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SHAFT miTChim IE A TWII^SPOOL 
JET EÏÏGINE SYSTETÆ

Suamary of a Thesis submitted by ÏÏ, Ratcliffe, B. So. , 
for the degree of Doctor of Philosophy in The Faculty of 
Engineering of the University of Glasgow.

Modern jet engines have two co— axial shafts which 
rotate usually in the same direction but are not coupled 
mechanically. In common with other types of high speed 
machinery, shaft vibration, particularly that excited by 
unbalance and known as whirling, is a serious problem. 
Despite the enormous investment involved in the design an.d 
development of a new type of jet engine, relatively little 
research has been done on shaft whirling in jet engines.
It is believed that no detailed investigation of whirling 
in a two shaft system has been carried out.

The work described in this thesis was designed to 
establish the accuracy with v/hich the whirling frequencies 
could be predicted and in particular to examine how these 
were influenced by the speeds of the two shafts as a result 
of gyroscopic effects.

The experimental rig constructed for this investi­
gation was à simple full size model of the rear half of a 
typical twin-spool jet engine. After extensive testing 
of the components of the rig, a computer model was 
developed which would predict the natural frequencies of 
the rig to an accuracy of better than 5°/o. It was 
concluded that this accuracy was not likely to be
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approached in the prediction of the frequencies of an actual 
jet engine and such calculations should not he relied on in 
the design of an engine to ensure that whirling did not 
occur within the working speed range.

The computer model was used to explore the variations 
of the frequencies over a wide range of combinations of 
shaft speed. Under certain conditions the frequencies were' 
found to be influenced greatly by the speed of one or both 
shafts. At certain combinations of shaft speed the 
character of the mode of vibration of the two shafts was 
changed drastically by relatively small variations in the 
shaft speeds. Methods of determining the critical points 
of vibration in the working range of a typical jet engine 
were examined. It was found that each frequency which 
lay within the working range was liable to be excited by 
the unbalance of either shaft. The results suggest that 
more critical points Of vibration are likely to be 
encountered in the working range of an engine in which the 
shafts rotate in opposite directions.

In the course of the investigation a careful examina­
tion of reverse whirl, in which the bent form of the shaft 
rotates in the opposite direction to the shaft rotation, 
was conducted. A plausible explanation of the cause of 
this phenomenon is given which suggests that it deserves 
further study.

' One of the shafts exhibited a severe vibration which 
was unaffected by the unbalance of the shaft. The mode 
of vibration was that of a subharmonic and further examinar- 
tion suggested that it v/as caused by non-linearity of the 
support of the shaft as a result of bearing clearance. It 
would appear essential that research into the control of 
this type of vibration is conducted.
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SHAFT WHIRLING IN A TWIN-SPOOL 
JET ENGINE SYSTEM

Summary of a Thesis submitted by H, Ratcliffe, B.So., 
for the degree of Doctor of Philosophy in The Faculty of 
Engineering of the University of Glasgow,

Modern jet engines have two co— axial shafts which 
rotate usually in the same direction but are not coupled 
mechanically. In common with other types of high speed 
machinery, shaft vibration, particularly that excited by 
unbalance and known as whirling, is a serious problem. 
Despite the enormous investment involved in the design and 
development of a new type of jet engine, relatively little 
research has been done on shaft whirling in jet engines.
It is believed that no detailed investigation of whirling 
in a two shaft system has been carried out.

The work described in this thesis was designed to 
establish the accuracy with which the whirling frequencies 
could be predicted and in particular to examine how these 
were influenced by the speeds of the two shafts as a result 
of gyroscopic effects.

The experimental rig constructed for this investi­
gation was à simple full size model of the rear half of a 
typical twin-spool jet engine. After extensive testing 
of the components of the rig, a computer model was 
developed which would predict the natural frequencies of 
the rig to an accuracy of better than 5°/o. It was 
concluded that this accuracy was not likely to be



approached in the prediction of the frequencies of an actual 
jet engine and such calculations should not he relied on in 
the design of an engine to ensure that whirling did not 
occur within the working speed range.

The computer model v/as used to explore the variations 
of the frequencies over a wide range of combinations of 
shaft speed. Under certain conditions the frequencies were' 
found to be influenced greatly by the speed of one or both 
shafts* At certain combinations of shaft speed the 
character of the mode of vibration of the two shafts was 
changed drastically by relatively small variations in the 
shaft speeds. Methods of determining the critical points 
of vibration in the working range of a typical jet engine 
were examined. It was found that each frequency which 
“lay within the working range was liable to be excited by 
the unbalance of either shaft. The results suggest that 
more critical points of vibration are likely to be 
encountered in the working range of an engine in which the 
shafts rotate in opposite directions.

In the course of the investigation a careful examina­
tion of reverse whirl, in which the bent form of the shaft 
rotates in the opposite direction to the shaft rotation, 
was conducted, A plausible explanation of the cause of 
this phenomenon is given which suggests that it deserves 
further study.

‘ One of the shafts exhibited a severe vibration which 
was unaffected by the unbalance of the shaft. The mode 
of vibration was that of a subharmonic and further examina­
tion suggested that it was caused by non-linearity of the 
support of the shaft as a result of bearing clearance. It 
would appear essential that research into the control of 
this type of vibration is conducted.
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CHAPTER 1

INTRODUCTION

SUBMARY

An outline of the development of the understanding 
of the behaviour of a whirling shaft is presented. Some 
of the factors which influence the whirling of a shaft, 
such as gyroscopic effects, shaft and bearing flexibilities 
and friction are discussed.

The light and complicated structure of a jet engine 
presents difficulty in the accurate prediction of the 
whirling speeds. Further difficulty arises in modern jet 
engines which have two co— axial shafts, which are mechanically 
independent, and as a. result the ratio of the two speeds is 
not constant.

The purpose of this investigation was to examine the 
accuracy of prediction of the whirling speeds of a two- 
shaft model, which resembled part of a jet engine, and in 
particular to study the effect of the shaft speeds on the 
whirling behaviour.
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CHAPTER 1

INTRODUCTION

1,1 The Phenomenon of Whirling;

The violent behaviour which a rotating shaft may 
display when the speed reaches a certain critical value was 
originally reported by Rankine in 1869 (Ref.l). Rankine 
argued that when the speed reached a critical value any 
small deflection of the shaft would result in a centrifugal 
loading which would exceed the elastic forces and therefore 
the shaff would become unstable. He called the phenomenon 
'centrifugal whirling' and proceeded to describe how the 
-critical speed could be obtained,

Greenhill published the results of an examination he 
had made of the stability of a rotating shaft subjected to 
a twisting moment and an end thrust, as might occur in the 
screw shaft of a steamer (Ref,2), He showed that it was 
possible for the shaft to adopt a helical form at a certain 
speed, but his theory did not reveal the true nature of 
whirling.

Reynolds examined theoretically the possibility of 
predicting the whirling speeds of uniform shafts. The 
work was continued by Dunkerley who reported the results of 
an extensive investigation into the problem of predicting 
the critical speeds of uniform shafts carrying one or more 
pulleys (Ref,3). He found that the critical speeds of a 
uniform shaft were identical to the frequencies of lateral 
vibration, when the shaft was not rotating, calculated 
using the Euler-Bernouilli elastic equations. When he 
attempted to calculate the critical speeds of a shaft 
carrying a pulley the theory became too complex to be 
readily solved in practical cases. Noting the relation 
which existed between the frequency of vibration of a
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spring carrying two masses to the frequencies which 
occurred when the spring carried each mass in turn, he 
was led to a relation which gave a very good prediction of 
the lowest critical speed of a shaft carrying one or more 
pulleys. In this method of Dunkerley, the frequency of 
lateral vibration of the shaft alone is combined with the 
frequencies it would exhibit, if it were massless, when 
carrying each mass in turn. Dunkerley proceeded to show 
experimentally, that the method gave a very good estimate 
of the lowest critical speed, of a shaft carrying several 
pulleys.

Some years later the Swedish inventor, de Laval, 
encountered the phenomenon of whirling in the development 
of the first practical steam turbine (Ref. 4). He discovered 
Jthat if the shaft could be accelerated sufficiently rapidly, 
violent motion of the shaft in the vicinity of the critical 
speed would not have time to develop, and smooth operation 
was possible above this speed. His turbines were therefore 
designed to utilise this principle and operated at speeds 
several times the critical speed.

The theoretical description of a whirling shaft 
continued to be studied by, among others, Chree, Lees and 
Jeffcott (Refs.5,6,7). Jeffcott's paper, published in
I9I8 , contained a particularly clear exposition of the 
behaviour of a whirling shaft,

Jeffcott considered a light uniform shaft, supported 
freely in rigid bearings at its ends, which carried a mass, 
m, at the centre of the span. The centre of mass was 
supposed to be offset a small distance, a, from the axis 
of the shaft and the motion of the mass was opposed by the 
surrounding medium in a viscous manner.

The motion of the mass was defined with respect to a 
stationary system of co-ordinate axes (x,y) in a plane 
transverse to the axis of the bearings at the centre of the 
span (Fig.1.1 ). The origin of the axes, 0, lay on the
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bearing axis, while the position of the deflected ax:is.' 
was defined by point C, which had co-ordinates (x,y).
The position of the centre of mass was defined by point G , 
distance, a, from C, such that line CG was inclined at an 
angle wt to the X —  axis at time t when the shaft rotated 
at an constant angular velocity, w.

Since no other external forces, other than the 
viscous resistance, act on, the mass, the equations of motion 
in the X and Y directions are given by:—

2 ,
m — g (x + a cos wt) + f -^ + kx = 0

dt^ dt
— 2

m — Q (y + a 8iu wt) + f + ky = 0
dt"̂  dt

in which f is the coefficient of viscous resistance and k 
is the elastic stiffness of the shaft.

The two equations may be re— arranged in the form:—

m § + f —  + kx = ma w^ cos wt
dt*̂  dt
2

m + f —  4- ky = ma w^ sin wt
dt"̂  dt

The first part of the solution of these standard 
equations is damped oscillatory and does not depend on the 
eccentricity of the mass. The remaining part of the 
solution is

.2ma w
X =

y  (k -  m w^) 2 + f2 
2ma w

y =
y  (k —  m w^)2 + f2

cos(wt — . cp)

sin(wt —  cp)

where tan cp = — Ê! 2m w
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This solution shows that the.path of the axis of
2 2the shaft is circular, since x + y = constant, and at 

any rotational speed, w, the line CG subtends a constant 
angle cp to the line OC, At low speeds the radius of the 
path of the shaft axis is small and the centre of mass, G, 
lies outside the path of the shaft axis, 0, If the 
viscous resistance is relatively small, as it usually is 
in practice, the radius of the path is large when the 
rotational speed approaches a value equal to /k/m, which 
is the frequency of lateral vibration of the shaft, when 
it is not rotating, and this speed is called the critical 
speed. At very high speeds, since the radius approaches 
the value a, while the angle cp approaches m, the centre of 
mass tends towards the axis of the bearings, with the shaft 
revolving around it.

Jeffcott thus showed that the deflection of the shaft 
in the vicinity of the critical speed was finite, being 
controlled by the resistance offered by the surroundings, 
and that stable operation above the critical speed was 
possible. He also noted that, provided the shaft could be 
accelerated rapidly to speeds above the critical speed, 
dangerously large amplitudes would not have time to develop 
in the vicinity of the critical speed, a principle which 
de Laval had employed several years earlier.

1.2 Influence of the Bearing Supports

In practice the supports of the bearings are never 
rigid and they may also offer some frictional resistance to 
motion. Smith, in a remarkable paper published in 1933, 
reported his examination of the behaviour of a rotor mounted 
in flexible bearings containing some frictional resistance 
(Ref,8). He found that whereas the critical speed would be 
lowered when the flexibility of the supports was included, 
the character of the motion was not changed provided the 
characteristics of the bearing supports were symmetrical.
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When the bearing supports were not symmetrical 
he found that the rotor had two critical speeds, 
corresponding to the frequencies of lateral vibration of 
the rotor in the directions of maximum and minimum bearing 
stiffness, and the amplitude of motion of the rotor at 
these two speeds was still controlled by the friction 
applied to the rotor and the bearing supports. Between 
these two speeds, the rotor whirled in a sense opposite to 
its rotation, and therefore of the unbalance.

When a shaft is mounted in oil lubricated journal 
bearings, the oil film might be expected to provide a 
contribution to the flexibility and damping characteristics 
of the bearing supports. However, the properties of an oil 
film in such bearings is complex and certainly non-linear,

Newkirk discovered that a rotor mounted in journal 
bearings would exhibit unstable behaviour at speeds above 
about twice the critical speed which it would exhibit in 
ideal bearings (Ref,9). He argued that since the mean 
angular velocity of the oil film was approximately half 
the rotor speed, disturbances at this speed were likely to 
occur due to the wedging action of the oil film. This 
unstable behaviour is of particular importance in very 
large alternators, which operate above the first critical 
speed, and it continues to demand the attention of research 
workers (Ref. 10),

1,3' Gyroscopic Effects

Early steam turbine designers found that the whirling 
behaviour of a rotor would be influenced significantly by 
the gyroscopic effects of turbine wheels (Ref.4).

The gyroscopic effect on the whirling of a rotor may 
be demonstrated by considering the motion of a light uniform 
shaft mounted as a cantilever in a rigid bearing, which 
carries a disc at the free end (Ref, 11). Y/hen the shaft
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is deflected the disc is tilted as shown in Pig, 1.2.
The disc has a mass, m, but the centre of mass is 
displaced from the axis of the shaft by a distance, a, 
as before. The disc is rigid and uniform, with a mass 
moment of inertia about any diameter. A, and about its 
axis, C.

Using X—Y co-ordinate axes in a transverse plane 
through the mounting point of the disc, (when the shaft is 
stationary), the co-ordinates of the centre of mass are, 
as before

X + a cos wt, y + a sin wt 
where w is the rotational speed.

During the supposed whirling motion the disc will 
-have angular velocities, 9^ and 9^, and accelerations,
*̂ x Ty* The angular acceleration 9^ requires a moment 
about the X —  axis, Acp̂ , to be applied to the disc. In 
addition, since the rotation of the disc about the Y —  axis 
will cause a change in the angular momentum, Cw, an 
additional moment about the X —  axis, Cwcp^, must be applied 
to the disc. Therefore the total moment which must be 
applied, about the X —  axis to the disc to maintain the 
supposed motion is*—

Atp̂  + CuÇy

Similarly, the angular velocity, 9^, and acceleration, 
9y,'imply that a moment about the Y —  axis

Alpy -
must be applied to the disc.

The deflection, y , and slope, 9^, of the end of the 
shaft are related to the force, P^, and moment, M^, applied 
to it by equations of the form:—

y = r.Py + s.M^

Tx = 8.P +
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where r, s and t are positive elastic constants of the 
shaft. Inversion of these equations gives:—

F = d.y + e.cp̂

= e.y +

where again d, e and f are positive quantities.
Similar relations between the loads P„ and M , andX y

the movements x and cp̂ , of the end of the shaft are found 
to be;—

= d.x -  e.cpy

My = -  e.x + f.cpy

..where the signs are found to alter to comply with the sense
of the co-ordinate axes.

These loads are required to produce the assumed 
displacements of the end of the shaft. Loads opposite to 
these will be applied to the disc during the supposed motion,
and therefore the equations of motion of the disc become:—

a2
m ^ 2  (x + a cos wt) = — d,x +

m — 2 (y + a sin wt) = — d.y —  e.cp.

Acp^ + Cw9y = — e,y —  f.9^

Atpy -  Cwcp^ = e.x + f,cpy

These equations may be combined using complex 
notation by putting

z = X + iy
cp = -  cpy + icp̂
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to give:—
mz + dz + ecp = ma e

Acp —  iCwcp + ez + fcp = 0

The free vibration of the disc, which in practice 
decays as a result of damping, may be assumed to be of 
the form:—

z = Z-j e T ~ *̂1 iXt

which leads to the conclusion that vibration will occur 
when the determinant of the coefficients

mX'

becomes zero.
Thus the natural frequencies of the rotor are given 

by the roots of the equations*—
(d —  mA^) (CwA —  AA^ + f) —  e^ = 0

Putting C = 2A, for the case when the disc is thin, then 
gives:—

_  2u)\3 _ (3 + f) + 2duA Itz_e5. = q
m a  m Am

The variation of the four roots of this equation 
with the rotational speed of the rotor, w , is illustrated 
in Pig,1,3. When the rotor is not rotating the roots 
are —  Aj and —  A 2 so that the free motion of the disc is

and the disc describes an elliptical path, either 
clockwise or anti— clockwise. The frequencies Aq and A 2 
are identical to the natural frequencies of lateral 
vibration of the rotor when it does not rotate.
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The figure shows that when the rotor is rotating 
it may whirl at two frequencies which are higher than 
the irrotational frequencies and and since the 
values are positive, it processes in the same sense as 
the rotation. (The word 'process' has been adopted by 
workers in the field of shaft vibration to mean 'moves in 
a closed (normally) path').

The rotor may also whirl at two other frequencies 
which are lower than the irrotational frequencies, and 
since these are negative, it processes in the opposite 
sense to the rotation.

The steady state solution of the motion of the disc 
due to the unbalance, is assumed to be of the form:—

and solution of the equations of motion, putting

X = w and C = 2A

gives
p pmaw (Aw + f)

Zg = -------------------- 2-----  • ®y  +
The denominator of this expression has the same 

form as the frequency equation when X = +w. Resonance 
will therefore occur when the rotational speed of the 
rotbr is equal to a natural frequency of vibration at 
which forward precession occurs. The line X = +w in 
Fig.1.3 shows that, for this simple rotor, resonance will 
only occur at one speed, which is termed the critical 
speed of forward precession. This speed is somewhat 
higher than the lower natural frequency of lateral 
vibration which the rotor exhibits when it is not 
rotating, as a result of the gyroscopic effect of the 
disc.



X, X U

Some workers have reported that minor resonance 
may be observed when the rotor speed coincides with a 
natural frequency at which reverse precession occurs 
(line X = — {jj in Fig,1,3), The rotor therefore,- rather 
surprisingly, processes in a sense opposite to that of 
the unbalance, Stodola (Ref,4) claimed that this 
behaviour resulted when the fixing of the disc to the 
shaft became loose.

Whenever the influence of gyroscopic effects on 
whirling is discussed in the literature the possibility 
of reverse whirl is usually given as an aside, den Hartog, 
an authority with a vast experience of practical vibration 
problems-, reports hov/ he 'looked around and asked his 
friends for fifteen years about it and was just about to 
-conclude that it was imaginary when a case actually 
occurred’ (Ref. 12), He v/as forced to conclude after many 
tests, using several shafts and discs, that it was 
unaffected by unbalance or asymmetry of the shaft cross- 
section, and its real cause was unknown.

Whenever reverse whirl has been observed by research 
workers its amplitude has always been small. Whereas, at 
the forward whirling speed, the bending of the shaft does 
not fluctuate and therefore internal hysteresis does not 
act so as to control the vibration, at the reverse whirling 
speed the shaft bending fluctuates at a frequency equal to 
twice the speed and control of the vibration is assisted by 
internal hysteresis,

1,4 The Influence of Internal Friction

The discussion of gyroscopic effects showed that 
the frequency of vibration of the rotor was affected by the 
rotational speed, Y/hirling is a peculiar type of vibration 
in that a distinction has to be made between the rotational 
speed of the bent form of the rotor, i.e. its movement or 
precession, and the rotational speed of the rotor about 
its own axis.
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Àn effect discovered by Kimball in 1926, which 
illustrates this peculiar aspect of whirling, is that a 
frictional mechanism within the rotor, due to hysteresis 
or movement of clamp fixing used in its construction, may 
cause instability (Ref,13).

If a non-rotating shaft is bent to and fro, internal 
hysteresis will cause the load/deflection diagram to 
traverse a loop as shown in Rig,1,4(a). Imperfect clamp 
fixings which slip as the shaft bends. Rig.1.4(b), will 
also cause the diagram to form a closed loop. Both 
mechanisms absorb energy and convert it to heat and are 
therefore classed as damping.

If' the shaft rotates, while being held in a 
stationary deflected position, as shown in Rig,1.4(c), 
the imaginary fibres of the shaft will undergo alternate 
tension and compression. The fibres marked 1 and 3 will 
experience maximum strain and therefore maximum tension 
and compression respectively, while fibres 2 and 4 will be 
unstrained. But when the strains of these fibres are 
related to the hysteresis loop. Rig,1.4(a), it can be seen 
that fibre 2 is in compression while fibre 4 is in tension. 
When all the fibres are considered it is found that the 
unstressed fibres lie along the dashed line in the figure, 
which is not at right angles to the shaft deflection.
The internal friction, therefore, produces a tangential 
force, R^, which tends to drag the shaft in the direction 
of rotation. This force is, in some way, related to the 
shaft deflection and its rotational speed.

When the shaft is free to vibrate, and therefore 
free to process at a rate X , as shown in Rig,1.4(c), 
internal friction results in a tangential force acting 
on the shaft, the direction of which depends on the 
difference between the shaft speed, w, and the speed of 
precession, K, When the shaft speed is less than the 
critical speed, X, the tangential force acts opposite
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to the direction of precession and therefore assists 
the normal friction exerted on the shaft by the 
surrounding medium. At the critical speed, when w = X , 
the force due to internal friction is zero since the 
fibres do not experience cyclic strain, V/hen the shaft 
speed exceeds the frequency, X, the tangential force due 
to internal friction opposes the external frictional 
force, P^, and at sufficiently high speeds will overcome’ 
the latter and instability results (Ref.8),

When gyroscopic effects are present in a rotor the 
forward whirling speed is still not controlled by internal 
friction. But when the reverse whirling speed is 
encountered the internal friction may provide a strong 
influence since the shaft fibres are cycled at a frequency 
-equal to twice the rotor speed,

1* 5 The Prediction of Critical Speeds

The prediction of critical speeds is carried out by 
determining the natural frequency of lateral vibration of 
the rotor, with an appropriate correction being made for 
gyroscopic effects v/hen the rotor contains large discs.

Sometimes the rotor configuration is such that it 
may be assumed to approximate to a uniform light shaft 
carrying several discs in which case a reasonable estimate 
of the lowest speed may be obtained using either the 
Rayleigh or Bunkerley methods. In large steam turbines 
the cross-section of the rotor is large in comparison 
with the span and varies appreciably along the span, and 
no such simplification of its form can be made to ease 
the analysis.

Designers realised that steam turbine rotors could 
be analysed by a 'lumped —  mass' technique but the 
computation involved was considered prohibitive (Morris, 
working in the field of aircraft design, had some success 
in devising efficient methods which reduced the
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computational labour (Eef.14-) ), A graphical method, 
normally used for determining the deflection of loaded 
beams was 'employed. A deflection curve for the rotor, 
supposed to be whirling at a certain speed, was assumed, 
from which the centrifugal loading along the span was 
obtained. The true deflection of the rotor under this 
loading was then determined graphically and compared with 
the assumed deflection curve to produce a better estimate 
of the critical speed. The method was limited since it 
was only convergent for the lowest critical speed 
(Ref. 4).

In 1945 Prohl outlined a method which was analogous 
to the Hplzer method of determining the frequencies of 
torsional vibration of shafts (Ref.15). Starting with a 
.guessed value for the critical speed and the boundary 
conditions at one end of the rotor, a simultaneous step —  
wise integration of the shear force, bending moment, slope 
and deflection is carried out along the rotor. The 
conditions obtained at the other end of the span are then 
compared with the true boundary conditions to obtain a 
better estimate of the critical speed.

Prohl's method was suitable for calculating critical 
speeds higher than the first, which was an advance over 
existing methods, but was still tedious. However, this 
drawback was soon resolved by the advent of digital 
computers.

The computational facility offered by computers also 
permitted the calculation,of critical speeds to be, 
formulated in a more elegant manner, as an eigenvalue 
problem.
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1.6 The Jet Engine

One of the first successful applications of the 
g ah turbine to aircraft propulsion was designed and 
developed by Sir Prank Whittle, who called it simply, 
a jet engine. Whittle used a centrifugal compressor 
since it was lighter and more robust than the axial type 
and a wealth of experience on small centrifugal compressors 
for supercharging piston engines already existed.

Later, when the efficient design of axial flow 
compressors became feasible, the axial type superseded the 
centrifugal compressor for all but the smallest jet engines.

