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'Restrained Metal Columns

SYNOPSIS

A review of previous research into column behaviour is made,

A general method of analysis for elastically restrained 

columns bent about one axis of symmtry and held against sway is 

described. The method was developed specifically for use on the 

English Electric ’DEUCE' computer, for which programmes have been 

prepared. In the method the column cross-section is considered, as 

a number of strips, in which the stresses are assumed to be uniform. 

The stress/strain curve for the column material is approximated by 

a series of straight lines, while proper account is taken of the 

unloading of fibres strained into the plastic range. The analysis 

considers particular columns, studying their behaviour as loading 

is applied up to and through collapse.

The validity of the method is checked by compprisons with 

analytical and theoretical work by other authors, excellent 

agreement being obtained.

Tests carried out by the author on pinned steel columns, pinned 

aluminium columns, and re strained aluminium columns are described. 

Analysis of these tests is shown to give results in good agreement 

with the experiments, confirming the general validity of the 

analysis,

The results of a comppehensive series of analyses of rectangular 

columns of ideal elastic-plastic maaerial are then presented. The 

variables considered are slenderness, degree of restraint, and 

magnitude and ratio of end moments. The general behaviour during 

loading is described. Detailed plots of collapse load values are 

given along with working load values calculated according to 

B.S. 449-1959. The load factors according to B.S. 449 are shown to 

be slightly below 2-0 in some cases. In most cases, however, the 

load factors are well above 2»0, while in some cases they are 

above 4*0„

Finally the major conclusions of the thesis are stated and 
suggestions for future research given.
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INTRODUCTION

The behaviour of metal columns has been the subject of 

research for many years. Despite this the problem is still not fully 

understood, and design methods are for the most part based oh 

nmpUrical formulae. The development of ultimate load design methods 

has centred attention on th4 actual behaviour of structures at 

collapse. It is therefore necessary for a full explanation of column 

behaviour to be obtained before a comp "hate ultimate load design method 

can be formulated.

The object of this thesis is thus to extend the knowledge of 

column behaviour. In view of the comppexlty of the problem the main 

emphasis of the work has been on developing a general analytical 

approach suitable for use on an electronic digital computer. The 

use of a computer has enabled a far wider range of variables to be 

studied than would have been practical in an experimental approach.

Chapter 1 of the thesis contains a review of previous work on 

columns, leading to the conclusion that the restrained coluimn in 

particular requires further study.

In Chapter 2 a general method, of analysis for restrained 

columns, developed by the author for use oh an electronic compiler, 

is described. The method has been fully developed for analysis of 

elastically restrained columns held against sway and bent about one 

axis of summery, and has been progrmamed for the English Electric 

’DEUCE' compuuer. The stress-strain curve for the column maierial 

is dealt with in a general marner by approximating it as a series of 

straight lines. The cross-section of the column is divided into a 

series of strips, which are considered small enough for the stress 

in them to be assumed unifonn. This enables any cross-sectional 

shape to be catered for, and by keeping a "strain history" for each 

strip, proper account is taken of maaerial strained into the plastic 

range. The method also takes account of variable cross-section 

along the column, initial curvature, various end and end

eccentricity comminaaians, and varying degrees of end restraint.

Pinned columns are analysed by this method using a very low value 

for the restraint stiffness.

In Chapter 3 results calculated by the author's method are

1



checked against those calculated by the methods of other authors. 

The author's method is also used to analyse tests carried out by 

other authors. Agreement is generally excellent.

Ii Chapter 4 tests carried out by the author on pinned steel 

columns, pinned aluminium. columns, and restrained aluminium. columns 

are described. The experimental results are compared with those 

calculated anc good agreement demonstrated.

diapHtezr 3 contains the results of analysis of a comprehensive 

range of pinned and restrained columns of ideal elastic-plastic 

material. The variables considered, are slenderness, degree of 

restraint, and ma.gnitude and ratio of end mommnt loading. The 

collapse loads are presented in interaction diagrem form, while 

salient features of behaviour are deminstrated by detailed plots 

of information for some of the columns. A comparison with 

design criteria given in B,S.449-1939* is made. This shows that the 
load factor against collapse is in some cases below the nominal 2*0 

implied in these criteria. In most cases it is above 2*0, and in 
many cases above 4*0.

Chapter 6 contains the conclusions of the thesis and 
suggestions for further research work. .
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CHAPTER 1

1• Review of previous work

The immense amount of work which has been carried out on 

columns it necessary to consider a selection from the more

important contributions.
2One of the first contributions was made by EULER , who in 1739 

developed the simple formula which bears his name. This formula, 

applies to centrally loaded columns in the elastic range. Since that 

time there have been many studies of column behaviour both in the 

elastic and plastic ranges. The work in each range is reviewed 

separately below, and a further classification is made in that 
pinned and restrained columns are considered, separately for each 

range.

1.1. Pinned . columns in the elastic range

Following on Euler’s work it was realised that the practical 
column could be subjected to eccentric load, or could possess 

initial curvature.
3 '

SCHEFFLER gave the solution for straight eccentrically loaded 
columns, now known as the secant formula. AYRTON and PERRY’S proposed 

a muthod of analysis based on the assumption of an initial curvature 

in the column, taking the ’load at which the yield stress was reached 

as the collapse load.
5

ROBERTSON continued this work, considering a large murder of 

experimental tests under central axial load. He found suitable, values 

for initial curvature which when substituted in Perry’s formula, 

indicated that the yield stress was just reached at the experimental 

collapse load. This formula, incorporating the values of initial 

curvature suggested by Robertson, has since been adopted for design 

use in this country. It is used on a load factor basis, the working 
load being a specified fraction of the load calculated to cause 

yield to be reached.

YOUnG has developed an analysis considering the column as 

initially straight, with the axial load applied at unequal 
eccentricities at each end. STEPHENSON and CLONNN&eR have extended 

this work to deal with initial curvature in addition to unequal 
eccentricity.
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1.2, Restrained columns_in the elasti o range
5

ROBERTSON has suggested the extension of his method to the 

restrained column, by c onside'ring it as equivalent to a pinned, 

column of reduced or equivalent length.

The behaviour of the restrained column has been studied
Q

experimennally by BAKER for the Steel Structures Research Conmmttee 

(S.S.R.C.). He concluded that columns in steel building frames 

could be subjected to much higher bending mommnts than those usually 

considered in design at that time. Extensive theoretical studies 
have been carried out by BAKER & HOLDER* and BAKER & WLLIAMsA^’ ,

again for the S.S.R.C., resulting in a design method to take proper 

account of the loading. A basic assumption in this work was

that the axial load did not significantly reduce the column stiffness.

1 2STEPHENSON has presented some rigorous solutions for fixed 

and restrained columns, along with suggestions for design procedures. 

The formulae developed are complex and reference must be made to 

various tables when obtaining solutions.

1 5WOOD, LAWTON & GOODWIN have resolved the comppexity of the 
: problem by presenting nomograms from which solutions can be obtained. 

The nomograms are entered with values of the out-of-balance flxed- 

ended mommnts on the column ends, along with the ratios of the 

column stiffness to the stiffness of all the ^^im^e^rs framing into the 

column, end. The value of the maximum moment in the column is then 

read directly from the nomogram. Nomograms are given for a range of 

axial load to Euler load. Several design examples are p^s^ted which 

illustrate the simplicity and convenience of this method,

1.3. Pinned columns in the plastic range.

One of the first contributions in this field was made by 
j R

ENGESSER , who proposed the tangent modulus formula for centrally 
13loaded straight columns. Following an objection by JASINSKI ,

16ENGESSER modified his theory to give the reduced modulus formula.
17 18VON KARMAN ’ derived the reduced modulus formula independently

and carried out a series of experiments which gave reasonable, 

correlation. He also described how solutions for ec centrica. lly loaded 

columns could be obtained by calculating the deflection curves of the 

column for various central deflections and axial loads. To obtain 

the deflection curves, the mommnt/curvature relations for specified 

axial loads wore determined graphically and then integrated. Several

4
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methods of integration were presented,

19CHWALLA. continued, along the linos proposed by von Karman,
determining theoretically the collapse loads of a largo; range of

eccentrically loaded steel columns, considering the effects of 
20different types of cross-section , and various rati os of end 

21eccentricity , Chwaaia used for all his work a stress-strain 
diagram considered typical of mild steel, (Figure 3.6)

22 23JEZEK ’ presented an approach for rectangular section

columns of ideal elastic-plastic maaerial (Figure 3.1). He derived

analytical expressions for the moffmnt/curvature relations, and

obtained solutions from the differential equations governing the

deflected shape of the columns. From these solutions he derived

the collapse loads for a range of pinned eccentrically loaded 
O J

columns. JEZEK ’ also obtained solutions assuming the deflected 

shape of the column to be a half-sim wave, and showed that this 

gave results very close to his exact solutions.

ROS also adopted the assumption of a half-sin i wave for the 

deflected shape of the column, but continued to use von Karman*s 

approach to derive the m^n^mnt/tc^t^ur^i^ifcur^e relation,

WESTERGAARD & OSGOOD27 ahd HARTMANN28 adopted esse^nJitrlo the 

same approach as Ros, with the slightly different assumption of a 

partial cosine curve for the deflected shape of the column.

An extensive experimental and theoretical investigation was 
29carried out by KOLLBRUNNER , who compared experimental results for 

eccentrically loaded steel and aluminium columns with analysis by the 

methods of Chwaaia, Hartmann, and Ros. The theoretical results 

differed very little from each other, and agreed well with the 

test results.
30HORNE has developed techniques based on column deflection 

curves. By plotting properties of different wavelengths he has 
obtained collapse loads of rectangular columns of ideal elastic- 

plastic maaerial. Another deflection curve approach, using an
31electronic computer for calculation, has been presented by ELLIS .

32KETTER, KAMINSKY & BEEDILn have developed a different

approach to column analysis using an iterative technique due to 
33NEWARK . The„ influence of residual stresses is taken into 

3Aaccount. GALAMBOS & K1TTERV have used this analytical approach
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to obtain theoretical collapse loads <f wide flange I section

columns over a range of slenderness ratio and end moment ratio.

They compare these theoretical results with experimental results of 
35 36 37

tests carried out at Cornell University , Lehigh University '' ,
38 39the University of Liege' , and the University of Wisconsin .

Agreement is excellent in all cases except where serious lateral- 
J|Q

torsional buckling took place. GALAMBOS has provided a solution 

which deals with lateral-torsional buckling. KETTER has presented 

additional results for the wide flange I section, inciuii.ng the 

case where equal end pompnts deflect the column into a sy^mmtrr.(^^.l 

S shape.

Wole all these studies on eccentrically loaded columns were 

being made, a lively controversy persisted over the validity of tune 

tangent modulus and reduced modulus t‘or.mulae for centrally loaned
) g

straight columns. SHANLEEu has resolved this controversy, showing 

that for such columns the collapse load lies between the loads given 

by the two f ormulae.

The considerable difficulties in most of the analytical work
referred to above have led several authors to propose various 'types

of interaction formulae, aiming at a simple approach for the 
A3 38designer. CLARK , MA>S0NNTJ , and AUSTIIv4', have presented studies 

and show that very good agreement can be obtained with test results.

1.4. Restrained columns in the plastic range

45CHWALLA presented the first studies in this range, using a

similar approach to that used in his studies of pinned columns.

He presented a small number of theoretical results for columns with 

varying degrees of end-restraint, and various eccenlricities of applied 
loading,

In Great Britain the work of the Steel Structures Research 
9 10 11CoImlPttce on a design method for steel columns ’ ' stimulated

an extensive investigation of the restrained column. The results of 
this investigation have been suIPIlprised by BAKER, HORNE & HEYMAnT’'.

The first stage was the study of columns bent about one axis 
only. Tests were carried out by BAKER & RODERICK’'' , ^-8, 49 on 

rectangular and I section steel columns with beams welded to them. 

Loading was applied first to the beams which were arranged to apply 

either single or double curvature bending about the minor axis.
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Axial loading wat then applied. ' The beams were designed to 

remain elastic up to and through collapse. It was found that

variation in beam loading affected the collitpse loads very little, and 

also that the yin.ld stress could be reached well below the maximim 

axial load.

An analysis for some of the tests was carried out, using
theory developed by RODERICK & HOOrN and BAKER, RODERICK & HORNE 51

The results are presentee in Chapter 1 1 of offerenee 46. The maim

features of thh tents were explainnd by the theory. The h-eoTy was

then used to calculate the collapse .loads about thn miinar axis for

a range of rectangular and I section columns, making use of the

EDSAC I electronic computer at Cammbidge. An account of this 
52compuier work has been given by EICKHOEF , who has also presented

some studies where plasticity developed in the restraining beqms.
53Approximate design memhods puggesied bb RODROIER were cheched

against this range of solutions, and on mm^ltpo. pwa found to bb 

satisfactory. TPUs method requires that thn beams of thn structure 

be designed elastically to provide restraint for thn columns which 

are' designed on a load factor basis, thn collapse load taking full 

advantage of plasticity in the column. Collapse is assumed to take 

place about thn mnor axis and the effects of bending about the 

major axis are ignored.

At this stage in the isvostlgttion the behaviour of colusss 
54bnnt about both axis was considered. RODERICK carried out a short 

serins of tests on I sections with restraining beams about both axes.

A variety of cnmibnatinns of beam loads worn applied. Collapse 

adwiyt occurred about the minor axis, suggesting that the design imetPod 
mentioned above might be suitable. Howwver it was found that thn 
influence of major axis beam loading could bn considerable. A 

detailed analytical study was not attempted for these tests since 

thn neneloinsn t oo ultimate load dens-gn mmihods had made it necessary 

to consider the bbhaaiouu oo column w^n the bbamm had plastic 
hinges in them. .

Wiere plsstic hinnss are rnssent in the Semms of a structure 

■the columns may lb called uppn to caary all. oo ppar of the full

plastic moment of thn beam. In a preliminary sscIss of tests by
55HEYMAN , I section columns were Sestne with major axis bending 

mommnts applied through cantilevers, simulating beams with plastic

7



hinges. It was. found that major axis plastic hinges could, foimi at 

the ends of columns.

56At this point HORNE made a thorough review >f the problem

from the ultimate load design point of view, coming to the conclusion 

that further progress could not be made until a basic underlying 

theory was developed. The work described above had shown the 

comppexity of column behaviour in the plastic range, and that there 

was little im[eecdate prospect of a satisfactory plastic design method 

being developed. Horne therefore proposed an elastic design method, 

for I section columns, assuming that the beams of the structure 

would be determined by plastic design.

In this m-ddod. it is assumed that the bending monmnts and

axial loads can be assessed first. The column length is then checked

to see that the yield stress is not exceeded under this loading.

Bending about both axes is considered along with torsional instability
effects. The amount of work involved in carrying out the check is 

57consistent with design office use. In correspondence on this method

CAMPUS & MASSONET compared the collapse loads obtained from their tests 
38on I section columns with the loads at which first yield was fore­

cast by Horne’s theory. The compurison was satisfactory in that the 

collapse loads were on average 15% higher than the theoretical yield 

loads, although in 4 out of 63 cases they were slightly Delets the 

theoretical. It is plain therefore that this method will give an 

economical design provided the bending moments and axial load can be

accurately assessed. Very little de-fc&zLI on this aspect was given 
58but in a subsequent paper HORNE has put forward specific proposals.

59HORNE later produced a method which allowed the development

of plastic hinges at the ends of columns. A series of tests were 
6n

carried out by HORNE, GILROY, NEILE & WILSON which confirn the

validity of this method. Curves showing allowable axial loading and 

slenderness ratios computibln with end plastic hinges are given in 

Chapter 15 of reference 46. These can be used in design!

A less comprehensive investigation has been carried out in 
61Anernca. BIJIAARD developed an approximate theoretical approach

for both equal and unequal eccentricity of axial loading, using 
45mateIr.al originally presented by CHWALLA . Results from his

approach gave close correlation with those of Chi/ralla. BIJLAARD,

FISHER & WINTER used a simplified version of this approximate

8



method to analyse experimental tests on I and square section columns. 
The axial load in these tests was appli-ed. at equal eccentricities 

at each end, bending the columns in single curvature. The 
experimental results confirmed Baker and Roddrick's conclusion that 

a considerable reserve of strength could remain after first yield 

had been reached in the column. The theoretical collapse loads 

were in good agreement with those found in the experiments.

63More recently a paper by OJALVO presents methods of analysis

for unequal ec06^^cities of loading, based on the column deflection 

curve approach.

1.5 Cooilusiois

The behaviour of columns in the elastic range has been almost 
12 15commpetely explored. Rational methods ’ have been developed to 

apply the limiting stress concept of design to pinned, and restrained 

columns. .

The behhvioou of pinned columns in the plastic' range, bent about 

one axiSi is ncov almmst fuuiy uunerstood, A design method for 

wide-flange I section columns has been propoedd based on work
by GALAMBOS & KTIITR'3*4\ A design method for I suction columns with 
end plastic hi.nges has been proposed by BAKER, HORNE & HEYMAn"'' .

The behaaioot of the restrained column i.n the plastic range is

still, however, not fully undehstood, and. it is only recently that 
65much attention has been centred on it. BLEICH in a review of

research on column behaviour (published in 1952) pointed out the

need for research in this field. His remarks prompted the work of 
r p

BIJIAAR.D, FISHER & WINTER . A reflection of the lack of knowledge 

of the restrained column can be found in a recent (i960) publication 

by the Column Research Council (UOS.A.) in which only 3 pages out of 

83 are devoted to columns in frames.

