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Highlights (for review)

- We present a hybridizable discontinuous Galerkin (HDG) method for thin
and thick structures at finite deformations

- A technique of elimination of unknowns for thin structures
significantly reduces the computational cost

- We present an empirical penalization that both alleviates the locking
effects and stabilizes the HDG method

- The optimal convergence is achieved for the displaceme'.. and an extra
half-order of convergence can be gained with an inexpen .ive
postprocessing

- The method gives accurate results for various classica” nonlinear shell
problems
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1. Introduction

The discontinuous Galerkin (DG) method has I __a pru.cu to be a valuable
and versatile tool for numerical analysis in contin. " mec 1anics, see e.g. [1, 2,
3]. In solid mechanics, DG methods have been pro, ~sea ror linear elasticity (see
[4] among many others), nonlinear hyperelasti. *v [5, 6 7], as well as plasticity [8,
9.

However, DG methods have been ofte. criticized for having to employ sig-
nificantly more degrees of freedom = ... are standard continuous Galerkin
(CG) methods. Hybridizable discontinuc s Galerkin (HDG) methods have sub-
sequently been developed to addres. ti.'~ drawback. The advantage of HDG
methods is twofold. First, HDG . etuuc. parametrize the finite element solution
in terms of an approximation of the displacement on the element boundaries, the
so-called hybrid field. Th refore, “he only globally coupled unknowns are those
corresponding to the b ‘bria . ~l-, which is unique for the two elements sharing
a boundary. As a cc 'sec enc , the global linear system to be solved is smaller
than that obtaine { with ." e original DG degrees of freedom (DoF). Second,
when polynomials of « oree k are used to approximate both the displacement
and its gradi nt, joth approximations converge with the optimal order k + 1.
Then, providea .- > 1, an elementwise post-processing step can be performed to
obtain a suprf .conergent solution of order k+ 2 for the displacement. HDG ap-
proach~~ hav. ¥ 2en developed for both linear elasticity [10, 11, 12, 13, 14] and
nonl near el: sticity [15, 11, 16, 17, 18]. Although the superconvergence have
b~ 1 otve.. vbserved with these HDG approaches, it is not guaranteed in general
or elast city [13]. This paper proposes an extension of the HDG volumetric
mevuuds for nonlinear elasticity to thin structures.

Traditionally, thin structures have been modeled using special elements, as

it is well known that classical low order finite elements fail to model such struc-
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tures, due to several locking effects. Special plate and shell fini. elen. nts has
been developed over the past fifty years, either based on a pls .e/< 21l theories, or
by simplifying three-dimensional continuum theories (see rev.~ vs in [19, 20, 21],
and in particular [22, 23, 24] for DG approaches). Bo’. appr ~aches have been
shown to model accurately finite deformations of thi. struc . ures. However,
they suffer from common disadvantages and diffic altie-. ‘mong these difficul-
ties are the coupling with solid finite elements ‘rotatior .| degrees of freedom
have to be connected with the solid element displacern ents using special transi-
tion elements), the application of particula. hou.. '~y conditions, the complex
updates of rotation vectors for large def~=—~~**-  and the difficult degenera-
tion of full 3D constitutive laws. Finally, the hjectivity of the strain measures
may be lost (see [25]). In order to ove <o .e these drawbacks, alternative low-
order solid-shell elements have be . +heiw. developed (see [26, 27, 28, 29, 30]
among many others), able to r ~del beth thick and thin structures. These ele-
ments are volumetric solid bricks mc Yified with a variety of techniques in order
to tame the locking patho’ Jgic. Among these techniques, the reduced integra-
tion [31, 32, 33] and the b “ar [34 35] approaches address mainly the volumetric
locking. The enhance . str .in technique prevents volumetric [36] and membrane
lockings [37] —see 7lso ' R. 2, 39, 40]. And coming from plate [41] and shell el-
ements [42], the s. med natural strain technique can control the shear locking
of solid shell e' _-ents [23, 27, 43, 39].

The pres. ~t 2 yproach is different and, in many respects, simpler. We directly
discretize che thin structures with high-order three dimensional elements and
employ a . ~ dine .r elasticity HDG volumetric formulation. This approach is mo-
tivat .d by the tollowing observations. As a high-order finite element approach,
all th. thick ess-related locking behaviors should vanish for high enough poly-
omial legrees [44, 45, 46]. Moreover, even for moderate polynomial degrees,
t. » dis ontinuous nature of the approximations mitigates the locking effects,
a- .- eviously observed for both beams [47] and shells [22]. In particular, as a
Jiscontinuous Galerkin approach, our method is free from volumetric locking for

nearly-incompressible materials [4]. Finally, in our method, the only globally
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coupled unknowns are those representing the hybrid field whic. is de’ned on
the interior faces only. This leads to substantial savings in .om »'tational time
and memory storage for thin structures because the numbe. - interior faces is
small.

The article is organized as follows. In Section 2, we trod- ce the notations
used throughout the paper. In Section 3, we intro wce ... HDG method based
on a new variational principle. In Section 4, —e discus. the implementation
of the HDG method together with loading incremen ation, Newton-Raphson,
and Arc-Length algorithms. In particular, we e. ' .n how to take advantage
of the discontinuity of the hybrid field *~ ~*z=*" antly reduce the size of the
global linear system when thin structures « ~ considered. In Section 5, we
present numerical results to assess the or sergence of the HDG method and its
accuracy on several classical non-l "¢ * sh ls benchmark problems. Finally, in
Section 6, we provide some cor ~''ding remarks.

1

2. Governing equation’ a.. ' notations

2.1. Nonlinear elastici y equ. ‘*c 1s

We consider a de. ~v able :clastic body, occupying the volume Q € R? in the
initial, undeforme ¢ configuiation. The initial configuration €2 is assumed to be
an open and bounded 1. lygonal domain with a Lipschitz continuous boundary
0. This be unds :y is divided into a Dirichlet boundary I'p and a Neumann
boundary "p suc. that 90 =Tp UTx and I'pNTxy = (. The material position
vector i+ der oted (X)), with X denoting the reference material coordinates.
Unde g.ven . dy forces f, prescribed tractions ¢ on I'y, and prescribed dis-

placy ments ¢ p on I'p, the elastic body undergoes a deformation satisfying the




O©CoO~NOUIAWNER

75

80

85

following static equilibrium equations

-V-P=Ff in Q2 (1a)

F V=0 in Q, (1b)
ov .

P—ﬁ—o mn Q7 (IC)

© = p, on . pn. (1d)

PN =t oni - (le)

Here, F' is the deformation gradient and . is v~ .rst Piola-Kirchhoff stress
tensor. The gradient V, and the divew~~~- T  operators are defined with
respect to the initial (undeformed) material « ~ordinate system. And N is the
outward normal on the undeformed bo.'v - artace. We assume that the material
properties, applied loads and boun.'x. 7 co. ditions are sufficiently smooth.

We limit the scope of this -ticle (o hyperelastic materials. In particular,
we assume that an elastic potentias mergy function ¥(F') exists as a function
of the deformation gradie .o, a. 1 that it is related to the first Piola-Kirchhoff
stress tensors through the -elatic . (1c).

For the applicatior s co” sidered in this paper, only the Saint Venant-Kirchhoff
and the Neo-Hookran .. mer lastic models will be considered. Their respective

elastic potential u.. tions are given by
A 3 2 2 . .
U(F)=-(tr] )*+ ptr(E?) Saint Venant-Kirchhoff  (2a)
‘ A
U(F) - g (tr(x"F) -3 -2InJ) + §(ln J)? Neo-Hookean  (2b)
where Y, ) .+ Lamé parameters of the model, J = det F' is the the Jacobian,

E = L(FT." —1I) is the Lagrangian strain tensor, and I the second order

i __tity vousor.

