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The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of
the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal
hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis
(AHN), can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by
“nutraceutical” agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries,
as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity
inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural
plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that
resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite
effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before

resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions.

1. Introduction

Neural plasticity refers to the ability of the nervous system
to adaptively respond to changes in the environment sensed
by the organism and extends to stimuli such as an enriched
environment (EE), increased physical activity, and changes
in pharmaceutical and nutritional intake (reviewed in [1-
4]). Among the most remarkable forms of neural plasticity
is the capacity of the adult hippocampus to continuously
generate functional neurons throughout life, a process known
as adult hippocampal neurogenesis (AHN). Neurogenesis in
the adult hippocampus is only possible due to the presence
of a pool of neural progenitor cells (NPCs) under constant
self-renewal in the subgranular zone (SGZ) of the dentate
gyrus (DG) of the hippocampus (reviewed in [5]). AHN

is a highly regulated process, encompassing stages of cell
proliferation, neuronal differentiation, maturation, survival,
and functional integration into preexisting circuits (Figure 1).
In each of these stages, cells express specific markers, allowing
researchers to characterize AHN-related endophenotypes of
a certain pathological condition or to identify the specific
stages where a proposed intervention exerts its effects.

The search for molecules and lifestyle changes that are
able to restore AHN in incapacitating and highly prevalent
conditions, such as Alzheimer’s disease (AD) [6], depres-
sion [7-9], anxiety [10], stroke [11], diabetes [12], and
chemotherapy-induced cognitive impairment (reviewed in
[13]), is one of the most challenging and relevant goals of
modern neuroscience. Here we examine the role of nutrition
as a potential enhancer of AHN. In this respect, a number of
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FIGURE 1: Adult hippocampal neurogenesis markers. AHN is a highly regulated process that occurs in stages. In this sense, the pool of
NPCs expressing markers such as GFAP and nestin is under constant self-renewal through regulated proliferative activity. Proliferation
can be assessed by the number of cells expressing the cell division markers Ki-67 and BrdU (in this case, when the tissue is fixed 24 h
following the last injection of BrdU). Next, the cells undergo the stage of fate specification when they express PSA-NCAM and DCX, if
given the specific molecular signaling to commit into a neuronal lineage. After this stage of fate commitment, the newborn neurons undergo
maturation and express the neuronal markers NeuN and calbindin. AHN = adult hippocampal neurogenesis; BrdU = bromodeoxyuridine;
DCX = doublecortin; GFAP = glial fibrillary acidic protein; NeuN = neuronal nuclei; NPCs = neural progenitor cells; and PSA-NCAM =

polysialylated neuronal cell adhesion molecule.

studies have shown that total calorie intake, as well as meal
frequency, texture, and content are able to modulate AHN
(reviewed in [14]). Particularly in the context of food con-
tent, a growing literature point to polyphenols—compounds
widely found in certain fruits, spices, and tea leaves—as
capable of inducing important antioxidant responses in the
brain [15], as well as protecting or enhancing AHN levels [16-
18] (reviewed in [19]).

Within the context of polyphenols, we focus here on
resveratrol (3,5,4’ -trihydroxy-trans-stilbene; RSV), a phenol
and phytoalexin found in the skin of grapes and red berries, as
well as in several types of nut. RSV is thought to exert part of
its actions through the activation of the histone deacetylase
enzyme sirtuin 1 (silent mating type information regulation
2 homolog; SIRT1) [20-22]. In addition, its neuroprotective
effects appear to be mediated by an increase in the activa-
tion of AMP-activated kinase (AMPK), leading to neurite
outgrowth and stimulation of mitochondrial biogenesis [23].
RSV’s antioxidant [24] (reviewed in [25]), anti-inflammatory
[26], and antitumor [27-29] activities are well documented.
RSV is also known for its ability to promote increased lifespan
[30, 31], resembling the effects exerted by caloric restriction

(CR). However, with regard to AHN enhancement, studies
show opposing and contradictory results, and therefore it
is still intensely debated whether RSV can be considered a
proplasticity inducer in the context of AHN. This systematic
review aims to describe and discuss the most recent findings
on the effects of RSV on AHN, so that a clearer picture of the
circumstances in which this polyphenol may exert either pro-
or antiplasticity effects at the level of AHN can be delineated.

