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"Restrained Metal Columns"

SYNOPSIS
A review of previous research intc column behaviour ig made.

A general method of analysis for elastically restrained
columns bent about one axis of symmetry and held against sway is
described, The method was developed specifically for use on the
English Electric 'DEUCE' computer, for which programmes have been
prepared, In the method the column cross-section is considered as
a number of strips, in which the stresses are assumed to be uniform,
The stress/strain curve for the column material is approximated by
a series of straight lineg, while proper account is taken of the
unloading of fibres strained into the plastic range. The analysis
considers particular columns, studying their behaviour as loading

is applied up to and through collapse.

The validity of the method is checked by comparisons with
analytical and theoretical work by other authors, excellent

agreement being obtained,

Tests carried out by the author on pinned steel columns, pinned
aluminium columns, and restrained aluminium columns are described,
Analysis of these tests is shown to give results in good agreement
with the experiments, confirming the general validity of the

analysis,

The results of a comprehensive series of analyses of rectangular
columns of ideal elastic-plastic material are then presented, The
variables considered are slenderness, degree of restraint, and
magnitude and ratio of end moments, The general behaviour during
loading is described, Detailed plots of collapse load values are
given along with working load values calculated according to
B.S. 449-1959., The load factors according to B,S. 449 are shown to
be slightly below 2-0 in some cases. In most cases, however, the
load factors are well above 20, while in some cases they are
above L0,

Finally the major conclusions of the thesis are stated and

suggestions for future research given,
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INTRODUCTION

The behaviour of metal columns has been the subject of
research for many years, Despite this the problem is still not fully
understood, and design methods are for the most part based on
empirical formulae., The development of ultimate load design methocds
Fas centred attention on thg actual behaviour of structures at
collapse. It is therefore necessary for a full explanation of column
behaviour to be obtained before a complete ultimate load design method

can be formulated.

The object of this thesis is thus to extend the knowledge of
column behaviour., In view of the complexity of the problem the main
emphasis of the work has been on developing a general analytical
approach suitable for use on an electronic digital computer., The
use of a computer has enabled a far wider range of variables to be

studied than would have been practical in an experimental approach.

Chapter 1 of the thesis contains a review of previous work on
columns, leading to the conclusion that the restrained column in

particular requires further study.

In Chaptér 2 a general method of analysis for restrained
columns, developed by the author for use on an electronic computer,
is described, The method has been fully developed for analysis of
elastically restrained columns held against sway and bent about one
axis of symmetry, and has been programmed for the English Blectric
'DEUCE' computer, The stress-strain curve for the colurm material
is dealt with in a general manner by approximating it as a series of
straight lines, The cross-section of the column is divided into a
series of strips, which are considered small enough for the stress
in them to be assumed uniform, This enables any cross~-sectional
shape to be catered for, and by keeping a "strain history" for each
strip, proper account is taken of material strained into the plastic
range. The method alsc takes account of variable cross-section
along the column, initial curvature, various end moment and end
eccentricity combinations, and varying degrees of end restraint.
Pinned columns are analysed by this method using a very low value

for the restraint stiffness.

In Chapter 3 results calculated by the author's method are




checked against those calculated by the methods of other authors,
The author's method is also used to analyse tests carried out by

other authors. Agreement is generally excellent.

I1 Chapter 4 tests carried out by the author on pinned steel
columns, pinned aluminium columns, and restrained aluminium columns
are described. The experimental results are compared with those

calculated anc good agreement demonstrated,

Chapter 5 contains the results of analysis of a comprehensive
range of pinned and restrained columns of ideal elastic-plastic
material, The variables considered are slenderness, degree of
restraint, and magnitude and ratio of end moment loading. The
collapse loads are presented in interaction diagram form, while
salient features of behaviour are demonstrated by detailed plots
of information for some of the columns., A comparison with
design criteria given in B.S.449—19591is made, This shows that the
load factor against collapse is in some cases below the nominal 2:0
implied in these criteria. In most cases it is above 2:0, and in

many cases above 4:0,

Chapter 6 contains the conclusions of the thesis and

suggestions for further research work.




CHAPTER 1

1. Review of previous work

The immense amount of work which has been carried out on
columns makes it necessary to consider a selection from the more

important contributions.

One of the first contributions was made by EULERQ, who in 1759
developed the simple formula which bears his name. This formula
applies to centrally loaded columns in the elastic range. Since that
time there have been many studies of column behaviour both in the
elastic and plastic ranges. The work in each range is reviewed
separately below, and a further classification is made in that
pinned and restrained columns are considered separately for each

range.

1.1. Pinned columng in the elastic range

FPollowing on Euler's work it was realised that the practical
column could be subjected to eccentric load, or could possess
initial curvature,

SCHEPFLER-

gave the solution for straight eccentrically lcaded

columns, now known as the secant formula, AYRTON and.PERRYq’proposed
a method of analysis based on the assumption of an initial curvature

in the column, taking the load at which the yield stress was reached

as the collapse load,

ROBERTSON5

continued this work, considering a large number of
experimental tests under central axial load, He found suitable values
for initial curvature which when substituted in Perry's formula
indicated that the yield stress was Jjust reached at the experimental
collapse load. This formula, incorporating the values of initial
curvature suggested by Robertson, has since been adopted for design
use in this country. It is used on a load factor basis, the working

load being a specified fraction of the load calculated to cause

yield to be reached,

YOUNG6 has developed an analysis considering the column as
initially straight, with the axial load applied at unequal
eccentricities at each end. STEPHENSON and CLONINGER7 have extended
this work to deal with initial curvature in addition to unequal

eccentricity.




1.2. Restrained columms in thqmglgﬁgig_ggggg

ROBERTSON5 has suggested the extension of his method to the
restrained column, by considering it as equivalent to a pinned

column of reduced or equivalent length.

The behaviour of the restrained column has been studied
experimentally by BAKER8 for the Steel Structures Research Committee
(3.8.R.C.). He concluded that columns in steel building frames
could be subjected to much higher bending moments than those usually
considered in design at that time, Extensive theoretical studies
have been carried out by BAKER & HOLDER9 and BAKER & WILLIAMS1O’ 11,
again for the 3,3,R.C,, resulting in a design method to take proper
account of the moment loading. A basic assumption in this work was
that the axial load did nobt significantly reduce the column stif'fness,

STEPHENSON12 has presented some rigorous solutions for fixed
and restrained columns, along with suggestions flor design procedures,
The formulae developed are complex and reference must be made %o

various tables when obtaining solutions.

WOOD, LAWTON & GOODWIN13

"problem by presenting nomograms from which golutions can be obtained,

have resalved the complexity of the

The nomograms are entersd with wvalues of the out-of-balance fixed-
ended moments on the column ends, along with the ratios of the

column stiffness to the stiffness of all the members framing into the
column end. The value of the maximum moment in the column is then
read directiy from the nomogram. Nomograms are given for a range of
axial load to Euler load, Several design examples are presented which

illustrate the simpliecity and convenience of this method.

1.3. Pinned columns in the plastic range,

One of the first contributions in this field was made by

ENGESSER1A, who proposed the tangent modulus formula for centrally

loaded straight columns, Following an objection by JASINSKI15,
ENGESSER16 modified his theory to give the reduced modulus formula,
VON KARMANjT’ 18 derived the reduced modulus formula independently

and carried out a series of experiments which gave reasonable
correlation. He also described how solutions for eccentrically loaded
columns could be obtained by caleculating the deflection curves of the
column for various central deflections and axial loads. To obtain

the deflection curves, the moment/curvature relations for specified

axial loads were determined graphically and then integrated. Several




methods of integration were presented,

CHWALLA19

determining theoretically the collapse loads of a large range of

continued along the lines proposed by von Karman,

eccentrically loaded steel columns, considering the effects of
different types of cross-sectionzo, and various ratios of end
eccentricity21, Chwalla used for all his work a stress-strain
diagram considered typical of mild steel, (Figure 3.6)

JEZEK22’ 25

colums of ideal elastic-plastic material (Figure 3.1). He derived

presented an approach for rectangular section

analytical expressions for the moment/curvature relations, and
obtained solutions from the differential equations governing the
deflected shape of the columns., From these solutions he derived
the collapse loads for a range of pinned eccentrically loaded
columns. JEZEKZ#’ 25 also obtained solutions assuming the deflected
shape of the column to be a half-sin: wave, and showed that this

gave results very close to his exact solutions,

ROS26 also adopted the assumption of a half-sin: wave for the
deflected shape of the column, but continued to use von Karman's

approach to derive the moment/curvature relation,

! and HARTMANN28 adopted essentially the

WESTERGAARD & 0SGOOD”
same approach as Ros, with the slightly different assumption of a

partial cosine curve for the deflected shape of the column,

An extensive experimental and theoretical investigation was
carried out by KOLLBRUNNER29, who compared experimental results for
eccentrically loaded steel and aluminium columns with analysis by the
methods of Chwalla, Hartmann, and Ros. The theoretical resulits
differed very little from each other, and agreed well with the
test results.

HORNEBO

has developed techniques based on column deflection
curves, By plotting properties of diiferent wavelengths he has
obtained collapse loads of rectangular columns of ideal elastic-
plastic material, Another deflection curve approach, using an

31

electronic computer for calculation, has been presented by ELLIS

32 have developed a different

KETTER, KAMINSKY & BEEDLE
approach to column analysis using an iterative technique due to
NEWMARKBB. The influence of residual stresses is taken into
account. GALAMBOS & KETTER54 have used this analytical approach




to obtain theoretical collapse loads of wide flange I section
columns over a range of slenderness ratio and end moment ratio,
They compare these theoretical results with experimental results of

36, 37

tests carried out at Cornell University35, Lehigh University
the University of LiegeBa, and the University of'Wisconsinjg.
Agreement is excellent in all cases except where serious lateral-

torsional buckling took place. GALAMBOSAO has provided a solution

which deals with lateral-torsional buckling. KETTERAﬂ has presented
additional results for the wide flange I section, including the
case where equal end moments deflect the column into a symmetrical

S shape.

While all these studies on eccentrically loaded columns were
being made, a lively controversy persisted over the validity of the
tangent modulus and reduced madulus formulae for centrally loaded
straight columns, SI*H—U\\ILEYL"2 has resolved this controversy, showing
that for such eolumns the collapse load lies between the loads given

by the two formulae.

The considerable difficulties in most of the analytical work
referred to above have led several authors to propose various types
of interaction formulae, aiming at a simple approach for the
designer, CLARKAB, MASSONETBS, and.AUSTINAA, have presented studies

and show that very good agreement can be obtained with test results,

1.4, Restrained columns in the plastic range

L5

CHWALLA

similar approach to that used in his studies of pinned columns,

presented the first studies in this range, using a

He presented a small number of theoretical results for columns with
varying degrees of end-restraint, and various eccentricities of applied
loading.

In Great Britain the work of the Steel Structures Ressarch

9, 10, 11

Committee on a design method for steel columns stimulated

an extensive investigation of the restrained column. The results of

L6

©

this investigation have been summarised by BAKER, HORNE & HEYMAN

The first stage was the study of columns bent about one axis
only. Tests were carried out by BAKER & RODERICKQ s 48, 49 on
rectangular and I section steel columns with beams welded to them,
Loading was applied first to the beams which were arranged to apply

either single or double curvature bending about the minor axis.




Axial loading was then applied. The beams were designed to

remain elastic up to and through collapse. It was found that
variation in beam loading affected the collapse loads very little, and
also that the yield stress could be reached well below the maximum

axial load,

An analysis for some of the tests was carried out, using
theory developed by RODERICK & HORNESO and BAKER, RODERICK & HORNE51
The results are presented in Chapter 14 of reference 46. The main
features of the tests were explained by the theory. The theory was
then used to calculate thecollapse loads about the minor axis for
a range of rectangular and I section columns, making use of the
EDSAC I electronic computer at Cambridge. An account of this

52

computer work has been given by EICKHOFF™ , who has also presented

some studies6/ where plasticlty developed in the restraining begms.

53

Approximate design methods suggested by RODERICK™” were checked
against this range of solutions, and one method was found to be
satisfactory. This method requires that the beams of the structure
be designed elastically to provide restraint for the columns which
are designed on a load factor basis, the collapse load talking full
advantage of plasticity in the column. Collapse is assumed to take
place about the minor axis and the effects of bending about the
major axls are ignored,

At this stage in the investigation the behaviour of columns
bent about both axes was considered, RODERICK52+ carried out a short
series of tests on I sections with restraining beams about both axes.
A wvariety of combinaticns of beam loads were applied, Collapse
always occurred about the minor axis, suggesting that the design method
mentioned above might be suitable. However it was found that the
influence of major axis beam loading could be considerable. A
detailed analytical study was not attempted for these tests since
the development of ultimate load design methods had made it necessary
to consider the behaviour of columns when the beams had plastie

hinges in them.

Where plastic hinges are present in the beams of a structure
the columns may be called upon to carry all or part of the full
plastic moment of the beam. 1In a preliminary series of tests by

55

HEYMAN™”, I section columns were tested with major axis bending

moments applied through cantilevers, simulating beams with plastic




hinges, It was found that major axis plastic hinges could form at
the ends of columns,

At this point HORNE®

from the ultimate load design point of view, coming to the conclusion

made a thorough review f the problem

that further progress could not be made until a basic underlying
theory was developed. The work described above had shown the
complexity of column behaviour in the plastic range, and that there
was little immediate prospect of a satisfactory plastic design method
being developed. Horne therefore proposed an eslastic design method
for I section columns, assuming that the beams of the structure

would he determined by plastic design.

In this methcd it is assumed that the bending moments and
axial loads can be assessed first. The column length is then checked
tc see that the yield stress is not exceeded under this loading.
Bending about both axes is considered along with torsional instability
effects, The amount of work involved in carrying out the check is
o7 on this method
CAMPUS & MASSONET compared the collapse loads obtained from‘their tests

on I section column538 with the loads at which first yield was fore-

consistent with design office use., In corresponderice

cast by Horne's theory. The comparison was satisfactory in that the
collapse loads were on average 15% higher than the theoretical yield
loads, although in L out of 63 cases they were slightly below the
theoretical. It is plain therefore that this method will give an
“economical design provided the bending moments and axial load can be
accurately assessed, Very little detall on this aspect was given
but in a subsequent paper HORNE58

59

has put forward specific proposals,

HORNE later produced a method which allowed the development
of plastic hinges at the ends of columns, A series of tests were
carried out by HORNE, GILRCY, NEILE & WILSON6O which confirm the
validity of this method, Curves showing allowable axial loading and
slenderness ratios compatible with end plastic hinges are given in
Chapter 15 of reference 46, These can be used in designl

A less comprehensive investigation has been carried out in
America. BIJLAARD61 developed an approximate theoretical approach
for both equal and unequal eccentricity of axial loading, using
material originally presented by CHWALLAaB, Results from his
approach gave close correlation with those of Chwalla. BIJLAARD,

FISHER & WINTER62 used a simplified version of this approximate




method to analyse experimental tests on I and square section columns.
The axial load in these tests was applied at cqual eccentricities

alt each cend, bending the columns in single curvature. The
experimental results confirmed Bakoer and Roderick's conclusion that
a considerable reserve of strength could remain after first yield
had been reached in the column, The theoretical collapse loads

were in good agreement with those found in the experiments,

More recently a paper by OJALVO63 presents methods of analysis
for unequal eccentricities of loading, based on the column deflection

curve approach,
1.5 Conelusions

The behaviour of columns in the elastic range has been almost

completely explored. Rational methodsqg’ 13

have been developed to
apply the limiting stress concept of design to pinned and restrained

columms,

The behaviour of pinned columns in the plastie range, bent about
one axis, is now almost fully understood. A design method for
. - . , .
wide-~flange T section columns has been proposedék, based on work

by GALAMBOS & KETTERBA. A design method for I section columns with

end plastic hinges has been proposed by BAKER, HORNE & HEYMAN46.

The behaviour of thie restrained column in the plastic range is
sti1l, however, not fully understood, and it is only recently that
much attention has been centred on it. BLEICH65 in a review of
research on column behaviour (published in 1952) pointed out the
need for research in this field, His remarks prompted the work of
BIJLAARD, FISHER & WINTER62. A reflection of the lack of knowledge
of the restrained column can be found in a recent {1960) publication66
by the Column Research Council (U,S.A.) in which only 3 pages out of

83 are devoted to columns in frames,

Two basic conclusions can be drawn from the work already
carried out on restrained columns, The first is that the presence
of restraint can greatly enhance the carrying capacliy of the
column, The second is that restrainsd columns can possess a marked
reserve of strength beyond the point at which first yield is reached.
It follows therefore that elastic design procedures may be excessively

conservative,



The most recent proposals56, however, reccmmend that colummns

in framed bulldings be designed on an elastic basis,

The major effort of this thesis is directed at the behaviour
of the restrained column, in order to make a thorough assessment of
what can be gained by providing restraint, and what is demanded of
the restraining members., The approach is predominantly analytical,
although experiments have been carried out to check the validity of

the analysis.

10



CHAPTER 2

2. General method of analysis for restrained columns

A review of existing methods of column analysis is made,
followed by a description of the work leading to the analysis developed
by the author, A description of this analysis is then given with a
discussion of the particular case where the column is bent in
symmetrical double curvature, Some remarks on convergence of the
analytical procedures are made. The chapter concludes with some
details of the computer programmes which were written to carry out
the analysis. Further details of the analysis and the programmes

are given in Appendix 2,

2.1. Review of existing analytical methods

The first stage in any rigorous method of analysis is to find
the moment/curvature relation for the column cross-section, The
curvature is a linear function of the moment in the elastic range,
but in the plastic range it becomes a complicated function of the
moment and axial lcad, Analytical expressions can be derived22 for
simple geometric shapes and stress-strain diagrams, but in general
graphical or numerical methods must be employed. In reference 19 a
typical method is shown, The results of these graphical methods are
usually presented as plots of curvature against moment, for specific
values of axial load, By interpolation the curvature due to a given

moment and axial load can be found,

When the moment/curvature relation is known the differential
equations governing the shape of the column can be set up. Where
analytical expressions for the moment/curvature relation have been
obtained the differential equations can sometimes be solved by formal
mathematicsEZ’ 50. In general this is not the casc, and the
solutions must be obtained by numerical procedures, Two distinct

methods have been developed.

