https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

STUDIES ON THE SELECTION OF MUTANTS IN
 ASPERGILLUS NIDULANS

by
David Apirion

A thesis submitted to the University of Glasgow for the degree of Doctor of Philosophy.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10647435
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKNOWLIBDGEMHENTS

I would like to express my sincere gratitude to Professor G. Pontecorvo, F.R.S. for the inspiretion, gridance and encouragement which I have received from him.
I also wish to thank Mr. E. Forbes who introduced me to the genetics of Aspergillus nidulans, and offered many helpful suggestions. I am indebted to Dr. O.H. Siddiqi as well as to other members of the department for fruitful discussions, and offer my sincere thanks to Miss M. McKinlay who drew my attention to many a linguistic fault in the manuscript.
During the course of this work I was supported by grants from the 'Alexander Milman' and the 'Sir Maurice Bloch' funds, made available by the Hebrew University of Jerusalem.

COMTEMES

Page

a) GONERAL INTRODUCRTON 1
TI) MARERTATS AMD MEDHODS 5
TLI) FORMAL AND PHYSTOLOOTCAL GDNWTZCS OF ASCOSPORE COLOUR TM ASPPRGTLDUS MDDULANS (Daper aooeg*ed for publtoation inoluded) 27
TV) MPPARTS URABLE TO URTJIZE ACETATE 50
A) Tntroduction 50
B) A genexal aystem for the automatio seleotion of aurotrophs from prototrophs and vice-verse in micromorganims (reprint of published peper included) 52
 53
D) Seleotion and tsolation or "baok "mutants 75
13) Chaneoteristios ox wild type and of mutambs 86

1) Fommal genetios of mutants 100
(4) Gomplementation in hoberokaryons and diplolas 128
H) Discussion 137
V) GBNERAL SUDMMARY 141
VI.) REFERENOBS (oxcluding referonces given in the soprint) 144

LIST OF ABBREVIANIONS

A.M.	acetate medium
B.M.	basal medium
C.M.	complete medium
F.A.	fluoracetate
F.A.M.	fluoroacetate medium
M.M.	minimal medium
N.A.	nitrous acid
P.F.P.A.	para-fluorophenylalanine
S.M.	succinate medium
S.F.A.M.	succinate fluoroacetate medium

I GENERAL INTRODUCTION

In endeavouring to understand genetic material, its nature, and behaviour in function, recombination and mutation, geneticists have made extensive use of selective techniques. These techniques permit the selective recovery of the results of rare events (Pontecorvo, 1958). They are particularly suitable for work with micro-organisms where such techniques have found extensive use; for example, Benzer's (1961) mapping of the rII region of bacteriophage $\mathbb{T} 4$.

Most of the existing selective techniques have one limitation in comon. This is the selection of one type only, e.g. selection of a few organisms with a wild type phenotype from a large population with a mutant phenotype (prototrophs from auxotrophs) or selection of a few organisms with a mutant phenotype from a large population of organisms with a wild type phenotype (resistants from sensitives).

Thus while systems which select in one direction only have been very useful in mapping (Benzer, 1961) and have sufficed to establish certain characteristics of recombination (Pritchard, 1955, 1960a, 1960b; Siddiqi, 1962a; Siddiqi and Putrament, 1963), mutation (Luria and Delbrück, 1943) and mutagenesis (Freese, 1959a, 1959b), they have not assisted greatly in elucidating the role of the genetic material in function.

For most critical studies of the phenomenon of recombination the
analgsis of alt the products involved la a single wocombinetioned ovent
 betrad onelysjes. One way of solecting apecteled bobrads for axalyats bess been grvon by hisnouba and Ry\%et (1960): These authone oxomsed hetoroallelic oolourioss ascospore matants of the fungus Agoobolus
 wild type coloured ascosporos apponed.
 tho phenomenon of recombination it seoms mallway that it will bocome a majos tool toz the abudy of the nathure of genetio meterial in matablon and runction for the puxpose my beonadue would bo of Geat value whioh onables geleotion of matabions in the game aistron In both direothons ito matrant from wild bype and vioemexse Such

 the shudy of mutation as suohy as ith would allow the anelyshs tn paralled of the patterns (botis 2rduged and aponbanoous) of groward and "bow motction Whthin the mone gone (Averbeoh, 1962).

Thathemoxe, for atudios of tho raechan sm of mategenesis guoh a boonnique might alwo prove xevarding ghis applies to both the bese
 1959a, 1959b, ox wemarengments in the genetia matertal Temsman 1962). and the eoxtdingatype' of mutation (beldeved due to delotion ox tusertion
of a single nucleotide Crick et al., 1961 Lerman, 1963).
A 'two-way selection' system has been the major tool used by Crick ot al. (1961) in mapping intra cistron suppressors in the rII region of bacteriophage 14 . In this system the 'forward'- mutants are selected on inspection because \underline{r} mutants differ morphologically from $\underline{\underline{r}}^{+}$when plated on Escherichia coli B, while 'back'-mutants (or wild type recombinants) are selected from a large excess of rII 'forward'-mutants because they form plaques on Bscherichia coli K12 (Benzer, 1961) on which rII 'forward'-mutants cannot develop plaques. Using the rII 'two-way selection' system Crick et al. (1961) showed that true 'back'-mutants hardly ever occur. . Similar findings were made by Jinks (1961) by mapping of intra-cistron suppressors in the \underline{h} region of bacteriophage $T 4$. where a restricted 'two-way selection' based on host range is possible. Furthermore, the work of Crick et al. (1961) has made possible the study of the nature of the genetic code by purely genetic analysis.

It is essential to have suitable 'two-way selection' systems available if one wishes to extend the investigation of intra-cistron suppression to organisms other than phage.

In pursuing the aims discussed above an attempt was first made to obtain in the ascomycete Aspergillus nidulans mutants amenable to 'selective tetrad analysis'. As described in Part III of this thesis, colonies were screened for ascospore colour mutants and strains with
oolourless（ol）ascosporesg and strenins whth blue（bl）ascosporec woro inclated．Unfortwnetaly all the mutanta isolated proved to be mone autonomous（sturtowant，1920；Rohrussi，1938）。 Rowever，from the results obtatned a model to explesn the origix of pert bhecta in Aspergillus midulans covld be congtwuoted．

When it wos eyident thet aelective totrad axalystag was not fachlitebed by these ascospore colour matanbs a searoh roz a bwow wey selection gygtem was begun fund was suocosserv（Pext IV）。 The prinotple of the system ts the ooxellation of restatance and auxotrophy In the prosem woxk Poxward＂motanta nnelble to grow on acetato as the sole osebon sourge were geleoted by plating oontdia on medium gonm thining fluoroacotate and gluoose while book wathants were soleoted by platimg oonidia on medium containing acetate as the nole oatboa souree． Th additiong intomation on the genetios and behowionz of these mutants was gethared．They were Pound bo behavo portioularly interestingly in complementationg as all tested ombinations betweon axy two porwerd ratanta（in trong axrengement）which complanembed in hataxozyeous diploids Tashed to oomplement in hoterokaryons．Revertants of the forward m mubunts and an anhancer matant vere also atudied．
（Wwoughort the prosent worls＂xovertant and＂bakemutant awe used symonymously）。

1) Life oyole of Asporgillue nidulens

Agpergillug nidulang (bidan) watory is an ascomyceto bolonging to the Comily Aspergillageas of the order Plootescineae. the dovalas of its Life higtory have been dosoribed elsowhere (Thom and Raper. 1945: Ponbocorvo ot ate 1953). The oytolocy of Aspergilus nidulans has boen re-investherted by milutt (1960) and some findings selevant to its Gexach xeproduction have been reambly described (Ansion, 1963b, Paxt ImT). only the salient features of the life oyole (rige 1) will be briefly redencrived here.

The myoeltum consiate of hranohed septete hyphae, oach "celli" in the hyphao boing malumaleate. Anastomosis followed by macleax migeations between hyphae ocours readily the tugas propegation vegetatively by menns of asozual gpores of conidia whioh are produced in columnax heads bome on exici hyphee called conidiophores. the head of the conidiophore boas primary and secondary atoriguata, each of whioh has a singie nucleus from whoh all the oontia in one ohatus derive thels muglet. Discoxont ohains in one hoad produced by a heterokexyotic myediun however, may oexy genotically dieforent nuciei.
 are found in closed fruitixg bodies or olelstotheciso It has been the preotice in than laboretory to refer to these as perithecia and this

Fisure 1

Life cycle of Aspergillus nidulans

Taken from Pontecorvo et al., 1953
usage will be adhered to. A portheotwan anatain up to aboth 10,000 asois oach goxtaining aicht binuoleate ascospores which are mordexod. Porithecia and asot may easily be zuptured to liborate the ascospores. Genctic anolysis has bhown that the aroi in one paxitheaiumo produced by a heterokaxyotie myodiumg tond to be of exclusively erossed
 Intely that all the asci in a stagle perithocium oxiginete from a parx of nuolet whioh onter into conjugated divisions to give tise to draxyotio ascogenous hyphae from which the asci oxiginate (Fontecorvo of enoo 1953: and Part TIT).
2) Moda

A11 chemicals uned axe of malytical grede whese otherwise steted. a) Mrimad mediun ($\mathrm{max}_{\mathrm{ol}}^{\mathrm{ol}}$)

Tagedienta per litros (Pontecompo et ag. 1953)
Dergheose 10 g 。
$\mathrm{KraHO}_{3} \quad 6 \mathrm{E}$
403 0.32 g.
$\mathrm{PHSO}_{4} \quad 0.52 \mathrm{E}$.
$\mathrm{KH}_{2} \mathrm{RO}_{4} \quad 1.52 \mathrm{c}$ 。
$\left.\mathrm{TeSO}_{4} \neq 7 \mathrm{TH}_{2} \mathrm{O}\right) \quad$ tracos
$\left.\mathrm{ZnBO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$
Agaz ' 10 ego
adjusted to pla 6.5 by HaOl om HCL
b）Basal mediun（Bo號）
As Hod but withoul glucose．
c）Qomplete medizus $\left(0, \mathrm{H}_{\mathrm{p}}\right)$
the medium in uge at present is similar to that given in
Pontecoxvo gt gix．（1953）with some modifloations．It consists of
M．M．suppionented with the tollowing tugredieats per 1itres－

DLico hacto peptone 2 g．
Yeastrel（Breversy Food Supply 1 go Company Litd．g Edinburgh）

DAfco bacto oasmino acids toohnicat 1．5 ga
arucleio acid hydrolyzatos anold and alkitine hydrolized 0.4 g.
（Los detalls gee Pontecorvo et 2 ．1953）．

Vitamins

Riborlawin 1 me．
Wlootinamide 1 mg。
Pargeminoberzoio actd 0.5 meg．
Pyrodorino $\mathrm{HCl} \quad 0.5 \mathrm{mg}$ 。
Aneurino Hol
0.5 rug．

3．Otin
0.02 rago
d) Aostate medium (A, M)

Tngedionts per litwe:

Tugredients per litres

D-glucose	58.
HaNO_{3}	48.
kgas	180
	0.58.
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	38.
	breoes
$\mathrm{CHz}_{2} \mathrm{FromH}$ (techateal)	30 g
agax	15 \%

adjucted to pill 6.1 by conconeseted $\mathrm{mH}_{4} \mathrm{OH}$ ．
In Latex work 40 go inorozectic acid mere used instoad of 30 g．
e）Sucoinete medum（3． H ． ）
Boto plus $18^{\text {倍 }}$ sucointo acid．

 by $\mathrm{MH}_{4} \mathrm{OH}$ 。
b）Hquid medis
Any of the vaxtous media in a liquid form（1．0．without max）． Unless＂icuid medim is speotically mentioned in this thesis． agex medium was uned．

3）Growth deotox gupploments and sures nbilization tosts

For the goneontrations of the vertous nuttionte added to 期。 to enable growth of the various natanta，see Fonteoowo et od（1953）： Rafer（1958）．For elaselfioabion of augar mutants（mutante unabla to utilige a pantioulex sugax as a caxbon someo），B，plus the suger goncerned was used，the sugar unuelly in goncentretions of 1% （Robertes，1961）．

芴
Bercenteges will alwoys be expressed as vetght／rolumo maleas ohnexwiac stated．

4) Stook oulbuess

Whe oultures were incubetod at $37^{\circ} \mathrm{C}$. This incubation temperature Wha used throughoxt the worls; The strains were maintained on alopess
 Gubmoultured apporinately every six months.

Purified cultures were obtuined by plating suspensions of well broken ohatne of oonidia (stingle conidia plating) and submentoxing Aron well isolated colonies. All cultures, from whioh conidia mere haxrested for gelection workg were xamatained on slopes of Cotho the obtain cultures of independent origing slopes were lnooulated with onidia from difewent ooloxios which arose from 'single conidia plating'.
5) Auranopraphic beohniques

The general prenciplos vere desoribed by Pontecorvo (19A9).
a) Peating for ability to grow on diferent caxbon sources os see Roberts (1961).
b) Tosther for optmum pH for growh on earbon sources

Shee the pll 6.5 of Mome was found to be unsutable for growh of Aspergillus midulas on a mediun contaning suocinate ab the sole

Gaxhon source, a andtalle pH wat sought as follows Gonidia of a sultable strain wewe anbedded in Bomo and inoubated overxighty block of medtun at each and of one dameter of the Potxd dish were zemoved. At one of these points was placed sucointo aoid plus ammontun hydrortde at high pie (ebout 9) and at the othor point was pleeed sucoinio actd plus amonjum hroxotide ab a how pH (about 3) , The plabe Tan then thoubebod for $2-3$ days. Gredionts of phexm the low to the high wese oreated on the dish and when a costoin zone of growth appearod, the pir or this zone was measured by indlothor pepex. this mothod, whioh is ospectally suitable for acias mas also appled to citrio and malio acides.

A Potxi dich with muitable mediun minus the ohomioal in question was propexed The ohemtealg in a solutiong was pipetted into a trough out out in the agar medtum on one side of the dish. The strains were inoculated along porallel Lines (4-6 potat Anocule pex line at atght angles to the trougho In this way Vaxying degrees of xesponse of stanins to a paxtioulaz chemand an be debected.
6) Plathag

Suspenstons of apores were made in aterile saline or distilled. water. Ghains of condita were broken by edding the wetting agent Tween 80 and aucking up and down through a Pasteur pipottoo Donatity of apore suspenstons was estimated by hamocytometer counts, and viable counts were obtained by plating suitable dilutions of a suspenstion on 0 . M .
a) Sproading

A momsured anount of suitable diluted suspenstons of spores were dispexged with a glase spreader on the surface of agax modiuta
b) Mmbedaine

A suspension of spoxes was added to nelted, oooled agar mediun and pourod into dichess.
a) Top Leyez

A volume of $4 m \mathrm{ml}$. of agar mediun plus grores wes poured Into dishes contaning a bottom layer (20 m 25 ml o) of the some agar modium and was spread rapidy to form a thin top layor.

The last two methods were used for handling laxge quantithes
of apores. The plating techniques are in comon use ix the genetis study or Aspergilus midulans:

7) 1itxous beid treatment

The method is desoribed by Stadigi (1962b), Th the present work the method was slightly modiried.