2. Methods

A bibliographical search was carried out in the databases
Medline/PubMed and Web of Science/ISI in order to collect
studies about RSV, hippocampal neurogenesis, and hip-
pocampal plasticity. The keywords used were “resveratrol
AND hippocampal neurogenesis” and “resveratrol AND
hippocampal plasticity”. The search results are displayed in
Table 1. Only original papers published in English from 2000
to 2015 and directly assessing hippocampal neurogenesis
or other hippocampal plasticity markers accompanied by
treatment with RSV were selected. Eleven articles following
these criteria were identified, both in vivo and in vitro,
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TaBLE 1: Bibliographical search results conducted in PubMed/Med-
line and Web of Science databases, using the keywords “resveratrol
AND hippocampal neurogenesis” and “resveratrol AND hippocam-
pal plasticity” (May 27, 2015).

Resyeratrol AND Resveratrol AND
Databases hippocampal hippocampal plasticit
neurogenesis PP paip Y
PubMed/Medline 12 6
Web of Science 12 9

to compose Table 2. Seven papers that did not appear in
the original search-engine results were further identified
manually to comply with the inclusion criteria and were
added to the selected literature.

3. Results and Discussion

Results are discussed in accordance with the disorder or con-
dition investigated: stress, ethanol-induced toxicity, chronic
fatigue, stroke, diabetes, aging, AD, and the healthy brain.
Main findings are shown in Table 2 and discussed in the
following sections.

3.1. RSV and Stress. Stress has been widely proposed as an
important risk factor for depression. A range of evidence
supports this idea, with one of the most widely accepted
animal models for depression being generated as a result
of chronic submission to several different and unpredictable
stressors (unpredictable chronic mild stress [UCMS]), pro-
posed by Willner et al. in 1987 [32]. Rodents submitted to
the UCMS paradigm display depressive-related phenotypes,
such as reduced consumption of sucrose [33], increased
immobility time in the forced swimming test (FST) [33,
34], impairment of coat state [35] and of hippocampal-
dependent learning [36]. Intriguingly, the behavioral changes
triggered by exposition to stressful events are often followed
by a number of hippocampal alterations, including reduced
levels of AHN [36, 37] and brain-derived neurotrophic
factor (BDNF) [37]. As demonstrated in several studies,
at certain doses, RSV can exert antidepressant effects and
restore the hippocampal plasticity markers which are found
to be decreased in stress-induced models of depression.
For instance, intraperitoneal injections of RSV (mainly at
80 mg/kg; see Table 2 for details) had similar effects to
those of antidepressant desipramine, both in normalizing
behavior and serum corticosterone (CORT) levels in rats
exposed to UCMS for 5 weeks [38]. The study also revealed
that RSV could restore the levels of BDNE, phosphorylated
extracellular signal-regulated kinase (pERK), a protein in the
ERK pathway, involved in the differentiation, survival, and
other aspects of neuronal plasticity [39], and phosphorylated
cAMP response element-binding protein (pCREB), involved
in enhancing the transcription of the BDNF gene [38].
Similarly, the same regimen of RSV was shown to prevent
the cognitive deficits caused by the UCMS in the Morris
water maze (MWM) and in the novel object recognition
task, also accompanied by restoration of BDNE, pERK, and

pCREB levels [40]. In another report, RSV at a dose of just
20 mg/kg was found to prevent the UCMS-induced cognitive
impairments in the MWM, and also in the passive-avoidance
test, a test was designed to assess emotional memory [41].
Once again, the neuroprotective effects of RSV against the
deficits induced by the UCMS paradigm were proposed to be
mediated by restored levels of hippocampal BDNF (as shown
in CAl (cornus ammonis 1) and CA3 regions). In addition,
the reduction in c-Fos protein expression following UCMS
was prevented by RSV, suggesting that the effects of this
polyphenol can include changes in target gene expression.
Furthermore, the study reports anti-inflammatory effects
of RSV, in that it normalized the UCMS-induced higher
circulating levels of tumor necrosis factor-o (ITNF-«) and
interleukin-1f3 (IL-1p3). Considering the detrimental effects
of both TNF-« [42] and IL-1 [43] (reviewed in [44]) over
parameters of hippocampal neurogenesis, it is plausible to
reason that, by decreasing the levels of these proinflammatory
cytokines, RSV could contribute to preserving neurogenesis
and, therefore, protecting cognitive function. Also in the
context of inflammation, Bellaver et al. showed that RSV
could prevent the decrease in antioxidant defenses and the
increase in inflammatory responses (as measured by the levels
of TNF-a and IL-1f3) in hippocampal astrocyte cultures of
adult and aged Wistar rats [45]. Although the study did
not investigate parameters of hippocampal neurogenesis,
it is well known that astrocytes play an important role
in the regulation of a number of neural plasticity events,
including neurogenesis [46]. Therefore, a potential protection
of AHN by RSV through astrocytic regulation should not be
discarded.