2.2/ _proximation spaces

We assume that Q is divided into a partition 7, of disjoint elements K,

a..d introduce the set 07, = {OK : K € T}, the set of internal faces & =
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{0K;,N0K; : K;, K; € Ty}, the set of boundary faces E}? ={0K; "Q:n, €Tp},
and set of all faces &, = &7 U 5}?.
We denote by Pr(K) the set of polynomials of degrec ¢ most k whose

support is the element K., and introduce the following I roken ; olynomial spaces

Vi, = {G e [L* ()] : G|k € [Pt v X € T}, (3a)
W), = {w € L2 () : w|g € Pr(K)%, V.o € T}, (3b)
M, = {p € L&) plp € P F) 'F - &}, (3¢)

where L?(D) is the space of square integ. ble functions on D. We have chosen
equal polynomial degrees for vector, t ... = ~nd trace spaces. However, the HDG
framework is quite general and, ir princ Hle, it allows for other approximation
spaces such as the Raviart-Thomas an. the Brezzi-Douglas-Marini spaces as
noted in [48, 49].
Finally, we define various inner products for our finite element spaces
(u,v) g ::/ u - vdQ, (u )7, = Z (u,v)x, Vu,v € L?(Q)¢,
K KET,

(G, H)k ::/ G:.71 G H)p =Y (G H), VG HeL Q)"
K KeT,

(1. mox ::/ penlT (wmer, = Y (wmox,  Yu,m € LX(OT)"
= KeTh

In the next sec.’ m, we will define the HDG method for solving the problem (1).

3. Hybria. at.e discontinuous Galerkin formulation

3.1. Variati nal principle

As (7plained in [16], the HDG method for nonlinear elasticity can be seen as a
L. ‘nimi- ation problem of an energy functional. The functional proposed therein
1= « “unction of the deformation ¢ and the deformation traces ¢ := ¢|g,, with

Ye deformation gradient being retrieved via the use of the DG-derivative [5, 16].
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We present here an alternative 4-variables variational principle v.. ~t cawn be used
to derive the same HDG equations, without making use of “ ne )f=-derivative.

This variational principle is associated to the following tu. - ional defined for
fields (¢, P, F, @) € W), x V}, X V}, x My,

H(QO,P,F,@) = (‘I’(F)vl)Th + (Pv (VQO— F))’

1

— (PN, (¢ —®))or, + §<(<P — 2 7(p - @), (5)

- (fvSO)Th - <t7¢>FN + %«Sﬁ — ¥, )aT(Sa - ‘PD)>FD7

where 7 is the stabilization matrix. The firs. “erm c.u the right hand side corre-
sponds to the internal energy of the elast” L., vue second measures an energy
associated to the mismatch between Vo ana ™. The third and fourth terms
measure an energy related to the jump o’ the solution at the elements bound-
aries. In particular, the fourth teri. .. tvp.cal of the HDG formulation. As an
energy quantity, it has to be pc .~ i« the matrix 7 has to be symmetric def-
inite positive. The choice of 7 crucia.’y affects the performances of the method
(see discussion in 3.3). T .e tu" term is the energy related with the external
body forces. Finally, the . >st tv o terms are the energies associated with the
imposed tractions ar . dis placements. Although the Dirichlet boundary condi-
tion is applied wea’ly he ». *, could be applied alternatively in a strong manner
through a suital .e 1. ~dification of the space Mj,.

Interesting’y, he variational principle (5) becomes the Hu-Washizu principle
when ¢ = ¢ « ~ ;. Moreover, if F = V¢, it becomes the standard total energy
used for < onti wuous Galerkin displacement formulations (see for instance [50]).

We now ‘efir ¢ the directional derivative of II with respect to its first variable

and n the < 'vection w as

. 0 .
Dill(e, P, F, @)lw] := o-Il(p +ew, P, F, )|, (6)
e=0

tc anv w € Wj,. The directional derivatives D>II, D3Il and D4IT with respect
u .. : other variables can be defined in a similar way.
We can now express the HDG equations as a variational principle. The HDG

approximation (¢, P, Fp, @n) to the exact solution (¢, P, F, @) is the element
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of the approximation space Wp, x Vi, x Vj, x M, that locally minin. 7es ti. energy

130 functional I, that is making all the directional derivatives s* nu1 #neously equal
to zero.

Thus, for the first directional derivative, D1II = 0 v .elds t! = following HDG

approximation
(Pn, (Vw))7;, — (f,w)7, — (PaN, w)or, + (T~ = @.),w)or;, =0,  (7)
for all w € W},. By introducing the numeric~l tractio = traces
P,N := P,N — (¢, — ¢, on 0Ty, (8)
135 we can rewrite (7) as
(Py, (Vw))7,, — (f,w)7,  (PuN,w)or, =0, Yw € W, (9)
For the second directional . ~iva.l =, setting DoIl = 0 we get
(Veon —Fr), G, ((en—@n,GN)or, =0, VG €V,
where the gradient ter 1 can e ntegrated by parts to obtain
—(en,V-F)y, — (n, G, + (Pn, GN)or, =0, VG € V. (10)

The vanishing cona. ion for third directional derivative, D3Il = 0, yields

OV (Fy)
OFy,

( - Ph7 Q)Th = 07 VQ S ‘/h- (11)
And ina’y, e forcing D4Il = 0, we obtain

(%N, p o7, — (&, )0y + (T(P1 — @), )T, =0, Vp e My.  (12)

,.2. W-ak formulation

The HDG solution satisfies equations (9), (10), (11) and (12), which we

g .ol now in a more customary fashion : the HDG method seeks an approxi-
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mation (@n, Pn, Fr, ¢n) € Wi, x Vi, x Vi, x M}, such that

(Py,Vw)7, — (PoN,w)or, = (f,w)r, Yw < Wy, (13a)

(Fn,G)75, + (o1, V- G) 15, = (@1, GN)o7;, =0 VG -V, (13b)
ov

(Ph7Q)7—} - (77Q)7—h = O V‘J € Vh) (13C)
oF},

(PN, ) omary + (T(&n —@p) w)rp = #'ry Y€ M,, (13d)

where the numerical traction traces are
I/DZN = P,N —1(p — ¢, on dT,. (13e)

Note that the equation involving the traces \~?d), enforce both the boundary
conditions (Neumann and Dirichlet) a. 4 .he jump of P, N to be zero on the
internal faces. This last condition » ~om. aonly referred as the conservativity
condition.

The HDG method presented in v..’s article is therefore similar to [15, 16]. Tt
differs from [11] since no ¢ ypro. ‘mation of the pressure field as such is made in
our formulation.

Although Fj, and 2, e considered here as separate variables, P}, (F},) can
be computed elem ntw. ~ w'ch equation (13c). Therefore, in the remainder of

this paper we wi'1 v nsider only (yn, Fr, @) as separate variables.

3.8. Choice fth stabilization Tensor

The cl vice of .. 2 stabilization tensor T plays a crucial role in both the accu-
racy ana "€ stab ity of the method. A very large 7 means a strong penalization
of tb_ inter element discontinuities, in which case the HDG solution becomes
very lose te a conforming continuous solution. Therefore, for large 7, the HDG

olutior mimics the good and bad properties of conforming methods. Among
1e goo . ones, the coercivity is ensured, and hence the stability of the linearized
v "'em. Among the bad ones are the sensitivity of the numerical solution to
he chosen mesh and the various locking phenomena (volumetric and thickness-

related lockings). In particular, the thickness-related lockings, i.e. shear locking,
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membrane locking and trapezoidal locking are often too severe .~ man legacy
volumetric finite elements applicable to shell problems. The e ei e~ts are briefly
illustrated in subsection 5.3.2.

On the contrary, for smaller values of the stabiliza’ .on pa ameter, the DG-
based methods have shown a better accuracy than th. '~ CG counterparts, as
allowing jumps of the solution at the elements bouw dari ., rovides a mechanism
that significantly mitigates the various locking 1 ~tholooie . This advantage has
justified the over-cost of the DG-based approximat. ms. However, it comes
with the risk of loosing the coercivity of the disc. “~ problem, which translates
into either a non-convergence of the No=*~= - srithm, or into a converged
non-physical state of deformation (see [16]). Therefore, an ideal T would be
large enough to ensure the stability, vh'.e being small enough to retain an
optimal accuracy. How to automai -.."'v c. ose the optimal stabilization is still
a theoretical issue which has be ~» nari ally addressed in [18] by providing lower
bounds for 7 and for simplex mesn. - Although a theoretical estimate of T is
beyond the scope of this  apc. we hope to provide some practical insights to

choose an appropriate st«’ ‘lizatic a.

