocampal samples released less GABA than those from 

CT (2.953 ± 0.3489 CT, n = 6; 1.668 ± 0.2151 CHF, n = 5; p=0.0155) (Fig. 11). This is 

strong evidence for a decreased inhibitory activity in the hippocampus of the CHF 

group, which may be part of the mechanism underlying the highly anxious behavioural 

profile previously reported [16]. 

--------------------------------------------------------------- 

INSERT FIGURE 11 HERE 

---------------------------------------------------------------- 

 

4. Discussion  

Although GAD is highly prevalent and incapacitating, the neural correlates 

underlying its symptoms remain unclear. Previously, the behavioral aspects of CHF rats, 

an experimental model for GAD, have been investigated [16]. This group spontaneously 

displays an anxious phenotype in the elevated plus-maze and social interaction tests, 

with no differences in the forced swimming test of depression, or in the declarative 

memory assessed by the object recognition test. Additionally, no differences in the total 
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number of cells in the dorsal hippocampus were found. However, the involvement of 

the hippocampus in risk assessment, the cognitive component of fear memory, and in 

contextual fear conditioning [39] indicated the need for additional investigations of this 

brain structure in the CHF. Moreover, further assessment of cognitive and fear memory 

was considered crucial for strengthening the characterization of the model. 

Confirming previous data on locomotor activity, visual perception and cognitive 

learning [16], the MWM showed similar performance of CHF and CT rats in all days of 

visible platform testing (Supplementary data S1). Interestingly, in the probe trial, CHF 

animals presented decreased latency to enter the target zone, which could indicate 

enhanced ability to retain information on the environment, especially in aversive 

conditions lacking escape alternatives. Also, CHF animals spent less time in the target 

quadrant, a parameter that could indicate enhanced perception of the environment as 

threatening or even some difficulty to adapt to it, since after all trials, some 

environmental habituation would be expected. This hypothesis of increased memory in 

emotional contexts was explored in the PAT, where CHF rats presented enhanced 

retention index. Taken together, both the MWM and PAT confirmed that the learning 

ability of CHF animals is preserved, but memory retention in emotional contexts is 

enhanced. Interestingly, the tendency to associate stimuli in stressful conditions is a 

feature consistently observed in anxious patients [22, 23]. 

Components of the hypothalamic-pituitary-adrenal axis (HPA) are among the 

most important biomarkers of stress in rodents [40], and particularly in anxious rat lines 

[41]. For instance, high-anxious rats from a line selected in the elevated plus-maze 

exhibited increased secretion of adrenocorticotropic hormone and corticosterone [42, 

43]. The higher HPA response in conditioned, fear-selected rats [42] suggests that 
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hyperanxious animals may over-interpret certain stimuli, a behavior that also occurs in 

psychiatric patients. Corticosterone, likely acting via GR in the hippocampus, also plays 

a facilitatory role in acute freezing behavior [26], which is one of the behavioral 

characteristics of the CHF line [15]. Here, we report that CHF rats exhibit significantly 

higher levels of corticosterone, a feature that correlates with the decreased expression of 

GR in their DG. 

Besides alterations in the HPA axis, reduced hippocampal volume has been 

observed in anxiety and mood disorders [44]. However, this aspect was found to be 

unaltered in CHF animals (Supplementary data S2), despite the reduced hippocampal 

dendritic arborization of neuroblasts observed. It is possible that the maintenance of cell 

proliferation and survival could have contributed to the preservation of hippocampal 

volume. This hypothesis is supported by previous data showing that over-expression of 

BDNF in the amygdala and hippocampus correlates with high anxiety and unaltered 

volume [8]. Additionally, we previously reported that the total number of hippocampal 

cells was similar between CHF and CT [16], pointing to more molecular, rather than 

macro-structural, alterations in this model. Accordingly, we investigated cellular 

markers in the context of AHN, and showed that cell proliferation and survival are not 

altered among CHF animals. This could, at least in part, explain the non-depressive 

profile of these animals [16], since differences in BrdU labelling have been consistently 

correlated with depression models [45, 46]. 

On the other hand, the number of neuroblasts was found to be decreased in CHF 

rats. Interestingly, a reduced number of newly born hippocampal neurons in aged rats 

was shown to be sufficient for fear learning [47], which might also be applicable in our 

model. In fact, it can be hypothesized that a reduced number of neurons is not only 
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sufficient for fear conditioning in the CHF rats but is one of the neural features that 

could be responsible for their strong fear memory retention and behaviorally anxious 

phenotype. It has been shown that early life stress can lead to altered dendritic 

morphology and enhanced contextual fear learning in maternally deprived animals [48]. 