The first is due to VON KARMAN18 and is based on column
deflection curves. Column deflection curves are obtained by numerical
or graphical integration of the moment/curvature relation, assuming
diff'erent boundary conditions, and integrating along the curve by a
step by step process. By obtaining a series of curves for specified

values of axial load, the range of possible configurations for a

1



column length can be covered, The boundary conditions for any
particular problem can be fitted to the curves, and the deflected
shape of the column for various specified axial loads obtained,
From this the load/deflection curve can be obtained. This curve
rises initially while the column is in the elastic range but as
plasticity develops it rises less and less steeply until
eventually a peak is reached, after which it begins to fall., A
typical example is shown in Figure 2.4, When several points on
such a curve have been obtained the peak load can be obtained
reasonably accurately, EICKHOFF52 gives a more refined technigque
whereby column lengths, which define a peak point on a load/deflec-

tion curve, can be picked directly off a column deflection curve,

This method has several disadvantages. Tt can only be
generally applied to sections symmetrical about the axis of bending,
and 1t cannot take account of initial curvature, or unloading of
material strained into the plastic range.

The second method is due to KETTER, KAMINSKY & BEEILE52,
and is based on work by NEWMARKBB, At a given stage in the analysis
of a column the deflected shape of the column and the loading on it
are assumed, Using these assumptions the bending moment and axial
load at various points along the column are calculated, The
curvature at each of these points follows from the moment/curvature
relation, Integrating these curvatures gives a calculated deflected
shape, If this is the same as the one assumed then a correct
solution has been obtained. If the calculated shape is not the
same, modifications are made to the initial assumptions and the
process repeated as of'ten as necessary. By obtaining solutions

for several deflections a load/deflection curve can be drawn up

from which the maximum load can be picked off,

This second method is much more flexible than the first,
although the calculations are lengthy To the author's knowledge,
only the first method has so far been applied to analyse restrained

columns,

2.2, Work leading to the author's analysis

The first attempts at analytical solutions were made after
performing the tests on rectangular stezsl columns described in
8 4.1. A moment/curvature chart was prepared assuming ideal elastic-

plastic material, and a method similar in prineiple to the second

12




method above was used, The analysis was carried out under end
moment loading only first. The axial load was then Tound which
increased the deflection of a particular point in the column by a
specified amount. This was repeated giving the axial load at
steadily increasing deflections until the peak of the load/deflection
diagram was reached, By finding the load corresponding to a

deflection certain convergence difficulties were avoided.

After analysing several of the tests by hand, the use of
the English Electric 'DEUCE' computer was investigated. A computer
programme, using autocode facilities, wgs written to analyse pinned
columns of ideal elastic-plastiec material, This programme was used
to obtain theoretical collapse loads for some of the tests mentioned

above,

Considerable difficulties were experienced with analysis of
some of the columns, and eventually it was decided to formulate a
more general approach capable of dealing with restrained columns,.
The ideas for this general approach, which is described below, were
derived only after the author was familiar with the capabilities of

the computer,

2.3. General method of analysis for restrained columns

The system analysed in shown in Figure 2.1, The supports at
A and B prevent sway movement of the column ends, while providing
elastic rotational end restraints. The column may be initially
curved. The column length L¥ is divided into N equal segments of
length AL. The cross-section properties at the division points
between these segments are used in the analysis, They may vary from

cone division point to another.

The loading consisgts of two moments Mp and Mp and an axial Joad
P which can act at arbitrary eccentricities., Mp and Mp are assumed
to be applied to the system first and an analysis for this is carried
out. The application of P is then considered, Mp and Mp remaining
constant, and values of P determined at various wvalues of column
deflection. The line of action of P is assumed to remain the same

during loading.

Collapse of the column is assumed to occur by bending in the

* All symbols are defined in the text where they first appear, and
are in addition collected together in Appendix 1,

13



plane of Figure 2.1, This bending must take place at
right angles to an axis of symmetry. Local and lateral instability

are thus neglected.
The assumptions on which the analysis 1s based are as follows:-

1. Plane sections remain plane after bending

2, Cross-section dimensions are unaffected by loading

%, The stress/strain relation for the column material is
known

4. Material strained into the plastic range and subsequently
unloaded follows a line on the stress/strain diagram
parallel to the initial slope of the diagram,

5, Deflections of the column are small in comparison to its
length

6. Deformation due to shearing forces can be neglected

The analysis is based on the second method described in
§ 2,1 above, although it incorporates a new approach to the deter-
mination of the curvature corresponding to a given moment and axial
load. Details of this approach are given below, followed by a
description of the analysis under end moments only. A description
of the analysis under axial load and end moments is then given and
finally a short discussion on tle convergence of the analytical

procedures is made.

Only the principles of the methods are described, full

mathematical details being given in Appendix 2.

2.3.,1, Determination of curvature

It is necessary in this method of analysis to determine the
curvature corresponding to a given axial load P and moment M.
Previous authors have usually done this by visual interpolation from

charts., A more general approach was developed by the author,

The cross-section is divided into a number of strips parallel
to the axis of bending as shown in Figure 2,2a, while the stress/
strain curve for the column material i1s approximated by a series of
straight}lines as in PFigure 2.3, To determine the curvature an
iterative procedure is used. A strain distribution (Figure 2,2b)
across the gection is assumed and the stress at the centre of each
strip is picked off the stress/strain curve, The stress in each

strip is assumed to be uniform. The loads P, and Mg corresponding

14



to the strain distribution are calculated and compared with the
values P and M actually proposed on the cross-section. If the
differences between the calculated and propcsed loads are not

within specified limits the strain distribution is modified. By
considering the effects of small changes in the strain distribution
a set of equations is drawn up from which the required modifications
are obtained, The process is repeated until the differences between
the calculated and proposed loads are within the specified limits.
The value of curvature associated with the strain distribution is

then taken as correct,

Unloading of material strained into the plastic range is
allowed for by noting the maximum strain to which a particular
strip has been subjected and comparing it with the strain currently

proposed.

2.%.2. Analysis under end moments Mp and Mp only

For this stage of the analysis assumptions are first made for
the moments Mpp, Mpp on the column length. The bending moments at
each division point along the column are calculated and using the
procedure described in 8 2.3.1, above, the curvatures are obtained.
These curvatures are integrated to give calculated deflections at
each division point and calculated end rotations (6 ) and (8y ).,
the suffix ( ), indicating calculated values, The compatibility
of the end rotations must be checked, the necessary conditions for
this being:=-

(eh)c = ( MA— M,\) kA g o
Jororens 2o

(@s)c = ( Mg — MBA) Ke )

where kp, kg are the rotations/unit moment of the restraining
systems at A and B, The L.H. sides of equations 2.1 give the
column rotations, while the R.H., sides give the rotations of the

restraining systems,

The check is conveniently carried out by calculating quantities

XA and XB’ defined by the following equations:-
6= Brc— (Ma—Mag)ka
¥ = (Bl —(Ms—Mga) kg

A
®
.
A}
9
3]
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From equations 2.1 ¥ 5 and ¥p should Be zero. If they are
sufficiently small, the values of MAB ahdfMBA, along with the
calculated deflections and rstations, are taken as correct. If, on
the other hand, ¥ 5 and ¥p are too large, modifications to the
assumed values of Myp and MBA‘must be made, The modifications

are obtained from a set of equations which are drawn up by con-

sidering the effects of small changes in Mpp and My, on }{A and
¥3.

The process is repeated with new values of Mpp and Mpp
until ¥, and ¥p are sufficiently small,

2.3%¢3%., Analysis under axial load and end moments

This analysis is carried out at various stages, the deflections
of the column increasing between each stage. Some point along the
column is chosen as a reference point and solutions found such that
the reference point deflection Dy is increased by a specific fraction

between successive stages,

At the beginning of the analysis for a particular stage trial
assumptions are made for P, Mpp, Mpa, and for the deflections (Dg)g,
(De)a, (De)g vvevveness (Dy)g, at each division point, The bending
moment at each division point is calculated. The curvatures are
obtained and integrated to give calculated deflections (DO)C,

(Di)g eevesosscss {Dy)g, and calculated end rotations (84 )¢ and
©5 )¢
The comparison between assumed and calculated values is made

in two steps a) and b) as follows:-

a) ¥, and Yp are calculated from equations 2.2 and the
difference ﬁkR between the assumed and calculated

reference point deflection is also calculated, i.e.

Ar= O~ (Drla veeeees 2.3

If a valid solution has been assumed ¥,, ¥y, and Ay
will be zero. If they are not below certain specified
small values, the values of P, Mpp, and Mgy are modified.
The effects of small changes in P, Mpp, and Mgy on ¥,

¥ g, and ZLR are calculated, and a set of equations
drawn up the solutions to which give the required

modifications,

The calculations are then repeated until XAJ 83 and.[}R
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a) are within the specified small values. Only then is step

b) of the comparison procedure carried out.

b) The assumed and calculated deflections at each division
point are compared, If a wvalid sclution has been assumed
the values should be the same, If the differences are not
below a specified small value the calculated deflections
are taken to be nearer the solution,

NEWMARK33

for elastic columns, These proofs can be taken to apply to

gives references to mathematic proofs of this

columns in the plastic range provided the degree of
plasticity is not affected much by the changes in defleection,
since a plastic cross-section can then be considered as

elastic with a reduced stiffness,

After substituting the calculated deflections to become
new assumed deflections, the calculations are repeated

without modifying P, Myp, and Mpy.

The calculation of bending moment curvature, and deflections,
with subsequent modifications either to P, Mpp, and Mpy, or to
(Do)as (Pa)g vevevee. (D) ,, is thus repeated until both checks
under a) and b) above are satisfied. The values of P, MpRm,

Mpa, and (Do)a, (Di)a eeeesee. (Dy)a are then taken to give a

gcorrect solution,

The solutions at various stages enable a curve of axial load P
versus reference point deflection Dy to be drawn. A typical curve
is shown in Figure 2.4. The collapse or failure load Pg is reached

when this curve reaches its peak.

2.3.k, Convergence of procedures

The iterative procedures described above may not converge if
the assumed values are very different from the true values. Where
convergence trouble is experienced the remedy is to cut down the
increases in deflection between stages of the analysis. This enables
a more accurate estimate of the conditions for the next stage to be

made .,

With very stocky columns ill conditioning of the equations
which give the modification to P, MAB’ and Mgy can arise, It is

probable that a difflerent approach is necessary for such cases,
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This is dealt with more fully in Appendix 2, along with other

convergence problems,

2.4. Analysis of the special case with bending in symmetrical

double curvature

The practical column will always exhibit some imperfection
such that the loading on it will never be truly symmetrical, It is,
however, of interest to study the symmetrical case, if only to

assess how initial imperfections modifly the behaviour.

Figure 2.,5a shows a typical loading in symmetrical double

curvature, In the initial stages of loading the deflections will

be the same for both halves of the column, and the analysis is
carried out on an equivalent half-column as shown in Figure 2.5b.

At some stage in the application of load "unwinding" can take place,
This has been demonstrated practially by BAKER and.RODERICk9, and
theoretically by BIJLAARD61. This "unwinding" is shown in Figure
2,b5¢c, It can be considered as a superimposed deflection as shown in

Figure 2.54d,

The condition for "unwinding" toc begin is that the critical
load associated witﬁﬁguperimposed deflection is equal to the actual
load on the column, To calculate the critical load the values of
instantancous stiffness at each division point must be calculated,.
The calculation of instantaneous stiffness is described first below

followed by details of the calculation of critical load.

2.4..,1, Calculation of instantaneous stiffness

If "unwinding" begins under constant axial load the only change
which occurs at a division point is an increase or decrease in bending
moment, If the cross-section at a particular division point is plastic
the stiffness will depend on whether the moment is increasing or
decreasing. Where the moment increases the stiffness is obtained from
information obtained in the curvature calculation. Where the moment
decreases some unloading of fibres strained into the plastic range
ocecurs and a close approximation to the stiffness is given by the

original elastic stiffness.

If, however, "unwinding" begins during a slight inecrease of
axial load, it is possible for the unloading due to reduction in

moment to be inhibited and the stiffness at all division points
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must be calculated assuming t:r.e plastic zones to remain active.

These two criteria for determining stiffness are similar in
principle to those used in determining the reduced modulus load
and the tangent modulus load for centrally loaded straight ¢olumns.
SHANLEY'**
begin at the tangent modulus load, the actual ¢collapse loads lying

has shown that lateral movement for such columns will

between the tangent modulus loads and reduced modulus loads. It
may therefore be concluded that the actual collapse loads of columns
bent in symmetrical double curvature will lie between the "unwinding"

loads calculated from the two criteria above,

The first criterion mentioned above will be referred to as the

von Karman criterion and the second as the Shanley criterion,

2.4.2, Calculation of critical load

The calculation for the critical load is wvery similar to
that described in 8 2.3.3. for axial lecad and end moment loading.
The deflected mode of the column is assumed taking the reference point
deflection as an arbitrary value. The critical load is estimated
along with end moments compatible with the expected end rotations,
The bending moment at each division point is calculated and the
curvatures calculated using the appropriate instantaneous stiffnesses,
Integration of the curvatures gives calculated deflections and end
rotations, The comparison and modification procedures then used are
exactly the same as those desceribed in 8 2.3.5. above, The procedure
is repeated until the calculated deflections are reasonably close to
the assumed deflections, and the calculated end rotations are com-

patible with the assumed end moments.

In the elastic range the elastic critical load Ppyp will be
obtained, When plasticity develops in the column the critical load
calculated will be less than the elagtic critical load and will be

termed the reduced critical load P';R.

2.4.3, Summary of overall analysis for columns bent in symmetrical

double curvature

An analysis for the equivalent half-column shown in Figure 2,5h
is carried ou. as described in 8 2,3 above. After each stage the
reduced critical load of the column is calculated. When the reduced
critical load is below the actual the point of "unwinding" has been

passed. By plotting a load/deflection curve the point where the
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reduced critical load is equal to the actual load on the column can

be estimated giving the "unwinding" load.

The reduced critical loads can be obtained using either the
von Karman or the Shanley criterion to obtain the instantaneous
stiffnesses, The resulting "unwinding" loads will thus bhe referred

to as the von Karman or Shanley "unwinding" loads as appropriate,

2.4, Further consideration of reduced critical load

The reduced critical lcad P’CR can be calculated for any
column at any stage of loading. At the peak of the load/deflection
curve (Figure 2.4) the column is in neutral equilibrium and thus
P'CR must be exactly equal to the load P on the column, Beyond the
peak the column is in #%ke unstable equilibrium and P‘CR must fall
below the load P.

The calculation for P‘CR has been included in the computer
analysis for the general case and provides a convenlent criterion
for terminating the analysis, i.e, when.ﬁk<:[3. In addition the

mode of deflection associated with P} has proved useful in

CR
forecasting the response of the column to increases in axial load,

2,5 Computer programme details

The analysis has been programmed for the English Electric
'DEUCE' computer, Two programmes have been prepared, one for the
general case of analysis as outlined in 8 2,3, and the other for the
special case bent in symmetrical double curvature as cutlined in
g 2.4. For the latter case the von Karman load is calculated, The
programmes are very similar and are written in the basic machine
code using fixed point arithmetic procedures, thus taking full

advantage of the speed of the computer,

The programmes occupy 326 of the 8192 word magnetic drum
store, while the data can occupy up to e of the store. This
caters for dividing the column into up to 29 segments, giving 30
division points. At each division point the cross-section can be
divided into any number of strips up to 15. The stress/strain
curve 1s approximated by up to 10 straight lines, the same curve
being taken to apply in tension and compression, The programmes
take account of unloading although a simple modification will

cause it to be neglected,
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To calculate the Shanley loads for the cases of symmetrical
double curvaturd an auxiliary programme has been written to calculate
ceritical loads only. This auxiliary programme is for a Ferranti

'SIRIUS!' computer and is written in SIRIUS autocode.

These three programmes will be referred to in the f'ollowing
chapters as the general, special and auxiliary programmes

respectively.

Further details of the computer programmes, including written

flow diagrams, are given in Appendix 2.

2.,5.1. Programme operation

The input data for the 'DEUCE' programmes conaists of the

following: -

. Data for stress/strain curve

Data for cross sections at each division point

Initial sceentricity at each division point

Segment length and location of reference division point

R N A

. End moments My and Mp, and Kp and Ky, the rrtations of

the restraining systems per unit moment

The computer will normally carry out automatically the complete
analysis of a problem right up to collapse. TIf convergence trouble
1s experienced restore control facilities and various "post-mortem"

facilitie are available,

The oubtput for each stage gives first of all values of bending
moment , curvature, and deflection for each division point along the
column, followed by the axial load and end rotations. When the
collapse load is being approached a strain history is also punched
out, giving the maximum strains to which each cross-section has been
subjected, If desired this strain history can be obtained at every

stage in the analysis,

The output for the reduced critical load calculations gives
first of all values of stiffness and deflection at each division
point followed by the reduced critical load, end rotations, and end

moments,

The time taken for an analysis with 14 segments lies between

10 and 60 minutes, an average value being 20 minutes,

For the auxiliary programme in SIRIUS autocode the input
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consists of':-

1. Segment length and location of reference division point

2. Instantaneous stiffness values at each division point

The instantaneous stiffness values form part of the output obtained
from the special 'DEUCE' programme which determines the von Karman

"unwinding" load.

The output from the auxiliary programme consists of the
reduced critical load, deflection of each division point and the

end moments,
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CHAPTER 3

%, Checking validity of analysis

In the first section of this chapter results from rigorous
theory developed by HORNE30 for the rectangular cross-section of
ideal elastic-plastic material are used to check the author's methods
of calculating and integrating curvature.

In the second section analytical solutions for the collapse
loads of restrained columns given by CHWALLAA'5 and BAKER, HORNE,

& HEYMAN46 are compared with the solutions obtained by the author's
analysis.

In the third section experimental and theoretical collapse
loads for restrained columns given by BAKER, HORNE, & HEYMANhé,
and BIJLAARD, FISHER, & WINTER62, are compared with the loads

obtained from the author's analysis.

19, 20 _ .

on pinned columns are described and general conclusions

Finally, comparisons made with work by CHWALLA
CLARK43

are drawn,

3,4 Accuracy of numerical procedures

The possible errors in the numerical procedures for calculating
and integrating curvature are discussed separately below, along with
the effects of these errors on the overall analysis, The rectangular
cross-section of ideal elastic~-plastic material is considered, To

obtain rigorous analytical solutions theory presented by HORNEjo

is
used, In the following the results from the author's numerical
procedures will be referred to as calculated values while those

obtained from Horne's theory will be referred to as true values,

3.1.1. Accuracy in calculating curvature

Errors can arise from approximating the stress/strain curve
as a series of straight lines, and from dividing the cross-section
into strips. Since the stress/strain curve for ideal elastic-plastic
material (Figure 3.1) is made up of straight lines, only errors duc
to division into strips are considered here. The number of strips
considered is 415 this being the usual value used in the computer
programme. A typical comparison between the true stress diagram

and that due to division into strips is shown in Figure 3.2.