The development of the axial compressor to obtain 
even higher compression ratios was found to lead to 
handling difficulties. Since the blade row diameters are 
approximately the same, the compressor must be designed to 
have almost constant axial velocity of air flow in order 
to obtain reasonable blade angles. As the speed is 
reduced, because the delivery pressure falls more rapidly 
than the mass flow, the near constant axial velocity is 
not maintained with the result that the blades in the front 
stages,stall and rapid deterioration in performance, known 
as surge, results (Ref.16),

The handling difficulties inherent in high 
compression ratio axial compressors were in some cases 
overcome by arranging for some of the air flow to be bled 
from the later stages of the compressor at low speeds.
This remedy is wasteful and not always completely 
successful in avoiding surge throughout the speed range.
A better solution is to divide the compressor into two 
mechanically independent units, driven by separate turbines 
as shown diagrammatically in Rig,1.5. The arrangement 
shown is typical of modern bypass jet engine design.
About half the mass flow delivered by the low pressure 
compressor is diverted around the engine to be mixed with
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the remaining air just before the propelling nozzle, 
thus achieving a high propulsive efficiency with a 
significant reduction in jet noise,

1*7 Balancing of Jet Engines

Since very high rotational speeds are used in jet 
engines, balancing of the rotors is extremely important. 
During the assembly of an engine each rotor is balanced 
carefully at several stages during assembly. Current 
balancing methods are capable of balancing a rotor 
dynamically to within l/lO oz, in. The centre of mass 
of a typical turbine rotor weighing 100 Ibf, would 
therefore lie only 0,00006 in. from the axis of the 
bearings. (Although the eccentricity would seem very 
small, the out of balance force developed at a speed of 
12000 rpm would be 25 Ibf),

The fine degree of balance achieved during assembly 
is almost certainly lost when the engine reaches operating 
temperatures, due to differential expansion and consequent 
movement of the parts of the assembly. In service the 
rotors are liable to receive some damage which destroys 
the balance of the rotors. The ingestion of ice, stones 
or even birds into the compressor intake, or the uncommon 
turbine blade failure, may not result in catastrophic 
failure of the engine, and it is therefore essential that 
the .engine should continue to operate without serious 
rotor vibration even when seriously unbalanced by such 
damage.

Serious rotor vibration or whirl is normally 
avoided since the resultant cyclic bending of the shaft 
may eventually lead to shaft failure. But in jet engines 
the flexibility of the bearing mountings is usually 
appreciable so that the bending of the shaft under 
vibration may not be so serious as the movement of the 
rotor in relation to the casing of the engine.
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As with,.âll turbine engines the clearances 
between the blades and the casing are designed to be 
as small as possible. In addition the metering of the 
vital cooling air supply to the turbine discs is controlled 
by labyrinth seals between the rotors and the casing, which 
again have very small clearances. Appreciable movement 
of the rotors due to vibration must be avoided otherwise 
serious damage may occur at any of these small clearances — 
and if titanium blades, which are sometimes used in the 
compressor, do rub, catastrophic fires usually result.

1.8 Rotor Damping in Jet Engines
The complexity of a co— axial engine means that the 

rotors usually consist of two or more sections which are 
coupled by splined connections. Since large torques are 
transmitted by these splines, any flexing of the shaft could 
result in a degree of internal damping in addition to that 
which occurs at the numerous clamp fits employed at various 
points in a complex rotor. Thus there is the possibility 
of a rotor becoming unstable at high speeds, as originally 
pointed out by Kimball. No investigation of this aspect 
appears to have been carried out on jet engines.

1.9 Occurrence of Whirling in Jet Engines
The prediction of critical speeds in a jet engine 

is more complex than in other types of turbo machinery 
because the quest for lighter construction results in the 
flexibilities of the casing and the bearing supports, and 
the attachment of the engine to the aircraft, having a 
significant effect on the vibration of the rotors. In 
the larger types of engine the critical speeds cannot, 
as a result, be placed above the maximum speed, and 
instead the flexibility of the bearing mountings is often 
deliberately exploited in order to place the lowest critical 
speed below the idling speed of the engine.
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Further complications arise in multi-shaft 
engines. A typical plot of the variation of shaft 
speeds with thrust in a twin-spool engine is shown in 
Rig.1,6. Both shafts rotate in the same sense otherwise 
the bearing between the two would have a relative speed 
equal to the sum of the shaft speeds, which is a difficult 
requirement to demand of such high duty components. If, 
as already stated, the critical speeds were designed to 
be below the respective idling speeds of the shafts, then 
it would seem that whirling within the operating range of 
speeds would be avoided (assuming the next highest critical 
speeds were above the maximum shaft speeds). However, if 
the critical speed (which is the speed at which the natural 
frequency of the rotating shaft equals the rotational speed) 
of the high pressure shaft were at 5000 rpm, say, it might 
be expected that the natural frequency of the shaft would 
rise to perhaps 6000 rpm when it rotated at 11000 rpm, due 
to gyroscopic effects. But under these conditions the 
low pressure shaft is rotating at 6000 rpm. There is, 
therefore, the possibility that the H.P. (high pressure) 
shaft may be excited by the unbalance of the L.F. (low 
pressure) shaft. Thus in a twin-spool engine it is not 
sufficient merely to consider the position of the 
conventional critical speeds in relation to the operating 
speed range of the engine.

In conventional jet engines the gyroscopic couples 
exerted by the rotors during manoeuvres can be contained 
by the large aerodynamic forces available in high speed 
aircraft. But in vertical take-off aircraft, adequate 
control of the attitude of the aircraft during take off, 
either by swivelling of the nozzles or by air jets at the 
extremities of the machine, is not easily obtained. As 
a result, contra-rotating engines may be necessary for 
such applications to reduce the gyroscopic couples. But 
then the reverse whirling mode of shaft vibration, formerly 
regarded as of little importance, must be examined,



1.18

Although the rotor of a jet engine may never 
operate at a speed which coincides with its natural 
frequency, the possibility of excitation from other 
sources must not be overlooked. It seems likely that 
many vertical take-off aircraft will use banks of small 
engines to provide lift. If vertical control is provided 
by throttling some of the engines while the remainder 
operate at full thrust, unbalance of a throttled engine 
may conceivably excite vibration of a'nearby engine which 
is running at full speed.

External excitation of a rotor may also be provided 
by an auxiliary shaft which is driven by the rotor through 
gearing.. The most serious occurrence of this excitation 
would exist in turbo-prop engines as a result of the ' ■ 
fluctuating forces exerted by the propeller.

1,10 Aims of this Work

The writer spent several years working in an 
aircraft engine company, Rolls-Royce Ltd. Although he 
was only briefly engaged on jet engine development he was 
aware, through discussions with colleagues, of the problems 
of shaft vibration on several types of aircraft engine.

The first major axial flow engine built by the 
company, about 1952, had a single shaft and was plagued 
by 'rough running' in the early stages of development.
The’ trouble sponsored a detailed investigation of the 
methods of the prediction of critical speeds and resulted 
in the formation of the computer department.

The first twin-spool engine, built about 1955, was 
found to have serious shaft vibration which was recognised 
as whirling and caused serious mechanical damage due to 
rubbing between the two shafts. The whirling speeds had 
been predicted to lie above the maximum speed of the 
engine but it was later found that the influence of the
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flexibilities of the bearing supports, which,had been 
neglected in the calculation, were not negligible.

The shaft vibration troubles encountered on these 
two engines were eventually overcome during development 
and both became very successful engines in service.
How the troubles were overcome is difficult to establish* 
Certainly much effort was devoted to improving balancing 
techniques, the location and fits of the components of 
the rotors and altering the clearances and mountings of 
the bearings. But at the same time other engine 
components were also being continually modified during 
the course of development. Thus, although the vibration 
troubles, were overcome, it would be difficult to specify 
which of the many modifications had been responsible.

In the late 1950's, a new twin-spool engine began 
development. As a result of experience gained on its 
predecessors, the flexibility of the bearing mountings 
was designed to ensure that the critical speeds were at 
the lower end of the operating speed range so that the 
shafts normally operated with the centre of mass tending 
to lie close to the bearing axis, as had been done on 
de Laval’s turbines. Whirling was not found to be a 
serious problem on this engine. Instead, severe 
vibration, resembling instability, was encountered at 
speeds approaching the maximum operating speed. The 
phenomenon was unusual since it was not 'triggered' 
until the engine had been operating for some minutes at 
high speed, suggesting that thermal effects were involved. 
Despite intensive development on several prototype engines 
the problem was never solved and it was fortuitous that 
a competitor's engine was eventually chosen for the 
aircraft concerned.
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The vibration trouble encountered on the single 
shaft engine resulted in an investigation into shaft 
vibration being carried out on a model engine by Purdy 
at Cambridge (Ref.17). The model was very complex 
since it was designed to investigate the vibration 
behaviour of the complete engine. Partly as a result 
of the complexity, the experimental work was limited to 
determining the many frequencies of vibration. These 
were not predicted with much accuracy and in this writer’s 
opinion the work did not advance understanding of the 
problem.

Aircraft engine manufacturers have at times 
carried put their own investigations into shaft vibration 
on experimental models but these appear to have been 
-restricted to single shafts mounted in flexible bearing 
mountings and were orü_y intended to confirm that accurate 
predictions of critical speeds could be carried out for 
such simple models.

It would seem surprising that no detailed research 
into the vibration of aero engine shafts has been carried 
out when the huge investment in such engines is considered. 
Prom a shaft vibration point of view, these engines differ 
markedly from other rotating machinery in that the rotors 
are quite complex in construction (many of the parts, such 
as compressor blades, are often not rigidly connected to 
the rotor) and run at relatively high speeds in very light, 
and therefore flexible, casings.

An important aspect which demands study is the 
accuracy of prediction of critical speeds. This question 
does not appear to have been resolved by aero engine 
designers, probably because the prototype engine appears 
perhaps two years, at least, after the last critical speed 
survey was carried out, during which time many design 
changes may have been made which were not thought to 
require a further assessment of critical speeds. As a
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result any check on the accuracy of the original 
calculations is not valid. The writer has invited the 
opinions of engine designers on the possible accuracy of 
prediction with little success. He believes that the 
accuracy achieved may not be better than lO^o,

Since most engines currently being designed have 
at least two co— axial shafts there seems to be a strong 
case for examining the behaviour of co— axial arrangements 
of shafts, containing considerable gyroscopic effects, and 
rotating in either the same or opposite sense.

As suggested earlier, the rotors in aero engines 
contain many possible sources of internal damping. Since 
it is known that this can prove to be a cause of instability, 
and one engine may have shown behaviour of this nature, an 
'evaluation of the possible magnitude of this internal 
damping, in relation to the external damping acting on the 
rotors, ought to be undertaken.

The influence of the bearings on the vibration of a 
rotor can be significant. But the investigation of this 
aspect is again difficult to conduct in a rational manner 
during the course of development of an aero engine.

In embarking on this investigation the writer 
considered which factors could be investigated conveniently 
on one model. The vibration behaviour of co— axial shaft 
systems was considered to be the most important aspect 
since no work appeared to have been done on such systems.
But as this aspect could not be carried out properly without 
a mathematical analysis of the model, it was decided that 
the accuracy of prediction of critical speeds could be 
usefully examined at the same time.

An examination of the influence of rotor damping 
would have involved the construction of complex rotors 
with special devices to represent the presence of torque 
loaded splines. It was decided that an examination of
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the effect of rotor damping would have increased the 
complexity of a two rotor model to such a degree that 
a successful examination of the above two aspects would 
be difficult.

The influence of bearing parameters on a co— axial 
system would not be expected to be markedly different to 
that on a single shaft system. In any case, such an 
investigation would be best carried out on a single shaft 
model. It was decided that no attempt would be made to 
examine the bearing aspect in detail on the proposed model.

In conclusion, the object of this work was to design 
and build a co— axial shaft system which had some resemblance 
to an aero engine, to determine the accuracy with which the 
critical speeds could be predicted, and to examine the 
variation of these over a reasonably wide range of shaft 
speeds.
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Fiff.1.1 Whirling of a simply supported shaft 
carrying a point mass at the centre.
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Pi#.1.2 Whirling of a cantilevened shaft 
carrying a disc at the free end.
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speed, to.
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PiK,l,4 The action of internal friction, caused 
by hysteresis or rotor friction, on the 
whirling of a shaft.
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Pig. 1. 6
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Fig.1 .6 Typical variation of H.P. and L.P, shaft 
speeds with thrust in a twin-spool jet 
engine.
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CHAPTER 2

THE EXPERIMENTAL RIG

SUTMARY

The configuration and the choice of the major 
dimensions of the experimental rig are presented. Details 
of the main features of the rig are described.

The instrumentation system used to monitor the vibration 
behaviour of the rig is described. An explanation of the 
technique used to balance the rotors is given.
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CHAPTER 2

THE EXPERIMENTAL RIG

2.1 General Requirements of the Rig

The main object of the Investigation was an 
examination of the vibration behaviour of the co— axial 
shaft arrangement used in modern jet engines. ?/hile it 
was desirable that the experimental rig should bear some 
resemblance to a jet engine, it was particularly important 
that the gyroscopic properties and mountings of the rotors 
should be representative.

Since the vibration behaviour of co— axial shafts did 
not appear to have been examined before, it was likely that 
novel vibration behaviour, peculiar to this system, might 
be found. If the work was to be useful to aero engine, 
designers, it would be necessary to demonstrate whether such 
behaviour could be predicted. Therefore it was essential 
that an accurate mathematical simulation of the rig should 
be made. Purdy's work (Ref.17) had indicated that an 
accurate simulation of a rig which attempted to represent 
the intricate constructional features of a jet engine would 
be extremely difficult. As the complexity of construction 
could not be expected to have a great influence on the 
general behaviour of a co— axial system, it was decided that 
the construction should be as simple as possible while still 
retaining the main features of the rotors, and bearing 
supports, used in jet engines.

A simple but faithful representation of the complete 
rotor system in a jet engine was considered possible, but 
would raise certain difficulties. The shafts used in practice 
consist of several sections connected by splined couplings.
No information on the flexibility and damping properties of
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these couplings appeared to be available, and so any 
simulation of these on a rig was liable to introduce 
vibration behaviour v/hich was not representative.

Secondly, the co-axial system presented difficulties 
in the possible arrangements used to drive the outer shaft 
(see Pig,1.5). The outer (H.P.) shaft could be driven by 
a geared or belt drive, which would have to pass through the 
casing of the model, but either type of drive would almost 
certainly introduce restraint and possible excitation of the
shafts which was not representative. The best solution
would have been to construct a simple turbine wheel on the 
outer shaft, to be driven by compressed air, but fine speed 
control would be difficult to achieve. ■ (Purdy had used 
this arrangement but found it was necessary to incorporate 
an eddy current brake to assist in the control of the shaft 
speed).

It was therefore decided that the value of the 
investigation would not be reduced seriously by restricting 
the rig to represent only the rear half of a jet engine, 
i.e. only the two turbine assemblies, which could then be 
conveniently driven by light shaft drives at either end of 
the.rig.

2.2 Choice of Main Model Dimensions

A  cast iron bed plate, 6 ft long and 4 ft wide,
originally used to mount piston engines on test, had been 
acquired for this investigation. It appeared possible to 
accommodate a full size model of the rear half of a typical 
twin-spool engine on this bed plate. The shaft lengths and 
the position of the bearings and discs, representing the 
turbine assemblies, were therefore chosen to be similar to 
those on a typical twin-spool engine developing a thrust of 
10000 Ibf (Pig,1.5).



2.3

The gyroscopic effects of the turbine assemblies 
have a profound effect on the critical speeds of a jet 
engine shaft and had therefore to be simulated with 
reasonable accuracy. The resultant raising of the 
critical speeds above the values which would be obtained 
with equivalent point masses can be expressed, for a given 
shaft/disc system, in terms of the radius of the discs and 
the distance between the disc and the nearest bearing 
(Ref. 18). Since the position of the discs and bearings 
had been specified, the diameters of the discs were chosen 
in accordance with this requirement.

The diameters of the shafts and the masses of the 
discs remained to be decided, in order to produce the 
desired critical speeds. The diameters of the shafts were 
.also controlled by the necessity of providing adequate 
clearance between the two for safe operation at whirling 
conditions.

The critical speeds of the rig did not need to be 
similar to those found in jet engines and were therefore 
chosen from safety considerations and possible driving 
methods.. Servo controlled electric motors were considered 
to be the most suitable means of driving the shafts satis­
factorily and the type chosen was limited to a maximum 
speed of 7000 rpm under light loads. Since, in modern jet 
engines the lowest critical speeds are arranged to be near 
or below the idling speed, and therefore about half the 
maximum operating speed, the second critical speed may not 
be far above the maximum speed. As it seemed desirable 
that the model should be capable of being used to explore 
the second critical speeds, the lowest critical speeds were 
chosen to be about 2000 rpm.

As noted earlier, the critical speeds of jet engine 
rotors are influenced by the flexibility of the bearing 
supports. Typical shaft dimensions and bearing 
flexibilities, for an unspecified engine, were kindly
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furnished by Mr. L. J. Stone of Rolls-Royce Ltd. These 
indicated that the critical speeds would be roughly half 
the values expected in rigid bearings, as a result of the 
bearing flexibility. Therefore the masses of the discs 
and the dimensions of the shafts were chosen to produce 
critical speeds of about 4OOO rpm, when mounted in rigid 
bearings, and the bearing flexibilities then chosen to 
reduce these to the desired value of about 2000 rpm.

The final dimensions of the shafts and discs are 
shown in Fig,2.1,  ̂ ■

2* 3 Detail Design of Model

The inner (or L.P.) shaft was made of a length of 
3°/o nickel steel, turned and ground to a constant diameter 
of 1,125 in. Although great care was taken in trying to 
machine the shaft straight, it was found to be bowed about 
0.002 in at the mid— span. This fault was subsequently 
found to be not serious, A mild steel disc, with a 
diameter of 12 in and a thickness of 1 in, was mounted on 
the shaft by means of a Fenner Taperlock coupling, to 
represent the L.P. turbine assembly (Fig,2.2). The L.P. 
rotor was supported in a SKF type 6OO4 ball bearing at the 
front end, and in a SKF type MJ 205 roller bearing at the 
rear end.

The outer (or H.P,) shaft consisted of a length of 
1.75 o.d., 0,0625 in thick, seamless drawn mild steel tube. 
The mountings for the disc and bearing housings were
attached to the shaft by press fit and tack welding. The
H.P, disc was made of mild steel, with a diameter of 12 in
and a thickness of 1 in, attached to the end of the shaft 
by a special coupling. The front bearing was a Hoffmann 
type XLS 2 ball bearing, the rear a Hoffmann type EXLS 2 
roller bearing.
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The bearings were mounted in the casing on sets of 
four spring rods clamped in specially designed housings.
The flexibility of the bearing mountings could therefore 
be altered by replacing the rods with others of different 
diameter. The arrangement of the front bearing assembly 
and its spring mounting is sho^wn in Pigs, 2. 3 and 2,4,

It was originally intended that the flexibility of 
the casing should be capable of being modified easily.
The main part of the casing was therefore designed as a 
cage of eight 0.75 in diameter steel rods, which could be 
changed for ones of different diameter in order to alter 
the stiffness of the casing (Pig.2.5), The construction 
also provided easy access to. the rotors for vibration 
measurement and balancing adjustments. However, it was 
-later found that the stiffness of this construction was 
difficult to represent mathematically due to the uncertainty 
inherent in the end fixings of the eight rods, . The con­
struction was not representative of jet engine construction 
in any case, and was later replaced by a simple sheet metal 
cylinder.

The rig was supported at the rear by two simple 
triangular frames terminating in Rose universal ball joints 
which connected with the rear aluminium plate of the casing 
(Pig.2.6), The front of the rig was supported on a single 
pillar, connected to the front spring housing by a universal 
ball joint (Pig.2.4), Although the design of the support 
of the rig was not ideal (the rear aluminium plate is 
constrained from rotation about the vertical axis, while 
the front spring housing is constrained from rotation about 
the horizontal axis) it is similar to the arrangement used 
in practice for supporting jet engines.

The supports were bolted directly to the cast iron 
bed plate. The latter, which weighed about 1500 Ibf, was 
mounted on springs to give a vertical natural frequency of 
about 5 c/s to achieve a satisfactory degree of vibration 
isolation from external excitation.
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2.4 Shaft Drives

The inherent damping of the rig was expected to be 
small and therefore significant whirl amplitudes, even 
when the rotors were finely balanced, would be expected to 
occur over a very small speed range. The method of driving 
the shafts therefore had to be capable of very accurate speed 
regulation.

Shunt wound D.C. motors, rated at 0.5 H.P., with feed­
back speed controllers, type MC47, manufactured by Servomex 
Ltd,, were selected for this duty. The performance proved 
to be satisfactory —  the shaft speeds could be controlled to 
within 1 rpm even within the difficult range close to a 
whirling'speed.

The motors were coupled to the shafts by 6 in lengths 
of 0.1 in diameter steel rods, which were flexible enough 
to avoid appreciable disturbance due to misalignment being 
transmitted to the shafts,

2.5 Instrumentation

Tufnol discs, carrying 120 iron segments embedded in 
the peripheries, were mounted on the driven end of each 
shaft. Inductance probes, type G308 made by Southern 
Instruments Ltd., were mounted close to the Tufnol discs and 
the signals fed to Racal type SA 520 digital frequency 
counters. When the counters were set to record cycle/ 
second, the digital read out indicated twice the shaft speed 
in rpm (120 segment discs, resulting in twice the shaft speed 
being indicated, were used so that the counters operated in 
their most favourable range, and thus giving an accuracy of 
-  0 . 0 3 % ) .

The vibration of various points of the rig, and in 
particular of the discs, was monitored in the horizontal 
and vertical planes by capacitance probes an& two distance 
meters (type DM 100, manufactured by Wayne—Kerr Ltd).
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To be able to observe the motion of several points of the 
rig, while running at a fixed speed, the probes were fed 
through a selector switch (type JB 731, manufactured by 
Wayne—Kerr Ltd), Examination of correction data to be 
applied when the vibration of curved surfaces was being 
measured, showed that the error involved when the probes 
were used to monitor the motion of the discs was 
negligible.

In the Wayne—Kerr system of measuring vibration, a 
high frequency voltage is generated by an internal 
oscillator and the current passed across the probe/surface 
gap is used to indicate the magnitude of the gap. When 
the two meters were being used to measure the motion of a 
whirling disc, the output signals of the meters were fed to 
the X and Y plates of a single beam oscilloscope (Type 52, 
Telequipment Ltd) to produce a replica of the generally 
elliptical path of the disc centre. But a ripple was 
found to be superimposed on the displayed path. This 
ripple was eventually shown to have a frequency which was 
the difference between the two nominally 50 Kc/s oscillators 
within the meters. The frequency of these could be adjusted 
to be the same, but the oscillators were not stable enough 
to prevent a low frequency beat being produced which v/as 
able to pass the filters in the feed to the oscilloscope.
The difficulty was finally overcome by modifying the meters 
so that both used the output of the 50 Kc/s oscillator of 
one,meter, with suitable output transformers to minimise 
'cross talk' between the two vibration readings.

Three sizes of probes were used, capable of measuring 
maximum vibration amplitudes of 0.005, 0.025 and O.O5 in 
respectively, were used in this work. The last type were 
usually employed to indicate the disc motion. When coupled 
to the oscilloscope, set at a sensitivity of 0,01 mY/cm, a 
disc movement of 0,001 in produced a deflection of approxi­
mately 1 cm on the oscilloscope.



2.8

. The two channel monitoring system finally adopted 
is shown in Pig,2,7. Normally only one oscilloscope was 
employed to display the elliptical motion of a particular 
point of the model, but a second oscilloscope was installed 
so that the motion of two points of the model could be 
observed simultaneously.

The instrument console which was designed and 
constructed for this project is shown in Pigs,2.8 and 2,9.

2,6 Balancing Technique

Each disc had four equally spaced holes drilled 
axially near the periphery to take balancing screws, A 
small piece of thin metal foil was glued to the periphery 
adjacent to one of the holes, which was then referred to 
as the 12 o'clock position. Whenever the foil passed a 
vibration probe it produced a 'kick' on the oscilloscope 
representation of the, motion of the centre of the disc, 
as shown in Pig.2.10,

The disc, shown in Pig.2.10, is rotating clockwise 
and the foil is passing the vertical probe. The 
oscilloscope spot is therefore tracing the vertical kick 
on the display. The oscilloscope display, which is also 
being traversed in a clockwise direction, shows that the 
centre of the disc reached its highest point almost 
quarter of a cycle earlier. Therefore the disc centre 
must be displaced from the bearing axis along the 2 o'clock 
radius.

If the disc were rotating well below the forward 
whirling speed then the phase lag would be small and the 
unbalance must lie along the 2 o'clock radius. This 
method of determining the location of the unbalance was 
used in the early stages of balancing the rotors. But a 
more accurate method, of balance was later employed by 
balancing the rotors just below the forward v/hirling speed.
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Under such conditions the unbalance would lead the dis­
placement of the centre of the disc by almost a quarter 
of a cycle. Then an oscilloscope display, as shown in 
Fig,2.10, which shows the disc to be displaced along the 
2 o'clock radius, would indicate the unbalance to be one 
quarter of a cycle ahead, i.e. along the 5 o'clock radius.