1 m. of a suspension,in distilled water of contaia, of the staxin to be bestod was adod to 8 ml . of $0,1 \mathrm{Tl}$ aootate buffer pir 4.4 and kept in a wator bath or in an inoubator for 10 minutes at $37^{\circ} \%$ 。 1 ml o or $0.1250 .250{ }^{*} \mathrm{NaNO}_{2}$ was added and the incubation mixture was stirred every 2 m 3 minutes. The troatment was stopped after $10-20$ minutes by turansexying 1 ml , of the incubation mistive into 9 ml 。 of 0.066 m phosphate bufers pit 7.1 at room tomperature. Fox visbility gounts suitable dulutions, in distilled water, were plated on Coyo

8) Beleotive teohmaues

8) Eoleotive techniques

One of the purposes of this work wat to establish a sultable technique for estanation of the proportion of mutant mucled. of a
${ }^{*} \mathrm{HVNO}_{2}$ is oxidizod slowly in solution to NaNO ${ }_{3}$ " with consequent deorease in matagenic activity of the preparation.
parthoular kind in a givon population of aporess selection of fownard" mutants as part of a "two-way selection" systern (coe part I) As some of the matarts reastent to fone were found to be suitable tor a Ptwomay seloction system by virtue of their inability to grow on

 In media wexe bried, in ordor to discover the "apectrung of the possiblo mutants, and to ostablish the bert techaique for the estination of the ratio of motext to mon-mutam nucled in a given populationo The varhous techatques are desoribed belon (for further detains see Part TV, B and C)
a) Sertoring

Conidia from e efrain sensitive to foto vere inooulated (26 points per dich) into foA off pesistant sootoxs appoamed anter 3-5 days.
b) Encubation in Liguid Bomo plua FoA.

Spores of a arrain sentitive to T.A. were incubabed for 16 days in liquid BoMo plus 2.5% Fofn at pH 6.5 plus the requirenonts necessaxy for the particular stratno
c) Sendwiching in fungoecotate nedun

See Apixion (1962)
a) Sendwiohtne in gucoinate nodium

Spores of a strain senstive to F.A. were plated on dishes containing $20-25 \mathrm{ml}$. 5.3 , and covered by a bop layer of $4-6 \mathrm{ml}$. Soll.
o) Sandwiohtng botween P.A.M. and S.F.A.pio
 an a Petri dish. apores of a strain ancitive to $\mathrm{F} \cdot \mathrm{A}$. wese plated and covered with a top kayor of 4.5 ml . of S.F.A. H .

1) Sandwiohing botween S.M. and S.F.A.H.

On a basal layer of 5.M. ($20-25 \mathrm{ml}$.) 。 pporen of a strain censitive to F.A. were plated in a top layer of $4-5 \mathrm{ml}$. of $5 . \mathrm{H}_{\mathrm{h}}$ and covered with $5-6 \mathrm{mz}$. of S. S.A. 4 .
9) Crogeing

Grosses were made on Moliog of, in ounes or crosses between bwo noxmomplementatey mutants, on Mon supplenented by the relevant growh feotor. Dishes oontaining speatally thich layexs of Mome wo streaked with a donse mixture of oonidia from the two stratneg whioh in all cases caxpled at least one pair of complementary nutritional roquirements. The streaked surtage was broken up by means of a starile wire loop to form a xoughly oblong ares of 1 x 3 omod and a Sew drops of liquid 0 . H . were added to allow some initiel grormo The dishes were sealed with sellotiope after the first dey of inoubation and were inoubeted for a further 9 wid days. This method is now in oomon use for orossixes strains of Agpexplilus nidulans, and resulted from the accumalated erpertence of vatone workers in this depatimont.

10) Analysis of oxosses

Two mothods are avallable (Pontecosvo et ala 1953)。
a) Recombinant selootion

Ascospores from several peritheoia vere collected and plated
os a seloctive medrum on which only recombinant agcospores could grow. This mothod requiree that the two pasental shasins oarsy complementary genes detormining nutxitional requirementa, and are uminked to the maxkers whose segregetion is belng studied. Gegregation anclysis was perfomed by bransforeing recombinant oolonion rito master plates of Collo, 26 to a plate: from there, the colonies were xepliceted, using a multiple wire replioaton, to various media to revad thedr genotypes.
b) Porithootum navergis

Aavalysis of a pertheotum is based on the fact that the 10,000 or so aset of an individual perithootum are almogt invariably of oither archusively selfed or axclugively arossed origin. the three types of pordthecta in a oross betwoen two stavins oan be distinguished easily if the two strains involved have diferent conidial colour.

A amall scmale of an ascospore susponsion propared from a singlo perithecium is streaked on C.M. and troubatod until conidial. colour develops. The gonidia of owh streak may be puxely of a parental colour or a mirture of two or three colours (depending on whether the parental gtrains differ in one or in two genes afeoting condial colour). Streaks of the fixst type indioate a selfed
peritheotun and atreaks of the second type findicate a hybsid perithecium. Ascompores of the bybuld poritheatum stored at
 as above (Part TI, 10a).
11) Byathosis of beberotaxyons and diploids
a) Hetorokaryous

Tor synthesis of hoterokaxyons, strains were so chosen that oach had at loast one growth factor xequtrement not possossed by the other. A mixture of conidta from the two strains wes

 allow growth of heterokaryotho myceliun. This myeeliwn was beased out on dishes of thom. on further thoubation batenced heterokaryon grev out of the teased nycelium. To oonftrm that growth was due to establishment of a balanoed heterolfaxyon further transems of vigourously growing hyphat thes were made. When the two strains carried non-complomenting sequirements. suatable nutrionts wore added. Cextain conbinations which tailod to form heteroknryons under these oonditions wowe grawa on liquid Cota ovennight (Pontecorvo et ale, 1953) and the ryeelium wes harvested and twobed as above $4 i l l$ growh of a belanced
betorokaxyon was achieved.
b) Diploids

To obtain diplotas (Roper, 1952), conidia from a bolanced hetorokaryon were embodded in M_{H} 期, at e density of approxinately $10^{6}-10^{7}$ comidu por disho Diploid colonies whion arose were isolatod and puxteled by binclo conidsa plating (Pext It, 4)。 The diplatide were identirled by roason of tholl boing prototrophio while the paxentel atrains wore aurotrophieg and by reason of their having a larger conidial dimetor than hephoid streane

12) Teploidiation of diploid strains

Hoploid ghyatns were isolated after spontanoons haploidizetion ox astor treatruent with Drepars-fluorophenylalanine (Morpurgo 1961 :
 were inoculated with condia by a sterile noedle at 30 points, ard the dishes ware then incubated for 3u4 days. While the growth of the colonies as a whole wes reduced and non sporalatinge conidiating sectorg appared. When outdie from these sectors were streaked on

Cotlio and colonies fron there wore remsolated, they were found to be mainly haploide when the diplotd was green but heterozygous ros conidtal colour mutants a proportion of the seotows had the mutant oolour. These haploids, after purificationg were analysed as before (see Paxt TI, 10a).
13) Aloostion of emerger to its lixitage grour (Borbes, 1959, 1963)

A duploid betweon has (master strain D) and a haplote strain oarying the desired mankex was synthesized, This diploid was haploidiged and the genotypes of the haploid segregante were examined (see paxt If, 10a), Mob is a styain oaxyying maxkexs in each or its linkage groups:

Linkres group		Itukgremeroup	
T	suged20 \% 9d20	V	2ys ${ }^{\text {d }}$
IT	Agx 1	VI	g3
T, TK	phe2	VIT	nic8
TV	2vxot	Vrax	mibos

Since in haploidization there is recombinetion betweon maxkers In diferent linkage groups but not within lingage groups (Pontocorvo et alo, 1953; Pontecorvo ot alos 1954; Pontecowvo and Kätex, 1958),
the matren th question will soombine with the matrers of Beven 14nkege groups, not with the maxkor of tha own tinkuge groupo

14) Stating

A11 stralis thead in this worls belong to the Glasgow Univergity oollectiong with the exception of the statin biljoryg cheg whioh

Table I Adsts all mutants used: as gonetio maxkews fhe new
 appopxiote aections. The known lixkage welationships of the loci. weremed to in this thesis ame mown in Pis. 2.

Sable I

Mutanta used as genetie markews.

Symbol of mutant and locus*	Phenotype determined by mutan
Aexi	aoxiflavine reaistant
0.1	adenixe xequiring
ad3	adenine sequiring
ed4	edenine requising
ad8, adzo	adenine requaring
ad23	dentine requiring
and	aneurtng requixing
axg 3	axginine requiring
b21	biobin mequirang
cha	chartrexse contida
E 2	unable to utilize Pruotose
gal4. gral	nambe to utilize gelactose
3ac3. 1 em 5	unable to utilize lectose
2 ym 5	Iysine requising
methi	methionine xequixing
ni3	unable to utilize nitwate
nic2	nicotinic acid requiring

Table s continued

20108	niototinic agid requixine
orn7. 0×209	ornithine requirtns
pabat	pata aminobenzoto acti xequiring
pabaz2	paxa matuobenzoto acid wequining
padat	alkeline phosphataseloss
pala7	ankotine phosphatasteless
phe?	phenylalamme regulving
, 2xol	protiae requistigg
pu	putroselne zequixing
pyro4	pyrtarine requixing
200 21	xiborlavin roquintug
gibo2	wiborlavin wequistug
21bo3	niboflovin xequaring
xibo5	xiboflavin mequiring
x1106	xiborlavin requiring
31	unable to utindre sulphate
33	unable to utilize aulphete
912	unable to whilize gulphate
5	gracil ooloxy
9 max 20	suppressox or adz
thity thi4	thiezole requiring

Mable I contrmued

y	yellow conidia
w2, w3	white contditi

w2, w3 white conidet

* Alelte moteato are placed aftex the locus symbol.
Ting 영 2

TIT FORTAS AMD BHXSTOLOQTOA GEMETIOS OP ASCOSEORE COLOUR TN ASPEROLSLUS NLDULAMS

Thes Path is presexted in the form of the mannsoxipt of a peper aocepbed fox publicabion in "Genetleal Resoaxch, Cambridge" wthe the addition of Tables 8-12.

 By mo andyon

THTWDUE

 mod outer wan

> Matrachas mow menote

10. Jotaly (Table 8)

or a montr ow hoper, tho ot mbenta varlon srom
 pink th the ofse or othe whe wat ot Whe pertheote

 O the raxace or dotony ovel uthout pichtug thon ypu

D Gutante (blucemaotsonta)

 ob 12 mutante have 10 b Decn boated.

Mubasz w wot in the groge

131	46	19	91
4 L	39	$4{ }^{4}$	79
b15	49	35	77
bla	30	45	31
Tobat	162	166	320

 Wera plated m omplete weditm.

 (Tabie 9)

 hong a ntrago grovi.

 (Table 10)
(Table 11)

Wracs oh colonies with
Mutant uced
th Whe eros
colomalaesaconopros amoogroxes
el4 33
43 61 66
2L6 56
134 130 264
20tas 29 62
012
60 116
Totes"weme blated on completo mediuna

Wutanta wece	motomatecs	Tod	
in ther etobe	astovenones	asormonnt	Sotat
24, 41	134	60	194^{*}
	\%04	50	262^{*}
	201	70	$27{ }^{*}$
ata $\mathrm{m}^{2} \mathrm{c}^{2}$	121	45	166^{*}
		0	99
9 59.48	$\bigcirc 189$	0	382
	177	9	817

[^0]

gud homgevegut Fox egoospond goloue matanta

Gonbrnabion

Type ot demota

Oolone of tho cmoogposoc of Ghe diniond

Wn	7 peat we wa	$\underline{\mathrm{b}}{ }^{} / \mathrm{bL}$
W\%	$/$ babets we ba	$\mathrm{bl}^{2 / 4} / \mathrm{bla}$
Mat		$0^{2} / 2^{2}$
Mata	/ asla was el	$\mathrm{ch}^{*} / \mathrm{ol}^{2}$

Wt

In blt gie $/$ gebets me ble
b1/ b18 blue

Table 5. Exosges hotwoon blue (b) gnd octourloge (el) engocpore mutante

 persheothm

In the prosont orpesthonta tho two peronta alpo
 ant in addition to the bert aecombed nboves a nampa
 the phanotype ow the asgowponem.

The apotapowas ontyped in fathe way were sron

 poertherta, STho acoocporon on a pertheotwn were at

 wat we eno poxtheothm (oroncor or noted) tu of the

 (Trotos 6 mat 7 .

 and blue moosporac) wo ne rombow

 awow at buroe alatacto
3. Anowe selectged patracota. both pronco?

 ony werental mhehotwpor wour in ed med perthocta, and

$$
\begin{gathered}
\text { Tota } \\
\text { person } \\
\text { pertect }
\end{gathered}
$$

 362
 क

gqece 64 pehto x y wa b12 whe (ols ble)

Mexobypo of penthookum and ascospores
remod oxt sedsed bis crocend Totat

 anue about 50\%

D 80 CLDOR

 at we mat (porbecomberats 1953). on the bants

46unt wer momet buty
 bogne wotw may wew suckes.

 wat whtom ayc therexore temaze.

Then What tha ovonsed or selted ontght of tho

Ta a bem botwoon bure sua comontoan gematmo

potopaxthrotunp woth nowaty be xot (wis bypo) Whte tho atotson that pastheaghy oond be omboy aveaced

 e x^{4}

A prowoperthenzua coeld, ponce vablys bo
 typ and at tho othere ot the other mexentat dyoo. Th

 of tho pertheotum would be tott vith mates and of one

 whe woro not round In bhat tnventughtion on bo oxptatnod

 Pomation of the pranowdum of the protoporthootwan and
 divide onae ox mose.

ย1\%MA

 both in the asoospores and theno aco the tho asconpoyes

 golothass perithoota, rod bha an colhwhoge pertheow wote wound cach wpe oomta oontatn other

 Emotypa

 250\% 5408-3490.

 2. 71×104.

 $8 \cdot 14+15$

 $3.303-314$

> The starting strain had the genotype yoe2;si2

 (c15, o16) mere isolated after screening colonies with mature perithecia under a low-poner dissecting microscope.

Linliege group	Tester maxker	61^{*}	b1
I	probat	7	6
	peba	2	1
x.	Acrs ${ }^{+}$	$\underline{0}$	7
	Aor	9	0
IT	w^{+}	9	0
	*	0	7
TII	phe ${ }^{\text {+ }}$	9	7
	phe	0	0
IV	29x0 ${ }^{+}$	3	5
	pro	6	2
v	$1 y /{ }^{\text {a }}$	6	6
	3ys	3	1
VI	s^{*}	4	5
	\%	5	2
VII	$n \mathrm{sec}$	7	5
	nic	2	2

Table 9 ontrinued

Jinkage group	Tester maxtor	61^{4}	b1
	$x \mathrm{ibo}{ }^{*}$	2	6
VITI			

Tablo 10. Lecadion of old in 13 nkage proup 14 by spontaneone haploidtzation of Diploid MSD/bi19 W2 - 014

minkage group	Wombox maxtex	al ${ }^{+}$	02
I	$b i^{6}$	7	8
	bi	4	4
IT	Acr ${ }^{\text {+ }}$	8	9
	Aon	3	3
TIT	phe*	6	4
		5	8
IV	pyro*	0	12
	pyyo	11	0
V	$2 \mathrm{ys}{ }^{+}$	8	10
	Iys	3	2
VI	a^{+}	6	6
	3	5	6
VII	nic ${ }^{\text {+ }}$	9	8
	nies	2	4
	tibo ${ }^{+1}$	7	5
VIIS	$x \mathrm{ibo}$	4	7

Tablo 11. Leoation of e16 in linkage exoup I by Epontaneous haplotidgation of diploid MSD/016 bi1: w2

Isinkege group Tember markex Bl^{*} 01
I
$b i^{4}$ 22 0
ba 0 13
Acrs^{+} 11 11
II2
Aor 11
15 9
phe ${ }^{*}$ 7 4
phe
pyro ${ }^{*}$ 10 10
pyso 12 3 12
IV
11 4
1.ys"
11 9
173
173 V7
VI
12
s^{*}106
VII
nic* 14 4
nic 8 9
Pibo 9 5
VTTI
xibo138

Table 12. Location of ol6 by meiotio malysiss

```
Cross-016 b11% w2 2 wibo1 and ac14 y% neth1 pyro4
```

The data exe tabulated only in respeot of the markers cl6 ribol and as in a throe point crosso

Crossover regions

Conotypos

$+x+b 0$ an	27)
	33) 60
cl +	

cl ribo an
0)
$+*+2)^{2}$

| $+x i b o$ | 5) |
| :--- | :--- | :--- |
| c. + an | 6) |

ci $x i b o+$	$0)$
$4+\quad 1$	

Hiklage map. $0.66^{4 \pm 4.6 \quad \text { ridco } 16.2 \pm 8.6 \mathrm{mn}}$

(A) Introduction

Agpexallus midulang grows on acetato as the sole carbon source and is sensitive to fluoroecebte。 Streing resistant to F. Ao were selooted as describod in chapter B. Some of the reststant strains were unable to grow on a medium containing aoetato as the sole caxbon source (2 streins). This was eraotly as prodicted by the theory of "two-way selection discuesed in ohepter B.