The error involved in calculating the curvature corresponding
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to a given axial load and bending moment varies considerably
depending on the degree of plasticity present. Where the cross-
gection is elastic the calculated value of curvature always

exceeds the true value by -45%. When, however, the curvature is in
the region of five times the yileld curvature the calculated values
can differ from the true values by as much as 20%. The calculated
values can be less than or greater than the true values with a

tendency to be greater.

A more serious fault in the numerical procedure is that when
the true curvature exceeds 7-5 times the yleld curvature, it is
possible that no solution will be obtained, This is because at least
two strips in the cross-section must retain some stiffness in order
that the equations mentioned in 8 2.3.1. above will yieid solutions,
Higher curvatures can be dealt with by dividing the cross-section

into more strips.

The effects of the errors on the overall analysis will now be
assessed, The basic analytical procedure is to find assumed loads
and deflections which give bending moments and curvafures, which when

integrated give deflections close to the ones as-umed,

In the elastic range the loads on the column will tend to be
underestimated by about 5%, since the curvatures due to a

particular moment are overestimated,

In the plastic range the effects on the overall analysis are
more difficult to assess, butl some idea can be gained from the
following reasoning. Assume in a particular case, where the curvature
values are high, that the true values flor load and deflection have
been assumed, In calculating the curvature errors up to say 20%
will be present. The integration process will thus yield values of
deflection which will be too large or too small. The modification
procedures will then introduce alterations to the loading to reduce
the errors. The magnitude of these alterations will depend on how
sensitive the curvature is to changes in axial load and bending
moment, Figure 3.3 shows the interaction between axial load, bending
moment, and curvature for the rectangular cross-section of ideal
elastic-plastic material. It will be seen that where the curvature
values are high small changes in either axial load or moment induce
large changes in the curvature. Thus in the particular problem

considered only very small modifications to the loading will be

2.



necessary to bring the calculated deflections close to the assumed
ones, The calculated loads will therefore be very close to the true
loads, The curvature diagram which yields these correct calculated
deflections may be in error but not to any great extent since any
errors must be compensating, i,e, if a large error exists at one
division point errors in an opposite sense must be present at other

division points,

It may be concluded that errors in the numerical procéedure
for calculating curvature will not seriously affect the overall
analysis, The consequences of not being able to deal with very
high curvatures are dealt with after discussing the accuracy of

the integration procedures,

3.1.2, Accuracy of integration procedure

The method used is due to NEWMARK339 It involves dividing

the column length into a number of equal segments. The curvatures
at each division point are first obtained and then integrated twice
to give deflections. The integration process requires the com-
putation of "concentrated angle changes" at each division point,
These are calculated assuming the curvature diagram to follow a

parabolic curve through the two adjacent division points.

To check the method, curvature and deflection diagrams have
been prepared for several column deflection curves, using the equations
given by HORNEBO. These true diagrams have been obtained for an axial
load of 0+6 Pp, where PP is the load to cause the yleld stress to be
reached over the whole cross-section, and various values of maxkimum
ocurvature, Details of the column cross~section and some of the
curve properties are given in Figures 3+4 (a) and (b). The
curvature and deflection dilagrams, along with plots of plastic zones,

are given in Figure 3-5(a) through (e).

Integration of the true curvature diagrams was carried out
dividing the half-wave-length into 10 segments, this being typical
of the computer programme, The values of calculated deflection obtained
are shown on each deflection diagram for comparison with the true

values.

It will be seen that as plasticity develops the curvature
diagram takes on a localised peak, This is the reason for the

calculated deflections being seriously in error for g%,@ﬁy = 50
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and ¢q/¢y' = 10,0, For values of ¢q/¢3r = 2-50 or lower
the errors are of the orwer of 0:1%. The calculated deflections
tend generally to be larger than the true deflections although

this need not always be the case,

The effects of these errors on the overall analysis can
be assessed by finding the axial loads, which when combined with the
true deflections, will give calculated deflections close to the
true deflections. This has been done for the cases where ¢h/¢y
= 5:0 and $o/Py = 10:0, giving P = 0:5985 P, and 05983 P,
respectively, These values compare very favourably with the true
value of 0-6 Pp. The values for caleculated maximum curvature fall
to ¢h/¢y= 5 and ¢b/¢y= 67 respectively, showing considerable

diserepancies from the true values,

Thus it can be conecluded that the errors in the integration
procedure will lead to negligible error in caleculating loads for a
given deflection; but the values of.curvature obtained can show
considerable error., This error is unlikely to exceed 10%, where the
curvature is lesgs than five times the yield curvature, and will be
negligible where the curvature is less than 2-5 times the yield

curvature,

3.1.3. Plastic hinges in columns

Horne's theory shows that plastic hinges can form in columns
of ideal elastic-plastic material, implying the presence of infinite
curvature, Since the curvature calculation will not function above

¢q/¢¥ = 7+5, plastic hinge action canmnot be dealt with,

This is not a serious practical limitation since the curvature
calculation will deal with very high curvatures when the stress/
strain curve follows the smooth "rounded knee'" curve typical of
metals, If the strain hardening of mild steel is taken into account

again very high curvatures can be dealt with.

3.2, Comparison with analytical solutions for end-restrained columns
3,21, Comparison with work of CH\I\TALLALF5

Chwalla has given details of rectangular restrained columns
which will fail at an average axial stress of 1500 Kg/cmz. The
stress/strain curve for the column material is shown in Figure 36,
along with the points chosen to represent it in the author's analysis.

Two columns were selected for analysis from Figures 2 and i of
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Reference 45, The cross-section was divided into 15 strips and the
column into 14 segments. The analysis was carried out with the
general 'DEUCE' programme both neglecting and considering unloading.
Stress/deflection curves for the cases neglecting unloading are
shown in Figure 3.7, from which it will be seen that the average
axial stresses at collapse obtained from the author's analysis

are very close to 1500 kg/em®.

The analysis taking account of unloading indicated that it
did occur in limited zones towards the ends of the columns, raising

the collapse loads by less than 1%.

3.2.,2, Comparison with work of BAKER, HORNE, and.HEYMAN46

The results chosen from this work are shown in Figure 14.19(a)
of Reference 46, which gives collapse loads for a range of rectangular
seotion columns of ideal elastic-plastic material, bent in
symmetrical single curvature, A copy of this figure is shown in
Figure 3.8 with collapse loads obtained by the author's analysis
plotted on it. The analysis was carried out dividing the cross-~
section into 15 strips and the column into 14 segments, while the
stress/strain curve was taken as two straight lines (Figure 3.4).

Unloading was not considered,
It will be seen from Pigure 3,8 that agreement is excellent.

3,3, Analysis of tests on restrained columns

%.3.1. Tests described by BAKER, HORNE, and HEYMAN46

These tests are a selection from those carried out by BAKER
and.RODERICKAV’ 48, 49.
Tables 13.1 and 13.2 of Reference 46, along with some theoretical

results obtained using the rigorous theory due to HORNE3O. The

Abstracts of the main data are given in

restraints were provided by beams welded to the columns, which were
of mild steel, and moment loading was applied first by loading

these restraining beams. This usually induced a considerable axial
load in the column., Further axial load was then applied through g
stub column projecting above the beams, leaving the beam loads
constant. The axial load was increased until collapse occurred,
The experimental collapse loads for the rectangular section

columns are plotted against beam load in Figure 3.9. The
theoretical collapse loads obtained from Horne's rigorous theory

are also shown.
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Initially it was thought that the author's analysis could
not be applied to these tests since the line of action of the axial
load varied throughout the tests, and also the beam depths were large
in comparison to the column length, It was however found possible
to calculate modified restraint stiffnesses which tock account of
these factors. A further discrepancy between test and analysis
is that the author's analysis assumes the moment loading to be
applied under zero axial load. It is considered that the effect of

this will not be great,

The column material was mild steel and thus could be
considered as ideal elastic-plastic., Specific analysis was not
carried out, the collapse loads being obtained by interpolation from
the results for columns of ideal elastic~plastic material, presented
in Chapter 5, These results were obtained including the effects of
unloading, GCurves of theoretical collapse load against beam load

are shown in Figure 3.9.

¥or the columns bent in single curvature the agreement between
theory and experiment is good, while the two loads calculated from

Horne's rigorous theory are very close to the author's curves,

For the columns bent in double curvature the agreement
between theory and experiment is also good, but there is considerable
disagreement between the loads calculated by Horne's theory and the
author's analysis. Horne's theoretical results have been obtained
neglecting unlcading apart from a single analysis., This single
result is in good agreement with that obtained from the author's
analysis., The discrepancies in the other cases are almost certainly

due to the neglect of unloading.

3.3.2, Tests carried out by BIJLAARD, FISHER and'WINTER62

Tests were carried out on 13" square mild steel bars, and on
4 T 95 1b mild steel beam sections, Both annealed and unannealed
specimens were prepared. Typical stress/strain curves were presented
in Figure 12 of Reference 62 a copy of which is given as the author's
Figure 3.10 (a). TFigure 3.10(b) shows the curves which were used in
the computer analysis. The restraint was provided by spring systems

while the axial load was applied at specified initial eccentricities.

For the computer analysis the sguare bar cross section was
divided into 15 strips, The I section was bent about the minor -
axis and the cross section was again divided into 15 strips, 3
taking up the web of the section, and the other 12 tzking up the
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projecting flanges. In both cases the columns were divided into 14
segments, The general 'DEUCE' programme was used, taking account of
unloading. The column was assumed to be uniform in cross-section
thus neglecting the rigid exd block assemblies. The effect of this
on the results would be small, particularly since plasticity d4id not
develop at the ends of the columns to any serious extent, The
computer analysls revealed that strain hardening should have
occurred in tests 3AT, 14UI, 9AS, and 19US, i.e. in all the tests
with large eccentricities. Except for the test 3AT, the effect on
the collapse load was negligible,

The comparison between theory and experiment is presented in
Figure 3,11, It will be seen that the author's analysis tends to
overestimate the carrying capacity slightly, while the approximate
analysis of Bijlaard et al.tends to underestimate. The agreement

is however very good.,

3.4, Comparisons with work on pinned columns

The analysis developed in chapter 2 is specifically for
restrained eolumns, A similar, somewhat simpler, analysis can be
developed for pimnned columns, and it was thought initially that a
separate computer programme would have to be written for this, It
was, however, found possible to use the restrained column programme
for pinned columns by setting the restraint stiffnesses to very low
values.

CHWALLA19’ 20

pimnned columns of various cross-sections, Four rectangular section

has presented results for eccentrically loaded

columns and four Tee section columns from this work have been
analysed using the general 'DEUCE' programme. The columns were
divided into 14 segments. The redétangular section was divided into
15 strips and the Tee section into 14 strips, two taking up the
flange and 12 teking up the stem, 1In all cases the collapse loads
agreed to within 1% of the loads given by Chwalla,

Iy

CLARK 5 has presented experimental results for eccentrically
loaded pinned aluminium columns of rectangular and rectangular
tubular cross-section, For analysis again using the general 'DEUCE!
programme the columns were divided into 14 segments and the rectangular
cross~section was divided into 15 strips. The tubular section was

also divided into 15 strips, 6 taking up the walls parallel to the
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axis of bending and the other 9 taking up the walls at right angles.
Some of the tests were carried out under central loading and nc
attempt was made to analyse these. The theoretical collapse loads

obtained were all within 3% of the experimental loads.

For one test Clark presented a load/deflection curve and load/
strain curves for the centre of the column, The author's analysis
for this test gave curves which practically coincided with those

given by Clark,
5.5 Conclusions

The numerical procedures of the author's analysis give accurate
results except where curvature values are very high. In particular

the procedures will not deal with fully plastic hinges,

The analysis gives results in very good agreement with previous
analytical studies. The analysis of several sets of tests gives
theoretical collapse loads in good agreement with the actual test
loads., Both steel and aluminium columns of various types of cross-

section have been analysed.

For restrained columns the effects of unloading on the
collapse loads are very slight for cases bent in single curvature
but can be significant for cases bent in double curvature, The
author’s analysis taking account of unloading agrees well with a

rigorous analysis by Horne,
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CHAPTER L

L., Experimental tests by the author

Three sets of tests are described, the first on pinned
rectangular mild steel columns, the second on pinned rectangular
aluminium columns, and the third on restrained rectangular
aluminium columns, Analysis has been carried out for each set of
tests., The tests, results of analysis, and discussion for each

set are presented under separate headings below,

The manufacture of the columns, details of test rigs, and
details of experimental procedure are dealt with briefly, since

a full account of this is given in Appendix 3,

L1, Tests on pinned rectangular steel columns

L.1.1, Experimental details

66 Y4" x 5" mild steel columns of various lengths were tested
under loadings designated as cases (a), (b), and (d), shown in
Figure L4.1. The moments were applied about the minor axis through
a pulley and lever system. The axial load was applied through
knife-edges, the actual load being obtained from a lever system.
Moment loading was added first and left constant as the axial load

was applied in increments’'until collapse.

The yield stress for all the specimens was found to be close
to 19 T/in®, and using this value PP and Mp for each column length
were calculated., Dividing the experimental collapse loads Pp by Pp
and the experimental end moment Mp by Mp gave values for the non-

dimensional plots of results shown in Fig. 4.2.

4.,1.2, Analysis of tests

Theoretical collapse loads have been obtained by interpolation
from the results for columns of ideal elastic~plastic material
presented in Chapter 5, As mentioned in Chapter 2 some of these tests
had been analysed by an early autocode programme. No significant

differences between the results were found,

For the analysis the yield stress was taken as 19 T/in® and
E as 13,400 T/in®,

Por the case (d) loading in symmetrical double curvature the

Shanley loads have been taken. The differences between the Shanley
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and von Karman loads are at the most 3%. For some of the case (d)
loadings, the theoretical collapse loads were not governed by
"unwinding", but by the formation of plastic hinges at the ends of
the column, End plastic hinges can also form for case (b) loading,

although none of the tests were governed by this criterion.

Some analysis for case (a) loading taking account of an
upper yeld stress of 1-35 times the lower yield stress was carried
out. For reasons given in Appendix 2 analysis with upper yield was
difficult and no attempt was made to cover the full experimental

range.

The theoretical collapse loads are presented non-dimensionally
as interaction curves on Figure 4,2 giving a direct comparison with
the experimental collapse loads. The results including the effects
of upper yield are shown by a dashed line,

L.1.3. Discussion

It will be seen that the experimental collapse loads are
generally above the theoretical collapse loads more especially
for the case (b) and (d) loadings. The following factors could

lead to higher values.

(a) Upper yield

Beam tests carried out to determine the lower yield
stress indicated a value of upper yield about 1:35 x the lower
yield stress. The results of analysis taking account of upper
yield show that it has a considerable effect on the collapse
load,

(b) Rigid end pieces

The axial and end moment loading arrangements resulted
in a considerable length at the ends of the columns being
effectively rigid. This affects the case (a) loading very
little but cases (b) and (d) would be seriously affected
especilally for the shorter column lengths.

(c) Friction in the loading system

At collapse rotation is taking place in the various
knife-edge seats and pivots of the loading system thus
mobilising some frictional restraint, This is not considered
to be of much importance for case (a) and (b) loadings but

case (d) loading could be seriously affected.
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In the author's opinion these factors are sufficient to
explain the discrepancies between the theoretical and experimental

results,

4.2, Tests on pinned rectangular aluminium columns

L.2.,1, Experimental details

The columns were manufactured from %" thick HE3C WP alloy
plate. A typical stress/strain curve for the material is shown in
Figure L.3. Columns of %" x }" section were made up in various

lengths,

The test rig for applying axial load consisted of two loading
heads which were inserted in an "Olsen" 200,000 1b capacity testing
machine, Rotational freedom was provided by ball bearings, Special
end fittings allowed the column to be accurately adjusted in position
with respect to the loading heads, Small levers were attached to
these fittings and end moments applied through them., The centres
of rotation of the loading heads were arranged to be at the points
where the column emerged from the end fittings. The columns were
thus pinned and of uniform cross-~section., The effective lengths of
the columns tested were 7:24", 5¢12" and Zeben,

Tests were carried out for the three cases of loading shown
in Figure L.,1., End moments were applied to the column first under
a small axial loading. The axial load was then applied initially
in inerements, reading the deflection after each increment. Since
the "Olsen" is a strain-controlled machine it was convenient to
carry out the final loading to cocllapse under continuousslow
gtraining. Simultaneous load and deflection readings were taken
"on the run". As soon as the axial load began to drop off the

test was stopped.,

The collapse loads for the tests are presented in Figure L4, L.
Load/deflection plots for some of the tests are presented in Figures

L5 - h.7.

Lh,2,2, Analysis of the tests

The stress strain curve for the material was approximated as
shown in Figure 4,3, and the cross-section was divided into 15 equal
strips. The analysis for columns under case (a) and (b) loadings was

carried out with the general 'DEUCE' programme, the column length
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being divided into 14 segments. For the columns under case (d)
loadings the von Karman “unwinding" loads were obtained using the
special 'DEUCE' programme, dividing the half-column into 14 segments
The Shanley loads for the case (d) loadings were subsequently
assessed by a method due to BIJLAARD61, who showed that for pinned
colums "unwinding" would begin when the end slopes of the column
became parallel to the thrust lines, The method is only applicable
to initially straight columns where no unloading has teken place,
Thesge conditions were fulfilled by the tests. To apply the method
informetion from the analysis for the von Karman load was used,
The end slope of the column at ecach stage in the analysis formed part
of the normal computer output., The slope of the thrust line at any
stage was given by the effective e1d eccentricity of the load, i,e,
MA/P divided by the half-length .f the column. These two slopes
were plotted and the point at which they became equal was determined,
The axial load corresponding to this point was taken as the Shanley
load,

As a check the Shanley load for one particular column was
also obtained by the same method as that used in the special
'DEUCE' programme, using the auxiliary 'SIRIUS' programme to
calculate the reduced critical loads according to the Shanley
criterion, Essentiaslly the same load was obtained as by the method

above,

To assess the effects of initial eccentricity on the case
(d) loading, one particular column was analysed for various degrees
of initial eccentricity. The general programme was used and the
column was divided into 28 segments, giving the same segment length
as that used for the half column analysis under case (d) loading

alone,

The theoretical collapse loads are presented in Figure 4.k
as interaction curves between failure load Pp and end moment
Mp, giving a direct comparison with the experimental collapse loads.
To complete these curves several additional theoretical collapse
loads were obtained along with the tangent modulus and reduced

modulus loads for the centrally loaded cases,

Theoretical load/deflection curves to compare with the

experimental plots are given in Figures 4.5 - 4.,7. In Figure 4.7
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the results for the case {d) loading with various degrees of

eccentricity are given,
4.2.3, Discussion

It will be seen from Figure 4.4, that the experimental collapse
loads are underestimated by about 5 = 10%. A study of the load/
deflection curves for the case (a) and (b) loadings (Figures 4.5 and
4,6) shows that the theoretical and experimental curves agree well
in the early stages of loading, i.e. when the column is still in
the elastic range. At later stages the experimental curves rise

above the theoretical,

This divergence can be explained by the strain rate
sensitivity of the material, The stress/strain curves were obtained
by applying a given load to the specimen ard reading the strain after
the creep had settled down, Fairly long time intervals were allowed
for this, so that the curves are probably very close to the curve for

zero strain rate,

In Figure 4.5 there are several points on the curves marked
"ereep". At these points the moving head of the testing machine
was brought to a halt and the drop-off in load was noted after a
short time., The presence of this drop-off indicates that the
material is strain-rate sensitive, and it 1s probable that if the
readings had been taken after allowing the creep to settle down
completely, values much nearer the theoretical would have been
obtained. An alternative procedure would have been to obtain the
stress/strain curve under a continuous straining rate comparable

with that applied in the column tests,

For the case (d) loadings in symmetrical double curvature the
differences between the Shanley loads and the von Karman loads are
sometimes considerable, Theoretically the central deflection for
these tests should remain zero until the Shanley load is reached,
Above the Shanley load "unwinding" should begin and the peak or
collapse load should lie between the Shanley and wvon Karman loads.
It will be seen from Figure 4,7 that the central deflection
increases right from the start of loading for that particular test.