3.8.1. Review of son.~ s'abili ation tensors for nonlinear elasticity
Several stabili ~tion strategies have been proposed in the literature for both
DG and HDG anproacn.s. However, all of them were found to be of little use
when nonlin ar s .ell problems are solved with HDG. We now briefly review
them and aentio. what we think are their shortcomings.
The ‘mr.est .pproach [11], based on a dimensional analysis is to choose
T = I wl, (14)

r

“/here . is a length scale that only depends on the discretized geometry of the
v ‘ructur , p the Lamé parameter and I the second order identity tensor. The
2 *issue is the choice of L.. For a shell structure problem, there are at least

hree different length scales candidates: the typical size of the whole structure L,

the element size h and the thickness t. Numerical experiments strongly suggest

10
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that h $ L. < L. Indeed L. = t usually gives an over-stitt '*scre.. model
and underestimated displacements, while the coercivity mas be r<t for L, ~ L.
Our experience has shown that, although L. may be dete. ~ med after a few
trials, L. =~ h is a safe default choice and is always s .tisfact ry for moderate
strains. However, this relation has to remain loose si. e the accuracy of the
approximate gradient will deteriorate if L. = h frr ver, “ne meshes (see [10])
and the postprocessing benefit will then be los® Theref re we understand L.
as the typical mesh size of a coarse mesh able to cature the features of the
solution. If the mesh is further refined to g + a L *“*_r accuracy, L. is kept the
same.

However the stabilization tensor (14) usu.''v fails when large strains occur.
For instance, the cylindrical test cases or sented in section 5.3 need a greater
stabilization near the applied poin  .°vces which means that the stabilization
should adaptive, i.e. depending ~n the 'ocal state of strains/stresses, as already
noted in [51, 52].

The first attempt [15] t ue.”~u an adaptive T was to make use of the material
fourth order elasticity tew.. ~v C, 'y defining

Tk = = T NN, with  [C] v
= ) 4 i — .
K I/C & A TTKL 8E1,]6EKL

(15)
However, this st- 0. "~ation is also insufficient for large strains, notably when a
Saint Venant-¥"_ ~hhoff model is considered since C is then constant.

Alternat. =ly che viscous stabilization designed for the Navier-Stokes equa-

tions [53] could be used, with

- N;NL. (16)

Althc »eh t) s stabilization should intuitively grow with the local deformation
;radier.” there is no control on the smallest eigenvalue of T and it may actually
L ~ome very small, making the model unstable.

.l three of the above stabilizations fail at some point for the problems
. resented in section 5.3. See the Appendix C for the detailed results.

Another DG stabilization strategy [51] is based on the observation that the

11
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regions where the numerical instabilities develop usually coinci’ ~ wit.. the re-
gions were the elasticity tensor becomes indefinite. A sme 1 aironnt of initial
stabilization 7y is then increased with an adaptive term . - oortional to the
lowest negative eigenvalue of the local elasticity tensor

s NCAY
T—LC<TO_pmm <8Fh‘\‘/7 (17)

where [ is some scaling factor, and ppi, is the minir 1 negative eigenvalue

oPy,

of the tensor oF,

locally evaluated, with p .i, = 0 f the eigenvalues are all
positive. This approach worked successfuliy or la._ e strains experiments con-
sidered in [51]. However, our numerica’ _____....cnts reported in Appendix C
show only mitigated results for the shell proble. °s considered in this paper, since
the parameter 8 has to be tuned case . 7 ase.

Lately, a lower bound for the H. . <ta ilization has been derived in [18] for

nonlinear elasticity

r=~T with T>%+@, (18)
hrp | hp

where hp if the diameter o1 e fo e, C, is a local constant depending only on the
local mesh propertie, an . Cy is a local constant depending on both local and
global eigenvalues Hf the ~1# ticity tensor. The authors propose an astute way
of solving the g’ ba. ~igenvalue problem by using an embedded Discontinuous
Galerkin appr oxi 1ation. Moreover, although the optimal convergence of the
gradient may . ~ ost since this stabilization is of order 1/h, it can be retrieved by
using loc uly 7 polynomial degree k+1 in the elements where the elasticity tensor
is indefinite.  He wever, this method being designed for simplexes, it cannot be

inclt ded in . ur comparative study.

,.8.2. Proposed stabilization tensor
In t'.1s paper, we propose an empirical stabilization based on the maximum

o .. value of the elasticity tensor, by choosing

1 oP,
= max Ia 1
T op Pme <th> (19)

12
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with ppax the maximum of the largest eigenvalue of the elastic. ~ ten. or eval-
uated at all the Gauss points of a given face. Therefore 7 .s ¢ mstant face by
face and depends on the deformations gradient. This stabi.. - jion is related to
the local Lax-Friedrichs numerical flux for the hyperbc ic pro’ lems. Here are a

few comments regarding equation (19).

e In the linear elasticity limit, the stabilization er or b comes 7 = 2£ (2u+

3A) I. Moreover, when v = 0, it becomes eq. ~1 to (14).

e For shell applications, we could noticr thay ~~r .tion (19) adds a substan-
tial stabilization near the point forces ana e wrinkles, where the onset

of instabilities usually occurs.

e In the nearly-incompressible limi. . nonlinear hyperelastic models, our
experience is that the stabiliz ti.~ has to be significantly increased for
HDG to converge. Equav.~n (12 provides such a mechanism since pmax

will grow as v — 0.5.

All the results preser =d in tl ‘s paper have been obtained using this stabi-
lization mechanism, a’ d select.. g L. along the guidelines mentioned above. For
a detailed compariso.. 2 the performances of the above stabilizations, see Ap-

pendix C.

4. Implem' nta’ 1on

4.1. Loa .ing ncrementation

Our lpaa- ~.trol algorithm 1 is provided in Appendix A. It is based on the
stan lard inc ementation algorithm used in ABAQUS ([54]) with some minors
- lifica.lons. Note that the external forces or prescribed tractions appearing
u (13) ¢ re denoted with the generic term Py,.. However, Py, is not directly
presuaibed, but an incremented fraction of it P = APn.c with the fraction

roefficient 0 < X\ < 1.
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The Newton-Raphson procedure is not allowed to do more ."an 7, .y iter-
ations. If the convergence is not obtained after ny.x iterat’ns, the load incre-
ment is then decreased. On the contrary, if the convergence .. < been sufficiently
fast for the last two increments, the increment magnitv e is tl ~n increased. We

a0 take nmpmax = 20 and Ajnjy = 0.05 as default values. Th.  algo’ .thm is found to
work well for all the test cases we have studied in tl s ar* .c.>. Our algorithm also
gives the final number of load increments n;y,. &~d the te’al accumulated num-
ber of Newton-Raphson iterations nio in order to ge an idea of the method’s

efficiency and stability.

s 4.2. Newton-Raphson algorithm
At each step of the loading algori .. * *he Newton-Raphson procedure is
called to solve the nonlinear system (15 The procedure evaluates successive
approximations (F}, ¢!, @) of the u ku. vns under the current load P starting
from the converged state at the , "evious load (F, %, @%). For each Newton
step [, the system of equations (13) is linearized with respect to the Newton
increments (0F},d¢!,6¢,) € Vi, x W), x Mj,. These increments then satisfy
the system

(O, Pn)dFy, Vw),
(05, PLN)E ), - (9, PuN)S @, + (9, PuN)S@),, whor, = ri(w), (20a)
VB G+ (093, V- G) 7, — (0@, GN) o, = 72(G),  (20b)
W m PO Q)7 — (0, (05, U (B))OF, Q) =0, (200)

(0 Py N) = (0, PuN)S@), + (9, PuN)OBh,. o
H(TO@, vy, = rs3(p),  (20d)

for ai. (G,C ,w,pu) € V), x Vi, x Wy, x M, the right-hand side residuals are

sdiven b -
711\‘“’/ = (f7 w)Th - (P}lw Vw)Th + <Ph(Fflm 9027 ¢Z)N7w>37'h,7 (213“)
'rQ(G) = _(Fha G)Th - (soiw V- G)Th + <¢§m GN>3Thv (21b)

Tg([.t) = <ta H’>FN - <Ph(F}lm ‘Pim @;r)Na H>8T}L\FD - <T(¢i1 - ‘PD), I”I’>FD' (21C)

14
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All the residuals (21) are evaluated at the current iterate (I'h, dl.‘,gp;l). The
external forces f and tractions t are given by the current 0ac P. Note that
equations (20a), (20b) and (20d) are the linearization of equ *.ons (13a), (13b)
and (13d) respectively, while equation (20c) is the diff' rentia’‘on of (13c) with
respect to 0F} and yields the sensitivity of Pj, with . spect to Fj,. In (20),
(0F,), (0p,*) and (0g, ) denote the partial deriv tivec . th respect to F},, s
and @y, respectively.