Two basic conclusions can be drawn from the work already 

carried out on restrained columns. The first is that the presence 

of restraint can greatly enhiiih the carrying capacity of the 

column. The secsie is that restrained columns can possess a marked 

reserve of strength beyond the point at which first yield is reached. 

It follows therefore that elastic design procedures may be excessively 

conservative.

9



56The most recent proposals , however, i^c^tm^end that columns 

in framed buildings be designed on an elastic basis.

The major effort of this thesis is directed at the behaviour 

of the restrained, column, in order to m^ise a thorough asses ament of 

what can be gained by providing restraint, and what is demanded of 

the restraining membere. The approach is predominltltly analytical, 

although experiments have been carried out to check the validity of 
the analysis.
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CHAPTER 2

2. General i.etPod of analysis for restrained colu.mm.t

A rnvin^w of existing methods of onlnii analysis is male, 

followed by a description of the work leading to ths analysis developed 

by the author. A description of this analysis is then given wISP a 

disoussion of the particular case where She column it bent in

syTmmtrical double curvature. Some remarks on convergence of Shn 

analytical procedures arn imad.o. The chapter concludes with some 

details of She compeer progrmmns which were written to carry out 

She analysis. Further details of She analysis and She progummies 

are given in Appendix 2.

2.1. Revier of existing analytical iotP.oe.t

The first stage in any rigorous method of analysis is So find.

the mommnt/curvatpre relation for the column ornss-seotioi. Thn

ouriatprs is a linear fpiotion of the mommnt in She elastic range,

but in the plastic rings it becomes a onmpeicated function of the 
22mommnt and axial load. Analytical sxeresttnnt can be derived for

simple geommSric shapes and stress-strain diagrams, but in general 

nrlehioal or npmmnical methods must bn employed. In reference 19 a 
typical method is shown. The result's of Shess graphical methods ire 

usually presented as plots of curvature against mommnt, for specific 

values of axial load. By interpolation thn curvature dus So a given 

moment and axial load can be found.

Wien She mommnt/curvature relation is known Shn differential

equations governing the shape of thin oo.l.usi can be set up. Wiere

analytical expressions for She moment/cupcrature relation have been

obtained the differential equations can snmeds•tins be solved by formal 
22 30mathemaliot * , In general Shis is not thn case, and She

solutions must be obtained by numerical procedures. Two distinct 

methods have been developed.

18Thn first is due So VON KARMAN and is based on column 

deflection curves. Column deflection curves are obtained by nummnical 

or graphical integration of the momeni/curvatprn relation, 1X01.;^ 

different boundary conditions, and integrating along She curve by a 

step by step process. By obtaining a tnries of curves for specified 

values of axial load, She rangs of possible configurations for a.

11



column length: cm. be covered. The boundary conditions for any 

particular problem can be fitted, to the curves, and the deflected 

shape of the column for various specified axial loads obtained.

From this the loid/deflectioi curve can be obtained. This curve 

rises initially while the column is in the elastic range but as 

plashicily develops it rises less and less steeply until

eventually a peak is reached, after which it begins to fall. A

typical example Os shown in Figure 2.4. Wien several points on

such a curve have been obtained the peak load can be obtained 
52reasonably accurately. EICKHOFF gives a more refined technique 

whereby column lengths, which define a peak point on a load/deflec- 

tion curve, can be picked directly off a iolup^n deflection curve.

This method has several disievintiges. It can only be 

generally applied to sections syrraict^tii^^;! about the axis of bending, 

and it cannot take account of initial curvature, or unloading of 
paie:lii.il strained into the plastic range.

52The second method is due to KETTER, KAMINSKY & BEE DIE J ,
33and is based on work by NEWARK . At a given stage in the analysis 

of a column the deflected shape of the column and the loading on ot 

are assumed. Using these assumptions the bending and axial
load at viroou8 points along the column are calculated. The 

curvature at each of these points follows from the posmni/curvature 

relation. Integrating these curvatures gives a calculated deflected 

thipe. If this is the same as the ono assumed then a correct 

solution has been obtained. If the c acm^fe! shape is not the 

same, poSefiiatiois are made to the initial assumptions and the 

process repeated as often as necessary. By obtaining solutions 
for several deflections a load/deflection curve iin be drawn up 

from which the maximum load can be picked off.

This second method is mumu homo flexible than the first, 

although the calculations are lenngthy To the author’s knowledge, 

only the first method has so far been applied to analyse restrained 
columns.

2.2. Work leading to the author’s analysis

The first attempts at analytical solutions were made after 

performing the tests on rectangular steel columns described in 
§ 4.1 . A mo^lpnn/curvature chart was prepared assuming ideal elastic

• plastic maaerial, and a method similar On principle to the second

12



method above was used. The analysis was carried out under end 

moment loading only first. The axial load was then found which 

increased the deflection, of a particular point in the column by a 

specified amount. This was repeated giving the axial load at 

steadily increasing deflections until the peak of the load/deflection 

diagram was reached. By finding the load corresponding to a 

deflection certain convergence difficulties were avoided.

After analysing several of the tests by hand, the use of 

the English Electric ’DEUCE’ compuuer wa.s investigated. A compuuer 

programme, using autocode facilities , wq written to analyse pinned 

columns of ideal elastic-plastic m^ae^]c:ial. This programme was used 

to obtain theoretical collapse loads for some of the tests mentioned 

ab ove,

Considerable difficulties were experienced with analysis of 
some of the columns, and eventually it was decided to formulate a 

more general approach capable of dealing with restrained columns.

The ideas for this general approach, which is described below, were 
derived only after the author was familiar with the capabilities of 

the comj^^ue^r.

2.3. General method. of analysis for,.restrained columns

The system analysed in shown in Figure 2.1, The supports at 

A and B prevent sway movement of the column ends, while providing 

elastic rotational end restraints. The column may be initially 
curved. The column length L* is divided into N equal segments of 

length XL. The cross-section properties at the division points 

bntanen these segments are used in the analysis. They may vary from 

one division point to another.

The loading consists of two moments Ma and Mb and an axial load 
P which can act at arbitrary eccennricities. Ma and Mg are assumed 

to be applied to the system first and an analysis for this is carried 

out. The application of P is then considered, Ma and Mg remaining 

constant, and values of P determined at various values of column 

deflection. The line of action of P is assumed to remain the same 

during loading.

Collapse of the column is assumed to occur by bending in the

* All symbols are defined in the text where they first appear, and 
are in addition collected together in Appendix 1,
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ellne of Figure 2.1. This bending must Saks elloe at 

right angles So an axis of symnmSsy. Local and lateral instability 

are thus neglected.

The assumptions on w^P-cP thn analysis is bated are as follows

1 . Plane sections remain plme after bending 

2. Cross-section dimensions are unaffected by loading

The stress/sSrain relation for Shs column malerill is

Ioinrn

4. Maaerial strained into She plastic range and subsequently 

unloaded follows a line on She stress/sSrain diagrsm 

parallel to the initial slope of She ditnr^i<1

5. Deflections of the column are small in comperitnn So its 

length

6. Deformation due to shearing forcss can be neglected

The analysis is based on She second method described in 

§ 2.1 above, although it incorporates a nnw lpernloh to the deter­

mination of She curvature corrnseoneing So a given and axial

load. ^^!;^^Ps of this leproloP are guvni below, followed by a 

description of She analysis under end mommnts only. A description 

of thn analysis under axial load and end mommnts is then given and 

finally a short discussion on Si.e convergence of the analytical 

procedures is male.

Only the principles of She methods are described, full 

mathemilical details being given in Appendix 2.

2*3,1. Determination of curvature

It is necessary in this method of analysis So determine the 

curvature corresponding So a given axial load P and mommnt M. 

Prniiops authors have usually done Shis by visual interpolation from 

charts. A more general approach was developed by She author.

The cmss-section is divided into a number of sSri.ps parallel 

to She axis of bending as shown in Figure 2,2a, while the tSrnss/ 

strain curve for She column male:llcLll is approximated by a series of 

straight lines as in Figure 2.3. To eete]minn Shn curvature an 

iterative procedure is uted. A strain dosSribu ti on. (Figure 2,2b) 

across the section is assumed and thn stress at the centre of each 

strip is picked off the stress/ttrain curve. Thn stress in each 

strip is assumed to be uniform. The loads Pc and Mc onrrespoie.iig
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to the strain distribution are calculated, and compared, with the 

values P and M actually proposed on the cross-section. If the 

differences between the calculated and proposed loads are not 

within specified limits the strain distribution is modified. By 

considering the effects of small changes in the strain distribution 

a set of equations is drawn up from which the required modifications 

are obtained. The process is repeated until the differences between 

the calculated and proposed loads are within the specified limits. 

The value of curvature associated with the strain distribution is 

then taken as correct.

Unloading of material strained into the plastic range is 

allowed for by noting the maximum strain to which a particular 

strip has been subjected and comparing it with the strain currently 

proposed.

2.3.2. Analysis under end moments Ma and M-r only

For this stage of the analysis assumptions are first made for

the moments , MtJA on the column length. The bending moments at

each division point along the column are calculated and using the 

procedure described in § 2.3.1. above, the curvatures are obtained. 

These curvatures are integrated to give calculated deflections at 

each division point and calculated end rotations (©A ) G and ( ) c ,

the suffix ( )c indicating calculated values. The comma!illlily 

of the end rotations must be checked, the necessary conditions for 

this being:-

(©a/L =(Ma" MAB)kA 

(Oe)c = ( MB_MeA)kg
2,1)

)

where k^, kg are the rotations/unit moment of the restraining 

systems at A and B. The L.H. sides of equations 2.1 give the 

column rotations, while the R.H. sides give the rotatjons of the 

restraining systems.

The check is conveniently carried out by calculating quantities 

}{ & and Xg, defined by the following equations:-

XB = kg )
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From equations 2.1 X A and. Xg should be zero. If they are

sufficiently small, the values Of MaB and' MBA’ along with the 

calculated deflections and rotations, are taken as correct. If, on 

the other hand, X a nnd XB are too large, poSLefiiltions to the 
assumed values of and Mg, must be made. The podeficitiois 

nre obtained from n set of equations which are drawn up by con­

sidering the effects of small changes in nnd Mja on X, ana

Xe.

The process Os repeated with new values of Mab '.nd Mg, 

until Xa and Xp are sufficiently small.

2.3.3, ■Ailysts under axial load. an<j end mpopnis

This analysis Os carried out at various stages, the deflections 
of the column onireasing between each stage. Some point along the 

column is chosen as a reference point and toLttis)ns found such that 

the reference point deflection Dp Os increased by a specific fraction 
between successive stages.

At the beginning of the analysis for a particular stage trial 

assumptions nre m^ade for P, Mab » %BAj td for the deflections (Do)i)

(di.)13 (D^a.......... ........... (^)a, nt each division point. The bending

moment nt each division point Os calculated. The curvatures are 

obtained and integrated to give calculated doflhiti..ont (Do)c,

(Dl)0 ..........•... »» (D])c, and calculated end rotations (0))c nnd

(® e )c* ■

The comparison between assumed and calculated values Os made 

On two steps n) ind b) ns follows:-

a) 8n.d )g nre calculated from equations 2.2 nnd the

di fference Ap between the assumed and calculated 

reference point deflection Os also calculated, i.e.

AR" (Dr)c“ (CRa ............... 2*^

If a valid solution hns been assumed 0,) Xg, nnd Ap 

will be zero. If they are not below certain specified 

small values, the values of P, M^y, nnd Mg) are poSe-Uiee.

The effects of small changes On P, Mab, nnd MiA on Xa>
Vg, and Ap nre calculated, nnd a set of equations 

drawn up the solutions to which give the required 

modifications.

The calculations are then repented until Xa, Xe and Ap 
16



a) arn within the specified small values. Only then is sSnp 

b) of SPe comparison procedure oarri..ed out.

b) The ltsuiee and calculated deflections at each division 

eniit are onmpel•ed. If a valid solution has bSen assumed 

the ilPpns should bs She same. If the differences are not 

below a specified smWil value 'the calculated deflections 

are taken to be nearer the solution.
55

NEWMARK gives references to mathematic p^oft of this

for slisSic columns. These proofs can. be taken to apply So 
columns in Shn plastic range prnvidne ths degrSe of 

plasticity is not affected much by the changes in deflection, 
since a plastic cross--sec, teen can then be considered at 

elastic with a reduose stiffness.

After substituting the olloulltee deflections to become 

new assumed deflections, She calculations ars rnpSlSee 

without iodefying P, , and Mgy-,

The calculation of bending moment curvature, and deflections, 

with subsequent moLLefioatiois either So P, Mj*, and M3A) or So
.(Do)i, (Du)*  ............ (..jOa. is thus repsatsd until both checks

under a) and b) above ax’s satisfied. The values of P, M&g, ■

MBA a and (Do)a, (D)a ................. (%)a are then taken So givs a

oorreoS solution.

The solutions at various stages enable a curve of axial load P 

versus reference point deflection Dp So bn dc^i^^. A typical curve 

is shown in Figure 2.4. The collapse or failure load Pp is reached 

whin Shis curve reaches its peak.

2,3.4, Convergence of prooeeurns

TPs iterative procedures describee abovs may not converge if 

ths assumed viluss ire very diff-renS from She true values. Wiere 

convergence trouble is nxpelie.nosd She remedy is So cut dorn SPe 

inornates in deflection between stages of ths analysis. This enables 

a more accurate sstimaSe of SPe conditions for SPe next tSage to bn 
made,

With very stocky columns ill on^(d.UStnitng of She equations 

which give SPe moddficition So P, M^-**, ind MgA can arise. It is 

probable Shat a differsnS apprnloh is necessary for such cases.
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This is dealt with more fully in Appendix 2, along rn.th other 

convergence problems,

2.4. Analysis of the special ca se ^wlth,l,.lntding in syimmtrical 

double curvature

The practical column wll alsways exhibit some imperfection 

such that the loading on it wll never be truly syi^mmtriic^^L. It is, 

however, of interest to study the syim^m^:r3.<^^iL case, if only to 

assess how initial imperfections modify the behaviour.

Figure 2.5a shows a typical loading in tylmletrical double

curvature. In the initial stages of loading the deflections will

be the same for both halves of the column, and the analysis is

carried out on an equivalent half-colmm as shown in Figure 2.5b.

At some stage in the application of load "unwinding" can take place.
This has been demonntrated practially by BAKER and RODERIC^, and 

61theoretically by BIJLAAD . This "unwinding" is shown in Figure 

2,5c. It can be considered as a superimposed deflection as shown in 

Figure 2.5d.

The condition for "ltwiLndi.ng" to begin is that the critical
f i: e

load associated with,.superimposed deflection is equal to the actual 

load on the column. To calculate the critical load the values of 

instantaneous stiffness at each division point must be calculated.

The calculation of instantaneous stiffness is described first below 
followed by details of the calculation of critical load.

2.4.1. Calculation of instantaneous stiffness

If "unwinding" begins under constant axial load the only change 

which occurs at a division point is an increase or decrease in bending 

momenn. If the cross-section at a particular division point is plastic 

the stiffness will depend on whether the mommnt is increasing or 

decreasing. Were the moment increases the stiffness is obtained from 

information obtained in the curvature calculation. Were the moment 

decreases some unloading of fibres strained into the plastic range 

occurs and a close approximation to the stiffness is given by the 

original elastic stiffness.

If, however, "unwinding" begins during a slight increase of 

axial load, it is possible for the unloading due to reduction in 

mommnt to be inhibited and the stiffness at all division points

18



must be calculated assuming t'-m plastic zones to remain active.

These two criteria for determining stiffness nre similar in 

principle to those used On determining the reduced modulus load 

nnd the tangent modulus loa.d for centrally lolehd straight columns.
J Q

SHANILEt has shown that lateral movement for such iolu.pnt will

begin nt the tangent modulus load, the nctual collapse loads lying 

between the tangent modulus loads and reduced modulus loads. It 

may therefore be concluded that the actual collapse loads of columns 

bent On sy^mletrical double curvature will lie between the "unwinding" 

loads calculated from the two criteria above.

The first criterion mentioned above will be referred to as the 

von Karman criterion ind the second is the Shanley ix,iteroon,

2.4.2. Calculation of critical load

The calculation for the critical load Os very 00.^.111' to 

that described On I 2.3.3. for axial load nnd end loading.

The deflected mode of the column Os assumed taking the reference point 

deflection as an arbitrary value. The critical load Os estimated 
along with end moIepnts ioppi1iblh with the expected end rotations.

The bending poment at each division point Os calculated nnd the 

curvatures calculated using the appropriate instantaneous stiffnesses. 

Integra.tion of the curvatures gives calculated deflections and end 

rotations. The comparison nnd poSLefiiltion procedures then used nre 

exactly the sipc as those described On § 2.3.3. above. The procedure 

Os repeated until the calculated deflections are reasonably close to 

the assumed deflections, and the calculated end rotations are com­

patible with the assumed end momphis.

In the elastic range the elastic critical load Pq, will be 

obtained. When plasticity develops On the column the critical lond 

calculated will be less than the elastic critical load and will be 
teimed the reduced critical load P'yp.

