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- We present a hybridizable discontinuous Galerkin (HDG) method for thin 

and thick structures at finite deformations 

- A technique of elimination of unknowns for thin structures 

significantly reduces the computational cost 

- We present an empirical penalization that both alleviates the locking 

effects and stabilizes the HDG method 

- The optimal convergence is achieved for the displacement and an extra 

half-order of convergence can be gained with an inexpensive 

postprocessing 

- The method gives accurate results for various classical nonlinear shell 

problems 

 

Highlights (for review)
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Abstract

We present a 3D hybridizable discontinuous Galerkin (HDG) method for nonlin-

ear elasticity which can be efficiently used for thin structures with large deforma-

tion. The HDG method is developed for a three-field formulation of nonlinear

elasticity and is endowed with a number of attractive features that make it

ideally suited for thin structures. Regarding robustness, the method avoids a

variety of locking phenomena such as membrane locking, shear locking, and vol-

umetric locking. Regarding accuracy, the method yields optimal convergence for

the displacements, which can be further improved by an inexpensive postpro-

cessing. And finally, regarding efficiency, the only globally coupled unknowns

are the degrees of freedom of the numerical trace on the interior faces, resulting

in substantial savings in computational time and memory storage. This last

feature is particularly advantageous for thin structures because the number of

interior faces is typically small. In addition, we discuss the implementation

of the HDG method with arc-length algorithms for phenomena such as snap-

through, where the standard load incrementation algorithm becomes unstable.

Numerical results are presented to verify the convergence and demonstrate the

performance of the HDG method through simple analytical and popular bench-

mark problems in the literature.
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elasticity, Superconvergence, Finite element, Hybridizable discontinuous

Galerkin

1. Introduction

The discontinuous Galerkin (DG) method has been proven to be a valuable

and versatile tool for numerical analysis in continuum mechanics, see e.g. [1, 2,

3]. In solid mechanics, DG methods have been proposed for linear elasticity (see

[4] among many others), nonlinear hyperelasticity [5, 6, 7], as well as plasticity [8,5

9].

However, DG methods have been often criticized for having to employ sig-

nificantly more degrees of freedom than more standard continuous Galerkin

(CG) methods. Hybridizable discontinuous Galerkin (HDG) methods have sub-

sequently been developed to address this drawback. The advantage of HDG10

methods is twofold. First, HDG methods parametrize the finite element solution

in terms of an approximation of the displacement on the element boundaries, the

so-called hybrid field. Therefore, the only globally coupled unknowns are those

corresponding to the hybrid field, which is unique for the two elements sharing

a boundary. As a consequence, the global linear system to be solved is smaller15

than that obtained with the original DG degrees of freedom (DoF). Second,

when polynomials of degree k are used to approximate both the displacement

and its gradient, both approximations converge with the optimal order k + 1.

Then, provided k ≥ 1, an elementwise post-processing step can be performed to

obtain a superconvergent solution of order k+2 for the displacement. HDG ap-20

proaches have been developed for both linear elasticity [10, 11, 12, 13, 14] and

nonlinear elasticity [15, 11, 16, 17, 18]. Although the superconvergence have

been often observed with these HDG approaches, it is not guaranteed in general

for elasticity [13]. This paper proposes an extension of the HDG volumetric

methods for nonlinear elasticity to thin structures.25

Traditionally, thin structures have been modeled using special elements, as

it is well known that classical low order finite elements fail to model such struc-

2
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tures, due to several locking effects. Special plate and shell finite elements has

been developed over the past fifty years, either based on a plate/shell theories, or

by simplifying three-dimensional continuum theories (see reviews in [19, 20, 21],30

and in particular [22, 23, 24] for DG approaches). Both approaches have been

shown to model accurately finite deformations of thin structures. However,

they suffer from common disadvantages and difficulties. Among these difficul-

ties are the coupling with solid finite elements (rotational degrees of freedom

have to be connected with the solid element displacements using special transi-35

tion elements), the application of particular boundary conditions, the complex

updates of rotation vectors for large deformations, and the difficult degenera-

tion of full 3D constitutive laws. Finally, the objectivity of the strain measures

may be lost (see [25]). In order to overcome these drawbacks, alternative low-

order solid-shell elements have been then developed (see [26, 27, 28, 29, 30]40

among many others), able to model both thick and thin structures. These ele-

ments are volumetric solid bricks modified with a variety of techniques in order

to tame the locking pathologies. Among these techniques, the reduced integra-

tion [31, 32, 33] and the B-bar [34, 35] approaches address mainly the volumetric

locking. The enhanced strain technique prevents volumetric [36] and membrane45

lockings [37] – see also [38, 29, 39, 40]. And coming from plate [41] and shell el-

ements [42], the assumed natural strain technique can control the shear locking

of solid shell elements [28, 27, 43, 39].

The present approach is different and, in many respects, simpler. We directly

discretize the thin structures with high-order three dimensional elements and50

employ a nonlinear elasticity HDG volumetric formulation. This approach is mo-

tivated by the following observations. As a high-order finite element approach,

all the thickness-related locking behaviors should vanish for high enough poly-

nomial degrees [44, 45, 46]. Moreover, even for moderate polynomial degrees,

the discontinuous nature of the approximations mitigates the locking effects,55

as previously observed for both beams [47] and shells [22]. In particular, as a

discontinuous Galerkin approach, our method is free from volumetric locking for

nearly-incompressible materials [4]. Finally, in our method, the only globally

3
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coupled unknowns are those representing the hybrid field which is defined on

the interior faces only. This leads to substantial savings in computational time60

and memory storage for thin structures because the number of interior faces is

small.

The article is organized as follows. In Section 2, we introduce the notations

used throughout the paper. In Section 3, we introduce the HDG method based

on a new variational principle. In Section 4, we discuss the implementation65

of the HDG method together with loading incrementation, Newton-Raphson,

and Arc-Length algorithms. In particular, we explain how to take advantage

of the discontinuity of the hybrid field to significantly reduce the size of the

global linear system when thin structures are considered. In Section 5, we

present numerical results to assess the convergence of the HDG method and its70

accuracy on several classical non-linear shells benchmark problems. Finally, in

Section 6, we provide some concluding remarks.

2. Governing equations and notations

2.1. Nonlinear elasticity equations

We consider a deformable elastic body, occupying the volume Ω ∈ Rd in the

initial, undeformed configuration. The initial configuration Ω is assumed to be

an open and bounded polygonal domain with a Lipschitz continuous boundary

∂Ω. This boundary is divided into a Dirichlet boundary ΓD and a Neumann

boundary ΓD such that ∂Ω = ΓD ∪ ΓN and ΓD∩ΓN = ∅. The material position

vector is denoted ϕ(X), with X denoting the reference material coordinates.

Under given body forces f , prescribed tractions t on ΓN , and prescribed dis-

placements ϕD on ΓD, the elastic body undergoes a deformation satisfying the

4
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following static equilibrium equations

−∇ · P = f in Ω (1a)

F −∇ϕ = 0 in Ω, (1b)

P − ∂Ψ

∂F
= 0 in Ω, (1c)

ϕ = ϕD, on ΓD, (1d)

PN = t on ΓN . (1e)

Here, F is the deformation gradient and P is the first Piola-Kirchhoff stress75

tensor. The gradient ∇, and the divergence ∇· operators are defined with

respect to the initial (undeformed) material coordinate system. And N is the

outward normal on the undeformed body surface. We assume that the material

properties, applied loads and boundary conditions are sufficiently smooth.

We limit the scope of this article to hyperelastic materials. In particular,80

we assume that an elastic potential energy function Ψ(F ) exists as a function

of the deformation gradient, and that it is related to the first Piola-Kirchhoff

stress tensors through the relation (1c).

For the applications considered in this paper, only the Saint Venant-Kirchhoff

and the Neo-Hookean hyperelastic models will be considered. Their respective

elastic potential functions are given by

Ψ(F ) =
λ

2
(trE)2 + µ tr(E2) Saint Venant-Kirchhoff (2a)

Ψ(F ) =
µ

2

(
tr(F TF )− 3− 2 lnJ

)
+
λ

2
(ln J)2 Neo-Hookean (2b)

where (λ, µ) the Lamé parameters of the model, J = detF is the the Jacobian,

E = 1
2 (F TF − I) is the Lagrangian strain tensor, and I the second order85

identity tensor.