All the case (d) loading tests exhibited this behaviour,

The initial eccentricity required to cause the experimental

central deflecticn to vary as shown in Figure 4.7 is of the order
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of 0:0C1", This is as small as can be expected of the test rig.
Thus while the tests provide a reasonable check on the theoretical
collapse loads, they do not confirm the exact behaviour at failure

of a truly symmetrical case.

The results of the analysis including the effect of eccentriecity
of loading do however provide some evidence on this point, It will
be seen that the presence of an initial eccentricity of 0:001",
equivalent to L/'5,000, gives a collapse load below the Shanley load,
Reducing the eccentricity to O-000013", equivalent to L/AOO,OOO, gives
a collapse load practically midway between the Shanley and von Karman

loads.

For this very small eccentricity, it will be noted that
significant "unwinding" does not begin until the Shanley load is
exceeded, A study of the strain history for this analysis revealed
that unloading begins to take place at this point also. This unloading
causes the stiffness of certain sections of the column to revert to
the original elastic value, and thus the reduced critical load of
the column lies above the Shanley load, 3o the column is still stable
in the initial stages of "unwinding". The collapse load is reached
when the unloading is insufficient to offset the developing
plasticity elsewhere, gausing the reduced critical load to fall below

the load on the column,

The behaviour revealed in this analysis thus confirms that
columns bent in symmetrical double curvature behave in a similar

manner to centrally loaded columns,

A more practiczl point arises from the fact that the normal
out~of'=straightness to be expected is of the order of L/1,OOO to
L/LOO, considerably more than the values treated in Figure L4.7.

The presence of such an out-of-straightness will undoubtedly reduce
the collapse load to a value well below the Shanley load, It is
therefore unwise to consider the ideally straight column in any

design procedure for pinned columns.

4.3, Tests on restrained rectangular aluminium columns

4.3.1. Experimental details

The columns were similar to those used for the pinned tests,

The same loading heads and end fittings were used as for the

pinned tests. Restraint was provided by steel beams which were
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attached to the end fittings. The ends of the beams remote from

the column were held in adjustable supports, which were clamped

to the testing machine table., Application of end moment to the system
was simulated by raising or lowering the beam supports, Strain

gauges on the beams enabled the end moments on the column to be
assessed at any stage during a test. The restraint stiffness was

varied by altering the span of the heams.

The beams were made stronger than the columns so that they
remained elastic at all stages in the loading, Thus the restraint

stiffness remained constant during a test.

Equal restraint stiffnesses were supplied at the top and bottom
ends of the columns, while for tests on columns of the same length
the restraint stiffness was held constant, The actual value of
restraint stiffness was derived from a non-dimensional restraint
factor Q which is defined as follows:-

Q@ = Restraint stiffness*é’}E;i O
where the restraint stiffness is in units of moment/radian and
EE;£ is derived from the column properties. For each column length
a restraint factor was chosen and the appropriate value of restraint
stiffness worked out., The spans of the restraining beams were then

adjusted to give this value of restraint stiffness.

Initially in calculating the beam span to give a specific

value of restraint stiffness the Joints in the end fittings were
assumed to be rigid. On this basis the restraint stiffness for the
tests on the 7+24" long columns was calculated corresponding to the
chosen restraint factor of 5:0, After some of these tests had been
analysed serious discrepancies between theory and experiment were
found, which were traced in part to rotations in the end fitting
Joints., The rotations in the joints were then assessed and the actual

restraint factor for the 7:24" long columns was found to be 425,

For the tests on the 5:12" and 3-62" long columms the restraint
factor was chosen as 2:0, and the beam spans adjusted accordingly,
taking the Jjoint rotation into account. A small error in calculation
resulted in a restraint factor of 1:96 being used for the tests on

the 5+12" long columns,

In carrying out the tests the end moment loading was applied

first, Values of initial moments on the column length were chosen
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and applied by raising or lowering the beam supports. A small
axial load was necessary at this stage, Three different patterns
of moment were applied designated as cases (a), (b), and (4d),as
shown in Figure L4-8., The axial lcad was then applied in the same
way as for the tests on pinned columns. Simultaneocus readings of
load, deflection and beam moments were taken during the slow

continuous straining to colliapse.

The collapse loads for the tests are presented in Figure 4.9.
Typical load/deflection and end moment/deflection plots are given
in Figures 4.10 = 4.13, For the case (d) loadings in symmetrical

double curvature load/end moment plots are drawm.

ho3.2. Analysis of tests

The stress/strain curve shown in Figure 4.3 was used, while the
cross—-section was divided into 15 equal strips. The columns under
case (a) and (b) loading were analysed by the general 'DEUCE'
programme , dividing the column length into 14 segments. TFor the
columns under case (d) loading the von Karman "unwinding" loads
were obtained from the special 'DEUCE' programme, the half-column
length being divided into 14 segments., It was found for cases with
high initiai end moments My and Mp, that "unwinding" would not
necessarily occur, The collapse load in such cases was taken as
that of the half-column (Figure 2.5b",

An attempt was made to obtain the Shanley loads for the columns
under case (djloading from a criterion given by ﬁIJLAARD61. This
criterion applies only if the column is initieliy straight and the
degree of unloading is small, For most of the tests large zones of
unloaded material developed, so that this approach had to be

abandoned,

The Shanley loads were finally obtained by the same method as
that used in the special 'DEUCE' programme, using the auxiliary
SIRIUS programme to calculate the reduced critical loads according

to the Shanley criterion,

The 'DEUCE' programmes require values of Mp and Mp, the
external moments initially applied to the system (Figure 2.1).
In the tests the effects of applied external moments were provided
by moving the beam supports. Thus values of My and My had to be

worked out which would give the same effect as that caused by the
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movement ot the beam supports. To do this values of column moments
MaR and Mpp under zero axial load were obtained by extrapolation
from the experimental values under small axial loads, Values of
Mp end Mp were then estimated which would give theoretical values
of Mpp and Mp, under zero axial load reasonably close to the
extrapolated values. In the elastic range this was quite simple
but for high values of Mpp and Mp, which induced plasticity in the

column some trial and error calculations were necessary,

As mentioned in 8 4.3.,1. above, a few of the tests on the
/+2L" long columns were analysed as soon as they were completed
taking a theoretical value of 5,0 for the restraint factor. These
tests were re-analysed under the modified value of 4+25. For the
tests on the 5+12" and 362" columns the restraint factors were

teken as 1°96 and 2+0 respectively.

For one case (d) loading an additional analysis was carried
out considering the presence of an eccentricity of 0:C01"., Tor this
analysis the column was divided into 28 segments, giving the same

segment length as in the half-column analysis,

The theoretical collapse loads are presented as interaction
curves in Figure 4.9, giving a direct comparison with the experi-
mental collapse loads. Both the Shanley and von XKarman loadsg for
the case (d) loadings are shown, along with the zones where

"unwinding" is reckoned not to occur,

Loai/deflection and moment/deflection curves for typical
case (a) and (b) tests are given in Figures 4,10 and 4.11, while
curves for cases (d) loading are given in Figures 4.12 and 4.13.
The case in Figure 4.12 also shows the theoretical result

considering eccentricity.
L,3.3, Discussion

i) Case (a) and (b) loadings

A study of Figure 4,9 shows that for the 7-24" columns the
author's analysis overestimates the collapse loads, for the 512"
columns the collapse loads are forecast almost exactly, and for
the 3+62" columns the collapse loads are slightly under-estimated,
Teking the strain-rate effect mentioned in 8 4.2.3. into account
an under-estimate of the collapse loads would be expected for all
the tests. That this is not the case is considered to be due to
variation in the restraint factor from the assumed theoretical values,
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L check was made on the restraint factor calculations
#fter the analysis had been completed, and the rotations in the
joints of the end fittings were assessed by a more accurate method.
No errors were found in the calculations but the rotations in the
joints were found to be very much greater than those initially
obtained, A serious experimental error must have been made in the
initial essessment. It was calculated that the restraint factors
Q for the tests were 3+57, 173, and 1+75, against the values of
25, 1496, and 2+0, used in the analysis. After making a study of
the results for columns of ideal elastic-plastic material given in
Chapter 5 it was realised that these large variations in restraint
factor would not affect the collapse loads in the same proportion,
The tests were therefore not re-analysed, It is estimated that
theooretical collapse loads obtained using the lower restraint
factor values would lie about 5% lower than those given in Figure

4.9,

For the tests on the 7-24" columns it had not been realised
that the Jjoint rotations would be significant and no particular care
was taken in tightening up the Jjoints., It is probable therefore that
the restraingtﬁgé reduced still further on this account, i.e. below
the value of 3+57. A study of the typical end moment/deflection curve
in Figure 4+1C shows that the restraining moments did not develop
to the extent forecast by the author's analysis. At collapse the
theoretical and experimental moments differ by about 50 1b in, It
is considered that this would more than offset the strain-rate effect,
so that the fact that the experimental coilapse load lies below the

theoretical is not unexpected,

For the tests on the 5<12" cclumns the Jjoints in the end
fittings were tightened up very carefully and it is probable that
the calculated restraint factor of 1°:73 was applicable to the tests.
The differences between theory and experiment should thus be due to
the restraint factor being taken as 1:96 for the analysis, and to
the strain rate effect. A study of the typical end moment/deflection
curves in Figure 4.11 shows that at collapse the theoretical and
cxperimental moments differ by 2C 1b/in, The experimental axial
loads initially lie below the theoretical curve and as collapse is
reached they become almost coincident, In this case it can be

concluded that the strain-rate effect is just balancing the effect
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of the incorrect restraint factor,

The 3+62" columns exhibit the same behaviour with the
experimental axial loads rising slightly above the theoretical
curve at collapse. This could be due to the much higher strains

(up to 5%) which were developed in these tests.

Despite these discrepancies the analysis gives a good
representation of the general behaviour of these columns, It can be
concluded that the discrepancies are due to experimental faults,

rather than inaccuracy in the analysis.

ii) Case (d) loading

Reference to Figure 4.9 shows that the c¢ollapse loads for the
tests under case (8) loading follow the same trends as for the case
(a) and (b) loadings. These trends can also be attributed to the
influence of strain-rate sensitivity and to the errors. in. the

theoretical restraint factors.

With regard to detailed behaviour the question of "unwinding"
is of most interest. According to the analysis the cases portrayed
in Figures 4,12 and L.13 should have collapsed without "unwinding",
The reduced critical load according to the Shanley criterion is
shown in 4.12 and it will be seen that it does not fall below the
actual ceclumn load, indicating that the column will always be stable
against "unwinding". For the case shown in Figure 4.13 the reduced

eritical load is always above 5,000 1b and has not been plotted,

Thus for both these cases the experimental moments Mpp and
Mpp should have followed the theoretical curye obtained from the
half-colum analysis, and the cential deflection should have
remained zero up to and through collapse, It wili be seen from
Figures 4,12 and 4.13 that initially the experimental values followed
this behaviour. At collapse, however, the central deflection was
increasing rapidly, and one or other of the column moments had

almost stopped decreasing.

It was suspected that the reason for these discrepancies was
the presence of initial eccentricity and this was the reason for
carrying out the analysis of the case shown in Figure 4,12, where
an eccentricity of loading of 0-001" is considered, The curves on

Figure L4+12 show that the central deflection and column moments for
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this analysis vary in the same manner as in the experimental test
although the experimental deviations from symmetrical behaviour

are much greater. An important point emerges in that the theoretical
quarter point deflections are both increasing at collapse., This is
inconsistent with "unwinding" which implies that one quarter point
deflection should increase and the otheér decrease (Figure 2.5¢).

Thus the increments in deflection at collapse can be considered as
made up of two waves, one a symmetrical "“unwinding® wave and the

other an anti-symmetric wave tending to promote the S shape of the
colum, In this particular case the anti-symmetric wave is predominant

suggesting that "unwinding" is not the failure criterion,

A further point is that the presence of the 0-001" deflection
has a very small effect on the collapse load reducing it from
3,310 1b to 3,300 1b, This indicates that despite the presence of
some "unwinding" the collapse load is still largely controlled by
the colliapse load of the half-column,

It can therefore be concluded that in some cases "unwinding"
will not govern collapse of columns bent in symmetrical double
curvature. BIJLAARD61 has stated that "unwinding" will always
govern collapse of such columns, but this statement is based on the
assumption that unloading is negligible. The author's analysis has
shown that unloading can be extensive and it is this feature cf
behaviour that leads to the possibility that "unwinding" may not
occur. Some carefully controlled experiments are required to finally

clarify this question.

4. L., General Conclusions

The agreement between the results from the author!'s tests and
from the author's analysis is not as good as that obtained in Chapter
3 where tests by other authors were considered, It has been shown
that the discrepancies can be attributed either to faults in the

author's experimental procedure or to defects in the test rigs.

It 1s considered, therefore, that the combined evidence from
Chapter 3 and this chapter confirms the general validity of the

author's analysis, and of the assumptions on which it is based,
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CHAPTER 5

b. Analysis of columng of ideal elastic-plastic material

The computer programmes were written with a view to analysing
the behaviour of columns over a wide range of conditions. This has
been done for the rectangular column of ideal elastic~-plastic
material (Figure 3.1), some 220 columns under specific conditions
having been analysed. 1In the course of this work some 30,000
output cards were obtained, each containing 8 numbers, and it is
plain that only a fraction of the total output can be presented

here,

The variables considered are discussed first followed »y the
presentation of the results. The behaviour of pinned und restrained
columns is discussed under separate headings and the theoretical
collapse loads are compared with the working loads according to

B.S.449 - 1959,
Finally the major conclusions are stated,

5.1. Variables considered

5.1.1. Slenderness

This variable is govered by the parameter PP/PE, where
Pp is the load to cause yield over the whole column cross-section,
and PR is the Euler load of the column, The parameter is
dependent on the slenderness ratio L/r of the column, the yield
stress fy, and the mecdulus of elasticity E of the column material.
Analysis has been carried out for PP/PE = 05, 10, 20 and 4-0,
For steel with a yield stress of 16 T/in® and modulus of elasticity
of 13,000 7/in® this is equivalent to L/r values of 63:3, 89-5,
1266 and 179+1,

5.1.2, Restraint stiffness

Equal restraint stiffnesses were taken at the top and bottom
of the column and it was assumed that they remained constant and
active up to and through collapse. The values were controlled by
the restraint factor Q which is defined as:-

Q = Restraint stiffness + JBL T

. L
where é%l refers to the column length and is in faet the rotational
stiffness of the pinned column against end moments, Thus if a

framed building is being considered Q can be taken as roughly
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equivalent to the beam to column stiffness ratio.

Mndysis has been carried out for § = 0, 0*5, 10, 2:0, 5-C
and 100-0, @ = 0 gives a pin-ended condition and Q = 100-0 may

be taken to give a fixed-end condition,

5.1.3. Moment loading

Four different moment loading patterns were considered
designated as cases (a), (b), (c¢), and (d), as shown in Figure 5.1.
For Q = O, i,e. pinned columns, only cases (a), (b) and (d) were
considered. For each value of Q an upper limit to the value of My
was seb., In all cases the moment loading was applied first and then

left constant as the axial load was applied.

5.1 .4, Initial curvature

The effect of this has been studied for pimmed columns only.
The curvature was taken as the half-wave of a cosine curve with a

maximum ordinate cp defined by:-

Cm=’32D7/Pp/PE B P~

where Dy is the central déflection of the column when both end
moments are equal to My, the moment to cause first yield in the
absence of axial load. For fy = 16 T/in® and E = 13,000 T/i.?

this gives a value of cm = L/394. The parameters used in the
Perry-Robertson formula in B,S, 449 - 1959 imply a ¢y value

equal to 1/576 for a rectangular cross-section, Thus this analysis

is more conservative than B.3, 449.

5.2, Calculation and presentation of results

The analysis was cartried out taking a rectangular cross-
section column 2" deep and O+75" wide, divided into 15 equal strips.
The column material had an E value of 5,000 T/in® with a yield stress
fy of 20 T/in?, These dimensions and material properties were
selected to take full advantage of the accuracy of the fixed point

arithmetic proecedures of the computer programmes,

The column was assumed to be of uniform cross-section, The
columns under case (a), (b), and (c) loadings were analysed with the
general 'DEUCE' programme., Generally the column length was divided
into 14 segments, although in some cases 22 segments were used,

For the columns under case (d)} loading (in symmetrical double

curvature) the special 'DEUCE' programme was used, the half-column
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length being divided inte 14 secgments, This gave the
von Karman "unwinding" loads, and the Shanley loads were subsequently
calculated making use of the auxiliary 'SIRIUS' programme. For the
initially curved columns under case (d) loading the general vers:on
of the 'DEUCE' programme was used, dividing the column into 1l

segments,

The results are expressed in a non-dimensional form, axial load
being expressed as a fraction of Pp, moment as a fraction of Mp,
deflection as a fraction of Dy, and curvabture as a fraction of @y .
Thus the results can be applied generally to columns of ideal

elastic-plastic material.