Using this method of determining the angular position 
of the unbalance of the disc, balancing v/as carried out by 
a process of trial and error. As the balance was improved, 
and the size of the path decreased, the speed was raised 
closer to the whirling speed to increase the sensitivity.
The final balancing was carried out at the whirling speed 
and as a result extremely good balance was achieved, of the 
order of 0,02 oz in, compared with that used in the aero
engine field of about 0,1 oz in. Even better balancing
could easily be achieved with patience but was impractical 
since it deteriorated.if the shaft was left stationary for 
a few hours, presumably because the shaft sagged imperceptibly 
under its ov/n weight.

The metal foil was also employed to give an indication 
of the phase angle of the vibration and also to indicate the
sense of the precession. For the case shown in Fig. 2,10
since the shaft is rotating clockwise, the horizontal kick 
on the oscilloscope trace must occur after the vertical one. 
The oscilloscope beam must therefore be traversing the 
display in the same sense, indicating forward precession.
If ̂ tbe horizontal kick had appeared in the upper left 
quadrant of the display, as indicated, then the display 
would have indicated that reverse precession was occurring.
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2,7 Conclusions

The design and construction of the rig proved to 
be satisfactory. Only one major design change was made 
(to the casing), but this resulted from the apparent 
difficulty in the representation of the stiffness 
properties of the rod cage construction.

When the rig was .first assembled the H,P, bearings 
appeared to have very little clearance, producing alarming 
squeaks when the shaft was turned. The cause was found 
to be due to the distortion of the housings caused by the 
spring rod clamping bolts. Fortunately, it was found 
that the efficiency of the rod clamping design was so high 
that only a moderate nip on the clamping bolts was neces­
sary, and as a result negligible distortion of the housings 
and bearings resulted.

The bearing housings were designed to retain the small
quantity of light oil introduced during assembly. No
bearing trouble was experienced throughout the experimental 
work.

The instrumentation was designed with reliability of 
utmost concern. Once the difficulty of coupling the two 
distance meters to the same oscillator was overcome no 
further serious trouble was experienced.
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Fig.2.4

Fig.2,4 Front bearing housing and
spring support
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Fig.2.5 Rod cage construction of
the casing
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Fig.2.6 Supports of rig at rear 
aluminium plate
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CHAPTER 3 

FREQÏÏEHCY AHAXYSIS METHODS

SUÎfflîARY

The frequency analysis of a complicated structure 
has to he carried out hy a lumped— parameter technique.
The main features of three of the most usual methods are 
described.

The prime consideration in the choice of method was 
that t h e ,translation of the physical properties of the 
structure into numerical form should he as straight­
forward as possible, thus reducing the likelihood of 
errors. The transfer matrix method was considered to be 
the most suitable from this point of view.
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CHAPTER 3

FREQUENCY ANALYSIS METHODS

3.1 Introduction

Despite the availability of large computers, the 
complexity of the structure of a typical jet engine is so 
great that a complete mathematical representation, from 
which natural frequencies may be deduced, is not feasible. 
Instead, the system is imagined to be divided into a number 
of elements or sections in such a way that the elastic and 
inertial properties of these may be readily expressed in a 
simple manner. One of several methods is then used to 
combine the properties of the sections into a form from 
which natural frequencies may be extracted, usually by an 
iteration technique. Some of the more usual methods of 
analysis were therefore examined to determine the most 
appropriate for this investigation.

The most important consideration was that the 
treatment of the data for each section must, as far as 
possible, be the same, otherwise serious errors could be 
introduced by incorrect programming.

It was intended that the model would be studied in 
stages of increasing complexity. It was therefore 
important to consider which method, from a programming 
point of view, was easiest to assemble in stages.

In the case of the model it was possible to make a 
fairly good estimate of at least the lowest natural 
frequency. It would therefore be preferable to choose 
a method which started the iteration from a good estimate 
of the frequency.



Finally, although, the calculation of the frequencies 
of the model was not expected to involve very large computer 
storage space it would he unreasonable to choose a method 
which, when applied to a jet engine calculation, would make 
excessive storage demands,

3# 2 Matrix Force Method

The method often used by the aero engine industry to 
calculate the natural frequencies has become known as the 
matrix force method (Ref. 19). The displacements of the 
sections, expressed as a column matrix [x] , are related
to the external loads applied to the sections, expressed as 
a column- matrix ■ [p] , by a square matrix [d] in the
equation;—

[x] = [dj . [p]

When considering the lateral vibration of a structure, 
the rotations of the sections, as well as their linear dis­
placements, must be included in the matrix [x] . Similarly
the matrix [p] includes the torques, as well as the forces 
applied to the sections. As a result, if the structure is 
divided into n sections, the matrix [d] is of order 2n.
The elements of the j th column of matrix [d] are the 
displacements x̂  ̂ (i = 1 , 2n) of the n sections when unit 
load is applied to the i th section of the structure.

If the structure vibrates harmonically at an angular 
frequency u), the loads applied to the i th section are the 
'inertia force', —  m̂  ̂w x̂ ,̂ and the inertia torque,
— A These can be expressed concisely by the matrix
equation:—

[p] = -  [m ] . [x]

in which [m] is a square matrix of order 2n containing 
the 2n inertia forces and torques —  the remaining elements
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of the matrix being zero. (Since critical speeds are 
obtained by determining the frequencies of lateral 
vibration, the inertia torques have to be modified by an 
additional term to allow for gyroscopic effects).

If there are no other loads acting on the structure, 
i.e. it is vibrating freely, the displacements.of the 
sections of the structure and the inertia loads can be 
related by the equation;—

[x] = + [d] , [m ] . [x]

or ( [d] . [m ] -  \.I ) [x] = 0

where I is a unit matrix, and \
The equation is in the standard form of the 

eigenvalue problem from which the roots (i = l,2n) are 
usually obtained by an iteration technique which produces 
the roots in descending order of magnitude, i.e. the 
frequencies, , in ascending order of magnitude.

The procedure for calculating the elements of the 
matrix [d] is by no means uniform, Fig.3.1 shows the 
supposed distorted form of the model when a load is applied 
to a section of the H.P. shaft. The displacements of the 
sections of the H.P. shaft, inter and casing are in part 
due to the distortion of the component concerned but further 
movement is caused by distortion of the components supporting 
it.' Sections of the L.P. shaft, which is un].oaded and 
therefore undistorted, are also displaced due to the move­
ments of the ends of the casing on which it rests.

Thus the calculation of the deflections of each 
section differs depending on which component it is part, and 
where the load is applied to the structure. This compli­
cation was considered to be such that serious errors in 
programming the construction of matrix [d] could be 
easily introduced and be very difficult to detect.
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3.3 Matrix Displacement Method

A similar method has come to be known as the matrix 
displacement method (Eef.19). Each section in turn is 
supposed to have unit displacement imposed on it, while 
all other displacements are forced to remain zero.
Fig.3.2(a) shows this principle for a linear displacement 
of section j, which requires five loads to be applied to 
the section and its neighbours' to maintain all other dis­
placements zero. Fig.3,2(b) illustrates the corresponding 
situation when a unit angular displacement is imposed on 
section j. Except for sections of the structure adjacent 
to a support, the formulation of these loads is uniform.

The results of these calculations are related to the 
'inertia loads’, as in the previous method by the matrix 
equation:—

-  [m ] [x] = [k] . [x]

where [k] is a square matrix of order 2n containing the 
loads computed above.

Unfortunately, the above matrix equation is in the 
form from which matrix iteration would yield the natural 
frequencies in descending order of magnitude with the 
interesting lower frequencies being subject to considerable 
error due to unavoidable rounding errors. To obviate this 
the equation is rewritten in the form*—

( [k] . [m ] -  X.I ) [x] = 0

which, since [k] = [d] , is in the form produced hy the
previous method. Thus, although the calculation of the
matrix representing the elastic properties of the structure 
is probably more straightforward and reliable, a matrix 
inversion has to be performed before iteration can begin.



3.4 Transfer Matrix Method

The transfer matrix method is a modern formulation 
of the method originally proposed by Holzer and adapted 
to beam— type problems by frohl and Myklestad (Ref. 19).
It is ideal for analysing structures which can be divided 
into chain-like components.

The simplified diagram of the model, Fig.3.1, can be 
divided into four parallel beams resting on each other. 
Considering one of these beams, the conditions to the right 
of a section i, of the beam, are the deflection and slope 
of the section y^ and and the bending moment and 
the shear force (Fig, 3. 3). These are assembled into a 
column matrix or state vector

Z. = [y. «. M. V.'

Similarly the conditions to the right of the adjacent 
element, j, can be represented by a state vector, Z y  
A square matrix of order 4, called a transfer matrix, and 
denoted by t^ can then be constructed which relates the 
two state vectors according to the matrix equation

The transfer matrix t . contains the elastic properties of
Vthe section, or the inertial properties, or both. If the 

transfer matrix for the next section is t^, then the 
conditions to the right of this section are given by the 
matrix equation

“ '•̂k • ~ . tj . z^



If the conditions at the left end of the beam, which 
has been divided into sections a,b,c,   l,m,n, are
represented by state vector, then the conditions at the
right end are given by the state vector

• ■̂ a

or n A . z.

Now the state vectors z^ and z^ both contain two zero
quantities, e,g, if the beam is encastré at the left end then

ight end is simply 
are zero. Expanding the matrix

y^ and •8-̂ are both zero, and if the right end is simply 
supported then y^ and n
equation.

y y
a

M A • M
V n _ V _

where A is a square matrix of order 4 resulting from 
the successive multiplication of the transfer matrices of 
the elements.

The first and third equations contained in this matrix 
equation are;—

^33 ' ^0 ^34 ' 0

Nov/ the elements of the matrix [a ] contain evidence 
of the elastic and inertial properties of the beam sections, 
the latter being functions of w if the beam is vibrating 
freely with an angular frequency, w. Thus, although M
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and V q are unknown, these two equations will only he 
satisfied if the determinant

“13 “14

“33 ' “34

becomes zero through a suitable choice of w, i.e. a natural 
frequency has been found.

3* 5 Conclusions

The transfer matrix method was considered to be the 
most suitable for analysis of the model. The properties 
of each element of the structure are calculated by a 
“standard procedure, in all but a few cases, thus removing 
possible sources of programming errors. The elastic and 
inertial properties of the whole structure are obtained by 
a simple repeated matrix multiplication, again reducing 
the likelihood of errors. The iteration process starts 
from an estimate of the natural frequency, whereas the 
other methods start from an estimated modal vector which 
is not easy to estimate.

In both the matrix displacement or matrix force . 
methods, storage has to be provided for at least a square 
matrix of order 2n, if the structure has been divided into 
n s.ections, e.g. 10,000 storage locations for a system 
divided into 50 sections. Using the transfer matrix 
method the same problem would require only 16n, i.e.,
800 locations. Although economy of storage was not of 
prime importance in this investigation, it could easily be 
so in the more complicated case of an actual jet engine.
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Fig.3.2(a) Loads required to impose displacement x^,
under load P., while other displacements Jremain zero.

Fig,3.2(b) Loads required to impose angular displacement
•&., due to moment M., while other displacementsV Vremain zero.
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Fig.3.3 The assumed beam conditions used in the
transfer matrix method.
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CHAPTER 4

APPLICATION OP THE TRANSFER MATRIX 
METHOD TO THE RIG

SUTMARY

An outline of each of the computer programs designed 
to predict the natural frequencies of the components of 
the rig, using the transfer matrix method, is^presented.
The assembly of these programs to form the computer repre­
sentation of the complete rig is then described.

The proximity of a guessed frequency to the true 
■natural frequency is judged, in the standard transfer 
matrix method, by the magnitude of a determinant. Numerical 
difficulties can arise in the evaluation of this determinant. 
The application of the modified transfer matrix method, which 
is designed to overcome these difficulties, is described.
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CHAPTER 4

APPLICATIOH OP THE TRAHSEER MATRIX 
IÆETHOH TO THE RIG

4.1 Introduction

The transfer matrix method is especially suitable 
for the lumped parameter analysis of a chain-like system 
such as a beam or a rotating shaft. The system is divided 
into a suitable number of sections and the changes in 
deflection, slope, bending moment and shear force produced 
across the section by the loading can be conveniently 
represented by a 4 % 4 matrix. (The derivation of the 
"transfer matrices used in this work is presented in the 
appendix to this chapter). Sequential multiplication of 
the matrices of each section results in a 4 % 4 matrix 
which links the conditions at each end of the system.

The final matrix, in the case of vibrating systems, 
may be used to locate the natural frequencies and the 
associated modes of vibration of the system.

In this chapter an outline is given of the application 
of the transfer matrix method to the prediction of the . 
natural frequencies of the components of the experimental 
rig and finally to the complete assembly,

4. 2 The Ii.P. Rotor

The rotor was approximated by dividing it into eight 
sections as indicated in Pig.4.1. The first section was 
represented by a flywheel, with the mass and diametral 
moment of inertia of the front bearing and its mounting, 
resting on a spring. The transfer matrix representing 
the inertial and elastic properties of the section was of 
type 1 (see Appendix 4). The remaining sections were



represented by inassless beam sections carrying a flywheel 
at their right ends, the mass of each being equal to that 
of the section, and the moment of inertia being equal to 
that of the section about a diameter through the right end 
of the section. The transfer matrix used for these 
sections was of type 2 , with the spring support being used 
only for section 8 when the rear bearing was spring mounted,

4• 3 L.P. Rotor mounted in Rigid Bearings

The initial case of the shaft mounted in rigid 
bearings was treated as a beam simply supported (no lateral 
deflection at the ends, but non-zero slopes allowed).
Using the subscript R8 to represent the state vector at the 
right end of section 8 , and L2 for the vector representing 
conditions at the left end of section 2 , the conditions at 
the ends, of the beam are given by

y
e A

y

M
V

R8

4,4 M.
V

L2

where [^4 4 ] is a square matrix of order 4 resulting from 
sequential multiplication of the transfer matrices for the 
sections, i.e. '

4,4 tg . ty , tg . t,

Inserting the boundary conditions

R8L2L2
M 0
R8



the matrix equation hecomest—

4.3

0 a a a a 011 12 13 14
0 a a a a ■021 22 23 24 ê

0 a a a a 031 32 33 34
V a a a a V41 42 43 44

R8 L2

The first and third equations from this are;-

a12 12 a
14

VL2

a32 ■012 a
34 12 0

and the coefficients etc, are all functions of
the assumed circular frequency, w. If the beam is 
vibrating, these equations will only be satisfied if w 
assumes a value which corresponds to a natural frequency, 
in which case the determinant of the coefficients becomes 
zero.

A block diagram illustrating the planning of the 
computation is shown in Pig,4.2. The top two rows of 
each transfer matrix, containing the elastic properties of 
the’beam section are'calculated from the length and section 
inertia of the beam section. An initial estimated value 
of the circular frequency of the beam, to, is then inserted 
and together with the gyroscopic factor h, is used to 
complete the lower two rows of the matrix. The sequential 
product of the matrices, A j , is then computed, from the 
elements of which the value of the determinant above is 
computed.
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Galling the value of this determinant R^, a second 
value is obtained by repeating the calculation using a 
slightly higher value of w, , leading to a correspon­
ding determinant, R^. Using the two trial values of w, 
i.e. and and their corresponding determinants R^ 
and R^, a closer approximation to the correct value of w 
corresponding to a natural frequency can be obtained by 
the Uewton iteration relation;—

w 2 “ ^1 t R^ “ o

%

Iteration was continued until two successive values of 
w corresponded to a difference of <  1 rpm.

The first calculation for the forward whirling speed 
of the shaft made no allowance for shear deformation of the 
shaft and the mass moment of inertia of the shaft sections 
was ignored. A speed of 2472 rpm was obtained.

Since the division of the shaft into 8 sections was 
possibly only a crude approximation to a slender shaft, 
the calculation was repeated using 38 sections, and yielded 
a value for the whirling speed of 2437 rpm. Repeating 
this calculation, taking into account the moment of inertia 
of the shaft sections and making allowance for shear defor­
mation, altered the whirling speed only slightly to 2434 rpm. 
It was therefore concluded that division of the shaft into 
onïy 8 sections was sufficient and that shear deformation 
was of negligible effect.

4.4 Ii.P. Rotor with Sprung Rear Bearing

Per this case the transfer matrix tg v/as altered to 
include a spring support of stiffness kg, which was fed 
in with the initial value of the whirling speed and the 
gyroscopic factor h. The conditions to the right of



4, 5

section 8 now became:—

% 8

giving the matrix equation

VR8 0

y - 0
0 = A 0
0 - 0
0 VR8 L2

from which the natural frequency is determined when the 
determinant

a32 a

a
42

34

44
becomes zero, the iteration to this being carried out as 
before.

4,5 L.P. Rotor with both bearings spring mounted

When the front bearing was spring mounted, the 
transfer matrix t^, which contains an allowance for the 
stiffness of the spring, k^, is now included in the matrix 
product A j .

’ The matrix equation relating the conditions to the 
right of the rear bearing to those to the left of the front 
bearing then becomes;—

y
0 A

y
0

0
0 R8

- 0
o_ LI

Loth the bending moment and shear force beyond each bearing 
being zero.
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The last two equations of this matrix equation yield 
the determinant

a
31

41

32
a42

which becomes zero when a natural frequency is obtained.

4# 6 Calculation of Mode of Vibration

The calculation of the mode of vibration in each of 
the above cases was similar and will be illustrated by 
considering the last case where both bearings are spring 
mounted.

The first of the equations giving a zero boundary
condition to the right of section 8 is»—

- ^31 a32

from which

«1 = -  f n  yia.32
Putting, arbitrarily, y^ = 1.0, and using bĵ  ̂ to 

represent the elements of the successive matrix product

t^ « .... t^. "̂ 2* "̂ 1

the deflection at section b becomes;—

^b '11 -  b12 0.

a
Ï1 -  .

^32
'12

Thus the deflection of each section, when vibrating 
at the natural frequency found, can be calculated. In parti­
cular, the relative values of the deflections of the bearings 
and the disc, which were to be monitored on test, could be 
obtained.



4.7

4.7 The Casing

The casing was divided into 17 sections as shov/n in 
Pig.4.3. Sections 1, 3 and 17 were treated as disc masses, 
using transfer matrix of type 1, with section 3 being mounted 
on a spring of stiffness k^. Sections 7 and 15 were ori­
ginally treated as disc masses, representing the aluminium 
plates, but when it was found that the flexibility of the 
plates was appreciable this factor was incorporated by using 
a transfer matrix of type 4 to represent their properties.
All other sections were treated as beam sections with mass 
(transfer matrix type 2),

4.8 Deflection of casing under a point load

The normal frequency type program was modified by 
making w = 0 to eliminate the inertia loading, in order to 
calculate the deflected shape of the casing when a point 
load was applied to the front aluminium disc. In order to 
eliminate■the large deflections of the bearing springs, the 
casing v/as considered to be mounted on rigid supports at the 
front and rear bearing spring supports.

Since the front bearing spring support is simply 
supported, the known conditions to the left of section 4 are 
^14 “ ^L4 ~ ^ leaving 0̂ ^̂  and as unknov/ns together with 
the only external load P, applied to the front aluminium 
plate (Section 6,2), The conditions at the left of 
section 4 are then given by:—

L4

y 0 0 0 0
0 1 0 0 # VM 0 0 0 pV 0 1 0

L4
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Sequential multiplication of this 3 x 4  matrix by 
the transfer matrices then gave the conditions at section 7 
in terms of 0^^, and P. The loading P at this point 
was then introduced by making the fourth element of column 3 
unity. Further sequential multiplication by the remaining 
transfer matrices finally gave the conditions to the right 
of section 15 as

y r -1
e
M A V
V p

R15 1*4

where again since section 15 was simply supported, y ^ ^  
and are both zero.

Now, since the coefficient â ]_ is zero, (physically 
the bending moment cannot be affected by the initial slope 
^L4^ , the third equation of this matrix equation is*—

a32

giving

1*4

^14 ®'33

a,, /  a33 /  “32 ; •

Since y ^ ^  is zero, the first equation gives, using 
the above relation

giving

®11 • '®Ii4 ®33 / ®’32^ • ^ ®13 • P = 0
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Thus the initial conditions to the left of section 4 
are now known in terms of P. Therefore, if b . . are the1 j
elements of the sequential product of the transfer matrices

t^ . t^ , then the deflection is given by;—

h i  ' ■®L4 * h a  ' h 4 + b^2 • P

i.e. in view of the above relations, y^ is given in terms 
of the external load P.

4.9 Natural frequency of casing on rigid supports

The calculation of the natural frequencies of the 
casing mounted on rigid supports at the bearing spring 
.mounts (sections 3 and 15) was carried out in a similar 
fashion to the corresponding program for the L.P. rotor 
yielding.

y r 1 y
A •Ô

M M
V V

E15

Using the boundary conditions

1*4

^ElS - ’“'h i s  = °^14 “

the determinant, which becomes zero when a natural frequency
is reached, is:—

h 2

a32

®14

34
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4,10 Natural frequency of casing when mounted 
on spring; supports

Again the calculation was similar to that for the 
L.P, rotor, with the stiffnesses of the spring supports 
for sections 3 and 15 being introduced with the initial 
guess of u.

The matrix equation with the boundary conditions

“ h 3  “ ^R15 h l 5  = ®

now giving the frequency determinant*—

a31

a41

a32

a42

4,11 Modified matrix method

When relatively stiff springs are used as supports 
the elements of the determinant can become very large 
(Eef.l9, p.193) so that the final stage of the evaluation 
of the determinant can lead to the difference of two very 
large numbers. This effect was found with the above
program, The elements of the determinant were found to
be of the order of 10 which meant that the value of the 
determinant was the difference of two numbers of the order 
of lO^Z.

The modified transfer matrix method (Ref.19, p.205) 
which is designed to overcome this difficulty, was examined 
but it was found that for this particularly simple case it 
expressed the frequency condition as,

3̂2

a
a
41
42

0
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This is, of course, an alternative arrangement of the 
determinant which avoids the difference of two large 
numbers. When this relation was.applied, it was found 
that errors were not being introduced in the original 
method of evaluating the determinant, at least for the two 
lowest frequencies.

4.12 H.P, Rotor

A convenient method of investigating the computer 
representation of the H.P. rotor was to consider it mounted 
in the front half of the casing as shown in Pig,4 ,4. The 
division of the two components into sections for analysis 
is shown.

The casing was divided into 9 sections. Sections 1, 
3, 7 and 9 are masses with transfer matrices of type 1 being 
used to represent their properties. Sections 4 » 5 and 6 
are beam masses which require transfer matrices of type 2. 
Sections 2 and 8 are sections representing the spring rods 
and required a special type of transfer matrix (type 3).
The H.P. shaft was divided into 10 sections of either disc 
or beam mass as indicated in the figure.

The casing can be considered as a beam, mounted on 
springs and kg. The unkno^vn conditions at the left end 
are the deflection, y^, and the slope, •&̂ , and the reaction 
transmitted across the front bearing, The state vector
to the left of section 1 then becomes:—

y
e
M
V

1 0 0
0 1 0
0 0 0
0 0 1

LI
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This form of the starting state vector was adopted in 
order to separate the contributions to the deflection, 
slope, bending moment and shear force due to y^, and
Rf •

Sequential multiplication of this matrix by the. 
transfer matrices for sections 1 to 9 gives, with the 
addition of a further column to represent the shear force 
change due to the rear bearing reaction, R g , gives the 
state vector to the right of section 9:—

- *
y ^ 1 ^12 ^13 0 ^1
e agi ^22 ag3 0 ^1
M ^31 ^32 ^33 0 %
V ^41 ^42 ^43 1 R2

R9

In a similar way, the state vector representing the 
conditions to the left of section 11 on the H.P, rotor 
is:—

y 1 0 0
e 0 1 0 n

M 0 0 0 2

V 0 0 - 1
111

where it is assumed that the deflection of the H.P. rotor, 
at the front bearing, is the same as that of the bearing 
housing.

Sequential multiplication of this matrix by the 
transfer matrices for sections 11 to 16 then gives the state 
vector representing the conditions at the rear bearing 
housing:—
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y \ 2 '13 '
^21 ^22 ^23

' M ^31 ^32 ^ 3
V ^41 ^42 \ 3 _

^1
^2
E-.

E16
The top row of this relation gives the deflection of 

the shaft at the rear bearing, which will later be assumed 
to be the same as the deflection of the housing, given by 
the top row of the matrix defining the conditions at the 
right end of the casing.