In ohapter C verious methods for the selection of 'fosvard'... matants are described, compared and disoussed.

The abiluty of I atrains to "bact'mutate is described and discussed in chapter 1 .

Chapter $\$$ contains a deseription of the growth and charactexisties of wild type and f swains on various medsa.

The formel genetios of sone I mutants, wevertants, and an enhancer mutant are described in ohapter f, where it is shown thet the f mutants oceur at three unlinked looi.

Chepter (f decls with complementation. The resulta of complenentation terts botween I matants at duferent loci in the
teans contiguration in heterokaryons and in heterozygous diploids are desoribed. The implications of the observation thet all patrs tested omplement in the diploid and none in the hoterokaryon are discussed and nome possible explanations put horward.

Pinally, in chaptear $H_{\text {, }}$ oortain possibilities of the gystem and the findings axo discussed.

B) A mexneat aystom Eor the putonatic seloction of euxotrophs Srom peototrophs and vipe verse in micyomotend ging

The principles of a "twowny selection axe oublined, and techndques fow selooting thoxocootato meststant mutants axe described. Some of the mutante were found to be wame to uthlace zoterte. Studios on the ability of some of the mutants to zevert are nentioned. Tuis geotlon ia in the fow of a paper publiched in "hetuxe"。

A GENERAL SYSTEM FOR THE AUTOMATIC SELECTION OF AUXOTROPHS FROM PROTOTROPHS AND VICE VERSA IN MICROORGANISMS

By D. APIRION

Department of Genetics, University of Glasgow

IN microbial genetics there have long been availablo techniques of high resolving power for the automatic selection of 'forward'-mutants, for example, in respect of resistance to drugs ${ }^{1}$ and parasites ${ }^{2}$, and of 'back'-mutants, for example, from auxotrophy to prototrophy ${ }^{3,4}$. The automation is based on establishing conditions such that cells of the parent strain -sensitive in the case of 'forward'-mutation to drug resistance, and auxotrophic in the case of 'back'mutation to prototrophy--cannot, grow while the 'forward'-mutants, or the 'back'-mutants, respectively, do grow.

It has been obvious for a long time that it would be very useful to be able to apply some such automation to selection in both directions in one and the same system. Most of the systems in which selection in both directions is possible have, so far, been only partially successful, mainly because of inadequate resolving power in either or both directions. To give a few examples: (1) Methods based on visual selection (for example, colour or morphology of the colony, enzymatic or other colour reaction, type of plaque, etc.) do select in both directions, but with low resolving power in both. (2) Methods based on drug resistance ${ }^{1}$ or on host-parasite relations ${ }^{5, a}$ or on reversion from auxotrophy ${ }^{3,4}$ have a high resolving power but only in one direction. (3) Methods based on gradual enrichment ${ }^{7-0}$ are not suitable for precise quantitative work. (4) Methods based on the fact that reversion from auxotrophy in respect of one growth factor sometimes involves mutation to auxotrophy in respect of another ${ }^{10-13}$ are not sufficiently general.

The lack of a technique with high resolving power for the selection of mutants or recombinants in both directions in one system has been one of the main bottlenecks in genetic analysis at the intragenic level.

n

b

Fig. 1. a, $\overline{6} \times 10^{\circ}$ conidia of a strain of Aspergillus nidulans, sensitive to flnoroacetate, plated onfluoroacetate medinm (3 per ceut, see text): six resistant colonies have developed. About 20 per cent of the resistants so obtained are auxotrophic, that is, unable to utilize iscetate as sole source of carbon. $b, 5 \times 10^{6}$ conidia of a strain resistant to fluoroacetate and unable to utilize acetate, plated on medium with acetate as sole source of carbon: eight prototrophic colonies have developed

Yet, the principles on which some such technique could have been based have been well known for a long time, and it is surprising that they have not been appliod deliberately. There are examples in which these principles have been accidentally or incidentally used ${ }^{14}$, and others ${ }^{15,16}$ in which the results are likely to be interpretable on the basis of these principles. The principles are the following: consider a toxic analogue A^{\prime} of a growth factor or metabolite \boldsymbol{A}. Resistance to A^{\prime} may and often will-be based on failure to take up or further metabolize A^{\prime}, and therefore A. Resistant mutants of either type, that is, unable to take up or to utilize A, will be auxotrophic for one or more metabolites-for short, B-which the normal strain synthesizes from A. Thus, on a medium containing A^{\prime} and B (or a substance which can replace B), 'forward'-mutants can be selected because they are resistant to A^{\prime} (and by hypothesis, auxotrophic for B). 'Back'-mutants, capable of utilizing A and sensitive to A^{\prime} can then be selected in the usual way, that is, by inoculating the auxotrophs in the absence of B but in the presence of A.

These very obvious considerations show how wide the field of search can be for systems in which selection in both directions at high resolving power may be possible. There is no need to stress how useful this possibility is for a variety of purposes: fine recombination analysis, specific mutagenesis at the intra-
cistron level, otc. The search for suitable systems can start either from sensitive wild-type strains, selecting from them auxotrophs by virtue of their resistance to an analogue, or from auxotrophic strains, selecting those which are resistant to an analogue of a metabolite coming before the block which causes the auxotrophy. Clearly, as resistance can be achieved in a number of ways-of which the inability to take up or metabolize the toxic substance is only one-we should expect neither every resistant to a toxic substance to be auxotrophic in respect of a metabolite related to that toxic substance, nor every auxotroph to be resistant to a toxic substance related to the growth factor required by it.

The following is an example of a system of tho first kind. It was based on selection of 'forward'mutants by means of their resistance to an analogue (fluoroacetic acid). Some of these resistant mutants are auxotrophic, and more procisely unable to utilize acetate as the only source of carbon. 'Back'-mutants of these auxotrophic resistant mutants can be selectod by plating them on a modium with acotate as the only source of carbon.

Most Aspergillus nidulans strains can grow on acetate as the only source of carbon. For the purpose of the present work a medium of the following constitution (per $1,000 \mathrm{ml}$.) was used: ammonium acetate, 12 gm. ; sodium chloride, 2 gm .; magnosium sulphato ($7 \mathrm{H}_{2} \mathrm{O}$) 0.5 gm . ; potassium dihydrogen phosphate, 3 gm.; ferrous and zinc sulphate, traces; agar, 12 gm . ; $p \mathrm{FI}$ adjusted to $6 \cdot 1$ by ammonium hydroxido or hydrochloric acid.

Fluoroacetate at high concentration prevents the growth of most A. nidulans strains. The flooroacetate modium used for obtaining resistant mutants was as follows (per $1,000 \mathrm{ml}$): glucose, $5 \mathrm{gm} . ;$ sodium nitrato, $4 \mathrm{gm} . ;$ potassium chloride, $l \mathrm{gm} . ;$ magnesium sulphate ($7 \mathrm{H}_{2} \mathrm{O}$), 0.5 gm .; potassium dihydrogonphosphate, 3 gm. ; ferrous and zine sulphate, traces; fluoroacetic acid (technical), 30 gm .; agar, $15 \mathrm{gm} . ;$ $p \mathrm{H}$ adjusted to $6 \cdot 1$ by concentrated ammonium hydroxide. On this medium sensitive strains do not grow, while resistant strains grow well (Fig. 1).

To select resistant mutants, suspensions of up to about 10^{8} conidia $/ \mathrm{ml}$. from fluoroacetate-sonsitive strains capable of utilizing acctate as the only source of carbon were spread in volumes of $0 \cdot 1-0.2 \mathrm{ml}$. on the surface of the fluoroacetate agar medium (25 ml ./ (dish). When mutagenic treatment was used, for example, nitrous acid ${ }^{17}$, part of the suspension was treated bofore plating. After a few hours incubation a further thin layer of the same fluoroacetate medium ($3-5 \mathrm{ml} . / \mathrm{dish}$) was poured on top. Resistant colonies

Thble 1. Seldetion of 'Forwami'-mutants resistanj to FluoroAOETIC ACID

Wxp.	'Ireatment	Conidia per dish ($\times 10^{3}$)	Total	Resistant mutants:	
			plated $\left(\times 10^{3}\right)$	No.	$\begin{aligned} & \text { por } 10 \\ & \text { plated } \end{aligned}$ conidi
I	None	30	30	0	0
		300	300	0	0
		3,000	6,000	16	$2 \cdot 6$
		17,000	85,000	105	1.2
	Total untreated		91,330	121	$1 \cdot 3$
Nitrousactid*					
	acti*	30 150	30 300	24	133 87
	Total nitrons acid treated		330	30	91
II	None	5	5	0	0
		50	50	0	0
		500	500	2	4
		5,000	5,000	6	$1 \cdot 2$
		10,000	10,000	11	$1 \cdot 1$
			15,555	19	1.2

* 7 min. in: $\mathrm{NaNO}(M) \cdot 02$) in buffer acetate $p \mathrm{If} 4 \cdot 4$: survival about 45 per cent.
began to appear 3-4 days later, and by the sixth or seventh day thoy wore isolated on a complex medium with glucose as the main carbon source. These resistant mutants were then tested for their ability to grow on acetate medium. Of the 30 resistant mutants obtained after nitrous acid treatment (Table 1) 6 were also auxotrophic, that is, not able to grow on acetate as only source of carbon (Fig. 1), and required an altornative source, for example, succinate or glucoso.

Back-mutants from these resistant auxotrophs wore selected by plating the conidia on medium with acetate as the only carbon source. Table 2 shows, as an example, the results of plating on such medium three different suspensions of untreated conidia from one resistant auxotrophic strain (f.10). Of the 168 back-mutants from this strain obtained in this way, 24 wero tested on fluoroacetic acid medium; all were sonsitivo.
'lable 2. Smemon of Spontaneous 'Back'-Mutants ably to utilize adetate as Sole Carbon Source from one 'Torward'mutant ($f .10$) resistant to Flugroaderic acid and unable to utilize Acfitate

Exp.	Conidia pordish $\left(\times 10^{\circ}\right)$	Total conidia plated $\left(\times 10^{\circ}\right)$	No.	Back mitants: per 10° plated
		135	19	0.14
II	45	1250	112	0.47
III	60	240	180	37
			168	0.20

As expected, not all resistant auxotrophs backmutate, and those which do so may back-mutate both in respect of the auxotrophy and of the resistance, or only in respect of the auxotrophy. So far, 29 resistant auxotrophs of independent origin have been tested for back-mutation (minimum per strain: 2×10^{8} conidia). Of these, six did backmutate, and one of them back-mutated in respect of the auxotrophy but remained resistant to fluoroacetic acid.

This attempt in one specific case shows that the general principles mentioned at the beginning are valid and that forward and back selection, based on resistance determined by auxotrophy, is possible with high resolving power in both directions.

I thank Prof. G. Pontecorvo for guidance, Mr. E. Forbes for advice and Dr. O. H. Siddiqi for a discussion which led to this work.

This work was supported by a grant from the Hebrew University of Jerusalem out of the Sir Maurice Bloch Fund.
${ }^{1}$ Demerec, M., Proc. U.S'. Nat. Acad. Sci., 31, 10 (1945).
${ }^{2}$ Luria, S. E., and Delbritick, M., Genetics, 28, 491 (1043).
${ }^{3}$ Jensen, K. A., Kolmark, G., and Westergaard, M., Hereditas (Land), 35, 621 (1049).
${ }^{4}$ Giles, N. II., and Lederberg, E. Z., Amer. J. Bot., 35, 150 (1048).
${ }^{5}$ Benzer, S., Proc. U.S. Nat. Acad. Sci., 41, 344 (1955).
${ }^{6}$ Domerec, M., and Fano, U., Genetics, 30, 119 (1045).
${ }^{7}$ Fries, N., Nature, 159, 199 (1947).
${ }^{8}$ Davis, B, D., J. Amer, Chem. Soc., 70, 4207 (1948).
${ }^{9}$ Lederberg, J., and Zinder, N. D., J. Amer. Chem. Soc., 70, 4207 (1948).
${ }^{10}$ Reissig, J. I., Genet. Res. (Camb.), 1, 356 (1900).
${ }^{11}$ Grigg, G. W., and Sergeant, D., Z. Vererb.-lehre, 92, 380 (1961).
${ }^{12}$ Kaplan, R. W., Z. Vererb.-lehre, 92, 21 (1961).
${ }^{13}$ Forbes, E. (unpublished results).
${ }^{14}$ Halpern, Y. S., and Umbager, H. E., J. Gen. Mierobiol., 20, 175 (1961).
${ }^{15}$ Okada, I'., Yanagisawa, K., and Ryan, F. J., Z. Vereb.-lehre, 92, 403 (1061).
${ }^{16}$ Morpurgo, G., Aspergillus News Letter, 2, 9 (1961).
${ }^{17}$ Siddini, O. H., Genet. Res. (Camb.), 3, 303 (1962).

(0) Solection and isoletion of 'fonvand matents

A metabolite and its analogue, nemoly acotate and funoroactate, were used in the searoh for a "wompy seleotion" gyston. Firesto an attempt was made to work out the systom qualdatively, and for this purpose condate of a ptrain sensitive to ToAo were inoculated with a noedle into Fororio Rosistant seotors wexe isolated and some of them were found to be aurotrophic (wneble to grov on A. . - Piege3). The mothod of seleotion was possible because stains senctive to F.A. grow to a vesy limited exters on Fr A. H, , thus allowing the enexgence of sesistant sectors,

One of the objeotes of these investigations was to establish a teohnaqu sox the estimato of the proportion of matant nucle: In a given population of conida. As a 'sectoring teohnique is not gutbinde for this purpose, vastous other acthods vere tried. Arother intexest was to detemine what kinde of mutante are asolated under direremt seleotive pondtitons.

As I strains wore found to grow better on succinate medium
 matants on vartous medta oontaning combrations of glucose, succinate and fluoroacotate.