Separate sections below deal with the presentation of results

for pinned and restrained columns,

5.2.1., Presentation of pinned column results

To give some idea of the general behaviour of the pinned
columns, a plot is given in Figure 5.2 of the plastic zones at
collapse, i.e. at the point defined by the peak of the load/deflection
diagram. For the case (d) loadings on initially straight columns,

the plastic zones at the Shanley "unwinding" loads are shown,

Figure 5.3 gives the collapse loads plotted as sets of
interaction curves between PB/PP and MA/MP, each set dealing with
one value of the slenderness parameter PP/PE, The curves for case
(a), (b), and (d) loadings are shown as full lines while those for
the same loadings including the effects of initial curvature are
shown as dashed lines. For the case (d) loadings the Shanley
"unwinding" loads are given. The differences between the Shanley and

von Karman loads are in faoct too small to be visible in Figure 5.3.

Two additional lines are drawn on each diagram, One gives
combinations of axial load and end moment which will give a plastie
hinge at end A of the column, This gives the maximum possible load.
The other line expresses the design condition given in B.S. 449 -

1959 for sections under combined bending and thrust, i.e,:-

fe b
B ~+ T;E‘ = | ceseessD.D
c bc
where fo = calculated average axial compressive stress
Pe = allowable compressive stress under axial load alone
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t

Tpe maximum compressive stress due to bending

Ppe = allowable compressive stress due to bending

Values of pe were taken from Table 17 of B.S.449 -~ 1959, for
steel to B.S.15. The L/r values for entering Table 17 corresponding
to Pp/Pg = 05, 1°0, 2°0 and 40 were calculated taking fy = 16 T/in®
and £ = 13,000 T/in® and are given in & 5,1.1, above., The value of
Ppc Was taken as 10-5 T/in®,

The maximum moment allowed in the absence of axidl load is thus:-

10-5
Mnar= T3~ My eeeiriaiBl

For a rectangular section Mp = 1+5 My so that the maximum moment,

which is always applied at end A of the column,is governed by:-

10-S !
AT = X2 —_— = . 5 I P
(m,, >max. o X T§ T

The maximum average axial stress allowed in the absence of

moment is pe so that the meximum axial load is governed by:-

(.E_) = R
Pe/mar, 16 eeeeaa 56

Plotting the points given by equations 5.5 and 5.6 and joining

them gives a line which satisfies equation 5.3,

5.,2.2. Presentation of restrained column results

To give some idea of the general behaviour of restrained
columns, an analysis for each of the four loading cases is presented
in detail in Figures 5.4 - 7. A load/deflection diagram along with
bending moment, deflection, curvature and plastic zone diagrams at

various stages in the loading are shown for each analysis.

For a large number of columns under case (d) loading the
collapse load of the half-column was reached without "unwinding"
being indicated. In an attempt to clarify this behaviour an analysis
was carried out for a particular case with Mp = ~0'9 M, thus intro-
ducing a slight initial lack of symmetry. A comparison between this

case and the corresponding case with Mg = -My is shown in Figure 5.8,

The collapse loads are plotted in two ways. In Figure 5.9

they are plotted as sets of interaction curves between PF/PP and
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MA/MP, each set dealing with particular values of @ and Pp/Pg. In
Figures 5.10 - 13 they are plotted again as sets of interaction
curves, this time between Pz/Pp and (Mpp)p.g J/Mpe (MAR) Pzo
denotes the value of Mpp on the column after application of the
external end moments My and Mg, i.e. before any axial load is
applied. Each Figure covers the results for a particular value

of Pp/Pg and contains four sets of interaction curves which deal
separately with the loading cases (a), (b), (¢) and (d). For the
case (d) loadings the Shanley loads are given. It was found that the
von Karman loads were usually only very slightly above the Shaniey
loads. Where "unwinding" was reckoned nct to occur, the collapse

loads for the half-column were taken,

For comparison the curves for collapse loads of pinned
columns, i,e. Q@ = 0, and the line expressing the B.S.449 design
condition for maximum working load are also given in Figures 5.10 -
13, The B,5.449 condition was obtained in the same way as for the
pimned columns, taking the slenderness ratio as 07 times the
pinned value. 1In this case (MAL>P$Q .s taken as the value of
moment to be used when calculating fpe the maximum compressive

stress due to bending.

As mentioned in 8 2,3.4. the computer programmes would not
deal with some cases of loading, To complete the interaction curves
extrapolation and interpolation have been carried out. Where the
curves have been obtained in this way they are designated by dashed

lines.

5.3. Discussion of pinned column results

5.3.1. General behaviour

For columns under case {a) loading Figure 5.2. shows that at
collapse the plastic zones do not penetrate deeply into the cross-
section, and are well spread out along the column length. This
indicates that the deflections at collapse are not excessive., Load/
deflection diagrams have been plotted for all the pinned column
results and generally the maximum deflections at collapse for case
(a) loadings are of the order of two to three times the deflection

under moments alone.,

For columns under case (b) and (d) loadings the same

conclusion applies generally, but for the lower PP/BE values, i.e,
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less slender columns, plastic hinges begin to form at the ends., For
the higher wvalues of PP/RE under case (d) loading, the collapse
load is governed by the Euler load,

Initial curvature has very little effect on the general
behaviour of the case (a) and (b) loadings, except for the cases
under no end moments at all, It has a considerable effect on the
case (d) loadings because in such cases the initially curved column
begins to "unwind" immediately the axial load is applied, while the
initially straight column does not begin to "unwind" until very near
the collapse load.

A basic conclusion is that the behaviour may be governed
completely by elastic theory, completely by plastic theory, or by a

complex interaction of the two,

5.3.,2, Collapse loads

A comparison between the sets of interaction curves in Figure
5.3 confirms the well known sensitivity of the collapse loads to the
effects of slenderness, TFor PP/PE = 0+5, however, the loads are
beginning to be bounded by the condition for a fully plastic hinge
at the end of the column, Reductions in the PP/PE value below 05
cannot therefore gain much in carrying capacity.

For each set of curves the variation in moment loading pattern
has a significant effect on the collapse loads., The effects are
roughly similar for Pp/Pg = 2:0 and PP/PE = 4+0, Earlier work by
the author with 'DEUCE' autocode programmes indicates that the
effects of moment loading pattern for values of PP/PE up to 15-0 are
very similar to the effects at PP/PE = 4-0. As PP/PE falls below
0¢5 the variation in moment loading pattern will have less
significant effects as all lcad cases will tend to be governed by the

plastic hinge criterion,
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The effects of initial curvature are significant where the-
~nd moments are small and for case (d) loading in symmetrical
double curvature, Otherwise the effects are small in comparison
with the effects of slenderness and moment loading pattern, Il is
tor this reason that initial curvature was not considered in the

analysis of restrained columns,

hot Discussion of restrained column results

Hoh 1. General behaviour

The four typical examples for each case of moment loading,
which are presented in Figures 5.4 -~ 7, are discussed in turn
below,

Figure 5.4 portrays the example chosen U'yom the resulls 1ux
colums under case (a) 1oading. It will be seen that the column
moments Mpp and Mgy, initially gquite large under moment loading cnly,
reduce as axial load is applied, and eventually reverse and restrain
the column, The bending moments at points near the ends of the
¢olumn initialily increase and then decrease causing the unloading

shown, At the centre of the column the bending moment continues
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to increase and plasticity penetrates well into the cross-section,
giving & zone of very high curvature. The peak of the load
deflection curve is not reached until plasticity begins to develop

at the ends of the columm under the increasing restraining moments,

A study of the results for other colums under case (a)
loading has revealed several variations from this typical behaviour.
The first is that while the column moments Mpp and Mpa always
become less as axial load is applied, they need not reverse before
collapse is reached, It follows that the development of plasticity
at the ends of the column is not essential to collapse. The
second i1s that the amount of unloading dependsto some extent on the
magnitude of the end moment loading and the Pp/Py vaelue. For the
lower end moments My and Mp and high PP/PE values the unloading
zones are much smaller, The third variation is that for higher

PP/RE values the central curvatures do not rise to such high values,

For several columns under case (a) loading difficulty was
experienced because the values of curvature at the centre of the
column rose above the limiting value discussed in 8§ 3.1.1.,
indicating that possibly plastic hinges should be forming. A rough
check using the rigorous equations given by HORNEEO showed that
central plastic hinges would develop for only very few of the

columns analysed,

Figure 5.5 portrays the example chosen from the results for
columns under case (b) loading. It will be seen that the column
moment Myp alters in the same way as for the case (a) example, but
since Mpp is already a restraining moment under moment loading only,
its value increases as axial load is applied, The location of the
point of maximum moment is initially at end A, but after a certain
stage it begins to move towards the centre of the column, Shortly
after the point of maximum moment passes a given cross-section the
moment on that cross-section begins to decrease and unloading starts,
At end B plasticity begins to develop early in the loading and
penetrates almost to the same depth as at the point of maximum

moment in the column length,

A study of the results for other columns under case (b)
loading reveals that generally the column moment Mpp does not
reverse before collapse is reached., The amount of plastieity and

unloading varies in the same way as for the case (a) loading,
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Figure b,6 portrays the case (c) examplie, 'I'he behaviour is
essentially the same as for the case (b) example, with a tendency

for more pronounced plastic zones to develop at end B.

Figure 5.7 portrays the example chosen from the results for
columns under case (d) loading, The behaviour of the half-column
is similar to that of the case (b) example, except that plasticity
does not develop at the lower end of the half-column, i.e. the

centre of the full column,

The reduced critical loads P'pg associated with the single
curvature "unwinding" mode of deflection are shown, the Shanlcy
criterion having been used. It will be seen that the reduced
critical load drops below the actual load on the column slightly
before the peak of the load/deflection curve for the half-column,
Thus this column should collapse by "unwinding". For this
example the reduced critical loads of the half-column have also been
calculated. These loads are equivalent to the reduced critical
loads asscciated with the double curvature mode of deflection for
the whole column, It will be seen that the reduced critical load
in the double curvature mode can be less than in the single

curvature mode,

For many case (d) loadings the reduced critical load
associated with "unwinding" d4id not drop below the load on the half-
column, even after the peak of the load/deflection curve was reached,
indicating that "unwinding" would not occur., For some cases, on
the other hand, "unwinding" begins while the column is in the elastic

range.

Figure, 5.8 gives some of the results for a case where
Mp = -0-9M,, i.e., very close to a case (d) loading. For the
corresponding case where My = -My it was reckoned that "unwinding"
would not occur and the collapse load was taken as the collapse load
of the half-column., It will be seen that the collapse load for the
case where Mp = -0+9 My is only very slightly below that for the
symmetrical case. A study of the plastic zone diagrams shows that
the overall behaviour of the two cases is very similar, It is
considered that this example confirms that "unwinding" need not

govern the collapse of a column bent in symmetrical double curvature,
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5.4.2, Discussion of collapse loads of restrained columns

Figure 5.9 confirms the sensitivity of the collapse loads

to the effects of slenderness, In contrast to the pinned column
behavicur the collapse loads do not become bounded by an end
plastic hinge criterion for low values of PP/PE~ As PP/PE tends
to zero, i.e. as the column becomes more and more stocky, the
collapse loads tend to Pp regardless of the moment loading, This
is because the plasticity in stocky columns allows the restraining
systems to carry all the moment loading, without producing a

significant column deflection,

The variation in collapse load due to moment loading pattern
is not as great as that due #o slenderness., It is of interest to
note that for a given value of My/Mp the case (a) loading is
always the most critical, and the case (d) loading the least
eritical, Generally the collapse loads for the case (b) loading
lie roughly midway between those for case (a) and (d) loadings,

The effect of variation in the magnitude of end restraint on
the collapse loads is most clearly seen from Figures 5,10 -13. A
variation in restraint factor Q from O¢5 to 100+0 generally produces
as much change in the collapse 1load as a variation in PP/PE from
05 to 40, Thus the magnitude of the restraint must be considered
as a major factor in determining the collapse loads of restrained

columms,

It should be noted that for cases (b), (¢) and (d4) loadings,
end moments My and Mp can be applied such that full plastic hinges
are developed at end A, or at ends A and B for cas¢ (d) loadings.
The start of axial loading causes these hinges to disappear because
part of the cross-section unicads under the decreasing column moment
MaAB. As explained in Chapter 3 the analysis will not deal with
plastic hinges. It was, however, generally possible to complete an
analysis with a value of (MpB)psg  ~asonably close to Mp, thus

entailing the minimum of extrapolation on the interaction diagrams,

5,5, Comparison with B,3,.449 = 1959

5:5.,1., Pinned column results

The load factors implied in B.3.449 can be obtalned by
dividing the loads at collapse according to the author's analysis
by the working loads according to B.3.449. The load factor

appropriate to a glven point on an interaction curve can be found
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by drawing a line from the origin of the interaction diagrame to
that point. The load factor is then given by:=-

Distance from origin to point on interaction curve

L.F. = Distance from origin to where line cuts the working load line

The maximum and minimum load factors for various loading
patterns have heen found by trial and errcr and are shown in Table
5.1 below.

Table 5,1 - Load factors for pinned columns

P ' Minimum - Minimum Maximum Maximum
¥ L.F, Case (a) L.F. Case L.F. Case L.F, Case
TR Tnitially (2) () (a)
curved ' Initially | Initially Initially
Straight curved curved
0+hH 1+95 2°15 280 300
10 185 20 2:65 310
20 1-80 1-95 2°70 325

LeeQ 180 ' 1-90 2-60 3-50

The load factor implied in the Perry-Robertson formula, on
which the permissible stresses in B.S.449 are based, is 2.0, so that
the minimum values of 1-:8, though unconservative, are not alarming.
It is probable, however, that with cross-sections with lower shape
factors, e.g. I sections bent about the major axis, the minimum

load factors could fall to 1°5H,

The maximum load factors indicate that the B,3,449 design can
be conservative, If the case (d) loading is rejected as being
unlikely to arise in design, the maximum value of 2+8 does not

appear excessive,

It can be concluded that the design of pinned columns
according to B.S5.449 is reasonably satisfactory. Unfortunately the
pinned column under known end moment loading is extremely rare in

practice,

5.5.2. Restrained column results

The working loads according to B.S.449 have been obtained
assuming an effective length of O<7L. This is only Jjustified if
adequate restraint 1s provided, It is considered unlikely that a

designer would assume adequate restraint unless the beam to column
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stiffness ratio was at least equal to 10, The maximum and minimum
load factors have therefore been obtained for @ = 1:0 and @ = 5-0,
The load factors can be assessed by the same method as was used for
pinned columns provided (Mpp)ps=e For the collapse loading is less
than My, the yield moment. Whén this is so the external moment
loading is directly proportional to (MAB)P=Q . T'he collapse

loads at the minimum load factor were found to fulfil this condition
and the maximum load factors were assessed for an upper limit of
(MpR)peg = M, corresponding to the collapse loading. The results

are presented in Table 5.2 below,

Table 5,2 - Load factors for restrained columns

Fp 1Minimum L.F. Maximum .7,
= < Case (a) Case (d)
Loading Loading
05 1+0 2:25 3:50 '
10 10 2350 360
20 1.0 2:0b %60
Lo O 10 180 3.60
05 5+0 2°25 370
1+0 5-0 2+55 385
2:0 50 255 405
40 5-C 2+30 b 50

e

The load factors for cases where (Mpp)peo >M, for the
collapse loading must be obtained by a trial and error procedure,
This has been done for a few cases and the maximum values are some-

what higher than those given in Table 5,2 above,

For the restrained column case (a) loading is probably less
common that case (b), (¢), and (d) loadings. It can thus be concluded
that the B,S.449 procedure will generzlly be conservative, although

it is possible for unconservative cases to ococur.

The large range over which the load factor may vary indicates
that the design of restrained columns according to B.S.449 is

unsatisfactory.
5.6, Conclusions

It has been shown that the behaviour of columns up to collapse
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is generally governed by a complex interaction between elastic
and plastic theory, although some particular cases can be governed

entirely by either elastic or plastic theory.

The major factors influencing the collapse loads of pinned
columns were found to be slenderness, and the magnitude and

arrangement of moment loading,

The major factors influencing the collapse loads of restrained
columns were found to be slenderness, magnitude and arrangement of

moment loading, and magnitude of end restraint.

For both pinned and restrained columns it was found that case
{4) loading in symmetrical double curvature is always less critical

tla1 case (a) loading in symmetrical double curvature,

The design criteria suggested in B.S,449 = 1959 for members
under combined bending and thrust are found to be reasonably
satisfactory for pinned columns., For restrained columns, however,
the B.5.445 criteria can lead to very conservative results and are

considered unsatisfactory.
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CHAPTER 6

6. Conclusions

A summary is given first of the major conclusions, followed

by suggestions for future work in this field,

6.1. Major conclusions

An analysis for restrained columns held against sway and
bent about one axis of symmetry has been developed and programmed
for an electronic computer, Results obtained using this analysis
have been compared with results of analysis and tests by other authors.
Tests carried out by the author on pinned steel columns, pinned
aluminium columns, and restrained aluminium columns, have also been
analysed. The general level of agreement between theory and
experiment is very good and it is concluded that the analysis can
be relied on to give a good estimate of the collapse lcad of a given

column, as well as forecasting its behaviour during loading.

The analysis has been used to analyse restrained rectangular
columns of ideal elastic~plastic material over a wide range of
conditions, It is concluded that the axial load-carrying capacity
of pinned columns is influenced mainly by slenderness, along with the
magnitude and pattern of end moment loading. The influence of initial
curvature is not found to be significant except where the moments
coming on to the column ends are small, The axial load-carrying
capacity of restrained columns is found to be influenced by slenderness,
magnitude and pattern of end moment loading, and the degree of end
restraint available, For a given value of end restraint and a given
value of out-of-balance external moments it is found that the most
critical loading condition is always where the moments produce
symmetrical single curvature. The influence of initial curvature

was not investigated for restrained columns,

A comparison has been made of the c¢ollapse loads obtained for
columns of ideal elastic-plastic material with working loads obtained
using the ecriteria given in B,3.449 for members under combined bending
and thrust, Tt is concluded that these criteria are satisfactory
when applied to pinned columns. For restrained columns, however, the
ratio of collapse load to working load varies over a wide range and

it is concluded that B.S,449 is unsatisfactory for such columms,



6.2, Suggestions for future research

The major point here is to what extent this work could be
used in developing design methods. It was concluded in Chapter 5
that column behaviour mey be completely controlled by either elastic
or plastic theory and more usually by a complex interaction of the
two., It seems unlikely therefore that design methods based entirely

on elastic or plastic theory will be satisfactory.