The reaction, —  Eg, transmitted to the shaft by the 
rear bearing housing is now introduced by augmenting the 
matrix to give:—

y hi hg h3 0
■& hi h2 2̂3 0

• h
M hi h2 h3 0 %
V hi h2 h3 -1 h

E16

Multiplication of this matrix by the transfer 
matrices for sections 17 to 20 then gives the conditions 
to the right of section 20 as:—

y =11 =12 =13 =14 ' n '

e =21 =22 =23 =24 h
M °31 =32 =33 =34 h
V =41 =42 =43 =41. ®2

E20
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The boundary conditions to the right of section 9 of 
the casing are = V^g = 0, and for the right end of the 
shaft, M^gQ = VggQ = 0, In addition, the deflections of 
the bearing and housing are assumed to be equal, i.e.
^R9 ^R16 " Extracting the equations representing
these conditions and' combining them into matrix form 
gives;—

^31 =■32 =33 0 0 y
®-41 =42 =43 0 1 h

°31 0
=33 =32 =34 h

=41 0 =43 =42 =44 h
“  h i =12 =13 “  h 3 “  h 2 0

= 0

The determinant of the coefficients of these five 
equations would, of course, become zero at a natural 
frequency. However, it was expected that since the deter­
minant was of larger order than in the case of the casing 
alone, and large spring stiffnesses were involved, numerical 
difficulties might be encountered. Indeed it v/as found 
that the final computation in the evaluation of the deter*- 
minant involved the difference of two numbers of the order 
of lol4.

To obviate any hidden inaccuracy the modified transfer 
matrix method was adopted. The deflection, y^, was given 
an arbitrary value of 1.0 and rough estimates of 0.1 were 
assigned to and ^g, and 10^ to the reactions R̂  ̂ and Rg. 
Using x^, Xg, x^ and x^ to denote the corrections to be 
added to these to give the true values at a particular
frequency, w , the above matrix equation becomes:—



^1

1.0
+ ^1

A • % + ^2
-

*2 +
Rg + ^4

0

where [a] is now the 5 x 5 matrix above.
The first four of these equations were solved to 

give values for the correction factors x^.
of these i.e. Xg, x^

The last three 
and X , , were then used in the fifth 

equation to give a second estimate of x^, say x^, which is 
normally different to x^. The value of x^ —  x^ is used to 
detect a natural frequency, since it becomes zero under such 
a condition.

The correct values for -Q-̂, * "̂ 2 ^ parti­
cular guessed value of the natural frequency, are then

I+ Xn+ Ï1

+ ^2

«2 + X 3

and Rg + ^4

When these are used to repeat the calculation the new 
value of x^ —  x^is the same (apart from very small differ­
ences due to rounding errors) and does not involve the 
difference of large numbers, thus avoiding numerical diffi­
culties. Also, the new correction factors, calculated as 
above, are virtually zero and thus the corrected values for 
^1 * ^1 ' "̂ 2 and Rg can be used as very good estimates for 
the starting conditions for the next trial value of the 
frequency, if it is close to the previous value.
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Summarising, the standard method of applying the 
transfer matrix method is a process of step-wise 
integration of the beam equation. Inappropriate starting 
conditions of unity are used for the deflection, slope, 
etc,, and understandably can result in ridiculously out of 
proportion values for the final conditions which leads to 
numerical difficulties in the assembly and solution of the 
determinant. The modified matrix method proceeds in a 
more realistic manner by using, at each trial, very close 
estimates to the true values of the starting boundary values 
of deflection, slope, bending moment and shear force, which 
naturally lead to realistic values for the final conditions, 
thus avoiding numerical inaccuracy.

4.13 The Complete Rig

The program for the complete rig was essentially an 
assembly of the previous programs. The rig was treated as 
an assembly of four beams, divided into sections as before, 
resting on one another as shown in Fig.4.5, As a result 
there are four unknown reactions, R^, R^, R^ and R^, 
transmitted across the bearings. In addition, since the 
casing now has to be divided into two parts, the main part 
transmits an unknown reaction, Rg, and couple, 0, to the 
second beam, referred to as *Inter*, which is the mounting 
of the H.P. rear bearing housing on the front plate of the 
casing. For clarity the sections of each component are 
omitted, being the same as in previous programs, and only 
the remaining unknowns, y , -©g, and the unknown loads
are shown.
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4.14 Treatment of the Casing

The conditions at the left end of the casing were 
represented by the matrix product:—

y

M
V

1 0 0
0 1 0
0 0 0
0 0 1

y
^1
^1

The conditions at the front plate were then obtained 
by sequential multiplication of this matrix by the transfer 
matrices for the sections up to the front plate. The 
reaction, Rg, and couple, 0, were then introduced by adding 
two columns to the matrix to give the conditions to the 
right of the plate thus:—

y ^1 • 1̂2 ^13 0 0

2̂1 ®'22 2̂3 0 0
M 3̂1 ^32 3̂3 1 0
V ^41 ^42 4̂3 0 1

C
R,

. (1)

Pre—multiplication of this matrix by the remaining matrices 
for the sections of the casing gave the conditions to the 
right of the L.P, rear bearing housing as;—

y

C
R;
Rr

with an additional column to introduce the bearing reaction, 
Rg.

y [hx h  2 "13 h4 0

% 2̂1 ^22 ^23 ^24 ^25 0

M bi b2 h3 b4 0

V
C ^42 h3 ^4 hs 1
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The known conditions from this equation are

M

and also the deflection must equal the deflection of 
the L.P, rear hearing, ŷ .̂

4.15 Treatment of the H,P, Bearing Support ('Inter')

The conditions at the left end of this beam are those 
given by equation (l) w i t h — 1.0 replacing 1.0 in the new 
columns to allow for the unknown loads -Eg and — C. Multi­
plication of this matrix by the transfer matrices for the 
Inter sections, with a further column added to introduce the 
H.P. bearing reaction, R^, gave the conditions to the right 
of the H.P. bearing housing as;—

y ^11 ;^12 ^13 "̂ 14 °15
^21 Cgg Cg3 °24 ^25

M C3I ^32 C33 ^34 C35
V G4I ^42 ^43 °44 ^̂ 45

y
h
h
0
Eg

-

The known conditions from this equation are:-

M-

and the deflection yj must equal the deflection of the H.P. 
rear bearing, ŷ ..
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4.16 Treatment of the H.P. Rotor

The conditions at the left end of the H.P, rotor, 
reactions — R^ and R^ ar 

bearings were represented by;.
where reactions — R^ and R^ are introduced across the

y 1 0 0 0 y
0 1 0 0 ^2

M 0 0 0 0 %
V 0 0 - 1 1

». - -

Multiplication of this matrix by the transfer 
matrices for the H.P. rotor sections up to the H.P. rear 
bearing gave the conditions to the right of the bearing 
as:—

7'

M 
V

H

where the additional column introduces the reaction from the 
H.P, bearing housing, — R^. The'deflection of the H.P,
shaft, yjj, at this point must equal the deflection of the 
H.P. bearing housing, y^, derived above.

Further multiplication of this matrix by the remaining 
transfer matrices gave the conditions to the right of the
H.P. disc as:—

‘̂ 11 ‘̂ 12 '^13 " l4 0

^21 *̂ 22 ^23 ^24 0

^32 '^33 b 4 0

^41 ^42 ^43 ^44 - 1

y
^2
^1
R,4

H

y ®11 ®12 ®13 ®14 ®15
% ®21 ®22 ®23 ®24 ®25
M ®31 ®32 ^33 ®34 ®35
V ®41 ®42 ®43 ®44 ®45

y
^2

. %
R,4

/ 3

in which the conditions Mg and are known to be zero.
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4.17 Treatment of the L.P. Rotor
The conditions at the left end of the shaft are 

represented hyi—

y
•&
M
V

Multiplication of this matrix hy the transfer 
matrices for the L.P. shaft sections gave the conditions 
to the right of the L.P. rear hearing as:—

1 0 0
0 1 0
0 0 0
0 0 -1

y
• bR,4

y 1̂1 1̂2 1̂3 0 y
e 2̂1 2̂2 2̂3 0 "3
M ^31 ^32 3̂3 0 4̂
V ^41 ^42 4̂3 — 1 5̂

where the additional column introduces the reaction — Rr- 
from the L.P. hearing housing.

The known conditions from this matrix equation are:. 

Ml = ?! = 0
and the deflection, ŷ ,̂ must equal the deflection of the 
rear hearing housing, y^.

4 .18 Boundary conditions of complete Rig 
There are 10 unknown quantities;—

y . . . .,, , the deflection of the front of the 
rig

.......... the slopes at the left ends of the
^ casing, H.P. and L.P. rotors

respectively
Rn , Rp, R n , Rx, R(- . . the reactions transmitted between

^ ^ ^ the components
C . . . ..• . the couple transmitted between the 

Casing and Inter
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The known conditions are:—

M = My = Mu = M-p = 0C 1 Jti Jj
^0 = ^2 = Vg = = 0

and
-  Ml  = 0

Ml -  Mg' = 0

The unknown reaction R^ can he eliminated hy combining 
the boundary conditions = Vĵ  = 0. The shear force to 
the right of the casing is:—

-^c “ ^41 * ̂  **■ ^42 • ^1 ^ ^43 * \  ■*" ^44 • ^ ^45 . Rg + = 0

The shear force to the right of the L.P, rotor is:—

^L ^41 * y ^42 * ^3 ^43 • R̂  = 0

Addition of these two equations then gives Y^ + Y^ = 0, thus 
eliminating the unknown reaction, R^.

Thus the boundary conditions give 9 equations with 
9 unknowns as laid out in Pig,4. 6, The determinant of the 
coefficients of these equations would of course become zero 
when a natural frequency was obtained. However, since the 
evaluation of this determinant might have led to numerical 
difficulties, the modified transfer matrix method was 
adopted.

To describe the application of this procedure the 
9 equations of Pig. 4.6 can be arranged as:—
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D E

P

= 0

where the matrix has been partitioned for clarity, into a 
single column matrix, D, a single row matrix, P, and the 
remaining matrix, E,

If the deflection of the left end of the model, y , is 
given an arbitrary value of unity and appropriate estimated 
values given to the unknowns, R^, Rg, etc. , to which cor­
rection factors, x^, Xg, x^, etc. must be added to give the 
true values which would occur at the particular frequency 
being examined, then the first 8 equations of the original 
matrix become;—

E

%
Rg Xg

b ' ^3
& D — E •

h - - ^5
^2 ^6
^3
0

The .solution of these equations gives values for the 
8 correction factors, x^, Xg, x^, etc. A second value for 
the correction factor, x^, namely x^, may be obtained, using 
these values inserted in the last equation of the matrix, 
i. e;—
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P

R,
R.

e,
e.

0

The value of —  x^ is used to judge the proximity of 
a natural frequency since it should then become zero.

The corrected values for the unknowns, i.e;—

Ml ■~ + (x.
4 X2
4

^4 4 ^4
4 ^5

«2 4 ^6
4

0 4

I as very good
the next trial frequency —  assuming it to be close to the 
first.
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4*19 Solution of the Simultaneous Equations

The solution of the simultaneous equations to obtain 
the correction factors in the modified matrix method was 
carried out with an elegant subroutine devised by Mr. R. 
Jeffreys, formerly of the Computing Department of Glasgow 
University.

The subroutine solves the equations
A X = y

by transforming the matrix A into
A = L U

where L is a lower triangular matrix, with zero diagonal 
elements, and U is an upper triangular matrix with non-zero 
diagonal elements. At each stage of the transformation 
the rows are interchanged to ensure that the largest element 
in the pivotal column is used as the current pivotal element, 
thus minimising arithmetical inaccuracies.

The subroutine was modified to produce an efficient 
means of evaluating a determinant. The value of the 
determinant of the matrix A is given by the product of the 
diagonal terms of U, multiplied by (— 1)®, where s is the 
number of row changes which occur during the triangulation 
process.

4.20 Iteration Difficulties

A  typical variation of the magnitude of the deter­
minant obtained when the standard matrix method was used is 
shown in Pig.4 .7(a). The value was large (of the order ofIP10 when the H.P. rotor mounted in the casing was being20considered, and 10 in the case of the complete rig) and 
fairly constant until w was very close to a,natural fre­
quency. As a result the location of a particular natural 
frequency by iteration was not straightforward unless a



very good estimate of the frequency was available as a 
starting value. When this was not possible the computer 
program was caused to produce values of the determinant 
at small intervals of w and a plot of the results, as in 
Pig.4.7(a), was used to provide a very close approximation 
which could then be used to initiate an iterative process.

The modified matrix method was adopted when it was
realised that the final operation in the evaluation of the 
determinant was likely to produce arithmetical inaccuracies. 
The plot of the remainder (e.g. x^ —  x^ , in Section 4.18) 
versus w, produced by this method is sketched in Pig.4.7(b). 
Again the location of a natural frequency by iteration 
depended- on the calculation commencing with a very good 
estimate of the required natural frequency.

The modified matrix method was employed for nearly
all the frequency predictions. However in later calcu­
lations on the complete rig, at certain combinations of 
shaft speeds, and particularly when two frequencies were 
very close together, the remainder sometimes diverged to 
+ or —  CO as shown at the right of Pig..4.7(b). Presumably 
this condition arose when the determinant of the matrix E 
in Section 4.18, became ill-conditioned. The remedy was 
to choose another variable, say Rg, instead of R^ and use 
the difference of the two estimates of its correction 
factor, namely Xg and Xg , to judge the position of the 
natural frequency. This procedure was usually successful. 
However, when higher modes of vibration of the complete rig 
were being explored the difficulty was not removed even 
after four changes of variable (and four major alterations 
to the computer program). Rather in desperation the 
standard matrix method was returned to and despite the very 
large values of the determinant satisfactory convergence 
was obtained. But the calculation of the modes was not
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accurate, as shown "by disagreement of the displacements 
of the components at the bearings. This difficulty was 
resolved by arranging for the iteration to proceed until 
successive iterations were within 0.1 rpm, instead of
1.0 rpm.
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APPEm)IX 4 

DERIVATION OE T R M S E E R  MATRICES

A4*1 Transfer Matrix Type 1

The Type 1 matrix was used for sections representing 
the rotor discs, the hearing housings, or hearing spring 
supports.

The section is considered to he represented hy a 
thin disc of mass m, with a diametral moment of inertia, A, 
and polar moment of inertia, 0. It is mounted on a heam 
at a point at which the deflection is y , and the slope is 
-0, as shown in the figure. If the section is one of the
rotor discs it is assumed to he whirling at rate X, while 
spinning at rate, w. ...If the section is a support of the 
rig then the support is represented hy a spring with a 
stiffness, k.

Since the section is assumed to he thin no change in 
deflection or slope occurs across it, i.e. —

■®E - ■̂ L
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If the heam is vibrating sinusoidally in the vertical
plane at frequency, X, then the section will apply a verti-2cal loading to the heam of + m X y^. If the section is 
mounted on a support then, as a result of the displacement, 

an upward force, kŷ ,̂ will he applied to the section. 
Thus the change in shear force across the section will 
he:—

+ (mx^ -  k) y%

If the section is at •& (anti— clockwise) while
vibrating sinusoidally at rate X, then a torque
—  AOX^ sin Xt (clockwise) must act on the section. The

?loading on the heam is therefore + A-&X sin Xt and the 
bending moment change is given hy

Mg = «

If the heam is whirling at X, while rotating at w, 
symmetry allows consideration of this case hy representing 
the heam as vibrating in the vertical plane, provided due 
allowance is made for the actual movement in the horizontal 
plane resulting in a gyroscopic couple. The additional 
couple in this case is given hy (see Section 1,3):—

+ G w X "0
where 0 is the polar moment of inertia of the section, and 
w is the rotational speed (which may be of opposite sense 
to the whirl. )

The total change in bending moment across the section 
is then given by;—

Mg = Mg + (-AX^ + CwX) e
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. The relations expressing the change in conditions 
across the section are collected in the transfer matrix 
(Type 1) in the matrix equation:—

- y 1 0 0 0 -y
•a 0 1 0 0 <&
M 0 — AX ̂  + C wX 1 0 M
V mX^ — k 0 0 1 V

R



App.4.j

M *  2 Transfer Matrix Type 2

Consider a section consisting of an elastic bar 
with no mass. The length of the bar is f, its section 
inertia is J and the material has a Young’s Modulus, E, 
The supposed conditions when the bar is distorted in the 
vertical plane are shown in the figure:—

Since there is no load applied to the section 
equilibrium demands:—

If the section is regarded as a cantilever, fixed at the 
left, then

ignoring shear deformation.

V e
3 E J

2 E J
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Combining these relations givess—

C ) +
2 E  J

R (M. + Vr f ) f
EJ

3 EJ

Vl  f ̂
2 E J

The above relations may be expressed in a concise 
manner by the matrix equation:—

-y 1 ? ?  ̂ ^ -y
2 EJ 6 EJ

0 1 i_i %
EJ 2 EJ

M 0 0 1 f M
V 0 0 0 1 V

R

in which — y has been used to produce positive quantities 
throughout the matrix.

In the case of a real beam section (with mass) it is 
regarded as consisting of a massless bar (governed by the 
above matrix equation) with a thin disc at its right end 
having inertial properties equal to those of the real beam 
section as shown in the figure:—
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The relation between conditions at the ends of the 
beam section is then obtained by pre-multiplying the above 
matrix by a matrix of Type 1, containing the inertial pro­
perties. The product is the transfer matrix, referred to
as
end

Type 2, 
of the

in the equation relating the 
section:—

conditions at each

-y 1 e e 2 -y
2 EJ 6 EJ

•Ô 0 1 e 2
EJ 2 EJ

M - 0 1 + g^^f
EJ

? +
2 EJ

2 M

V mX^ mX^f mX^f ^ 1 + mX^e 3 V
R — 2 EJ 6 EJ 1>

where g = (—  AX^ + CwX).



App.4.b

A4.3 Transfer Matrix Type 3
The spring mounting of each bearing was constructed 

as a cage of four rods clamped between the bearing housing 
and the spring support, as shown in the figure:—

The arrangement was used to ensure that any lateral 
deflection of the bearing would not cause misalignment of 
the bearings. As a result the only change across the 
section representing the rods was a vertical deflection of 

where J is four times the section inertia of one 
rod.12 E J

The conditions to the right of a rod section were
related to those at the left end by
(îype 3) in the equation;—

- y 1 f 0

% 0 1 0
M 0 0 1
V 0 0 0

•e
12 E J  
0
?
1

- y

M
V

R
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A4.4 Transfer Matrix Type 4

The aluminium plates forming the ends of the major 
portion of the casing were originally treated as disc—  
type masses and the Type 1 matrix was used to represent 
the change in conditions across the plates. later it was 
realised that appreciable distortion of the plates occurred 
as shown in the figure:—

The distortion resulted in a change of slope across 
the plate which was proportional to the bending moment, 
and therefore called 0^ in the text. The resulting transfer 
matrix (Type 4) produced the relation between conditions 
either side of the plates as:—

-  y 1 0 0 0^
•a 0 1 0
M 0 -AX^ 1 0
V mX^—  h 0 0 1

-y

M
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CHAPTER 5

INVESTIGATION OE THE 

WHIRLING BEHAVIOUR OE THE L.R. ROTOR

SUMMARY

Experimental work began with an evaluation of the 
ability of the transfer matrix method to predict the 
whirling speeds of the L.P, rotor. The tests showed that 
satisfactory accuracy v/as obtained even when the bearing 
support stiffnesses were varied over a wide range.

The behaviour of the rotor in the vicinity of t h e ' 
forward whirling speed appeared to be influenced by non- 
linearity of the system. Bearing clearance is shoTO to be 
a possible cause of non-linearity.

The whirling motion of the rotor in the vicinity of 
the reverse whirl was found to be unusual. Tests showed 
that the amplitude of the reverse whirl was not affected by 
unbalance of the disc. It is suggested that resonance at 
the reverse whirling speed is caused by non— circularity of 
the journals. A theoretical treatment of this aspect is 
presented in support of this suggestion.



CHAPTER 5

INVESTIGATION OE THE

WHIRLING BEHAVIOUR OE THE L.P. ROTOR

5.1 Introduction to L.P. Rotor Tests

Whenever a lumped— mass technique is used in 
vibration analysis, the number of sections used in the 
mathematical model has to be limited to economise on 
computation. But the accuracy of the simulations 
deteriorates if this process is carried too far. An 
evaluation of this effect was necessary at an early stage 
of the v/ork before embarking on the planning of the 
computer model of the complete rig.

Difficulties can arise in the application of the 
transfer matrix method whenever the stiffnesses of the 
supports of the structure become large (Ref,19). Since 
the stiffnesses of the bearing supports of the rig were 
to be an important feature, it was necessary to determine 
whether these would lead to mathematical difficulties.

Normally only the bending stiffness of a beam-type 
structure is used in vibration analysis. But an 
additional degree of flexibility is always present due to 
shear deformation. Whether it was necessary for this 
effect to be included in the analysis had to be decided.

To resolve these questions before commencing the 
manufacture of the complete rig, tests were conducted 
using the L.P, rotor mounted in temporary bearing supports. 
The bearing housings were outrigged on four 0.212 in 
diameter spring steel rods, the length of these being 
adjustable to achieve a reasonable variation in lateral 
stiffness (Eig.5.1).



5.2 Determination of Bearing Support Stiffness

A loading gauge v/as designed for the measurement 
of the lateral stiffness of the hearing supports. The 
gauge is shown in Big.5,2, where it is being used to 
determine the lateral stiffness of the rear bearing 
support. The gauge was calibrated by using it to apply 
a vertical load to the platform of a laboratory weighing 
machine. The tests showed that the flexibility of the 
gauge was constant, with a value of 0,004 in/lbf, up to 
its maximum design load of 30 Ibf. At any load the 
deflection of the gauge, measured by a 2 —  2^ in internal 
micrometer, v/as reproducible within —  0,0002 in, suggesting 
that its- accuracy was better than —  0,3°/o,

The stiffness of the bearing supports was determined 
by measuring the movement of the bearing housing with a 
dial micrometer (reading to 0.0001 in) when loads, up to a 
maximum of 30 Ibf, were applied by the loading gauge,
(The Wayne—Kerr equipment was also used to determine the 
deflection of the bearing housing. Although the most 
sensitive probe, with a maximum range of 0,010 in, was 
used, the discrimination of the meter was not better than 
that of the dial micrometer, nor were the results as 
reproducible).

The overall accuracy of the stiffness of the bearing 
support was therefore limited by the discrimination of 
thC'dial micrometer. At a relatively large support 
stiffness of 16000 Ibf/in (producing a deflection of 
,002 in at the maximum load of 30 Ibf), a discrimination 
of —  .0001 in on the dial micrometer implied an accuracy 
of only —  5^/o in the determination of the stiffness. The 
accuracy was of course improved to a degree by smoothing 
the results of the loading tests. When the stiffness of 
the bearing support was reduced to a relatively low value



of 1600 Ibf/in, the deflections obtained were so large 
that they could be measured with an accuracy of —  0.5^/o. 
Therefore, except at very high values the accuracy of 
the determination of the bearing support stiffness was 
considered to be of the order of —  l^/o.

5. 3 Variation of Vliirling Speeds with
Rear Bearing Stiffness

The forward and reverse whirling speeds of the 
rotor were determined with the front bearing rigidly 
mounted while the stiffneés of the rear bearing support 
was varied. The balance of the disc was adjusted so 
that at the forward whirling speed a disc orbit of 
approximately 0,020 in radius (determined by the Wayne- 
■Kerr probes) would be obtained.

The damping of the system was so small (a damping 
factor of approximately 0.0007 was inferred) that 
significant deflection of the disc occurred over a range 
of only 20 rpm. The true whirling speed was judged to 
be that at which a 90^ phase shift was indicated by the 
oscilloscope display of the disc orbit.

The results of these tests are listed in Table 5.1 
and are shown plotted in Big.5.3 for comparison with the 
computer predictions obtained from an 8— section 
representation of the rotor. The experimental results 
appear to agree with the computer predictions within .
—  2°/o. However, the results do suggest that the forward 
and reverse speeds converge more rapidly than the computer 
predicted, (The forward and reverse whirls could not be 
separated when the rear bearing stiffness was set at 
2500 Ibf/in). This effect may be an indication that the 
influence of the bearing clearance becomes significant 
with very flexible bearing supports. Although the 
vertical and horizontal stiffnesses of the bearing 
supports were found to be identical within experimental 
limits, the stiffness in the horizontal direction, as seen
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by the shaft, is reduced by the bearing clearance.
(The journal of the shaft may be considered to be rolling 
within a cylinder of a diameter larger than the journal 
by an amount equal to the clearance),

The computer model, using only 8 sections, had 
predicted a forward whirling speed of 2472 rpm. When it 
was altered to represent the rotor divided into 38 sections, 
the rigid critical speed was found to be 2437 rpm —  a 
reduction of l,4^/o —  suggesting that a division of the 
rotor into rather more than 8 sections would be advisable 
in later work.