2.2. Approximation spaces

We assume that Ω is divided into a partition Th of disjoint elements K,

and introduce the set ∂Th = {∂K : K ∈ Th}, the set of internal faces Eoh =

5
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{∂Ki∩∂Kj : Ki,Kj ∈ Th}, the set of boundary faces E∂h = {∂Ki∩∂Ω : Ki ∈ Th},90

and set of all faces Eh = Eoh ∪ E∂h .

We denote by Pk(K) the set of polynomials of degree at most k whose

support is the element K., and introduce the following broken polynomial spaces

Vh := {G ∈ [L2(Ω)]d×d : G|K ∈ [Pk(K)]d×d,∀K ∈ Th}, (3a)

Wh := {w ∈ L2(Ω)d : w|K ∈ Pk(K)d,∀K ∈ Th}, (3b)

Mh := {µ ∈ L2(Eh)d : µ|F ∈ Pk(F )d,∀F ∈ Eh}, (3c)

where L2(D) is the space of square integrable functions on D. We have chosen

equal polynomial degrees for vector, tensor and trace spaces. However, the HDG

framework is quite general and, in principle, it allows for other approximation

spaces such as the Raviart-Thomas and the Brezzi-Douglas-Marini spaces as95

noted in [48, 49].

Finally, we define various inner products for our finite element spaces

(u,v)K :=

∫

K

u · v dΩ, (u,v)Th :=
∑

K∈Th
(u,v)K , ∀u,v ∈ L2(Ω)d,

(G,H)K :=

∫

K

G : H dΩ, (G,H)Th :=
∑

K∈Th
(G,H)K , ∀G,H ∈ L2(Ω)d×d,

〈µ,η〉∂K :=

∫

∂K

µ · η dΓ, 〈µ,η〉∂Th :=
∑

K∈Th
〈µ,η〉∂K , ∀µ,η ∈ L2(∂Th)d.

In the next section, we will define the HDG method for solving the problem (1).

3. Hybridizable discontinuous Galerkin formulation

3.1. Variational principle

As explained in [16], the HDG method for nonlinear elasticity can be seen as a100

minimization problem of an energy functional. The functional proposed therein

is a function of the deformation ϕ and the deformation traces ϕ̂ := ϕ|Eh , with

the deformation gradient being retrieved via the use of the DG-derivative [5, 16].

6
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We present here an alternative 4-variables variational principle that can be used

to derive the same HDG equations, without making use of the DG-derivative.105

This variational principle is associated to the following functional defined for

fields (ϕ,P ,F , ϕ̂) ∈Wh × Vh × Vh ×Mh,

Π(ϕ,P ,F , ϕ̂) := (Ψ(F ), 1)Th + (P , (∇ϕ− F ))Th

− 〈PN , (ϕ− ϕ̂)〉∂Th +
1

2
〈(ϕ− ϕ̂), τ (ϕ− ϕ̂)〉∂Th

− (f ,ϕ)Th − 〈t, ϕ̂〉ΓN
+

1

2
〈(ϕ̂−ϕD), τ (ϕ̂−ϕD)〉ΓD

,

(5)

where τ is the stabilization matrix. The first term on the right hand side corre-

sponds to the internal energy of the elastic body, the second measures an energy

associated to the mismatch between ∇ϕ and F . The third and fourth terms110

measure an energy related to the jump of the solution at the elements bound-

aries. In particular, the fourth term is typical of the HDG formulation. As an

energy quantity, it has to be positive i.e. the matrix τ has to be symmetric def-

inite positive. The choice of τ crucially affects the performances of the method

(see discussion in 3.3). The fifth term is the energy related with the external115

body forces. Finally, the last two terms are the energies associated with the

imposed tractions and displacements. Although the Dirichlet boundary condi-

tion is applied weakly here, it could be applied alternatively in a strong manner

through a suitable modification of the space Mh.

Interestingly, the variational principle (5) becomes the Hu-Washizu principle120

when ϕ̂ ≡ ϕ on Eh. Moreover, if F ≡ ∇ϕ, it becomes the standard total energy

used for continuous Galerkin displacement formulations (see for instance [50]).

We now define the directional derivative of Π with respect to its first variable

and in the direction w as

D1Π(ϕ,P ,F , ϕ̂)[w] :=
∂

∂ε
Π(ϕ+ εw,P ,F , ϕ̂)

∣∣∣∣
ε=0

, (6)

for any w ∈Wh. The directional derivatives D2Π, D3Π and D4Π with respect125

to the other variables can be defined in a similar way.

We can now express the HDG equations as a variational principle. The HDG

approximation (ϕh,Ph,Fh, ϕ̂h) to the exact solution (ϕ,P ,F , ϕ̂) is the element

7
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of the approximation spaceWh×Vh×Vh×Mh that locally minimizes the energy

functional Π, that is making all the directional derivatives simultaneously equal130

to zero.

Thus, for the first directional derivative, D1Π = 0 yields the following HDG

approximation

(Ph, (∇w))Th − (f ,w)Th − 〈PhN ,w〉∂Th + 〈τ (ϕh − ϕ̂h),w〉∂Th = 0, (7)

for all w ∈Wh. By introducing the numerical traction traces

P̂hN := PhN − τ (ϕh − ϕ̂h) on ∂Th, (8)

we can rewrite (7) as135

(Ph, (∇w))Th − (f ,w)Th − 〈P̂hN ,w〉∂Th = 0, ∀w ∈Wh. (9)

For the second directional derivative, setting D2Π = 0 we get

((∇ϕh − Fh) ,G)Th − 〈(ϕh − ϕ̂h,GN〉∂Th = 0, ∀G ∈ Vh,

where the gradient term can be integrated by parts to obtain

−(ϕh,∇ ·G)Th − (Fh,G)Th + 〈ϕ̂h,GN〉∂Th = 0, ∀G ∈ Vh. (10)

The vanishing condition for third directional derivative, D3Π = 0, yields

(
∂Ψ(Fh)

∂Fh
− Ph,Q)Th = 0, ∀Q ∈ Vh. (11)

And finally, enforcing D4Π = 0, we obtain

〈P̂hN ,µ〉∂Th − 〈t,µ〉ΓN
+ 〈τ (ϕ̂h −ϕD),µ〉ΓD

= 0, ∀µ ∈Mh. (12)

3.2. Weak formulation

The HDG solution satisfies equations (9), (10), (11) and (12), which we

gather now in a more customary fashion : the HDG method seeks an approxi-

8
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mation (ϕh,Ph,Fh, ϕ̂h) ∈Wh × Vh × Vh ×Mh such that

(Ph,∇w)Th − 〈P̂hN ,w〉∂Th = (f ,w)Th ∀w ∈Wh, (13a)

(Fh,G)Th + (ϕh,∇ ·G)Th − 〈ϕ̂h,GN〉∂Th = 0 ∀G ∈ Vh, (13b)

(Ph,Q)Th − (
∂Ψ

∂Fh
,Q)Th = 0 ∀Q ∈ Vh, (13c)

〈P̂hN ,µ〉∂Th\ΓD
+ 〈τ (ϕ̂h −ϕD),µ〉ΓD

= 〈t,µ〉ΓN
∀µ ∈Mh, (13d)

where the numerical traction traces are140

P̂hN := PhN − τ (ϕh − ϕ̂h) on ∂Th. (13e)

Note that the equation involving the traces (13d), enforce both the boundary

conditions (Neumann and Dirichlet) and the jump of P̂hN to be zero on the

internal faces. This last condition is commonly referred as the conservativity

condition.

The HDG method presented in this article is therefore similar to [15, 16]. It145

differs from [11] since no approximation of the pressure field as such is made in

our formulation.

Although Fh and Ph are considered here as separate variables, Ph(Fh) can

be computed elementwise with equation (13c). Therefore, in the remainder of

this paper we will consider only (ϕh,Fh, ϕ̂h) as separate variables.150

3.3. Choice of the stabilization Tensor

The choice of the stabilization tensor τ plays a crucial role in both the accu-

racy and the stability of the method. A very large τ means a strong penalization

of the inter-element discontinuities, in which case the HDG solution becomes

very close to a conforming continuous solution. Therefore, for large τ , the HDG155

solution mimics the good and bad properties of conforming methods. Among

the good ones, the coercivity is ensured, and hence the stability of the linearized

problem. Among the bad ones are the sensitivity of the numerical solution to

the chosen mesh and the various locking phenomena (volumetric and thickness-

related lockings). In particular, the thickness-related lockings, i.e. shear locking,160

9
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membrane locking and trapezoidal locking are often too severe to make legacy

volumetric finite elements applicable to shell problems. These effects are briefly

illustrated in subsection 5.3.2.