2.4.3. Summary of overall analysis for columns -bent On tyImletrioal 
double curvature

An analysis for the equivalent hllf■ccot^mli shown On Figure 2.5h 

Os carried ou. as described On § 2,3 above. After each stage the 

reduced critical load of the isltpi Os calculated. ’When the reduced

critical load Os below the nctual the point of "unwinding" has been 

ilssee. By plotting a lsle/deflection curve the point where the
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reduced critical loid is equal So thn actual load on tPe column can 

be esSiiaSed giving SPe "unwinding" load.

TPe redpcne. critical loads can be obtained using either the 

von Ktrinan. or She Shanley criterion to obtain Shn inttahtemeous 

stiffnesses. The resulting "pnrtneli.g" loads will SPus be referred 

to as She von Rtcman or Shanlsy "unwinding" loads as appropriate.

2,4.4. Further consideration of reepose criSl-Cil load

The reduced critical load P’^p can be calculated for any 

column at any stage of Potdtng. At SPe peak of SPe Pote/defleotion 

curve (Figure 2.4-) SPs column is in neutral equilibrium and thus 

p'qjj must bn exactly equal to the load P on tPe column. Beyond the 

peak She column is in SPn-un stable equilibrplm and must fall

below SPe load P.

The calculation, for P’^p has been included in SPe cnInpeter 

analysis for tPe general case and provides a convenient criterion 
for terminating SPe analysis, i.e. when d< P , In addition Shs 

mode of deflection associated with P*q^ his proved useful in 

forecasting thn response of the column So increases in axial load.

2,5 aomeePer progrmme details

The analysis Pas been progrmmed for She English Electric 
'DEUCE' oompePer. Two progj^j^aass Pave been prepared, one for Shn 

general case of analysis as outlined in § 2.3, and the other for She 

special cats bnnt in symmtrccal double curvature as outlined in 

s 2.4. For tPe latSer case She von Kicmtn load is ctloplaSed. Ths 

progmmet are very similar and are written in She basic machine 

onen using fixed point arithmetic preoedures.1 thus taking full 

advantage of thn speed of SPe oompePer„

The programmes occupy %6 of the 8192 word m^ig^^S^:tc drum 

store, while tPe data can occupy up to %6 of SPe store. This 

caters for dividing the column into up So 29 ssgienis, guving 30 

division points. At rich division point tPe ornss■-ssotion can bs 

divided into any number of strips up So 15. TPe tiress/strain 

curve is approximated by up to 10 straignt linns, tPe same curve 

being Saksn to apply in tnnsumn tnd oompecssion. TPs progrmrnet 
take loonunt of' pnlnadinn add hough. a simple modef icadl on. will 

causs it So bn neglsotee.
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To calculate the Shanley loads for the cases of syimmtrioal 

double curvature an auxiliary progamme has been written to calculate 

critical loads only. This auxiliary progrmme is for a Ferranti 

’SIRIUS* computer and is written in SIRIUS autocode.

These three programmes wll be referred to in the following 
chapters as the general, special and auxiliary progrmimes 

respectively.

Further details of the computer programmes, including written 

flow diagrams, are given in Appendix 2.

2.3.1 . Programme operation

The input data for the 'DEUCE* programmes consists of the 

following:-

1 . Data for stress/strain. curve

2, Data for cross sections at each division point

3, Initial eccentricity at each division point

4, Segment length and location of reference division point

3, End mommnts and Mjg, and and Kg the rotations of
the restraining systems per unit moment

The compLiter wll normally carry out automatically the cnHuUetn 

analysis of a problem right up to collapse. If convergence trouble 

is experienced restore control facilities and various "post-mortem" 

facilitie are available.

The output for each stage gives first of all values of bending 

mamin, curvature, and deflection for each division point along the 

column, followed by the axial load and end rotations. Ween the 

collapse load is being approached a strain history is also punched 

out, giving the maximum strains to which each cross-section has been 

subjected. If desired this strain history can be obtained at every 

stage in the analysis.

The output for the reduced, critical load calculations gives 

first of all values of stiffness and deflection at each division 

point followed by the reduced critical load, end rotations, and end 

mommat s,

The time taken for an analysis with 14 segments lies between 

10 and 60 minutes, an average value being 20 mLnutes.

For the auxiliary programme in SIRIUS autocode the input
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consists of:

1 . Segment length and location of reference division point

2, Instantaneous stiffness values nt each division point

The Onstantcileou.t stiffness values form part of the output obtained 

from the special ’DEUCE’ progrmme which deteipinht the von Karman 
"unwinding" load.

The output from the 1^1X01^ programne consists of the 

reduced critical load, deflection of each division point and the 

end ponmhis.
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CHAPTER 3

3, Checking validity of analysis

In the first section of this chapter resuits from rigorous 
30theory developed by HORNE for the rectangular cross-section of

ideal hllstic-illttic manorial nre used to check the author’s methods 

of calculating nnd integrating curvature.

In the second section analytical solutions for the collapse 
A5

loads of restrained, columns given by CHWALLA nnd BAKER, HORINE,
& HETMAw”")) nre compared with the solutions obtained by the author* s 

analysis.

In the third section exper:ipiental nnd theoretical collapse 

loads for restrained columns given by BAKER, HORNE, & HEYiMAN ,
/■ o

nnd BIJAAEtD, FISHER, & WINTER , nre compared with the loads 

obtained from the author's analysis.

19 20Finally, iompinisons made with work by CHWALLA ’ and
43CLARK on pinned columns nre described and general conclusions 

nre drawn.

3.1. Accuracy of nlLmerioal procedures

The possible errors in the numphical procedures for calculating 

and integrating curvature nre discussed separately below, along with 

the effects of these errors on the overall analysis. The rectangular 
cross-section of Odeal elnstOi■-pllstic manorial Os considered. To 
obtain rigorous analytical solutions theory presented by HORNS')) Os 

used. In the foil owing the results from the author’s nuIeehiial 

procedures Mil be referred to ns calculated values while those 

obtained from Home's theory will be referred to ns true values,

3.1 •"! Accuracy in calculating curvature

Errors can arise from approximating the stress/strain curve 

ns n series of straight lines, and from doviding the iiott-tection 

Onto strips. SOnce the stress/strain curve for ideal elnttOc-illstic 

material (Figure 3.1) Os made up of straight lines, only errors due 

to division into straps are considered here. The number of strips 

considered Os 15 this being the usual value used On the computer 

programme. A typical ismpirissn between the true stress diagram 
and that due to di.iision. into strips Os shown On Figure 3.2,

The error involved On calculating the curvature corresponding
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So a given axial load and binding moment varies considerably

depending on the degcis of plasticity pcstint. Wiers SPs crots- 

section is slimtic ths calculated value of curvature always 

exceeds the true valus by Wien, however, the curvature is in

ths region of five times She yield curvature SPs calcuiiied valust 

can differ from Shs true valuis by as much as 20*. TPs calculiied 
values can be less thin or greater Shin the Sru.s values w.tP a 

iendnnoy to bn greater.

A mors serious fault in SPs numerical procedure is thai when 

SPe true curvature exceeds 7*3 times SPs yield curvature, it is 

possible thai no solution will be obtained. This is bioausi at leati 

two strips in thn cross-meclion must retain some stiffness in order 

Shat thn equations mentioned. in § 2.3.1. above will yield tolptlois. 

Higher curvatures can be dealt with by dividing Shs crams-section 

into more strips.

Ths effects of SPs errors on SPs overall analysis wll now bs 

asssttid( Ths basic analytical prnceepri is So find assumed loads 

and deflections wh^cP givs bending moments and curvatures, which when 

iniigritsd give deflections close to SPe ones atj'pmee.

In thn elastic range 'the Poa.ds on thn column will tind to be 

underestimated by about *5%, mince ths curvatures dus to a 

particular m^r^e^r^-S Il's overestimated.

In Shs plastic range the effects on the overall analysis arn 

mors difficult to assess, bus toms idea con be gained from the 

following reasoning. Assume in a particular cass, where ths curvature 

vaPuss ars high, thai ths true valust for load and deflection Pavn 
been assumed. In.calculating tPe ouriaSurn errors up to say 20% 

will bs present. Ths integration process will thus yield values of 
deflection which will be ioo large or ioo small. The moddf ication 

erooeeucIt will thin introduce alterations to Shs loadlnn to recLuos 

ths errors. Ths magniiues of Shess alterations toLIP dspeie on how 
sensitive; ths curvature is So changst in axial load and bending 

mommnt. Figure 3.3 sPowt She interaction ystreen axiil load, bending 

moment, and curvature for tPe rsotiigulac oross-tsotioi of ideal 

elastic-plastic material. It wll be senn SPat where thn curvature 

values ars high small changes in either txial lnae or moment induce 

large changes in the curvature. Thus in She particular problem 

considered only very meall moOdfioations to SPs loading will bs
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necessary to bring the calculated deflections close to the assumed, 

ones. The calculated loads wi.ll therefore be very close to the true 

loads. The curvature diagram which yields these correct calculated 

deflections may be in error but not to any great extent since any 

errors must be compuntatitg, i.e. if a large error exists at one 

division point errors in an opposite sense must be present at other 

division points.

It may be concluded that errors in the tUIeerical procedure 

for calculating curvature will not seriously affect the overall 

analysis. The consequences of not being able to deal with very 

high curvatures are dealt with after discussing the accuracy of 

the integration procedures.

3.1.2. Accuracy of integration procedure 

33The method used is due to NEWARK . It involves dividing 

the column length into a number of equal tegments„ The curvatures 

at each division point are first obtained and then integrated twice 

to give deflections. The integration process requires the com­

putation of "concentrated angle changes” at each division point.

These are calculated assuming the curvature diagram to folio?/ a 

parabolic curve ‘through the two adjacent division points.

To check the method, curvature and deflection diagrams have 

been prepared for several column deflection curves, using the equations 
given by HOHnE^. These true diagrams have been obtained for an axial 

load of 0*6 Pp, where Pp is the load to cause the yield stress to be 

reached over the whole cmos-section, and various values of maximum 

curvature. Details of the column cross-section and some of the 

curve properties are given in Figures 3*4 (a) and (b). The

curvature and deflection diagrams, along with plots of plastic zones, 

are given in Figure 3*5(ab) through (i)o

Integration of the true curvature diagrams was carried out 

dividing the half-wave-length into 10 segmenns, this being typical 

of the coInpuler programme. The values of calculated deflection obtained 

are shown on eqch deflection diagram for compprison with the true 

values.

It wll be seen that as plasticity develops the curvature 

diagram takes on a localised peak. This is the reason for the 

calculated deflections being seriously in error for = 3*0
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and &>/$y - 10.0. For values of W/^y = 2*30 or lower

the errors nre of the oruer of 0*1%. The calculated deflections 

tend generally to be larger than the true deflections although 

this need not always be the case.

The effects of these errors on the overall analysis can 

be assessed by finding the nxinl loads, which when combined with the 

true deflections, will give calculated deflections close to the 
true deflections. This hns been done for the cases where &/
~ 3*0 and P//Py = 10*0, giving P = 0*3983 Pp nnd 0*3983 Pp

respectively. These illtet compare very favourably with the true 

value of 0*6 Pp. The values for calculated ^^L^mum curvature fall 
to = 4*5 nnd <>/<?■ 6*7 respectively, showing considerable

discrepancies from the true values.

Thus Ot can be concluded that the errors On the integration 

procedure will lend to negligible error in calcuj.nti.ng loads for n 

given deflection; but the values of* curvature obtained can show 

considerable error. This error Os unlikely to 1x^1. 10%, where the 

curvature Os less than five times the yield curvature, nnd will be 

negligible where the curvature Os less than 2*3 times the yield 

curvature.

3,1’3. Plastic hinges On columns

Horne’ s theory shows that plastic hinges cnn form On columns 
of ideal ellttOi~illsti.c ea'terial, implying the presence of infinite 

curvature. Since the curvature calculation will not function above
= 7*3, plastic hinge action cannot bc dealt with.

This Os not a serious practical limitation since the curvature 

calculation will deal with very high curvatures when the stress/ 

strain curve follows the smooth "rounded knee" curve typical of 

metals. If the strain. hardening of mile steel Os taken Onto account 

again very high curvatures can be dealt with.

3.2. CoIPpuniton with analytical solutions for end-restrained columns

3.2.1 . Comparison with work of CHWALLA

Chwanin has given details of rectangular restrained columns 

which will fail nt nn nvcinge axial stress of 1300 Kg/cm®. The 

stress/strain curve for the column. manorial Os shown On Figure 3’8, 

along with the points chosen to represent it On the author's analysis 

Two columns were selected. for analysis from Figures 2 and 4 of
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Reference 45. Ths cross-section wit divided into 15 tiript and the 

column inio 14 tsgmenis„ TPe analysis was carried out w.th She 

general 'DEUCE* erogra[lme both i.eglsoting and considering piloadlng. 

Stresm/dsflection opries for tPs cates neglecting milnadlnn ars 

shown in Figure 3.7, from which it wll bs mssn that Shs averags 

axial tiressss at collapse obtained from tPs author* s analysis 
tri very clots to 1500 kg/cm2.

Ths analysis taking account of unloading iidioaied that it 

did occur in limitsd zones towards tPs inds of She columns, raising 

the collapse loads by isms Shan 1%.

3.2.2. aoInielisoi w-ih work of BAKER, HO3RNE, and HEYMAN***

The rssulis ohntsn from this work are shown in Figure 14.19(a) 

of Refsc'enci 46, which gives collapse loads for a range of ceoiannplar 
section onlumnt of ideal slastic-plastlc material, bent in

symmtrccal mingle curvature. A copy of ihls figure? is shown in 

Flgurs 3 = 8 with collapse loads nbtainse by the author* t analysis 

plnttse on it. TPe analysis wam carried out dliidlnn She ^^1- 
section inio 15 stri-pm and SPe column inio 14 ssgm^n^js, while She 

tiress/strain ^^1 was lakin at two straight linst (Figure 3.1). 

Unloading was not considered.

Ii will be tssn from Figure 3.8 thii anresment is excellent.

3.3. Analysis of tests on restrained columns

3.3.1 , Tests described by BjAKER HOORN 5 and tHEMAAN*

These insts ire i tnlsction from Shote carried out by BAKER 
and RODEE-RCcK** ' ^-9. Abstracts of the main data ars given in

Tablet 13.1 and 13.2 of Referencs 46, along w.tP tome Shsoreticil 
rssulis obtained using the rigorous thnory dus to OJOrN, Phe 

restraints were provided by beams weldnd So ths columns, which were 

of mild tteel, and moment loading was applied firti by loading 

SPess rsttraining beams. This usually induced a considerable axial 

load in Shs column. Further axiil load was Shin applied through t

st^^b on^umi p^ojscting above SPs beams, leaving tPe biam? loads

constant. The axial load was incrnasse until collapsi occurred.

Ths experimental collapse loads for SPs rectangular miction 

columns ire elotise against beam load in Figure 3.9. TPs 
theoretical collapts loads obtained from Horns* s rigorous thiocy 

Il's also shown.

27



Initially it was thought that the author’s analysis could 

not be applied, to these tests since the line of action of the axial 

load varied throughout the tests, and also the beam depths were large 

in comparison to the column length. It was however found possible 

to calculate m^ddifLed restraint stiffnesses which took account of 

these factors. A further discrepancy between test and analysis 

is that the author’s analysis assumes the mommnt loading to be 

applied under zero axial load. It is considered that the effect of 

this Mil not be great.

The column material was mild steel and thus could be 

considered as ideal elastic-plastic. Specific analysis was not 

carried out, the collapse loans being obtained by interpolation from 

the results for columns of ideal elastic-plastic malexnal, presented 

in Chapter 5. These results were obtained including the effects of 

unloading. Curves of theoretical collapse load against beam load 

are shown in Figure 3.9.

For the cnltnnt bent in single curvature the agreement between 

theory and experiment is good, while the two loads calculated from 

Home's rigorous theory are very close to the author’s curves.

For the columns bent in double curvature the agreement 

between theory and experiment is also good, but there is considerable 
disagreement between 'the loads calculated by theory and the

author's analysis. Horne’s theoretical results have been obtained 

neglecting unloading apart from a single analysis. This single 

result is in good agreement with that obtained from the author’s 

analysis. The ditcrepttciet in the other cases are almost certainly 

due to the neglect of unloading.
Q

3.3.2. Tests carried out by BUIAARD, FISHER and WINTER0o

Tests were carried out on 1-r" square mild steel bars, and on 

4 1 9*5 lb mild steel beam sections. Both annealed and unannealed 
specinett were prepared. Typical stress/strain curves were presented 

in Figure 12 of Reference 62 a copy of which is given as the author’s 

Figure 3.10 (a). Figure 3.10(b) shows the curves which were used in 

the computer analysis. The restraint was provided by spring systems 

while the axial load was applied at specified initial eccentricities.

For the compule:i analysis the square bar cross section was 

divided into 15 strips. The I tection was bent about the minor' 
axis and the cross section was again divided into 15 strips, 3 

taking up the web of the section, and the other 12 taking up the
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projecting flanges. In both cases the columns were divided Onto 14 

segpenis,1 The general ’DEUCE’ progr^me was used, taking niistnt of 

unloading. The column was asE^umed to be uniform On crsst-tcition 

thus neglecting the rigid eod block assemblies. The effect of this 

on the results would be small, particularly since illtt0ioty did not 

develop at the ends of the columns to nny serious extent. The 

ioeputer analysis revealed that strain hlrdciOig should have 

occurred On tests 3A, 14UI, 9AS, nnd 19US, O.e. On nil the tests 

TOoth large ^00^^0110^. Except for the test 3-AI, the effect on 

the collapse load was negligible.