Five different methods were tested. In one nethod spores were
$\frac{\text { FLUOROACETATE }}{\& \quad}$

WILD TYPE: ABOVE
RESISTANT PROTOTROPH: LEFT RESISTANT AUXOTROPH: RIGHT
Hote: the middle dish contains fluoroacetate 2%, glucose 0.5%.
 apores were plated on vartous combinations of ToA. glucose, and sucoinate. The results obtained by each technique, and its suibebility for estimating the proyortion of nutant nucled, are dacoussed in the tollowing tive secthons.

1) Inoubation of conidia in liquid B. He plus 18.A.

As fuoroacetato was found to be polsonous for Asperginus
 In mediun contoininge F. A os the bola daxbon source would wesult in the wild type oonidie uthlizing tit and dyings while maban oonidia (unable to ubilize aootete) would suxvive Hence, 10^{7} contata Eron the gtratin E3spyrod were incubated in this medium ($10^{6} / \mathrm{mi}$ 。) In a pniversal container. Samples wore whthdrawn at intorvals and
 of Incubation the contents were added to melted cooled C.M. and pouxed into Potrit dishes. Thisty colonjes wore recovered, of which bwontymeight grew on A. I_{h}. while two did not. These two were found to be wore resistent to FoA then the parental stradn w3 bypots and were denicnated w3;pyro4; 101 and w3;pyrot; 102.

Table 13. Viobility test of condata of the strein wheyron aftor

Incubation time in days	No. of conidia plated	No. of colonies	Poreentage of viable conddia
0	350	384	109.71
2	2,000	332	16.60
3	1,000	129	12.90
4	1,000	97	9.70
5	1,000	63	6.30
6	1,000	40	4.00
7	10,000	60	0.60
8	10,000	18	0.18
10	100,000	115	0.085
12	100,000	11	0.011

Beaarse of the length of time required for the selective elimination of the sensitlve conidis, this toohalque was not furbhom uged,

2) Sandwiohine oondia in fluoroocetate nedjum

As resistant aectors were obteined from point inooulabion of condala of stretne senstive to T. A. inbo Fodole contala of sonsitive starains were glated on the some medium to discover whether or not isoloted mutant oonidde would develop into colontog undes Ghese conditions (the modium, toobnique, and results axe desoxibed In Part IV, Bo) In tuxbhor worls the percenbage of To was inomaced Trom 3\% to 4\% Tho zeanlts obtalued axe presented in Table 140
 agreenent with results prevtouty obtained (Pert IV, B) o this toohnage was not completely gatheraotory for estimathe the
 population an spopes, as shown by a reconttruotion expeximent (Table 15)

Table 14. Seleobion of grombanoous forward'-nutants reslistant to F.A. by plating conidia of the gtrein bil on F.A.Mo

$$
\text { T.A. } 4 \% \text { ghturuse } 0.5 \%
$$

	No. of oonidia per dish $\left(x 10^{6}\right)$	Toted conidia plated $\left(x 10^{6}\right)$	Rostoten No.	mateanta per 10^{6} plated oomidia	No. of restistant mutants bested fox aurotrophy	Ho. OR auxotrophs**
1	18	36	8	0.22	4	3
2	40	120	38	0.32	25	0
3	15	30	3	0.10	3	2
4	21	42	21	0.50	7	1
5	19.5	39	19	0.49	5	2
6	20	40	11	0.27	5	1
7	16	32	17	0.53	5	0
8	17	34	2	0.06	2	0
9	20	40	12	0.30	8	2
10	17.5	35	10	0.29	7	1
11	20	40	9	0.22	4	2
12	18	36	8	0.22	7	0
13	16	32	10	0.31	8	2
14	17	34.	12	0.35	5	1
15	14	42	6	0.14	5	2

Table 14 continued

16	25	50	6	0.12	5	0
17	25	50	27	0.54	10	1
18	22	44	5	0.11	5	0
19	24	48	11	0.23	9	0
20	21	42	39	0.93	10	0
21	23	46	9	0.20	9	4
22	25	30	28	0.56	10	5

"The oxporiment denotes batohes of conidia of different origin (Part Ix ; 4)。

* In this table as woll as in other tables of this ohapters this number is a minimum level for aurotrophic matants, as the restistant mutonts were transfexred to CoM. and tested for aurtrophy without any further purification. Whe tact that the vast majordty of the reststant mutants wore prototrophic eannot be atteributed to ontemination with wild type contdia, since the prototroph reaistant mutants obteined difer in apporence from wild type on acetate medtum and grow loss well.

Wable 15. Reoonstmation experiment for 'Porwax seleotion of $\{$ matants by gandwiohing conidia in A . A. H.

$$
\text { T.A. } 3 \% \text { gilucone } 0.5 \%
$$

No. of conidia per dish		Totel conidia plated		No. of resistant colonies	
$\begin{array}{r} \text { yipyro4 } \\ \left(x 10^{6}\right) \end{array}$	$w 3: \text { pyco } ; 93$	y яpyro4 $\left(\times 10^{6}\right)$	W3:pyro4:f3	yopyro4 ェ\& Pa^{*}	W3:pyro4; 3
0.01	7	0.04	28	0	23
0.5	7	2	28	3	21
1	7	4	28	4	12
13	7	40	28	9	2
* $P=$ resistant to fluoroacotabe unable to utij.ize aootate					
fa mestistant to fluoroasetate able to utilize acetate					

3) Gendviohing oonidia in sucoinate medtum
4) Sendwioning onidsa in sucoinate medtum

Conidia of the strains bil and pabal were plated on dishes oontaining SoM.; attor 3 hours, a top layor of $4 m 6 \mathrm{ml}$. of S.M. was added. The dishes were examined atter foux days. In this vay zapidly growing colonies on Sollo were selected (Table 16). (Strains of Aspergillus nidulang grow very alowly on Solit Part IV, m2oi。) Two morphologically diferent bypen of oolonies were distinguished anong those seleoted; one type of collony grew compactly while the other grem in a spidery fashion on Sow Colonies of both bypes were isolated and tosted for sesistance to T.A. and for abdity to utilize acetate. All the 35 compact type colonios teated were sensitive to F.A. and utilized acetate, while all the apidery type colonies were resistant to Fr. Among at colonies of the later bype, two utilized acetate and 15 did not.

As this method yielded predominently mutants sensitive to FoA it was not further investigated.
4) Sendwiching of conidia between fluoroagotate modium and sucotnate gluonoacetate medium

Table 16. Seleetion of seplaty grouing colonies by plating condara on sucolnate medium

Stwoin	Ho. of condida per dash $\left(: 10^{6}\right)$	Totel conidta plated. $\left(x 10^{6}\right)$	No. of oompact colonios	No. of spidary coloxies	NO. OR compact colonses per 10^{6} plated comidia	No. of spidexy colonses per 10° plated conid. a
bil	15	60	27	14.	0.45	0.23
pebal	3.8	3.8	8	3	2.10	0.79

glucose 1\%) and oovered with Som. A. Mo Attox gix days or inoubationg sestetant colondes axose (Table 17). of 36 westatant colontes tosted, two utilized acetate, while 34 did note This technique wes not further tnvestigated because the mutents obtained were found to difer onmiderably from the f mutants dsolated by other methods (see Pate IV, H2e).
5) Sandwhoning conidia betwoon gucoinate medium and guocinato Cluopoacotate modium

As \mathcal{L} strains grow botter then f^{*} strains on 3. 3 (see pext IV 122ct), attempts wore made to oombine the two charectoristion of I mutants, mogistange to PA. and repld growth on succinatem, for Gelection of formand motents. Howevex, when oonidia were pleted on Solto containtng T.A. no xesistant colonies axose even whon vexy Low concentrations of H A. were used. Also, strang inoculated mino such a medturn fatled to grow. Howevex, young i golonies on Somo in oontaot with Foto oontinued to grow while young et colonies were inhibited, (this mes found by using the bochaique dosotibed in Pamb TI, 5e). Therefore, condida of a mbrin mensibive to $\mathrm{F} \cdot \mathrm{A}$. wexe plated in a top dayex on top of Sodeg inoubated overnightg and then covered with S.A.A. He Remistant colonien axose aftor 4-6 days

Table 17. Solegtion of pluoroacetabe registant matans by plating conida of the stxain pabar on F.A.fi. plus S. A.A.

Wo. of conidie por dish $\left(\times 10^{6}\right)$

Total conidia
plated
$\left(x 10^{6}\right)$

Restistant mutants
No. por 10^{6} plated oonidsa

77
3.85
(Table 18). The majority of resistant mutants tected (86 out of 89) failed to ubtiza acotate and were rosistant on F.And The three colonies that utilized acetate may have been leaky gationtso The officiency of this teohnique was tested by moans of a reconstruction experiment (Teble 19) and was found satisfactory ass the 'Crigg effoct' (Gzegeg 1952) was almost nogligible up to 10^{7}, contdia per dish.

Conidia of the gtrain bi1 were breated with nitrous aoid (0.02 碞, for fifteen minutes, survival about 2.3%). The aonidia were plated in diehes containing Gut to give $30-50$ colonies per
 colonies bested in this way two acetate non utilizing mutants were found (Doleailova, unpublished resultis). One of these two was found to be resistant to fide while the other was sensitive. Thus there are strains with all the four possible combinations of phenotypes with regaed to ability to grow on acotato and resistance to Rluoroceetates
a) Wid type, 1.0 . able to grow on acotate (A.Mo) as the sole carbon sousce but sensitive to F. A.
b) strains whioh oan grow on Aoli and are resistant to F.A. destgnated fa
o) a strain which oanot grow on A.M. and iscisensitive to Rome dostgnaterd. ace

Table 18. Soloction of Pluorogootato sesistant matents by gandwichlng gontdia of the btrain bil between S.Mo ond S. T.A.M.

Experiment*

No. of	Total conidie	Resistont mutants
oonidia	plated	No. per 10^{6}
per $2 i s h$		plated
$\left(x 10^{6}\right)$	$\left(x 10^{6}\right)$	

1	10	30	18	0.6
2	7.5	15	21	1.4
3	2.5	10	9	0.9
4	20	60	31	0.52
5	6	12	17	1.42
6	12	24	93	3.87
7	3.5	7	13	1.86
8	8	24	46	1.92

Table 19. Regongemation expeximent for the roxwede solootion of mutants by sandwiohing conidis, between S. M. and SomoA. Mo

$\begin{gathered} \text { Noo of } \\ \text { pe? } \end{gathered}$	$\begin{aligned} & \text { conidia } \\ & \text { dish } \end{aligned}$	Total oo	data ploted	No. or resistant colonios	
ygpyzo4 $\left(\sin ^{6}\right)$	w3:pyrotis	yopyro4 $\left(\times 10^{6}\right)$	W3)pyro4:33	y9pyrougi	v3:pyro4, 53
0.01	5	0.05	25	0	22
0.4	5	2	25	2	28
1	5	5	25	A	29
10	5	50	25	37	21
30	5	150	25	84	15
100	5	500	25	78	6

d) gtreins whioh cannot grow on Aong and ape xestigtant to fofo dessemated fo

It is to be noted thet all the Pa ratents whioh wexe posted grev Less well on A. ${ }^{\text {dit }}$ then the strains from which they were derived. The origing method of isolation and degignation of all the mutant strains which have been dsolated during the sourse of this work, by means of the vartous toondques are given in Table 20 . Of all the various methods used for isolation of mutants, only three appeared anitable ror the development of a twomey selootions system. As one of thosemothods (sandwiohing bobweon F.A.M. and S.F. R.M. semed to select mutants differing in phenotype from the mutants selected by the other tochniques (Part IV, E2e), there remained only two teohniques to bo enalyeed thonoughly. The first of these, selootion of matanta by sendwiching conidia in F.Aotog appoased at fingt quito aulboble, but further oxamination revealed a "Grigeg afect' at plating densities of 10^{6} ow more condala per djsh (Table 15). The geoond techntque, on the othex hand, showed a "drigg offeet' only at or above 10^{7} conidia per dish (Table 19). Considering that resistant mutants melooted by the firgt technique are matnly prototrophio (E), while resistant mutants selocted by the second tochnique aze mainly uxporophic, the diference in these two teohniques for seleotion of 9 mutonts beomes subatantial.

Table 20. ostern and designotion of is and fa mutants

I reaistant to Fa. unable to utinize acoctate fa reststant to $\mathrm{F} \cdot \mathrm{A}$. able to utilize acetate

Symbol	Paront surain treated	Putagen	Mothod of isolation
21	but	none	sandwiohing in Fodowo
12	633.pyro4	1	seotoring on FoAomo
43	w3:pytro4	"	1
10	bi1;w3	1	1
16	bil	WoA。	sandviching in Fobolit
97	bi19w2	nono	sectoring on F.A.rio
18	bil 19 m	18	"
99	bil	inoho	ganduthing in FoA.ino
210	bi 1	\square	\cdots
111	bi1\%w2	0	0
112		N.A.	11
113	$y \mathrm{bil}$	nome	10
$\times 14$	blisw?	Divono	18
115	bi 1; w2	10	\%
816	611;w2	none	9
17	bi1;w2	\cdots	0
f18	bi 1	"	"

Table 20 . contimued

19	bil	nono	sendwiohing in FoA。H。
220	bi. 1	1	1
121	61.1	18	9
$\underline{2} 2$	011	${ }^{*}$	"
123	bil	8	13
324	1011	9	8
426	021	09	9
927	bis	*	17
$\underline{28}$	bil	3	"
$\underline{29}$	021	1	18
830	b11	8	"
331	01.1	0	7
P32	bis 1	"	0
E33	bil 1	"	\%
134	0.1	1	*
$x 35$	bii 1	4	*
136	bi1	8	9
138	b14	N.A.	\cdots
839	bil	8	\cdots
140	bi 1	19	7
841	61.1	"	*

Irable 20 contimued

145	621	NoA.	
551	b11	1	replica plating
$\underline{101}$	W3;pyro4	none	incubation in liquid B.Modro.
P102	w3ipyro4	"	"
1201	pabal	\because	sandwiching betweon Potothe so Sorotoma
930	bil	"	saxdwiohing between S.M. \& S.F.A.ll.
2302	bil 1	1	8
5303	bit	"	1
P305	bil	"	"
P306	bil 1	1	19
P307	bil	8	8
8308	bid	18	18
¢309	bi 1	\because	"
f101	b3 11	1	sandviching ins Soino
1402	bi 1	"	"
8403	bit	"	\because
P404	bin	11	9
fal	y 021	"	sandwiohing in Fonoly
fe2	y bil 1	"	"
903	y bil 1	1	19
foa	bid	9	soctoring on T.A. ${ }^{\text {dir }}$.

fable 20 contimued

103	bil	none	soctoring on F.A.M.
206	bil	9	sandwiching in Fo.t.ino.
fa7	311	11	"
8 Sa	01.1	11	"
fa9	bil 1	19	9
8010	bx 1	8	19
1911	b. 1	ro	10
1212	011	8	10
9213	b11	1	11
$\operatorname{sed} 4$	$b \pm 1$	18	9
Ta15	bil	11	11
tal6	bi1	19	"
Sal7	bi 1	*	19
2018	011	"	1

 dangerous to use as the quantitios of $F_{0} A_{0}$ used ere much less than
 seems the obvious chotoo for furthes work.

It is of note that the x matants vary considerably in ther degree of resietance to FA . Mutants isolated by inoubation in
 S.T.A. Ho $^{\prime}$ techntque are among the least meaistant.
 acotete as the gole oarbon source are not vory common in the 1iterature. Those requising acetate are known to ocour in Asponetilus nidulans (rërow, umpublished) and Nourospora orosssa (Lotn ot alo, 1951), whilst mutanta probebly unable to grow on acetate as the sole carbon source have boen studied in Escheriohis goli by Gilvarg and Devis (1956) and by Reaves and Ajl (1962).