On the contrary, for smaller values of the stabilization parameter, the DG-

based methods have shown a better accuracy than their CG counterparts, as165

allowing jumps of the solution at the elements boundaries provides a mechanism

that significantly mitigates the various locking pathologies. This advantage has

justified the over-cost of the DG-based approximations. However, it comes

with the risk of loosing the coercivity of the discrete problem, which translates

into either a non-convergence of the Newton algorithm, or into a converged170

non-physical state of deformation (see [16]). Therefore, an ideal τ would be

large enough to ensure the stability, while being small enough to retain an

optimal accuracy. How to automatically choose the optimal stabilization is still

a theoretical issue which has been partially addressed in [18] by providing lower

bounds for τ and for simplex meshes. Although a theoretical estimate of τ is175

beyond the scope of this paper, we hope to provide some practical insights to

choose an appropriate stabilization.

3.3.1. Review of some stabilization tensors for nonlinear elasticity

Several stabilization strategies have been proposed in the literature for both

DG and HDG approaches. However, all of them were found to be of little use180

when nonlinear shell problems are solved with HDG. We now briefly review

them and mention what we think are their shortcomings.

The simplest approach [11], based on a dimensional analysis is to choose

τ =
1

Lc
µ I, (14)

where Lc is a length scale that only depends on the discretized geometry of the

structure, µ the Lamé parameter and I the second order identity tensor. The185

first issue is the choice of Lc. For a shell structure problem, there are at least

three different length scales candidates: the typical size of the whole structure L,

the element size h and the thickness t. Numerical experiments strongly suggest

10
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that h / Lc < L. Indeed Lc ≈ t usually gives an over-stiff discrete model

and underestimated displacements, while the coercivity may be lost for Lc ≈ L.190

Our experience has shown that, although Lc may be determined after a few

trials, Lc ≈ h is a safe default choice and is always satisfactory for moderate

strains. However, this relation has to remain loose since the accuracy of the

approximate gradient will deteriorate if Lc = h for very fine meshes (see [10])

and the postprocessing benefit will then be lost. Therefore we understand Lc195

as the typical mesh size of a coarse mesh able to capture the features of the

solution. If the mesh is further refined to get a better accuracy, Lc is kept the

same.

However the stabilization tensor (14) usually fails when large strains occur.

For instance, the cylindrical test cases presented in section 5.3 need a greater200

stabilization near the applied point forces, which means that the stabilization

should adaptive, i.e. depending on the local state of strains/stresses, as already

noted in [51, 52].

The first attempt [15] to design an adaptive τ was to make use of the material

fourth order elasticity tensor C, by defining205

[τ ]IK =
1

Lc
CIJKLNJNL with [C]IJKL =

∂2Ψ

∂EIJ∂EKL
. (15)

However, this stabilization is also insufficient for large strains, notably when a

Saint Venant-Kirchhoff model is considered since C is then constant.

Alternatively, the viscous stabilization designed for the Navier-Stokes equa-

tions [53] could be used, with

[τ ]ik =
1

Lc

∂PiJ
∂FkL

NJNL. (16)

Although this stabilization should intuitively grow with the local deformation210

gradient, there is no control on the smallest eigenvalue of τ and it may actually

become very small, making the model unstable.

All three of the above stabilizations fail at some point for the problems

presented in section 5.3. See the Appendix C for the detailed results.

Another DG stabilization strategy [51] is based on the observation that the215
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regions where the numerical instabilities develop usually coincide with the re-

gions were the elasticity tensor becomes indefinite. A small amount of initial

stabilization τ0 is then increased with an adaptive term proportional to the

lowest negative eigenvalue of the local elasticity tensor

τ =
β

Lc

(
τ0 − ρmin

(
∂Ph
∂Fh

)
I

)
, (17)

where β is some scaling factor, and ρmin is the minimum negative eigenvalue220

of the tensor ∂Ph

∂Fh
locally evaluated, with ρmin = 0 if the eigenvalues are all

positive. This approach worked successfully for large strains experiments con-

sidered in [51]. However, our numerical experiments reported in Appendix C

show only mitigated results for the shell problems considered in this paper, since

the parameter β has to be tuned case by case.225

Lately, a lower bound for the HDG stabilization has been derived in [18] for

nonlinear elasticity

τ = τI with τ >
Co
hF

+
Cθ
hF

, (18)

where hF if the diameter of the face, Co is a local constant depending only on the

local mesh properties, and Cθ is a local constant depending on both local and

global eigenvalues of the elasticity tensor. The authors propose an astute way230

of solving the global eigenvalue problem by using an embedded Discontinuous

Galerkin approximation. Moreover, although the optimal convergence of the

gradient may be lost since this stabilization is of order 1/h, it can be retrieved by

using locally a polynomial degree k+1 in the elements where the elasticity tensor

is indefinite. However, this method being designed for simplexes, it cannot be235

included in our comparative study.

3.3.2. Proposed stabilization tensor

In this paper, we propose an empirical stabilization based on the maximum

eigenvalue of the elasticity tensor, by choosing

τ =
1

2Lc
ρmax

(
∂Ph
∂Fh

)
I, (19)

12
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with ρmax the maximum of the largest eigenvalue of the elasticity tensor eval-240

uated at all the Gauss points of a given face. Therefore τ is constant face by

face and depends on the deformations gradient. This stabilization is related to

the local Lax-Friedrichs numerical flux for the hyperbolic problems. Here are a

few comments regarding equation (19).

• In the linear elasticity limit, the stabilization tensor becomes τ = 1
2Lc

(2µ+245

3λ) I. Moreover, when ν = 0, it becomes equal to (14).

• For shell applications, we could notice that equation (19) adds a substan-

tial stabilization near the point forces and the wrinkles, where the onset

of instabilities usually occurs.

• In the nearly-incompressible limit of nonlinear hyperelastic models, our250

experience is that the stabilization has to be significantly increased for

HDG to converge. Equation (19) provides such a mechanism since ρmax

will grow as ν → 0.5.

All the results presented in this paper have been obtained using this stabi-

lization mechanism, and selecting Lc along the guidelines mentioned above. For255

a detailed comparison of the performances of the above stabilizations, see Ap-

pendix C.

4. Implementation

4.1. Loading incrementation

Our load-control algorithm 1 is provided in Appendix A. It is based on the260

standard incrementation algorithm used in ABAQUS ([54]) with some minors

modifications. Note that the external forces or prescribed tractions appearing

in (13) are denoted with the generic term Pmax. However, Pmax is not directly

prescribed, but an incremented fraction of it P = λPmax with the fraction

coefficient 0 ≤ λ ≤ 1.265

13
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The Newton-Raphson procedure is not allowed to do more than nmax iter-

ations. If the convergence is not obtained after nmax iterations, the load incre-

ment is then decreased. On the contrary, if the convergence has been sufficiently

fast for the last two increments, the increment magnitude is then increased. We

take nmax = 20 and λinit = 0.05 as default values. This algorithm is found to270

work well for all the test cases we have studied in this article. Our algorithm also

gives the final number of load increments ninc and the total accumulated num-

ber of Newton-Raphson iterations ntot in order to get an idea of the method’s

efficiency and stability.