When the 38— section computer model was modified to 
allow for shear deformation, the critical speed was 
reduced slightly to 2434 rpm showing that it would not be 
essential to include the shear deformation effect in future 
calculations.

5*4 Variation of Whirling Speeds with
front Bearing Stiffness

Further tests were carried out on the L.P, rotor to 
determine the accuracy of the computer model when the 
stiffness of the front bearing support was varied. The 
results obtained are shown in Table 5.2. The forward and 
reverse whirling speeds are shown plotted on the computer 
predictions in Figs,5.4 and 5*5. The agreement was again 
within —  2°/o , which was considered satisfactory.

5*5 Experimental Traverse through forward Whirl

Although the transition through the forward whirl 
occurred within a speed range of only 30 rpm (l,5°/o of 
the mean speed), attempts were made to observe the 
behaviour of the I.P. rotor at several speeds in this 
range.

These tests were carried out with the front bearing 
mounted rigidly while the rear bearing support had a



stiffness of 16000 Ibf/in. The results at small speed 
intervals through the whirling range are shown plotted 
in fig.5,6,

When the radius of the disc orbit exceeded 0.006 in, 
the rear roller bearing began to rattle. The subsequent 
increase in radius with rotor speed did not resemble the 
resonance curve that would be exhibited by a linear system, 
furthermore, at a rotor speed of 2169 rpm the disc orbit 
collapsed suddenly from a radius of 0,033 in to 0.005 in.
When the speed was then lowered gradually the radius of 
the orbit remained virtually constant at 0,005 in down to 
a speed of 2150 rpm. Unfortunately, the test was terminated 
at this speed,

A subsequent examination of the rear roller bearing 
showed that the inner track, which was intended to be a 
press fit on the shaft, was loose. The fault was corrected 
by cementing the track to the shaft with Araldite,

The results of a subsequent traverse through the 
whirling range are shown plotted in fig.5.7* Again the 
rear bearing rattled as soon as the disc orbit exceeded 
0.006 in. The variation of radius of the disc orbit as 
the speed increased was almost identical to that observed 
in the earlier test. The orbit collapsed suddenly at 
2175 rpm and reverted to the relatively lov/ radius of 
0,005 in. As the speed was lowered the radius remained 
almost constant, though unsteady, until, at a speed of 
2157 rpm, it suddenly ’jumped’ to rejoin the rising speed 
line. further reduction of speed showed that the orbit 
radius remained at a relatively large value down to a speed 
of 2130 rpm. Unfortunately, the test was terminated at 
this speed but it is thought that if it had continued a 
second jump to a lower radius would have occurred at a 
speed just below 2130 rpm.
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The strange behaviour of the rotor when passing 
through the whirling range which was not affected by the 
fit of the inner track of the bearing was thought to be 
attributable to some non-linearity within the system.
When a vibrating system contains a restoring mechanism 
which is nonr-linear, such as the stiffening spring 
characteristic shown in fig,5.8(a), the amplitude versus 
frequency characteristic leans to the right, as shown in 
fig. 5.8(b). (V/hen the spring stiffness falls as the 
deflection increases, the characteristic leans to the 
left). At two points on the characteristic ’.jumps’ occur 
depending on whether the frequency is rising or falling, 
as indicated by the dashed lines in fig,5.8(b), (Ref.20).

Since the response of the L.P, rotor resembled that 
-of a non-linear system a search was conducted to detect 
the cause of the possible non-linearity.

A test carried put to check the stiffness of the 
rear bearing support confirmed that this was constant, at 
least over the normal range of deflections.

Yamamoto (Ref.21) had reported that a single row 
ball bearing, which had no self— aligning housing, exhibited 
a moment versus angular deflection characteristic, 
fig.5.8(c) and (d), which steepened rapidly when the shaft 
deflection exceeded about 0,5^. A test was conducted on 
the L.P. rotor to establish whether a similar effect would 
be exhibited by the rear roller bearing. A lateral load 
was applied to the shaft, adjacent to the disc, and the 
resulting deflection of the disc noted. The test failed 
to reveal a non-linearity, although the imposed deflection 
of the shaft far exceeded that observed in running tests. 
Presumably the angular deflection of the shaft at the rear 
roller bearing was too small to exhibit the non-linearity 
which Yamamoto reported.
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The noticeable rattle from the rear bearing 
whenever the radius of the disc orbit exceeded 0,006 in 
seemed significant. The radial acceleration of the disc 
under these conditions would be at least

r = 0.006 (2tc 2144)^ = 25 ft/seo^12"  W
and if the radius had been almost 0,008 in, the 
acceleration would have exceeded that due to gravity.
Thus it seemed almost certain that, whereas at lower 
amplitudes the shaft would revolve while resting at the 
bottom of the bearing clearance (fig,5.8(e)), at larger 
radii the radial acceleration of the disc would exceed 
gravity and the shaft would cross the clearance (actually 
roll around the circumference of the bearing), Considering 
only the vertical stiffness of the support of the shaft 
under these conditions, its characteristic would then be 
expected to exhibit 'back lash’ as shown in fig,5.8(f),
This effect was thought to be the source of the suspected 
non-linearity.

In section 5.1 it was noted that the whirling 
speeds were judged to be those at which a phase lag of 
90° was reached. The variation of phase angle with speed 
shown in Pigs.5.6 and 5.7 suggests that when the speed is 
increasing the phase change through 90° is delayed. This 
effect would be expected to occur in a non-linear system 
with a hardening spring characteristic. As a result the 
experimental whirling speeds may be perhaps l°/o higher 
than they would have been had the bearing had no clearance, 
(The experimental forward whirling speed v/hen both bearings 
were rigidly supported was 2475 rpm. The computer model 
predicted 2472 rpm, when 8 sections were used, and 2437 rpm 
when 38 sections were used).



5.Ü

Some time after these results had been obtained 
the writer received some information from Mr. H. Black 
of He riot—Watt University, describing the work he was 
conducting on the problem of the stable operation of 
centrifugal pump rotors (Ref.22). The model he examined 
consisted of a uniform shaft, mounted in rigidly mounted 
ball bearings, carrying a mass at its mid— span, A spring 
supported bush was mounted adjacent to the mass with a 
radial clearance between it and the shaft of 0.020 in 
(fig.5,9(a)). The response which he observed is shown 
in fig.5.9(b). Normal whirling resonance was followed by 
an increasing amplitude up to approximately 3 times the 
whirling^ speed. The theoretical treatment Black used to 
explain the behaviour included the non-linear restraint 
-imposed by the bush, (fig.5.9(c)), produced amplitude and 
phase angle variations, (fig.5.9(d)), which resembled the 
observed behaviour of..his model.

The striking resemblance between the amplitude and 
phase angle variation of Black's model and those of the 
L.P. rotor, supports the contention that the observed 
behaviour is due to nor^linearity of the rotor support.

5.6 Transition through the Whirling Speeds

Sketches of typical oscilloscope displays of the 
orbit of the centre of the disc at different speeds in the 
neighbourhood of the reverse and forward whirling speeds 
are shown in fig. 5,10, The sketches show the change in 
size of the orbit and also the apparent phase change.

The orbit displayed when the speed was well below 
the reverse whirling speed is shown in (l). Since the 
disc was rotating clockwise, the kicks produced by the foil 
marker on the periphery of the disc indicate that the disc 
is processing in the direction of rotation and that the 
unbalance lies along the 12 o'clock radius of the disc.
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Sketches (2), (3) and (4 ) show that as the speed 
increases the orhit grows and becomes elliptical, which 
soon closes into a straight line, and then returns to an
elliptical form, but with reverse precession.

At stage (5) the orbit has reached its maximum and 
the kicks have shifted 90^ around the orbit. This was
judged to be the reverse whirling speed. The disc reaches
its highest point when the foil marker passes the horizontal 
probe,producing the horizontal kick on the display. The 
deflection of the disc centre from the bearing axis is 
therefore along the 9 o'clock radius. Since the whirling 
motion is of reverse precession the motion has apparently 
a phase lag with reference to the whirl and therefore the 
kicks on the oscilloscope display must shift clockwise,
-i.e. in the same direction as the rotation.

As the speed is increased the elliptical orbit 
continues to tilt, eventually becoming a straight line, 
then again elliptical with now almost a 180^ phase change, 
(stages (6), (7 ) and (8)). At stage (9) the orbit is 
again circular with clockwise precession, and as a result 
of the transition through the straight line of stage (7), 
it has, at (9), regained an orbit almost identical to the 
initial orbit at stage (l).

With further increase of speed the orbit is circular, 
and as it grows it lags the precession (and of course the 
rotation). At (11) the orbit reaches a maximum and the 
speed is judged to be the forward whirling speed. The 
display at stage (11) shows that the disc reaches its 
highest point when the horizontal kick is produced. Once 
again this indicates that the displacement of the disc 
centre is along the 9 o'clock radius. But since the 
whirling motion has positive precession this result is to 
be expected —  the maximum displacement lags the excitation 
(the unbalance) by 90°.
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Further increase of speed, stages (12) and (13) 
show the collapse of the orbit with further phase change 
until at stage (13) the orbit is similar to that at stage 
(l), with a phase lag of 180°, The disc is now whirling 
with the centre.of mass adopting a position between the 
bearing axis and the geometric centre of the disc.

5.7 Effect of Unbalance on Reverse Vfhirl

Theoretical analysis, outlined in section 1.3» 
showed that whereas the gyroscopic action of the disc 
produces a natural frequency at which the centre of the 
disc precesses in a sense opposite to the rotation, 
resonanc'e could not be expected to be caused at this 
frequency by unbalance.

When the reai? bearing was mounted with a stiffness 
of 11250 Ibf/in the mean radius of the disc orbit, at the 
reverse whirling speed of 1868 rpm, was found to be 
0.005 in when the disc was well balanced. When the disc 
was unbalanced by adding screws of up to 2, 22 g mass at 
the 12 o ’clock position (equivalent to moving the centre 
of mass of the disc up to 0.00083 in), no increase in the 
radius of the orbit at the reverse whirling speed was 
found. On the other hand an unbalance produced by a mass 
of only 0.37 g increased the radius of the forward whirl 
orbit from 0,002 in to 0.032 in.

The effect of the position of the unbalance on the 
reverse whirl was tested by fitting a balancing screw of 
0.37 g to each of the four balancing positions in turn.
In each case the effect on the mean radius of the reverse 
whirl orbit was negligible.

The alignment of the shaft drive was altered in an 
attempt to discover the source of the excitation of reverse 
whirl but again no change was produced.
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5.8 Excitation of Reverse V/hirl

In Chapter 1 it was noted that resonance at the 
reverse whirling speed of symmetrical rotor systems has 
frequently been recorded in the literature but no 
explanation of its cause has been given. The writer 
believes that the cause is due to non-circularity of the 
journals of the shaft. Although no tests have been 
conducted to test the hypothesis, a theoretical treatment 
leads to plausible results which explain the curious 
behaviour of the phase of the reverse whirl shown in 
Fig.5.10.

Before dealing with the theoretical explanation of 
reverse whirl it seems reasonable to consider the 
explanation of forward whirl when some external damping 
is present.

The equations governing the motion of an unbalanced 
-shaft/disc system, as developed in section 1.3, with a 
term ôz to include external damping acting on the disc, 
are*—

mz + dz + ÔZ + ecp = maw 2 „iwte

to be

Acp —  iCw^ + ez + fcp =  0

Assuming the motion of the geometric centre of the disc

the solution becomes

maw^ (Aw^ + f)Z
D

where the denominator, D, is the determinant*—
2d —  mw + iôw e

—  Aw^ + Cw^ + f



which, is complex since it contains the imaginary component

i 5 w ( Au)̂  + f)

if we put G = 2A for a thin disc.
Multiplying the top and bottom of the expression 

for Z by D* , the conjugate of D, gives

Z = maw^ (Ajĵ  + f) . h*
d .d '

where the denominator D.D* is a real number.
Since D* contains the term —  i 5 w (Aw^ + f) , the 

value of Z is complex since the numerator contains the 
term:—

maw^ (Aw^ + f)^ . —  i Ô w

which is negative. Therefore Z is of the form E e 
~in which E is real. The movement of the centre of the - 
disc is therefore

z = R e -  4.)

The direction of the displacement of the disc, 00 
in Pig,5.1 1 , therefore lags the direction of the unbalance, 
vector CO, by an angle 4 .

How the denominator of Z, D.h' , will only become 
small (and therefore resonance occur) when the value of co 
approaches the forward whirling speed. (in section 1.3, 
where damping v/as not considered, the denominator was shov.n 
to become zero, and therefore resonance occurred, at the forward 
whirling speed). Therefore, there is no theoretical reason 
for resonance being induced at the reverse v/hirling speed 
due to unbalance.
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Now suppose that one journal is not truly circular 
and as a result the centreline of the shaft, at the 
hearing, when viewed from the end, will appear to move in 
a closed path, which will not he circular. The shaft/disc 
system will then he subjected to displacement excitation. 
The simplest form of this which can be assumed will be 
elliptical so that the displacement of the centreline at 
the journal will be, say,

or
X

z
= a cos wt 
= a cos wt

y = b sin wt 
ib sin wt

Putting
gives

a = A + B and b = A —  B
z' = a ' e + b '

The component B thus provides an excitation
which has the sense which is capable of exciting resonance 
at the reverse whirling speed. Its magnitude b' = ^ ^
which is half the vertical motion of the shaft due to non­
circularity of the journal would be difficult to establish. 
But in section 5.6 it was noted that eccentricity of the 
disc of only 0.0001 in was capable of producing strong 
resonance at the forward whirling speed. It therefore 
seems feasible that non— circularity of the journal of less 
than 0,0001 in (which seems possible) would produce 
noticeable resonance at the reverse whirling speed.

The reverse precession component B of the
centreline of the journal, modified by the characteristics 
of the shaft between the journal and the disc, will therefore 
lead to equations of the disc motion of the form*—

mz dz iôz ecp
A(p —  iCwÿ + e z + f (p

= kB

0

-iwt

where k is the force required to produce unit lateral 
deflection of the journal with respect to the disc.



Assuming the motion to be

z Z e“-iwt , (p = § e— iwt

and solving for Z gives

Z = kB'. ( -3Aw^ + f )

in which, again, 0 has been replaced by 2A, and D is now 
the determinants—

mw —  i5w

— 3Aw + f

As before, Z may be rewritten

2 = kB ( — 3Aw -t- f ). D
D.D'

where now the denominator, D.I)' , will become small, and 
therefore resonance will occur, when the reverse whirling 
speed is approached.

The expression for Z is again complex since it 
contains the imaginary terms-

kB' . ( + f )2. i5w
b.d'

which is now positive. Therefore Z is of the forms—

Z = H e ±i\.

The motion of the disc centre, caused by the excitation

z = E

kB' . e is therefore of the form:
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Since the sign of 4 is now positive, the displace­
ment of the centre of the disc must lag the whirl, which 
has reverse precession. Therefore, the disc displacement 
must appear to shift in the direction of the shaft rotation, 
thus confirming the clockwise shift of the kicks on the 
oscilloscope display when passing through the reverse whirl.

5.9 Conclusions

The forward whirl had been shown to be affected to a 
degree by non-linearity possibly introduced by the effect 
of the bearing clearance. However, the accuracy of the 
prediction of the speed at which it occurred had been shown 
to be satisfactory over a wide range of bearing support 
stiffnesses.

Although the suggested cause of resonance at reverse 
whirl had not been tested, the speed at which it occurred 
had again been predicted with satisfactory accuracy.
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TABLE 5.1

Effect of Stiffness of Rear Bearing 
Support on Whlxlln^ Speeds of L,P, Rotor

(Front -bearing mounted rigidly) ■

Rear Bearing Support Whirling Speeds

Stiffness
xlO^ PIexibility Reverse Forward

—  Ibf/in —  in/lbf —  rpm —  rpm

Rigid 0 2005 2475
16000 0.625 1910 2170
11250 0.89 1865 2055
6180 1.62 1773 1888
4890 2.05 1717 1779
37 60 2.66 1622 1669
2500 4.0 1461 1461



Tao±e ^,'d

C\J

IEH

CQ
00Pm

HP• H

PO-P
f§
pH
A
fp0
00
o

g
M0H(H
np0
1  
0
02 ■ 
P

1
0rQ
g
m

"vh CO
M  CT\C\J H

rn oLT\ VO

O  !>a 
I—I "P

un LT\
CM CM

m

L O t  L T \  OrO m  ror O  r n  OiH (H

O  >3H P>
CM . CM L n  LT\ CMm

CM

CO

mCM(Tt m

CO



Jî'lg.5.1

Pig.5.1 L.P. Rotor mounted in temporary 
spring bearing supports



Pig.5.2

11.5

I 2 — 2^ internal 
micrometer 1.5 R

Rig frame

Loading screw

1

Pig.5.2 The load gauge being used to
determine the stiffness of the 
rear bearing support
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Predicted 
forward whirl
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_ 1200
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Rear hearing flexibility x 10^ —  in/lbf

Comparison of observed and predicted whirling 
speeds of l.P. rotor with flexible rear 
bearing support.
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Shaft speed

2500

2000

1500

1200

—  rpm

O  2,28 
A  7.5 
□  2.48

Pront hearing . 
flexibility x 10^ 
—  in/lbf

Front bearing 
flexibility x 10 

in/lbf

1 2 3
Rear bearing flexibility x 10^ —  in/lbf

Comparison of observed and predicted forward 
whirling speed of L.P, rotor with both 
bearings on flexible supports.
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Shaft speed

2000
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2.48

1500

10

Front bearing .
flexibility x 10^ / 

—  in/lbf
1000

4321
Rear bearing flexibility x 10^ —  in/lbf

Fig,5.5 Comparison of observed and predicted reverse 
whirling speed of L.P. rotor with both 
bearings on flexible supports.
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whirl
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Phase angle
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0
2120 2140 2160 

Shaft speed —  rpm
2180

Pi2.5,7 Traverse through forward whirl 
after repair to rear bearing
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Fig.5.8 Don-linear characteristics of ball bearings
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Pi#.5.9 Whirling of a Rotor within a spring
mounted hush.
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Fi&,5.10 Typical oscilloscope traces of path of
• disc when rotating at speeds close to the 
reverse and forward whirling speeds.
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Fi#,5,11 Forward whirling of a shaft/disc
system.
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CHAPTER 6

INVESTIGATION OF THE
VIBRATION BEHAVIOUR OP THE CASING

AND H.P, ROTOR

SUMMARY

The first attempts at prediction of the whirling 
speeds of the complete rig were unsatisfactory. The 
vibration behaviour of the casing and H.P. rotor were 
therefore examined separately in order to isolate the 
causes of the inaccuracy of the computer model.

The properties of the original design of the casing 
proved to be too complex. V/hen a more reasonable design 
was adopted tests showed that the flexibility of the 
aluminium plates was considerable and its omission was 
probably the major source of error in the computer model.

A brief examination of the H.P, rotor suggested that 
the computer representation of its properties was reasonably 
correct.
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CHAPTER 6

■ INVESTIGATION OF THE
VIBRATION BEHAVIOUR OP THE CASING

AND H.P, ROTOR

6,1 Introduction

When the construction of the whole rig was completed 
tests were conducted to determine the accuracy of prediction 
of the whirling speeds. As described later, in Chapter 7, 
the results were disappointing. Further investigation 
suggested that the computer model of the rig was correct, 
in principle. It appeared, therefore, that faults 
'existed in the representation of the properties of the
casing and the H.P, rotor, since the representation of the
h,P, rotor had been shown to be satisfactory. ' Obviously
the casing and H,P, rotor would have to be examined
separately to reveal any discrepancies.

6,2 Investigation of Properties of the Casing

A computer program was designed to calculate the 
natural frequencies of lateral vibration of the casing v/hen 
simply supported at the bearing housings. The natural 
frequencies predicted by this program differed widely from 
those found by lateral excitation of the model.

Since the program was, in principle, identical to 
that used to predict the whirling speeds of the L,P, rotor 
it seemed certain that the data representing the elastic 
and inertial properties of the casing was at fault,

A variety of simple tests were, performed on the parts 
of the casing. Whereas the stiffness of the front bearing 
spring rods agreed with the design figure, the rear spring 
rods were found to be 35*^/o stiffen than intended.



• presumably because of the shorter length in relation to 
the blending section at each end (Fig.2,3),

The stiffness of the cage of eight rods, which 
formed the major portion of the casing, was checked by 
clamping the rear plate to the bed plate and applying a 
lateral load to the front plate as shown in Fig,6,1(a),
The stiffness of the cage was found to be about 75^/o of 
the design figure (which had been used in the computer 
program),

A further test carried out on a single rod mounted' 
in the rear plate, as shov/n in Fig, 6,1(b), showed that 
its flexibility was about 20^/o greater than expected.
This discrepancy was thought to be caused mainly by the 
flexibility of the fixing of the rod at the lower end,
(The second moment of area of the thread root section of 
a 4  in B.S.F, rod is only 75^/o of that of the unthreaded 
rod).

At this stage of the work it was decided that it 
would be hopeless to attempt an accurate understanding of 
the properties of the rod cage section. In any case, the 
construction was not representative of jet engine structures. 
Instead the section was replaced by a flanged cylindrical 
steel drum, 0,0625 in thick.

When the computer program had been modified to 
represent the drum construction, it predicted the lowest 
lateral frequency to be 73 c/s, A subsequent excitation 
test on the modified casing showed that the lowest lateral 
frequency was actually about 50 c/s.

After yet another tedious cross-checking of the 
computer data, it was concluded that there was still a 
major source of flexibility which had not been included in 
the computer model. The computer program was therefore 
modified to represent the casing mounted on the bearing 
spring mounts (the flexibility of the bearing springs far
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exceeded the flexibility of the rest of the casing) and 
to predict the static deflection of the casing when a 
lateral load was applied to the front plate (Fig,6,1(c)), 
The predicted deflection of the casing under a lateral 
load of 80 Ibf is plotted in Fig.6,2, line (l),

A loading test conducted to simulate the computer 
predictions immediately showed that a major source of 
flexibility existed at the front aluminium plate,
Fig,6,2 , line (2),

An examination of the flexibility of a disc clamped 
at its edge when a moment is applied to a central circular 
hole (Ref.23), suggested that the front plate, although 
relatively thick, could be expected to have an angular 
deflection per unit moment, of 1,5 x 10~^ rad/lbf in. 
The experimental results, line (2), Fig,6.2, indicated a 
value of 0^ of 0,54 x 10“ ^ rad/lbf in. The difference was 
considered reasonable, since the centre portion of the front 
plate was obviously stiffened considerably by the mounting 
block for the H,P. rear bearing springs.

When the computer program was modified to include 
the flexibility, the resulting deflection curves,
lines (3) and (4 ) in Fig.6,2, confirmed that it would be 
correct to use the experimental value of in the 
program.

But the experimental tests had shown that some 
flexibility of the supports was evident. Simple loading 
tests were carried out to determine the vertical stiffness 
of these supports. The stiffnesses proved to be 
relatively large and therefore difficult to determine with 
any accuracy, but a front support stiffness of 1.2 x 10  ̂
Ibf/in and a rear stiffness of 1,0 x 10^ Ibf/in seemed 
appropriate values.
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The lowest natural frequency of lateral vibration 
predicted by the computer program containing these 
stiffnesses was 12.36 c/s compared with the experimental 
value of 11.42 c/s. The agreement was not particularly
good nor were the predicted modes, as indicated in 
Table 6.1. When various sets of support stiffnesses were 
inserted in the computer program, it appeared that when 
both stiffnesses were set at 0,7 x 10^ Ibf/in a fair 
agreement with the experimental values was obtained.

The values of these stiffnesses, of course, were 
those which seemed to be appropriate for vibration of 
the casing in the vertical plane. The corresponding 
stiffnesses in the horizontal direction could be expected 
to be different and as a result have some influence on the 
-accuracy of prediction of the whirling speeds of the model.

6,3 Investigation of the Properties of the H.P, Rotor

A satisfactory computer model of the L.P, rotor had 
been obtained with relatively little difficulty. Since 
the H.P, rotor had been deliberately designed to be of 
simple construction it was not expected that an adequate 
computer representation would be difficult to obtain. 
Nevertheless, it was considered worthwhile testing the 
representation of the H.P, rotor before returning to the 
complete rig.

Ideally the representation should have been tested 
against the behaviour v/hen the rotor was mounted in bearing 
supports with readily predictable characteristics.
However, it was expedient to mount the rotor in the front 
half of the casing, with the front plate mounted on the 
supports built for the rear of the model, as shown in 
Pig. 6. 3.