Additionally, under high levels of corticosterone, even long-term potentiation (LTP) in 

the DG of these stressed animals was facilitated. Considering these, alterations in 

neurogenesis, synaptogenesis, neurotransmission and/or the neuroendocrine system 

could modulate and enhance fear memory, leading animals to exhibit increased fear 

responses. Strong evidence for this comes from the findings of dendritic spine 

expression and decreased GABAergic inhibition in the hippocampus. Opposite roles for 

pro- and mature BDNF have been proposed [49], with the former being associated with 

long-term depression and apoptosis [32], and the latter with enhanced cell survival and 

plasticity [50]. If the increased expression of proBDNF observed in the CHF 

hippocampus reflects increased availability for cleavage into mature BDNF, it could 

also contribute for the hypothesis that the over-expression of certain biomarkers of 

hippocampal plasticity could result in enhanced fear memory retention and anxiety. 

Although further studies are needed to confirm the involvement of each of these aspects 

with fear and anxiety in the CHF rats, other features, including LTP and the 

involvement of brain regions like the amygdala and medial pre-frontal cortex, might be 

present and could interact, resulting in the spontaneously anxious phenotype observed in 

this rat line. Increased gliogenesis and/ or faster maturation of granule neurons could 

also take place in the DG of the CHF group, given the findings of decreased number of 

neuroblasts with unaltered rates of cell proliferation and survival showed herein. In this 

sense, further assessment of neurogenesis/ gliogenesis by double-labeling of 

BrdU+NeuN (NeuN – neuronal nuclei, marker of mature neurons) and BrdU+GFAP 
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(GFAP - glial fibrillary acidic protein, marker of astrocytes) is still needed to confirm 

this hypothesis and contribute for the understanding of the anxious phenotype observed 

in the CHF model. 

An association between anxiety and decreased cell proliferation/ survival, and 

spinogenesis has been consistently proposed [51]. However, this overall reduction of 

structural plasticity appears not to fully link with the increased fear learning observed in 

clinical and experimental anxiety. Here, we show that increased anxiety does not always 

correlate with reduced cell proliferation/survival and spine expression. Furthermore, we 

propose that given that natural compensatory mechanisms must take place in the brain 

to prevent the deleterious effects of glucocorticoids [52], dendritic arborization could be 

seen as a buffering process by the hippocampal system to avoid cell loss [44]. 

Consistent with previous data on stress and fear [53], decreased dendritic arborization in 

the CHF rats was associated with an increase in spine density . Along with other 

mechanisms such as decreased GABAergic inhibition, this increase in spinogenesis 

could, in turn, facilitate fear memory retention and anxiety. Thus, the findings presented 

here challenge our current view of decreased cell proliferation/survival and spinogenesis 

as biomarkers underlying all kinds of fear/anxiety-related conditions. In turn, it is 

proposed that the variability and complexity of anxious/fear traits must be addressed by 

the view that a differential expression of biomarkers must accompany the particular 

features of each set of behaviors modeled by a given paradigm.  

Although much remains to be unraveled, the findings reported here represent 

consistent indices for some novel neurobiological understanding of generalized anxiety 

in the context of hippocampal plasticity. Moreover, the particular features found may 

contribute to the important concept that a more complete view of symptoms observed in 
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clinical practice must come from different paradigms, each modeling specific anxiety-

related behaviors through specific neural substrates.  

5. Conclusion 

The data presented herein reinforces the CHF group as a consistent model for the 

study of anxiety and fear, since these are the only behavioral aspects found to be 

differentially expressed by the experimental group. In addition, some candidates to 

compose part of the neurobiological basis underlying the vulnerability of this group to 

higher levels of anxiety were identified. Among these, it can be highlighted the 

increased levels of corticosterone, accompanied by decreased expression of GR in the 

DG, reduced number and arborization of hippocampal neuroblasts, as well as disrupted 

inhibitory signaling in the hippocampus. Unexpectedly, cell proliferation and survival in 

the DG were unaltered and spine density in the DG was found to be increased. 