4.2. Newton-Raphson algorithm275

At each step of the loading algorithm 1, the Newton-Raphson procedure is

called to solve the nonlinear system (13). The procedure evaluates successive

approximations (F lh,ϕ
l
h, ϕ̂

l
h) of the unknowns under the current load P starting

from the converged state at the previous load (F 0
h ,ϕ

0
h, ϕ̂

0
h). For each Newton

step l, the system of equations (13) is linearized with respect to the Newton

increments
(
δF lh, δϕ

l
h, δϕ̂

l
h

)
∈ Vh ×Wh ×Mh. These increments then satisfy

the system

((∂Fh
Ph)δF lh,∇w)Th

−〈(∂Fh
P̂hN)δF lh + (∂ϕh

P̂hN)δϕlh + (∂ϕ̂h
P̂hN)δϕ̂lh,w〉∂Th = r1(w), (20a)

(δF lh,G)Th + (δϕlh,∇ ·G)Th − 〈δϕ̂lh,GN〉∂Th = r2(G), (20b)

((∂Fh
Ph)δF lh,Q)Th − (∂Fh

(∂Fh
Ψ(Fh))δF lh,Q)Th = 0, (20c)

〈(∂Fh
P̂hN) + (∂ϕh

P̂hN)δϕlh + (∂ϕ̂h
P̂hN)δϕ̂lh,µ〉∂Th\ΓD

+〈τ δϕ̂lh,µ〉ΓD
= r3(µ), (20d)

for all (G,Q,w, µ) ∈ Vh × Vh ×Wh ×Mh, the right-hand side residuals are

given by

r1(w) = (f ,w)Th − (P l
h,∇w)Th + 〈P̂h(F lh,ϕ

l
h, ϕ̂

l
h)N ,w〉∂Th , (21a)

r2(G) = −(Fh,G)Th − (ϕlh,∇ ·G)Th + 〈ϕ̂lh,GN〉∂Th , (21b)

r3(µ) = 〈t,µ〉ΓN
− 〈P̂h(F lh,ϕ

l
h, ϕ̂

l
h)N ,µ〉∂Th\ΓD

− 〈τ (ϕ̂lh −ϕD),µ〉ΓD
. (21c)

14
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All the residuals (21) are evaluated at the current iterate
(
F lh,ϕ

l
h, ϕ̂

l
h

)
. The

external forces f and tractions t are given by the current load P. Note that

equations (20a), (20b) and (20d) are the linearization of equations (13a), (13b)

and (13d) respectively, while equation (20c) is the differentiation of (13c) with

respect to δF lh and yields the sensitivity of Ph with respect to Fh. In (20),280

(∂Fh
·), (∂ϕh

·) and (∂ϕ̂h
·) denote the partial derivatives with respect to Fh,ϕh

and ϕ̂h respectively.

After solving (20), the numerical approximations are then updated

(
F l+1
h ,ϕl+1

h , ϕ̂l+1
h

)
:=
(
F lh,ϕ

l
h, ϕ̂

l
h

)
+ α

(
δF lh, δϕ

l
h, δϕ̂

l
h

)
, (22)

where the coefficient α is determined by a line-search algorithm in order to

optimally decrease the residual. This process is repeated and l is incremented285

until the residual norm is smaller than a given tolerance, typically 10−7.

4.3. Linear system resolution

At each step of the Newton-Raphson algorithm, the linearization (20) gives

the following matrix system to be solved


Al Bl

Cl Dl




δU

l

δÛ l


 =


R

l
12

Rl3


 , (23)

where δU l and δÛ l are the vectors of degrees of freedom of (δF lh, δϕ
l
h) and δϕ̂lh290

respectively. Following the HDG resolution strategy, the system (23) is first

solved for the traces only δÛ l

KlδÛ l = Rl, (24)

where Kl is the Schur complement of the block A and Rl is the reduced residual

Kl = Dl − Cl
(
Al
)−1 Bl, Rl = Rl3 − Cl

(
Al
)−1

Rl12. (25)

The reduced system (24) involves fewer degrees of freedom than the full system295

(23). Moreover due to the discontinuous nature of the approximate solution

(Fh,ϕh), the matrix Al and its inverse are block diagonal, and can be computed

15
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Figure 1: On the left is represented a simple thin rectangular structure. The support of the

hybrid unknowns δϕ̂l
h is on all the faces. On the right is represented, for the same structure,

the support of the internal DoF δÛ l
I in dark gray and the support of the boundary DoF δÛ l

B

in light gray. Only the internal DoF are actually globally coupled.

elementwise. Once δÛ l is known, the other unknowns U l are then retrieved

element-wise. Therefore, the full system (23) is never explicitly built, and the

reduced matrix Kl is build directly in an elementwise fashion, thus reducing the300

memory storage.

The global system (24) can be further reduced by eliminating the unknowns

located on the boundary faces. If we denote the unknowns on the boundary

faces by δÛ lB and the unknowns on the the interior faces Eoh by δÛ lI such that

δÛ l = (δÛ lB , δÛ
l
I)
T , the system (24) becomes305


KlBB KlBI
KlIB KlII




δÛ

l
B

δÛ lI


 =


R

l
B

RlI


 . (26)

The geometrical supports of δÛ lB and δÛ lI are illustrated in Fig 1. Thanks to

the discontinuous nature of the approximation space Mh, the matrix KlBB is

block diagonal and each block can be inverted independently. Therefore, we can

efficiently reduce the system (26) to

KlIδÛ lI = RlR, (27)

where310

KlI = KlII −KlIB
(
KlBB

)−1 KlBI and RlR = RlI −KlIB
(
KlBB

)−1
RlB . (28)

For typical thin structures, the size of the global system (27) is about half of

the original system (26). As a result, the global linear system (27) resulting

16
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from the HDG method is cheaper to solve than those from other volumetric

finite element methods. This makes the HDG method ideally suited for thin

structures.315

4.4. Coupled degrees of freedom

Let us consider a simple thin structure such as a rectangular plate, as shown

in in Fig. 1. This plate is divided into a regular 2D grid of Nx times Ny hexahedra

elements (with only one element in the thickness direction). Such a structure

contains a total of Nx(Ny + 1) +Ny(Nx + 1) + 2NxNy faces. Assuming that NDOFface320

degrees of freedom are associated to each face, there is a total of

NDOFface
[
Nx(Ny + 1) + Ny(Nx + 1) + 2NxNy

]
(29)

degrees of freedom in the δÛ l vector of the reduced system (24). Removing the

degrees of freedom located on the boundary faces implies that 2(NxNy + Nx + Ny)

faces are excluded. That reduces the total number of degrees of freedom on the

interior faces to be325

NDOFface
[
Nx(Ny − 1) + Ny(Nx − 1)

]
(30)

which is the size of the vector δÛ lI in the twice-reduced linear system (27). We

see that, in this case, eliminating the boundary unknowns results in a reduction

by half in the total number of coupled degrees of freedom.

4.5. Arc-Length algorithm

Our loading algorithm 1 is known to be unstable when snap-through be-330

haviors appear. The Arc-Length algorithms ([55, 56]) address this shortcoming

and are much more robust in the presence of complex snapping behaviors. We

propose here an adaptation of the Arc-Length method to the HDG method.

The description of the Arc-Length method 2 is given in Appendix B. It

makes uses of two user-defined parameters (ψ,∆l). While the parameter ψ does335

not have much influence on the results, the characteristic length ∆l controls

the increment size, and has to be small enough to capture the snapping behav-

ior. The classical Arc-Length method makes use of the global vector of nodal

17
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displacement increments δϕh in the process of determining both the load and

displacement increments. Interestingly, in the context of the HDG method, the340

smaller vector of hybrid increments δϕ̂h is used instead. The computation of δλ

by solving a quadratic equations gives two possible increments and the choice

of the best increment is then based upon a comparison with the previously

converged increments (see e.g. [50]).

5. Numerical examples345

In this section, we discuss the behavior of the present HDG solid element

formulation. We compare our numerical results with shell elements or analytical

solutions, when available. When a comparisons with ABAQUS shell elements is

shown, it implies that a Saint Venant-Kirchhoff constitutive law has been used,

in order to be consistent with the ABAQUS-S4R element formulation [57]. We350

use the loading algorithm 1 by default, and all results presented in this section

make use of the proposed stabilization (19).

Whenever a point force is applied, it is implemented as a nodal force. The

node is located on the external (resp. internal) surface for an outward (resp.

inward) force, in order to avoid the unpleasant det(Fh) ≤ 0 locally.355

5.1. Numerical convergence test

In order to illustrate the convergence of the HDG method for thin structures,

we propose the following numerical test. A thin square plate of length L = 1

and thickness t = 0.005 is clamped on its four sides. A Saint Venant-Kirchhoff

model is considered with µ = 1 and λ = 2, i.e. ν = 1/3. Body forces and trac-360

tions are prescribed to the plate such that the exact solution for the deformed

configuration is ux = X,uy = Y , and uz = Z + 0.4 sin(πX) sin(πY ), where

X = (X,Y, Z)T are the coordinates of the undeformed plate. Fig. 2 shows the

undeformed plate, and the plate at maximum deformation.

We use the postprocessing presented in [11] to get a more accurate approxi-

mation of the deformation by making use of the approximate gradient. For each

18
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Figure 2: Top left: undeformed square plate. Top right : deformed square plate at maximum

load. Bottom left : incipient instability for an insufficient penalization (14) at 0.27 Pmax.