After solving (20), the numerical approximations . re then updated
(Bt e @) = (FL el #h) - (O, 604, 0¢4,) (22)

where the coefficient « is determined by a .’ne-search algorithm in order to
optimally decrease the residual. This | o .ess is repeated and [ is incremented

until the residual norm is smaller 1~«. a g ven tolerance, typically 1077,

4.3. Linear system resolution

At each step of the Nev ..~ -Raphson algorithm, the linearization (20) gives
the following matrix sys. m to b« solved
[al B (60 R,

I ! o~ 1]’ (23)
o o) \sU R,

(
\

where U and oU' are e vectors of degrees of freedom of (6F}, 64 ) and 6@},
respectively. Foll y,wing the HDG resolution strategy, the system (23) is first
solved for he tr« ~s only §U!

K!'SU' = R, (24)
whei » K! is t 1e Schur complement of the block A and R! is the reduced residual

K'=D' —C' (A) "B, R =R,-C (A)"RL,. (25)

1 .o educed system (24) involves fewer degrees of freedom than the full system
23). Moreover due to the discontinuous nature of the approximate solution

(Fh, n), the matrix Al and its inverse are block diagonal, and can be computed
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Figure 1: On the left is represented a simple thin rectang: 'ar cruct wre. The support of the
hybrid unknowns 5¢lh is on all the faces. On the right is ~nresc ' _d, for the same structure,
the support of the internal DoF 6[7} in dark gray and the supp rt of the boundary DoF 15(7][3
in light gray. Only the internal DoF are actually g'obal,, ~our ed.

elementwise. Once §U! is known, the o.~er unknowns U’ are then retrieved
element-wise. Therefore, the full sys .. ‘9?) is never explicitly built, and the
reduced matrix K! is build directly in an lementwise fashion, thus reducing the
memory storage.

The global system (24) can v turv..r reduced by eliminating the unknowns
located on the boundary faces. If we denote the unknowns on the boundary
faces by 06U L and the un’.nowns »m the the interior faces £ by 5U L such that

§U! = (5(7}375@\'})T, the sysiwe » “24) becomes

/- =
b 1\ (505 (1) o
A

The geometric w  1pports of 5(7% and 06U L are illustrated in Fig 1. Thanks to
the discontin. ~, nature of the approximation space M}, the matrix KlB B is
block dia jona™ and each block can be inverted independently. Therefore, we can

efficiently . Juc’ the system (26) to
K46UL = R, (27)
vhere
ey = K7 - Kig (K%B)il Kpr and Ry =Rj —Kip (KlBB)il R, (28)

Cor typical thin structures, the size of the global system (27) is about half of
the original system (26). As a result, the global linear system (27) resulting
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from the HDG method is cheaper to solve than those from o. =r vo. imetric
finite element methods. This makes the HDG method ide «lly smitea for thin

structures.

4.4. Coupled degrees of freedom

Let us consider a simple thin structure such as = rectangular plate, as shown
in in Fig. 1. This plate is divided into a regular 2D "4 of ¥ times Ny hexahedra
elements (with only one element in the thickness «.-ection). Such a structure
contains a total of Ng(Ny + 1) 4+ Ny (Ny 4+ 1) + 2Nyi., faces. Assuming that NDOF¢ace

degrees of freedom are associated to each face, . =re is a total of
NDOFsace [Nx(Ny 4 1) + Ny(hy - 1) + 2Ny Ny | (29)

degrees of freedom in the 60U vect~r of 1. e reduced system (24). Removing the
degrees of freedom located on the bo "na. -y faces implies that 2(NyNy + Ny + Ny )
faces are excluded. That reduces “he vu.al number of degrees of freedom on the

interior faces to be
NL "Feace [} o(Ny — 1) + Ny(Ny — 1)] (30)

which is the size of t e v/ ctor 5U L in the twice-reduced linear system (27). We
see that, in this ce e, elin. ~ .ting the boundary unknowns results in a reduction

by half in the tc.al n. mber of coupled degrees of freedom.

4.5. Arc-Le: oth lgorithm

Our Ir adirg algorithm 1 is known to be unstable when snap-through be-
haviors ay. > ar. "he Arc-Length algorithms ([55, 56]) address this shortcoming
and .re mu h more robust in the presence of complex snapping behaviors. We
propc e her an adaptation of the Arc-Length method to the HDG method.

The description of the Arc-Length method 2 is given in Appendix B. It
1. ~kes " ses of two user-defined parameters (¢, Al). While the parameter 1 does
u . ~ave much influence on the results, the characteristic length Al controls
e increment size, and has to be small enough to capture the snapping behav-

ior. The classical Arc-Length method makes use of the global vector of nodal
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displacement increments d¢py, in the process of determining bo.. the ..ad and
displacement increments. Interestingly, in the context of th- Hi1 (* method, the
smaller vector of hybrid increments d¢@y, is used instead. The ~ .mputation of §A
by solving a quadratic equations gives two possible in remer."s and the choice
of the best increment is then based upon a comparis n wit': the previously

converged increments (see e.g. [50]).

5. Numerical examples

In this section, we discuss the behavior o1 “he present HDG solid element
formulation. We compare our numerical rc "1lts with shell elements or analytical
solutions, when available. When a co. ... "~ns with ABAQUS shell elements is
shown, it implies that a Saint Ven~nt-Ki hhoff constitutive law has been used,
in order to be consistent with the A.> Ay, 7JS-S4R element formulation [57]. We
use the loading algorithm 1 by « *au, and all results presented in this section
make use of the proposed stabilization (19).

Whenever a point for e is ap, lied, it is implemented as a nodal force. The
node is located on the exter. ~1 (resp. internal) surface for an outward (resp.

inward) force, in orcd v tc avo’l the unpleasant det(Fj,) < 0 locally.

5.1. Numerical on. maence test

In order te 1llu trate the convergence of the HDG method for thin structures,
we propose th. ollowing numerical test. A thin square plate of length L = 1
and thic! aess ¢ = 0.005 is clamped on its four sides. A Saint Venant-Kirchhoff
model is cow. idrred with p =1 and X\ = 2, i.e. v =1/3. Body forces and trac-
tion: are pre cribed to the plate such that the exact solution for the deformed
corfigu. *Lnis uy = X,uy =Y, and v, = Z + 0.4sin(nX)sin(nY’), where
X = (X Y, 2)T are the coordinates of the undeformed plate. Fig. 2 shows the
unu. ormed plate, and the plate at maximum deformation.

We use the postprocessing presented in [11] to get a more accurate approxi-

n.ation of the deformation by making use of the approximate gradient. For each
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Figure 2: Top left: undeformed sque. ~ v.o "op right : deformed square plate at maximum

load. Bottom left : incipient instability .. - an insufficient penalization (14) at 0.27 Pmax.
Bottom right : distribution of p ... ~t maximum load. Results are represented here for k = 2

and a 8 X 8 mesh.

K € Ty, we build the pos proressed variable ¢} € Pj1(K)? such as

(V5 Yw)p, = (Fp,Vw)T,,, Yw € PkH(K)d (31a)

(Ph: V7 = (pn, )73, (31b)

The ta’ le 1 s. ~ws the errors of the HDG results and the estimated orders of
convergr 1ce e.o. ) when the mesh is refined uniformly in the e, and e, direc-
tions. -1l sim. ‘ations make use of only one element in the thickness direction.
Poly vomial ¢ -ders k € {1, 2,3} are considered, and the adaptive stabilization is
s ven by (19) with L. = 0.5 as characteristic length.

The >ptimal order of convergence k + 1 is observed for the displacement
at all polynomial degrees. The observed order of convergence of the gradient

aries between k + % and k + 1. Accordingly, the postprocessed displacement

converges with orders between k + % and k+2. Note that, by varying the values
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of t and v, slightly different orders of convergence may be ob. ~ved, but the
previous observations remain valid. See, for instance, the :.o.c ‘n the nearly-
incompressible limit (with g = 1 and v = 0.49999) reporte. n table 2. Also,
in order to get an accurate postprocessing, L. has to b . large ~nough, typically
L>L.>t.