Additional assays aiming to identify the levels of mature BDNF and the role of 

proBDNF within the context of anxiety are needed. Together, these data suggest that 

some biomarkers – such as decreased spines - usually found in stress models cannot 

always apply to anxiety. Future studies are needed to further explore and confirm the 

specific neurobiological features - in the hippocampus and in other brain structures - 

that confer the fear trait of this model, so that it can be used as a tool for the screening 

of novel translational interventions for generalized anxiety.  
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Figure Captions 

Fig. 1. Experimental design. In a previous work, albino Wistar rats have been selected for their 

high-conditioned freezing response in the contextual fear paradigm; after three breeding 

generations (S3), significant differences were observed between high- and low- freezing 

animals, and the experimental group used herein was named the Carioca High-Conditioned 

Freezing rats [15]. In the present work, breeding generations S9, S13 and S14 were used. 

Animals that were exposed to the contextual fear conditioning paradigm for confirmation of the 

fear-trait phenotype in each given generation were not used in the experiments described here 

but their offspring. In this way, spontaneous differences between groups could be preserved 

and baseline behavioral and neurobiological differences could be identified, as opposed to 

differences due to the stress of undergoing the fear conditioning paradigm. 

Fig. 2. Spatial learning was assessed by the invisible platform test in the MWM. Latency to 

reach the platform in this spatial learning task of the MWM along the test days is shown in (A) 

and the total distance travelled in (B). There was no significant difference between groups in 

any trial, suggesting that spatial learning here is preserved in the anxious group (n = 12CT; 12 
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CHF). The pathway travelled by a CT and CHF animal in the beginning and end (after 72 

trials) of hidden platform testing in the MWM is plotted in (C). Note that the pathway travelled 

by both animals, representing their respective groups, decreases after trials. MWM Morris 

Water Maze, s seconds, m meters, CT control, CHF Carioca high-conditioned freezing 

Fig. 3. Spatial memory parameters were assessed in the probe trial of the MWM. Bar graphs 

show mean ± S.E.M number of entries in the target zone for CT (black) and CHF (grey) in (A). 

There was no difference between groups with regard to the number of entries in the target zone. 

Mean ± S.E.M latency to first entry in the target zone for CT (black) and CHF (grey) is shown 

in (B). CHF rats spent significantly less time to first entry into this quadrant, possibly 

indicating enhanced spatial memory in aversive conditions and/or less tolerance to being in an 

adverse environment. Time spent in the target zone for CT (black) and CHF (grey) is shown in 

(C), also as mean ± S.E.M. CHF rats spent significantly less time in the target zone, raising the 

hypothesis that these anxious animals present enhanced perception of the tank as an aversive 

context and/or display some difficulty to adapt to this kind of context (n = 12 CT; 12 CHF). 

Track plot of CT and CHF animal in the probe trial of the MWM is illustrated in (C). In the 

figure, the target zone corresponds to the left superior quadrant (zone SW). Although it is not 

possible to analyze in the figure all the parameters assessed in this trial, note the intensity of the 

plot of the CHF animal in quadrants that are not the target zone, indicating more time spent in 

other locations of the tank. SW southwestern quadrant, MWM Morris Water Maze, CT control, 

CHF Carioca high-conditioned freezing. *p ≤ 0.05, **p ≤ 0.01 

Fig. 4. Acquisition and retention of fear memory were analysed in the PAT. Bar graphs in (A) 

show the mean ± S.E.M number of shocks applied until the animal remained for 2 

uninterrupted minutes in the safe platform (measure of acquisition) for CT (black) and CHF 

(grey). CHF rats do not differ from CT in the fear learning parameter assessed in this test, as 
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can be observed by the similar amount of footshocks delivered in the first day of test. The 

latency to first step down from the safe platform (measure of retention) for CT (black) and CHF 

(grey) is shown in (B), as mean ± S.E.M. CHF animals display enhanced fear memory 

retention, as shown by the time spent in the safe platform before first step down in the second 

day of test (n = 18 CT; 19 CHF). PAT passive avoidance test, CT control, CHF Carioca high-

conditioned freezing. **p ≤ 0.01 

Fig. 5. Bar graphs in (A) show serum corticosterone levels (ng / ml) at basal condition for CT 

(black) and CHF (grey). There was a significant difference between CT and CHF groups, with 

the anxious animals presenting higher levels of the stress hormone. Values represent mean ± 

S.E.M (n= 10 CT; 10 CHF). Expression of GR measured by immunofluorescence for CT 

(black) and CHF (grey) was found to be significantly reduced in the dentate gyrus of the CHF 

group, as shown in (B) (n = 12 CT; 09 CHF). GR glucocorticoid receptor, CTCF Corrected 

Total Cell Fluorescence, CT control, CHF Carioca high-conditioned freezing. **p ≤ 0.01 