Sumpuxy

1) The combination of resistance and aurotrophy was achleved by ueling the metabolio anelogre Eluoroacetabe。
2) Various tochngues for the inolathon of matonts sesiatant to J. A. and unable to utilige abetete were tried.
3) Sandwiohing onidia between a basel layer of s.in and en upper
 way seleotion', using fluoroacetate, among those tried.
(D) Gelection and igolation of 'back'mutants

For the detection of 'back'mutents, conidia from istrains were enbedded in A. D. plus the necossaxy growth factor requirements, and the dishes were soored after 3-5 days. Rosults are presented in Table 21. As expected, not all reststant auxotropher 'back'mutated, and those which did so might have 'back'-mutated in respect of the aurotrophy and the resiatance, or only in respect of the auxotrophy. From forty-wour it mutants tested for 'back'matation only thirteen 'back'-mutated spontaneously (Table 21). 'Back'-mutionts of , eight of these thixteen mutants were also tested for rosistance to Fof ., and while all of the 'baok'mutants of seven of these strains were found to be sensitive to F.A.o all the 'back'mutants of one strain (S3) remained resistant to $\mathrm{T} \cdot \mathrm{A}$. (Table 21).

On the basis of growth on Aox.o two types of 'bade'mutants are observeds 'back'-mutants forming large colonies, and 'beolr'-mutants forming small colonies (oven the larger type of colony is slightly smaller then, and difforent in its growth patemn from, the wild type strains on A. N.). The 'bak'-mutants of ceoh mutant reall into one of these two categories, with the exoeption of the 'back'ravtants of the strains bi1 P307 and b11 2309 which fell into both oategories.

There seems to be an inverse comrelation betweon the frequency

Table 21. Sclection of spontanoous baik -mutants able to utllize acotate as sole garbon souroo from torwayd I mutants sesistant to F . A. and uneble to utilizo acotate

Table 21 contimued

115	35	280	0	0		
116	50	500	0	0		
S17	75	375	0	0		
118	48	288	0	0		
119	70	350	0	0		
520	64	448	0	0		
P21	30	270	0	0		
422	25	250	0	0		
223	45	360	0	0		
124	55	275	0	0		
226	35	350	0	0		
227	65	260	0	0		
128	70	280	68	0.24	-	-
529	65	325	0	0		
130	80	320	0	0		
931	75	300	0	0		
832	50	200	0	0		
933	50	200	4	0.02	-	-
+34	40	320	0	0		
235	35	210	2	0.0095	-	-
136	50	300	0	0		

Mable 21 gontinued

N 01	35	70	1	0.014	1	0
S101	45	225	3	0.013	3	0
f101	35	70	2	0.029	2	0
2102	15	30	24	0.8	\cdots	\cdots
1102	25	100	43	0.43	-	\cdots
\$102	30	240	95	0.39	\cdots	-
8301	50	250	236	0.94	\cdots	-
f 302	60	240	0	0	0	0
1303	60	300	0	0	0	0
4305	45	225	3	0.07	3	0
3306	45	270	0	0	0	0
$8307^{* * *}$	60	300	448	1.49	15	0
P307	20	40	85	2.12	6	0
+307	15	30	51	1.70	\cdots	\cdots
8308	55	220	0	0	0	0
+309 ${ }^{\text {\% }}$	60	240	8	0.03	4	0
¢309	100	400	51	0.13	8	0
± 309	100	400	18	0.04	12	0
*Were the same mutant is given moxe then once, the conidia for each experiment were of independent origin (Part II, 4).						
$\begin{aligned} & \text { TMo } \\ & \text { colox } \end{aligned}$	y di.	$\therefore \mathrm{byp}$	ong ti	revert	Ia	smo

of "beok' ambants and their gize. Watemts which revert with a 30 l Trequeney give 'bact -matemts whioh produce large oolonies (fi3g 835, 101 and (305), while matanta which revort with a high erequenoy produce mall colonios ($\mathrm{E}, \mathrm{f}, \mathrm{fB}, \mathrm{f} 10, \mathrm{f} 28$, f102, and f 301). Agelng among the severtants of 930 and 2309 , where two olasses of stwo of oolonies axe found, the small outnumber the lange by about sive to one.

This might be explatned by aeguming two dirterent meohanisms Sow the origin on mall and large back'mutanteg the mall maght axise by extrambistron gupprescorg while the lexge might axise by intrawoistzon suppressors, or be gemuine back mutanta. Tntrembistron suppressed mbants ate expeoted to resemble the oxiginal state mose than oxtrawatston supprossed matents, sinoe only in the Pixst oase is the oxiginal function of the affectod oistron supposed to be repaiped. As such s sepair is possible only by matations in cextain aites of tho aefected oiotron, while in the other oase matation of any site in a cistron will probably repair the oxiginal motwbolio erfect, it is expected that 'forwaxd'mutnens whtch oan revext by extrametincon suppressors do so more Prequently then those which revert by intra-alstron suppressores As previousity montioned, most of the i mutants tated to - back mubeto spontaneousily. That this is a genuine faluxe of 'back" matabion and not mexaly a failure of debeobion of "back's
mutants under the conditions of the test ts indicated by the fact that nitrous aold is an offective mutagen for reversion in this system (Pable 22).

Wheroas mutagens applied to spores just berowe plating may be orfective in inducing 'forward'-mutation (whioh probably ontails a lose of function), the some mutagens may appoas to be inefeotive in inducing 'back" mantation (which probably entails xecovery of a lost function or gain of a new function) beceuse of the lag between mutation induotion and expression, which may reguire a number of divisions of the mutated nuoleus (Auorbach, 1951). In the case of the 9 matantss which are oapable of growing slightly on Aod . (Part IV, B2a) a mutation induced in a conidium might go through the nuclear diviaions necessary for mutation expression.

It is intoresting to note that the vast majoxtty of mutents whioh were seleoted by sendwiohing of conidia in FoA M, did not severt, while among the matants isolated by seatoring of sensitive

 a good proportion did rovert. The mutants isolated are dostgnated by b together with the number of the I allele from whith thoy originated (fiable 23).

As in the oase of the 'fowtrard'melections, en oxporiment was derigned to test for the 'Grieg effect (Table 24). Fron this

Table 22. Selection of baor'mmants able bo utilige aootate as sole carbon source from 'forvard' i mutants aftor treatment of oonidia with nitxous anto

$\begin{aligned} & t \text { mutant } \\ & \text { bosted } \end{aligned}$	Txeamext	No, of Conidea per dish $\left(x 10^{6}\right)$	Total oomides plated		nutiants pow 10^{6} plated. conidla
$\underline{101}$	nome	70	280	3	0.01
	nitrous acid*	4	32	24	0.75
TA	none	30	300	\cdots	\cdots
		5	40	-	-
* D.A. 0.0145 M . 10 minutes, survival 58%					

$-82-$

Table 23. Opigin and dosigution of revorse mutante eble to utilize acotete as sole carbon gource

All revertaxts wore isolated aftor embodding oonidia in acetate medium

Symbol of suppressor	S mutamit abrein used	Mutagen
b7-x 3	W3:pyrodis	none
b1-x8	b11:w2:98	MoA。
b2-48	b11gm? 28	none
61-810	3i1:910	0
$32-110$	b119,10	1
61.2101	W3:0yro4esiot	8
b2mem 101	w3ipyro4itiot	19
b3-49101	w3:pyrotys10才	"
64-1107	W3:pyto4:5101	11
63 mad 101	w3spyxo4:101	1
b1-1102	W3:pyxo4:3102	0
b2-01102	W3, pyxo4if102	"
b3mat 102	w3pprro4: 102	N.A.
61-2301	D1192301	s20ne
b' 1 m- 305	61792305	18
b1-5307	6i1g1307	8
B2mex 307	b1185307	1
b1-4309	bi1: 3309	8
b2-f309	bity 309	4

Table 24, Reconstruction experiment for 'book' mutation"

Mo. of conidia pox dish
y9pyxo4

Total conidia plated Prototrophic colonies

10	0.005	60	0.03	71	0
10	0.05	60	0.3	58	0
10	0.5	60	3	63	0
10	5	60	30	52	8
10	50	60	300	69	65
10	100	60	600	48	82

* Conidia of a strain (ypprro4) able to grow on acetate medium and conidia of a strain (E3;pyso4;93) unable to grow on acetate medium wore mired in different proportions and embedded in acetate medium o
table, in whioh the embeding toohnaqu was used, it oan be seon thet sew wha type spores grew out of 10^{8} mutant spores and that thes solootion method is eftement up to a plating denstity of about 5×10^{7} contdua per dish.

Sumpery

1) Revertants able to utilize acetate were selected from various I mutambs.
2) Most of the I mutants tosted did not roverty and this fiailure is thought to be gomuine.
3) The ability of 'forwaxd 5 mutants to revert depended on the mothod of their isolation. There wes an inverse correlation betweon the frequency of reversion of I forward matants and the aize of the revertant colonies.

(i) Gharaoteristios of vild type and of mutants

1) M1d type
a) Qompetitive inhibition betwoen fluoroacotgte and vartous gaxbon sources in the spowth of the wild type

An auxanographic best for carbon sourcos was made with conidia of the sixain w3;pyro4 (about 10^{7} conidsa per dish were emboded in Bom.). Two holes were made in the Bome approximately one inch aparito One was filled with a solution of $\mathrm{F}_{\mathrm{A}} \mathrm{A}$ 。 (5\%) adjustod to pH 6.5 with $\mathrm{NHH}_{4} \mathrm{OH}_{\mathrm{H}}$, and tho other with a solution of the oarbon mource (10\%). The carbon acurges tegted wore acetate, glucose, fructose, sucrose and lactoge, anl of which support the growth of Asporgillus midulans (Roberts, 1961). The growth of the strain w3:preot on these carbon sourcos was found to be inhibited by F.A. and the inhibition seomed to be competitive since the boundary between the zone of growth and the zone of inhibition appeared as a straight line (Pontecorvo, 1949).

Competitive inhibition between fluoroacetate and the sources tested might be accounted for in two ways. All the oaxbon sources tosted are known to be degraded to acetate via glycolysis and the oompetition may arise bebween aotato and fluoroacetato; alternatively,
they may all be converted to sone other oommon dexivative such as oltrate, where agaln the fluoronalogue might aot competitively. It was shown that when mamals axe fed with FoAo they synthosize from it fluorocitrate and this metabolito was shown to impair the functioning of the enzyme aconitase (Morrison and Peters, 1954).
b) Growth of Asporgillus nidulans on acotate as the sole ocrbon souxce

Suitable growth conditions were found by using auzanographic techniques. A viability test of conidia of the strain m3opxro4 on Com. and on A. M . did not seveal differences. In most organisms studied (Komberg and misdon, 1961) growth oa acotete nooescitates the oporation of the 'glyozelio oycle' and involves the induction of at least one enzyne, isocitritase, which is inhjbited and reprossed by various carbon sources including sugeinate. The compounds oitrate and sucainate are poor oarbon sources for Aspergillus nidulans and inhtitt its growth on Aold. Atterntes were made, theretore, to seleot mutants which overcane this inhibition by adding to A oho eitrate $(0,4 \%)$ or succinate (0.2%), oncentrations which inhibit growith on Aolio completoly. In each oase about 10^{9} conidia of the strain bit were teated but no mutant colony whioh overceme this inhibition was recovered.

The growth of fa strains (fluoroacetate restatant, utilizing
acetate) on acetate medium is more severely afected by eltrate or sucoinate than that of wild type straine Ooncentretions of 0.2% ditrate or 0.1% ancoinate allow growth of wild type strains on Aomo but not of fa strains. This information could widen the applioation of the 'trownay selection' techntqueg, using FoAog to more looi.

Growth on acetate was not only sensitive to various carbon source inhibitions but aldo to oertain genotypic intonactions. The growth of strains caxying the mutants lyshoga, ed23,omen and axre3 was reduced to varying dogrees. None of the viteminu requiring or sugar mutant strains which wore tosted vere found to bo affected in this way nor were all of the amino acid and adenine mutant strains affected.
 to Anfofailed to grow. This was also the oase when mycelium or resistant atrains (fa) was transforred from PoAodoto Aodo Therefore, all transters wero made as far as posmible wis conidia, or from one medium through Gome to another mediumo Beppacially interesting in this context is the phenomenon that many colonies resistant to Foho, which arose after plating conidia on fotomo, when transferred to Coll developed conidse whioh fatled to grow on Aomo However, after one more transfer through Gomotheir conidia did grow on acetate. This is akin to adantation whioh is memorized. for ono vegetative generation during whioh fe strains mimic strains completely.

2) E matants

a) Residual growth on agetate

All I mutants isolated show some dogree of growth on A.ho and vary from one anothor in this respect. This residual growth is due to utilization of acetate and not to utilization of impuritios in the ager or of the agar itself' as a caxbon souroo, ginoe sparse restdual growth of t mutants is also observed in 1iquid Aos. This residuel growth could be due to 'leakiness' of the mutants, ox, if they axe nonm'lealy', to the existence of a different and Ineficient pathway for the uthlizetion of acetate other than that which is blooked by the i mutants. The fact that all of the f mutants obtained are 'leaky' can bo taken as meak ovidence supporting the second possibility, and, if this is the case, then the variability of growh on acotate of the g mutants, above the basie level attributable to the alternative pathvay, sould be due to vaxying degrees of 'Jeakiness'.

Some of the more 'leaky' matants axe less resistant to FoA.g a correlation which is expected from the hypothesis for the mechanism or resistanoe to $\mathrm{F} \cdot \mathrm{A}$. desomibed in part IV, Bo

b) The 'proline offect'

An attempt was made to discover whether or not the inability of the If matants to grow on acotate as the sole carbon source could be circunvented. For this purpose various growth factors were tested auxanographically on A.M. using conidia of the strain 43;pycodif101. The strain rosponded to oasein bydrolysate and, when tested with individual amino aojds, responded to proline and glutamate (glutamate and proline are Interohengeable in the metabolic pethvays of vexious organisms). The response of I atreans to proline seemed to be quantitatively related to the anount of proline added. However, it is not merely utilization of proline as a carbon soure for a clear 'sparing efeot' was seen when proline and acetate were teated auranogrophioully on the same dish. It is more likely that proline activates the alternative inefficiont pathway for acotate utilization, mentioned in the previous seotion, rather than repairs the motabolio lesion impatred by an fantation. This phonomonon can, however, be sucoescfully used in analysis of orosses. By plating spores of an I strain on A. M. plustproline: 0.02\%, oolonien are obtatned which can easily be distinguished fron 4^{*} colonios (pjg.4). The viability of conidia of 9 strains on A.d, plus proline

Figure 4

Growth of f and f^{+}colonies on acetate medium \& proline

Note: the three larger colonies are \underline{f}^{+}. The medium contains 0.02名 L-proline.

On the asmamion that mollno gemohow onoblad acotato moloculon

 and glucomo mbeht hanotivato tho pethwey through moh prolino Growe the eotzoran

 vero hong to bo memstive to $\mathrm{F} \mathrm{m}_{\mathrm{n}}$

cyeleg an attompt was made to compare growth of g stexains and wild type strains on motabolites of this eyole.

i) Suacinato

Wild type strains of Agporgillus nidulans grow very poorly on suocinate (Sobo as the sole carton source and on other motabolitos of the Krobs oyole such as fumarate or malateo However, foutants ufilite succinate, funarate and melate as sole casbon souroes much bettex than the wild type strains (succinate was used extensively during this work) . The differenee in utilization of suocinate is so great that it con be used as a routine for scoring progeny of orosses in which x motants are Anvolvod (Figos). All If strains tosted showed this phenomenon white none of the fe strains did.