The cs]ppirissn between theory and experiment Os presented in 

Figure 3=11. It to.11 be seen that the author’s analysis thi.es to 

overestimate the currying capacity slightly, while the l.iiioxiplte 

analysis of Bijlanrd et nl.tends to underestimate. The agreement 

Os however very good.

3.4. CoInpilisois TOoth work on iOince columns

The analysis developed On chapter 2 Os specifically for 

restrained columns, A similar, somewhat simpler, analysis can be 

developed for ponmed columns, nnd Ot was thought Onito.aL.ly that a 

separate iO]pputer progr^me would have to be written for this. It 

was, however, found possible to use the res trained column progamme 

for pinned co^tOit by setting the restraint stiffnesses to very low 
values.

19 20CHWALLA ' has presented results for eccentrically loaded 

i0ilicd.collplnt of i'lr0out cross-sections. Four rectangular section 

col. ulus and four Tee section columns from this work have been 

analysed using the general ’DEUCE’ programme. The islupnt were 

divided into 14 segments. The rectangular section, was divided Onto 

15 strips nnd the Tee section into 14 strips, two taking up the 

fanEe and 12 taking up the stem. In nil oases the collapse loads 

agreed to within 1% of the loads given by Chwaala,

43CLARK ) has presented experimental results for eccentrically 

loaded, pinmed aluminium columns of ieitlngulai and rectangular 

tubular cross-section. For analysis again using the general ’DEUCE’ 

progr^me the columns were divided onto 14 segments and the rectangular 

cross-section was divided Onto 15 strips. The tubular section was 

also eiiOcLce Onto 15 strips, 6 taking up the walls parallel to the
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axis of bending and the other 9 taking up the walls at right angles. 

Some of the tests were carried out under central loading and no 
atte^mpt was made to analyse these. The theoretical collapse loads 

obtained were all within 3% of the experimental loads.

For one test dark presented a load/deflection curve and load/ 

strain curves for the centre of the column. The author* s analysis 

for this test gave curves which practically coincided, with those 

given by dark.

3.5 Conclusions

The ^^^^3.0^1 procedures of the author* s analysis give accurate 

results except where curvature values are very high. In particular 

the procedures will not deal with fully plastic hinges.

The analysis gives results in very good agreement with previous 

analytical studies. The analysis of several sets of tests gives 

theoretical collapse loads in good agreement wLth the actual test 

loads. Both steel and altnlt.ilm columns of various types of cross­

section have been analysed.

For restrained cnll'mnt the effects of unloading on the 

collapse loads are very slight for cases bent in single curvature 

but can be significant for cases bent in double curvature. The 

author’s analysis taking account of unloading agrees well with a 

ri^gorous analysis by Horne,
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CHAPTER 4

4. Experimennal Semis by the author

Three sett of iests are described, SPs first on pinned 

rsotannular mild tSssl onPusns, thn sscnne on piiine rectangular 

aluminium columns, and the third on re strained recitigular 

aluminium columns. Analysis hat bssn carried out for each set of 

Semis. Ths timts, resulSt of analysis, ind discussion for each 

ssS ars presented under separate headings below.

Ths manufacture of the cnlu•in5, details of tsmt rigs, tnd 

details of experimental procseurs ax’s dealt with briefly, since 

a full account of ihls is given in Appendix 3= ■

4.1 . Tests on pinned rectangular mtesl columns

4.1 .1 . Experimental details

66 %" x -g-" mild stnel coPumis of various lengths were tested 

under loadings designated at ctsss (a), (b) , and ( d) , shorn in 

Figure 4.1 . The moments were applied about Shs miwr axis through 

a pulley and lever system. The axiil load, was aeplisd through 

knife-edges, Shs actual load bring obtained from a lever system. 

Moment loading wat aeeee first and left constant as Shn axial l.oa.d 

was applied in lnoremenis, until collapsi.

Ths yisPd tirnsm for all Shs speolasns was found to bs close 

io 19 T/ina , and using this valne Pp and Mp for each column length 

were calculated. Dividing Shs experimental c olla.pt s loads Pp by Pp 

tnd She experimental end moment Mj* by Mp gave valuis for the non­

dimensional plots of results shown in Fig, 4.2.

4.1.2. Analysis of tests

Theoretical collapse loads have been obtained by intnreolation 

from tPs re suits for onlpmns of ideal elastlc-plamtlc material 

pcessnted in Chapter 5. As mentioned in Chapter 2 moms of thnse tests 

had been analysed by an early autocode programme. No significant 

differences yetreIn SPe results were found.

For She analysis Shn yisPd stress wat taken is 19 T/in2 and 

E as 1 3 ,400 T/in2 .

For She case ( d) loading in symmtrccal double curvature the 

Shanley loads havs been taken. The dtffnrencss between the Shanley
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and von loads are at the most 3%. For some of the case (d)

loadings, the theoretical collapse loads were not governed by 

"unwinding", but by the formation of plastic hinges at the ends of 

the column. End plastic hinges can also form for case (b) loading, 

although none of the tests were governed by this criterion.

Some analysis for case (a) loading taking account of an 

upper yield stress of 1*33 times the lower yield stress was carried 

out. For reasons given in Appendix 2 analysis with upper yield was 

difficult and no attempt was made to cover the full experimental 

range.

The theoretical collapse loads are presented non-dimensionally 

as interaction curves on Figure 4.2 giving a direct comparison wLth 

the experimental collapse loads. The results including the effects 

of uppc^ yield are shown by a dashed line.

4.1.3. Discussion

It will be seen that the experimental collapse loads are 

generally above the theoretical collapse loads more especially 
for the case (b) and (d) loadings. The fold owing factors could 

lead to higher values.

(a) Upper yield

Beam tests carried out to detemine the lower field 

stress indicated a value of upper yield about 1*33 % the lower 

yield stress. The results of analysis taking account of uppe** 

yield show that it has a considerable effect on the collapse 
load.
(b) Rigid end pieces

The axial and end momnt loading aii'amLgnmentt resulted 
in a considerable length at the ends of the columns being 

effectively rigid. This affects the case (a) loading very 
little but cases (b) and (d) would be seriously affected 

especially for the shorter column lengths.

(c) Friction in the loading system

At collapse rotation. is taking place in the various 

knife-edge seats and pivots of the loading system thus 

nonllisitg some frictional restraint. This is not considered 

to be of much importance for case (a) and (b) loadings but 

case (d) loading could be seriously affected.

32



In the author’s opinion these factors are sufficient to 

explain the dotiieiln.i0ct between the theoretical nnd experimental 

results o

4.2 rectangular aluminium columns

4.2.1. Experimental details

The columns were manufactured from %" thick HE30 WP alloy 

plate. A typical stress/strain curve for the manorial Os shown in 

Figure 4.3. 10^100 of %" x y" section were made up On various 

lengths o

The test rig for applying axial load consisted of two loading 

heads waaeh nwer iLa^^x'rs^d ion an ”011^” 200,000 lb testing

machine. Rotational freedom was provided by ball bearings. Special 

end fittings allowed the column to be accurately adjusted in positi-on 

with respect to the loading heads. Small levers were attached to 

these fOtt:nngs and end pomentt applied through them. The centres 

of rotation of the loading heads were arranged to be at the points 

where the io1^upn emerged from the end fittings. The columns were 

thus piiihe and of unOforn. cross-sectoon. The effective lengths of 

the c(^Z^ens.s tested were 7*24,,, 3*12" and 3’60”.

Tests wwee carried fox’ the t]aaiee cases oo loading thsai

in Figure 4.1. End momentt were applied to the column first under 

a small axial loading. The axial load was then applied initially 

On increments, reading the deflection after each increment. Since 

the "Olsen” os a ttrlin“isntis1lee machine 0t was convenient to 

carry out the final loading to collapse under continuous alow 

straining. Simultaneous load rnd deflection readings were taken 

"on the run". As soon as the axial load began to drop off the 

test was stopped.

The collapse loads for the tests are ircteitcd On Figure 4.4. 

Load/deflection plots for some of the tests are presented in Figures 

4.3 - 4.7.

4.2.2, Analysis of the tests

The stress strain curve for the material was aiiioximatcd as 

shown in Figure 4o3, and the iross-scition was divOehe Onto 15 equal 

strips. The analysis for columns under iate (a) and (b) Loadings was 

carried out TOoth the geneeral 'DEUCE* irogr£PlPe, the column length
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bring divided into 14 segments. For Shs columns under cats ( d) 

loadings tPs von &armin ’,uirindlnn'’ loads were obtained using She 
special 'DEUCE’ programme, dlilel^ng ths Palf-coumm into 14 segments

Ths Shanlsy loads for Shs case (d) lno.eii.gs were subsequently 
61astetsed by a method due io BIJIMRED) ' , who showed that for pinned 

columns ”unnndlin“ would begin when Shs end tPopss of the col^umi 

become pasra-lsP io ths SPrust linns. The metPiod is only applicable 

io initially straight columns where no unloading has itksn ePaoI. 

Theme coned.tionm were fulfilled by SPs issit. To' apply SPe method 
information from ths analysis for tPe von Karman l.oid. was used.

TPs end slope of thP column at each stags in tPs analysis formed pari 

of tPe normal compePer output. Ths slops of the thrust linn at any 

stage wam niiSi by thn rfficiivr s id eccentricity of tPe load, i.e. 
M^/P dlvidsd by tin half-length jf She onl^pran. These Swo mlDpim 

were plotted and tin poont at winch tPry brcams equal was determined. 

The axial load corresponding to SPis point wat token as ths Shanlsy 
load.

As a chick SPs Shanley Poal for onn particular column was 

also obtained by ths some method is Shat used in Shs special 

'DEUCE' progr amnio, using Shn auxiliary 'SIRIUS' progrmmr to 

calculate Shs rsducse oriiictP PoiIs according io tPs Shanlsy 

criterion. Essentially the some load was obtained it by She method 

above.

To assets the effects of initial eccentricity on tPs ciss
(d) loading, one earttcplar colrnmn was analysed for various degress 

of initial eccentricity. The general programe was used and the 
column was divided into 28 srnienis, giving tPe tame segment lrinth 
at that utsd for Shn half column analysis uieer cass ( d) loading 

alone.

TPe theoretical collapse loads arn e:crtsntre in Figure 4.4 

at intrracSion curves between failure load Pp and rnd moment 

M*, giving a direct oo^I^el^isnn nth the experimental collapse loads . 
To compeets SPssr curvet several additional Shemetical collapse 

lnaes were obtained along with the Stnnnit modulus and reduced 

modulus loads for thn centrally loaded casst.

Theoretical load/de fisc Sion curves to compare nih ths 

experimental plots ace given in Figures 4.5 - 4.7. In Flgurs 4,7
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the re suits for the case (d) loading with various degrees of 

eccentricity are given,

4.2,3. Discussion

It wll be seen from Figure 4,4. that the experimental collapse 

loads are underestimated by about 3 “ 10%. A study of the load/ 

deflection curves for the case (a) and (b) loadings (Figures 4.5 and 

4,6) shows that the theoretical and experimental curves agree well 

in the early stages of loading, ioe0 when the column is still in 

the elastic range. At later stages the experimental curves rise 

above the theoretical.

This divergence can be explained by the- strain rate 
sensitivity of the material. The stress/strain curves were obtained 

by applying a given load to the specimen and reading the strain after 

the creep had settled down. Fairly long time intervals were allowed, 

for this, so that the curves are probably very close to the curve for 

2 e r 0 strain rath.

In Figure 4,5 there are several points on the curves marked 

"creep". At these points the moving head of the testing machine 

was brought to a ha.lt and the drop-off in load was noted after a 

short time. The presence of this drop-off indicates that the 

maternal is strain-rate sensitive, and it is probable that if the 

readings had been taken aftei allowing the creep to settle down 

comppetely, values much nearer the theoretical would have been 

obtained. An alternative procedure would have been to- obtain the 

stress/strain curve under a continuous straining rate comparable 

with that applied in the column tests.

For the case (d) loadings in syimmtrical double curvature the 

differences between the Shanley loads and the von Karman loads tre 

sometimes considerable. Theoretically the central deflection for 

these tests should remain zero until the Shanley load is retched. 

Above the Shanley load "unwinding" should begin and the peak or 

collapse loa.d. should lie between the Shanley and von Karman lntdt.

It will be seen from Figure 4.7 that the central deflection 

increases right from the start of loading for that parteicultr IxsI. 
All the case (d) loading tests exhibited this behaviour.

The initial eccentricity required to cause the experimental 

central deflection to vary as shown in Figure 4,7 is of the order
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of 0*00-1”. This is as sinami a a can Ob 6:1x60161. of the thet ri g.

Thus while the tests provL.de a rihatoilee cheac on Ohe theorc0ical 

collapse loads, they do not confirm the exact behaviour nt failure 

of a truly syImaptrical case.

The results of the analysis 0^^^^ the effect of eccentricity 

of loading do however provide some evidence on this point. It will 

be seen that the presence of an iontial ecientriciiy oo 0*001", 
equivalent to L/5,000, gives a ^dapse load ObC-OW the thanlly load. 

Reducing the eicen'hicity bo 0*0000-13”, equivalent to ^/4-00,000, gives 

a collapse load practically midway between the Shanley and von Karman 

loads.

For this very small eiceniricity, it will be noted ihli 

significant "unwinding" does not begin until the Shanley load os 
cbieedee. A study of the strain history for this analysis revealed 

that unloading begins to take place nt this point also. This unlsle0ig 

ilutct the stiffness of certain sections of the column to revert to 

the original elastic value, and thus the reduced critical load of 

the column 1L.es above the Shanley load. So the column is still stable 

in the initial staves of ”unvaLndin.v,l. Thc collapse loa.d Os reached 

when the unloading is insufficient to offset the developing 

plasticity elsewhere, causing the reduced critical load to fall below 

the load on the col^u^M^n.

The behaviour revealed in this analysis thus confirms that 

columns bent in tymlptrical double curvature behave in a similar 

^^n^i^r to centrally loaded columns.

A more practical point arises from the fact thnt the normal
out-sf-tiraightnhst to be expected Os of thc order of L/1 ,000 to 
L/411, considerably more than the values treated in Figure 4»7®

The presence of such nn sut“Of“ttraigetnett will undoubtedly reduce 

the collapse load to a value well below the Shanley load. It Os 

therefore unwise to consider the ideally straight column in any 

design procedure for i0nied columns.

4.3. Tests on restrannecL rectangular alimonuium col^pms

4,3.1o Experimental details

The columns were similar to those used for the pinned testso

The sipc londOnE heads and end fittings were used as for the 

pinned tests. Restraint was pioiidce by stccl oea.nis which were
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attached So Shn ind fittings. The ends of She brims remote from 

the column, were held in adjustable supports, wP-cP were clamped 

to Shn testing machine ttbls. Application of end moment io Shs system 

was simulated by raising or lowering the brim supports. Strain 
gapnss on the beamt smbled tPe end m^Iieits on the column io be 

assessed at tny stage during a test. Thn restraint stiffness was 

varied by altering the spin of tPe beams.

The biams were madr stronger than thn columns so that thsy 

remains! sPasiic at all stages in SPe loading. Thus SPs restraint 

stiffness remained constant during a iest.

Equal rsstralni stiffnesses were supplied at Shs top and bottom 

inds of ths columns, while for tssis on columns of thn some length 

ths restraint stiffness was held constant. The actual value of 

rsstralit stiffness was derived from a non-dimensional restraint 

factor Q which is defined as follows

Q - Restraint stiffness -t*3EIJ£ ........................4.1

wPem the restraint stiffness is in uniSt of momeni/ra(eian and 

5E!pl js derived from Shn column propertiss. For each onlumi length 

a restraint factor was chosen ind She appropriate viPur of restraint 

stiffness worked out. Ths spans of the restraining brimt were then 

adjusisd to givs tPts io.Pue of restraint stiffness.

Initially in calculating the brim spin to givs a specific 

viilue of restrains stiffness SPe joints in She nnd flttnngs were 

assumed io bn rigid. On this basis She restraint tiiffnsss for She 

tests on She 7*24" long columns was calculated onrrssenndiin to Shs 

chosen restraint factor of 5*0. After some of thsss Ssmts hid been 

analysed serious eiscrspiicies beS^wnsn theory and experiment were 

found, which were tracid in part to rotations in 'the end fitting 

joints. TPe rotations in the jolnSt were then assisted and. She actual 

rnttralit factor for the 7*24" long onlumnt was found to bn 4*25.

For ths tests on tPs 5*12" tnd 3*62" long columns ths restraint 

factor was chosen as 2*0, and She beam teans adjusted accordingly, 

taking ths joinS rotation into account. A small nrror in calculation 
resulted in a restraint factor of 1*96 being used for ths tests on 

Shs 5*12" long columns.

In carrying out She tests SPe end moment loading was applied 

first. Values of IniStiP moments on the onlusi length were chosen
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and applied by raising or lowering the beam supports, A small 

axial load was necessary at this stage. Three different patterns 

of were applied designated as cases (a), (b), and (d),as

shown in Figure 4*8. The axial load, was then applied in the same 

way as for the tests on pinned columns. Simultaneous readings of 

load., deflection and beam noIeeeLts were taken during the slow 

continuous straining to collapse.