Bottom right : distribution of ρmax at maximum load. Results are represented here for k = 2

and a 8 × 8 mesh.

K ∈ Th, we build the postprocessed variable ϕ∗h ∈ Pk+1(K)d such as

(∇ϕ∗h,∇w)Th = (Fh,∇w)Th , ∀w ∈ Pk+1(K)d (31a)

(ϕ∗h, 1)Th = (ϕh, 1)Th . (31b)

The table 1 shows the errors of the HDG results and the estimated orders of365

convergence (e.o.c) when the mesh is refined uniformly in the ex and ey direc-

tions. All simulations make use of only one element in the thickness direction.

Polynomial orders k ∈ {1, 2, 3} are considered, and the adaptive stabilization is

given by (19) with Lc = 0.5 as characteristic length.

The optimal order of convergence k + 1 is observed for the displacement370

at all polynomial degrees. The observed order of convergence of the gradient

varies between k + 1
2 and k + 1. Accordingly, the postprocessed displacement

converges with orders between k+ 3
2 and k+2. Note that, by varying the values
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of t and ν, slightly different orders of convergence may be observed, but the

previous observations remain valid. See, for instance, the e.o.c in the nearly-375

incompressible limit (with µ = 1 and ν = 0.49999) reported on table 2. Also,

in order to get an accurate postprocessing, Lc has to be large enough, typically

L > Lc � t.

Interestingly, for a linear elastic body and for the mesh sizes considered,

the optimal orders of convergence are achieved for a small uniform τii ≤ 0.5.380

However, that level of stabilization would be clearly insufficient in the nonlinear

case and the Newton algorithm would quickly diverge. Even the higher amount

of uniform stabilization given by (14) would fail at some point before Pmax

is reached. On the contrary, our adaptive stabilization is successful by using

higher values 8 ≤ τii ≤ 19, and the areas where the stabilization is large seems385

to match the areas of incipient instabilities (see Fig. 2, bottom). Therefore, we

believe that the discrepancy between the amount of stabilization expected to

converge optimally, and the one needed to stabilize the nonlinear model at finite

strains is the cause of the slightly suboptimal orders of convergence observed

for the gradient.390

Although the postprocessing may not always achieve an extra full order of

convergence, it always computes a significantly more accurate displacement, at

a negligible cost. It therefore remains a attractive feature of the HDG approach.

Consequently, all the results presented in this paper are the postprocessed dis-

placements.395

5.2. Cantilever problems

5.2.1. Cantilever subjected to a lifting force

Let us consider a cantilever of length L = 10 m, width l = 1 m and thickness

t = 0.1 m, with mechanical properties E = 1.2× 106 kPa and ν = 0. The

cantilever is clamped at one end, and is subjected to a lifting force P = 4 kPa at400

its other end (see Fig. 3). The lifting force is usually a distributed line force when

shell elements are considered (for instance [58, 59, 60]). Here the corresponding

force is applied through a Neumann boundary condition prescribing the traction

20
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k mesh size h ‖ϕ−ϕh‖ e.o.c ‖F − Fh‖ e.o.c ‖ϕ−ϕ∗h‖ e.o.c

0.5000 2.08e-03 - 2.15e-02 - 2.38e-03 -

0.2500 8.54e-04 1.28 7.06e-03 1.61 2.88e-04 3.05

1 0.1667 3.99e-04 1.88 3.80e-03 1.53 1.01e-04 2.58

0.1250 2.34e-04 1.86 2.44e-03 1.54 4.80e-05 2.60

0.0833 1.08e-04 1.92 1.31e-03 1.54 1.66e-05 2.62

0.0625 6.15e-05 1.94 8.41e-04 1.53 7.77e-06 2.63

0.5000 3.04e-04 - 2.14e-03 - 1.16e-04 -

0.2500 3.19e-05 3.25 2.66e-04 3.01 8.32e-06 3.80

2 0.1667 1.01e-05 2.85 8.79e-05 2.73 1.77e-06 3.81

0.1250 4.34e-06 2.92 3.80e-05 2.91 5.69e-07 3.95

0.0833 1.30e-06 2.97 1.17e-05 2.91 1.16e-07 3.93

0.0625 5.52e-07 2.98 5.13e-06 2.87 3.77e-08 3.90

0.5000 2.66e-05 - 4.69e-04 - 2.15e-05 -

0.2500 2.70e-06 3.30 2.19e-05 4.42 4.26e-07 5.66

3 0.1667 5.32e-07 4.01 5.44e-06 3.43 6.34e-08 4.70

0.1250 1.74e-07 3.89 1.90e-06 3.66 1.76e-08 4.45

0.0833 3.53e-08 3.94 4.24e-07 3.69 2.95e-09 4.41

0.0625 1.13e-08 3.96 1.48e-07 3.64 7.86e-10 4.60

Table 1: History of convergence of the HDG method for the sinusoidally loaded plate, and for

a compressible material (ν = 1/3).

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

k mesh size h ‖ϕ−ϕh‖ e.o.c ‖F − Fh‖ e.o.c ‖ϕ−ϕ∗h‖ e.o.c

0.5000 2.22e-03 - 2.37e-02 - 2.43e-03 -

0.2500 6.75e-04 1.72 7.86e-03 1.59 3.06e-04 2.99

1 0.1667 3.18e-04 1.85 4.25e-03 1.51 1.20e-04 2.30

0.1250 1.87e-04 1.84 2.72e-03 1.56 6.07e-05 2.38

0.0833 8.66e-05 1.90 1.44e-03 1.56 2.26e-05 2.43

0.0625 4.96e-05 1.94 9.22e-04 1.56 1.10e-05 2.48

0.5000 2.72e-04 - 2.40e-03 - 1.14e-04 -

0.2500 2.61e-05 3.38 3.64e-04 2.72 1.35e-05 3.42

2 0.1667 7.81e-06 2.98 1.19e-04 2.75 2.84e-06 3.84

0.1250 3.26e-06 3.04 5.20e-05 2.89 9.00e-07 3.99

0.0833 9.51e-07 3.04 1.59e-05 2.91 1.78e-07 3.99

0.0625 3.97e-07 3.03 6.88e-06 2.92 5.70e-08 3.97

0.5000 4.79e-05 - 7.08e-04 - 3.64e-05 -

0.2500 4.47e-06 3.42 3.08e-05 4.52 6.40e-07 5.83

3 0.1667 8.87e-07 3.99 5.71e-06 4.15 6.24e-08 5.74

0.1250 2.88e-07 3.90 2.07e-06 3.53 1.59e-08 4.74

0.0833 5.81e-08 3.95 5.06e-07 3.47 2.67e-09 4.40

0.0625 1.85e-08 3.97 1.84e-07 3.50 7.63e-10 4.36

Table 2: History of convergence of the HDG method for the sinusoidally loaded plate, and for

a nearly-incompressible material (ν = 0.49999).
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Figure 3: Cantilever subjected to a lifting force. Left : cantilever undeformed, and under the

maximum deformation, for a 8× 1 mesh and with k = 2. Right : corresponding deflections of

the cantilever’s tip, recorded at point A. Results from 8 × 1 S4R shell elements are reported

as a reference.

t = A−1P withA the cantilever end area. The adaptive stabilization (19) is used

with Lc = 1 m. The displacements of the lifted tip are reported on Fig. 3 and405

show a good agreement when compared to S4R shell elements when quadratic

HDG elements (k = 2) are used. For linear HDG elements, at least 50 elements

would have been necessary to get reasonably accurate results.

5.2.2. Cantilever subjected to a bending moment

The following example is a very popular benchmark considered by [59, 60]

and others. The purpose of this benchmark is to test the modeling of large

bending deformations for thin beams. We consider the same cantilever as before,

but slightly longer (L = 12 m). Instead of a lifting force, the cantilever is now

subject to a maximum bending moment Mmax = 50π
3 × 1000 kN m−1 at its

other end (see Fig. 4, left). The bending moment is numerically applied as

a Neumann boundary condition, prescribing on the tip surface an equivalent

normal traction t varying linearly in the vertical direction. For an applied

moment 0 ≤ M ≤ Mmax, analytical solutions give the horizontal and vertical

displacements of a tip point A located on the mean surface

UA = L
Mmax

2πM
sin

(
2πM

Mmax

)
+ L and WA = L

Mmax

2πM

(
1− cos

(
2πM

Mmax

))
.
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Figure 4: Cantilever subjected to a bending moment. Left : cantilever undeformed, and

under the maximum deformation, for a 8 × 1 mesh and with k = 3. Right : corresponding

deflections of the cantilever’s tip, recorded at point A. The exact solution is also shown, as

well as a solution performed with a 16 × 1 mesh and k = 2.