Interestingly, for a linear elastic body and fc  the .. ~sh sizes considered,
the optimal orders of convergence are achieved for a sm .l uniform 7;; < 0.5.
However, that level of stabilization would be clearly i1 -ufficient in the nonlinear
case and the Newton algorithm would quick’>" dive *~_. Even the higher amount

14 £ at some point before P ax

of uniform stabilization given by (14) v
is reached. On the contrary, our adaptive s. bhilization is successful by using
higher values 8 < 7;; < 19, and the are ‘s - /here the stabilization is large seems
to match the areas of incipient ins. . litie. (see Fig. 2, bottom). Therefore, we
believe that the discrepancy b-*ween "he amount of stabilization expected to
converge optimally, and the one neec "1 to stabilize the nonlinear model at finite
strains is the cause of the suyg’ *ly suboptimal orders of convergence observed
for the gradient.

Although the pos' pror :ssing may not always achieve an extra full order of
convergence, it alwys . ‘mp .tes a significantly more accurate displacement, at
a negligible cost. v “herefore remains a attractive feature of the HDG approach.
Consequently, " the results presented in this paper are the postprocessed dis-

placements.

5.2. Ca tile  er p oblems

5.2.1 uvantilever subjected to a lifting force
L * us cc isider a cantilever of length L = 10 m, width [ = 1m and thickness
= 0."m, with mechanical properties E = 1.2 x 106kPa and v = 0. The
¢ ntilev r is clamped at one end, and is subjected to a lifting force P = 4kPa at
« “her end (see Fig. 3). The lifting force is usually a distributed line force when
hell elements are considered (for instance [58, 59, 60]). Here the corresponding

force is applied through a Neumann boundary condition prescribing the traction
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k | mesh size h | |l —n| | eo.c | ||F — F| [ €.0 ﬂmgo —@r]l | eo.c
0.5000 2.08e-03 - 2.15e-02 | - 2.38e-03 -
0.2500 8.54e-04 | 1.28 | 7.06e-03 | '.61 | 2.88¢-04 | 3.05

1 0.1667 3.99e-04 | 1.88 | 3.80e-.” .93 1.01e-04 | 2.58
0.1250 2.34e-04 | 1.86 | 2.44e-u. 1.54 | 4.80e-05 | 2.60
0.0833 1.08e-04 | 1.92 1.."=-03 1.54 | 1.66e-05 | 2.62
0.0625 6.15e-05 | 1.94 ' o .. 04 | 1.53 | 7.77¢-06 | 2.63
0.5000 3.04e-04 ‘ 7 14e-03 - 1.16e-04 -
0.2500 3.19¢-05 | 3.25 | ..66c-04 | 3.01 | 8.32e-06 | 3.80

2 0.1667 1.01e-05 | 2.°% | 8.79¢-05 | 2.73 | 1.77e-06 | 3.81
0.1250 4.34e-"= 1 292 | 3.80e-05 | 2.91 | 5.69e-07 | 3.95
0.0833 1.37>-06 97 | 1.17e-05 | 2.91 | 1.16e-07 | 3.93
0.0625 F52e-07 298 | 5.13e-06 | 2.87 | 3.77e-08 | 3.90
0.5000 :7’,6-05 - 4.69e-04 - 2.15e-05 -
0.2500 ' 2.70e-u6 | 3.30 | 2.19e-05 | 4.42 | 4.26e-07 | 5.66

3 0.1667 5.0.e-07 | 4.01 | 5.44e-06 | 3.43 | 6.34e-08 | 4.70
0.12,0 1.74e-07 | 3.89 1.90e-06 | 3.66 1.76e-08 | 4.45
0 4833 3.53e-08 | 3.94 | 4.24e-07 | 3.69 | 2.95¢-09 | 4.41
M OF 25 1.13e-08 | 3.96 | 1.48e-07 | 3.64 | 7.86e-10 | 4.60

Table 1: Hist -y of convergence of the HDG method for the sinusoidally loaded plate, and for

a com. ‘ressible material (v = 1/3).
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k | mesh size h | |l —n| | eo.c | ||F — F| [ €.0 ﬂmgo —@r]l | eo.c
0.5000 2.22e-03 - 2.37e-02 | - 2.43e-03 -
0.2500 6.75e-04 | 1.72 | 7.86e-03 | '.59 | 3.06e-04 | 2.99

1 0.1667 3.18e-04 | 1.85 | 4.25e-.7 ~.o1 1.20e-04 | 2.30
0.1250 1.87e-04 | 1.84 | 2.72e-uc 1.56 | 6.07e-05 | 2.38
0.0833 8.66e-05 1.90 1.-.%=-03 1.56 | 2.26e-05 | 2.43
0.0625 4.96e-05 1.94 ‘ v ... 04 1.56 1.10e-05 | 2.48
0.5000 2.72e-04 ‘ 7 40e-03 - 1.14e-04 -
0.2500 2.61e-05 | 3.35 | ,.64e-04 | 2.72 1.35e-05 | 3.42

2 0.1667 7.81e-06 | »."% | 1.19e-04 | 2.75 | 2.84e-06 | 3.84
0.1250 3.26e-"° | 3.04 | 5.20e-05 | 2.89 | 9.00e-07 | 3.99
0.0833 9.57>-07 .04 | 1.59¢-05 | 2.91 | 1.78e-07 | 3.99
0.0625 297e-07  3.03 | 6.88e-06 | 2.92 | 5.70e-08 | 3.97
0.5000 D7 e-0F - 7.08e-04 - 3.64e-05 -
0.2500 ' 4.47e-u6 | 3.42 | 3.08¢-05 | 4.52 | 6.40e-07 | 5.83

3 0.1667 8.5.e-07 | 3.99 | 5.71e-06 | 4.15 | 6.24e-08 | 5.74
0.12,0 2.88e-07 | 3.90 | 2.07e-06 | 3.53 1.59e-08 | 4.74
0 4833 5.81e-08 | 3.95 | 5.06e-07 | 3.47 | 2.67e-09 | 4.40
M OF 25 1.85e-08 | 3.97 | 1.84e-07 | 3.50 | 7.63e-10 | 4.36

Table 2: Hist -y of convergence of the HDG method for the sinusoidally loaded plate, and for

a nea. 'v-incom sressible material (v = 0.49999).
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. . .
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C tilever tip deflections (m)

Figure 3: Cantilever subjected to a lifting force. Lei. canuuever undeformed, and under the
maximum deformation, for a 8 X 1 mesh and wi*> » 7 ght : corresponding deflections of
the cantilever’s tip, recorded at point A. Results ic » 8 x 1 S4R shell elements are reported

as a reference.

t = AP with A the cantilever end ¢ I he adaptive stabilization (19) is used
with L, = 1m. The displacen. -... ~¥ e lifted tip are reported on Fig. 3 and
show a good agreement when compa. 2d to S4R shell elements when quadratic
HDG elements (k = 2) arr usea. For linear HDG elements, at least 50 elements

would have been necessary '~ ge’ reasonably accurate results.

5.2.2. Cantilever suby. - ed t  a bending moment

The followine « ample is a very popular benchmark considered by [59, 60]
and others. T" - purpose of this benchmark is to test the modeling of large
bending defc 'ma’.ons for thin beams. We consider the same cantilever as before,
but slight’y lenger (L = 12m). Instead of a lifting force, the cantilever is now

subject w * me .imum bending moment Myax = 29% x 1000kNm~! at its

othe' end (~ee Fig. 4, left). The bending moment is numerically applied as
a Ne. mann ooundary condition, prescribing on the tip surface an equivalent
ormal traction ¢ varying linearly in the vertical direction. For an applied
L mer’ 0 < M < M.y, analytical solutions give the horizontal and vertical
u .. «cements of a tip point A located on the mean surface

Mmax . 2T M Mmax 2 M
La=1L sm(MmaX)—l—L and WA:L27TM (1—005( max)).
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Figure 4: Cantilever subjected to a bending mome.. Left : cantilever undeformed, and

under the maximum deformation, for a 8 X 1 =~ ... w. w with & = 3. Right : corresponding
deflections of the cantilever’s tip, recorded at point .° The exact solution is also shown, as
well as a solution performed with a 16 X 1 n. sh @ . . = 2.

The displacements of the tip are 1 ‘oo, “ed on Fig. 4, right, for both quadratic
and cubic HDG elements, and v..~ aua,cive stabilization is the same as before.
Converged results are obtained with a 16 x 1 mesh for quadratic elements and

a 8 x 1 mesh for cubic el' ments.