Besides the UCMS paradigm, another way to induce
depressive-like behaviors in rodents is by repeated admin-
istration of CORT. A recent study used this model and
obtained a depressive-like phenotype in mice after 21 days of
CORT subcutaneous injection (40 mg/kg) [47]. Interestingly,
orally administered RSV (80 mg/kg) 30 min prior to the 21
CORT injections was able to significantly ameliorate all the
behavioral parameters analyzed, including RSV increased
sucrose consumption and decreased immobility time both
in the FST and in the tail suspension test (TST), to levels
comparable with those found in CORT + fluoxetine-treated
mice [47]. Moreover, hippocampal BDNF levels were found
to be increased in CORT + RSV- and CORT + fluoxetine-
treated animals. Although these findings are consistent and
encouraging, other hippocampal plasticity markers (such as
those related to AHN) have not been investigated, indicating
the need for further studies.

In the context of stress, a study investigated the poten-
tial neuroprotective effects of RSV (10 mg/kg body weight)
orally administered throughout pregnancy in the offspring
of female rats subjected to restraint stress (3 times a day,
for 45 minutes) in either the early (gestation day 1 to 10)
or late (gestation day 11 till delivery) gestational periods
[48]. The study demonstrated that prenatal administration
of RSV was neuroprotective for the offspring at postnatal
day 40 (PND40) from the deleterious effects of prenatal
stress on anxiety (as measured in the open field test) and
on cognitive function (as assessed in the MWM). The study,
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however, did not investigate hippocampal plasticity param-
eters. Considering the involvement of the hippocampus in
both anxiety and cognitive regulation, it is clearly of interest
to further investigate hippocampal-related plasticity markers
in a similar experimental design, and a subsequent study by
Madhyastha et al. [49] attempted to address this issue. Using
the same prenatal stress and RSV regimen, the authors found
that this polyphenol was able to improve the number of DCX"
(doublecortin) neurons in the DG, as well as hippocampal
BDNF expression, of PND40 pups whose dams have been
exposed to prenatal stress.

Interestingly, it is not only in stress-induced models of
dysfunctional phenotypes that RSV has been shown to exert
positive effects. In Wistar-Kyoto rats, an inbred strain of
rodents that displays depressive-like behavior even in the
absence of aversive stimuli, RSV intraperitoneally admin-
istered acutely (40 mg/kg) and for 7 days (10 mg/kg and
40 mg/kg) could reduce immobility time in the FST [50]. The
chronic regimen, at both doses, could also increase sucrose
intake. Interestingly, at one-week posttreatment, behavioral
effects could be no longer observed, suggesting that sustained
consumption of RSV might be necessary for antidepressant
effects. With regard to plasticity markers, following 7 days
of RSV treatment (10 mg/kg and 40 mg/kg), BDNF has been
found to be increased in the hippocampus, an effect not
observed in other brain areas involved in the neurobiology
of depression, such as the frontal cortex.

3.2. RSV and Ethanol-Induced Toxicity. Ethanol (EtOH)
exposure in utero is well recognized as an important risk
factor in abnormal brain development and function. Indeed,
a number of adverse outcomes at the cognitive, physical, and
behavioral levels have been described as a result of prenatal
EtOH exposure, giving rise to a continuum of conditions
known as Fetal Alcohol Spectrum Disorders (FASD) [51]. The
detrimental effects of alcohol to the brain and hippocampal
plasticity, however, are not restricted to exposure during
the prenatal period. In the rat DG, for instance, EtOH
administered at the end of the first postnatal week (PND7)
was capable of significantly reducing the pool of neural
stem cells (NSCs) and NPCs [52], a finding that may have
subsequent consequences for AHN.

In order to investigate the putative role of RSV in
protecting the neonatal hippocampus against the deleterious
effects of EtOH, a recent report pretreated C57/BL6 mice
at age PND6 with RSV (20 mg/kg), subsequently exposing
them to 20% EtOH (total of 5 g/kg) at PND7 [53]. The study
investigated a number of hippocampal neurogenesis markers,
as well as other aspects of neural plasticity. For instance,
using bromodeoxyuridine (BrdU) labeling to assess cell
proliferation at PNDS, it was found that RSV could protect
the neonatal DG, reversing the EtOH-induced reduction in
cell proliferation. Neuroprotective effects of RSV were also
observed with regard to attenuation of the decreased pool of
hippocampal neural precursor cells, as shown by the number
of Sox2*, Sox2/glial fibrillary acidic protein® (GFAP), and
brain lipid-binding protein (BLBP)/nestin+ cells in the DG.
RSV was also found to reverse the antineurogenic effects
of EtOH at PNDI4, as measured by the number of cells