In the author's opinion a design method could be developed
based on interaction diagrams such as those shown in Figure 5.9.
For a given trial section the values of PP/PE: Q, MA/MP, and Mp/Mp
could be calculated, Mp and Mp being given by the out-of-balance
fixed end moments acting at the column ends, The value of PF/PP
could then be read off an appropriate diagram. The value of P/PP
corresponding to the factored design load would then be compared
with.PF/Pp. A congiderable range of interaction diagrams would have
to be prepared but in the author® s opinion the amount of computer

time required for this would not be excessive,

A difficulty which would have to be resolved in such a
design approach lies in the assessment of' @ when plasticity develops
in the restraining members. It is probable that conservative

assumptions can be developed for this,

Tor designing compressicn members in trusses the out-of-
balance fixed end moment M, and Mp will generally be very small,
and in such cases the effect of initial curvature will be of primary
importance, The interaction dizgrams could be prepared taking

account of a standard initial curvature and so would take account
of this,

The existing computer programmes will only deal with columns
bent about one axis, but it seems essential that a design method
capable of dealing with biaxial loading be developed. As mentioned
below the analytical method used in this thesis can be extended to
consider biaxial bending, Thus interaction diagrams could be
prepared for this case also. It is possible that a very large range
of diagrams would be necessary to give adequate coverage to the
practical range of columns and loadings, thus making the design
method too cumbersome, The author considers, however, that the

approach is still worth investigating.
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Specific suggestions for future research are given below,

6.2.1., Suggestions for analytical work

The existing computer programmes can be used to derive
design interaction diagrams for various types of columns, e.g.
steel I-sections bent about either axis, The effect of variable
cross-section along the columi. can also be studied., Since single
curvature bending is found to be more critical for uniform columns,
it may prove dvantageous to add material to the mid-length of the

column,

Amendments could be made to the existing programmes, con-
siderably increasing their scope. Variation in end restraint
stiffness during loading could be included, thus taking account of
the development of plasticity in restraining members. Different
sequences of loading could also be studied, e.g. axial load applied

first and left constant as moment loading is applied.,

The analytical method can be extended to deal with bending
about both axes, Torsicnal effects could also be included, provided
warping resistance and the Wagner effect were neglected, and the
assumption made that the torsional rigidity is unaffected by
plasticity in the longitudinal direction., The method would then
be capable of dealing with the important case of the I section bent
about the major axis, provided initial curvature about the minor

axls was present,

Details concerning the extension of the method are given in

an Appendix to the programme specification.*

6.2,.2. Suggestions for experimental work

As suggested in Chapter 4 some carefully controlled experiments
on restrained columns bent in symmetrical double curvature would
confirm whether or not "unwinding" always governs collapse of éuch
columns, A parallel series of tests on equivalent half-columns
(Figure 2,5b) would provide the half-column collapse loads for

comparison,

Other experimental work would be determined by the cases
congidered in analysis.

It should be noted that the analytical approach develcped in

* See footnote on Page 67
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the thesis effectively carries out an "experiment" on a
mathematical model. Thus it should not be necessary to carry out

large numbers of tests,
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APPENDIX A%

A1, Notation

by ®
%
1

22 P H S S H
~
]

=
1

Co: Ci:

dis dZ;
Do; Dl;

€os5 €1,

Bas Buy coroe e

Aoy Ay,

Sy, B
kp, kB
¥, ¥p

Q =
Dy =

Strain

Stress

Yield stress

Modulus of Elasticity

Curvature

Curvature at first yield under moment loading only
Second moment of area

Radius of gyration

Column length

Number of segments into which column length is divided

Segment length

ceveeeslxsaass.Cy = Initial deflections at each division
point
....... d%,.....0y.2 = Deflections due to loading
eesseaeDx,e0... Dy = Total deflections at each division point
N TR Axial strains at the column axis for

each division point cross~section

¢x‘“““' ¢N = Curvatures of column axis at each divisiun
point cross-section

- Ay - - Ay = Differences between assumed and
calculated deflections at each division point

Number of reference division point

Deflecticn of reflerence division point

Difference between assumed and calculated deflection at

reference division point

= End rotations of column due to loading
= Rotations of end restraining systems/unit moment

= Differences between calculated end rotations of columns

and rotations of end restraining systems
Restraint factor
Central deflection of column under equal terminal moments

equal to My

Notation for loading

P =
PE‘ =

Axial load

Failure or collapse load

6L



PR = TRuler load (= V¢ *EL/1?)

Pcg = Elastic critical load

P'er = Reduced critical load

Fp = Load to cause yield stress in compression over whole
cross=-section

M = Bending moment

Mos M1, o0.eMx, ceeddy = Bending moments at each division point

Mp = BExternal moment applied at top of column

Vg = Bxternal moment applied at bottom of coiumn

MAB = Moment on the column length at the top

Mp A = Moment on the column length at the bottom

(Mpp)p = 0 = Moment on the column length at the top after
applying Mp and Mp and before application of P

My = Moment to produce first yield in the absence of axial load

Mp = Full plastic moment in the absence of axial load

Notation for a typical division point cross-section x

Boy A1 s eeves Bpy seevs 8q T Areas of cross-section strips

Jos Yis cevssdrs seees ¥q = Distances of centres of gravity of
strips from the column axis

e = Strain at the centre of gravity of strip r

£y = Stress at the centre of gravity of strip r

(eEQr = Maximum strain to which strip r has been subjected

(fm) . Stress corresponding to (em),

(Et)y = Tangent modulus appropriate to strip r

o = Difference between calculated and required value of Py

B = Difference between calculated and required value of My

Xx = %%x

Yx = 98 5 2L

e - i 3%

Suffixes e

a - Signifies a value assumed at the start of an iteration
cyele

c - Bignifies a‘value calculated at the end of an iteration

cycle
Signifies a modification to an assumed value before starting

another iteraction cycle
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Notation for stress/strain curve

£o'y f'4, vovas £'y Lo... £y = Stresses at points chosen to
define stress/strain curve

e'vy, el , viiovi@'g wove.. €'y = Strains at points chosen to
define stress/strain curve

(Et)'o, (Bg)'2s vvvo (Bg)'s evven. (Bg)'y = Tangent modulus for
each of the straight line portions of the

stress/strain curve.
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APPENDIX A2

A2, Mathematical details of restrained column analysis

The calculation of curvature at a division point is
described first, a written flow diagram for the procedure being
ineluded, The calculation of the effects of slight changes in axial
load ané bending moment on the curvature is then described, followed

by a brief reference to the integration procedure.

Descriptions of the nalysis under end moment lcading only,
the analysis under end moment loading and axial load, and the
analysis for the reduced critical load, follow under separate

headings, Written flow diagrams for each analysis are given,

The convergence of the various iterative procedures is
discussed and the methods developed for obtaining initial estimates

to quantities aré described,

Finally, a written flow diagram giving the main outline of the
computer programme for the general case 1s given, with details of

the values stored after each of the major steps in the analysis,

More details of the computer programmes can be obtained in

the programme specifications.*

A2,1 Calculation of curvature at a typical division pecint cross-

section x

It is required to calculate the curvature corresponding to
given values of axial load and bending moment, which will be denoted
by Px and M ., Preliminary estimates of axial strain ey at the

column axis and curvature $x of the column axis will be available,

Referring to Figure 2.2b the strain ey** at the centre of

#* The specifications for the 'DEUCE' programmes are held by the

Civil Engineering Department, Glasgow University, Glasgow W.2,
while the specification for the 'SIRIUS' programme is held by the
Cement and Concrete Association, Wexham Springs, Stoke Poges, Slough,
Bucks,

#% Strictly speaking the strip strains sheuld be denoted by Cxos
€x1s eoeee Sxps oees Cxg. To avoid confusion the x suffix has
besn omitted where convenient,



gravity of any cross-section strip r, distant yp from the column
axis, is given by:-

e = €, t Px,. A2,

The value of stress fy corresponding to this strain is obtained
from the stress/strain curve (Figure 2.3) by an interpolation
procedure, along with the appropriate value of tangent modulus
(Bt)r, which is required later. If unloading is to be considered
then a maximum value of strain (ep), to which the strip has been
subjected will be available, If e, s less than (em)? as showa

in Figure A2.1 then:-

fr = (fm)r - {(Qm)‘" B er}(Et)L
and. QSt)r = (Et);

A2,2

AN A

The area of strip r is denoted by ap and thus the axial force
in the strip is given by a,f,.. The total calculated axial force

(Px)¢ is given by:- .

(B = 2. At 22,3

=0
Similarly the total calecdated bending moment (My) about

the column axis is given by:- ,
q
(Made = 20 arfeye A2
r=0

If these calculated values (Py), and (Myx), are reasonably
close to the required values Py and My, the correct values for ey
and ¢.x have been assumed. If they are not sufficiently close,
modification to ey and ¢ x must be made and new values of (Py),

and (My), obtained.

To evaluate the modifications it is convenient first to

calculate the following quantities:-
- P )
(> 8 (F;)Q Px )

}3 (P4x>a h !V1x

o and B should be zero and the modifications to ey and @

i

A2.5

1]

should be such as to reduce them to zero, Denoting the modifications
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by (ex)q and (be)q , the following governing equations hold:-

d ol é.ﬁ = = oL
(& + 5.8y

A2.6

é‘g‘x (ex)y + —%(‘Px)q

M e S e A AN

The partial derivatives in equations A2,6 are obtained by
differentiating equations A2.,5, noting that Py and Mx are constants,

l1.e,:=

< _ 3R . 2x 3 (B

— =
-

—S—gx dex ' S—;" éd’x

MO o 38 MMy
A@x ée'& : s¢7( é‘h

The partial derivatives on the R.H. sides of equations A2,7 are

o

A207

I&/
R T W, N

calculated by considering the effects of slight changes in ey and

¢X, denoted by Jex and Stfx, as shown in Figure A2.2.

Sex produces changes in strain equal to £ex over the whole
cross~-section (P:‘-igure A2.2a). Tre stress change at anv strip r
equals éex(Et)r, and thus the total change &(Py) o in caloulated

axial force is given by:-

4
S(Pi)c = rgo .Sew (Et)ra
. ~ 4
o %%% = Z (Ee)rar AZ,?

r-o
\ 4
Similarly dMa)e | o € A2.9
Je , : '&)r Qr Yr
x rso '
£¢X~ produces a change in strain at the centre of gravity of
any strip r equal to S¢>X yr (Figure A2.2b), with a corresponding
stress change given by g¢x yr(Et)r- Thus in this case the total
change § (Px)¢ in calculated axial force is given by:-

]
SR = 2, Sox (i) ayy,

rvo

i.e. B(P"% i Ee) a, Yy A2.10

r=0

Similarly 3 (M,
3-%—:—5 t (B, ary? 42,11

t'to



For convenience the following abbreviating symbols are used:-

2 ® X e
. SN e /= = B¢l d
Xy = 3, d€x 2:‘;( v
%
Y R TCA M Y. N TS
Yx 3 e:x, ; ¢x één B‘Px 'é‘;( f)V r tjl’ A2°12

; 2
a {Miag DS <7y 2

Z., = Wheie 8B 5
* ® Px * oo T (Ee)rar Yr

Since the values of (Et)r are known for each strip the

red

R N N D g

values of Xy, Yx and Zy can be found thus giving the coefficients
for the L.H. sides of equations A2,6. Solving these equations leads
to values fou (exﬁq and (¢)Jq as follows:-

Y - & Z
Qe*)ﬁ = Jélm__m_m_ - T

XeZ, ~ V2

¢ =a°SY’~‘_ﬁZ"
(~ N )<12;x = &;? -

A2.13

e e e N S N

The modified values of e, and ¢, denoted by e'y and ¢'x

are given by:-

e‘ﬂ. e-x + (e'x)']
) A2 Ak

px = ¢ + (3 :

Using these modified values new calculated values of (Px)g

and (Mx)c are obtained, If they are still not reasonably close
to the required values the modification procedure must be carried
out again. The procedure is repeated as often as necessary. The

problem of convergence is discussed later (8 A2.7).

Sign Convention

3trip areas ag, 81, ...... are taken as positive, along with
compressive stress and strain. BSince the axial force P is a product

of stress x area, compressive force is positive,

Other quantities are conveniently defined by referring to
Figure 2,1. M is defined as positive when it produces concavify
towards the left. Positive curvature is taken as the result of
applying positive M., It is found that for consistency y must be
taken as positive to the left of the column axis and negative to the

right.
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It is of interest to note that the column axis can be
chogen arbitrarily and that the calculation is exactly the same for

cross—sections in tension,

Flow diagram for computer programme

The flow diagram is shown in Pigure A2.3, It should be noted
that values of (Px)s, (Mx)es ©x, $x» Xx, Yx, Zx and Xy 2y - Yy°
are stored away after each calculation is complete, These values
provide an initial trial for the next calculation and the values

of X , Yx, Zy, and Xy 24 - YX2 are used elsewhere in the progrzmme,

In calculating the stress at any creoss-section strip the
programme was arranged to take account of unloading, a strain history
being kept for all the strips in each division point cross-section.
The programme could not deal with strips which yielded first in one

direction and then in the other,

A2.2, Effects of slight changes in axial load and bending moment

In assessing the effects of slight changes in the assumed
loading on the column it is necessary to assess the effects of slight
changes in axial load and bending moment on the curvature., Denoting
such changes at any cross-section x by dPy and dMy, and the
consequent changes in ey and.tﬁx by dey and d¢ 4, the following

governing equations hold:-

3 P de, + s P de, = AP"‘ g
ye. 3 b, g AZ.,15
d M, dex {Fj.‘ déy, = d"" %

dex 3 Px

The values of Xy, Yy, and Zx, are stored with the results of

the last curvature calculation and give partial derivatives as
v o P sy o M 3B z . 3.
x By * 3 ey §¢'x ! §4bx
e " (Pde= P and Mude= M, | 34 follows that:-
= .§._P§ - - }MW = éP“'( . }M;
X = de, T, Tex TP, Zn ¥ Y
Substituting in equations A2,15 and solving for(iﬁx: gives:~
J dMy Xx = dB Yy
P XezZk - Y h2.16

follows:-

71



A2.3, Integration Procedure

The method is exactly the same as that given by NEWMARK in
reference 33, pp. 1168-1170, under the heading of "Simplified
procedure for smooth angle change curves", to which reference should
be made for full details, The procedure gives values of d,, d3, ..
dN-1, which must be added to the initial deflections e1, c2, ......
CN-1 » to give calculated deflections Di, Dz, «v... Djy-q. The end
deflections D, and Dy are given directly by C, and Cy.

The end rotations are calculated from formulae as follows:-
: d >\l. . .

@) = NS A LI 6, - <I>z)
A2 A7

(98):. = d“ﬂ + %(T(PN + é¢N—l ‘¢>No )

Al

St e e

It should be noted that these rotations are due to loading only,

The sign convention used is conveniently defined by reference
to Pigure 2,1. The deflections and end rotations shown there are
taken as positive. End A of the column is conventionally regarded
as the top of the column, and division point nmnberiﬁg always

starts from there.

This method of integration is elegant and has been shown to be
very accurate in the elastic range, It can easily be extended to
deal with rigid end gusset lengths, but it becomes cumbersome when
dealing with unequal segments, or with a step-wise variation in

cross—section along the column,

A2,.4. Analysis under end moments only

It is required to find a solution under applied moments My
and Mg (Figure 2.1). It is assumed that when My = Mg = O,
Mpp = Mpa = O.

At the start of the analysis initial estimates for Mpp and
Mpp must be made, The procedure for this is given later. Assuming
that estimates are available, the bending moment at any division
point cross-section x is given by:-

_ . (1\13“ - N‘F\B) X
M, = Mag + .

22,18

Using the procedure given in AZ2,1, the curvature corresponding

to this bending moment is found, and when the curvatures at all
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divigion points have been found, the integration procedure given

in A2.3 is used to give calculated deflections and end rotations.

To check whether valid assumptions for Mpp and Mg, have been made,
the end rotations must be checked for compatibility. The conditions
for this are:-

(@A)‘_ (MA" Mms) Ka

it

AZ.19
(Mg ~ Msn) Kg

K@ B) &

e e NN AN

It is convenient to carry out the check by calculating the

following quantities:-

€y = (eﬂ)c ~ (Ma = Mag) k,

A2,20
¥g = (Qa)c - (MB - MBA_) kg

e N A A AN

From equations 42,19, ¥, and ¥p should be zero for com-
patibllity to be satisfied. If they are not sufficiently small
modifications to Mpp and Mpp must,.be made such that on recalculation

?»'A and XB are equal to or at least closer to zero,

Denoting the necessary modifications by (MAB)Q and (MBA>Q

the following governing equations hold:-

)
b ?{.q . _A_EH = ot X )
_S—M:e(M%)q + } M'em< Maﬂ)f' ? %

) A2. 21
3 (Vo + ¥ (M) - — g )
S MA8< Ae):; ‘ éM@,,( MBA),-, B g

Prom equations A2,20 by partial differntiation the folIbwing are

obtained: -~
& = B(@A) c + |,< A ; é—b“ﬁ. = k(eﬂ)___c g
3 Mag o Mpe S Mgp dMg, g
)
?_EE _ 5(58)c ’ ; E_ég_ = E(ngg 4 k g A2.22
éMﬂB 3 MAB élMgﬁ Q’MBA 8 %
)
)
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The partial derivatives on the R,H. sides of equations A2,22 are
obtained by considering the effects of changes in Mpp and Mp, on

(84)¢ and (8B)y. For convenience unit changes are considered.

Effect of unit change in Map

The change in bending moment at a typical division point

cross-section x is given by:-

(JM")m“,,: [~ % A2.23

From equation A2.16, the corresponding change in curvature is:-
. -
(d#=), = U= )% Xx A2.2%
MAB-I xex'— \‘x
Values of Xy and X, Zy - Y,° are available from the results of the
curvature calculations, and thus the changes in curvature at each

division point are calculated.

The logical procedure now would be to add these changes in
curvature to the values Just integrated and integrate again, The
differences between the calculated end rotations thus obtained and
those previously obtained would give the partial derivatives

iﬁgﬁl: and Eﬁiﬂs directly.
3 Mue ¥ Mag

The procedure actually used, which gives the same result, is
to integrate the changes in curvature only, using an integration
procedure which does not add in the initial deflections C,, Ci,...
CNn. The calculated end rotations from this integration, denoted
by d9, and dep, give the required partial derivatives directly, i.e.:

- B
(den);,.,,“=, = R Ai\;he

(d eg)dM _ } (98)1’; A2 .25

ag=! dMa,

p N, NIV NIV MDY, N N

Bffect of unit change in Mp,

The change in bending moment at a typical division point

cross~section x is given by:-
%

(d M">dMsn=ﬁ= N 42,26
and from equation A2,16 the corresponding change in curvature is:-
(éo.) 5 X
de. ) = o N 7 £42.27
x JMBR"' XX Zx m Y,?'
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Integration of these changes in curvature as for unit Mp leads

to calculated end rotations which give the required partial

36n)c

derivatives directly, i.e.:~

. = )
(db&)dMgﬂ."i BMGA %
A2,28
= 3®gk : .
(d So)s M~ 3 Mg, %

The coefficients of equations A2.21 can now be set up and
solutions for (MAB).z and (MBA)Q obtained. Denoting the modified
values of Myp and Mpp by M'aB anth'BA, they are given by:-

it

Mums Mas + (MAB)'I

, -« A2.29
ﬁqaﬂ = Mgy + (ﬁﬂgﬂ)q

LN L N N N L

Using these modified values new calculated deflections and end
rotations are obtained and the compatibility checked once again.