Anong the I mutarts two groups oan be distinguished on the basis of intensity of erowh on Solio after inoubation for 4-5 days. This grouping might prove to be sigaificant, and might identify alleles of one oistron, as is seen in Paxt IV, Pla). As yot, I rattants cannot be grouped on any other phonotyplc oritorton.

- 94 -

11) Mazetomalonate

I mutant streatns vero fown to be more inhibited by meloneto than
 pait 4 adjusted by MH_{4} OH, the atrains pabai grew well white the streans
 (these three strains wote chosen to represent three look (Bart IV, Fia).

iii) Gigmesonitio agid

 oll grew very pooxly but to approximately the seme oxtent.
a) Waty eotds as the sole carbon sourco for i and f^{+}strains

As oonversion of acetate and Patty actids to an enhydride with CoA (coenzyme A) might involvo the stade enaymes, strains whe pxpo4 and

 strains falled to respond to propionate, w3; pysot xesponded slightily to butyrate but the strain w3 pyrots ex poded to do so.
e) The nature of the if matonts

What in the actual blook in the I matants, or what te the difference between I and \underline{m}^{+}staxans? Wone of the growth terts
on vaxious media suocoeded in revealing qualitative differencos anong the I mutants although they map at there diatinct lood (Paxt IV, F1a). Thus their similar bohavious suggests that they all may bo derectivo in the seme primary tunction (in the sense that only one protoin is involved). For instance, they could be dereotive in the uptake of aottate and the fast that they oun utilize aoetate under cortain conditions (the 'proline ofreat') doen not argue edther in favour or againgt this.

The fact that the I matanta grov much bottor on metaboliters of the Krebs' cyole probebly tmplies that all the Krobs' eycle enzymes are active in the I mutants. Ifo as in mamels, FoA. exerts ith toxic erfoot by intersering with aconitase, the I mutants might lack this onzymo. Howover, their growth on oismaconitate which is a speciftc substrate for acontase (Ansinson, 1955), sugcosts that aconitase is prosent.

That the atrain w3; pyro4; fe Taijed to respond to butyrate
 lack an onzyme for the activation of acetyl moities, ide. they oannot aotivate acetate to acety? CoA, and this enzyme mi.ght well be acotyl-thiokisese. An oxganism lacking suoh an oxayme should not be affected in its growh on motabolitos containing moro than two Qaxbons, as It should still possess all the enzymors necessary for formation of acotyl CoA from pyruvato. Th the oase of the I mutants there is no detootable dirforence betwoen I and Φ^{*}
gerains erowing on glucose or glyosrol excopt that I straing tend to form more perithecia then I^{*}, ftrainso

The 9 matants lsolated on the basis of reaistance to $\mathrm{F} . \mathrm{A}_{\mathrm{o}}$ zeverled, on elosen oxamation, vashous plejotropio offocts, some of whiohg such as rapid growth on sucoinete, proved ugeful in the genetio analysuss of I mutants. Rapid growth on sucomate 2f also interesting in the sense that the Imatants hore demonstrate loss of one tunction (fatlure to grow on acetate) and gain of another function (xapta growth on succinate) both due to the mutation \underline{m}^{*} to Φ_{0}

The s mutants colleoted by vartous techuiques hed the same propertios in all tested conditions with the exoeption of the strain f201 and atrains isolatod by the seme method (Fotow plus Solfonotho part IV, 04). These drfered from all other I strains in threo wayss 1) by the absence of the "proline effect"
2) by having a duterent type of meadual growth on Aopla
3) by boing easily 'breast-fed' (Pontecorvo, ot al. 1953) on

Aown by \underline{I}^{+}colonies growing on the same plate.
Why the particular technique by which these mutants were
isolated seloots I mutarts whioh difere from all other I mutants collected is not very olear. Th isg however, the only teonntque in which ghoose, suecinate, and fluoroacotate are used together. This adds to the comon lmowledge that ohange of selection oonditions affeots the kinds of mutants isolated.

Symatex

1) Muoroacotate sooms to inhibit compotitively the growth of Asporgillus nidulans on varions carbon sourcos.
2) Growth of Aspergillus niduluns on acetate as the sole oarbon souroe is sensitive to other carbon sources.
3) Restual growth of matants on acetate is not constered to be due to 'leakiness' of the I mutants but to a different pathway which the f mutiants do not affeot.
4) Proline and glutamite have a 'sparing offect' on strains oarrying an 9 mutan and probably enablo them to utilize aootate to a certain oxtont.
5) Imutants utilize sucoinato matate and fumarate moxe rapidly than wild type atrains.
6) I mutant straing tested are more sensitive than a wild type ntrain to melonate.
7) 5 mutant strains and a wild type strain utilize clmaconitate oqually but pooxly.
8) An 5 mutant staran onnot utilize butyrete whexeas a willd type strain gan.
9) The three 5 lock are consldered to be reaponsible for the arae pximaxy funotion whioh afeoth tho upteare or the Surther utilization of eoctate。

(i) Foxmel genetics of mutants

For further genetic studies only certain of the 9 mutants were chosen. Mutants which 'back'mitate were considered, as one of the man interests in searching for a 'bwo-may selection' was the study of intreacistron suppressors. Also studied wore the mutants selected. by using S.M. plus Soft. A nc. - the technique which proved most suitable for "twomay selection" using Fo A, and one mutants which did not mover (54).

1) 'Forward' -mutants (f)
2) Genic ort gin, number of loot, recessivity

The following heterokaryons were synthesized:

3) wB; by pos; f102 / paba d (f102 /is).

From arch of these heterolaryons conidia were harvested and plated on
G.ifog and 104 colonies (52 white and 52 yellow) from each heterokaryon were tested. The genotypes of the colonies were detemmined by replication to various mediag in each case only the two corresponding parental types were found.

Tn crosses of the type $I \mathrm{If}^{+}$a $1: 1$ ratio of I to \underline{I}^{+}progeny (Table 25), es expected in orossos involving a single Mondelian factor, was always obtained.

In all eases tested (about 800 progeny) the corxelation between cesistance to F.A. (rapid growth on So_{g}.) and auxtrophy on A.t. was complete. In no case were progeny of suoh a cross found to be otither sensitive to T.A. (not rapid growers on suocinate) and ausotronhio on A.fi., or to have the reaiprocal phenotype, i.e. resistant to $\mathrm{F} . \mathrm{A}$. (xapid growers on sucotnato) and prototrophic on A. A. It would seem, therefore, that all the charaoteristics by whioh f strains are dism tinguished from coxresponding \underline{t}^{+}gitrains are due to a single Mendelian Pactor:

All Imutants ohosen - on the bests of the criteria given bexore for linkage studies (14 out of 55) were crossed in certain pairs. The xesults show olearly that these mutants map at three different unlinked loot (Teble 26) 。 Those looi axe designated f3, f101 and f102 and the known mutants mappine at these lock (Table 26) axe as Pollows:

Table 25. Crosses bobveon a mubat strains and wild bype strains

Anelysed by "pertthocium analysis"

$\text { Cross }{ }^{*}$	Type of oross	$\begin{aligned} & \text { colonies } \\ & \text { with } \\ & \text { phenotype } \end{aligned}$		Total	Test for $1: 1$ ratio	
		f	f^{+}		x_{1}^{2}	p
w3\% pyro4; f2 x paba1 y\% ad23	f2 $\times \mathrm{P}^{+}$	108	87	195	2.26	0.13
w.3\% pyxo4; f 3 x y; ni.c2 xibo5	$43 \times{ }^{+}$	148	152	300	0.05	0.92
w3: pyxo4; f101 x y; ad3; s1	$101 \mathrm{xf} \mathrm{f}^{+}$	91	119	210	3.73	0.05
w3: rimod; f102 x pabal y; ad23	S102 $\times \mathrm{S}^{+}$	72	83	155	0.78	0.37
bit\% P301 x y\% adig s12	P301 $\times 1{ }^{+}$	43	61	104	2.09	0.15
bil; P 302 X y\% ad1; s12	¢ $302 \times x^{*}$	42	55	97	1.74	0.19
	1303 $\times 2 x^{*}$	47	54	101	0.48	0.50
	f.307 xc^{+4}	94	79	173	1.30	0.25

[^1]Table; 26. Crosses between in matins

Table 26 continnad
0.04
0.36
0.35
0.34
$$
8
$$
$\stackrel{m}{m} \infty \quad \therefore \quad \infty \quad 0 \quad 0 \quad 0$
$$
0
$$

$\square$$33012+307$

adi: s12: 9307
P
$A M$

$$
\begin{gathered}
4.15 \\
- \\
0.82 \\
0.85 \\
0.04
\end{gathered}
$$

$$
\begin{array}{llllll}
\mathrm{N} \\
\mathrm{~N} & 1 & 1 & 1 & 1
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ज3: pyto } 5102 \\
\text { W3: pyso4; } 5102
\end{array} \\
& \text { 6in: } 1301
\end{aligned}
$$

locus 93
loous Cl 101

10cus 1102
x2, $14,5303, \pm 305,2306$
£302, $£ 308,4309$

88, 5301, 5307

Sluce oach of the three loci containg mutants seleoted by diferent technigues, it is unlikely that further loci detemining the some phenotypic dixerenoes extat *

A11 the mutants looated in one of the loci (designated 83) are of the bype which grows woll on S.M.g while all the mutants looeted In the other two locd (deatgaated f101 and f102 are or the type whioh grows less well on Som. (aee Part IV, B2oi). It should bo noted that the mubants f101 and 9102 , the only mutants whtoh wore isolated in the some experiment (incubetion in Iiquid Bome plus PoA。 Part IV, 01), recombine freely with each othex.

In scorting progeny of crosses of the type fy x fe only two sypes of progeny could be distinguished - whether the two mubents were in the game locus or in two different loci - one having an \underline{S}^{t} and the other having an f phenotype Hence, tip the double recombinant fy ferose it wos probably indistinguishable from the paxental if typeo Am colonies having the I phenotype wexe not isolated from such exosses and beok crossed to both parents, it is impossible to deoide this point.

To find out whether or not the sygtom is autteble for tine
 was analysed by plattige a heavy suspenstion of ascospores on A. H_{H}.
 aminobenzoio aoid. The frequency of e^{*} progeny anong the total recombinant progeny of this oxoss was 0.1% which is muoh higher then the peversion frequency of 23; f4 does not wevert at all (Table 21). Thus the syston shows thelf to be suitable for tine genctio analysis. The recessivity of the I mutants to their wild typo allele was ostablished by synthesiaing diploids (Roper, 1952) hoterozygous for I mitants (Table 27). In all baseb bosted secossivity was confirmed for all the examined charecterintios of the 9 mutants. By synthesizing diploids betweon vantous pains of ${ }^{\prime \prime}$ mutants (Pable 27) it was round that when the I mutants aze at two dircerent lood they do omplenent, but when they axe at the sane locus thoy do not complement. Thats confixros their weoessivity and might suggest thet the three loci corxespond to three oistrons.
b) Loogtion
i) Mitotio analysis

By haploidization of diplotde betwoen if mutant metains and bester strain PGD all the Φ mutants tested wore located in linkege groups
27. Growth of diplotds hetorozygous and homozysous for f mutants Table 27. Growth of diplotis hetorozysous and homozygous for in mutants

on three modia

Table 27 oontinued

pabal y's ad23; f2 /w3; pyro4; 102 f2 / 1102 * -
pabe1: ys 3 / w3; pywo4 f101 3 / 101 ad23: 43 /w3; pyro4; f102 $13 / \mathrm{L102}+\quad$ -

 yo pyro4; nice f 3 xiboj / bit; $3306 \quad 83 / 8306 \rightarrow+$ yi s1; f101 /w3; pyxo4; f102 $101 / \mathrm{L102}+\quad-\quad-$ paba1; w3; £101 xibo2 / bi1\% f301 f101 / e301 + -
 paba1; w3; f101 xibo2 / bi1; 308 P101/e308 - t t
 w3: pyxa4; P 102 / bi1: P 301 x102 / P301 \rightarrow + w3: Dyro4: f102 / bi1: E307 f102 / I307 $+\quad+\quad+$

V or VITI, (Tableo 28-30). The followhing diploids wore symberized:

1) $\mathrm{MSI} / \mathrm{paba1} \operatorname{ad} 23: 53$
2) $\mathrm{MSD} / \mathrm{bI1} \mathrm{f303}$
3) MSD / paba1; w3; f101
4) $\mathrm{MSD} / \mathrm{bi1}: 5305$
5) MSD / paba1: 102
6) RSSD / bi1 $\$ 306$
7) $\mathrm{MSD} / \mathrm{BI} 1 \mathrm{C} 301$
8) $\mathrm{PKSD} / \mathrm{bI1}: 3307$
9) $\mathrm{MSD} / \mathrm{Di1}$, P 302
10) MSD / bi1 5308
11) MSD / bi1 2309

Maploidjzation of diploid 1 (Table 28) fatled to locate 13 to a particular linkege group ass all the haplotds obtatned hed the 9 phonotype. However, as they wero also phe*: lyg * location in the thitd or the Tifth linkege group is suggested (phe2 is seleoted aganat when haploidization is made with Pof.oP.A. and Jys5 is rarely recovered under the conditions of the test). Wherefore the diploid W3 pyxoh f3 / provi pebal yo pal A1 was synthertzed (pat A1 boing located In the third linkage group, Dorn, 1963). The thirty-mbree haploids lsolated segregated in the following way:
$\left.\begin{array}{cccc} & \text { P } & \text { pal } & \\ \text { parental } & * & - & 3) \\ & * & * & 15\end{array}\right\}$

I	paba*	0	7
	paba	0	15
	Aor ${ }^{*}$	0	8
Ix	A.	0	14
TI	ad*	0	14
	dd	0	8
ITI	phe ${ }^{\text {+ }}$	0	22
	phe	0	0

IV
pyro ${ }^{\dagger} \quad 0 \quad 6$
pyro $\begin{array}{lll} & 0 & 16\end{array}$

1ys ${ }^{*} \quad 0 \quad 22$
1ya
0
0
$\begin{array}{lll} \pm & 0 & 17\end{array}$
VI
s
0
5

nio	0	13
nio	0	9

xibo ${ }^{4}$
0
12
VITI
$2: 100$
0
10

Linkege group	afoe breatmont with P.E.P.Ago of digloid$\text { MSD/pabe19v3j } 101$		
	Tomber maxter	e^{*}	r
I	paba*	7	11
	peba	4	4
31	Acs^{+}	5	8
	Agx	6	7
II	$\mathrm{w}^{\text {to }}$	6	7
	W	5	8
TT	phe*	11	15
	phe	0	0
IV	pyro ${ }^{+}$	6	7
	pyso	5	8
V	$1 \mathrm{yss}{ }^{*}$	9	11
	1yss	2^{4}	4
VT	6^{4}	3	8
	E	8	7
VIT	nic ${ }^{7}$	4	11
	n2o	7	4
VHET	Pibo ${ }^{4}$	0	15
	ribo	11	0

*Those two haplotas did not grow on AoMo Liko a ucual pt gixatn beoanse they Garmy the mutant mys. Dowevory due to the motphology of thear golonion on aootabog they could be distinguished from f oolonios, and thele pattorn of growth wem completely identioal to the pattorn of growth of etxains oarming the mutant 2 gs 5 on A.M.