5.8. Shell problems

5.8.1. Slit annula plate

The slit annt iar p.. “e benchmark checks the accuracy of the combined bend-
ing and torsir nal leformations. Let us consider a slit annular plate of internal
radius r = 61, xternal radius R = 10 m and thickness ¢t = 0.03 m clamped at
one end ‘ ( th' slit and subjected to a lifting force P at the other end (see Fig. 5,
left). The r “» e with a maximum magnitude 0.8 kN is applied as a traction
dist1 buted « ver the slit end. The material parameters are E = 21 x 10°kPa
ard v -~ We use L, = 1m, for the adaptive stabilization. For k = 2, the
:onverg: 1 HDG results on a 6 x 30 mesh are in excellent agreement with the

rete. c.ace results computed with S4R shell elements (see Fig. 5, right).
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Figure 5: Slit annular plate subjected to a lifting force. Left : . ~te undeformed, and under the
maximum deformation, for a 6 X 30 mesh and with k2. Rig it : corresponding deflections
of the lifted end, recorded at points A and B. A refe. -ce solution computed with a mesh of

10 x 80 S4R shell elements is also displayed.

5.3.2. Hemispherical shell with a 18° . ole

We present here the hemisphe, - 1 she™! problem considered by [61, 59, 27,
60, 26, 30] and others. This henchm vk tests the ability to model combined
large membrane and bending defor.. ations in double-curved shell geometries.

The structure studied . . “emispherical shell with a 18° centered circular
hole. The material pro. vties c¢ nsidered are E = 6.825 x 10" kPa, v = 0.3.
The radius of the her isplare 15 R = 10m and its thickness is ¢ = 0.04m. The
shell is subjected to 1. -~ alt rnating radial point forces, whose magnitude are
P = 400kN each | ~e Fig. 6, left). Due to the symmetries, the computational
domain is only ~=e quarter of the full problem. Symmetry boundary conditions
are then apy ied see Fig. 6, right).

The H )G soluv. i for the deflections at the nodes A and B is computed with
an 8 x & ~¢h, 15ing polynomial order £ = 3 and the adaptive 7 is computed
with o, = ¥m. For k = 2, converged results are obtained for a finer mesh of
20 x .0 elerr nts. The results, given in Fig. 7 show an excellent agreement with

ne ref rence solution presented in [60] which is computed with 16 x 16 S4R
s ell elr nents.

"~ order to illustrate how the right amount of stabilization mitigates the

ncking pathologies, we also display the displacements obtained by using a very

large 7, = 1000u instead of the adaptive 7, for the same quadratic mesh.
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Figure 6: Left : cylindrical shell dimensions an' app.. 1 - vint forces. Right : reduced

computational domain and boundary conditions. Here a ~ X 8 mesh is used, with k = 3.
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Figure 7: Left : deforr ed . nisp’ erical shell under maximum load. Right : radial deflections

of points A and B ¢ ~ompared against a shell elements reference result.

Clearly the r eflec jions become severely underestimated and the HDG model
locks. As -ontu. ous Galerkin can be regarded as a limit of HDG [48] when

T — 00 we / xper ; that similar deflections would be obtained with a standard

contir- us G rkin method.

5.8.8. Pl gt of an open-end cylinder

The »ullout of a cylindrical shell with free edges is a benchmark used to
che' Lne accuracy in modeling large bending and membrane deformations. We
consider a cylinder of radius R = 4.953 m, length L = 10.35 m and thickness

t = 0.094 m, subjected to a pair of symmetrical radial pulling forces P whose
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Figure 8: Left : cylinder dimensions and applied po. * force = Right : reduced computational

domain and boundary conditions. Here a 12 X 18 mesh ic  spresented, and k = 2.

maximal magnitudes are Py, = 4 - 1o . Material properties are £ =

10.5 x 10°kPa and v = 0.3125. C ~ving .~ symmetries, only one eighth of the
structure is modeled, using the suit. ble symmetric boundary conditions (see
Fig. 8). Based on the mesh size, "2 characteristic length is L. = 0.4 m.

Accurate results are obtained with a 12 x 18 mesh for quadratic (k = 2)
elements (see Fig. 8 and 9). For k& = 3, a similar accuracy is obtained with a
8 x 12 mesh. Note that, althou_ ' refining the mesh does not lead to a significant
modification (< 1%) ~f t’.e de tection of points B and C, it will slightly increase
the deflection of » »int A, wnere the force is applied. This is due to a local 3D
effect, which is amplific. when the support of the point force shrinks.

The disp’icen ents of all three points A, B and C, match very well the
reference s slutio.. ~omputed with 24 x 36 S4R shell elements (see Fig. 9).

The abl C.f gives the solver metrics as well as a comparison between
differr .. stabi. ations. Interestingly, by using the same characteristic length L.,
mosi stabiliz tion functions would fail to reach Py,,x. By using (19), a sufficient
# aovunt o1 stabilization is provided near the point force, and the number of load

ncreme ts is nijy,. = 26. However, Fig. 9, right, displays more data points for

the sake of comparison by using artificially lower load increments.
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Figure 9: Left :

elements mesh. Right : radial deflections at points A, . ~nd C are compared against a shell

elements reference result.

Figure 10: Left :

computational dr

5.8.4. Pir hed ¢, “nder with end diaphragms
The , ‘nc'wed ¢ ylindrical shell is one of the most demanding classical bench-
mark uat can pe found in the literature. Simo et al [62] explained that the
a5 diffic 'ty cories from the inextensional bending and the complex membrane
<.ates of stress. The deformations involve the development of wrinkles, which
«ve quit : hard to model with low order elements or with coarse meshes, and

~~<t of the finite elements formulations have a hard time converging for this

o o o o e o o
w 2 @ o N ® ©

Normalized pulling force P/Pmax

o
N

articular example (see for instance [28]).

480 We consider a cylinder represented on Fig. 10, whose radius is R = 10m,

28
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sylu. "~ical shell dimensions and applied point forces. Right :
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1 o 2 25 3 35 4 45
r.~ldisplacements of points A, B and C

deformed cylindrical shell under max.. “m .oad, for a 12 x 18 quadratic

in and boundary conditions. Here a 48 X 48 mesh is used, and k = 2.
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Figure 11: Left : deformed cylindrical shell under m« “mun. .vad, for a 24 x 24 cubic elements
mesh. Right : corresponding radial deflections at ~~i~+~  and B being compared against a

48 x 48 S4R shell elements reference result (only sc *~ted data points are displayed).

length L = 20m and thickness # = 0. m. The cylinder is subjected to a
pair of symmetrical radial pinching foi.~s P whose maximal magnitudes are
Pmax = 120kN. The cylinder 1s 'oseu with rigid diaphragms on its ends such
that the ends points can only move in the z-direction. Thanks to the different
symmetries in the proble a, only >ne octant of the geometry needs to be mod-
eled (see Fig. 10). Co .verge. v sults are obtained when the octant is meshed
with a 48 x 48 mest for poly .omial order k = 2. Alternatively, for k = 3, the
results converge f.r a coa. er 24 x 24 mesh. We picked L. = 0.25m for the
stabilization. Withouy "he proper adaptive mechanism, most stabilizations fail
for that case or i duce a non-physical oscillatory behavior (see table C.7).

The conpuw. 7 radial deflections at points A and B show a globally good
agreeme .t w'ch te S4R solution, although HDG predicts slightly smaller de-
flectiom~ for .». point A at large deformations. Such level of discrepancies
betv 2en nun =rical methods are however common for the pinched cylinder case
(=._ [63, u=]). For this specific case, the Newton-Raphson procedure converges
-ather s owly and we increased the maximum number of Newton iterations to
50. ror k = 2, the total number of load increments and Newton iterations are
“inc = 90 and nyo,y = 468 respectively, which is comparable to the the S4R
results (respectively 70 and 406, according to [60]).
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Figure 12: Left : full roof structure with bounda-v co.. “tio 5. Right : quarter of the full

structure actually modeled.

5.8.5. Hinged roof

The following numerical experiment vas introduced first in [65] and since
then has been extensively studied as an ~xample of snapping instabilities.

The roof structure is a sectic ~ o1 «, indrical shell hinged on two sides, with
radius R = 25.4m, length L = 2.54m, and angle § = 0.1rad (see Fig. 12). A
vertical point load Py - - 300N is applied at the center of the structure. The
material properties arr E - 31,2.75kPa and v = 0.3. Only one quarter of
the full structure is - 10dr .ed 7 ad converged results are obtained using an 8 x 8
quadratic element mesh. ' e characteristic length is therefore L, = 0.3 m.