The collapse loads for the tests tre presented in Figure 4.9= 

Typical load/deflection and end moment//detection plots are given 

in Figures 4.10 - 4.13. For the case (d) loadings in symmetrical 

double curvature load/end moment plots are drawn.

4*3.2. Analysis of tests

The stress/strain curve shown in Figure 4.5 was used, while the 

cross-section was divided into 13 equal strips. The columns under 
case (a) and (b) loading were analysed by the general 'DEUCE' 

programme, dividing the column length into 14 teg•ments. For the 

cnlumts under case (d) loading the von Karman "unwinding" loads 

were obtained from the special 'DEUCE' progrmme, the half-nolmllt 

length being divided into 14 segnents. It was found for cases with 

high initial end moments and that "unwinding" would not

necessarily occur. The collapse load in such cases was taken as 

that of the half-ooumm (Figure 2.5b1.

An attempt was made to obtain the Shanley loads for the columns 
under case (d)loading from a criterion given by BIJIAARD^” , This 

criterion applies only if the column is initially straight and the

degree of unloading is small. For most of the tests large zones of

unloaded material developed, so that this approach had to be 

abandoned.

The Shanley loads were finally obtained by the same method as 

that used in the special 'DEUCE' programme, using the auxiliary 

SIRIUS uiogrmne to calculate the reduced critical loads according 

to the Shanley criterion.

The 'DEUCE' programmes require values of Mg and Mg, the ■ 

external moments initially applied to the system (Figure 2.1).

In the tests the effects of applied external moments were provided 

by moving the beam supports. Thus values of Mg and Mg had to be 

worked out which would give the same effect as that caused by the
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movement of the bc^ supports. To do this values of column pomentt 

Mab and MsA under zero axial load were obtained by extrapolation 

from the experimental il1uet under small axial 1oaet. Values of 

Ma and Mb were then estimated which would give theoretical values 

of Mab and Mjja under zero axial load reltsnlely close to the 
extrlpollted values. In thc clastic range this was quite simple 

but for eoge values of Mab and which ondtchd plasticity in thc

column tsmh trial nnd error ia.lctlatLiois were neiestliy.

As mentioned in § 4.3.1. lbsie, a few of the tests on the 

/*24" long columns were analysed as soon as they were comj^pi^'lted 

taking a theoretical value of 5.0 for the restraint factor. These 

tests were ie-■anllysed under the moClefied value of 4*25. For the 

tetis on the 5*12" and 3*62” columns the restraint fliiors were 

taken as 1*96 and 2*0 rhsiectiie1y.

For one case (d) lsleiig an additional analysis was carried 

out considering the presence of an eccentricity of 0*001". For this 

analysis the column was eiiiecd into 28 segpenis, vivOng the sipc 

segment length as in the ea1^U--ooUmn analysis.

The theoretical collapse loads are presented as interaction 

curves On Figure 4.9, giving a direct companr-son with thc experi­
mental cslIiPjse loads. Both the Shanley and von Kirpar loads for 

thc case (d) loadings nre shown, along w-th thc zones where 

”un1a^:i<eLig" 0s reckoned not to occur.

Load/deflect!on nnd pompnt/dehleotisn curves for typical 

case (n) and (b) tests arc given in Figures 4.10 lne 4.11, while 

curves for cases (d) 1ole0ig arc given On Figures 4.12 and 4.13.

The case On Fovur^c 4.12 also shows thc theoretical result 
considering eccentricity.

4.3.3* DLtiuttL^Oi *

and

A study of FOgure 4.9 shows thnt for the 7*24" columns the 

author’s analysis overestimates the collapse 1.oadt, for the 5*12" 

columns the collapse loads are forecast almost exactly, and for 

the 3•60" columns the collapse loads arc slLvetly tid^r--hstiipateee 

Taking the strain-ratc effect mentioned on § 4.2.3. onto lccstnt 

an under-estimate of the collapse ■.toads would bc expected for all 

thc tests. That this is not the case Os considered to be due to 

variation On the restraint factor from ieh lssupee theoretical il1tes
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A cPnck was mads on tPs rssti’ilnt factor calculations 

after tPe analysis Pad bssn cnmpeetsd, and the rotations in SPe 

joints of SPs end fittnngs were assessnd by a. mors accurate method,

Po errors were fopid tn the calculations but She rotations in Shs 
joints were found to bs very much greater than those initially 

obtained. A serious experimental nrror must Pave bssn eads in SPs 

initial assessment. It was calculated Shat tPe restraint factors 

Q for tPe Snsls were 3*57, 1*73, and 1*75, against thn viluss of

4*25, 1*96, and 2*0, used in tPs analysis. After mlklin a study of

She cnsuUm for columns of idsil elastic-plastic material givsn in 

Chapter 5 it was realised Shit Shess l.trgn variations in restralnt 

factor would not affect ths collapse loads in SPe same proportion.

TPs Setts were tPernfore not rs-analysed. It is ettimitsd that 

Shn ore ti .cal onllapte IoiIs obtatise using ths Power restraint 

factor values would lie about 5% lower SPan those givsn in Figure 

4.9.

For tPe tests on tPe 7*24" columns it had not bssn realised 

ShiS tPe joint rotations would be stgiificait and no particular corn 

was liken in tightening up Shs joints. It is probable therefori that 

the restraint wit rnduosd still further on Shis account, i.e. bnlow 

SPe value of 3*57. A study of thn typical ind mommnt/deflectloi curve 

in Figurn 4*10 shows that She restraining moments did not develop 

io SPs sxtsnt focecasS by tPe author's analysis. At collapsi tPe 

tPnoretioal and experimental moments differ by about 50 lb in. It 

is considered SPat SPis would mors SPan offset the strain-rite effect, 

so that SPs fact that the experimental collapse load lies below the'
SPsoretical is not unexpected.

For SPs intis on Shs 5*12" columns SPs joints in tPs siI 
fittings were lightened up very carefully aie it is probable ihti 

Shn calculated restraint factor of 1*73 was applicable to She tssis. 

Thn differences bstrssn SPnory and sxenriient should Shum bs dus So 

tPs rnstro.int factor being taken as 1*96 for ths analysis, and to 

Shn strain rats effect. A study of She typical end moLmni/deflsction 

curves in Flgurs 4.11 shows that at collapse tPs theoretical and 

experimental moments differ by 20 lb/in. TPs experimental axiil 

loads initially Pie bslow Shn theoretical curve and as (collapse is 

rsicPsd SPey become almost cniioieent. In ihls cats it can bs 

concluded that tPs minln-rate sffsct is jumt biliiolng She sffsct
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of the incorrect restraint factor

The 3*62" columns exhibit the same behaviour with the 

experimental.. axial loads rising slightly above the theoretical 

curve at collapse. This could be due to the much higher strains 

(up to 5%) which were developed in these tests.

Despite these discrepancies the analysis gives a good 

representation of the general behaviour of these colume'is. It can be 

concluded that the discrepancies are due to experimental faults, 

rather than inaccuracy in the analysis.

ii) Case (d) loading

Reference to Figure 4.9 shows that the collapse loads for the 
tests under case (d) loading follow the same trends as for the case 

(a) and (b) loadings. These trends can also be attributed to the 

influence of strain-rate sensitivity and to the errors, in .the 

theoretical restraint factors.

With regard to detailed behaviour the question of "unwinding" 

is of most interest. According to the analysis the cases portrayed 

in Figures 4.12 and 4.13 should have collapsed without "unwinding", 
The reduced critical load according to the Shanley criterion is 

shown in 4.12 and it will be seen that it does not fall below the 

actual column load, indicating that the column will always be stable 

against "unwinding". For the case shown in Figure 4.13 the reduced 

critical lotd is always above 5,000 lb and has not been plotted.

Thus for both these cases the experimental moments and

MBA should have followed the theoretical curve obtained from the 

hal-f-couwim analysis, and the central deflection should have 

remained zero up to and through collapse. It will be seen from 

Figures 4.12 and 4.13 that initially the experimental values foilowed 

this behaviour. At collapse, however, the central deflection was 

increasing rapidly, and one or other of the column moments had 

almost stopped decreasing.

It was suspected that the reason for these discrepancies was 

the presence of initial eccentricity and this was the reason for 

carrying out the analysis of the case shown in Figure 4.12, where 

an eccentricity of loading of 0*001" is considered. The curves on 

Figure 4*12 show that the central deflection and column moments for
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this analysis vary in the sipc manner as on the experimental test 

although the experimental deviations from symetrical behaviour 

arc much greater. An important point emerges on that thc theoretical 

quarter point deflections arc both increasing at collapse. This is 

inconsistent with ”unaLneing'’ which implies that one quarter point 

do fie ^0.0” should increase nnd thc other eeirhlsh (Figure 2,5o)0 

Thus the increments in deflection nt collapse can be considered as 

made up of two waves, onc a tymptrical "unain<eing,’ wave nnd the 

other an anti^-yp^^C^ric wave tending to promote the S seaph of the 

column. In this particular cisc the anti-STpieet roc wave is predominant 
suggesting that "unwinding” is not the failure criterion,

A further point is that the presence of the 0-001" deflection 

hns a very small cffcct on thc collapse load reducing 0t from 

3,310 lb to 3,300 lb. Tims indicates that despite the presence of 

some "unwinding" the collapse load is still d.nrvcly controlled by 

the collapse load of the ha1f■icotupno

It can therefore bc concluded thnt in some cases "ui^a^niiig"

will not govern collapse of columns bcnt in symetrical double 
61curvature. BIJLAAD has stated that "unwinding" will ahways

govern iolfapte of such columns, but this statement is blsee on the 

atttmptioi that un1sad0ig 0s negligible. Thc author'' s analysis has 
shown that unloading can be extensive and it is this feature of 

behaviour that leads to the possibility that ”una.n<eL.ig” pay not 

occur. Sopc carefully controlled experiments are required to finally 
clarify this question.

4.4. dcneral Conclusions

The agiccpent between the results from the author’s tests lie • . 

from the author* s analysis Os not as good as ihli obtained in Chapter 

3 where tests by other auihsit were considered. It has been tesai 

that thc eitircpliiOes can be attributed cither to faults in the 

author* s experimental procedure or to defects in thc test rigs’,

It is considered, therefore, ihli thc combined cvOd-cncc from 

Chapter 3 nnd this chapter isnU0:mt the general validity of the 

author’s analysis, and of thc atstmpttiont on w^ch it Os batee.
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CHAPTER 5

5 * Analysis of columns of ideal elastic-plastic material

The oomi^p^i:^:* programmes were written with a view to analysing 

the behaviour of columns over t wide range of conedtions. This has 

been done for the rectangular column of ideal elastic-plastic 

material (Figure 3.1), some 220 columns under specific conditions 

having been analysed. In the course of this work some 30,000 

output cards were obtained, each containing 8 nunbbrs, and it is 

plain that only t fraction of the total output ctn be presented 

here.

The variables considered tre discussed first foiooved sy the 

presentation of the results. The behaviour of pinned and re strained 

columns is discussed under separate headings and the theoretical 
collapse loads are compared with the working loads according to 

B.S.449 - 1939.

Finally the major conclusions are stated.

5.1. Variables considered

5.1 ,1 . Slenderness

This variable is govered by the parameter Pp/Pg, where 

Pp is the load- to cause yield over the whole column cross-section, 

and Pe is the Euler load of the ooltnn. The parameter is 

dependent on the slenderness ratio L/r of the column, the yield 

stress fy, and the modulus of elasticity E of the column material. 
Analysis has been carried out for Pp/Pg - 0*5, 1*0, 2*0 and 4*0,

For steel with a yield stress of 16 T/in2 and modulus of elasticity 

of 13,000 T/ins this is equivalent to L/r values of 89*5,

126*6 and 179*1.

5.1.2. Restraint stiffness

Equal restraint stiffnesses were taken at the top and bottom 

of the column and it was assumed that they remained constant tnd 
active up to and through collapse. The values were controlled by 

the restraint factor Q which is defined as:-
3EI

L .................Restraint stiffness ,5.1
where 3EI refers to the column length and is in fact the rotational 

stiffness of the pltnnd column against end moInpnts. Thus if a 

framed building is being considered Q can be taken as roughly

Q
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equivalent to the beam to Gonlpm. stiffness ratio.

AnaLysit has been ccicred. on. for Q = 0, 0**5, 1*O, 2*0, 5*0 

and 100-0. Q = 0 gives a eln-sndsd oonde.tlon and Q = 100-0 may 

bs liken to give a fixed-end condition,

5.1 .3. Moment Poid^

Four dffsrsnl moment loading patterns were considered 

designated is oases (a), (b) , (c) , an<d (d) , as slwwn in Figure 5.1. 

For Q = 0, i.e. pinned conlpmn, ooIp ccams (i), (b) and (d.) wire 

onnside:cse. For rich value of Q in uepec limit to She value of 

was set. In all cates SPs moment loading was applied fir mt and Shen 

left constant as She axial load was applied.

5.1.4. Initial curvature

TPs iffsct of this Pas bssn ttueind for elinnd columns only. 

TPs curvature was taken as She hilf-wavs of a ontlne curve with a 

maximum ordinals Cm defined by:-

C„ = Dy fPp/Pg 5.2

where Dy it ths central deflection of ths column when both end 

moments arn equal to Ms, She moment to cause first yield in SPs 
ibtsncs of axial load. For fy - 16 T/in* and e = 13,000 T/iit

this gives a value of cm = L/394. TPs eirametert utsd in ths

Percy-Robertson formula in B.S. 449 - 1959 imply a Cm value
equal to l/576 for a rsotannplar cmss-sectlon. Thus ihls analysis 

is mors conservative than B.S* 449.

5.2. Calculation and presentation of results

TPs analysis wat carried out taking a rsc1iinulir cross­

section column 2" dsse and 0*75" wide, diidse into 15 equal strips. 
Ths column material had in E value of 5,000 T/in2 nth t yield siress 

fy of 20 T/in2. These dimensions and mateiCLil properties were 

tsPsclsd So ttks full advantags of SPs accuracy of ths fixed point 

arithmetic procedures of thn oompePer prDgrsmmes.

Ths column was assumed to 'be Of uniform cross-miction. TPs 

columns under cats (a), (b) , iiI (c) Pnieings were analysed nth She 

general ’DEUCE* erngr£mie., Generally tPs oolumnDnlgtP was eivlelsd 

into 14 ssgienis, although in toms catis 22 mngieents were utsd.

For ths columns under case (d) loading (in symmtrccal double 

curvature) She special ’DEUCE’ prograIms was used, ths haPf-coPmn
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length beOng divided Onto 14 segments. This gave the 

von Karen” "unwinding" 1oaet, nnd the Shanley loads were subsequently 
calculated leaking use of the auxiliary 'SIRIUS' progrmee. For thc 
initially curved columns under iatc ( d) loading thc general vcrsi on 

of thc 'DEUCE' program was used, eiioeing thc column Onto 14 

tcgpents,,

The results arc expressed On a non-dimensional fora, axial load 

"001”^ expressed ns a fraction of Pp, moment as a fraction of Mp, 

deflection as a fraction of Dy, and curvature as n fraction of $p . 

Thus thc rcsuits can be applied generally to columns of Odcal 

clastic-plastic Material.

Separate sections bclow deal with the presentation of results 

for pinned nnd restrained columns,

5.2.1 , Presentation of iOnied colum” results

To give some idea of thc general behaviour of thc pinned 

columns, a plot Os given On Figure 5.2 of the plastic zones nt 

collapse, O.e. nt thc point defined by thc peak of the load/deflection 

diagram. For thc case (d) 1sae0ngt on initially straL.ght columns, 

the plastOi zones at thc Shanley "unwinding" loads arc thoai.

Figure 5.3 gives the collapse loads plotted as sets of 
interaction curves between Pp/Pp and M^/kp, each sct dealing with 

one value of the t1cid.crncss iaiapeter Pp/Pjg. The curves for case 

(a), (b) , and ( d) 1sad0ngt arc shown as full lines while those for 

the sipc loadings including the eUUciit of initial curvature are 
shoai as eathee lines. For the case (d) loadings thc Shanley 

"unwinding" loads arc given. Thc differences between the Shanley and 

von Karma” loads arc in fact too small to be visible 0” Figure 5.3.

Two additional lines are dilai on Clie diagram. 1nc gives 

iompenatisnt of n^jLal load and end moment which will give a plastic 

hinge at end A of the column. This gives thc maximum possible 1sle. 

The other line expresses the eet0gn condition given On B.S. 44-9 ~

1959 for sections under combined bendOng aie thrust, O.e.:-

d
Pc ...............5.3

wherc fc - calculated average axial iompiessivc stress

pc - aLLo^wabin compiessive stress under nxim load alone
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fbc

pbg

maximum compressive stress due to bending 

allowable; compressive stress due to bending

Values of pc were taken from fable 17 of B.S.449 - 1959, for 
steel to B.8.15. The L/r values for entering Table 17 corresponding 

to Pp/Pg - 0*5, VO, 2"0 and 1*0 were calculated taking fy - 16 T/in2 

and E = 13,000 T/in2 and are given in i 5.1.1. above. The value of 

pkQ was taken as 10*5 T/in2 ,

The maximum moment allowed in the absence of axial load is thus :

10>S
16 My ....5.4

For a rectangular section Mp = 1*5 My so that the maximum moment, 
which is always applied at end A of the columi,^s governed by™

Ma\ = K05 X p 

Mp /ntx. 1 1->
■437? .7.7

The maximum average axial stress 

moment is po so that the maximum axial

\ R*/ max.
_ '<q

If

allowed in the absence of 

lotd is governed by:-

.......5.6

Plotting the points given by equations 5.5 and 5.6 and joining 

them gives a line which sat is flies equation 5.3.