MSD/pabati 1102

Linkege group	Sentor maxker	p^{4}	x
T	paba ${ }^{4}$	3	10
	paba	3	7
II	Aer*	4	8
	A08	2	9
ITT	phe ${ }^{*}$	6	17
	phe	0	0
IV	Pymo	3	5
	pyeo	3	12
V	7...t	6	15
	Iys	0	2
VI	s^{7}	2	11
	5	4	6
VII	minc ${ }^{+}$	2	11
	nio	4	6
VITI	xibo ${ }^{+}$	0	17
	$x \mathrm{mbo}$	6	0

L.o. I3 is not locezed in linkage group ITT.
 in the efirth linkage group) was then synthosiged and Sifty-Rous haploids wow mallysed. They segregated as $\mathcal{C o l l o w s}$

which dndicates location of E 3 in the tifth linkage group. Also wild the haploids isolated fron diplotds 6, 7 and 8 were \underline{I}^{m} and phe ${ }^{*}$ and yys ${ }^{4}$, whioh indicates looation in oither the third or the firth Iinkage group.

Haploddization of diplotds 2 (Table 29) and 3 (Table 30) located both g101 and S102 in linkage group VITI and haploidization of diploida 4. 5, 9, 10 and 11 confimmod this location for the other matants knowa to map at these loos (Table 26).

All thit ovidence leeds to the ooncluction that locus if is located in the third linkage group, while lool 9101 and f102 are unlinked (Table 26) and looated in the elghth linkage group.

By haploidication one can detect translocations by finding complete linkege botwoen two maxkexs which are noxmally locatod in two diferent linkege grouns. During the course or this work translocations wore found in the strains pabal, botween linkege groups
 botwoon linkage groups III \& VIII and VX \& VIT. Thesofore for furthex Asolation of metants the strain bil (which was sound to be without translocations) was used.

1i) Moiotic analysis

33
 (Table 31), f3 was located betwoon nito2 and ribo5 vory loosely 1 inked to both of them.

2101

Grosses between strains carxying the mathe f101 and strains earrytng other maxkens of the oighth linkage group vere analysed. Linkage was detected only between flo1, gibor, and axg (Table 32), showing that

Tablo 31. Looation of 93 by mototic analysis
 Cross w ys nice ribo x w3 pyro4 33

The date are tabulated only in reapoot of the maskems nied nibo5, 53 as in a three point oross.

Oroseover reglons
none

$$
\therefore \quad+\quad 60)
$$

nic of + 41)
I
nice + sibo 54)

$$
\text { nic of }+\quad \text { 41) }
$$

$$
\therefore \quad+2160 \quad 10\rangle
$$

$$
\text { nio }+\quad 4 \quad 39)
$$

TI

$$
4 \quad i \text { 2lbo } 28)
$$

I. and $T T$

$$
\text { nic } E \text { wbo 19) }
$$

Hinkage mapo nice 40 ± 5.6 03 35 ± 5.4 zibo5

Tablo 32. Loogtion of 2101 by miotic snalysis

Data ate tabulated only in reqpoct of the maxlerrs ares, f101, riboo an in a throe potat oross.

gyon la closely linked to gibos and suggeating that it lios botwoen ase3 and yibo․ To confirm this order seleotive platings were mede by sandwiching betwoen goll and Sor.Adrasoospores from hybrid peritheota of the Rollowing orossess

1) bi.1: oxn9 cha x bi1: axes f101 ribot
2) pabat x bit are3 $101 \times 1 \mathrm{xoc}$
3) b11; arg x bil f101 who?

In each oase selection was node for the gibo ${ }^{*}$ I recombinants which were analysed for the segregation of arg. (Table 33). The data oonfirmed the order (axe3 g101 xibo2).
± 102

The allele 930 pepresents locus p102 as this allele is more easjily distinguished on the various medith from lis vild type allele then 1102 . Thwee orosses involving mantwors of the oighth linkege group were made, but no linkage between $\left.\mathrm{f} 30^{\circ}\right\}$ and any other marker ves detected, about 200 progexy from enoh oxcss being anelysed. The cronses were as follows:

1) $x ;$ ad1: g12; 5307 , bi1: nxe wibos

2) K; adi; s12; $9307 \times$ bil; ade3: gha pal B7.

3) Baok'omutants

Beok! minteants wore nubjected to furthor anelysis with a viow to deoting whether they were due to extramentron or intremantron guppressons. Honoe orosses betwoon the revertent atreins and strains ourxying the wild bype alleles wore mode. The analystis of those orossess (Table 34) showed thet those suppreesong of alleles 33 , 33 and 102 whioh were tested were extwanstronde and undinked to the ajlele they guppressed, while the suppressors of the allele fol maghe be Intremistronio. These xosults are in acoord with a hypothosis putb Sorward in Past TV, D_{2} as all the rovertants analysed excopt for revertonts of the allele flol, are small' on A. m .

A thick suspenstion of ascosposes tron the exors w3: pyrosi fiol.
 acid. From an estimated 0.8×10^{6} viable recombinamt ascospores pleted, two is colonies wowe recovored. One of then reoonbined freely with f10t, which indioated a matational origing the other did not seoombino with flot (no xooombinant was found amone 2,500 viable progeny of a cross of this \pm mutant to 8101), whioh indicates that this I monat was either flol itself, or the supprossor, b2-f101 on $4 t \mathrm{~s}$ own heving a matant phenotype (Cxick ot eq. 9 1961). This oxamplo demonatrotes the adequacy of the systom for mapping of oxtrencly closely Linked suppressoxs. Dominance of two auppressor matants of 101 which
Table 34. Crosses between A revertent strains and wild type strains
Grosses analysed by 'selective plating', seleotion for pyed ad zecombinants.

As expected from intameastronio suppressors, was demonstrated by gynthesizing diploids honozygous for f101 and hetorozygous for the supperesors. The diploids were an follows:

Both diploids were found to have an \underline{S}^{*} phenotype on Aoke and radota

3) Enhencors

 seators arosen thereforeg the strain pebal; w3; 101 yibod was inonulabed into a potri dish containtig IPA. A_{H} plus the necessary growth factors. Supermesistant sectors arose and were isolated. The new straing were deaignabed ta 2 ge2 ebo. (fe $=$ fluorocetate reststance

 and sucodnato. By synthealaing the diploid.

- 123 -

Sel was found to be wecessive as this diploid has the phonotype of an g101 retrain on Foholi. As expeoted, this daploid strain railed to grow on A.Mownile the diploid
b11: agen / pabai, w3; fo1; f101 ribot

grew on A.M, and was gensitive to T. $\mathrm{A}_{\text {. }}$
 was analysed. Three typos of progeny were digtingulshed:

1) progeny with do not grow on A.M. and axe supas-mosistant to F.A. (assumed genotype Go1: P101),
2) progeny whioh grow on A.tio and are senative to foh.

3) progeny whioh do not grow on $A_{0} M$ and axe ressistiant to FoA. (assumed genotype f101; \pm).

The nurber of progeny in class 2 was roughiy equal to the number of progeny in classes 1 and 3o These results suggest thet the onhancer
matation (fo) is separsable from the f101 loous, and thet the onhancor mutant by itself (fo) is indistinguishable (by tho above critoxia) from an ES^{+}allele。 To confirm this, sevoral recombinante from thits oross (elass 2) were isolated. One of them y adis si2 assumed
 representing the three of lool. Analysta of these crosses (Table 35)
 that by Itsele fel is phenotypically indintinguishable Trom the wild type allele fet (ox the bested oritoria), that fol is uninined to any of the known I loci, and that fol in probably a goneral enhameer for any I mutont trespective of tits locationg this lends further support to the didea that all the throe I 2001 are engaged in the sane primary function (Part IV, B2e).
Table 35. Grosses between y: adi: s12. fel and three stemins each onayins

Gross				nye 02 cross	Ho. of progeny superresistemt to 3. A。	Totel Mo. 0 ? progeny analysed	Test for x_{1}^{2}	33 ratio P
-3: pyrot: 3	\pm	a	1: s12; fet	33 xfet	23	90	0.015	0.30
pabe1; W3: 11012	π		\%	P101 3 Pel	29	102	0.94	0.34
6i1; 0307	Σ	1		S307x Se	32	104	1.84	0.17
	Segregation for growth and nonmgrowth on Adia among the progeny of all these crosses did not deviate significanty from $1: 1$ tatio.							

Summaxy

1) The mutants isoletod have been shown to behave 1 ile a single Mondolien iactor.
2) They have been shown to be reoessive.
3) By gonetical (orosmes) and functional (complamentation) teats, all I mutenta examined Pall into three looi which correspond to three oistrons.
4) One of the loci is located in linkuge group ITI; the other bwo ane located in Linlcage group VITT, and are undinked.
5) Some revertants or vatous I forward'mutants wexe analysed and heve been found to result from unlinked suppressore.
6) One of the f 'forward'-mutbants t101, zeverts by ortromely closely Inked on intre chatrortio supprossors.
7) An onhanoer matation to fluoroacetate xestatance has boen shown to be indistinguishable by itself from the ooxresponding wid type allele, to be unlinked to any of the bhree f looi and to enhence any of three f mutants, each representing one of the three f looi.
(G) Gomplomontation in hoterokaryons and diplotds

Recessive matants from direorent loci usually complenent when beatod ether in the hetorokayyon or in the heteromgous diplod. So fax, differences in oomplementation botwoon diploids and heterokexyons, oach having the seme genotype, have beon tound in a few oases (Ponterorvo, 1952; Roberts, 1961; Sor more details see Ponterorvo, 1963). The most atriting of those tis probably the oase of mutants th three methionino suppressor looi in Goprinus Zacopus (1owis. 1961, and unpublished results) where most of the combinations botwoon mutants from diferent loed do not omplement in the hotexokaryon in the trans contiguration.

The I notants of Agpoxgillus nidulans reprosent a, somewhat ginilar bituation with the ditrowence that so fax nono of the combinations bested (betweon matants from diferent loos) do omplonont In the heterokaryon, whioh senders the possibility of oxoeptions unlikely. Horeover, while complonentation botween suppressors is orpessed as ratuxe to grow, omplenentation between ansotrophio mutants iss oxpressed by growtho Complementation botween f mutants was verified by tosting grovth of the relevent hetoroknryon and diploid on Aoris.

Throe of the I motants (3, f101 and f102) were tested for
reoemsivity in the hetorokapyon and in the hotexozygons diploid and found to be reoosstivos toe. they grem on acotate raedium the following comblnetions wore taied:

1) W3; pyro4: $93 /$ paba1 $y \quad\left(23 / I^{*}\right)$
2) $43 ;$ pyro4 fro1/paba1 x
($8101 / 2^{+1}$)
3) ㅂ3; pypo4s f102 / pabas y $\left(\underline{2} 102 / 巳^{*}\right)$ (see also Tablo 27).

To toet fox oomplementation in hetorokoxyons gonidia of both statas were mised in liquid A.Mo and arten $4-5$ days incubabion the mycelium Was transcerred to A.p.
 f102), were tested in and poasible combinations in hoterokeryons and in hetorozygous diplotds. All of the heterokaryona falled to grow on Aotho white the diploids did grov (Tables 27 and 36, Tige 7) a The pettem of ompleneatation did not change when the omplementing
 Furbomoreg as the I mbanbe grew slightly on A ohe it was posstole to
 day or two a vigourously growing hotexokwyon was obtained. On two ocoasions diploid sectore axose from the alight growth on A. Wo of hotorokaryons betwoen two unltaked I mutanta (fig. 8). This indioates thed although the heterokaxyon is formed it cannot grow $i \rho e$ a genuine Sailure of growth and not of foming a hoterokaryon.
Table 36. Tests for complementrion of unlinked in ments in heterotaryons

Goribination:

प\% si: 玉tot / W3: pyros; fio2
ad23: 93 / y: sfa m101
and in heterozsgous dinloids
Hezeroknmy

$53 / 5101$
$93 / \pm 102$
$5101 / 2102$
$23 / 8101$
\uparrow indicates

- indicates mutent grorth

Combination:
प\% sis fion /w3\% Dyroos p102
ad23: 3 / y ${ }^{\text {a }}$ ¢ 2101

- 131 -

Fimure 8

A dinloid arowing out of a hotorokaryon

Note: the diploid seotor is on the right-hand side of the plate. The hoterokaryon 13 between the stricins pabel \mathbb{y} is and V3: $2 \mathrm{yro4}$ f101 (f3 and f101 aro unlinked).
The plate contains acetate modium.

The other oonbjations betwoen alleles from diferent loct. which were compared in the heterokexyon and in the heterozygous diploid (in trens) vore the following:
 Al1 these combinations fell into the same patitern i.e. heterokaryons did not grow on acetate while hoterozygous diploids did. Also, 45 hoterokaryons wore gythostzed between flitoon I mutants and each of the mutants 23 , p101 and f102. All these 45 heterokaryons failed.
 non-allalsc matants. The following strains wore used: W3: pyxo4: 53 , w3; pyro4; f101, w3: pyro4: f102 and strains carpying the folloving $I_{\text {matantise }}$
 All these stratins, in adition to the E mutant comried the mutint bil. To explain this phonomenon ono ban postulate severel modeles

1) The proteln tnvolved in growth on acetate does not migrate outiside the nuoleus, and therefore the mutants fall to complement in the heterokaryon (Pontegoxva, 1963).
2) Assuning one protoin made up of two or throe different polypoptide chaing, local concontrations of them in the hoberokaryon axe not sufficient to allow assembly of the polypeptide chains (Fontocorvo, 1963). Assembly of polypentide chains is known to oocua for haemoglobin (Ttano and Singer, 1958).
3) The thormetion of eaoh nucleus for symthesta of the onsyme os onaymes conoomed moves on masse to partioles of the cytophasm where those ongmos aro nowmily athated. in thats oase probebly mitoohondrias on, if the informetion does not move en mages onoh or the partioles rocelves infomation from one perticulas nucleus only. This model assumes furthor that there are no $2 n$ oraotions among the paxtioles, and predicts the occurrence of one kind of particle in the gytoplam of the diploidsg and of two hinds of pertholes in the hotexolcaxyotio eytoplasmo A model of this kind can bo postulabod for overy oase An whioh the protoing ase not ixeoly noluble in the oyboplasm but are 2ocaliged.
4) Agsuming thet of the three geneg 3nvolved, one is structured and two ase yegulatorys and that the product or the rogulathory gene is restrioted to the moledue, olthor bocanse thore ta no possibility of migreting ontig on beousse it axiste in very few coptesg one vould oxpeot ln all Gases in which one reguletory gone and one atructureit geneg or two regulabory genes, are involved, to tind, differenoes in the oomplenentablos pattorn betweon the heterokexyon and the hetorozygous diploid.

It would seem that in dealing with regulatory genes comperisons botween hetorokuryons and hoborogyens diplolds might dooide whethox or not the producter of regulatory genes (repressors) are effeotively rostiveted to the nuclens tee whether or not they are oytoplasmio
(Jacob and Monod, 1963). Fors an alaborate model of interactions betweon gtructural and regulatory genes which acconass for the diforences in the complementation patern of the sane combinetion ta the heterokaxyon and the heteromygons diploid see Ponteconvo (1963).