expressing both BrdU and DCX. In addition, pretreatment
with this polyphenol could promote the reversal of the
reduced spine density of granule neurons in mice also
exposed to EtOH. In fact, not only the density of spines
was augmented as a result of RSV treatment prior to EtOH
exposure, but also the proportion of more mature, mushroom
shaped spines was found to be higher in RSV-treated groups.
Hippocampal levels of proteins involved in the proliferation,
maintenance, and fate determination of NPCs, such as pERK
[54], Hes 1 (hairy and enhancer of split-1) [55], and Sirtl
[56], were also verified to be increased in the RSV + EtOH
group. Interestingly, the findings of RSV treatment in vivo
on cell proliferation were also consistent with those of in
vitro assays. Using C17.2 NPCs cells, the same study reported
that pretreatment with RSV could attenuate the detrimental
effects of EtOH on the number of Ki-67" cells, as well
as reducing apoptosis and preventing the cell cycle arrest
mediated by EtOH exposure [53].

3.3. RSV and Chronic Fatigue. Another condition whose
pathophysiology has been found to include hippocam-
pal abnormalities is chronic fatigue syndrome (CFS). For
instance, reduced levels of N-acetylaspartate, a marker of
neuronal metabolism, were found in the right hippocampus
of CFS patients [57]. Other lines of evidence linking the hip-
pocampus and CFS come from studies reporting a particular
reduction in serotonin 5-HT1A receptor binding potential
in this brain structure in these individuals [58], as well as a
significant increase in blood oxygen level dependent (BOLD)
activity in brain regions including the hippocampus of CFS
subjects during a fatiguing cognitive task [59].

In the context of RSV, Moriya et al. [60] found that
daily doses of orally administered RSV (40 mg/kg) for 4
weeks could rescue the decreased daily activity of an animal
model of CSE At the hippocampal level, this behavioral effect
was accompanied by an increase in cell proliferation in the
DG, as measured by BrdU labeling, and a decrease in the
levels of apoptosis, as measured by terminal deoxynucleotidyl
transferase dUTP nick end labeling assay (TUNEL) in the
DG, as also suggested by the reduction in the levels of
acetylated p53 in the hippocampus.

3.4. RSV and Stroke. In pathological conditions such as
stroke, quiescent NSCs can become active, a phenomenon
that is being actively investigated in the field of neural
repair and regeneration. Also, in the context of stroke, RSV
has emerged as a potential plasticity inducer, with evidence
pointing to an antiapoptotic action in hippocampal neurons
after focal cerebral ischemia in rats [61], and by attenua-
tion of the cerebral ischemic injury through upregulation
of transcription factor nuclear factor erythroid 2-related
factor 2 (Nrf-2) and enzyme heme oxygenase 1 (HO-1) [62],
implicated in oxidative stress responses [63].

With regard to hippocampal neurogenesis, in an in
vitro model of stroke using oxygen-glucose deprivation/
reoxygenation (OGD/R), pretreatment with RSV was able to
increase NSCs survival and proliferation [64]. Furthermore,
RSV administered prior to the insult was associated with



upregulation of protein patched homolog 1 (Patched-1),
Smoothened (Smo) and Gli-1 proteins, and mRNA, indicat-
ing that RSV effects in this condition were mediated by sonic
hedgehog signaling. These findings, however promising,
derived from cultured cerebral cortices of rats and could
not be directly extrapolated to the context of AHN. Another
recent study, nevertheless, analyzed the rat hippocampus fol-
lowing global cerebral ischemia and previous treatment with
RSV [65]. The authors found that RSV (at 1 and 10 mg/kg)
could protect CAl neurons from the ischemic insult at both
7 and 85 days after surgery. Protein platelet endothelial cell
adhesion molecule-1 (PECAM-1) (CD31), a selective marker
of angiogenesis, has also been found at higher density in
hippocampal area CAl (Img/kg, 7 days after ischemia; 1
and 10 mg/kg, at both 7 and 85 days after ischemia), CA3
(1 and 10 mg/kg, 7 days after ischemia), and DG (1 and
10 mg/kg, 85 days after ischemia). This latter finding deserves
special attention, considering the association between local
angiogenesis and normal levels of AHN [66]. Specifically,
with regard to AHN, Girbovan et al. [65] found that RSV
treatment prior to the global cerebral ischemia was associated
with reduced number of DCX-PSA-NCAM colabeling cells at
both doses and intervals studied. According to the authors,
one possible explanation for this intriguing finding is that
RSV can decrease microglia and astrocyte activation 7 days
after the ischemic insult [67], which can therefore inhibit glial
released trophic factor-induced neurogenesis [68]. However,
despite the reduced AHN found, increased swimming time
in the target quadrant during the probe trial of the MWM
was found in RSV-treated ischemic rats. Further studies are
therefore warranted so that a better understanding of the
effects of RSV as an inducer or inhibitor of plasticity at the
AHN level in the context of stroke can be achieved.