5.2.2. Pre sent ati. on of restrained column results

To give some idea of the general behaviour of restrained 

cn1umnt, an analysis for each of the four loading cases is presenied 

in detail in Figures 5.4 - 7. A load/deflection diagram along with 

bending 11101110X1’, deflection, curvature and plastic zone diagrams at 

various stages in the loading are shown for each analysis.

For a large number of columns under case ( d) loading the 

collapse load of the half-cohnm was retched without "unwinding" 

being indicated. In tt attempt to clarify this behaviour an analysis 

was carried out for a particular case with Mg ~ -0*9 thus intro­
ducing a slight initial lack of synmeery. A onmparisnt between this 

case atd the correspotditg case with Mg = is shown in Figure 5.8.

The collapse loads are plotted in two ways. In Figure 5.9 

they tie plotted ts sets of interaction curves between PF/Pp and
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Mt^p each set dealing to-SP particular values of Q tnd Pp/Pft. In 

Figures 5.10 - 13 they are plotted agati at sets of interaction 

curves, this S^^s between Pp/Pp and (M^ppst /kp. (^Ab)Ps© 

denotes ths value of M43 on Shs column after app-licalion of SPs 

external end moments t/ and M-g, i.e. before an/ axiil load is 

applied. Each Figuiu conirr the residls for a paplisulur v avie 

of Pp/Pg and c oniai-m foou smSs oo interaction cucum trhwPh dedS 
separately with She loading cases (a), (b) , (c) ond (d). For the 

ctss (d) loactLnis the Shpliln loadd aae gniinl It wwo ffoun tinO SPe 

von Karman loads were upuptly aony wry stighPly alone the Shnnis'' 

lmds. Where "uny/inaing" was reckoned not to occur, Shs collapse 

Poods for SPs hoPf-ccoPmn were token.

For onmperisnn ths curves for collapsi loads of etanne 

columns, i.e. Q = 0, and ths line expressing tPs B.S .449 design 

condition for maximum working load ars also given in Figures 5.10 ■ 

13. TPs B.S.449 condition wam obtained in thn same wo/ as for Shs 

eiansd columns, taking the smencdm ns ratio as 0*7 iknes Phe 

elnnsd value. In SPis case (MAt)pt© -7 Oakm a, SPs value of 

moment So bs used when caicuPating f^Q the maximum onlepeessiis 

stress dus So bending.

As mentioned in § 2.3.4. the compuper prDgrmmes would not 

deal TOith some cates of Poa.ding, To complete tPs inSsractioi curves 

sxtropnloiioi and iitsrpnlatioi Pavs Ossi carried out. Were tPs 

curves havs bnnn obtained in ihls way they are designated 0/ dashed 

lines.

5.3. Discussion of pinned column rssuits

5.3.1. General , bshivinur

For columns under cose (a) Pnaeinn Figure 5.2. tPows SPaS it 

collapse ths plastic zones do not penetrate deeply into She cross­

sections and ars well spread out along SPn onlmmni Pingth. TPis 

indicatst thol ths deflections at collapse ars not excessive. Load/ 

deflection diagrams hove been plotted for all ths pinise column 

results tnd generally ths maximum deflections al collapse for cass 

(a) loadings orn of ths order of two So three times SPs deflection 

uieer moments alone.

For columns under case (b) and (d) loadings Shs sa^es 

conclptini applies ge]ne^]?£^^-ly, but for thn Power Pp/Pg values, i.e.
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Less slender columns, plastic hOngcs begin to form at the cidt. For 

thie higher ia1tct of Pp/Pg under case (d) 1.oa.eiig, the collapse 

load Os governed by the Euler lond.

Initial curvature has very little effect on the general 

behaviour of thc iatc (a) and (b) loadings, except for the cases 

under no end moments at all. It has a considerable effect on the 

case (d) londOnEs because On such ciscs thc inOtoally curved column 

begins to ”tnaiie" 0mmeCeate1y 'the axial load Os applied, while the 

initially straight colimn. docs not begin to ”uiWLie** until very near 

the collapse load.

A basic conclusion is that thc behaviour pay be governed 

csmpiLtely by clastic theory, iompPetely by plastic theory, or by a 

complex interaction of thc two,,,

5.3.2, Collapse .loads

A ismpiriton between thc sets of interaction curves in Figure 

5.3 confixes the well known sensitivity of thc collapse loads to the 

effects of s1eieernest. For Pp/Pg = 0*5, however, thc loads are 

beginning to be bounded by the condition for a fully platiii hOngc 

at the end of thc Reductions in the Pp/Pg value below 0*5

ilnnot therefore gain much in carrying capacity.

For each set of curves the variation in moment londOnE pattern 

has a tiEiiiiclit effect on the collapse loads. Thc effects are 

roughly similar for PpPE = 2*0 nnd Pp/Pg - 4'0, Earlier work by 

thc author with 'DEUCE* autocode programcs iidiiates that the 

effects of moment LoadinE pattern for values of Pp/Pv up to 15*0 arc 

very similar to thc effects at Pp/Pg = 4'0. As Pp/Pg falls below 

0*5 the variation On moment loading pattern will have less 

si.gnificaii effects as all loa'd. cases wLill tend to bc governed by thc

plastic hinge criterion.
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The effects of initial curvature are significant where II-i.- 

-td nonntts tre snitl atd for case ( d) lotdimg in synntrica'l 

douhle curvature. Otherwise the effects are snail in comparison 

wth the effects of slenderness and moment 1oa.d.im.g pattern. It is

tor this reason that initial curvature? was not considered in the

analysis of restrained columns,

3.4 cu?sion of re strained-oo1lnn .insults

tAJ . General behavi.our

The four typical examples for each case of moment loading, 

which are presented in Figures 3=4 - 7, are discussed in turn

below.

Figure 3=4 portrays the example chosen from the insulin j m 

columns under case (a) loading. It will be seen that the column 

moments and initially quite large under moippent loading, oi?y,

reduce as axial load is applied, and eventually reverse and restrain 

the column. The bending moments at points near the ends of the 

column initially increase and then decrease causing the unloading 

shown. At the centre of the column the bending moment continues
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So tnor,sass and plastlct!/ penetrates well into SPs cross-snction, 

giving a zone of very high curvature, TPs peak of thn load, 

deflection curve is not csachne until elas■S;ioit/ begins to dnvelop 

at ths indm of ths column uieler SPs increasing 1111^-111^ moments.

A stud/ of ths results for other columns under cats (a) 

lnadtig has revealnd several variations from this typical behaviour. 

TPs first is that wP.1i She cnlpma moments tnd MpA alwa/s
becoms Piss os axial load is applied, the/ need not reverse before 

collapse is rsachsd. It follows that ths dsinloement of plasticity 
al ths sndt of ths cnluii is not ssssntial So collapse. Ths 

second ts that tPs a^t^iu^'S of uiloaelng dspnnes So some 1x111.1 on She 

magnitude of the end moment loading and the Pp/Pg value. For Shs 

lower ind moments Pg and Mg and high Pp/Pg viluss ths unloaelin 

zones arn much smaller. Thn third variation is ihai for Plghnr 

Pp/fk values SPs central curvatures do rot rims to such high values.

For several columns under case (a) loading difficulty was 

sxperinncse because She values of curvature it SPs centre of SPn? 

column rots above Shs limiting value discussed ir § 3.1 .1., 

lidioaiinn that possibly plostio hinges should bs forming. A rough 
check using ths rtgorout equations givsn by HOORpE Phowed thtl 

central plastic hinges would esisPoe for only very few of the 
columns analyted.

Figure 5.5 portrays She example cPoser from thn rssulis for 

columns under case (b) modlrg. It will bs seen SPat She column 

moment alters in IPs same way as for IPs case (a) example, but

stacs Mpp_ ls already a restraining moment under moment loading onl/, 

its value iacreasss is oxial load is applied. Ths location of ths 
eoini of maximum moment ts initially al end A, but afisr a certain 

slags it begins to move towards She centre of She column, Shortly 

afler Shn point of maximum moment patsns a given crnss-sncti.on Shs 

moment on ihti cross-sr cti.on begins io decreass and unloading starts 

AS nnd B plasticlt/ begins to develop no.rly ta She lnaelng aad 

penetrates almost to thn toms depth as al SPs point of maximum 

moment in thn column length.

A study of She rssulis for other columns under cass (b) 

lnieinn rnvntls that generally Shs column moment M&g does not 
reverse before collapts ts reached. Ths amount of plasticity ond 

uiloadlan varist in ths toms way as for SPs cass (a) loadtag.
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Figure 5.6 portrays the case (c) example. The behaviour is 

essentially the sane as for the case (b) example, with a lendetoy 

for more pronounced plastic zones to develop at end B.

Figure 5=7 portrays the example chosen from the results for 
columns under case ( d) loading. The behaviour of the hal^‘~n0lonn 

is similar to that of the case (b) example, except that plasticity 

does not develop at the lower end of the half--column, i.e. the 

centre of the full column.

The reduced critical loads P'd associated with the single 

curvature "unwinding" mode of deflection are shown, the Shanley 

criterion having been used. It wll be seen that the reduced 

critical load drops below the actual load on the column slightly 

before the peak of the load/deflection curve for the half-■ col uni,

Thus this column should collapse by ’,unm-n(lLtg". For this 

example the reduced critical loads of the ha1.f~col^nn have also been 

calculated. These loads are equivalent to the reduced critical 

loads associated with the double curvature mode of de.flection for 

the whole column. It will be seen that the reduced critical load 

in the double curvature mode can be less than in. the single 

curvature mode.

For many case (d) loadings the reduced critical load 

associated with "unwinding" did not drop below the load on the half- 

onlunt, even after the peak of the load/deflection curve was reached, 

indicationg that "utoinding,’ would not occur. For some cases, on 

the other hand, "unwending" begins while the col^uon is in the elastic 

range.

Figure, 5.8 gives sone of the resuits for a case where 
Mg - -0’9M^-, i.e. very close to a case (d) loading. For the 

corresponding case where Mg = ~M^ it was reckoned that "unwinding" 

would not occur and the collapse load- was taken ts the collapse load 

of the half-coumn. It will be seen that the collapse load for the 

case where Mg - -0*9 MX is only very slightly below that for the 

tyln]mtrical case. A study of the plastic zone diagms shows that 

the overall behaviour of the two cases is very similar. It is 

considered that this example confirms that "ltvo.rIltng" need not 

govern the collapse of a column bent in symetrical double curvature.
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5.4.2. Discussion of collapse loads of restrained columns

Figure 5.9 confirms the sensitivity of thc is'Lla.ite loads 

to the effects of slenderness. In contrast to the pinned column 

behaviour the collapse loads do not become bounded by an cnd 
plastic hingc criterion for low values of Pp/pg. As Pp/Pg tends 

to zero, O.c. as the columui becomes more and more stocky, the 

collapse 1saes tend to Pp regardless of thc moment 1oleing. This 

Os because the plasticity On stocky columns allows thc restraining 

systems to. carry all thc moment 1oleiiE, without irodtiinE a 

significant column deflection.

Thc variation in collapse lond duc to moment 1sleinE pattern 

is not ns great as that duc tbo t1cnecrness. It is of interest to 

note that for a vive” value of Mj/lp thc case (a) londOnE is 

always the post critical, and thc cisc (d) loading thc least 

critical. Generally the collapse l.ot.es for thc cisc (b) loading 

lie roughly midway between those for case (a) and (d) 1oad.inEsc

The cffcct of variation in the magnitude of cnd restraint on 

thc collapse loads Os cost clearly seen from FOguics 5=10 -15. A 

variation in restraint factor Q from 0*5 to 100*0 generally iioeuiCt 

as much chliEe in the collapse lond as a variation in Pp/Pg froe 

0”5 to 4®0. Thus thc plagn■itt.de of the restraint must be considered 

as a major factor 0” deteieining the collapse lsldt of rcstrainied 

columns.

It should bc noted that for cases (b) , (c) and (d) loadings, 

cnd moments and Mg can bc applied such that full plastic hinges 
are developed at cnd A, or nt ends A and B for case (d) loadinEs.

Thc start of axial loading causes these hOnEes to disappear because 
part of thc cross- section unloads under thc decreasing cs1u.a.n moment

As explained On Chapter 3 the analysis will not deal with 

plastic hinges’ It was, however, Eenecial1y possible to comppete an 

analysis with a value of (MABjpsp 'glssilbly close to Mp, thus

entailing the einietm of extrapolation on the interaction diagraMs.

5.5» Compulissi with B.S.449 - 1959
5.5.1. Pinned column results

The load factors iMplicd in B .8.449 can be obtained by 

dividing the loads at collapse aiiore0iE to thc author’s analysis 

by thc working 1oaes aicordinE to B.S.449. The lond factor 

appropriate to a given point on an Oitcrlition curve can bc found
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by drawing a line from the origin of the interact! on diagrme to 

that point. The load factor is 'then., given by:»

L.F Distance from origin to point on interaction curve
Distance from origin to where line cuts the working load line

The maximum and minimum load, factors for various loading 

patterns have been found by trial and error tnd are shown in Table 

5.1 below.

Table 5»1 ~ Load factors for pinned columns

1
Pp f L Pe l

Minimum ■
.F. Case (a)

Initially 
curved '|

Minimum
L .F. Case

(a)
Initially I 
Straight

Maximum
L .F. Case 

(t>)
Initially

curved

Maximum 
L.F. Case 

(4)
Initially

curved

0*5 1-95 2*15 2*80 3*00

1 *0 1-85 2*0 2*65 3*10

2*0 1 -80 1”95 2*70 3*25
4*0 1-80 1 *90 2*6o 3*50

The load factor implied in the Perry-Robertson formula, on

which the permissible stresses in B.S.449 are based, is 2,0, so that 
the minimum values of 1*8, though unconservative, are not alarming. 

It is probable, however, that wLth cross-sections with lower shape 

factors, e.g. I sections bent about the major axis, the piniouo 

load factors could fall to 1*5°

The maximum load, factors indicate that the B.S.449 design can 
be conservative. If the case (d) loading is rejected as being 

unlikely to anise in design, the maximum value of 2*8 does not 

appear excessive.

It can be concluded that the design of pinned columns 

according to B.S.449 is reasonably satisfactory. Unfortunately the 

pinned column under known end moment loading is extremely rare in 

practice.

5.5.2. Restrained column results

The working loads according to B.S.44-9 have been obtained 

assuming an effective length of 0*7L. This is only justified if 

adequate restraint is provided. It is considered unlikely that a 

designer would assume adequate restraint unless the beam to column
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stiffness ratio wat al leati equal to 1*0. Thn maximum and mnieum 

load factors Pavs therefore bssn obtained for Q - 1*0 and Q - ,5’Q. 

TPs Pood- factors can bs tsssssnd 0/ She some method at was used for 

pinaed columns provided (Mjjt)e*o for the collapse loading is less

than My, the yinld moment. When this is so IPs external moment 

loading it dirnctly proportional to (Ma^p-q • The collapsi 

Polet at She mirimum load factor were found io fulfil this conditlor 

tnd the maximum load factors were atsnsssd for ar upper limit of 

(M_ab)p-o ~ Ms corresponding to She calla-psi Pno.diig'. TPs rssulis
are pressr'ind ir Table 5 = 2 below.

Table 5.2 - Load faclort for restrained columns

' Pp '
Q

Minimum L ,F. Maximum L.F
% Case (t) 

Loading
Cass ( d) 
Loading

0-5 1 -0 2-25 3*50

1 *0 1 *0 2*30 3*60

2-0 1 *0 2*05 3*60

4" 0 1 *0 1 *80 3*60

0*5 5*0 2-25 3*70
1 *0 5-0 2-55 3*85

2*0 5-0 2*55 4*05
4-0 5*0 2-30 4*50

Ths Pooi factors for casss where (Mab)p-& *‘*^,1 thn

collapse loodiag must 0s obtained by a trial and srror eroosdurs,,

This hat bssn dore for a few ctsst and Shs moxi^mum values are some­

what higher Shan ihote givsn ir Table 5.2 above.

For ths rsstroo.insd column cats (a) loading is probably less 

common that case (b) , (c), trd (d) loadings. Il can thus be concluded 

that the B.S.449 prncsdurn wii generally bn conservative, although 

it is possible for unconservative catis to occur.

The large rings over which IPs load factor ea/ vary indlctles 

ihoi the design of restrained columns according to B.S.449 ts 
unsatisfactory.

5.6. Conclusions

Il Pat bsen showa tPal She behaviour of columns up to collapsi
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is generally governed by a complex interaction between clastic 

and plastic iecoiy, although some particular cases can be governed 

entirely by cither elastic or plastic theory.

The major factors influencing the collapse loads of pinned 
io1u.ant 'were found to bc slenderness, and the magnitude and 

arrangement of moment loadnE.

The major Uaiisrt influencing the collapse loads of restrained 

columns were found to be slenderness, magnitude nnd arrsmgepent of 

moment loaeoig, and magnitude of end restraint.