Modifications to Mpp and Mpp are carried out as often as necessary,

Flow diagram for computer programme

This is given in Figure A2.4k. A start is made by calculating
Y5 and egB corresponding to Mpp = Mgy = O, A facility is provided
to read values of Mpp and Mp, manually, The reasons for this are
given in 8 A2,7, while details of the data to be storeu after a

solution has been obtained are given in 8§ A2.8,

A2.5 Analysis under end moment loading and axial load

It is required to find the axial load P‘which when combined
with end moments MA and Mg will produce a specified deflection Dy
at a specified division point called the reference point., To start
the analysis initial estimates for P, Myp, Mps, and for the divisiom
point deflections (Do)g, (D1)g, eeeves(Dy)gevess..(Dy), must be made.

The procedure for obtaining these is outlined in 8§ A2.7.

Assuming that estimates are available the bending moment at

each division point cross-section is given by:-

My = Mag + (Mea;Mms)x 3 P(D:x)q 42,30
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The axial load acting on each division point cross-section is taken
as équal to P since the column deflections are assumed to be small,
The curvatures at each divisioh point are calculated and integrated
to ~ive calculated deflections (Do), (P1)eosearvs (Px)geee--o(Dp)e
«ve..Dy, and calculated end rotations (6p)q and (Sp),. These
calcnlated values must now be checked for compatibility.

The compatibility of the end rotatiéns and of the reference

point deflection is checked’by calculating the following quantities:-
¥a = ©a)e — (Mf\ - MAB) kA
g = ©p) — (Me ~ Mga)ka

A2 A

Ag = (DR)C - (DR)‘*

N ™ S ALK e N

¥Yp, ¥ps and A g should be zer'a. If they are not sufficiently
and Mgp
small, modifications to P, MAB,A'are made and rew calculated deflections

and end rotations obtained. Denoting the modifications by Pgq ,

(MAB)q , and (MBA)'? the following governing equations hold:-

' \ )
3%, 4 ¥ (M Xa (M), = -y, )
b P:} } 3Mm§ f\ls)q + %MB“L Bﬂ)q ¥a %
)
)
l‘i‘ig R ) AXB M r 'Yrs_ M = - Y
SF’ n T BMM( mz)q T 3 Man(' BA)q R g A2.32
|
28k p +§§L(M ) 4 B8R (Mg,), = —
P k a Mpg - " AMBH( 8&)} AR%
)

The partial derivatives which form the coefficients of
equations A2.,32 are obtained by differentiating equations A2,31,

giving:=-

b ol b _ b0y M L
Y Y ) 3Mpg 3 Mag dMpa W Mgy ‘_

A2,35

R N L WL . P
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)!Y;g % & )C . 53,3 . é(eﬁ)c . b_}_‘g - }_(QEJ‘C + kB

—— 2 RSN y e T e

YP AP dMae AMas | IMga  AMga

A2.33
Mo V0o . dAe | 30D - 3 | 3Dk

R

%
§
3P Y ' S Mae ::’sMAa ’ Mea d Mga g
The partial derivatives on the R,H, sides of equations A2,33 are

found by considering the effects of unit changes in P, Mpap and Mpy .

A unit change in P produces a change in bending moment dM,

at division point cross-section x equal to (D Referring to

e
equation A2.16, the consequent change in curvature is given by:-

. QDK)Q Xx - Y?c
(f{qsx)apu T X, Z, =N 42,34

Integrating these curvatures gives values of end rotation ae, ,
deg, and reference deflection dDR, which give the following
partial derivatives directly, i.e.

Og)e A(De).
X) (“D) . AP A2.35

(d eﬂ)d9~ é@n)c ) (d 93).19-

A unit change in MpB produces a change in curvature at

division point cross-section x given by:=-

- XA X
(d4, )d " (;( = N-)Wm‘ 42,36

Integrating these curvatures gives

— 36 3esk . py = B .
(Gl@ )"” ! AMpp (ee)dms éMAB ’( R)‘{Mns:‘ dMag h2.31

A unit change in Mpp produces changes in curvature given by:-

= _ NXx
(d ¢")JNM= > g::_\?{ A2.38

Integrating these curvatures gives:-

(J = :}’L@h)c . (de )d —_ s(eg)c '(dDR)d = é_@l&-’_c

[2) H 8
Ad”ﬂﬂ"' éMﬂﬁ TdMgg =i E’MBH Maa=! éMu& A2,3%9



The coefficients for the L. H, sides of equations AZ2,32 are
now formed and solutions for the modifications P, , (MAB),.7 ,
and (Mp,), obtuined. The new values of P, Mpp, and Mp,, denoted
by P', M'pp, and M'p,, are given by:-

P'= P + P,)

Megs = Mg + (M'B,,),,

e e e S N N N N

Calculated deflections and end rotations corresponding to these
new values are obtained, anc further modifications to P, Map, and
Mpp carried out as outlined above, until ¥,, ¥y, and Agp are

sufficiently small,

At this point the calculated deflections at division points
other than the reference point are compared with the assumed
deflections, If they are not suffieiently close, the calculated
deflections are taken as new assumed deflections, and new calculated
deflections and end rotations are obtained once again, The changes
in assumed deflections .can result in values of \fA) EB’ and ig]i
which are not sufficiently small and thus further modifications to

P, Map, and Mpp may be necessary.

The procedure is repeated until XA’ XB’ and AR are
sufficiently small and the calculated deflections sufficiently close

t. the assumed deflections., A valid solution has then been obtained.

The flow diagram for the computer programme is shown in
Figure A2,5,.

A2.6. Calculation of reduced critical load

It is required to calculate the critical load of an
initially straight column with the same end restraints as the actual
column, bhut possessing reduced stiffnesses at division points where
plasticity is present., Where no plasticity is present the procedure

gives the elastic critical load,

The first step is to determine the stiffnesses at each
division point. The change in curvature at division point x due to

a unit change in M, (i.e. the stiffness) is obtained by reference
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to equation A2.16 and is given by:-

X

( ¢")de=1 X Zo =Y A2,
For convenience, XE&___Z will be denoted by (EL%S‘
x;zx-\{; i

The stiffness obtained from equation AZ2.41 only applies if
the cross-section is subjected to a moment which is in the same
direction as the existing one, If the moment reverses, unloading of
fibres stressed into the plastie range occurs. In such cases the

stiffness can be taken as the original elastic stiffness which is

A
(EI),

The mode of deflection associated with the eritical load must

denoted by

now be assumed, and for convenience the magnitude of the reference
point deflection is taken as unity (Figure A2.6). Values of P'(g,
(Mpphegr, and (Mpp)cp. must also be assumed, the values of (Mpp)cr
and (Mpp) cr Peing dependent on the magnitude of the deflections,

The procedure for obtaining initial estimates is covered in 8A2.7.

Denoting the assumed deflections by (Dg)a, (D1)as eeee (Dy)as
vee.. (DN)a and dropping the suffix ( )CR , the bending moment at

division point cross-section is given by:-

Mga — Mag)x
M= Mpg + ( 8A v as) + Pl(Dx)a. A2 .42

The curvature due to this moment is given by:-

Mo ( Mx
w 3 3| or —— f dpprcpriafe‘
¢x G 1—):" E I)x A2.43

Integrating these curvatures gives calculated deflections (Do) o’

(D1)gsoeenee (Dx)gs seses (DN)e, and caloulated end rotations
(6a)¢ and (6p)g. These values must now be checked for compatibility,

Referring to Figure A2,6b, the conditions for compatibility

of end rotation and reference point deflection are:-
(eﬂ)c = Mms kn
(eB)c = —Mgy kg A2 by

(DR)C = |

R L e, v, N e s g
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These are conveniently checked by calculating the following quantities
which should be zerc if compatibility is satisfied:-

¥, = (eﬂ)c + Mm‘% kﬁl |
A2.45

YB = (@8)< + MBA kB

VAV (Dn)c =

e et e e et e e e e

If XA’ ,‘JB’ and AR are not sufficiently close tc zero then
modifications to P', Mpp, Mpp are made and new calculated deflections
and end rotations obtained, Dencting the necessary modifications
by Py (MAB)Q , and (MBA),.' the following governing equations
hold:-

' )

S_'P—i a -+ aMAB( ABK,(') EMBA ) ,«f? A ;
' )

355 f BVB (M é;'bjg iV — )

p! 0 3 Mag 1 5M3n( ”')'] é A2.46

)

e ot 4 AR (Mag)e + 28R (M) = ~ A
AP Py + bM,qé o EMBu( . ﬁ;

To obtain the partial derivatives which form the coefficients

of equations A2.46, equations A2.45 are differentiated giving:=-

N )
% = é@ﬁ)—& 5 é—X_& = é..__(gﬂ_)c_ + kA y é_zfﬁ_ = é(Gi‘!)c
AP! AP a.Mﬂg AMAB &M&q bMBA

a.\XQ - é(@s)c . ié:a; =z a..(e e)é ; _é}ig = ;@B)C_# k@ A2.LT
AP YT dMpag  dMan Mg Mgy

-

)

3¢ _ Moo, - Me _ 30k . 245 30 z
3P Sp' | dMag A Mpg )
)

The partial derivatives on the R, H. sides of equations A2.,47 are
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obtained by considering the effects of unit changes in P', Mpp,
and MpBA.

A unit change in P' produces a change in bending moment at

cross-section x equal to (Dx),. Thus the change in curvature is

Oek [ (2ol

(d¢,) 0.0 (ET) £ T)

(E t)x A2,48
Integrating these changes in curvature gives values of calculated

given by:-

end rotation d6,, d9p, and of reference deflection dDp which give

the following partial derivatives directly, i.e,:-

‘ _- é(ech oS e 6(03) ék’jmc
(de")apz.“ AP  (d6a),., <P ("‘D) oo 3Pt A2.L9

A unit change in MAB produces a change in bending moment at
division point cross-section x given by:-

, — vem———

(d M)y o N 42,50
AB

leading to a change in curvature given by:-
- or (I - )
(d%)dm (’ (EL) [ : ( N NE ), } A2.51

Integrating these changes in curvature gives partial derivatives as

follows: =

' 3(De)
. 5(91\): . a e %EE)_,__ 49 =R )e
(d eﬂ‘)d”'ﬂs;r sz ’ ( B)‘ Mg i dMpg } ( R?( Mag ! dMag 42,52

A unit change in Mpp will produce a change in bending moment

at division point cross-section x equal to x/N giving:-
X a5
——4 T ' rm——
(a( ¢x )0""‘3.».“ N (EI)x ] (or N(Ef)x) A2,.53

Integrating these changes in curvature gives partial derivatives as

= ¥k ; oy = 200k gy, - A0

R
dMﬂRt; N&A MBM:;( aMSﬁ A2,.5h

follows:=
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The coefficients of equations A2.47 are now formed and solutions for
Py (MAB)q R (MBA),? obtained which are added to P', Mpp, and
Mpp. Caloulated deflections and end rotations corresponding to these
modified values of P', Mpp, and Mp, are obtained. ¥,, ¥p, and

FaN p are calculated once more and they should now be insignificant,

The calculated and assumed deflections at other division
points are now compared., If they are not sufficiéntly close the
assumed deflections are replaced by the calculated ones and new
calculated deflections and end rotations obtained, The changes in
the assumed deflectlions may result in values of QXAJ XB’ and ﬁaR
which are not sufficiently small and further modifications to P',

Mpp, and Mg, may be necessary,

When ¥ ,, ‘XB, AR and the differences between assumed and
caleculated deflections at all division points are sufficiently

small a valid solution has been obtained,

The analysis as described above gives the reduced critical
load according to the von Karman criterion (8 2.4.1.). To obtain
the load according to the Shanley criterion, the values of stiffness

l

are taken as (Ejﬁt regardless of the direction of the moments,
g

The flow diagram for the analysis for the von Karman reduced
critical load, as programmed for 'DEUCE', is given in Figure A2.7,
The flow diagrame for the Sharey analysis is similar except that
Step 4 is omitted and steps 10 and 11 are carried out immediately
after Step 1 and the resulting partial derivatives stored away.

This is because these partial derivatives are not affected by
modifications to the assumed deflections, The 'DEUCE' programme can

be simply amended to calculate the Shanley reduced critical load.

A2,7. Convergence

The convergence of the iterative procedures described above
is dependent mainly on the equations involving partial derivatives,
In the plastie range these partial derivatives vary as the load
varies and thus the equations are strictly applicable only if the
first trial calculations give a degree of plasticity eclose to the
true value. The methods for obtaining the estimates for the first
trial calculations and some of the convergence difficulties are

discussed under separate headings below,
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A2.7.,1. Curvature calculation

Before starting the analysis proper initial trial values
were obtained by calculating and storing Xx, Yy, Zy, ¥ % ~ Yx°,
corresponding to ey, = ¢ 4 = (Py), = (My)s = O. Elsewhere in the
analysis the trial values were taken from a previous calculation,
gither from the previous stage of the analysis, or from the previocus

iteration within a stage.

Convergence difficulties with the curvature calculation are
dependent mainly on the stress/strain curve, examples of which are
shown in Figure A2.8., Also shown are the corresponding moment/
curvature curves for a rectangular cross-gection under constant

axial load,
Curve (2) presents no difficulties,

Curve (b) does not usually present any difficulties unless the
flat portion of the curve is long when the same troubles arise as

with curve (c).

Curve (c) presents a difficulty in that there are upper limits
to the values of Py and My which can be carried by the cross-section,
As these limits are approached a slight change in Py or M, will
produce very large changes in e, and ¢x' Because of this equations
A2,6 can yield values of (ex),7 and <Q’X)Q which are much too
large. The modified values of e, and ¢x are then so far from the
true values that convergence is impossible, This problem has been
largely overcome in the computer programme by setting limits to (ex)?
and (@ x)q . It still reQains possible, however, for the procedure
not to lead to a solution, when P and M are approaching limiting
values, If values of P and M exceed the upper limits it is obvious

that no solution can be obtained,

Stress/strain curve (d) presents the same difficulties as curve
(¢) with an added complication in that two values of curvature can
correspond to a given moment. Around the peak of the moment/
curvature diagram the procedure is as likely to arrive at one value
of curvature as the other., For this reason any analytical approach
to this type of cross-section will be difficult and no attempt at

it has been made.

Curve {e) is characteristic of annealed mild steel, The

presence of the drop from upper to lower yield results in values of

83



Xys Yy, and 2 which are not correct., In addition inaccuracies in
the calculation ofCkaand@Mgkarise because the cross-section strip
in which the drop in stress occurs cannot reasonably be assumed to
have a uniform stress, Despite these factors a number of columns
of material with an upper yield 35% in excess of the lower yield have

been successfully analysed.

Curves (f) and (g) result in moment/curvature curves which
again can have two values of curvature corresponding to a given

moment ,

In the computer programme a limiting number of iterations
through the procedure was set and if this was exceeded the computer
stopped. It was arranged that certain remedial measures could be
teken to continue the analysis. These remedial measures are
described in A2.7.3 below,

'A2.,7.2, Analysis under end moment loading only

The method for obtaining initial trial values of Mpp and Mpy
has already been indiecated in 8A2.4, If the column behaves
elastically under end moment loading only, these initial trial

values will prove to be correct,

If, however, the moment loading is such that plasticity is
induced in the column, initial trial values arée obtained which are
too large, If the wvalues are such that the capacity of one orcther
of the division point cross-sections is exceeded, the curvature
calculation will fail. To deal with this a facility for reading

initial trial values manually was inserted in the computer programme,

With regard to convergence, difficulties were occasionally
experienced when initial trial values of MAB and.MBA, inducing a
high degree of plastieity, arose. The procedure would diverge until
eventually a failure in the curvature calculation occurred., In such

cases the manual read facility was used to read lower trial values,

A2.7.3., Analysis under axial load and end moments

Between stages in the analysis the reference point deflection
D was increased by a specified fraction called the stage fraction.
To obtain trial estimates of P, Mpap, Mpp, @nd Do, Diy ovs Dyyuves
Dy, appropriate to the increased value of Dp, a complicated procedure

based on the results of the previous two stages in the analysis was
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used. Further details are not given because the author is now of
the opinion that a straightforward extrapolation procedure would be
Just ag accurate, For the first stage after the analysis under end
moments only extrapolation is not possible, and a procedure based ou

the results of the reduced critical load analysis could be used.

Tf the trial estimates of P, Myp, Mpp are not reasonably
close to the true values the calculation can diverge. No check on
divergence was included in the programme since the process very
quickly resulted in ridiculous values of P, Myp and Mpp, which led
in turn to failures in the curvature calculation., The remedy in
such cases was to reduce the stage fraction and start again,
recalculating Dy and making new trial estimates, By making the
stage fraction small enough the analysis could always be continued,

although the calculation time naturally increased,

Where an analysis diverges it is possible in the curvature
caleulation for values of (Px)c, (My)e, exs $x ... etc. to be
stored which are very far from the true values., To avoid convergence
trouble after the stage fraction modification, the current values of
(Pg)e eooo. €tc, are replaced by the values corresponding to the

last successfully completed stage in the analysis,

A difficulty can arise with equations A2.21 where stocky
column: subjected to loading other than nearmsymmetrical single
curvature are concerned., In the early stages of axial loading on
such columns the influence on the curvature of the bending moments
due to axial load can be much less than the influence of the axial
load itself, It is then possible for a modification in P to produce
exactly the same effects on ¥,, ¥p, and Ay as a combination of
modifications in Mpp and Mpa. FIl conditioning of equdations A2.21
results and ridiculous solutions for P? , (MAB>Q and‘(MBA»? are
obtained, In this case redueing the stage fraction cannot lead to
a solution and thus where this trouble was experienced the analysis
had to be abandoned, A method of solution for this type of problem
is to find the deflections corresponding to specified axial Yoads in
early stages of loading, switching to finding the loads corresponding
to specified deflections at a suitable point. Detailed procedures

for this approach have not been formulated.,

With regard to the initial estimates for Do , D1 .......Dy
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it was found that generally the estimates were very close to the
true values and no convergence difficulties were experienced on

this account.