The first computer representation of this arrangement 
used support stiffnesses of 0.7 x 10^ Ibf/in, i.e. values 
which had been judged to be appropriate when the casing



o. D

was being examined. The predicted lowest frequency 
of lateral vibration (when the rotor was not rotating) 
was 1410 c/min, which compared well with the value of 
1391 c/min which the system v/as found to exhibit when it 
was excited in a vertical direction (Table 6.2).

However, the predicted v/hirling speeds proved to be 
widely different to the experimental values. But the 
tests showed that the forward whirling speed was lower than 
the lateral frequency when vibrated in the vertical planeJ

Careful loading tests carried out on the front and 
rear bearing spring supports showed that the stiffnesses 
were symmetrical and within 2^/o of the design value which 
had been' inserted in the computer program.

Since the supports of the system were very close 
together and the rotor had a relatively large overhang, 
the stiffnesses of the supports could be expected to have 
a profound influence on the whirling speeds. The stiffness 
of the rear supports, in the vertical direction proved, on 
examination, to be lower than expected —  a value of 
0,5 X-10^ Ibf/in being indicated. The vertical stiffness 
of the front support was again checked and the results 
suggested that a stiffness of 0.7 x 10^ Ibf/in was not
inappropriate. (The determination of these stiffnesses
with great accuracy was not possible without elaborate 
test equipment.)

■ ' During the tests on the front support it was 
realised that the considerable side—play at the ball joint 
of .015 in was likely to have a significant effect on the 
whirling behaviour of the rotor. It was therefore 
eliminated by shimming with washers. The whirling speeds 
exhibited by the rotor after this correction were raised 
about 7°/o as a result, with only a small change in 
vertical lateral frequency (line 2, Table 6,2) and now the
forward whirling speed was higher than the lateral
frequency,



Although the stiffness tests had been carried out 
in the vertical plane the stiffnesses were not determined 
in the horizontal direction. This was not considered a 
serious omission since the forward whirling appeared to 
occur at only one speed, whereas had the vertical and 
lateral stiffnesses been significantly different in the 
vertical and horizontal directions, two distinct resonances 
would have been expected.

Wlien the new value of the rear support stiffness v/as 
used in the computer representation, the predicted whirling 
speeds were found to be only 2^/o higher than the test 
values, while the predicted lateral frequency was about 
1.5^/o lo)ver (line 4 , Table 6,2).

6 ♦ 4 Conclusions
The investigation of the characteristics of the 

casing and H. P. rotor could have been carried out in a more 
'elegant manner. But the object of the work was to develop 
a reasonably accurate computer model of the complete rig in 
order to investigate the behaviour of a 2— shaft system, and 
therefore expediency was the rule throughout this stage of 
the work.

During this part of the investigation progress was 
often delayed by the development of the computer program, 
in particular of the modified transfer matrix method, which 
was adopted to obviate numerical difficulties which appeared 
possible.

The predictions of the frequencies of the casing and 
H.P, rotor had been shown finally to be within 2^/o of the 
test values. This accuracy was considered sufficient to 
suggest that a further attempt on the complete model might 
be successful.



TABLE 6.1

Lowest Natural frequency of Casing 
Mounted on Spring Supports

Table 6.1

Front
Support
Stiffness

X 10^
— Ibf/in

Rear
Support
Stiffness

X 10^
—  Ibf/in

Lowest
Natural
Frequency

—  c/s

*
A^
Ap

**
^r
S

Experimental values 114,2 0.27 0,15

1.2 1.0 123.6 0. 21 0,14

1.0 1.0 121.8 0,24 0,13

0.7 OiT 116.0 0. 32 0,2

0, 6 0.6 112.9 0,35 0, 23

**

A.
Amplitude of Front Support 
Amplitude of Front Plate

Amplitude of Rear Support 
Amplitude of Front Plate



Table 6. 2

TABLE 6.2

Comparison of Predictions of E.P. Shaft 
Frequencies with Model Tests

Configuration
Reverse
Whirl

—  c/min

Lateral
Frequency
—  c/min

Forward 
V/hirl '

—  c/min

Initial model test 1180 1391 1285

Final model test
(corrected front 

support)

1265 1378 1392

Computer prediction
(rear■support 
stiffness
0,7 X 105 Itf/in)

1337 1410 1483

Computer prediction
(rear support 
stiffness
0.5 X 10^ Ibf/in)

1292 1357 1424
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Fig.6.1 Static load tests carried out
on the casing



Pig,6,2

1.0
Front plate flexibility, 

X 10^ “  rad/lbf in

U ) Loading test

(2)

(3)

I Front 
spring support

Front aluminium 
plate

Rear
support

Fi#,6.2 Comparison of measured deflection of 
casing with computer predictions
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Flg.6.3 H.P. Rotor mounted in front half 

of casing for whirling tests
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CHAPTER 7

EVALUATION OF THE ACCURACY 

OF THE COMPUTER MODEL OF THE COMPLETE RIG

SUMMARY

The first attempts at predicting the whirling speeds 
of the complete rig were disappointing. Independent 
calculations made by the representatives of two aero engine 
companies also produced poor results.

Later predictions, which incorporated the corrections 
-suggested by the tests conducted on the casing and H.P, rotor, 
were satisfactory. The H.P. and L.P, whirling speeds were 
predicted within 4.^/0 and l^/o respectively.

The sensitivity of these predictions to variations of 
the rig parameters was explored. No large changes in 
whirling speeds were found which could not be explained.
The computer model of the rig was shown to predict, with 
fair accuracy, an increase in H.P. whirling speeds of about 
20^/0 which resulted when the rear bearing stiffness was 
made almost 10 times the design value.
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CHAPTER 7

EVALUATION OF THE ACCURACY 
OF THE COMPUTER MODEL OF THE COMPLETE RIG

7.1 Initial trials of the Computer Model of the Rig

When the first build of'the rig was completed, tests 
were conducted to determine the accuracy of the computer 
model. Experience indicated that the vibration of various 
points of the model, including the discs, was most stable 
when both shafts rotated at the same speed in the same 
direction. This particular shaft speed relation was 
therefore adopted for comparison purposes.

The first tests were extremely disappointing. 
Considerable effort was therefore devoted to checking the 
computer input data, representing the physical characteristics 
of the model, and the programing of the calculation.
Comparison of the predicted whirling speeds and modes with 
those exhibited.by the model failed to indicate the cause 
of the discrepancies.

The computer program had been designed to employ the 
standard transfer matrix method in which the evaluation of 
a final 9 —  th order determinant was used to locate the 
particular frequency. On examination of this process it 
was found that the final operation involved the subtraction 
of two large quantities, both of the order of 10^^, even 
when the iteration process was within 1 rpra of the whirling 
speed. It was suspected that hidden numerical difficulties 
due to rounding errors were responsible for the poor computer 
predictions. The computer program was therefore altered to 
employ the modified transfer matrix method, which avoids 
such difficulties, but no improvement was found.
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. The final predictions of the computer model, using 
the standard and modified transfer matrix methods, are 
shov/n compared with the test values in the first two 
columns' of Table 7,1.

During this period of the investigation, three 
representatives from Rolls-Royce Ltd,, Derby, visited the 
University to discuss the investigation. They were 
delighted to find a rig on which they could test the accuracy 
of their own methods of predicting critical speeds, and they 
were therefore given full details of the rig to use. The 
details were also sent by a representative of the Allison 
Division of General Motors (who was attached to Rolls-Royce 
Ltd under a liaison agreement) to the engineering division 
of Allison's for evaluation. The predictions which these 
two companies produced are also shown in Table 7.1. The 
accuracy was little, if at all, better than that achieved 
by the writer. But the figures do support the writer's 
contention that aircraft engine companies cannot predict 
critical speeds with great accuracy.

7.2 Final predictions of the frequencies of the Rig
Following the disappointing results of the first 

attempt at predicting the critical speeds of the rig, a 
detailed examination of the properties of the casing and
H.P. shaft was made (Chapter 6). When the results of 
this examination were used to correct the computer model, 
the predictions of the two lowest lateral frequencies 
(when the shafts were not rotating) and the four lowest 
whirling speeds (when the shafts were rotating in the same 
direction at the same speed) were found to agree well with 
the frequencies exhibited by the model, (Table 7.2),
(The lateral frequencies are not strictly comparable since 
the model values were obtained by exciting .the model using 
the unbalance of one of the shafts, i.e. the 'H.P. lateral' 
was excited by the L.P. shaft rotating at 1383 rpm. As
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will be seen later, in Chapter 8, the variation of H.P, 
frequency with L.P. speed under these conditions, is 
small. )

It can be seen that the predictions for the H.P. 
shaft are about 4°/o low. The discrepancy is thought to 
be due to the neglect, in the computer model, of the local 
stiffening of the H.P, shaft by the inner track of the
H.P. rear bearing. The tests conducted on the H.P. shaft 
mounted in the front half of the casing had suggested a 
discrepancy of about 2°/o but there had been uncertainty 
about the influence of the flexibility of the front plate.

The L.P. shaft frequencies were predicted with 
satisfactory accuracy comparable with that achieved in the 
earlier investigations of the L.P. shaft.

7. 3 Modes of Vibration

An attempt was made to determine the accuracy of the 
predicted mode of the vibration when both shafts were 
rotating in the same direction at the same speed.
Vibration probes of suitable range were mounted to monitor 
the vertical movement of the bearing housings, model 
supports and the discs. The signals from each probe were, 
in turn, displayed on the Y— axis of the oscilloscope to be 
compared with the horizontal motion of the L.P, disc, 
which was fed to the X plates of the oscilloscope. It 
was'hoped that this procedure would nullify the effect of 
fluctuations of the model when operating close to a 
whirling speed. The results of three tests carried out 
with both shafts rotating at 2170 rpm in the same direction 
are shown in Table 7.3 compared with the computer predictions.

Although the accuracy of measurement of the mode of 
vibration was not expected to be good the results achieved 
show a fair resemblance to the computed values —  which 
are, of course, for undamped vibration.
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7.4 Variation of Model data
The success of a frequency analysis of a 

complicated structure depends on the accuracy of the 
data used to represent the properties of the model. The 
data may be numerically correct but, as a result of 
omissions or faulty presentation, fail to represent faith­
fully the properties of the system. This aspect, of 
course, could not be evaluated but an indication of its 
serious, nature had been shown by the failure to include 
the flexibility of the aluminium plates of the casing in 
the ird.tial calculations of the frequencies of the rig.
But it v/as thought useful to examine the sensitivity of 
the computer model to numerical inaccuracies in the data, 
now that it appeared to be correct in principle. This 
-aspect v/as tested by computing the change in forward 
whirling speeds which resulted when selected parts of the 
data were altered, in-turn, by lO^/o. The results which 
were obtained are listed in Table 7.4.

The predicted speeds are relatively insensitive to 
the stiffness and inertial properties of the casing.
Even the plate stiffnesses appeared to have little 
influence on the whirling speeds although they had been 
found to be significant in the work carried out on the 
casing alone. However, when the computer model, now 
apparently correct, was used to predict the speeds when 
both front and rear plates were rigid, the L.P, speed rose
1.2°/o while the H.P, speed rose 17.1^/o , thus confirming 
the large influence of the plate flexibilities particularly 
on the H.P, speed.

The accuracy of the computer model was tested further 
by determining the change in whirling speeds which would 
be expected to result when the stiffness of the H.P, rear 
bearing was made almost 10 times larger (by replacing the 
0.25 in diameter spring rods with ones of diameter 
0.4375 in). The per cent changes in the respective
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whirling speeds predicted and later determined from the 
modified rig are compared in Table 7.5* The agreement 
following such a drastic change of the model was 
considered to be satisfactory.



Table 7.1

TABLE 7.1

COIÆPARISON OE COMPUTER PREDICTIONS WITH THE 
WHIRLING SPEEDS OE THE RIG ,

Whirling
Speed Rig 

—  rpm

Computer
Prediction

—  rpm
R-R Ltd 
—  rpm

Allison 
—  rpm

H.P, Reverse 1175 1182 880 821

H.P, Forward 1265 1331 924 983

L.P, Reverse 1897 1787 1947 1816

L.P, Forward 2160 2905 2327 2022



Table 7. 2

TABLE 7.2

CQJÆPARISON OE PREDICTED LATERAL FREQUENCIES 
AND WHIRLING SPEEDS WITH THE RIG VALUES

Rig
Values
c/min

Computer
Prediction

c/min

Computer
Error
%

H.P. R'everse whirl 1370 1315 —  4.0

H.P. Lateral 1447 1383 —  4.4

H.P. Forward whirl 1498 1453 —  3.0

L.P. Reverse whirl 1890 1864 —  1.4

L.P. Lateral 2029 2010 -  0.9

L.P. Forward 2165 2165 0
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TABLE 7.3

Comparison of vibration mode with predicted 
free vibration mode when both shafts are 
rotating in the same direction at 2170 rpm 

(L.P. forward whirl)

- Probe 
Position Test 1 Test 2 Test 3 Predicted

Value

Front Bearing .16 .14 0.14 .148

Front Support .01 .018 .021 .018

H.P. Rear Bearing .1 . 066 .081 .079

H.P. Disc .08 .09 0.11 .113

L.P, Disc 1.0 1.0 1.0 1.0

L.P. Rear Bearing . 28 . 26 .29 .259



Table 7.4

TABLE 7.4

^/o Changes in Forward Whirling Speeds 
resulting from a 10°/o increase in 

  a parameter

Rig Parameter
°/0 Change 

L.P. Forward 
Whirl

/0 Change 
H.P. Forward 

Whirl

Front support stiffness ! 0 0
Casing tube stiffness 0 0.1
Drum stiffness 0 0
All casing masses and 

inertias -  0,5 0
Front plate stiffness 0 1.4
Rear plate stiffness 0.15 0

Front bearing stiffness 0.2 0.2
H.P. rear bearing 

stiffness 0.1 1.4
H.P. shaft stiffness 0 1.0
H.P, disc mass and 

inertia 0 —  4.3

L.P. rear bearing 
stiffness 0,6 0

L.P, shaft stiffness 3.5 0
L.P, disc mass and 

inertia -  3.2 0



Table 7.5

TABLE 7. 5

Actual and predicted ^/o changes in 
whirling speeds resulting from increasing 
the H.P, bearing stiffness to 9.4 times 

the original value

Model 
°/o Change

Computer 
^/o Change

H.P, Reverse 16.9 18.0

H.P. Forward 21.8 24.3

L.P. Reverse 1.85 0.75

L.P. Forward 1.1 0.8
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CHAPTER 8

EXAMINATION OE THE VIBRATION
BEHAVIOUR OE THE RIG

SUMJÆARY

The rig was found to exhibit resonances at speeds 
other than the, so-called critical speeds predicted by the 
computer model. The nature of these resonances was 
examined by running each shaft at speeds up to 6000 rpm 
while the other shaft was stationary.

Several minor resonances were found to occur whenever 
the rotating shaft reached a speed which was a simple 
fraction of its critical speed. These resonances are shown 
to be caused by variations in the driving torque applied to 
the shaft,

A minor resonance was observed when the H.P, shaft was 
rotating is shown to be caused by bearing excitation, since 
it occurred when the processional speed of the rolling 
elements of the bearings coincided with the current 
frequency of the shaft,

A severe vibration occurred when the speed of the H.P, 
shaft reached 4800 rpm. The shaft vibrated at a frequency 
which was exactly ^  of the rotational speed. This type 
of vibration is shown to be a sub—harmonic almost certainly 
caused by non-linearity of the support of the shaft caused 
by the bearing clearance.
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CHAPTER 8

EXAMINATION OE THE VIBRATION
BEHAVIOUR OE THE RIG

8.1 Introduction
During the development of a reliable computer model 

of the-rig, several minor resonances had been observed at 
speeds other than the so-called critical speeds. The 
nature and cause of these resonances had to be established 
before the investigation was extended. The behaviour of 
each shaft, at speeds up to the maximum possible of 6000 
rpm, was carefully examined while the other shaft was 
stationary,

8.2 L.P. Shaft

The results of the survey carried out on the L.P, 
shaft are summarised in Table 8.1 and illustrated in 
Eig.8,1. The movement of the L.P. disc was measured by 
capacitance probes with a maximum range of 0.1 in (the 
maximum sensitivity of the subsequent oscilloscope display 
was 1 cm per 0,001 in). Probes of greater sensitivity 
were tried but to no advantage. Irregularities in the 
nominally circular circumference of the disc, and 
eccentricity of the shaft at the disc mounting, caused the 
disc centre to appear to revolve in a path with a radius of 
almost 0.001 in, even at very low speeds. Resonances with 
an amplitude as small as 0.001 in could therefore not be 
detected with precision.

The forward and reverse synchronous whirls (critical 
speeds) of the L.P. shaft were observed to be close to the 
predicted values.
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Noticeable vibration of the L.P. shaft was observed 
when its speed coincided with the natural frequency of the 
stationary H.P. shaft. The H.P. disc, at this condition, 
traced -an elliptic path, deviating as much as O.OO4 in 
from the axis of the bearings. Since the H.P. shaft was 
not rotating little external damping was available to 
control its movement.

Vibration of the L.P. shaft was also noticeable at 
speeds which were approximately ^ and ^  of the critical 
speeds. Under these conditions the centre of the L.P. 
disc traced out an approximately circular path twice and 
three times, respectively, during each revolution. The 
shaft was therefore vibrating, in each case, at its 
natural frequency, the value of which was determined by 
the rotational speed —  this speed being a simple fraction 
of the current natural frequency. These 'fractional 
whirls' (a term which.the writer prefers to adopt to 
differentiate from similar whirls, which are caused by 
non-linear effects) will be shown later to be caused by 
variations in the driving torque applied to the shaft.

When the shaft speed was in the region of 5OOO rpm, 
noticeable vibration was apparent which'had the appearance 
of a reverse whirl. Later computer calculations suggested 
that a higher mode of vibration could be expected at about 
this speed and the rig would process in an opposite sense 
to the shaft rotation,

V/hen the L.P. shaft speed reached 5800 rpm, moderate 
vibration was noticed accompanied by a distinct rattle 
emanating from the L.P. rear bearing. Although the 
oscilloscope display of the vibration was not clear enough 
to establish its nature, the apparent’amplitude of motion 
of the disc, at least 0.001 in at this speed, was 
sufficient to cause the maximum radial acceleration of the
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shaft to exceed that due to gravity. It therefore 
seemed certain that at this speed the shaft, which at 
lower speeds rotates while resting at the bottom of the 
bearing, was lifting, momentarily, off the bearing track 
and crossing the bearing clearance.

8.3 H.P. Shaft

The results of a vibration survey when the H.P, shaft 
speed was varied up to 6000 rpm, while the L.P. shaft was 
not rotating, are listed in Table 8.2 and illustrated in 
Pig.8.2. The forward and reverse synchronous whirls 
appeared at the expected speeds, allowing for the fact that 
the computer predictions had been found to be some 4^/o 
low.

When the H.P. shaft rotated at 2029 rpm some vibration 
was apparent which corresponded to lateral vibration of the 
stationary L.P. shaft. Since the L.P. shaft was stationary, 
and therefore subject to little damping, relatively large 
deviations, of up to .017 in, from the bearing axis were 
observed.

Fractional whirls of the H.P. shaft were observed, 
although it was not always possible to distinguish the 
sense of the whirl.

At a speed of 3550 rpm moderate vibration of the H.P. 
shaft was observed which proved to be insensitive to the 
amount of unbalance of the shaft. This particular 
vibration will be shown later to be attributable to 
variations in the diameters of the rolling elements of the 
bearings.

When the shaft speed reached approximately 4800 rpm 
a sudden transition to a severe form of vibration was 
observed and was maintained, though with decreasing 
amplitude, until a speed of over 5000 rpm was reached.
The strange oscilloscope display, shown in Pig.8.3,
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suggested that the H.P. disc centre traversed an almost 
circular path during the course of three shaft rotations.
This peculiar behaviour will later be shown to be almost 
certainly a result of non-linearity in the system caused 
by the shaft crossing the bearing clearance.

8.4 Critical Speeds
The computer predictions of the H.P. and L.P. 

shaft frequencies are shown plotted versus the respective 
shaft speeds in Pigs.8.4 and 8,5. The predicted L.P. 
critical speeds show good agreement with the observed 
results. The H.P. critical speeds are about 4^/o high 
and are ^therefore consistent with previous results in which 
both shafts ran at the same speed.

The tests on the H.P. shaft illustrated the sensitivity 
to unbalance of the H.P, disc. During preliminary tests 
the radius of the orbit of the disc was found to be 
0.003 in at the forward critical speed of 1499 rpm and 
observation of the behaviour in the neighbourhood of this 
speed was not easy. The disc was therefore unbalanced by 
adding a small balancing screw, of mass 0,865 g, which 
would cause the centre of mass to shift a distance of
0.00033 in. The resultant amplitude at the same critical 
speed was then found to be 0.021 in.

The damping acting on both shafts was obviously very 
small, significant amplitudes being observed over a speed 
range of about 20 rpm at forward whirl. As a result 
quite large fluctuations were present in the oscilloscope 
display, presumably as a result of variations of the 
driving torque supplied by the servo— controlled motors.
It was therefore impossible to determine a reliable record 
of the amplitude close to the forward critical speed from 
which a measure of the external damping acting on the 
shaft could be obtained. Instead, the 'kicks' on the 
oscilloscope display, caused by the metal foil markers
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on the discs, were used to determine the speeds at which 
phase angles of 45°, 90° and 135° were obtained. The 
results of these tests are tabulated in Table 8.3,

If the whirling speed of the shaft is w , and the 
damping is small, phase angles of 45° and 135° will occur 
at (l —  e)oj and (l + e)w respectively, where e is very 
small. If the damping is viscous and ^ times the critical 
value then

tan 45° = 2^ (l —  e) = 1
1 -  (1 -  e)2

and ' tan 135° = 2^ (l + e) = _i
1 -  (1 + e)^

When these relations were applied to the observations listed 
in Table 8.3, damping ratios of 0,001 and O.OO4 were 
indicated for the L.P. and H.P, shafts respectively.

8.5 Fractional Whirls

If a rotating shaft is subjected to a fluctuating 
torque it may appear to whirl at speeds which are simple 
fractions of the critical speed. An explanation of this 
effect is described in detail by Biezeno and Grammel 
(Ref, 24).

The diagram, Rig.8.6, shows the cross— section through 
the mid— point of a simply supported shaft which carries a 
disc at its centre. As before, (Chapter 1), the equations 
expressing the motion of the centre of the disc, C, are*-

2mx + kx = ma u) cos cp

my + ky = ma sin cp..........  (l)
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Since the shaft is now assumed to be subjected to a 
variable moment, it is supposed to rotate .at a mean 
angular velocity, p, but with a fluctuation, , in 
addition, so that,

(p = pt + •&
Equation (l) then becomes,

mx + kx = ma cos (pt + 0 )
= ma (cos pt cos —  sin pt sin -&)

and assuming that the fluctuation, •&, is small, the equation 
may be written,

mx + kx = ma (cos pt —  sin pt.0 )  ......... (2)

Now the variable moment may always be expressed as a 
"Fourier series, of which one term is,

M  = Mo cos (npt + 3 )
where n is an integer.

Referring to Fig,8 ,6 , the equation expressing the 
angular motion of the disc is.

Cep = M + ka y cos cp —  ka X  sin cp
where C is the polar moment of inertia of the disc, Biezeno 
and Grammel show that, for all practical purposes, the last
two terms may be neglected, to give:—

cp = M cos (npt + 3)
, C

Integration of this equation, gives;—

cp = —  M cos (npt + 3) + Rt + S
0 n^ p2
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Since R obviously must be equal to p, the mean angular 
velocity, and the constant S is unimportant, the 
fluctuation ^ in the expression cp = pt + -Q- is given 
by:-

cos (npt + 3)

Substituting this in (2),

mx + kx = ma F cos pt + sin pt cos (npt + 3)]
*' 0 9 JC n^ p^

which, since,
sin A —  sin B = 2 sin A —  B . cos A + B

2 2 .

can be written, 

mx + kx =

ma cos pt + ma Mo [sin { (n+l)pt + 3 } —  sin|(n-l) pt + 3 !|
2 C nS" ^

Thus, in addition to resonance occurring when w = p, 
there also exists the possibility that resonance may occur 
whenever

(n —  1) p = w
i.e. if, n = 1, when p = w

2
n = 2 , when p = w or w

3
n = 3, when p = w or w , etc.

4 2
Thus, whenever a variable component is present in the . 

driving torque, the shaft may whirl at speeds which-are 
simple fractions of the shaft frequency.



, Resonance at half the critical speed is usually 
observed when horizontal shafts are employed since the 
force due to gravity, mg in Pig,8,6, always necessitates 
a fluctuation in driving moment once per revolution.