As a side ncee, in ~rder to implement the hinged boundary conditions we
found it more pra tical to strongly enforce all the Dirichlet-like boundary con-
ditions (inclua.. » the hinged ones). Therefore, for this specific numerical ex-
perimen’ , thr variational principle (5), the HDG trace equation (13d) and the
space of trac.~ '3) should all be modified accordingly.

" he behe rior of the structure changes dramatically with the thickness of the
re~f re_ . thick roof, i.e ¢ = 127mm, the structure exhibits a snap-through
nstabili y, whereas for a thinner roof, i.e. t = 63.5 mm, a snap-back instability
is ouuerved (see Fig. 13).

The Newton-Raphson algorithm typically fails on either configuration, be-

couse the Jacobian matrix in (23) becomes singular for loads smaller then P, .x.
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Figure 13: Results obtained for a 8 x 8 mesh wit.. » = 4. _eft : radial deflection of point
A for t = 127mm, and comparison against a 16 x 18 S~ shell element result. The snap-
through instability arises at 72.5% of the maximu. = load. Right : radial deflection of point
A for t = 63.5mm compared against a 24 > ._ ' -l elements result. The first snap-through
instability arises around 20% of the total loac - hile the first snap-back instability appears

around 1%.

We therefore use the Arc-Length 'oorithm 2 with parameters

1 N 0.2m if £t =127mm (32)
= ——— — ar =
0.1 |Pumax,

0.3m if ¢t =63.5mm

(4

The converged de..~ cion at the center of the roof, shown on Fig. 13, es-
sentially agree w .» the results obtained using ABAQUS standard S4R shell
elements. The 11 snappig behaviors are properly modeled, and the instabili-
ties are hanc -ed rorrectly by the Arc-Length method. Although the agreement
is exceller , for the “hin roof, the snap-through occurs slightly earlier with HDG
for the t.. "k coof \72.5% of the total load instead of 74% for the shell elements).

5.4. Thick-t in structure

We now present an simple example of a thick solid-thin shell structure. The
tructur : is composed of a thick pillar supporting an arch with a variable thick-
nass (see Fig. 14). The thickness of the arch is 0.5 m at the root, and 0.025 m
& the tip. The 2D geometry presented on Fig. 14 is extruded 0.5m in the

normal direction. The base of the pillar is clamped and an uniform pressure P
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Figure 14: Meshes used for the thick-thin arch structure. + “: cc..se mesh modeling the arch

8 elements, with &k = 2. The pressure is applied on the arch on - Right: fine mesh modeling

the arch with 68 elements, and with & = 3. Refe »nce . ~n"", are computed using the fine
mesh.
Ua Va

Coarse Mesh -0.1411 -0.9796
Reference Mesh | -0.1405 -0.94:2

Table 3: Horizontal and vertical deflec. ~ns ot the point A obtained with a coarse mesh and

a fine reference mesh.

is applied on the upper sn. - of t} 2 arch such that the total integrated pressure
is equivalent to a 100 ykN force. A neo-Hookean model with £ = 200 GPa and
v = 0.28 is used.

Two discreti- av. vs are considered. The first one uses a coarse mesh with
k = 2, modeli o ‘*he arch with only 8 elements. Therefore the element aspect
ratios vary ..~ almost 1 (near the pillar) to 20 (near the tip). A second
discretize 1on usea to generate the reference solution, makes use of a finer mesh
with £ = ¢ 3y 1 sing 68 elements for modeling the arch, the aspect ratio is kept
smal for all the elements. For both meshes, the final deflections of the arch tip
(poin. A4) a~ : recorded. For both numerical simulations, we will take L. = 1m.

The results under maximum load are reported on table 3. The coarse mesh
e. ~ihit a good accuracy for the deflection of point A although the vertical dis-
p avement is slightly overestimated. This example confirms that our approach,

.~aking use of volumetric elements, is indeed suitable for thin-thick structures.
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5.5. Realistic structure: wing mesh

While all the applications presented so far can be easily - an ¢ . ~ single CPU
core, many complex realistic structures will need more compu. tional resources.
We have therefore implemented a parallel version of our m. thod that make
use of the HDG solver previously developed for CFD . ~nli- ations (see [66]).
The global system (27) is solved by a parallel C :ner .1z 4 Minimal Residual
(GMRES) method, using a block incomplete LU ‘BIL™™ ractorization as a left
preconditioner.

We have used this parallel solver to com, -te ti.. deformations of a complex
aircraft wing structure, comprising an up_ .. wuu a 1ower skin, spars and multiple
ribs (see [67] for a precise descriptior of the ¢ ometry). The mesh consists of
13382 hexahedra whose aspect ratio ve i s between 1.1 and 75. Although the
parallel solver can solve nonlinear p1 “u. s, we consider here a linear application
in order to provide some indice ...~ ~f ‘he the code efficiency in solving a single
linearized step. The linear elastic n.,duli are E = 70 GPa and v = 0.35 for
the whole structure. The wing .ot is clamped, and a traction equivalent to a
200 kN lifting force is appi.. 1 on che the wing tip. A polynomial degree k = 2
is considered, and th . chr racteristic length is set to L. = 0.1 m. Fig. 15 shows
the deformed wing as w."' @ the distribution of the Von Mises stresses.

The parallel oac ~an on 2 Haswell nodes of the NASA Pleiades supercom-
puter, each nc .c eing a 12-cores Intel Xeon E5-2680v3 at 2.50 GHz. The reso-
lution of the ."»¢ ar system lasted approximately 10 min, with GMRES needing
around 17,00 “.erations to converge. The BILU preconditioner, which is more
suited for 1., ner! olic problems, is probably the cause of the relatively high num-
ber « [ iterayv ons. We believe that a specific preconditioner for elastostatic HDG

applic. *ion- should therefore be developed.

6. '~ .clusion

We have presented a HDG method for solving nonlinear elastic structures

including thin components. Our approach models the full 3D structure and does
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Figure 15: Static analysis of an airliner wing str cture. Top left: mesh of the wing — zoom

on the wing root. Top right: vertical d | 'acem. ts at maximum load. Bottom: Von Mises
stress distribution on the upper skin (left) ‘na = the lower skin (right). The concentration
of stresses at the connection betwe. uc =™ and the skin is clearly visible, showing the

strengthening effect of the ribs.

not require typical apprc “matior s used in shell theories. The size of the global
systems of equations ¢ .un b= sigiificantly reduced when thin structures are mod-
eled, which is an anp. ~".ng ‘:ature compared to other volumetric approaches.
Moreover, optim- . ~ate of convergence for the deformation is observed, and the
postprocessing ~ovides vetween one half and one full extra order of convergence
at a negligit e ccst. We have validated our method studying classical bench-
marks for both ca..'ilever and shell structures. Our numerical results show that
when qu. v .tic r cubic polynomial approximations are used, the method is
free . om lockiug and gives accurate converged results. The HDG approach is

there ore wo th considering for modeling finite deformations of shell structures.
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Appendix A. Loading algorithm
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Algorithm 1 Load incrementation algorithm

Call of the Newton-Raphson proced

Require: Initialize F = 1Id ; (¢, #") = X (initial gec ~ot=))
Require: Initialize A = Ainit ; P = APmax ; Ttot = 0 tinc =0 ; nigg =0
while A < 1 do
Assign A := X+ AX
Assign P := APpax

Compute (F,, ¢n, §n,nit) = Newton-Rap. son(Fy, ), @9, P)

if ny < npax then

Convergence of Newton-Rap, so.