Some of the most interesting findings relating RSV to
hippocampal plasticity within the context of ischemia come
from measures of poststroke depression. A recent study
showed that oral administration of RSV (20 and 40 mg/kg)
was able to significantly reduce the infarction volume of
the brain 22h following middle cerebral artery occlusion
(MCAO) and exerted antidepressant effects 13 days after
insult [69]. These antidepressant effects included increased
sucrose preference and decreased immobility time in the
EST to levels comparable to those elicited by antidepressant
imipramine. At the hippocampal level, the authors found
that the aforementioned doses of RSV were able to decrease
the levels of corticotropin-releasing factor (CRF) as well
as to increase the expression of glucocorticoid receptors
(GR), both measures indicating normalized activation of
the hypothalamic-pituitary-adrenal (HPA) axis. Moreover,
hippocampal levels of BDNF protein were found to be
increased in MCAO rats treated with RSV. It would have
been interesting if the study had also included the analysis of
neurogenic markers; considering that AHN can be reduced
when the HPA axis is activated [70] and, conversely, it
is normally found to be increased upon higher levels of
hippocampal BDNF (reviewed in [71]), it is plausible to
hypothesize that RSV could augment AHN in MCAO rats.
Empirical evidence to assert this hypothesis is, nevertheless,
needed.
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3.5. RSV and Diabetes. Due to its association with cognitive
deficits (reviewed in [72]), the link between diabetes and
hippocampal changes has been receiving growing attention
in the past few years. In clinical studies, it has been shown
that patients with type-2 diabetes (T2D) exhibit cognitive
deficits which are associated with changes in left hippocampal
metabolism [73]. Animal models of diabetes also display a
number of hippocampal changes such as synaptic integrity
loss, as measured by a decrease in the levels of postsynaptic
density protein 95 (PSD-95) and synaptosomal-associated
protein 25 (SNAP 25) in the hippocampus of T2D mice [74].

With regard to RSV, this polyphenol has been found to
attenuate a number of diabetes-induced neurodegenerative
markers. For instance, Jing et al. used the streptozotocin-
induced diabetes model and found that the number of degen-
erative neurons in CA3 was increased, as well as astrocytic
activation in CAl and CA3 and hippocampal expression of
TNF-a, IL-6, pERK1/2, and phospho-p38, among others [75].
All these parameters were significantly restored following
oral administration of RSV (0.75mg/kg) 3 times per day
for 4 weeks. Although the study did not investigate AHN
markers, it is plausible to reason that neurogenesis is likely
to be disrupted in the model, especially considering the
increased levels of hippocampal proinflammatory markers
found. Supporting evidence came from a study by Thomas et
al. [76] where 6 weeks of RSV supplementation (50 mg/kg) in
mice resulted in normalization of expression of genes impli-
cated with hippocampal neurogenesis and synaptic plasticity
(such as Hdac4, Hatl, Wnt7a, and ApoE), which had been
previously found to be altered as a consequence of the diabetic
state. Whether a similar RSV regimen could indeed amelio-
rate the possible diabetes-mediated disruption in AHN is a
question yet to be answered, especially considering that other
supplementation regimens in rats (20 mg/kg for 21 days) were
not able to restore the lower cell proliferation levels found in
the hippocampus of diabetic rats [77]. Also reinforcing the
idea that RSV can potentially protect cognitive function in the
context of impaired glucose metabolism, Palomera-Avalos
et al. used the Senescence-accelerated prone mouse model
(SAMP8, a model of glucose hypometabolism characteristic
of aging and AD) and showed that RSV added to a high-fat
diet (HF) for 15 weeks could prevent the behavioral deficits
observed in SAMP8 mice subjected to HF [78]. In particular,
it was shown that RSV could prevent the deleterious effects of
HF-induced metabolic stress on the novel object recognition
test (NORT) and the probe trial of the MWM. The study also
showed that RSV could restore mitochondrial function and
reduce oxidative stress and parameters of AD, such as Tau
hyperphosphorylation. Moreover, the authors showed that
in HF-fed SAMP8 mice RSV promoted action of the Wnt
pathway, which is known to be important for AHN [79].
Further studies on the effects of RSV in the context of aging
and AD will be discussed next.