The displacements of the tip are reported on Fig. 4, right, for both quadratic410

and cubic HDG elements, and the adaptive stabilization is the same as before.

Converged results are obtained with a 16× 1 mesh for quadratic elements and

a 8× 1 mesh for cubic elements.

5.3. Shell problems

5.3.1. Slit annular plate415

The slit annular plate benchmark checks the accuracy of the combined bend-

ing and torsional deformations. Let us consider a slit annular plate of internal

radius r = 6 m, external radius R = 10 m and thickness t = 0.03 m clamped at

one end of the slit and subjected to a lifting force P at the other end (see Fig. 5,

left). The P force with a maximum magnitude 0.8 kN is applied as a traction420

distributed over the slit end. The material parameters are E = 21× 106 kPa

and ν = 0. We use Lc = 1 m, for the adaptive stabilization. For k = 2, the

converged HDG results on a 6 × 30 mesh are in excellent agreement with the

reference results computed with S4R shell elements (see Fig. 5, right).

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0

2

4

6

8

5

0 5

0-5
-5

10

5
10

50

0
-5

-5
-10 -10

P

A

B

R r

P

A

B

0 2 4 6 8 10 12 14 16 18

Vertical deflections at points A and B (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 li
fti

ng
 fo

rc
e 

P
/P

m
ax

W
A

 10x80 Shells Elem

W
A

 6x30 HDG-k2 Elem

W
B

 10x80 Shells Elem

W
B

 6x30 HDG-k2 Elem

Figure 5: Slit annular plate subjected to a lifting force. Left : plate undeformed, and under the

maximum deformation, for a 6 × 30 mesh and with k = 2. Right : corresponding deflections

of the lifted end, recorded at points A and B. A reference solution computed with a mesh of

10 × 80 S4R shell elements is also displayed.

5.3.2. Hemispherical shell with a 18o hole425

We present here the hemispherical shell problem considered by [61, 59, 27,

60, 26, 30] and others. This benchmark tests the ability to model combined

large membrane and bending deformations in double-curved shell geometries.

The structure studied is a hemispherical shell with a 18o centered circular

hole. The material properties considered are E = 6.825× 107 kPa, ν = 0.3.430

The radius of the hemisphere is R = 10 m and its thickness is t = 0.04 m. The

shell is subjected to four alternating radial point forces, whose magnitude are

P = 400 kN each (see Fig. 6, left). Due to the symmetries, the computational

domain is only one quarter of the full problem. Symmetry boundary conditions

are then applied (see Fig. 6, right).435

The HDG solution for the deflections at the nodes A and B is computed with

an 8 × 8 mesh, using polynomial order k = 3 and the adaptive τ is computed

with Lc = 3 m. For k = 2, converged results are obtained for a finer mesh of

20× 20 elements. The results, given in Fig. 7 show an excellent agreement with

the reference solution presented in [60] which is computed with 16 × 16 S4R440

shell elements.

In order to illustrate how the right amount of stabilization mitigates the

locking pathologies, we also display the displacements obtained by using a very

large τm = 1000µ instead of the adaptive τ , for the same quadratic mesh.
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Figure 6: Left : cylindrical shell dimensions and applied point forces. Right : reduced

computational domain and boundary conditions. Here a 8 × 8 mesh is used, with k = 3.
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Figure 7: Left : deformed hemispherical shell under maximum load. Right : radial deflections

of points A and B are compared against a shell elements reference result.

Clearly the deflections become severely underestimated and the HDG model445

locks. As continuous Galerkin can be regarded as a limit of HDG [48] when

τ → ∞, we expect that similar deflections would be obtained with a standard

continuous Galerkin method.

5.3.3. Pullout of an open-end cylinder

The pullout of a cylindrical shell with free edges is a benchmark used to450

check the accuracy in modeling large bending and membrane deformations. We

consider a cylinder of radius R = 4.953 m, length L = 10.35 m and thickness

t = 0.094 m, subjected to a pair of symmetrical radial pulling forces P whose
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Figure 8: Left : cylinder dimensions and applied point forces. Right : reduced computational

domain and boundary conditions. Here a 12 × 18 mesh is represented, and k = 2.

maximal magnitudes are Pmax = 4× 104 kN. Material properties are E =

10.5× 106 kPa and ν = 0.3125. Owing to symmetries, only one eighth of the455

structure is modeled, using the suitable symmetric boundary conditions (see

Fig. 8). Based on the mesh size, the characteristic length is Lc = 0.4 m.

Accurate results are obtained with a 12 × 18 mesh for quadratic (k = 2)

elements (see Fig. 8 and 9). For k = 3, a similar accuracy is obtained with a

8×12 mesh. Note that, although refining the mesh does not lead to a significant460

modification (< 1%) of the deflection of points B and C, it will slightly increase

the deflection of point A, where the force is applied. This is due to a local 3D

effect, which is amplified when the support of the point force shrinks.

The displacements of all three points A, B and C, match very well the

reference solution computed with 24× 36 S4R shell elements (see Fig. 9).465

The table C.6 gives the solver metrics as well as a comparison between

different stabilizations. Interestingly, by using the same characteristic length Lc,

most stabilization functions would fail to reach Pmax. By using (19), a sufficient

amount of stabilization is provided near the point force, and the number of load

increments is ninc = 26. However, Fig. 9, right, displays more data points for470

the sake of comparison by using artificially lower load increments.
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Figure 9: Left : deformed cylindrical shell under maximum load, for a 12 × 18 quadratic

elements mesh. Right : radial deflections at points A,B and C are compared against a shell

elements reference result.
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Figure 10: Left : cylindrical shell dimensions and applied point forces. Right : reduced

computational domain and boundary conditions. Here a 48 × 48 mesh is used, and k = 2.

5.3.4. Pinched cylinder with end diaphragms

The pinched cylindrical shell is one of the most demanding classical bench-

mark that can be found in the literature. Simo et al [62] explained that the

difficulty comes from the inextensional bending and the complex membrane475

states of stress. The deformations involve the development of wrinkles, which

are quite hard to model with low order elements or with coarse meshes, and

most of the finite elements formulations have a hard time converging for this

particular example (see for instance [28]).

We consider a cylinder represented on Fig. 10, whose radius is R = 10 m,480
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Figure 11: Left : deformed cylindrical shell under maximum load, for a 24×24 cubic elements

mesh. Right : corresponding radial deflections at points A and B being compared against a

48 × 48 S4R shell elements reference result (only selected data points are displayed).

length L = 20 m and thickness t = 0.1 m. The cylinder is subjected to a

pair of symmetrical radial pinching forces P whose maximal magnitudes are

Pmax = 120 kN. The cylinder is closed with rigid diaphragms on its ends such

that the ends points can only move in the z-direction. Thanks to the different

symmetries in the problem, only one octant of the geometry needs to be mod-485

eled (see Fig. 10). Converged results are obtained when the octant is meshed

with a 48 × 48 mesh for polynomial order k = 2. Alternatively, for k = 3, the

results converge for a coarser 24 × 24 mesh. We picked Lc = 0.25 m for the

stabilization. Without the proper adaptive mechanism, most stabilizations fail

for that case, or induce a non-physical oscillatory behavior (see table C.7).490

The computed radial deflections at points A and B show a globally good

agreement with the S4R solution, although HDG predicts slightly smaller de-

flections for the point A at large deformations. Such level of discrepancies

between numerical methods are however common for the pinched cylinder case

(see [63, 64]). For this specific case, the Newton-Raphson procedure converges495

rather slowly and we increased the maximum number of Newton iterations to

50. For k = 2, the total number of load increments and Newton iterations are

ninc = 50 and ntot = 468 respectively, which is comparable to the the S4R

results (respectively 70 and 406, according to [60]).
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Figure 12: Left : full roof structure with boundary conditions. Right : quarter of the full

structure actually modeled.

5.3.5. Hinged roof500

The following numerical experiment was introduced first in [65] and since

then has been extensively studied as an example of snapping instabilities.