For both pinned and restrained, columns Ot was found ihai case 

(d) londOnE in symetrical double curvature is always less critical 

tlni. iltc (a) londOnE 0” symetrical double curvature.

Thc design criteria suggested in B.3,W9 - 1959 for mcenters 

under combined bending and thrust are Usuie to be reasonably 

satisfactory for pinned io1umns. For restrained co1tais, however, 

the B ,3.449 criteria can lead to very conservative results nnd are 

considered unsatisfactory.
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CHAPTER 6

6. Conclusions

A ttmpary is given first of the major conclusions, followed 

by suggestions for future work in this field,

6.1. Mator conclusions

An analysis for restrained columns held against sway and 

bent about one axis of symmetry has been developed and programmed 

for an electronic compultn^*. Results obtained using this analysis 

have been compared wLth insults of analysis tnd tests by other authors. 
Tests carried out by the author on uinted steel columns, pinned 

aluminium columns, and restrained adlm:l.ni■up. columns, have also been 

analysed. The general level of agreement between theory and 

experiment is very good and it is concluded that the analysis can 

be relied on to give a good estimate of the collapse load of t given 

column, as well as forecasting its behaviour during loading.

The analysis has been used to analyse restrained rectangular 

columns of ideal elastic-plastic material over a wide range of 

coned tions. It is concluded that the axial load-carrying capacity 

of pinned columns is influenced mainly by slenderness, along with the 

m^a^^nltude' and pattern of end moment loading. The influence of initial 

curvature is not found to be significant except where the moments 

coning on to the column ends tre small. The axial load-carrying 

capacity of restrained, columns is found to be influenced by slenderness, 

magnitude and pattern of end moment loading, and the degree of end 

restraint available. For a given value of end restraint and a given 

value of out-of-balcrnce external moments it is found that the most 

critical loading condition is always where the moments produce 

symetrical single curvature. The influence of initial curvature

was not investigated for restrained columns.

A oopplaiton has been oadt of the collapse loads obtained for 

columns of ideal elastic-plastic material with working loads obtained 

using the criteria given in B.S.44-9 for ^^ip^c^rs under combined bending 
and thrust. It is concluded that these criteria are satisfactory 

when applied to pinned columns. For restrained columns, however, the 

ratio of collapse load to working load varies over a wide range and 

it is concluded that B.S94-49 is unsatisfactory for such colunns.
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6o2. Suggestions for future research

The major point here Os to what extent this work could hc 

used i” developing design methods. It was concluded 0” Chapter 5 

that column behaviour pay be comppitely controlled by cither elastic 

or plastic theory and pore usually ty a complex interaction of the 

two. It scems unlikely therefore that eetOEi methods batee entirely 

on elastic or plastic theory will be satisfactory*,

In the luthsf’ s opinio” a design method could bc developed 

based on interaction diagrams such as those shsai On Figure 5®9.

For a given trial section thc values of Pp/P-g, Q, MjAUp, nnd Mg/Mp 

could be calculated, Ma and Mg being given by thc out-of-balance 

fixed end moments acting at thc column ends. Thc value of Pp/Pp 

could then be read off an appropriate dilgrta. Thc value of P/Pp 

corresponding to the factored design 1ole would then bc compared 

with A considerable range of interaction e0agramt would have

to be prepared but in thc author's opinion the amount of iO]ppp.ter 

tiec required for this would not bc excessive *

A difficulty which would have to be i•eso1.vce On such a 

design liirslih lies in the assessment of Q when plasticity develops 

in the restraining pemPers. It is probable that conservative 

assumptions can be developed for this.

For designing iompiessisn lemPers On trusses the out-of- 

blL.anie fixed end moment and Mg will generally bc very spall, 

nnd in such catct thc effect of initial curvature wll bc of primary 

importance. The interact Lon eiagrtat could be prepared taking 

account of a standard initial curvature and so would take aicotnt 

of this.

The existing csmputer prograaes will only deal with columns 

bent about onc axis, but it scees essential that a design method 

capable of dealing with biaxial 1oae0ig be developed. As mentioned 

bclow thc analytical method used in this thesis can be extended to 

consider biaxial bcieiiE. Thus Onieraition eilgrtat could be 

prepaiee for this iltc also. It is possible that a very large range 

of diagrtas would bc necessary to give adequate ioieiage to the 

practical range of columns and loaminE's, thus making thc design 

method too cumbersome. Thc author considers, however, ihli thc 

approach Os still worth investigating.
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Specific suggestions for future research, trs given bslow„

6.2.1. Suggestions for analytical work

The existing oampeper prDgrmmes con be used to derive 

design lrlIraolioa diagrams for iarlout iypet of col.uimrs, e.g. 

tteel I-seclions bent about either oxim. Ths iffect of iariabl.e 

cmss-sicllon along the column, con also be studied. Since tingle 

curvature 0enelnn is found to bs more critical for unifoim columns, 

it mi} prove dvantaginus to add material So the mid~linglh of the 

onlumr„

AmenInerts could be mads to ths existing progioammes, onn- 

1.11X001/ lroreisinn their scoee. Variation in sad rnslrtinl 

stiffness luring loading could be included, thus taking account of 

the development of plasticity in restraining memebrs. Diffsrsni 

ssqunncnt of Pooding could also be siudied, e.g. axial load applied 

first aad lift constant at moment loading is applied.

TPs analytical method can be sxisnded to deal with bendlrg 

about both axes. Torsional effects could also be included, proiieed 

warping resistance and ths Wagner effect were neglected, and thn 

assumption mo.de that Shn torsional rigidity is unaffected by 

plasticity ir Shs longilueiral direction. Thn method would ther 

be capable of dealing with the important ctss of the I section bent 

about tPe major axis, eroitded initial cpriatur’i about Shs minor 

txis was present.

Details concerning IPs extension of SPe method are g-vsi in 

an Appendix to the progammi specification*

6.2.2. Suggestions for -experimented work

At suggested la Chapter 4 some carefully controlled experiments 

or rs strains 1 columns, bnnt in symetrccal double curvature would 
confirm whether or rot "uawinding" always go^^rrt coll-apti of such 

columns. A pai^f^i-lnl series of lesit on equivalent hald--coPumns 

(Figure 2.5b) would provide the PilfocoPmn collapse loads for 

co^I)pa^3-sor.

Other experimental work would be determined by ths cassm 

considered in analysis. '

Il should bs noted Shat the analytical aeproioh deiePoeId tn

* See footnote on Page 67
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the thesis effectively carries out an "ebperLment" on a

aa,thempnical model. Thus it should not be neiessliy to carry out 

large numbers of tests.,
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APPENDIX A1

A1 . Notation

e Strain

f Stress

fy =, Yield stress

E Modulus of Elastic:

Curvature

Curvature ol first

I = Second moment of a:

r Radius of gyration

L = Column length

N Numier of segments

' L Sigmonl Psnrlh

Co } C, ...............cx,.......... Cn ;

di, do , .............. dx,...........djj^i

Oo ) Dl,. ................................. % '■

eo J e- , ...............ex,...........eN :

= Initial deflections al sadP division 
point

Axial strains al ths column axis for 

etch division pDial crots-seclior

. *- ------ ^”N - Curvatures of snlumn axis al each division

point cross-srciioa

>, {6 s

&t> .......... - Diff-mcss brOwser assumed tnd

saloulalee deflections al 10^ division point

R - Number of reference division point

Dp. - Deflection of reference division point

ar = Difference between assumed ond calculiled deflection al

rsferencn division pozinS

©^, Qg - End rotations of column Ius to Poaeii.g

XAj 4b ~ Rot0.tions of end restraining systems/unit moment
^A> ^B - Differences between calculated, srd rotodions of onlumns

oad rolotiors of end restraining systems 

Q = Resiraint factor

Dy ~ Central deflecton ff column under equal tnaiial moments

equal io My

Notation for loadim

P - Axiol load

Pp = Failure or collapse load
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Pp = Euler load. (= U2El/lP>)

Pqr - Elastic critical load

P' qr -- Reduced, critical load

Pp ~ Load to cause yield stress in compression over whole 

iriss-section

M = Bending moment

Mo, Mi, ........Mx, .Mjp - Bending moments git each di-viiion point
Mjp = External moment applied at oop of column

Mg = External moment applied at b^ot^oon of column

PAb = Moment on the column length at the opp

Mba ~ Moment on the column length. at the botomn

(MAb)p - 0 - Mommnt on the column length at the top after

applying Myp and Mg and before application of P 

My - Moment to pioocUnce imt yield in the absenne pf axinl load 

Mp - Full plastcc moment nn the absence of axial ooad

Notation for a typical division point cross-section x

aO , al }

Jo> yi ±

ep = 
fr - 
(em)r - 

( fm) p = 

(Egm ==

oC

..........ar, ..... Pq re Ar^as sf ^css-s estron strips

..........yr, .......... yq = Distances of centres of gravity of
strips .from the column axis 

Strann at the cennre of gravity of sripp r 

Steesp at the cennre of gravity of stipp r 

Maximum strain to which strip r has been, subjccted 

Stress corresponding to (esi^

Tangent rndduuss ppsloprrate to strip r

Difference between calculated and required value of Pp

Difference between calculated and required value of Mp

^■oC.

*e_

Suffixes

a

c

9

SSgnsdOes a value assumed at the start of an iteration 
cycle

SSgnsdies a value calculated at the end of an iteration 

cycle

SSgnsdOes a modedication to an assumed value before starting 

another iteraction cycle
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Not ation for sties s/strsa.l-n curve

fo*, f'l, ..........f’s ...... f’u - Stresses at points chosen to
define stress/strain curve

t'o, ei , ......e'g ...... e'u - Strains at points chnslt to
define stress/strain curve

(Et)'o, (^t) ’ l, .... (Ep) *s ............ (E-t)'u - Tangent modulus for
each of the straight line portions of the 

stress/strain curve.
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APPENDIX A2

A2. Mathernot'cal details of restrained. column analysis

Thi calculation of curvature at a division point is 

described first, a written flow diagram for the urnclduil being 

included. The calculation of the effects of slight changis in axial 

load and bending moment on thi curvature. is then described, followed 

by a brief reference to the integration procedure.

Descriptions of the analysis under ini moment leading only, 

the analysis under ini moment loading tnd axial load, and the 

analysis for the reduced critical load, follow under separate 

healings. Written flow diagrams for each analysis are given.

The convergence of the various iterative proceiuris is 

discussed and the methods developed for obtaining initial estimates 

to quannities are described.

Finally, a written flow diagram givlltg the n-ain outline of the 

compauer urogrnme for thi g01!®3*!! cast is given, with details of 

the values stored after each of the major steps in the analysis.

More details of the oo]ppuler progrmmes can ie obtained in 

the piogrmni specifications.*

A2,1 Calculation of curvature at a typical. iiiition point cross- 

section x

It is required to calculate the curvature corresponding to 

given values of axial load and bending moment, which will be denoted 

iy Px ani M . Prelininuiy estimates of axial strain ix at thi 

onllmt axis ani curvature of the column axis will be available.

Referring to Figure 2.2b the strain er** at the centre of

* The specifications for the ’DEUCE’ pro grannies art held by the 
Civil Engineering Department, Glasgow University, Glasgow W.2,

while the specification for the ’SIRIUS’ prognmni is heli by the 
Cement and Concrete Association, Wexham Springs, Stoke Poges, Slough, 
Bucks c

** Strictly speaking thi strip strains should be deno-ted iy exo, 
i%, ..........e^o .... ®xq* To avoid cnnfutlof the x suffix has

been omitted where convenient.
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gravity of any irois-itoiion strip r, distant yp. from the column 
axis, is given by:-

er ’ ex +• A2.I

The value of stress fp corresponding to this strain is obtained 

from the stress/strain curve (Figure 2,3) by an interpolation 

procedure, along with the appropriate value of tangent modulus 

(E-t)r, which is required later. If unloading is to be considered, 

then a maximum value of strain (em)r bo which the strip has been 

subjected will be available. If ep is less than (©m{ as shown 

in Figure A2.1 then:-

and

A = (fn)r

(EiV - (EbP

)
)
) A2.2

The area of sts•io' r is denoted by ap and thus the axial 0'osae 

in the strip’ is given by .pOp* The total calculated axial force 

(Px)o is given by:

E A?

Similarly the total calculated bending mojnmnt (Mx)c about 

the column axis is given by™ ,

A2,4
r=o

IO these calculated values (Px)c and (Mx)g are reasonably 

close to the required values Pp and Mx, the correct values for e% 
and P p have been assumed. IO they are not sufficiently close, 
mocLiiication to ep and p % must be made and new values of (Px)c 

and (Mx)c obtained.

To evaluate the mo0.efications it is convenient first to 

calculate the following quantities

OC ' (1,1 ~ Px )
) A2.5

P ’ (tU ~ Mx j
oC and R should be zero and the modifications to ep and px 

should be such as io rte.uit them to zero. Denoting the moclifiiations
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bs (ex)q ..d- ( ^x)9 , SPs Onl.lowiir ^6:111^ lquat1nis Pnle:

(<x)»
b c-x

4- ~O

A2.6

+

The partial deriiotiiss ” in equations A2.6 are obtained b/ 

11001X11010111^ equations A2.5, noting thol P% ond M% ors coi^is'ioits 

i.s.:-

1<C ,
'^TC <b €'X

Umx)c . =
%g* ‘

* (PQc,

4>rt

A2a7

Ths partial derivatives on the R.H. sides of equations A2.7 arn 

calculated by considering thn ifficSt of slight chanrns in ex tad 
£x, denoted by <£nx tnd &<^x., as shown ir Figure A2.2.

Cex producis shanges ir strain equal to iex over the whole 

ornss-tesiior (Figure A2.2a). TPs stress ^0^1 at an/ strip r 
equals 4Gx(Ey) p, and thus She lolaP ohaagi (^x)o calculated 

axiil forcs is given by:-

IE-

1 ,e
ie*

Similarly

Tx O

• t
r*o 

*

r

c ”jk

A2.8

A2.9

Kc6»
^^x prnepcet a chtige ir strain al thn ointr‘e of gravity of 

any strip r equal to C^x yp (Flgurs A2.2b) , w-iP a c'orrisenrdirg 

stress oharge given by &£x Thus la this cass tPe iolal

ohlige £ (Px)c an calculated axial Oor’oe it givea by:-

ho

c.e.

Similarly

s (p„i

■ £ (EJ,

A2.10

r«©

A2.11
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For the following abbreviating symbols are used:-

Since the values of (E-^)r are known for each strip the 

values of Xx, T% and 2X can be found thus giving the coefficients 

for the L.H. sides of equations A2.6. Solving these equations leads 
to values fox (ex)^ and (^> x)j as follows:-

& -

X„Z. - Y*1 "X

£ * — e y p j

X»Z« - Xc

A2.13

The moddfied values of ex and ^x, denoted by e’ % and $’x 

are given by:-

s + (^5^ j

) A2.1t-
« K * W*)? )

Using these modified values new calculated values of (Px)c 

and (Mx)o are obtained. If they are still not reasonably close 

to the required values the moddfication procedure must be carried 

out again. The procedure is repeated as often as necessary. The 
problem of convergence is discussed later (i A2.7) .

Sign Convention

Strip areas ao, a±, ............ are taken as positive, along with

compressive stress and strain. Since the axial force P is a product 

of stress x area, comppessive force is positive.

Other quantities are conveniently defined by referring to 

Figure 2,1 . M is defined as positive when it produces concavity 

towards the left. Positive curvature is taken as the result of 

applying positive M. It is found that for consistency y must be 

taken as positive to the left of the column axis and negative to the 

right.
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It is of interest to note that the column axis can he 

chosen arbitrarily and that the calculation is exactly the same for 

cross-sections in tension.

Flow diagram for computer progrmme

The flow diagram is shown in Figure A2.3. It should be noted 
that values of (Px)0, (Mx)c, eXj <£x, Xx, Yx, Zx and Xx Zx - Yx2 

are stored away after each calculation is compPete. These values 

provide an initial trial for the next calculation and the values 

of X , Y%, 2%, and X% 2x - YX are used else where in the programme.

In calculating the stress at any cross-section strip the 

progrmme was arranged to take account of unloading, a strain history 

being kept for all the strips in each division point cross-section. 

The progrmme could not deal with strips which yielded first in one 

direction and then in the other.

A2.2. Effects of slight changes in axial load and bending moment

In assessing the effects of slight changes in the assumed 
loading on the column it is necessary to assess the effects of slight 

changes in axial load and bending moment on the curvature. Denoting 

such changes at any cross-section x by dPx and dMx, and the

consequent changes in ex and $x by dex and dXx, the following 

governing equations hold:-

if de* -r x j j
-----  Mk =

<f>x
dp* e

)
j A2.-15

iH,
dex x It’s = d My )

)
A«x

The values of Xx, Yx3 and 2%, are stored with the results of 

the last curvature calculation and give partial derivatives as 
follows: - y. » . Y = . x• 2x B x(xx)<

x 1 * f x 1

(=We,» Px (MJc* M , it follows that:-

y - — « Y - Mx « E* *
* ~ ^e; 1 ' Mx 1 * m“x

Substituting in equations A2.15 and solving for d x x gives:-

. V g- Yx
■' x>Zx - Yx2 A2.16
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A2.3. Integration Procedure

The method is exactly the same as that given by NEWMMAK in 

reference 33, pp. 1168-1170, under the heading of "Simplified 

procedure for smooth angle change curves", to which reference should 

be made for full details. The procedure gives values of d., dg

d]\_2 , which must be added to the initial deflections ci , c2 , ..............