At least one potit may be drams from thisa is in Asporgillus nadulans the diplold condition did not exist and complomentation was terted only in the hetorotaryon (as in yourospore grassa), nutants whioh are in difforent lixkage grouns may have beon taken to bo allolice, 2.0. ectopic allelism (Bontecorvo, 1958).

Sumbary

1) Ail the combinetions, in trans contlguration, of two Indtants (pairs congisting of mutants from dieferent cistrons) do complement in the hoterozygous diploids ahut wot in die coverpermaling hetrothorepow.
2) Oortain possibilitios whioh could erglain this phenomenon have been suggerted.

(w) Disoussion

Systoms of the type desoribed in this worlm are primaxily sutted to use in miorooxganisms but oould be applied to cells in tissue oultures and might bo edupted for uee in othor organisms suoh as Drosophila, as seleotion for reststance is rolatively aimple Λ "twomay selection" would also Pacilitate procurement of aurotrophio mutants whioh in cortain organdans are difecent bo obtain (Chlemydomonas roinhardj, Sager, personal comnunteation).

The assumption that matants of the sume oistron always have a similar phenotype presumably axises in most oases from the availability of only one phenotypio oharacteristio by whioh mutant stratins may be distinguished from corresponding wild type atratns. In the I systom, hovever, matants are distinguished from oomosponding wild types on at least threo oriteria, and mubants gaa bo obtained which do not Guhibit all of these chacactoristion, for oxample, mutants which axe zosistant to F.A. but oan ublize acotate. Such mutants wore isolated and donignated fa but were not furbor analysed.

A mechanism which could explain occumpence of ga matents in one of the I oistrons is the followings consider that the protein coded (or segnlated) by the if cistron(s) does not distinguish betweon the
mobabolibe (coobote os a doxdvative or it) and its analogue (furnoagetete on a dexivative of 16), but distinguishes between them atter a change arlahag from amotion The protein will then geject the anologue thereby oansing resiabonce, but still doal with the metabolite, thoneby ousting protobrophy thus, matants resistant to fluoxoacetate which still utilige acotate might map in an is oistrong oooupying only a minox traction or its mbable sites, and mapping at partioulaz places in $i t$ as prosumably oniy vexy deminito and sestriobed ohenges in the protest would onable it to distinguish botween a notabolite and its malogue.

It in not known it the variour techmaues used for seleotion of PTomaxd mmatants select mutants mainly of a paxtloular loous, as only matants seleoted by the S.mo + S. F. $\mathrm{h} \cdot \mathrm{H}$. teohaique wexe mapped in numbere sufficiont tor constierction (those are the eight mubants, 1301-2303, $2305-1309$) Theso mutants do not repregont a random sample, having been seleoted by reason of theis showing glight variations in growth on suocinete medtum, and in reatiual growth on ncotato medimas they canot, themetope, provide any gatiafactory answex. Tig
 (Pari TV, Reai) is acoeptod as a bosis for distingutshing mutambs ox the f3 3004 from montan of the 2101 and 9102 hooig it is pocsible to mooxtair which teomique will seleot pretorontially matrats of
the f3 loous. Rhis being so would omphasize the suitubility of the \& ayster for the purpose or "Gwomay selootion within one locus.

With the above considerations in mind, the problem of which mutants revert and whioh do not (Teble 21) may also be remertanned. The vast majoxtty of mutants which do not rovert are of the type whioh growe more rapidly on sucoinate medium. If it is acoepted that these matants map at loous $[3$, then unless they are gross aborrations in the genetio matertal this phenomenon is difficult to understand.

Relovant to the ofregt of selection condithons on mutants selected Is the frequenoy of oocurrenoe of onhenoor mutonts when f coloniog are grown on T.A.M, containing 4\% fluosoacetate and 0.5% glucose, as compared to the garity of thelr oocuxpence wen the medium contelns only 2% Pluoronoctate and 0.5% glucose. This is probably due to the inowease in gizo of e colonios grown on mediun contrining the latber concentrations in comparison to colonies grown on mediun containing the ingt conoeatrettons.

It wes sucgested previously (Part IV, E2a) that the slight Dasso growth of I mutamis on A. M. might bo due to an altornative and inerfioient pathway tor aoctate utiligation whioh to not blooked
 might be due to activation of thas patheay (Part TV, Mitu). Mutations
blooking this pathway may in taot be the enhancer matants (fe, Part IV, F3), which by thenselves camot be distinguishod from the correaponding wild bypes. This is supported by tho sact that certain starins oaxying an I matent togethox with an te matant axo completely Inert on agetate medium and do not denontrate the "prozine offoct. Altornatively, Le mutants may result from a block in a permeablithy systom, but this oxplenation is weakenod by the fact that strains carrying an fe mataxt (but not an I mutant) grow on acotate medhum as well as the oorresponding wild type strains.

\vee GBMIRAI SUMGARY

The importance of soleotive teomiques in genetical studies has been discussed and two typer of aeleotive sysbems have been emphesired ' seleotive totred analysis" and "bwomay selection" symbems.

Materials and mothods used in this work were desoribed, those whith are in comon use in the study of Aspesmillus nidulans and those which were partioularly designed in the course of this work.

In oxder to obtain a systom for 'selective totiad analysis', 6lue and colourless ascompore mubants have been isolated. Four blue mutante have boox locabed in one loous (Linkuge group II), and, of five colourlems mutants, four have been Loeated in one locus (tinkoge group I), and one in linkage group IV (Whege mutanta were Found to be "non-mbonomous, but analysis of croeses betwoen them led to the conclusion that in Asperginlus nidulans the phenotype of the poxithecium and $i t s$ ascospores - In respoct of the characters oxamined Le detemined by the nuciear oonstitution of the protoporitheaium whioh gave origin to it.
A) The intended wonk with agotate nonmuthizing mutants and a brier account of findings concerntug them is given.
B) The principles for entablishing "twoway seleotion' systoms besed on oowelating restistance and amotrophy are outlined, and some results - conflrming thess prinaiples abtained by using a motabolto (acotate) and its analogue (fluorocotato) -a aro seprescnted. Mutants obtained (xesistant to Tluoroceotate and unable to utllize acotate) have been designated is
©) Various techaiques for the selection of maxita restatant to fluosoacetato have beon used, and the most suitable for a 'twoway selection" system has beon shown to be the sandwiching of epores botween sucoinete medium and succinate flaoroacotate medium.

Revertants able to mitilize acotate have been seleoted trom 9 'Lorward'mutants. Host of the I matanits do not reverit and this Lailure is thought to be genuine. There is an Inverse correlation betveon the frequency of reversion of $\frac{y}{\infty}$ nutants and the size of the revertant colonjes on acetate mediun.

玉)
Tt has been shown that Rluoroacetate inhibits competitively Growth of Asporpjilus niduzans on various oaxbon sources.

A residual growth of I mutants on acetate medium has been observed and attributed to a second pathway for acotate utilization
unaffected by an frutation. Proline has boon shown to have a 'spaxing offect in f mutant strains grown on acotate medim, and this has been attributed to the aotivation of the socond pathway.

I mutant strains have been shown to grow moxe mepidily on internediates of the Krebs' oycle (sucoinate, fumerate and malate) and to be more sensitive to malonate than corresponding wild type strains.

It wos concluded that all Inutants are impatred in the same primary function, (in the sense that only one proteln 1.5 involved).
F) I mutants have been showis to be recessive, to map in three meiotioally unlinked look corresponding to three olstrons, and the loci to map in two linkage groups, (V and VITI).

Revertents, prototrophic on A.M., have been shown to result from extrameistronic suppregsore. One mutant, fiol, reverts by oxtremely closely linked ox intra-cistronio suppressors.

An onhancer mutation to fluoroacetate restistance has been shown to be reeessive, to be indistingutshable hy 4 trelf Xrom the oorresponding wild typo allele, to be unlinked to any of the threo I loci, and to enhance I mutants of all three looi.
a) It has boon shown that I mutants, in worioferent looi, in the trans configuration do not complement in hetoworaryons butt do complement in the composponding heterozygous diploids when tested on soetate medium.

VI．REAERENCES

Anfinsen，C．B．，（1955）．Agonitase from pie heart musole。 Mothods in Thazmelogy，Editors：Colwiok，SoPa，and Kaplan，N．O．Aoademic Pross，1，695－698．

Apirion，D．，（1962）．A general systor for the automatio selection of aurotyophs fron prototrophe and vioc－voxsa in micromorganisns．Nature，195，959－961．
（1963a）．Phenotype of pabal with succinato as only carbon sourco．Asperpillus Now Letior， An（in press）．
（1963b）．Formal and physiological genetios of ascospore colour in Aspergillus nidulans．Genet，Hes．告（in preas）。

Auorback，C．0．（1951）．Rroblens in ohemical mutagenesis．C．S．H． Symp．Quant．Biolo 14，199－213．
（1962）．Alutations an introduction to research on mutagenesis．Bdinburgh，Olivor and Boyd，Part I．

Benzer，S．（1961）．On the topography of the genetic fine structure． Proc．Nat．Acad．Soi．Washor Ait 403－4．15．

General nature of the fenetic code for
proteins. Nature 122, 12e7-1232.
Dorn, G.g (1963). Location of phosphatasoless mutants of
Asporgillus nidulang. Asporgilus Nows
Lettox 4 (in press).
Eniott, Cocto (1960). Mho oytology of Asporgillus nidulans.
Genet. Ress 1, 462-476.
Ephrussi, Bo. (1930). Aspeots of the phystology of gene action.
Anor. Neto, 72, 52-53.
Forbos, E., (1959). Use of mitotio segrogation for assigning genes
to linkage groups in Asvorgillus nidulons.
Heredity, 13, 67m80.
(1963). A strain with all ehromosones merked fow use
in haploidization. Asporgilus Nows Lettom,
In ($\ln \mathrm{pxosa})$.
Freese, 13., (1959a). On the moleculax explanation of apontaneous
and induced mutations. Brookhaven Syme.
In Biology 12, 63-75.

Freese, D., (1959b). The specipto mutagenio offect of base analoguos

Glvaxge Go and Davis, Bo.D., (1956). The role of the tricaxborylic acid oyole in acotate oxidation in Esohertohia ooli. I. Biol. Chom. 222, 307-319.

Gatcge Gowog (1952). Back mutation easay mothod in micromoreanisms. Nature, 169, 98-100.

Ttano, Hotog and Slnger, SoT., (1958) on dissoolation and reoombination of human adult haemoglobin $A_{2} B_{0}$ and $C_{\text {. }}$ Proo. Mat. Aoad. Soi. Mash $44,522$.
 buctorial Unosco Symp. in MBlologionl Osganizetion". (in pross).

Jinks, Jotoon (1961). Intomal suppression of the hIII and the tu45 mutants of bacteriophoge T4. Hexedity, 16, 241-245.

K"row, Rog
(1958). An Bochromosome map of Aspergillus nidulang. Advences in Genetios, 9×105-145.
 by micromorganismaso Advences in Enzymolocy. Edited by Nord, Wat, Tntorgcience Publishers, New Yoxk, 23, 401.-470.
 Neurospora atudied with blochemical matants. Axc. Biochemo Bionhyse 34,72 .

Gemang LoSog (1963) , The gtwuctuxe of the DNA-acridine complex. Prog. Nat, Aoad. Soi. Washa 49, 94-102.

Lowis, D.
(1961). Genetioal analysis of methionine supuressors In Copeinus. Genct. Hoe. 2,141 - 155.

Whoas, Pu, (1961). Witotic haploidination by treatment of Asporgillus nigex diploids with parafluorophenylalantne。 Natuxes 100, 744.

Lissoubas P .
(1961) P PhoD. Theaia, Paxis Univengity.
and Rizet, (G. (1960). Bur l'existonco d'une unité génóvique polarisée no subissent que des óchanges non reciproques. O.Ro Aog. Sqieg Ports, 250 $3408=3410$.
 sensitivity to virus rebistance. Genotiog, 28, 491-511。

$$
\begin{aligned}
& \text { Martens, P.g (1946). Cyole de dévelopnent et sexualité des } \\
& \text { asconycètes. Collules } 50,125-310 .
\end{aligned}
$$

Morpurgo, G. (1961). Somatic segregation induoed by p-fluorophenyl.alanino (pfp). Agporgilus Hows Letter, $2,10$.

Morrison, JoF., and Poters, RoAog (1954). The Lnhibition of aconjtase by Pluorooitrate. Biochem. J., 56, 36.

Pontroorvo, G., (1949). Auxonographic techniques ta blochomical Genetios. J. Gen. Miorobiol. 3, 122-126.
(1952). Genetical analysis of cell organjation. Sympo Soc. Bxe. BLol.a 6,218 w22.
(1958). Trends in genetio analysis. New York, Colunbia Univorgity Prosso
(1963). Microbial genotics. Proc. Roy. Soo. Bo, (in press).
and Käfer, Tha (1958). Genetio analysis based on mitotic rocombination. Advanoes in Gonotios, 2, 71-104.

(1953). The genetios of Asporgillus nidulang. Advances In Gonetios, 5, 141-238.

Tarr Gloor, E., and Forbos, Rog (1954). Analysis of mitotic recombination in Asvergillus nidulans. So Genoton 52, 226m237.

Pritohard, R.IIo, (1955), The linear arrangement of a series of alleles of Aspergillue midulans. Heredity, 9, 343-371.
(1960a). Localised negativo interforence and its bearing on models of gene wemombination. Genat. Ros.9 19 1-24.
(1960b). The bearing of recombination analysis at high rosolution on genetio tine structure in Asporginlus nidulans and the mechanism of xecombination in highor organisms. Symp. Soc. Gon. Microbiolo 10, 155-180.

Reeves, HoG.g and Ajl. S.J. (1962) . Interrelathonships between the tricarboxylic acid and glyoxylate oyclos studied with bactorial auxotrophs. Ganad. J. Miorobiolo, $8,241-247$.

Rizet, Gog Lefort, Gog Englomann, Na, Lissoube, Po, and Wousseau, J.
(1960). Sur un ascomycète hatéressant pour l'ǵtudo de cextains aspoots du problems do la atructure du gène. C.R. Aoad. Soio, Paris, 250, 2050-2052.

Roberts: C.T..
(1959). A repliaa plating beohnigue for the inolation of nutithonally oxacting mutantes of a filamontous Rungus (Agporsillus nidulans). J. Gon. Morobiol., 20, 540-548.
(1961). Ph.D. Thosis, Glaseow Univorsity.

Ropor, JoA. (1952). Produotion of heteromygous diploids in cilamontous Cungio Brperientia, 8, 14-15.

Siddiqi, $0 . \mathrm{H}_{0}$ (1962a). The fine genetic structure of the pebat seglon of Asporetilus nidulang Genob. Ros. 3, 69-89.
(1962b). Ifutagonic action of nittrous acid on Asponginlus nidulang Cenot. Ros. 3 3, 303-314。
and Putramento Aog (1963). Polarised nogative interference in the pegal region of Agporgillus nidulens. Gonot. Ros.ag 12-20.

Sturtevant, A。Hog (1920) . The vexwilion gene and gyandromoxphism. Pxoo. Soc. Brp. Biol. Med. $17.70-71$.

Tesmano t. (1962). The induotjon of 1 axge deletions by nitrous

Thom, Cog and Raper, KoB.g (1945) A mamal of Asporgilli. Belliexo Mindal and Cox, London.

[^0]:

 anothes matneret toobo

 and erow

[^1]: *

 In orosses involving a strain carrying an ad mutant only ad ${ }^{+}$progony were scored.