The roof structure is a section of cylindrical shell hinged on two sides, with

radius R = 25.4 m, length L = 2.54 m, and angle θ = 0.1 rad (see Fig. 12). A

vertical point load Pmax = 300 N is applied at the center of the structure. The505

material properties are E = 3102.75 kPa and ν = 0.3. Only one quarter of

the full structure is modeled and converged results are obtained using an 8× 8

quadratic element mesh. The characteristic length is therefore Lc = 0.3 m.

As a side note, in order to implement the hinged boundary conditions we

found it more practical to strongly enforce all the Dirichlet-like boundary con-510

ditions (including the hinged ones). Therefore, for this specific numerical ex-

periment, the variational principle (5), the HDG trace equation (13d) and the

space of traces (3) should all be modified accordingly.

The behavior of the structure changes dramatically with the thickness of the

roof. For a thick roof, i.e t = 127 mm, the structure exhibits a snap-through515

instability, whereas for a thinner roof, i.e. t = 63.5 mm, a snap-back instability

is observed (see Fig. 13).

The Newton-Raphson algorithm typically fails on either configuration, be-

cause the Jacobian matrix in (23) becomes singular for loads smaller then Pmax.
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Figure 13: Results obtained for a 8 × 8 mesh with k = 2. Left : radial deflection of point

A for t = 127 mm, and comparison against a 16 × 16 S4R shell element result. The snap-

through instability arises at 72.5% of the maximum load. Right : radial deflection of point

A for t = 63.5 mm compared against a 24 × 24 shell elements result. The first snap-through

instability arises around 20% of the total load while the first snap-back instability appears

around 1%.

We therefore use the Arc-Length algorithm 2 with parameters520

ψ =
1

0.1 ‖Pmax‖
and ∆l =





0.2 m if t = 127 mm

0.3 m if t = 63.5 mm

(32)

The converged deflections at the center of the roof, shown on Fig. 13, es-

sentially agree with the results obtained using ABAQUS standard S4R shell

elements. The full snapping behaviors are properly modeled, and the instabili-

ties are handled correctly by the Arc-Length method. Although the agreement

is excellent for the thin roof, the snap-through occurs slightly earlier with HDG525

for the thick roof (72.5% of the total load instead of 74% for the shell elements).

5.4. Thick-thin structure

We now present an simple example of a thick solid-thin shell structure. The

structure is composed of a thick pillar supporting an arch with a variable thick-

ness (see Fig. 14). The thickness of the arch is 0.5 m at the root, and 0.025 m530

at the tip. The 2D geometry presented on Fig. 14 is extruded 0.5 m in the

normal direction. The base of the pillar is clamped and an uniform pressure P
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Figure 14: Meshes used for the thick-thin arch structure. Left: coarse mesh modeling the arch

8 elements, with k = 2. The pressure is applied on the arch only. Right: fine mesh modeling

the arch with 68 elements, and with k = 3. Reference results are computed using the fine

mesh.

UA VA

Coarse Mesh -0.1411 -0.9796

Reference Mesh -0.1405 -0.9458

Table 3: Horizontal and vertical deflections of the point A obtained with a coarse mesh and

a fine reference mesh.

is applied on the upper skin of the arch such that the total integrated pressure

is equivalent to a 1000 kN force. A neo-Hookean model with E = 200 GPa and

ν = 0.28 is used.535

Two discretizations are considered. The first one uses a coarse mesh with

k = 2, modeling the arch with only 8 elements. Therefore the element aspect

ratios vary from almost 1 (near the pillar) to 20 (near the tip). A second

discretization, used to generate the reference solution, makes use of a finer mesh

with k = 3. By using 68 elements for modeling the arch, the aspect ratio is kept540

small for all the elements. For both meshes, the final deflections of the arch tip

(point A) are recorded. For both numerical simulations, we will take Lc = 1 m.

The results under maximum load are reported on table 3. The coarse mesh

exhibit a good accuracy for the deflection of point A although the vertical dis-

placement is slightly overestimated. This example confirms that our approach,545

making use of volumetric elements, is indeed suitable for thin-thick structures.
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5.5. Realistic structure: wing mesh

While all the applications presented so far can be easily run on a single CPU

core, many complex realistic structures will need more computational resources.

We have therefore implemented a parallel version of our method that make550

use of the HDG solver previously developed for CFD applications (see [66]).

The global system (27) is solved by a parallel Generalized Minimal Residual

(GMRES) method, using a block incomplete LU (BILU) factorization as a left

preconditioner.

We have used this parallel solver to compute the deformations of a complex555

aircraft wing structure, comprising an upper and a lower skin, spars and multiple

ribs (see [67] for a precise description of the geometry). The mesh consists of

13382 hexahedra whose aspect ratio varies between 1.1 and 75. Although the

parallel solver can solve nonlinear problems, we consider here a linear application

in order to provide some indications of the the code efficiency in solving a single560

linearized step. The linear elastic moduli are E = 70 GPa and ν = 0.35 for

the whole structure. The wing root is clamped, and a traction equivalent to a

200 kN lifting force is applied on the the wing tip. A polynomial degree k = 2

is considered, and the characteristic length is set to Lc = 0.1 m. Fig. 15 shows

the deformed wing as well as the distribution of the Von Mises stresses.565

The parallel code ran on 2 Haswell nodes of the NASA Pleiades supercom-

puter, each node being a 12-cores Intel Xeon E5-2680v3 at 2.50 GHz. The reso-

lution of the linear system lasted approximately 10 min, with GMRES needing

around 1500 iterations to converge. The BILU preconditioner, which is more

suited for hyperbolic problems, is probably the cause of the relatively high num-570

ber of iterations. We believe that a specific preconditioner for elastostatic HDG

applications should therefore be developed.

6. Conclusion

We have presented a HDG method for solving nonlinear elastic structures

including thin components. Our approach models the full 3D structure and does575
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Figure 15: Static analysis of an airliner wing structure. Top left: mesh of the wing – zoom

on the wing root. Top right: vertical displacements at maximum load. Bottom: Von Mises

stress distribution on the upper skin (left) and on the lower skin (right). The concentration

of stresses at the connection between the ribs and the skin is clearly visible, showing the

strengthening effect of the ribs.

not require typical approximations used in shell theories. The size of the global

systems of equations can be significantly reduced when thin structures are mod-

eled, which is an appealing feature compared to other volumetric approaches.

Moreover, optimal rate of convergence for the deformation is observed, and the

postprocessing provides between one half and one full extra order of convergence580

at a negligible cost. We have validated our method studying classical bench-

marks for both cantilever and shell structures. Our numerical results show that

when quadratic or cubic polynomial approximations are used, the method is

free from locking and gives accurate converged results. The HDG approach is

therefore worth considering for modeling finite deformations of shell structures.585
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Algorithm 1 Load incrementation algorithm

Require: Initialize F 0
h = Id ; (ϕ0

h, ϕ̂
0
h) = X (initial geometry)

Require: Initialize λ = λinit ; P = λPmax ; ntot = 0 ; ninc = 0 ; nit1 = 0

while λ < 1 do

Assign λ := λ+ ∆λ

Assign P := λPmax

Call of the Newton-Raphson procedure, converging in nit iterations

Compute (Fh,ϕh, ϕ̂h, nit) = Newton-Raphson(F 0
h ,ϕ

0
h, ϕ̂

0
h,P)

if nit ≤ nmax then

Convergence of Newton-Raphson

Assign (Fh,ϕh, ϕ̂h) := (F 0
h ,ϕ

0
h, ϕ̂

0
h)

if nit < 5 and nit1 < 5 then

Assign ∆λ := 1.5 ∆λ

end if

Assign ntot := ntot + nit

Assign ninc := ninc + 1

Assign nit1 := nit

else

No or poor convergence of Newton-Raphson

Assign λ := λ−∆λ

Assign ∆λ := 0.5 ∆λ

end if

end while

return (Fh,ϕh, ϕ̂h, nit, ninc)
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Appendix B. Arc-Length Algorithm

Algorithm 2 Arc-Length(Fh,ϕh, ϕ̂h, λ,∆l, ψ)

Require: Initialize ∆ϕ̂h = 0 ; ∆λ = 0

Compute (K, R) from (Fh,ϕh, ϕ̂h, λPmax) using (23)-(25)

while residual>tol do

Compute δϕ̂Rh = K−1R

Compute δϕ̂Ph = −K−1Pmax

δλ = solve
[
(∆ϕ̂h + δϕ̂Rh + δλδϕ̂Ph )2 + ψ2(∆λ+ δλ)2P2

max = ∆l2
]

Compute δϕ̂h = δϕ̂Rh + δλδϕ̂Ph

Assign ∆ϕ̂h := ∆ϕ̂h + δϕ̂h

Assign ∆λ := ∆λ+ δλ

Compute (δFh, δϕh) from δϕ̂h using (23)

Assign (Fh,ϕh, ϕ̂h) := (Fh,ϕh, ϕ̂h) + (δFh, δϕh, δϕ̂h)

Compute (K, R) from (Fh,ϕh, ϕ̂h, λPmax) using (23)-(25)

Compute residual = ‖R‖
end while

return (Fh,ϕh, ϕ̂h,∆ϕ̂h,∆λ)
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Appendix C. Comparisons of several stabilization functions and solver595

metrics

We present here some comparative data to assess the relative performance

of the five stabilization functions mentioned in subsection 3.3.