3.6. RSV, Aging, and AD. AD is one of the most incapacitating
of neuropsychiatric conditions, posing important emotional,
social, and financial burdens on patients, carers, and society
in general. The demographic shift to a higher proportion
of older people, particularly in the developed world, places
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a special urgency on unravelling etiological aspects of the
disease and effective ways to intervene and interrupt its pro-
gression. Although the search for effective pharmaceuticals
is the basis of this endeavor, nutritional supplementation
also arises as a potential coadjuvant for both prevention and
treatment of AD (reviewed in [80, 81]).

In order to investigate the potential neuroprotective
effects of RSV in the context of AD, a recent in vitro study pre-
treated rat hippocampal neuronal cells with RSV (75 uM) for
2h followed by 24 h of incubation with A (25 uM) [82]. The
findings are encouraging, in that RSV was able to attenuate
lipid peroxidation in Ap-treated cells and restore a number
of other oxidative damage markers, improving the levels of
ascorbic acid, glutathione reductase, superoxide dismutase,
among others. Of special interest here, pretreatment with
RSV was also able to improve the hippocampal levels of
the synaptic proteins PSD-95, synaptophysin, and activity-
regulated cytoskeleton-associated protein (Arc).

Promoting healthy aging could be one of the ways to
prevent or delay the onset of AD. Within the context of
healthy aging, a recent report by Kodali et al. [83] showed
that a 4-week treatment with RSV (40 mg/kg) at the age of
21 months brought a series of beneficial effects at 25 months
of age, both at the behavioral and hippocampal levels, in
comparison with same-age vehicle-treated rats. Among the
behavioral effects, RSV-treated rodents displayed decreased
latency to reach the hidden platform of the MWM, as well as
having improved memory in the probe trial. Antidepressant
effects were also identified, as shown by the decreased
floating time in the FST. These cognition- and mood-related
behavioral outcomes were accompanied by improvements in
hippocampal plasticity markers, such as increased number
of BrdU" and DCX" cells in the SGZ-granule cell layer
(GCL), increased net neurogenesis (defined as the number
of BrdU" cells with the percentage of newborn cells also
expressing neuronal nuclei protein, NeuN), and enhanced
microvasculature, as shown by rat endothelial cell antigen-1
(RECA-1) immunostaining in CAl and entire hippocampus.
Furthermore, the authors demonstrated that the hippocampi
of RSV-treated aged rats displayed reduced hypertrophy of
astrocytes and reduced microglia activation, suggesting that
this polyphenol is able to diminish the chronic low-level
inflammation found in the aging rat brain. Although the
focus of the study was not on dementia, considering the
interplay between neuroinflammation and AD (reviewed in
[84]), the findings by Kodali et al. [83] suggest that further
testing of RSV in animal models of AD could be valuable.

3.7. RSV and the Healthy Brain. As discussed by Girbovan
et al. [65], not many studies have investigated the effects of
RSV consumptions under nonpathological conditions. This is
particularly important, considering the need to better under-
stand under which circumstances this polyphenol could exert
beneficial effects to brain health and plasticity.

In this regard, Torres et al. [85] have demonstrated that
dietary supplementation with RSV leads to increased cell
proliferation in the DG, as determined by the number of
Ki-67" cells, as well as to an increase in the expression
of presenilin 1, a regulator of AHN [86] and also involved

in AD pathogenesis [87, 88] (reviewed in [89]). Also of
interest to hippocampal plasticity and AHN, the authors
found that dietary supplementation with RSV was associated
with increased expression of the transcriptional repressor
Hes 1, involved in stem cell maintenance through the Notch
homolog 1 (NOTCH]I) signaling pathway. At the behavioral
level, an 18-month treatment with RSV (200 mg/kg/day) was
capable of improving working memory in the spontaneous
alternation task in nonhuman primates to levels compa-
rable with those of CR-treated animals [90]. In addition,
supplementation with RSV—but not the CR regimen—led
to increased spatial memory in the circular platform task,
an adaptation of the Barnes maze. Measures of hippocam-
pal plasticity, however, were not investigated. Also at the
behavioral level, RSV (10 and 20 mg/kg, orally administered
in conjunction with 2.5 mg/kg piperine—an alkaloid that
enhances the bioavailability of RSV in vivo [91]) exerted
antidepressant effects in ICR mice, as measured by the
reduced immobility time in both FST and TST [92]. Although
AHN measures were not examined, the authors report
serotonergic and noradrenergic changes in the hippocampus
of RSV + piperine-treated mice, such as reduced activity of
monoamine oxidase-A (MAO-A) enzyme and increases of
serotonin and noradrenalin levels.