The initial factor controlling convergence is the stage
fraction, This was supplied as part of the initial data for the
programme. Where curvature calculations failed, indicating a
divergent calculation, manual control was provided to modify the
stage fraction and re-enter the &stimating section. This manual
control could be replaced by an automatic procedure built into

the programme

A2.7 .4, Reduced critical load analysis

The initial deflections for the first calculation, i.e. after
the analysis under moment loading only, were taken as proportional
to the deflection from the moment loading analysis, adjusting these
deflections such that the reference point deflection was equal to
unity, The initial values for P'gp, (Mp)pp, and (Mpp)gp, were read
in as part of the data, although values of zero can be used, For
analysis at other stages of loading, the solution appropriate to the

previous stage was teken to give initial estimates.

Convergence difficulties arose only with columns where the
critical loads associated with the single curvature and double
curvature modes were very close to one another. TIf the previous
stage had resulted in a predominantly single curvature mode of
deflection, and a double curvature mode was appropriate to the stage
being considered, the deflection modification procedure led only
very slowly to the solution. In the programme 100 ilterations were

specified as a 1limit and occasionally this was not sufficient.

No convergence difficulties arose with the calculations for
the Shanley loads for the columns bent in symmetrical double
curvature, carried out using the auxiliary SIRIUS autocode programme,
A symmetrical sine wave was used as an estimate in this case. The
stiffnesses in the upper and lower halves of such columns are
symmetrical and thus the single curvature mode of deflection is
symmetrical and the double curvature mode is antisymmetrical. The
oritical load for the single curvature mode was found without
difficulty even when the critical load associated with the double

curvature mode was the lower of the two. The critical load for the
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double curvature mode was found by working with the half-column
(Figure 2.5b).

42,8 TFlow diagram for the complete programme

The flow diagram for the general case of analysis is shiov ..
in Pigure A2,8, The flow diagram for the special case of analyii .
for columms bent in symmetrical double curvatureis similar, thre
initial data being taken from the half-column, The analysis for
reduced critical load in this case is siightly different in that the

whole column must be considered.

The data to be stored after each of the major steps in the

programme 1s given below.

Data read in initially and stored

i) Stress/strain diagram detials

ii) Cross-section strip details for each division point or..
sectic.

iii) Initial eccentricity at each division point
iv) Values of N, R, KL, and stage fraction
v) Values of K, and Kg
vi) Values of M, and My
vii) Trial values of P! (MAB)CR, (MBA)CR

Data to be stored after analysis under end moment loading only

i) Store deflections Dg, Di, eeses Dy, and moments MAB and MBA
(for use in estimating values for first analysis under end moment
loading and axial load).

ii) Calculate strains at each cross-section and store in strain
history if yield strain e'y is exceeded (for use in curvature
calculations if unloading takes place).

iii) Store (Px)c’ (My) gy woeee Xy ~ Y2, for each division
point cross-section (for use if curvature calculation fails in first

analysis under end moment loading and axial load),

Data to be stored after a reduced critical load analysis

i) Store P'ono (MAB)CR and.(MBA)CR, and deflections at eacn

division point, (for use as estimates for next calculation).

Data to be stored afte: an analysis under end moment loading and

axial load

i) Store Dg, Dis +es.. Dy, and P, My, Mpp from previous
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analysis and replace with the values from the analysis just
completed (for use in estimating the values for the next
analysis),

ii) Store (Px)e, (Mx)os «ve.. KZx - Y¢°, for each division
point, {for use if curvature calculation fails in next analyds).
iii) Calculate strains at each cross-section strip and
overwrite the value in the strain history if it is exceeded,
except where the calculated strain is still below the yield

strain e',.
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APPENDIX 3

A.3 Detailed experimental procedure for column tests

A5

A3.2

The lay-—-out of this appendix is as follows:-

Tests on pinned steel columns
A%.1.1, Preparation of columns
A3.1.2, Details of test rig
A3,1.3. Test procedure

A3.1 .4, Determination of yield stress

Tests on aluminium columns

A3.2,1, Preparation of columns

A3,2,2, Determination of stress/strain curves

A3,2.3, Details of test rig

A3.2,4, Test procedure for pinned columns

A3.2,5, Calibration of restraining beams for tests
on restrained columns

A3.2.,6, Test procedure for restrained columns
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A3,1 Tests on pinned steel columns

A3,1.1. Preparation of columns

The cross-section of column chosén for test was %4" x %"9
failure being induced by bending about the weak axis. The columns
were prepared by machining down from "Ae" x %" ordinary M.S. black
bar, Tests were carried out without annealing. All specimens were

prepared from the same delivery of %e" x %" bar,

After the columns had been accurately machined, cross arms were
welded on at each end in order that moments could be applied during
tegt., The application of axial load was through case-hardened steel
saddles which were fitted at each end, Figure A3.1 shows typical
details of a test column. Alignment of the steel saddles was checked
and adjusted by using a Jjig. The straightness of the specimens was
usually well within 0-005" and the centre section was always aligned
with the lines joining the saddle grooves, the ends being adjusted

as well as possible,

The presence of the welded cross—arm and steel saddle meant

that approximately %" at each end of the columns was rigid.

Approximately 80 columns were prepared in lengths from 425"

- 16:25" overall, giving an L/r range of 60 - 250,

A3,1,2, Details of test rig

Details are given in Figures A3.2 - 4, and Plates A3.1 - L.
Axial load is applied through a lever with 10 x magnification
acting through an assembly supported by flat springs which allow
relatively free movement over a short rahge., The axial load is bal-
anced by a 5T capacity 3ki~Hi hydraulic jack, with which the axial
shortening of the column is taken up, This ensures that the assembly
remains in a neutral position with respect to the flat springs and

the lever load is carried by the column zlone,*

# This axial loading system was designed by Mr J.G.S. Smith, prior

to the author's start on this research.
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The moment loading is applied as a couple at each end of the

column to avoid affecting the axial load,

No means of eliminating eccentricity of loading about the
strong axis of the column is included, it being assumed that the
much larger moment of inertia about the strong axis makes the effects

of any such eccentricity negligible,

A3.,1.3, Test procedure

Tn all tests the end moments were first applied under a small
axial load, This axial load was necessary to hold the specimen

against any shear from unequal moments,

The axial load was then increased and deflection readings at
the centre of the column taken at each increment of load. Large
inerements were added at the start of a test and smaller increments

as the maximum load was approached,

Creep under constant load occurred with most columns, but this
settled down quickly. About two minutes were allowed between load
increments when creep was present., GCollapse was not usually
catastrophic, but consisted of a slow steady creep under constant
load, eventually becoming faster, Complete collapse of the columns
was avoided by the descent of the loading lever on to a stop.

Visual inspection of the specimen during and after test revealed the
locations where plastic zones had developed and this was noted down

for each test,

A3,1 .4, Determination of yield stress

After the series of tests was completed the yield stress of each
column was determined by performing beam tests. For the short columns
the cross—arms were cut off and extension pieces welded on to give a
beam of 12" span. For the longer columns (12:25" and 16:25") no
extension pieces were necessary. Two equal loads were applied at the
third points of the beam giving a central region under constant bending
moment, Load was added until the central deflection was increasing
slowly under constant load, The céntral bending moment then
preveiling was equated to the full plastic moment of the section and

the yield stress caleculated.

The yield stress was found to lie in a range between 185 and

19+5 Ton/ing, and a value of 19 Ton/inz was assumed when analysing
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the results.

A3%3,.2, Tests on aluminium columns

A%.2,1, Preparation of columns

The columns were cut by bandsaw from the same piece of
HE3OWP aluminium alloy plate, nominally 2" thick. They were then
mechined down to +" width., The depth of the plate was found to vary
between 0-250" and 0:253" and for convenience the columns were
grouped in two batches, the first corntaining columns approximately
0-250" deep, and the second contalning columns 0-255" deep, BEach
set of tests on columns of a particular length was made on columrs
selected from one or other of these batches. Approximately 60 columns

were prepared, in lengths of 47", 6%", and 8%",

A3,2.2, Determination of stress/strain curves

Two specimens, prepared from the same piece of plate as the
columns, were tested in tension using a Baty extensometer over a 2"

gauge length,

After analysing the first series of tests, there was some
doubt as to the validity of the stress/strain curve obtained from
these two specimens and two further specimens, selected at random
from the columns, were tested, For these cases the curves were
obtained in two stages, first with Huggenberger gauges (over a 1" gauge
length), to determine the initial part of the curve accurately, and

then with the Baty extensometer up to about 2% strain,

The loading on the specimens was initially applied in
increments corresponding to about 1 Ton/in® stress, dropping to lower
increments as yielding commenced, After each increment of load, the
stress was held esonstant and the strain read after creep had settled

down,

The results from all four tests are given in Figure A3.5 along
with the curve used in the computer analysis, The curve in

compression was assumed to be the same as in tension.

A3,2,3, Details of test rig

The axial load was applied through two loading heads which
were designed for a maximum load of 6,000 1bs. The column ends
were clemped into end fittings which were held to the loading heads,

Traversing screws enabled the end fittings to be adjusted in position,
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Details of the loading headsand end fittings are given in Figure A35.6
and Plate A3.5,

The loading heads were initially constructed on a "gimbal"
principle to allow freedom of rotation in any direction. For
convenience in this series of tests the apparatus was adapted to
give freedom of rotation in one direction only. This is the reason
for certain apparently superfluous details., The centre of rotation
of the loading heads is at the point where the column emerges from
the end fitting. Since the end fittings are %p" deep the effective
column lengths were 1% " less than the manufactured lengths, 'Ihe
effective lengths in the tests were 3-62", 5:12", and 7-24",

The loading heads were placed in an "QOlsen" 200,000 1b testing
machine, the upper head being clamped to the travelling head of the
machine and the lower head simply resting on the testing machine
table.

Levers were used for applying end moments in the tests on
pifined columns as shown in Plate A3.6, For clarity the apparatus is
shown set up outside the testing machine, The lever arrangement
shown is for case (a) loading (Figure 4.1). The lever arrangements

for the other loading cases are shown schematically in Figure A3.7.

The apparatus for the tests on restrained columns is shown in
Plate A3.,7. The restraining beams used for this series of tests
were of mild steel, 0-500" x 0+300", The support assembly at the
ends of the beams is shown in Plate A3,8. The ball-bearing through
which the beam passes provided a rotational freedom not required in
this series of tests., The assembly provided a simple support which
was raised or lowered, thus providing the same effect as an external
moment applied to the system. The span of the beams could be
adjusted to cover a range of restraint conditions. 2" long
electrical resistance strain gauges were attached to the top and
bottom of the beams to enable the bending moments at any stage to

be determined,

A3.2.4, Test procedure for pinned columns

Stub beams were first inserted into the end fittings which
were then clamped to the column ends, The lower end fitting was set
in the lower loading head and held in place by lightly tightening

the traversing screws, The travelling head of the testing machine
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carrying the upper loading head was then lowered into position until
a small axial load of about 100 1lbs was being carried by the column,
The traversing screws on the upper loading head were mlsoc tightened

up lightly.

To align the column dial gauges were set to measure the
deflections of the centre and one of the gquarter points of the
column, A small increment of axial load was applied and the
direction of increase of the central deflection indicated the
predominant eccentricity and also whiéh way the column ends had to
be moved in order to eliminate the eccentricity, One or ¢her of
the column ends was traversed to and fro until an increment of
load of 1000 1b did not alter the central defléction more than
0-001", At this stage the direction of increase of the guarter
point deflection was noted. To eliminate the quarter point deflection
the ends of the column were moved by equal and opposite amounts, as
near as could be judged, and then one of the ends was readjusted so
that the central deflection again did not change more than 0-001"
under an increment of 1000 1b load, If the guarterpoint deflection
under the increment of 1000 Ib was more than 0+001" further
adjustments were carried out, The columﬁj?eckoned to be correctly
aligned when both the central and quarter point deflections altered

less than 0:004" under an increment of axial load of 1000 1b,

In most cases alignment was not a serious problem as
careful loosening of the traversing screws enabled the end fittings
to be replaced in the loading heads in almost exactly the same
position. When alignment was completed, a dial gauge was set to
measure the central deflection. For the case (4) loadings in
symmetrical double curvature the deflections of one of the quarter

points was also measured. Dial gauges reading to 0-001" were used.

The end moment was now added in inerements, adjusting the
travelling head of the testing machine between increments so that
the axial load on the column remained at about 200 1b, This was
necessary because the bending of the column effectively shortened
the distance between the ends of the column and caused a reduction
in axial load. In one case, before this eéffect was noted, the
lower loading head was lifted right off the testing machine table
thus upsetting the deflection readings. Also under case (b) and

(d) loadings considerable horizontal shears were developed which on
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several occasions caused the lower loading head to slide sideways,
necessitating a complete restart to the setting up procedure. The

200 1b axial load was generally sufficient to prevent this happening.*

The deflection after applying the moment loading being noted,
the axial load was added by manipulating the testing machine
controls, Loading was applied initially in inecrements reading the
load and deflection after each increment, When the load was near
the maximum considerable dropping off in load (with a slight increase
in deflection) occurred when the travelling head of the machine was
brought to a halt., For convenience it was decided to carry out thu
final stages of loading to collapse with the strain control of
the maéhine set to its lowest value, This gave a slow continuous
increase in deflection and it was found quite convenient to note
load and deflection simultaneously. Tmmediately the load began to

drop off testing was discontinued.

Removal of the tested specimen was carried out by raising
the travelling head of the testing machine until the axial load
reduced to about 200 1b, removing the end moment loading levers,
slackening off the traversing screws, and then raising the
travelling head of the machine clear so that the column and end
fittings could be 1lifted out,

A%.,2.5. Galibration of restraining beams

Two calibrations had to be carried out on the restraining
beams, first to calibrate the strain gauge readings in terms of
moment on the beams, and second to find out the effective stiffness

of particular spans of the beams,

The strain gauge readings were taken on an 11 channel dirsct
reading strain bridge, produced by Tecguipment Ltd., Alfreton Road,
Nottingham, (Code No, C.U.11). The readings on the dials of this
instrument had to be adjusted until a line on a cathode ray

oscilloscope became horizontal,

To perform the moment calibration the beams were inserted into
the end fittings which were then gripped firmly in a vice. Moments

were applied by adding weights at a specific distance from the strain

If the author were to carry out more tests the lower loading head
would be firmly fixed to the testing machine table,
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gauge centre 1iﬁe and the corresponding changes in reading on the
Tecquipment bridge recorded., From the mean of several readings
the calibration factor was worked out, The centre line of the
strain gauges was at a distance of 2%" from the d; of the

column so that the bending moment at the column end is given by:=-

. = Msa. ( L, — 27§ )

where Mg ¢, is the moment at the centre line of the strain gauges

M

and.Lbis the span of the beams,

The stiffnesses of the beams were first calculated assuming
that the end fittings gave a rigid beam/column joint, After the
first series of tests it was realised that considerable deformation

was taking place in the end fitting Joints.

The stiffnesses were then determined experimentally by gripping
the end fittings in a vice such that the beams projected horizontally
Loads were applied at various points along the beam and the
resulting deflections under the points of application of load
measured, Dividing a given deflection by the distance from the
column centre line to the load gave the rotation which would occur
in a beam of that span subjected to end moment equal to that applied
by the load., This procedure did not take account of the rotatiou
in the joint between the column and the end fitting. This was
assessed independently by inserting a column into the end fitting
and clamping the fitting in a vice such that the column projected
horizontally. A load was then added and the deflection under it
measured, XKnowing the column size and the modulus of elasticity of
the column material the deflection assuming a fully encastre
condition was calculated. The difference between this and the
measured defliection divided by the distance from the load to the
end fitting, was taken to give the rotation in the joint. Thus
the total effective stiffness was calculated and a chart drawn up

giving effective stiffness against bsam span,

After the series of tests had been completed the rotation
in the column to end fitting Jjoint were reassessed by a more
accurate method., A spare column was fitted into the end fitting
which was again held such that the column projected horizontally.

Mirrors were attached to the column close to where it emerged from
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the end fitting and also to the main body of the end fitting, A
telescope was arranged to view a scale through these mirrors, and u
used to obtain the relative rotation between the column and the end
fitting body when a load was applied to the column. The rotation
in the short length of column between the point of attachment of the
mirror and the end fitting was calculated from a knowledge of the
bending moment, modulus of elastlicity and moment of inertia of the
eross—section, The rotations in the joints measured by this

method were of the order of twice those obtained from the method
described in the preceding paragraph,., In the author's opinion the
discrepancy is most probably due to an experimental error being

made in the first method,

A3,2.6. Test procedure for restrained aluminium columns

The end fittings were first attached to the columns and the
lower end fitting set in the lower loading head. The upper loading
head was lowered into position and the traversing screws tighten:d
up lightly under a load of 200 lbs., A rough preliminary alighnment
was carried out if necessary at this point, After the zero of the
beam strain gauges had been read the support assemblies plus the
beams were moved up into position and the ends of the beams inserted
into the end fittings. The end fitting Jjoints were tightened up and

the support assemblies clamped down to the testing machine table.

The final alignment was carried out as follows, The beam
supports were adjusted such that the beam bending moments were zero,
i.,e, no moment was being applied to the column, This was done by
setting the appropriate reading on the Tecquipment bridge and
adjusting the beam support until the trace on the osceilloscope was
horizontal.,* After two or three adjustments of each beam in turn
the desired condition was achieved ., Attention was now concentrated
on one end of the column and a small increment of axial load added.
The direction in which the moment altered was noted and the
increﬁent of load removed, The end fitting was then traversed in a
direction to offset the development of this moment and both beam
moments readjusted to zero. The increment in axial load was again

added and the alteration of moment noted once more. This

* The trace could be clearly seen from up to 10 £t away which

considerably facilitated this procedure.
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procedure was continued until the moment at that end was unaffected
by the addition of axial load, Attention was then transferred to
the other end and the same procedure applied thete, By dealing
with each end in turn as of'ten as necessary alignment was completed.
Correct alignment was assumed whan an increment of 1000 1b, axial
load caused hoth beam moments to alter less than 1 1b.in. This
aligning technique was found to be much superior to that adopted

for pinned columns though it took longer to carry out,

The moment loading was simulated by raising or lowering the
beam supports as shown in Figure 4.8, The value of (MAB)P = ( Wa..
declded on prior to each testand the corresponding readings on the
Pfecquipment strain bridge worked out. The supports were then adjusted
antil the required value of (MAB)P _ o Was obtained. This had to be
carried out in stages, bringing the axial load up tc¢ the nominal
value of 200 1b. between stages. Care was taken that the values of

moment at any stage did not exceed the required values,

The axial loading was applied in increments in the early part
of each test, and readings of axial load,beam strain gauges, and
central deflection noted after each increment. At roughly 80%
of the maximum load the strain control was set to its lowest value,
and readings thereafter taken "on the run", It was found that the
deflection then usually increased very slowly and generally did not
alter more than 0:001"™ while the beam strain gauges and axial load

were being read,
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