Note that we tested a slightly different version of stabilization (17). Indeed,

we instead implemented600

τ = τ0 −
β

Lc
ρmin

(
∂Ph
∂Fh

)
I, (C.1)

for the following reason. The original stabilization (17), presented for the DG

method [51], makes use of a very small τ0 (with even τ0 = 0 for most numerical

examples) such that the scaling factor β essentially amplifies ρmin. This is

however impossible in a HDG context since a minimum amount of stabilization

is always required for the method to work, even when ρmin = 0. For our HDG605

method, a good estimation of τ0 for moderate strains is given by (14), which

is noticeably larger than ρmin for the applications considered in this paper.

Therefore, it is more relevant to consider (C.1), where only ρmin is amplified by

β, such that the contribution of ρmin to the stabilization can be isolated and

assessed. When not specified, we use the default value β = 1.610

In the following tables, we arbitrarily define the slight locking pathology as

an underestimation of the displacements by less than 10% at maximum load.

And we simply call locking the larger underestimations. When the loading

algorithm 1 fails, the arc-length 2 is not expected to provide a more stable

solution, except when the displacements are non-monotonic functions of the615

load, which happens only for the hinged roof case.

For the cantilever cases 5.2 and the slit plate 5.3.1, all the stabilization

methods provide roughly the same amount of penalization since ν = 0 and the

strains remain moderate. For the first cantilever problem 5.2.1, all stabilizations

ensure the convergence of the algorithm 1 with ninc = 10 and ntot = 65. For620

the second cantilever problem, some of the stabilizations lead to a slight locking

pathology, as reported on table C.4. For the slit plate case, all the stabilizations

work well with 42 ≤ ninc ≤ 53, and 250 ≤ ntot ≤ 270 without any locking.
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stabilization k mesh Lc ninc ntot reach Pmax notes

(14) 2 16× 1 1 23 678 X -

(14) 3 8× 1 1 141 1652 X -

(15) 2 16× 1 1 21 617 X slight locking

(15) 3 8× 1 1 123 1283 X slight locking

(16) 2 16× 1 1 22 652 X slight locking

(16) 3 8× 1 1 139 1635 X slight locking

(C.1) 2 16× 1 1 23 695 X -

(C.1) 3 8× 1 1 140 1633 X -

(19) 2 16× 1 1 23 682 X -

(19) 3 8× 1 1 141 1629 X -

Table C.4: Cantilever bent into a ring 5.2.2 : solver metrics for several stabilization functions.

Here nmax = 50 has been used for all runs.

The differences are more noticeable with the hemispheric shell, the pullout

cylinder and the pinched cylinder cases, whose results are reported in tables C.5,625

C.6 and C.7 respectively. All these benchmarks have in common the concen-

tration of large strains in localized areas (near the applied forces and wrinkles).

Most stabilizations fail at some point, while (19) appears to work well. In-

terestingly, by using the minimum eigenvalue, the stabilization (C.1) may also

work provided that the coefficient β is tuned. However, β appears to be case-630

dependent. If Lc is chosen too large for the pinched cylinder, the adaptive

stabilization may still work, but the solution shows some strong spurious oscil-

lations that require then the use of the arc-length algorithm 2.

The hinged roof 5.3.5, although having a very nonlinear response with re-

spect to the load, involves only small strains. Therefore all the penalization635

functions perform equally well with ninc = 54 and ntot = 108 for the thick roof,

and ninc = 48 and ntot = 128 for the thin roof. Note that these numbers largely

depend on the choice of the user-defined characteristic length ∆l.
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stab. β k mesh Lc ninc ntot reach Pmax notes

(14) - 2 20× 20 3 15 116 fails at 0.48Pmax

(14) - 3 8× 8 3 26 181 fails at 0.88Pmax

(15) - 2 20× 20 3 14 125 fails at 0.41Pmax

(15) - 3 8× 8 3 29 209 fails at 0.89Pmax

(16) - 2 20× 20 3 25 205 fails at 0.40Pmax

(16) - 3 8× 8 3 31 289 fails at 0.35Pmax

(C.1) 1 2 20× 20 3 23 157 fails at 0.48Pmax

(C.1) 10 2 20× 20 3 28 177 fails at 0.56Pmax

(C.1) 100 2 20× 20 3 21 128 X -

(C.1) 1 3 8× 8 3 31 206 fails at 0.89Pmax

(C.1) 10 3 8× 8 3 31 189 fails at 0.89Pmax

(C.1) 100 3 8× 8 3 21 131 X -

(19) - 2 20× 20 3 20 128 X -

(19) - 3 8× 8 3 21 132 X -

Table C.5: Hemispherical shell case 5.3.2: solver metrics for several stabilization functions.
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stab. β k mesh Lc ninc ntot reach Pmax notes

(14) - 2 12× 18 0.4 24 278 fails at 0.41Pmax

(14) - 3 8× 12 0.4 14 190 fails at 0.18Pmax

(15) - 2 12× 18 0.4 25 165 fails at 0.51Pmax

(15) - 3 8× 12 0.4 34 542 fails at 0.54Pmax

(16) - 2 12× 18 0.4 20 201 fails at 0.17Pmax

(16) - 3 8× 12 0.4 10 110 fails at 0.08Pmax

(C.1) 1 2 12× 18 0.4 27 286 fails at 0.45Pmax

(C.1) 10 2 12× 18 0.4 36 370 fails at 0.81Pmax

(C.1) 100 2 12× 18 0.4 32 171 X -

(C.1) 1 3 8× 12 0.4 19 264 fails at 0.20Pmax

(C.1) 10 3 8× 12 0.4 42 529 fails at 0.67Pmax

(C.1) 100 3 8× 12 0.4 35 212 X -

(19) - 2 12× 18 0.4 26 227 X -

(19) - 3 8× 12 0.4 38 255 X -

Table C.6: Pullout cylinder case 5.3.3: solver metrics for several stabilization functions. Here,

λinit = 0.02 have been used for all runs.
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stab. β k mesh Lc ninc ntot algo Pmax notes

(14) - 2 48× 48 0.25 34 802 1 fails at 0.35Pmax

(14) - 3 24× 24 0.25 31 770 1 fails at 0.16Pmax

(15) - 2 48× 48 0.25 53 855 1 X oscillatory, slight locking

(15) - 3 24× 24 0.25 50 1033 1 X oscillatory, locking

(16) - 2 48× 48 0.25 70 1138 1 fails at 0.18Pmax

(16) - 3 24× 24 0.25 33 761 1 fails at 0.15Pmax

(C.1) 1 2 48× 48 0.25 49 540 1 fails at 0.76Pmax

(C.1) 10 2 48× 48 0.25 68 601 1 X -

(C.1) 100 2 48× 48 0.25 64 557 1 X -

(C.1) 1 3 24× 24 0.25 23 644 1 fails at 0.20Pmax

(C.1) 10 3 24× 24 0.25 156 2474 1 fails at 0.74Pmax

(C.1) 100 3 24× 24 0.25 178 1895 1 X oscillatory

(19) - 2 48× 48 0.25 50 468 1 X -

(19) - 3 24× 24 0.25 50 1056 1 X -

(19) - 2 48× 48 0.50 48 573 2 X oscillatory

Table C.7: Pinched cylinder case 5.3.4: solver metrics for several stabilization functions. Here,

nmax = 50 and λinit = 0.02 have been used for all runs. In the notes column, oscillatory means

that the model develops some mesh-dependent non-physical oscillatory pattern.
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