As can be noted throughout the reviewed literature, the
majority of studies in healthy rodents are descriptive inves-
tigations showing possible associations between a certain
RSV treatment regimen and behavioral and hippocampal
changes. Not many of these associations, however, can be
considered to show a causal relationship. One of the most
interesting reports in the RSV literature that tried to bridge
this gap is a study by Harada et al. [93]. In this study, the
authors report that oral administration of RSV (20 mg/L)
once daily for 3 weeks was able to induce insulin-like growth
factor 1 (IGF-I) production in the hippocampus, increase
AHN (as assessed by the number of BrdU" cells and the
number of BrdU"/calbindin-D28k" cells) and angiogenesis
(defined as the number of BrdU*/PECAM-1 [CD31]" cells),
and improve spatial learning and memory in the MWM.
Interestingly, none of these effects were observed in calcitonin
gene-related peptide- (CGRP-) knockout mice treated with
the same regimen of RSV, whilst, in vitro, RSV increased
CGRP release from dorsal root ganglion (DRG) neurons
from Wt mice. Considering that RSV was undetectable in the
hippocampus of RSV-treated Wt mice, the report provides
strong evidence that, in vivo, RSV might exert effects on
the hippocampus through stimulating the release of CGRP
from DRG neurons, leading to enhanced production of IGF-
I by hippocampal astrocytes, thereby improving AHN and
cognitive performance.

However, not all studies report proneurogenic effects
of RSV. For example, Park et al. [94] report that mice
administered either 1 or 10 mg/kg RSV for two weeks had
reduced numbers of both NPCs and newly generated neurons
in the DG of the hippocampus relative to a vehicle-treated
control group, in a dose-dependent manner. Furthermore,
they also found a reduction in BDNF and pCREB in the
hippocampus and impaired spatial learning in the MWM of
the RSV-treated animals relative to controls. As the authors
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themselves observe in their discussion, there is a marked
difference in the amount of RSV administered to the animals
in this study (25 or 250 microg/day/mouse) compared to
some of the other apparently conflicting studies such as
Harada et al. [93], where a much lower dose was administered
(4 microg/day/mouse). They argue therefore that there is
evidence for opposite effects on hippocampal neurogenesis
depending upon the dose of RSV administered. Detrimental
effects of RSV to hippocampal neurogenesis also came from
in vitro studies showing that RSV treatment (10, 20, and
50 uM) significantly reduced the number of neurospheres
derived from hippocampal precursors [95]. Furthermore,
the same study showed that RSV (2 and 4 uM) decreased
the proportion of neurospheres expressing 3-III tubulin, a
marker of differentiated neurons.

4. Limitations and Perspectives

Despite the weight of evidence mostly pointing to RSV as
an enhancer of hippocampal plasticity, some limitations in
the recent literature can be observed. For instance, the lack
of behavioral and cellular data from healthy control subjects
limits our understanding of the effects of RSV in physiological
conditions. In Liu et al’s work [38], the effects of RSV in
the hippocampal markers (BDNE pERK, and pCREB) in
control animals (not UCMS) are not shown. This makes
it difficult to evaluate whether RSV has positive effects on
the hippocampus of healthy individuals. In Xu et al’s work
[53], however, the hippocampal levels of pERK in vehicle-
treated mice are augmented as a result of RSV treatment,
even in the absence of the EtOH insult. In addition, especially
considering that most of the opposite effects of RSV as a
neural plasticity enhancer come from in vivo and in vitro
studies that do not mimic any particular neuropsychiatric
condition (such as depression, anxiety, AD, or stroke), further
replication and novel investigations of the effects of this
polyphenol on AHN and other aspects of hippocampal
plasticity in the healthy brain are imperative.

Some discrepancies are also found in the context of
diabetes. In this respect, some encouraging findings by Jing
et al. [75] and Thomas et al. [76] point to a potential role of
RSV for enhancing AHN in diabetic rodents. These findings,
however, are not in full alignment with those by Venturini
et al. [77], where RSV supplementation was not able to
elicit changes to the lower levels of cell proliferation in the
hippocampus of diabetic rats. This incongruence could be
due to a number of factors, including the rodent strain
(Sprague-Dawley rats versus C57BL/6 mice versus Wistar
rats) and the regimen (0.75 mg/kg (oral), 3x/day for 4 weeks
versus 50 mg/kg/day for 6 weeks versus 20 mg/kg for 3 weeks).
Furthermore, Venturini et al. [77] could not find differences
in the number of proliferating cells in the DG, but other
stages of AHN—such as neuronal differentiation, maturation,
and survival—were not investigated. A previous study using
an animal model of generalized anxiety disorder, rather
than the streptozotocin-induced diabetes model, showed
differences in other stages of AHN despite similar levels of
cell proliferation in the DG [96]. Therefore, the potential role
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of RSV as an AHN enhancer in the context of diabetes could
still be valid and deserves further investigation.