These fractional whirls were exhibited by both1 1shafts. Although the and ^ whirls could be detected 
it was not possible to determine the sense of the whirls 
from the indistinct oscilloscope traces. However, 
relating these to the frequency plot. Pigs.8.4 and 8.5» 
showed that they could be placed so as to conform with the 
synchronous whirling (critical) speeds,

8,6 Bearing Excitation

A small resonance was observed when the E.P. shaft 
speed reached 3560 rpm. Sufficient computer analysis had 
been done by then to show that no critical speed was to be 
expected at this speed. Perhaps the effect was caused by 
a type of bearing excitation noted by Yamamoto (Ref. 21).

The ball or roller assembly in a rolling bearing, 
(Pig.8.7(a)), precesses at a rate a times the shaft speed, 
where, ,

a = 2,0 + 2,0.^

in which,
d = diameter of the balls or rollers 
D = diameter of the inner track.

Yamamoto showed that if, as a result of manufacturing 
errors, one ball or roller is larger than the others, the 
shaft would be subjected to an excitation at a frequency 
which is a times the shaft speed, and which rotates in the 
same direction as the shaft rotates. Resonance would 
occur, therefore, whenever the shaft speed, r2 , attains a 
value at which a O  equals the forward whirling frequency 
which the shaft exhibits when rotating at a speed,
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Measurement of a spare H.P. rear bearing showed 
that the mean roller diameter was 0,3124 in, while the 
inner track diameter was 2.3405 in, and so the roller 
assembly would process at a rate 0,441 times the shaft 
speed. Similar measurements of the H.P. front bearing 
also suggested a precession rate of 0.441, a value which 
was confirmed by observation.

The computed variation of H.P, shaft frequency, w, 
with rotational speed, D  , is shown plotted in Pig.8.7(b). 
It can be seen that the locus, a = 0 . 4 4 1 ^  , intersects
the frequency curve when the shaft speed is 3500 rpm. 
However, the computed values of frequency were known to 
be some ,4^/0 low. V/hen the experimental values of 
synchronous and half speed whirl frequencies were 
extrapolated, bearing excitation was shown to be expected 
to occur at 3560 rpm, in agreement with the observed 
resonance.

A similar examination of the L.P. rear bearing 
showed that the rollers would process at a rate 0.42 times 
the shaft speed. When this is compared with the computed 
variation of L.P. shaft frequency, w, with speed, O  , in 
Pig,8.7(c), it can be seen that bearing excitation was to 
be expected at a shaft speed of 5620 rpm.

The L.P. shaft had been found to exhibit rough 
running in the region of 5800 rpm and it therefore seems 
feasible to suggest that bearing excitation was 
contributory.

8.7 Higher Modes of Vibration
The L.P, shaft showed a resonance at a speed of 

4959 rpm. Although the amplitude was small it was 
possible to distinguish that the vibration resembled a 
reverse whirl. The explanation for this behaviour was 
later shown by computer investigation to be due to 
vibration in a mode in which the whole rig processed in 
an opposite direction to the L.P. shaft rotation.
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8,8 Subharmonic Oscillation
The radius of the H.P. disc orbit at speeds just 

below 4800 rpm v/as approximately 0.0005 in, although there 
were frequent fluctuations as large as 0.001 in. But when 
the speed was raised, the orbit suddenly increased, at a 
speed of approximately 4800 rpm, to a radius of the order 
of .012 in with some increase in noise level.

The path of the disc centre, shown by the oscilloscope 
trace, was peculiar as shown in Pig,8,3. Apparently the 
disc was traversing an orbit, which was roughly circular, 
once during the course of three revolutions of the shaft. 
Professor Robson pointed out that this behaviour v/as 
probably-a subharmonic vibration caused by some non- 
linearity within the system. Later work showed that the 
“frequency of forward precession of the shaft was expected 
to be about 1600 rpm when rotating at this speed, suggesting 
that it was indeed a subharmonic vibration of order 3.

Several traverses through the speed range 4600 —  5600 
rpm produced the results shov/n in Pigs. 8.8 and 8.9. The 
response of the shaft 'jumped' at a speed of about 4800 rpm. 
It did not appear to be governed by the unbalance of the 
disc as shown by Pig.8.8. The results of two tests, in 
which the speed was gradually raised to 5600 rpm and then 
lowered, showed that the response was quite different to 
the non-linear response observed when the L.P. shaft was 
being tested in temporary bearing mountings (see section 
5.5)» Although a 'jump' occurred at 4800 rpm v/hen the 
speed was rising, no corresponding 'jump' was observed on 
lowering the speed from 5600 rpm, until the speed reached 
4800 rpm (Pig,8,9).

Professor Robson had pointed out that whereas the 
existence of a subharmonic vibration could be shown to be 
possible, it was often extremely difficult to initiate 
unless appropriate conditions were provided. The 
behaviour of the model confirmed this nature of subharmonic
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vibration. On many occasions the vibration refused to 
appear at any speed in the range 4800 —  5600 rpm. But 
it could be shown to be incipient since a blow applied to 
the model with a large piece of wood often initiated the 
vibration, although it was usually not maintained.

8.9 hon-linearity of Bearing

In section 5.5 it was shovm that the L.P, shaft had 
exhibited some apparently non-linear behaviour at forward 
whirl. It was argued that this occurred when the radial 
acceleration of the disc approached the acceleration due 
to gravity and was probably due to the shaft crossing the 
bearing clearance. But a closer examination of the 
behaviour of the whirling shaft suggested that the support 
of the shaft at the bearings may exhibit non-linearity at 
any speed greater than forward whirl.

A diagrammatic representation of the H.P. shaft is 
shown in Pig. 8.10(a). The front bearing is supposed to 
support the shaft rigidly in a lateral direction only, and 
to have no clearance. The rear bearing is mounted on a 
spring and has clearance, and as a result the shaft rests 
below the horizontal when not rotating. The shaft is 
assumed for simplicity, to be rigid.

When the shaft operates at a speed just below the 
whirling speed, the centre of the disc, C, rotates in a 
circle of radius r. The centre of mass, G, lies outside C 
by an amount a, and if the damping is zero, the line CG is 
radial. If the disc is assumed to be well balanced so 
that (a + r)u^ does not approach the value 32 ft/sec^, 
then the shaft will always rest at the bottom of the 
bearing clearance, and the spring bearing will rotate in a 
circle of radius somewhat less than r,

How a whirling shaft is a vibrating system subjected 
to inertial excitation and therefore the variation of radius 
r with w will be as shown in Pig. 8.10(b). V/hen the



rotational speed exceeds the whirling speed, the radius of 
the path, r, will approach the value of the eccentricity, 
a, and will lag the direction of the unbalance by nearly 
180°, ■

Therefore at speeds much larger than the whirling 
speed the shaft configuration will be as shown in 
Pig,8,10(c), The centre of mass, G , tends to approach 
the static centre line of the shaft, while the shaft centre, 
C, rotates outside it in a path with a radius approaching 
the value of the eccentricity, a. The shaft, within the 
bearing, must therefore traverse a circle with a radius 
somewhat less than the eccentricity, a.

How the eccentricity was shown to be rather less 
than 0.0003 in (section 8 ,4). The radial clearance of 
"the bearing on the other hand is probably less than 
0.00025 iu —  it would be very difficult to determine this 
exactly. It, therefore, seems likely that under such 
conditions the shaft no longer rests at the bottom of the 
bearing but either rolls continuously around the bearing, 
or only around part of the bearing, as illustrated in
Pigs.8.11(a) and (b). In either case the support of the
shaft will no longer have a linear characteristic and 
probably resembles that shown in Pig,8,11(c),

8,10 Duffing's Equation
A type of non-linear restoring force which has a 

characteristic, not unlike the supposed shaft support, 
was used by Duffing to derive some important properties 
of non-linear vibrating systems (Ref.20), The equation 
he solved was of the form

x + x + e x ^  = P cos cot
where the term e x^ describes the non-linear property of
the restoring force (Pig.8.12(a)).



The solution of this equation produces the response 
curve shown in Pig.8 .12(b) for the case when s > 0 , \7hen 
damping is included in the equation the response is modified, 
as shown in Pig.8 .12(c), and the amplitude will jump from 
A to B when the frequency is increasing, and from G to D 
when it is decreasing. This behaviour was suggested by the 
early tests on the L.P. rotor (section 5.5).

A solution of Buffing's equation can be shown to exist
1in which the response is at a frequency which is of the 

excitation, i. e. at provided that the excitation is 
greater than a certain value, which is more than 3 times the 
linear/natural frequency, depending on the magnitude of e.
The amplitude of this subharmonic vibration, in the absence
of damping, is indicated in Pig. 8 .13(a). V/hen damping is
included the response is changed to that indicated in
Pig.8.13(b),(Ref,25), which suggests that if the frequency ratic
is gradually increased beyond 3 then subharmonic vibration
may suddenly occur with considerable amplitude.

8 .11 Analog Computer Studies

Although Buffing's equation showed that a subharmonic 
of order 3 might be produced by a particular non-linear j
spring characteristic, it did not prove that such behaviour 
would occur with the spring characteristic which had been '
suggested for the H.P. bearing (Pig,8 .11(c)). A brief 
analog computer study was therefore carried out to 
investigate possible subharmonic behaviour of a system 
governed by the equation:—

x + dx + f(x) = P cos wt
where f(x) represents the supposed bearing characteristic 
shown in Pig,8 .11(c).

A symbolic representation of the circuit which was 
used on an analog computer to represent this equation is 
shown in Pig.8 .14(a). The element marked 'N.L.' is the
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diode circuit shown in Pig. 8,14(b). V/hen the diodes 
were not biased, so that the characteristic of Pig,8 .14(c) 
had no backlash, the circuit was found to resonate at
1.63 c/s to represent the forced solution of the linear 
equation:—

X  + 0.02 X  + (12 X 2 7 ) X  = P cos wt
3.1

When the diodes were biased to produce the non-linear 
characteristic represented by Pig.8.14(c), sustained sub- 
harmonic resonance of order 3 could be obtained on occasions 
provided the amplitude of the excitation E was greater than 
14 volt, and the frequency greater than 4.4 c/s, and a 
certain initial displacement or velocity was imposed.

The computer study thus showed that the supposed nonr- 
linearity of the bearing, due to clearance, was likely to 
promote the existence.of a subharmonic of order 3 but it 
did not seem that further computer studies would be 
profitable.

After the computer study had been carried out some 
investigations of the behaviour of non-linear systems was 
discovered in a book by Hayashi (Ref, 26). He investigated 
experimentally the behaviour of an electric circuit 
representing Buffing’s equation in which the non-linear 
element was simulated by a specially constructed saturable- 
core inductor. His work showed that subharmonic oscillations 
could only be sustained under certain conditions, and even if 
these were obtained, certain ranges, of initial conditions, 
including the correct phase of the commencement of the 
excitation, were necessary in order to initiate the 
oscillation.

Evidence of subharmonic oscillation of a shaft carried 
in ball bearings was reported in 1957 by Yamamoto (Ref. 21).
He showed that the moment restraining the angular motion of 
a shaft carried in single— row ball bearings (without self—
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aligning housings) increased with angular deflection in 
a non-linear fashion,. His tests showed that a sub- 
harmonic of order 2 was readily produced but higher order 
subharmonics did occur to a small degree.



Table 8.1

VIBRATION

TABLE 8.1 

SURVEY OP THE L.P. SHAPT
(H.P. Shaft not rotating)

L.P. Shaft L. 
^Speed
—  rpm

P. Disc Orbit 
Radius
—  thou.

Remarks

692 3 i  m i r l  •

981 3 ^  Reverse Whirl

1049 6 ^  Forward Whirl

1448 1 H.P. Shaft Lateral

1896 3.5 Synchronous
Reverse Whirl

2166 15 Synchronous
Forward Whirl

4959 2 Higher mode of 
Synchronous 
Reverse Whirl

5800 3 Rough running



Table 8,2

' TABLE 8.2

VIBRATION SURVEY OP THE H.P. SHAPT
(L.P. Shaft not rotating)

H.P. Shaft H. 
^.Speed

P. Disc Orbit 
Radius Remarks

—  rpm —  thou.

'353 3.5 r  Whirl 4

469 3 ^  Whirl

698 2 ^  Reverse Whirl

730 5 i  Forward Whirl

. 1364 3 Synchronous
Reverse Whirl

1483 21 Synchronous
Forward Whirl

2029 2 L.P, Shaft Lateral

3550 2 Bearing excitation

4800 10 Subharmonic
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TABLE 8.1

OBSERVATIONS AT THE EOEVfARB WHIKLIWG 

CRITICAL SPEEDS

L.P. Shaft
(H.P. Shaft not rotating)

Speed Radius Phase Angle
—  rpm —  thou.

2163 15 45°

2166 15 90°

2168 13 135°

H.P. Shaft
(L.P. Shaft not rotating)

Speed Radius Phase Angle
—  rpm —  thou.

1479 19 45°

1483 21 90°

1490 19 135°
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Pig.8.7(a) Precession of ball assembly in a
ball bearing.



1600
3560 rpm

—  rpm

Computer
prediction

1200
20002000 40000

O  —  rpm
Pig,8,7(b) Bearing excitation of H.P. shaft

2500

—  rpm
5620
rpm

2000

Computer
prediction

1600-4000 0 4000 8000
O  —  rpm

Pig.8.7(c) Bearing excitation of L.P, shaft



Radius of disc
15 -, path —  thou

O  A  finely balanced
X Q  unbalanced

10.

A  X

4760 49004800 5000 5060
H.P. shaft speed —  rpm

Results of four traverses through region 
of subharmonic vibration of H,P. rotor.

Radius of disc
15 path —  thou

speed rising 
speed falling

10-

O O

A  O  A

4760 4800 4900 50605000
Pig.8.9 Results of traverse up and down the range 

of subharmonic vibration of H.P. rotor.



Bearingclearance

\ — -

r

W

Bearingclearance

Fi&iWS Idealised H,P. shaft with sprang 
rear bearing with clearance.



Pi&.8,11(a) Shaft maintaining contact with 
•hearing throughout rotation.

glg.8,11(b) Shaft maintaining contact with hearing throughout only part of rotation.
Vertical
hearing
load

Displacement

Fis. 8.11(0). Load displacement characteristic of 
sprung hearing with clearance.



Fig.8,12

Force

Displacement

Force/displacement characteristic x +

Amplitude

1 w

Response of system to harmonic excitation 
with no damping.

Amplitude

Fig.8.12(c) Response to harmonic excitation with damping
present, showing * jump phenomena*.



Amplitude

31 w

?ig,8,13(a) V 3  Subharmonic response without
damping

Amplitude

Unstable

31 w

Pig.8,13(b) V 3 Subharmonic with damping



Fig.8.14

10 10

Q o .12
0,02

1 1
1 h.L.10

E sin wt
Ei&, 8,14-( a) Analog computer circuit

+100V

-KF

-100V
Eiæ, 8,14(b) Circuit of norv-linear element

Fi^.8.14(c) Kon-linear characteristic 
represented by non-linear 
element



9.0

CHAPTER 9

VARIATION OP THE FREQUENCIES OP THE RIG 

WITH SPEED AM) SEHSE OE THE ROTATION OP THE SHAPTS

SUMMARY

The rig is now regarded as having several frequencies, 
some of which are characterised by relatively large displace­
ment of one shaft, and each may be excited by the unbalance 
of either shaft. The variation of a particular frequency 
_with the shaft speeds can be conveniently represented by a 
3—dimensional plot in which the frequency is always positive 
while the shaft speeds may be positive or negative.

The predicted variation of two lowest frequencies 
(formerly called H.P. and L.P, whirling speeds) with shaft 
speeds up to 4000 rpm are presented together with experimental 
confirmation of the results.

The variation of these two frequencies, and the 
frequencies of three higher modes of vibration, with shaft 
speeds up to 12000 rpm are described. Some limited 
experimental results show that the computer predictions of 
the higher frequencies are reasonable.
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CHAPTER 9

VARIATION OP THE PREQUENCIES OP THE RIG- 

WITH SPEED A m  SENSE OE THE ROTATION OE THE SHAFTS

9.1 Introduction

The work described in preceding chapters showed that 
a reasonably faithful simulation of the rig had been 
achieved on the computer. An examination of the influence 
of the rotation of the rotors (both sense and magnitude) on 
the frequencies and modes of vibration of the complete rig 
_could now be made.

Since the vibrational behaviour of the rig depends 
on the magnitude and sense of both shaft rotations, it is 
no longer correct to use the terms 'forward*, or 'reverse 
whirling speeds'. Instead the rig will be regarded as 
having several modes of vibration at frequencies, Xq,
&2, ..... , each affected to some degree by the speeds
of the shafts. Some may be Characterised by relatively 
large motion of one of the rotors.

A particular frequency, X, will be a function of the 
speeds of the H.P, and P.P. shafts, which, for brevity, will 
now be called simply H and L, respectively. The variation 
of X with H and L may be represented as a surface in a 
3-dimensional diagram, as shown in Eig.9.l(a), In this 
representation the value of X is always considered to be 
positive. If a shaft speed, say H, is positive then the 
rig is considered to whirl in the same sense as the H.P. 
shaft (and to whirl opposite to the H.P. shaft if H is 
negative).

In Eig,9.l(a) a plane is shown, passing through the 
H-axis, which contains all points at which X = L, This
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plane will intersect the frequency surface, and the line 
of intersection will therefore appear as line AB in the 
plan view shown in Eig.9.l(h). When the shaft speed/ 
reaches the value corresponding to a point on this line, 
then the rig will be excited, at the frequency X, by 
unbalance of the L.P, rotor.

By similar reasoning another line exists on the 
frequency surface, on which X = H, shown as CD in 
Pig.9.1(b). If the shaft speeds correspond to a point
on this line, excitation at frequency X (= H) will be 
caused by unbalance of the H.P. rotor. (The particular 
rotor speed combination existing at the intersection of AB 
and CD, (L = H = X ) , was used to check the forward whirling 
speed prediction in earlier work). The ratio, ^/P, of the 
-rotor speeds obtained in twin spool jet engines varies 
throughout the speed range (see Chapter 1). The working 
line of such àn engine may therefore resemble line P Q R S 
in Pig.9.1(b). Vibration.will therefore be induced by 
unbalance of the H.P. rotor when the shaft speeds reach the 
value corresponding to that at point Q, and similarly by 
unbalance of the P.P. rotor when the speeds reach the value 
obtained at point R,

The question now arises whether the other quadrants 
of Pig.9.1(b) are significant. In the third quadrant,
(L and H both negative), similar argument will produce two 
shaft speed combinations at which the rig or engine will 
vibrate but precess in an opposite sense to that of the 
shafts (corresponding to the reverse whirl of a single 
shaft).

If the shafts rotate in opposite directions, as 
perhaps in a vertical take-off engine, then unbalance of 
the P.P. rotor will cause resonance when the shaft speeds 
correspond to a point on the line AB in the quadrant where 
P is positive, and H is negative. Similarly, excitation 
due to unbalance of the H.P. rotor will cause resonance
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when the speeds correspond to a point on the line CD, in 
the quadrant where H is positive and L is negative.

The variation of the lowest two frequencies, and 
Xg, was explored over a range of rotor speeds which could 
be obtained on the rig. The investigation was then 
extended to higher speeds, using the computer. Three 
higher modes of vibration, at frequencies, X^, X^ and X^, 
were also explored on the computer and attempts were made 
to verify these on the rig.

9.2 Variation of X^ at low shaft speeds

Although both shafts could be driven at speeds up to 
6000 rpm, it seemed advisable to restrict the experimental 
_study of the variation of X^ and X^ to shaft speeds below 
4000 rpm to avoid the ranges in which severe vibration 
occurred apparently due to non-linear effects.

The computer model of the rig was used to predict the 
variation of X^ for values of H and L from —  4OOO to + 4OOO 
rpm. The results were found to be illustrated concisely by 
plotting X^ versus H, as shown in Pig,9.2, The value of 
X^ varied considerably with H, but was independent of L until 
the latter reached large negative values.

The results were checked on the rig by fixing the H,P, 
shaft speed, H, and running the L, P. shaft, in either sense, 
at a speed at which large amplitude of the discs was observed. 
(The conditions covered are indicated in the small sketch of 
the plan view of the X, H, L, diagram). Although the 
computer model of the rig had been shown to underestimate 
this frequency by about 4°/o, the results show that the 
computer predicts faithfully the variation of X^ with H.P, 
rotor speed. The variation of X^ with L was predicted to 
be small. This was confirmed by setting the L.P. speed of 
the rig and noting the H.P. speed at which large amplitudes 
of the discs were observed. (The conditions explored are
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indicated in the small sketch in Pig,9.3). The 
experimental results, shown in Pig,9.3, confirm the 
negligible variation of with L which had been predicted.

The predicted mode of vibration of the rig when 
H = L = 0 is shown in Pig.9.4. The modes occurring at 
other combinations of rotor speeds were similar, and are 
summarised by the plot of shown in Pig. 9. 5. (Â ^
now denotes amplitude of vibration of the H.P, disc, while 
Aĵ  denotes the amplitude of the L.P, disc). The amplitude 
of the H.P, disc is large compared with that of the L.P, 
disc. The ratio of the amplitudes appears to be mainly
affected by the L.P, shaft speed,

Du'ring the tests conducted to verify the variation
of with shaft speeds, the amplitudes of the discs were
recorded. The results are illustrated in Pigs,9.6 and
9,7. The unbalance of the H.P, rotor was small since it
exhibited an amplitude of only 0,002 in when H = X^ and 
L = 0 (i.e. the H.P, 'forward whirling speed'). The L.P, 
rotor had a greater degree of unbalance achieving an
amplitude of 0.014 in when L = Xg and H = 0 (i.e. at the
L.P. 'forward whirling speed'). The tests illustrated in 
Pig,9.6 were therefore the result of relatively strong 
excitation by the L.P, rotor and do resemble the predicted 
fall of with increasing H, But the tests (with •
excitation by the H.P. disc unbalance) illustrated in 
Pig.9.7» do not show the more marked fall of Ay/A^ which 
the computer model had predicted. However, the observed 
amplitude of the L.P, rotor, A^, in all these tests was 
seldom greater than 0,001 in. Amplitudes less than this 
value could not be recorded with accuracy since the 
variation of circularity of the disc periphery was of 
this order.



9. 3 Variation, of X2 at low shaft speeds

The computer model was used to predict the variation 
of \2 for values of H and I from —  4OOO to + 4OOO rpm.
The magnitude of X 2 varied little with H and therefore the 
results could he expressed very simply as a plot of X2 
versus L, as shown in Pig.9.8,

The tests conducted to verify the predicted variation 
of \2 with Ii, produced the results shown in Pig,9,8.
Similar tests to confirm the predicted independence of \2 
with H are shown in Pig.9.9* . The results confirm the
accuracy of the computer model.

The predicted mode of vibration at frequency X2 , 
when H = L = 0, is shown in Pig.9.10, The modes at other 
combinations of L and H were similar and are summarised by 
the plot of Aj/A|j versus L and H shown in Pig. 9.11.

The amplitudes of the discs during the tests conducted 
to determine the variation of X 2 with L produced the values 
of Aq/Ajj plotted in Pig. 9.12. The ratio A^/A^ rises with 
L at a rate similar to that predicted by the computer 
model.

The ratio of the disc amplitudes recorded when the 
variation of Xg with H was examined was found to be almost 
constant as shown in Pig. 9.13.

9#4 Extended study of vibration at frequency Xj

An examination of the variation of Xl when the shaft 
speeds were varied up to 12000 rpm was conducted on the 
computer. The results are shown plotted in Pig.9.14(a) 
together with an isometric view of the frequency surface,
Fig.9 .14(b).

The value of Xl continues to be influenced by the 
H.P. shaft speed, H, and under most conditions insensitive 
to the L.P. rotor speed, L, But when the shafts rotate
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in opposite directions the frequency of whirl in the same 
sense as the rotation of the H.P, shaft, (Xq = + H ) , falls 
rapidly as the L.P. shaft speed increases.

Examination of the predicted modes of vibration over 
the ranges of L and H from —  12000 to + 12000 rpm appeared 
to show rather perplexing changes. The computer model 
had been designed to produce the modes in the form of a 
list of displacements of the elements of the rig when the 
front bearing had unit positive displacement. This 
unusual presentation of the results had been adopted in 
the early development of the computer model to assist in 
the detection of programming errors.

The computed modes (some 49» at speed intervals of 
4000 rpm) were plotted as small sketches in the H, L plane 
as shown in Pig.9.15. The apparently anomalous behaviour 
of the modes was resolved by normalising the modes by 
dividing each displacement by the largest, which in most 
cases was the deflection of the H.P. disc. A more concise 
statement of the change in the modes was found to result if 
the ratio of the H.P. and L.P. disc displacements, Ajj and 
Aĵ , was plotted versus the shaft speeds, as in Pig.9,16.
The main conclusions which may be drawn from this plot are 
as follows —  when both shafts rotate in the same direction 
the rig may be induced to whirl in the same sense by the 
unbalance of either shaft when its speed reaches Xl 
(conditions + L + H in Pig.9.16(a)). The mode of 
vibration will then be characterised by relatively large 
displacement of the H.P. rotor and resemble the mode of 
vibration when L = 0, H = 0, shown again in Pig.9.17(a).