Fig. 6. Cell proliferation and survival in the dentate gyrus of adult CT and CHF animals were 

assessed by immunohistochemistry. Quantification of BrdU-positive cells in the dentate gyrus 

(DG)1 day after the last BrdU injection, and of Ki-67, are shown in (A) for CT (black) and 

CHF (grey). Stereological analysis revealed no differences between groups with regard to 

quantification of BrdU+ and Ki-67+ cells. (BrdU, n = 05 CT; 08 CHF; Ki-67, n = 08 CT; 08 

CHF). Stereological quantitative analysis of BrdU+ cells in the DG of animals sacrificed 5 

weeks after the last BrdU injection is shown in (B) for CT (black) and CHF (grey). This 

analysis revealed no differences between CT and CHF rats with regard to cell survival (n = 03 

CT; 03 CHF, values represent mean ± S.E.M). BrdU bromodeoxiuridine, CT control, CHF 

Carioca high-conditioned freezing, DG dentate gyrus 
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Fig. 7. Bar graphs show the mean ± S.E.M number of neuroblasts in the adult dentate gyrus 

(DG) of CT and CHF rats. Quantification of DCX+ cells in the DG of CT (black) and CHF 

(grey) is shown in (A). Stereological analysis showed a significant reduction of DCX+ cells in 

the DG of CHF animals (n = 08 CT; 08 CHF), suggesting decreased levels of neuronal 

differentiation in this group. Photomicrographs of the DG of both groups, stained for DCX are 

shown in (B). Note the reduction in DCX expression in the DG of CHF animal. Scale bars 

indicate 250 µm in (B) upper panels (4x objective) and 25 µm in (B) lower panels (40x 

objective). DCX doublecortin, CT control, CHF Carioca high-conditioned freezing, DG dentate 

gyrus. *p ≤ 0.05 

Fig. 8. Morphometric analysis of neuroblast dendrites was performed in order to evaluate 

dendritic arborization of immature neurons in the dentate gyrus (DG) of CT and CHF animals. 

Mean ± S.E.M number of total, secondary and tertiary dendrites in the newly born neurons in 

the DG of CT (black) and CHF (grey) is shown in (A). A significant difference was found in 

the total number of dendrites, reflecting a specific reduction in the number of tertiary dendrites 

in the CHF group (n = 64cells / group). Total, primary, secondary and tertiary length (µm) of 

dendrites of newly born neurons in the DG of CT (black) and CHF (grey) is shown in (B). CHF 

neuroblasts present decreased total dendritic length, as a reflection of the reduction observed in 

the length of tertiary dendrites (n = 64cells / group). In (C), the tracing of a neuroblast of CT 

and CHF animal illustrate the reduced number and length of dendrites in the experimental 

group. Scale bar indicates 40 µm. CT control, CHF Carioca high-conditioned freezing. *p ≤ 

0.05, **p ≤ 0.01 

Fig. 9. Bar graphs in (A) show dendritic spine linear density in tertiary dendrites of the dentate 

gyrus of CT and CHF animals, as mean ± S.E.M. Data show a significant increase in the 

expression of dendritic spines in the experimental group (n = 32 dendritic shafts / group). 
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Photomicrograph in (B), along with its high contrast representation used for spines 

quantification, shows the dendritic shafts from CT and CHF neurons; higher density of spines 

can be noted in the anxious group. Scale bar indicates 10 µm. CT control, CHF Carioca high-

conditioned freezing. ***p ≤ 0.001 

Fig. 10. Expression of BDNF in the hippocampus of CT and CHF animals was analysed by 

western blotting. A significant increase in the expression of this trophic factor in the 

experimental group was observed, as quantitatively shown in (A) (n = 04 CT (black bars); 04 

CHF (grey bars)). Quantification was made using ImageJ software and normalized to α-tubulin 

expression, as shown in (B). BDNF brain derived neurotrophic factor, CT control, CHF Carioca 

high-conditioned freezing. **p ≤ 0.01 

Fig. 11. Statistical analysis of [3H]-GABA release with depolarizing stimulus (KCl, 80 mM) by 

basal GABA release in 400 µm hippocampal slices of CT (black) and CHF animals (grey). The 

ratio of [3H]-GABA released is inferior in CHF slices (n = 06CT; 05 CHF), suggesting altered 

inhibitory response in the hippocampus of the anxious model. CT control, CHF Carioca high-

conditioned freezing. *p ≤ 0.05 
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