One of the key aspects in any attempt to determine how
RSV affects hippocampal plasticity relates to the controversial
roles of this polyphenol’s receptor, Sirtl. For instance, in a
study by Xu et al. [53], RSV is shown to be able to antagonize
the detrimental effects of EtOH on NPCs and neurogenesis, a
finding accompanied by the rescue of hippocampal levels of
PERK, Hes 1, and Sirtl. The authors point to the involvement
of these proteins in the regulation of NPCs; however, Saharan
et al. demonstrated that Sirtl signaling negatively regulates
neuronal differentiation in the adult hippocampus, with Sirtl
knockdown increasing the neurogenic potential of NPCs
in vivo and in vitro [95]. In their discussion, the authors
also claim that previous studies have reported that Sirtl
and Hes 1 interact and repress downstream targets [97],
probably including those involved in inhibiting neuronal
differentiation [95]. Similarly, Ma et al. report increased
neurogenesis in the adult hippocampus with Sirtl knockout
mice [98]. However, they report that this arises primarily
as a result of the loss of the repressive effects of Sirtl
on neural stem cell self-renewal, rather than on neuronal
differentiation. Interestingly, Ma et al. also report that the
survival of newborn neurons in the Sirtl knockout mice
is reduced, suggesting a role for this protein in neuronal
viability [98]. In light of these reports additional studies with
RSV are needed to further clarify the role of Sirtl on the
reported effects of RSV on hippocampal neurogenesis.

In addition, as discussed by Hurley et al. [50], most
studies utilize intraperitoneal injection regimens. For transla-
tional purposes, therefore, novel assays testing effective doses
of RSV administered orally, as well as investigating their
correspondence to appropriate intake in humans, are needed.
In this same respect, it is worth noting the need for random-
ized controlled trials investigating the effects of RSV supple-
mentation with either tablets or diet on the behaviors and
brain functions discussed here. Addressing this issue, a recent
double-blind placebo-controlled study showed that intake
of RSV capsules for 26 weeks (200 mg per day) improved
memory retention (retention of words) and enhanced hip-
pocampal functional connectivity in healthy overweight
older individuals [99]. It will be interesting to see in the
future if these encouraging results could also be observed
in other age and body mass index populations, especially
considering that another recent randomized double-blind
placebo-controlled study found that, when administered in
conjunction with piperine, RSV can augment cerebral blood
flow in young healthy adults [100]. Nevertheless, the study
failed to demonstrate that RSV could improve mood and
cognition in this population. These negative results could
be due to the relatively short regimen applied: only three
doses of RSV (250 mg) at least a week apart. Also concerning
the use of RSV by humans, a recent report showed that a
single dose of this polyphenol (500 mg tablet taken orally by
healthy adults) was able to promote relevant pharmacological
activities, comparable to those reported by in vitro studies
[101]. It was also promising that the study revealed that
besides being well absorbed, RSV was also well tolerated by all
participants. However, the population studied was very small



Oxidative Medicine and Cellular Longevity

(n = 15 [9 males and 6 females]); therefore future replications
using larger samples would be highly desirable. Another
useful line of investigation for the field of RSV and neural
plasticity could be to examine if this polyphenol administered
in conjunction with other beneficial strategies (such as CR,
physical exercise, EE, and even other polyphenols) could
exert synergistic effects capable of amplifying the potential
enhancement of hippocampal plasticity observed in most of
the RSV studies.

5. Conclusion

Overall, for the neuropsychiatric conditions discussed here—
depression, anxiety, stroke, diabetes, EtOH administration,
chronic fatigue, and AD—RSV appears to be, at least in
rodents, an effective agent in promoting neuroprotection and
hippocampal plasticity, including aspects of AHN. Neverthe-
less, the literature is not completely consistent in providing
conclusive evidence pointing to RSV as a plasticity/AHN-
enhancer. These opposing effects were mainly observed in
assays attempting to evaluate the physiological effects of
RSV (i.e., not using specific models of diseases) and deserve
attention before it can be affirmed that RSV is a safe
proplasticity agent. Novel studies addressing the limitations
discussed in the present review are therefore needed so that
a better understanding of the circumstances—dose, condi-
tion (neuropathology model versus healthy brain), form of
administration, and treatment duration—in which RSV is
beneficial to brain plasticity can be achieved.
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