If the shafts rotate in opposite directions the rig 
may be induced to whirl in the same sense as the rotation 
of the L.P. shaft by its unbalance (conditions, + L, —  H 
in Pig.9.16(a)). The character of the mode will be still 
similar to that for L = 0, H = 0.
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If the shafts still rotate in opposite directions 
the rig may also he induced to whirl, at a different value 
of X % , in the same direction as the H.P. shaft by its 
unbalance (conditions —  1, + H, in Fig.9.16(b)). But now, 
rather surprisingly the mode of vibration changes markedly 
to one characterised' by relatively large displacement of 
the L.P. shaft —  a typical mode, for L = — 12000, H = +12000 
being shown in Fig.9.17(b).

9,5 Extended Study of Vibration at \2

An examination on the computer of the variation of 
\2 with shaft speeds up to 12000 rpm produced the results 
plotted in Fig.9.18(a), also illustrated in an isometric 
view of the frequency surface in Fig,9,18(b).

The value of Xg continues to be influenced to a large 
degree by the rotation of the L.P. shaft. But when the 
shafts rotate in opposite directions Xg is influenced 
considerably by the speed of the H.P. shaft.

When the predicted modes of vibration were compared 
it was found that the change in character of the modes 
could be conveniently expressed in the same way as had been 
done with the lower frequency Xq.

When the shafts rotate in the same direction, the rig 
may be induced to whirl in the same direction by the 
unbalance of either shaft when the speed reaches the 
appropriate value of X2. Fig,9.19(a) shows that under 
these conditions (both L and H positve) the mode will be 
characterised by relatively large displacement of the L.P, 
shaft and generally similar to the mode at L = H %= 0 
repeated in Fig. 9.20(a).

If the shafts rotate in opposite directions, 
excitation by unbalance of the L.P. shaft will cause whirl 
in which the displacement of the L.P. rotor may become 
relatively larger (conditions, + L, —  H, in Fig.9.19(a)).
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But, when the shafts still rotate in opposite 
directions, and the speed of the H.P, shaft approaches 
the appropriate value of X^, its unbalance will cause the
rig to whirl in the same sense as the H.P. shaft.
Pig,9.19(b) then shows that the mode of vibration will 
change markedly to one characterised by relatively large 
displacement of the H.P, rotor and resemble that shov/n in
Pig.9.20(b) which occurs when H = 12000, L = — 12000,

9.6 Vibration at Frequency X^

The predicted variation of X^, the frequency of the 
next higher mode of vibration, is shown plotted versus H 
and L in Fig.9.21(a). An isometric view of the X^ surface 
is shown in Fig,9.21(b).

When the shafts rotate in the same direction the 
variation of frequency of whirl in the same sense is not 
affected greatly by the speed of the shafts (conditions 
L +, H +), But the frequency of whirl in the opposite
sense (conditions L — , H — ) falls very rapidly with
increasing H.P. shaft speed.

When the shafts rotate in opposite directions the 
frequency at which unbalance of the L.P. shaft would excite 
whirl (conditions L +, H — ) falls rapidly with H. On the
other hand the frequency at which unbalance of the H.P.
shaft would cause excitation (conditions L — , H +) falls 
with increasing L.

An attempt was made to check the predictions by 
shaking the rig with an electromagnetic vibrator mounted 
above the front plate of the casing, V/hen both shafts 
were stationary resonance was observed at a frequency of 
5460 o/min, which agreed well with the computed value of 
5429 c/min. The observed mode of vibration, indicated 
in Fig.9.22, showed striking agreement with the predicted 
mode.
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V/hen the L.P, shaft was rotating at 4000 rpm, 
resonance v/as produced at frequencies of 5280 and 5860 
c/min. These frequencies appeared to correspond with the 
predicted values of 5066 (L = — , H = 0) and 5580 
(L = +X^» H = 0) c/min. Extrapolation of the experimental 
frequencies suggested that the rig 'would he expected to 
vibrate synchronously in a reverse whirl sense when the 
L.P. shaft speed reached a value of 5240 rpm. In the 
survey of the whirling behaviour of the L.P, shaft 
(described in section 8,2) it was noted that such whirling 
had been observed at 4959 rpm.

When the rig v/as excited by the vibrator with the 
H.P. shaft rotating at 4OOO rpm (while the L.P. shaft was 
stationary), resonance was observed at 5O5O and 5720 c/min. 
-These frequencies appeared to correspond to the predicted 
values of 4569 and 5491 c/min. Extrapolation of the 
experimental frequencies suggested that the H.P. shaft 
should have induced synchronous reverse whirl of the rig 
when the H.P. speed reached 4950 rpm. However, this 
behaviour seemed to have been hidden within the non-linear 
region of vibration of H.P. shaft (section 8.3).

The predicted mode of vibration of the rig when both 
shafts were stationary is shown in Fig.9.22. Both discs 
show relatively little displacement compared with that of 
the front bearing. The agreement with the experimental 
mode can be seen to be satisfactory.

An examination of the modes of vibration predicted 
at various combinations of shaft speeds produced the 
variations of and Ag with L and H shown in Fig, 9. 23,
(Aj  ̂ and Ag now being referred to unit positive displacement 
of the front bearing).

When the shafts rotated in the sane direction, and 
whirl of the rig was in the same sense, (conditions L +,
H +), the mode of vibration was very similar to that 
shown in Fig.9.22.
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But when the rig whirled in an opposite direction 
to the H.P. shaft (X^ = —  H, with L + o r — ) the H.P. shaft 
displacement was predicted to be relatively large compared 
with other parts of the rig. The mode for the condition 
L = + 12000, H = —  12000 rpm shown in Pig.9*24 was typical 
of the modes under these conditions'.

When the shafts rotate in opposite directions, and 
the rig whirls in the same sense as the H.P. shaft 
(conditions H +, I — ) the mode changed to one which was 
characterised by relatively large displacement of the L.P. 
rear bearing, associated with considerable movement of the 
L.P. disc. The mode at the conditions L = —  12000,
H = + 12000 rpm, shown in Pig. 9. 25, was typical.

9.7 Vibration at Frequency Xg

The predicted variation of the frequency X^, of the 
next highest mode of vibration, is shown plotted versus 
L and H in Fig.9.26(a) and isometrically in Fig.9.26(b).

The results show that when the shafts rotate in 
opposite directions the rig may vibrate in the same sense 
as the L.P. shaft, or in the same sense as the H.P. shaft, 
at frequencies which are not in general far from the 
frequency of 6380 c/min exhibited when the shafts are \ 
stationary.

But when the shafts rotate in the same direction the 
rig may vibrate at two widely separated frequencies, of the 
order of 8000 and 500C c/min in the same or opposite sense 
respectively.

When the rig, with both shafts stationary, was shaken 
by a vibrator connected to the front plate, it was found to 
resonate at 6600 c/min, a value which compared well with 
the predicted value of 6380 c/min. But when either shaft 
was driven at a speed of 4000 rpm, resonance was not found 
to occur at any frequency which could be related to the 
predicted values.
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The predicted mode of vibration at when both 
shafts are stationary, is shown in Fig. 9.27(a). The 
agreement of the measurements made during the resonance 
test is very good. Considerable bending of the shafts is 
evident although the disc movement is relatively small.

The mode of vibration when both shafts rotate in the 
same direction and the rig whirls in the same sense, is 
typified by that predicted for L = + 12000, H = + 12000 
rpm, shown in Fig.9.27(b). The bending of the casing is 
now more apparent.

The predicted mode of vibration when the rig vibrates 
at X^ with the shafts rotating in opposite directions was 
in general similar to that shown in Fig.9.27(c) where both 
shafts are rotating at 12000 rpm. Once again there is 
"considerable bending of both shafts with only minor movement 
of the discs.

When the shafts rotate in the same direction the rig 
may whirl in an opposite sense. The mode predicted for 
these conditions was similar to that shown in Fig,9*27(c) 
but the largest displacement was at the L.P. rear bearing.

9.8 Vibration at Frequency X^

The predicted variation of the frequency X^, of the 
highest mode of vibration which was examined, is shown 
graphically in Fig.9.28(a) and isometrically in Fig.9, 28(b).

The results show that the frequency at which the rig 
will whirl is influenced mainly by the speed of the shaft 
which is rotating in the same sense, particularly if the 
shafts are contra-rotating. The frequency X^ is nearly 
always separated from the lower frequency X^ by at least 
1000 c/min but when the shafts rotate in the same sense at
almost the same speed the separation of X^ and X^ falls to
only about 500 c/min (e.g. at L = H = + 12000, X^ = 8964
while X^ = 9434),
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When the rig was excited by the vibrator connected 
to the front plate, it was found to resonate at a frequency 
of 7580 o/min which compared well with the predicted value 
of 7400 c/min. The measured mode showed striking agreement 
with the predicted mode plotted in Pig,9.29(a),

When the rig was excited with the H.P. shaft rotating 
at 4000 rpm, resonance was recorded at 7O4O and 85OO c/min, 
which appeared to correspond with the predicted values of 
7279 and 8333 c/min for the conditions H = —  and + 4OOO 
rpm, L = 0.

When the L.P. shaft was rotating at 4OOO rpm, while 
the H.P. shaft was stationary, resonance was observed at 
7450 and'7900 rpm. These frequencies appeared to correspond 
to the predicted values of 6895 and 8274 c/min for the 
"conditions H = 0 ,  L = —  o r +  4OOO rpm. Thus the observed 
variation of with L appeared to be less than the 
predicted variation, as had also been found to be the case 
when the rig vibrated in the X^ mode (section 9.6).

The predicted mode of vibration when both shafts are 
stationary is shown in Pig,9.29(a). Considerable bending 
of both shafts was evident, with the front bearing showing 
the largest displacement. The discs, however, showed only 
minor displacement.

Examination of the modes of vibration at other 
combinations of shaft speeds showed that when the rig 
whirled in an opposite sense to the H.P, shaft the modes 
were remarkably similar to the above (at L = H = 0), until 
the L.P. shaft reached very high speeds in the same sense 
as the whirl.

When the L.P, shaft rotated at speeds greater than 
4000 rpm, and the whirl was in the same sense, the 
character of the mode changed slightly to one in which the 
bending of the L.P. shaft was the major feature, as 
typified by the mode at L = 12000, H = 0, shown in 
Fig,9 .29(b),
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When the rig whirled in the same sense as the 
H.P, shaft the mode of vibration changed to one in which 
there was relatively small movement of the L.P. and H.P. 
shafts but considerable bending of the casing centred about 
the front plate. A typical mode, for the condition 
H = + 12000, L = 0, is shown in Pig.9.29(c),

9,9 Conclusions

When the single rotor system treated in Section 1.3 
is regarded in the manner adopted in this chapter, it has 
two natural frequencies which rise as the rotor speed 
increases from large negative values, through zero to large 
positive values. The investigation of a two rotor system 
shows that it displays a similar trend —  each frequency 
rises to a greater or lesser extent with each rotor speed, 
as shown in Pigs. 9.14, 9.18, 9.21, 9.26 and 9.28.

A feature which is not obvious in these diagrams is 
the close approach of some frequencies at certain com­
binations of shaft speeds. The most notable example of 
this condition was found .to occur when the shafts were 
rotating in opposite directions. Since increases most 
rapidly with H, while Xg increases markedly with L, the two 
frequencies approach in the region v/here H is positive while 
L is negative, as suggested by the isometric views shown in 
Pigs. 9.14(b) and 9.18(b). The condition is shown more 
clearly in an alternative presentation of the computer 
predictions shown in Pig. 9.30. The frequencies X^ and 
Xg, which were computed at intervals of 4OOO rpm (in H and 
L) are placed on a grid map of the HL plane. The results 
shown in Pig, 9.30 show clearly that the two frequencies 
Xq and Xg approach to within about 100 rpm at certain 
combinations of shaft speeds (e.g. at H = 8000,
L = —  4000).
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Formerly it has been usual to regard whirling as 
the occurrence of severe vibration when the speed coincides 
with the natural frequency of the rotor (fractional and 
reverse whirls were noticed long ago but did not appear to 
result in serious vibration,) However, in a two rotor 
system either rotor may be induced to whirl when the speed 
of the other rotor coincides with its natural frequency.
The conditions under which excitation of the present system 
would occur due to unbalance of each rotor is shown in 
Pig. 9*31 (the computed version of the diagram sketched in 
Pig. 9 .1 (b)). The full lines are loci of points at which 
ÏÏ coincides with Xq, Xg, X^, X^ and X^, and as a result 
vibration would be induced by unbalance of the H.P, rotor. 
Similarly, the dashed lines show the loci of points at v/hich 
unbalance of the L.P. rotor would excite vibration.

A  hypothetical jet engine shaft speed characteristic 
has been superimposed "on Pig. 9.31 as chain dotted lines.
The characteristic drawn in the top right quadrant is for 
an engine in which the shafts rotate in the same direction. 
At each intersection of the characteristic with the 
frequency loci vibration will be induced by the appropriate 
rotor. At point Q the system will be excited by the 
unbalance of the H.P, rotor, rotating at a speed equal to 
Xg, while at R excitation is caused by the L.P, rotor 
rotating at a speed equal to the current value of Xg.
Thus each mode of vibration is encountered twice in a two 
rotor system. If the engine characteristic had been a 
little higher then points Q and R would coincide and it 
would be possible for the unbalance of each rotor to excite 
whirl of the system at frequency X^.

The same engine'characteristic has also been drawn 
in the top left and lower right quadrants to indicate the 
critical points for a contra-rotating shaft system. Since 
each frequency fabls with the speed of the shaft which
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rotates in opposite sense to the whirl, the characteristic 
now crosses the lines. Thus it would appear that more 
critical points of vibration are likely to be encountered 
in the speed range of a contra-rotating shaft engine.

The modes of vibration which .were predicted by the 
computer, and confirmed to an extent by experimental 
observations, showed that a two rotor system was likely to 
possess some unusual changes in modes of vibration. 
Originally the frequencies and Xg were regarded as H.P. 
and L.P. rotor frequencies .since the modes showed relatively 
large displacements of the respective rotors.

The lowest frequency of vibration, Xq, produced modes 
of vibration which showed large displacement of the H.P. 
rotor under most conditions. But when the shafts rotated 
in opposite directions relatively large displacement of the 
L.P. rotor could be produced by excitation due to the H.P, 
rotor (conditions H + , L —  ).

Vibration at frequency X^ usually showed relatively 
large movement of the L.P. rotor, but again when the shafts 
rotated in opposite directions and vibration was induced by 
the H.P, rotor (conditions H + , L —  ) the mode changed to 
one displaying large movement of the H.P. rotor.

The mode of vibration at frequency Xq showed 
considerable bending of the shafts with little movement of 
the .discs. Again it seemed that changes in modal shape 
were most marked when the shafts rotated in opposite 
directions.

Vibration at frequency X^ was also characterised by 
modes in which there was considerable bending of the 
shafts. But now the shafts were bent in opposite 
directions which, in practice, might result in shaft 
rubbing.
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The mode of vibration at showed no great 
change in character with rotor speeds but was notable 
in showing more marked distortion of the casing.
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CHAPTER 10

COHGLÏÏSIOHS AND SUGGESTIONS 
FOR FURTHER WORE

SUMÆARY

The transfer matrix method has proved to be ideally 
suited to the problem of predicting the natural frequencies 
of multi— shaft systems.

The difficulty experienced in producing a faithful 
computer simulation of .the experimental rig suggests that 
it is not possible to predict the natural frequencies of jet 
engine systems with the accuracy demanded in practice.

The possibility that severe vibration of a sub-harmonic 
nature, similar to that observed on the rig, may well occur 
in a jet engine system suggests that this phenomenon demands 
urgent attention by research workers in the aero engine 
industry.

It would seem that if the postulated cause of the 
excitation of reverse whirl is correct it may well be signi­
ficant in shaft systems which use relatively large rolling 
element bearings.

The examination of the variation of natural frequencies 
with the speeds of the shafts has shown that appreciable 
variations do occur, particularly in systems which contain 
contra-rotating shafts. The studies have also shown that 
the character of a particular mode can change drastically 
at certain combinations of shaft speeds. ^

It was not practicable to include an examination of the 
effect of rotor damping, particularly that caused by friction 
at the splines connecting sections of a shaft, in this 
investigation. An examination of the implications of this 
effect is required.
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CHAPTER 10

CONCLUSIONS AND SUGGESTIONS 
FOR FURTHER WORE

10.1 Computer Analysis

It is the writer's opinion that in many computer 
studies of engineering problems much effort is devoted to 
mathematical or programming elegance while avoiding the 
real problem of ascertaining the accuracy of the numerical 
representation of the physical properties of the system —  
perhaps because it is often tedious or difficult to obtain 
this information experimentally. In this investigation 
-the experimental results —  the natural frequencies of the 
rig —  were not subject to variations in experimental 
technique and therefore discrepancies could only be blamed 
legitimately on the accuracy of the numerical representation 
of the rig.

The transfer matrix method of determining the natural 
frequencies was adopted because it appeared to be the most 
straightforward and therefore easiest to check for pro­
gramming errors. The properties of each section were 
contained within a simple 4 % 4 matrix, usually formulated 
by a standard procedure, thus reducing possible programming 
errors.

The method was ideally suited to the assembly of 
proved sub—programmes, representing each component, into a 
programme representing the whole rig with only little 
modification to the scheme of the calculation.

The adaptation of the transfer matrix method to 
produce the deflection of the casing under a static lateral 
load (which revealed the omission of the flexibility of the 
aluminium plates) was simple. (Alternative methods of
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frequency calculation, outlined in Chapter 3, could, of 
course, have been modified to produce the same result.)
This simple technique is considered to be a valuable method 
of checking the numerical representation of a complex system 
which is being examined for natural frequencies.

When the mode of vibration was calculated it was a 
simple matter to produce, in addition, a tabulation of the 
slope, bending moment and shear force occurring at each 
section. These results, particularly the shear forces at 
the connections of the components, were invaluable in the 
detection of errors in the formulation of the calculation.

The transfer matrix method does suffer from numerical 
difficulties. At times these were thought to be serious 
and the modified matrix method was adopted with success. 
Other methods of frequency analysis also suffer from 
numerical difficulties. In the iteration technique used 
in the eigen-value approach special rinsing techniques 
often have to be employed to remove all traces of a known 
mode before the iteration will converge on the next mode.

In the writer's opinion the transfer matrix method is 
the best method of predicting the natural frequencies of 
multi-shaft systems. It has an appealing lack of mathe­
matical abstraction. The assembly of the properties of
each section is relatively simple thus reducing the 
likelihood of programming errors. Finally, the method can 
be adapted readily to provide several useful checks on the 
validity of the mathematical representation of a complex 
engineering structure such as a jet engine.

10.2 Accuracy of Prediction

Part of this investigation was devoted to attempting 
to assess the possible accuracy of prediction of the 
whirling speeds of jet engines. The model was a relatively 
simple structure compared with that of a jet engine and
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despite the effort devoted to improving the computer 
simulation of the model some of the measurable whirling 
speeds were as much as 4°/o higher than predicted.

It would therefore seem that, despite the use of 
powerful computers, the whirling speeds of jet engines 
cannot be predicted very accurately. The main difficulty 
lies in the prediction of the stiffness of the structure 
in the design stage. Admittedly some help is gained by 
rig testing mock-ups of the major components —  but the 
results of these tests are of limited value unless they 
are supplemented by tests designed to reveal the stiff­
nesses of the connections between the components.

If whirling speeds cannot be predicted accurately 
then there is always the possibility that the. actual speeds 
will lie in the most unfavourable part of the engine speed 
range. Therefore more effort should be devoted to design­
ing mechanisms which can be utilised to shift the whirling 
speeds to less critical parts of the speed range —  and new 
designs should, incorporate such features at the outset in 
case they are found to be needed.

The conclusion that whirling speed calculations are 
inevitably inaccurate does not mean that they should not be 
attempted. Instead they should be regarded as a guide, 
particularly as regards the variation of whirling speeds 
with shaft speed due to gyroscopic effects. If an engine 
is expected, from the computer studies, to exhibit whirling 
within the speed range then it would be wise to perform a 
lateral shaking test on the prototype before its first run. 
The results of such a test, when compared with the computer 
studies, ought to produce a very accurate assessment of 
the true whirling speeds.
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10. 3 Bearing Excitation

The experimental work showed that slight excitation 
of the rig was caused hy non-uniformity of the rolling 
elements of the hearings. But a serious vibration, of 
the nature of a sub—harmonic, was discovered which was not 
affected by unbalance of the rotor and was attributed to 
non-linearity of the support of the rotor as a result of the 
bearing clearance. Although'a similar type of vibration 
had been reported by Yamamoto, the writer is not aware of 
any further investigation of this problem. The serious 
nature of this vibration would be disastrous if it were 
encountered in the course of development of a new engine.

A development which was introduced into some jet 
engines while this investigation was in progress is known 
as the squeeze film bearing. It is a revival of the 
technique of cushioning the roller bearing at the bottom 
end of a connecting rod, by means of an oil film, used in 
some motor cycle engines of the 1930's. In the jet engine 
application the outer track of the bearing is mounted in 
the housing with a small clearance of about 0.003 in and the 
annulus is fed with lubricating oil at a moderate pressure 
of about 30 psi. Remarkable reductions in vibration ampli­
tude have been found to result when this technique is 
adopted —  presumably as a result of the damping effect pro­
duced by the oil film.

An understanding of the properties of squeeze film 
bearings is being pursued in various establishments. It 
would appear to be important to ensure that some of this 
effort is devoted to examining the possibility of allevi­
ating sub—harmonic whirl by this means.
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10,4 Reverse \Vhirl
Reverse whirl has formerly been regarded as unimpor­

tant or even fictitious by some authorities. This is 
understandable since it is usually of very small amplitude 
and, as this investigation has shov/n, not caused by unbalance 
of the rotor.

Reverse whirl has been shown to be important in systems 
which contain two contra—rotating shafts. The experimental 
work showed that it was possible for one rotor to excite 
reverse whirl of the other. The degree of excitation could 
perhaps have been more extensively explored, with varying 
amounts of unbalance, but the results obtained would of 
course only be relevant to this system.

The writer has introduced the concept that reverse 
whirl, of even a single rotor system, is caused by non- 
circularity of the journal, or inner track of the bearing.
The reverse whirl amplitudes of the rotors, when the other 
rotor was stationary, were certainly small. However, the 
bearings were not large and not subjected to influences 
which would distort them to any great degree. But in large 
jet engines (e.g. the Rolls-Royce RB-211 engine) large dia­
meter bearings are used to support the H.P, rotor system.
It would seem that there is a real possibility that the 
control of circularity of the inner tracks of these bearings 
may not be sufficient to prevent excitation of reverse whirl 
being greater than the excitation of forward whirl due to 
rotor unbalance.

There is therefore a strong case for an investigation 
of the magnitude of reverse whirl caused by controlled non- 
circularity of the bearing —  which could of course be 
conducted adequately on a single rotor rig.
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10.5 Support stiffness

No attempt was made in this investigation to 
examine the influence of the stiffness of the supports 
of the rig. Since jet engines are usually mounted on the 
wings of multi— engined aircraft, and therefore mounted v 
flexibly, it would be of value to investigate the influence 
of such flexibility on the whirling behaviour.

10.6 Damping effects

At the outset of this investigation damping due to 
friction within the splines connecting the shaft sections 
was suggested as a possible source of internal damping 
which could lead to instability. This aspect was not 
included in this investigation for the difficulties 
described in Chapter 1. The writer believes that this 
aspect is important enough to justify a separate investi­
gation which could be conducted more easily on a single 
rotor system,

10.7 Gyroscopic effects

The novelty of this investigation lay in the co— axial 
shaft system. Despite the almost universal adoption in 
modern jet engines of this arrangement no investigation of 
its whirling behaviour appears to have been reported.

The natural frequencies of a two shaft system have 
been shown to vary, sometimes considerably, with the speeds 
of both shafts. Graphical methods of presenting the 
variations of the frequencies with shaft speed have been 
devised. The introduction of a hypothetical engine 
characteristic showed that in a two shaft system a particular 
mode of vibration is likely to be encountered twice in the 
speed range of the engine.
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The mode of vibration was found to be influenced 
quite markedly in some cases by the speeds of the rotors.

The results suggested that contra-rotating shaft 
systems are likely to encounter more points of vibration 
in a given speed range,and show peculiar changes in 
vibration modes, than systems in which the shafts rotate in 
the same direction.
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