Assign (Fy, @, @n) = 50 3))

if nyy < 5 and ny; < 5 then
Assign AN = 1.7 AX

end if

Assign ngop 1= Ngor + N
ASSign Nine = MNinc + ¢+

Assign n: | 1=

else

No or , ~ r convergence of Newton-Raphson
Acsign A= A — AX
Assi,~ A v :=0.5 A

>nd if
ena vhi’s

retw 1 (Fp, @n, @, Nit, Ninc)

36
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Appendix B. Arc-Length Algorithm

Algorithm 2 Arc-Length(F},, on, @n, A, Al 1))

Require: Initialize A@, =0; AA =0
Compute (K, R) from (Fp, pn, Pn, APmax) using (23 -(25)
while residual>tol do
Compute §@F =K~ 'R
Compute §@F = —K P pax
SA = solve [(A@y, + 0@ + SAG@T)? + - M A+ FA)2PZ
Compute d@y, = 6pF + sA6pF
Assign A@y = A + 0@
Assign AN := AX+0A
Compute (0F},d¢pp) from 0@ using (23)
Assign (Fy, @n, &n) := (Fn, @n,s0) - (0Fy, 0@, @)
Compute (K, R) from (Fj,, ¢, @n, APmax) using (23)-(25)
Compute residual = || Rl

end while

return (Fh790h795} /A¢ha*‘ )

— AP
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Appendix C. Comparisons of several stabilization funct.. s a1. | solver

metrics

We present here some comparative data to assess the rela.’ e performance
of the five stabilization functions mentioned in subsect on 3.3.
Note that we tested a slightly different version of ~tan..” .aon (17). Indeed,
we instead implemented
T=10— Lﬁcpmm (211;:) N (C.1)
for the following reason. The original stab.“*zatic  [.7), presented for the DG

41

method [51], makes use of a very small 7 /-~ :n 19 = 0 for most numerical
examples) such that the scaling factor 8 es.~ntially amplifies ppin. This is
however impossible in a HDG context . ‘nc : a minimum amount of stabilization
is always required for the method .-, vork even when ppyin = 0. For our HDG
method, a good estimation of = for . oderate strains is given by (14), which
is noticeably larger than pp;, for ‘~e applications considered in this paper.
Therefore, it is more relevs . v. consider (C.1), where only pui, is amplified by
B, such that the contribu *on of o, to the stabilization can be isolated and
assessed. When not s secif ed, we use the default value g = 1.

In the following tav.’ s, v 2 arbitrarily define the slight locking pathology as
an underestimat .. ~f the displacements by less than 10% at maximum load.
And we simp)  -all locking the larger underestimations. When the loading
algorithm 1 “ails the arc-length 2 is not expected to provide a more stable
solution, xcent w.en the displacements are non-monotonic functions of the
load, whil aapr ens only for the hinged roof case.

For the -antilever cases 5.2 and the slit plate 5.3.1, all the stabilization
meth. 1s pre vide roughly the same amount of penalization since v = 0 and the
trains emain moderate. For the first cantilever problem 5.2.1, all stabilizations
e. sire ne convergence of the algorithm 1 with ny,. = 10 and nyot = 65. For
1 o . .cond cantilever problem, some of the stabilizations lead to a slight locking
. athology, as reported on table C.4. For the slit plate case, all the stabilizations
work well with 42 < nj,. < 53, and 250 < nyoy < 270 without any locking.
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stabilization k& mesh L. 7Nijpe Niot reach Py . tes
(14) 2 16x1 1 23 678 v -
(14) 3 8x1 1 141 1652 v -
(15) 2 16x1 1 21 617 N slight locking
(15) 3 8x1 1 123 1283 v slight locking
(16) 2 16x1 1 22 652 s \/7 slight locking
(16) 3 8x1 1 139 1635 v slight locking
(C.1) 2 16x1 1 23 RO5 v -
(C.1) 3 8x1 1 140 163R v -
(19) 2 16x1 1 23 ol? v -
(19) 3 8x1 1 1a' .oz v -

Table C.4: Cantilever bent into a ring 5.2.2 + s.” rer metrics for several stabilization functions.

Here nmax = 50 has been used for a ...

The differences are m yre not. ‘eable with the hemispheric shell, the pullout
cylinder and the pinche 1 cyL. e cases, whose results are reported in tables C.5,
C.6 and C.7 respect velv Al' these benchmarks have in common the concen-
tration of large st ains in .. alized areas (near the applied forces and wrinkles).
Most stabilizations ta. at some point, while (19) appears to work well. In-
terestingly, b usi 1g the minimum eigenvalue, the stabilization (C.1) may also
work provided . ‘at the coefficient 8 is tuned. However, 8 appears to be case-
depende .t. "¢ L, is chosen too large for the pinched cylinder, the adaptive
stabili=~tion .~ y still work, but the solution shows some strong spurious oscil-
latic 1s that =quire then the use of the arc-length algorithm 2.

The ..l.ged roof 5.3.5, although having a very nonlinear response with re-
pect tc the load, involves only small strains. Therefore all the penalization
funcuons perform equally well with n;,. = 54 and noy = 108 for the thick roof,
“nd nipe = 48 and nyor = 128 for the thin roof. Note that these numbers largely

depend on the choice of the user-defined characteristic length Al.
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stab. 153 k mesh L. Nipe Nior reach Phax notes

(14) - 2 20x20 3 15 1lv fails at 0.48 Ppax
(14) - 3 8x8 3 26 o1 fails at 0.88 Pmax
(15) - 2 20x20 3 14 125 fails at 0.41 Ppax
(15) -3 8x8 3 29 209 fails at 0.89 Ppax
(16) - 2 20x20 3 SHho 205 fails at 0.40 Pppax
(16) - 3 8x8 3 ol 289 fails at 0.35 Pmax
(C1) 1 2 20x20 3 25 157 fails at 0.48 Ppax
(C1) 10 2 20x7y 3 28 177 fails at 0.56 Ppax
(C1) 100 2 2020 3 21 128 v -

(c1) 1 3 y X F 3 31 206 fails at 0.89 Ppax
(C1) 10 3 8xc¢ 3 31 189 fails at 0.89 Ppax
(C.1) 100 ¢ ¢’ 8 3 21 131 v -

(19) - 2 20x20 3 20 128 v -

(19) - : 8§x8 3 21 132 v -

Table C.,. Y misy .erical shell case 5.3.2: solver metrics for several stabilization functions.
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stab. 8 k mesh L. Nine Mot Tea “ Phax notes

(14) - 2 12x18 04 24 278 fails at 0.41 Ppax
(14) - 3 8x12 04 14 100 fails at 0.18 Ppax
(15) - 2 12x18 04 25 1o fails at 0.51 Ppax
(15) - 3 8x12 04 34 4z fails at 0.54 Ppax
(16) - 2 12x18 04 0 01 fails at 0.17 Ppax
(16) - 3 8x12 04 1v 110 fails at 0.08 Ppax
(C1) 1 2 12x18 04 7,“7 286 fails at 0.45 Ppax
(C1) 10 2 12x1% o4 36 370 fails at 0.81 Ppax
(C1) 1000 2 12x.> 04 32 171 v -

(C1) 1 3 8x12 04 19 264 fails at 0.20 Ppax
(C1) 10 3 8..2 04 42 529 fails at 0.67 Ppax
(C.1) 100 2 =<*x12 04 35 212 v -

(19) - o 12x18 04 26 227 v -

(19) -3 8x12 04 38 255 v -

Table C.6 Pul’ ,ut ¢ linder case 5.3.3: solver metrics for several stabilization functions. Here,

Ainit = 0.02 he ~ F zen used for all runs.
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stab. B8k mesh Lo Nine  MNtot _ 4 F nax notes

(14) - 2 48x48 025 34 802 1 fails at 0.35 Pryax
(14) - 3 24x24 025 31 770 fails at 0.16 Ppax
(15) - 2 48x48 025 53  °TF 1 v oscillatory, slight locking
(15) - 3 24x24 025 50 1ulR? 1 v oscillatory, locking
(16) - 2 48 x48 0.25 1. 1138 1 fails at 0.18 Pyax
(16) - 3 24x24 025 R 761 1 fails at 0.15 Pyax
(C.1) 1 2 48x48 (7% ; 540 1 fails at 0.76 Pyax
(C1) 10 2 48x48 025 <8 601 1 v -

(C1) 100 2 48x4° o™ 64 557 1 v -

(C.1) 1 3 24x. 0.2 23 644 1 fails at 0.20 Pyax
(C1) 10 3 2/x2. 025 156 2474 1 fails at 0.74 Pyax
(C1) 100 3 24..°24 025 178 1895 1 v oscillatory
(19) - 2 °x48 025 50 468 1 v -

(19) - . 24x24 025 50 1056 1 v -

(19) -2 48x48 0.50 48 573 2 v oscillatory

Table C.7 Pin aed ¢ linder case 5.3.4: solver metrics for several stabilization functions. Here,

Nmax = "N ana = -, = 0.02 have been used for all runs. In the notes column, oscillatory means

that ne mode develops some mesh-dependent non-physical oscillatory pattern.
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