, to give calculated deflections Dl, Ds, .......... ,N-1 • The end

deflections Do and Djy are given directly by Co and Cjg.

The end rotations are calculated from formulae as

(©a)c *

4^ Y
Xt

('^p + 6<j', “ <2) j

)

+ ^-(-<u) j

follows:-

A2.17

It should be noted that these rotations are due to loading only.

The sign convention used is conveniently defined by reference 

to Figure 2.1. The deflections and end rotations shown there are 

taken as positive. End A of the column is conventionally regarded 

as the top of the column, and division point numbering always 

starts from there.

This method of integration is elegant and has been shown to be 

very accurate in the elastic range. It can easily be extended to 

deal with rigid end gusset lengths, but it becomes cumbersome when 

dealing rn.th unequal segmenns, or w.th a step-wise variation. in 

cross-section along the column.

A2.4. Analysis under end moments only

It is required to find a solution under applied moments M^ 

and Mg (Figure 2.1) . It is assumed that when M^ = Mg = 0,

Mjj = MgA = 0.

At the start of the analysis initial estimates for M^g and 

MgA must be made. The procedure for this is given later. Assuming 

that estimates are available, the bending mommnt at any division 

point cross-section x is given by:-

Mx Mas +
(Me„ - Mm) X-

A2.18
N

Using the procedure given in A2.1, the curvature corresponding 

to this bending mommnt is found, and when the curvatures at all
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division points have been found, the integration procedure given 

in A2.3 is used to give calculated deflections and end rotations.

To check whether valid assumptions for Mq_g and Mgy^ have been made, 

the end rotations must be checked for compatibiiity. The conditions 

for this are

(©a)c =

(Qg)c = (Mg - Mba) kg

)
)
} A2.19

)
)

It is convenient to carry out the check by calculating the 

following quantities:- ■

a = (&n)c — (H, - M„8) g,

5-g (6s)c _ (Mg “
A2.20

From equations A2.19, anc^ Xb should be zero for com­

patibility to be satisfied. If they are not sufficiently small 

mocLifications to M^g and Mg. mpst^be made such that on recalculation
and ¥g are equal to or at least closer to zero.

Denoting the necessary modifications by (Mvb)^ 

the following governing equations hdLd:-

and (mba\

+ (M.
d » «0rt 1

)
$6, )

A2.21

Mas ' U M», '

From equations A2.20 by partial differntiation the following are

obtained:-

A Mftg

» ^©3 + kft

ftg

A ■ A V,

A Mab A Mab A MgA
8 

A MgA

A ( ©s)c

am 8A

A2.22

-h

73



The partial derivatives oh the R.H. sides of equations A2.22 are 

obtained by considering the effects of changes in and on

and (9b)q. For convenience unit changes are considered. 

Effect of unit change in Mab

The change in bending moment at a typical division point 

cross-section x is given by:-
X
N'MlAft

A2.23

From equation A2.16, the corresponding change in curvature is:

= 0-5)x«
n=l

A2.24

Values of Xx and XxZx - Yx2 are available from the results of the 

curvature calculations, and thus the changes in curvature at each 

division point are calculated.

The logical procedure now would be to add these changes in 

curvature to the values just integrated and integrate again. The 

differences between the calculated end rotations thus obtained and 

those previously obtained would give the partial derivatives

and directly.
N Mab

The procedure actually used, which gives the same result, is 

to integrate the changes in curvature only, using an integration 

procedure which does not add in the initial deflections Co, C 

Cif. The calculated end rotations from this integration, denoted 

by d©j. and dOg, give the required partial derivatives directly, i.e

(Pb)c

i Hffrii

A2.25

Effect of unit change in Mg^

The change in bending moment at a typical division point 

cross-section x is given by:-

N" A2.26

and from equation A2,16 the corresponding change in curvature is:-

A2.27
X.4 V,
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Integration of these changes in curvature as for unit M^g leads 

to calculated end rotations which give the required partial 

derivatives directly, i.e.

©A
A2.28

M

The coefficients of equations A2.21 can now be set up and 

solutions for and obtained. Denoting the modified

values of M^g and Mg^ by M’aB and M’g^, they are given by:-

Mas = MAg + (Mae)ij

. ' S A2.29

)

Using these modd-fied values new calculated deflections and end 

rotations are obtained and the compptibbiity checked once again. 

Mociiications to Mjg and Mya ax’© carried out as often as necessary. 

Flow diagram for comppter progappe

This is given in Figure A2.A. A start is made by calculating 
^A and Yg corresponding to M^g = Mgj^ = 0, A facility is provided

to read values of and Mg^ manually. The reasons for this are

given in § A2.7, while details of the data to be s.torea after a 
solution has been obtained are given in § A2.8.

A2.5 Analysis under end mompnt loading and axial load

It is required to find the axial load P which when combined 

with end mommnts M^ and Mg will produce a specified deflection Dr 

at a specified division point called the reference point. To start 

the analysis initial estimates for P, M^g, MiA, and for the division

point deflections (Do)a, (Di)a, ............ (^x)a............... (%)a mus^ be made.

The procedure for obtaining these is outlined in § A2.7.

Assuming that estimates are available the bending mommnt at 

each division point cross-section is given by:-

Mx = Mas + + P(LDjq A2.30

75



The axial load, acting on each division point cross-section is taken 

as equal to P ' since the column deflections are assumed to be sma^ai. 

The curvatures at each division point are calculated and integrated 

to "?ve calculated deflections (Po) c> (Di)0>. «. .. (Dx) o* • • • • “(%)c 

..«.Pjjj, and calculated end rotations (©a)g and (%)o« These 

calculated values must now be checked for .compatibility«

The compatibility of the end rotations and of the reference
z

point deflection is checked iy calculating the following quantities ?•=•

~ (Qa)c )

^6 - (0p)c ™ “ M0A)kB j

Ar ’ ~ (pd* \

y«, Yr? and — n should ie zero. If they are not sufficiently 
ctM Mba

smaai, modiiications to P, Mj^are made and new calculated deflections 

and end rotations obtained. Denoting the moddfications by Pq ,
(Mab)*j > and (M^)^ the following governing equations hold:-

Pn “I 
a p

P,

—- tM6A =4-
BA

‘t- (MAS^ -A (M
Mba

6A/q A2.32T )n

p 4- l^S- IM 4- (MwL
i P 1 i Mns ' i Men ' A r )

The partial derivatives which form the coefficients of 

equations A2.32 are obtained by differentiating equations A2.31, 
giving;-

Ul - +k, ;

} A2.33

)
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j P
4 ’

s p •>
ci 3
3 Mag

4 in . 

4 MnB ‘
..

4 Mg*
; HWf + ka

4Mg* 4

)
A2.33

H Ag \ iu. H A & R[\)c . Un
)
)

' $ p ' 4 MAS 4m Maa 4 MgA

The partial derivatives on the R.H. sides of equations A2.33 are 

found by considering the effects of unit changes in P, Mab und

A unit change in P produces a change in bending moment dMx 

at division point cross-section x equal to (Dx)a. Referring to 

equation A2O16, the consequent change in curvature is given by:-

(D«)a Xc - Yx

X Z __ Y z A2„34

Integrating these curvatures gives values of end rotation d@^.
d©3, and reference deflection dDn , Which give the following K
partial derivatives directly, i.e.

; (4D«Vr &p ' A2.33

A unit change in MaB produces a change in curvature at 
division point cross-section x given by:-s i _ 0 - x 7C

x.z A2.36

Integrating these curvatures gives

. ,, , _ . /jp \
■dM, i M 4 Mab

A2.37

X X 35

A unit change in MgA produces changes in curvature given by:

Vn**
X"7 — Y’X X

A2.38

Integrating these curvatures gives:

4 >(H
gh ©A A2.39M
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The coefficients for the L.H. sides of equations A2.32 are 
now formed and solutions for the modifications , (M^bX} ?

and (Mg^)^ obtained. The new values of P, M^g, and Mg^, denoted

by P' , M’ab. and M’ba» are given by:-

f>* = p +• n,

= Mab 

Mga =

A2„A0

gA

Calculated deflections and end rotations corresponding to these 

new values are obtained, ana further modifications to P, M&B> and
MgA carried out as outlined above, until ^g, and are

sufficiently smaai.

At this point the calculated deflections at division points 

other than the reference point are compared with the assumed 

deflections. If they are not sufficiently close, the calculated 

deflections are taken as new assumed deflections, and new calculated 

deflections and end rotations are obtained once again. The changes 
in assumed deflections-can result in values of Jfg, and

which are not sufficiently small and thus further moddfications to 

P, Mabj and MgA may be necessary.

The procedure is repeated until ¥g, and are

sufficiently small and the calculated deflections sufficiently close 

to the assumed deflections. A valid solution has then been obtained.

The flow diagr;m for the compuler progrmme is shown in 

Figure A2„5.

A2.6. Calculation of reduced critical load

It is required to calculate the critical load of an 

initially straight column with the same end restraints as the actual 

column, but possessing reduced stiffnesses at division points where 

plasticity is present. Wiere no plasticity is present the procedure 

gives the elastic critical load.

The first step is to determine the stiffnesses at each 

division point. The change in curvature at division point x due to 

a unit change in Mx (i.e. the stiffness) is obtained by reference
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to equation A2.16 and is given by:

X
X

~x
A2A1

X fwill be denoted by (pt)1For convenience, -
XxXx-Y*

The stiffness obtained from equation A2.A1 only applies if 

the cross-section is subjected to a moment which is in the same 

direction as the existing one. If the moment reverses, unloading of

fibres stressed into the plastic range occurs. In such cases the 

stiffness can be taken as the original elastic stiffness which is 
deno-ted by .-J-

The mode of deflection associated with the critical load must 

now be assumed, and for convenience the magnitude of the reference 

point deflection is taken as unity (Figure A2.6) . Values of P’gg, 

(^Ag)^; and (M^A^c^R- must also be assumed, the values of (M^)cR 

and (Ma) Q-g being dependent on the magnitude of the deflectionso 

The procedure for obtaining initial estimates is covered in §A2„7«

Denoting the assumed deflections by (Do)a? (Di)^, .... (Dx)a,

.......... (Dt^)a and dropping the suffix ( the bending mommat at

division point cross-section is given by:-

AB 4"
(flsfl____Mjx + pi(p \

N
a2.42

The curvature due to this mommnt is given by:-

Mx / My , , .
* I (BI), " , A2.A3

Integrating these curvatures gives calculated deflections (Do) , o
(Di)oo •••••• (Jo’ ..... (Dn)c, and calculated end rotations

(0A.) c 311 d- (®a)c* These values must now be checked for commatibility

Referring to Figure A2„6b, the conditions for cnepatibility 

of end rotation and reference point deflection are:-

) A2.AA 
)
)
)
)

Hx = M

X

d M, -1 Y

^a)c “ I<a

ej c ~ ~'M sa k g

CdJc - J
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These are conveniently checked by calculating the foioowing quantities 
which should be zero if coIppat’ibifity is satisfied:-

= (©fl)c + kA '

)
, )

Yg = (© b)c +■ kg ) A2.45

)

Ar - (Pn)c ™ * )

If and A r are not sufficiently close to zero then

modifications to P* , Mabj MbA are made and new calculated deflections 

and end rotations obtained. Denoting the necessary modiiications 
by P’^ , , and (Mba)# the following governing equations

hold:-

)
— Ya j

)

— Yb )
i

P'.
iP’

Yg p1
Y Nab

saga ’
A2.1.6

ip'

-f~ ^.(Mas),, +■

o Mas

A?-’’ -
)

To obtain the partial derivatives which form the 

of equations A2.46, equations A2.45 are differentiated

coefficients 

giving™

Y — 4 k( ♦ ^4
ft ■ 7 ~

hF Yp' Ymab OMba

„ K(Ofi)c: ' Y Yg - '+
ip< SP1 " Y Ha6 YMhb

i Ar Y C>r)c . Ar Y (pR)c

* P' ii p' 3 A K A6 YMba 0

A2.47

The partial derivatives on the R.H. sides of equations A2.47 are
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obtained by considering the effects of unit changes in P' , ,

and MbA.

A unit change in P' produces a change in bending moment at 
cross-section x equal to (bx)a« Thus the change in curvature is 

given by:-
1 ~ (D*)a . for

(Eh (Et), A2o48

Integrating these changes in curvature gives values of calculated 

end rot at i on d6j_, d&g, and of reference deflection dD-^ which give 

the following partial derivatives directly., ioeo:-

A unit change in produces a change in bending moment at

division point cross-section x given by:-

(v Mx)
X

N
1

leading to a change in curvature given by:-

0-da, 5V

A2.50

r). A2.51

Integrating these changes in curvature gives partial derivatives as 

follows:-

A unit change in MgA will produce a change in bending moment 

at division point cross-section x equal to x/n giving:-

A (El)’x
Oil '

A2.53

Integrating these changes in curvature gives partial derivatives as 

follows:-

(dfybu A2.5A
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The coefficients of equations A2.A7 are now formed and solutions for 

P’^ , (Mab)j 5 (%3A^9 obtained which are added to P’ , and

Calculated deflections and end rotations corresponding to these

modified values of P’, and are obtained. V Lg, and

A n are calculated once more and they should now be insignificant,E
The calculated and assumed deflections at other division 

points are now compared. If they are not .sufficiently close the 

assumed deflections are replaced by the calculated ones and new 

calculated deflections and end rotations obtained. The changes in. 
the assumed deflections may result in values of ^3.9 and A* g .

which are not sufficiently small and further moddfications to P’,

Mabj and may be necessary.

Wren ¥ Xg, Ag and the differences between assumed and 

calculated deflections at all division points are sufficiently 
small a valid solution has been obtained.

The analysis as described above gives the reduced critical

load according to the von Karman criterion (§ 2„4<>1 .) » To obtain

the load according to the Shanley criterion, the values of stiffness 
I

are taken as regardless of the direction of the monmets.

The flow diagram for the analysis for the von Karman reduced 

critical load, as progrmamed for ’DEUCE’ , is given in Figure A2.7. 

The flow diagrame for the Shabby analysis is similar except that 

Step A is oiritted and steps 10 and 11 are carried out immediately 

after Step 1 and the resuiting partial derivatives stored away.

This is because these partial derivatives are not affected by 

modifications to the assumed deflections. The ’DEUCE’ progamme can 

be simply amended to calculate the Shanley reduced critical load.

A2.7. Convergence

The convergence of the Iterative procedures described above 

is dependent mainly on the equations involving partial derivatives. 

In the plastic range these partial derivatives vary as the load 

varies and thus the equations are strictly applicable only if the 

first trial calculations give a degree of plasticity close to the 
tome value. The methods for obtaining the estimates for the first

trial calculations and some of the convergence difficulties are 

discussed under separate headings below.
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A2.7.1. Curvature calculation.

Before starting the analysis proper initial trial values 

were obtained by calculating and storing Xx? Yx, Zx, x " Tx2 , 

corresponding to ex = <P x = (Px)0 = (M% c = 0. Elsewhere in the 

analysis the trial values were taken from a previous calculation,, 

either from the previous stage of the analysis, or from the previous 

iteration within a stage.

Convergence difficulties with the curvature calculation are 

dependent mainly on the stress/strain curve, examples of which are 

shown in Figure A2.8. Also shown are the corresponding monmnt/ 

curvature curves for a rectangular cross-section under c ons ■tan t 

axial load.

Curve (a) presents no difficulties.

Curve (b) does not usually present any difficulties unless the 

flat portion of the curve is long when the same troubles arise as 

with curve ( c).

Curve (c) presents a difficulty in that there are upper limits 

to the values of Px and Mx which can be carried by the cross-section. 

As these limits are approached a slight change in Px or Mx will 
produce very large changes in ex and ^>x. Because of this equations 

A2„6 can yield values of ( ex)x and { $ which are much too

large. The modified values of ex and 0x are then so far from the 

true values that convergence is impossible. This problem has been 

largely overcome in the computer'progrmime by setting limits to (ex> 

and (0 x^x » I^ still remains possible, however, for the procedure 

not to lead to a solution, when P and M are approaching limiting 

values. If values of P and M exceed the upper limits it is obvious 
that no solution can be obtained.

Stress/strain curve (d) presents the same difficulties as curve 

(c) with an added commIdeation in that two values of curvature can 

correspond to a given morner!. Around the peak of the monmed/ 

curvature diagrm the procedure is as likely to arrive at one value 

of curvature as the other. For this reason any analytical approach 

to this type of cross-section will be difficult and no attempt at 

it has been made.

Curve (e) is characteristic of annealed mid steel. The 

presence of the drop from upper to lower yield results in values of
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XY, Yv, and Z.v which are not correct. In addition inaccuracies in 

the calculation of (Px)c£a^d(MM^eaa^j.se because the cross-section strip 

in which the drop in stress occurs cannot reasonably be assumed to 

have a unifom stress. Despite these factors a number of columns 

of material with an upper yield 35% in excess of the lower yield, have 

been successfully analysed.

Curves (f) and (g) result in mompnt/curvature curves which 

again can have two values of curvature corresponding to a given 

mo^lpnt,

In the compiler progamme a limiting number of iteratoons 

through the procedure was set and if this was exceeded the compuuer 

stopped. It was arranged that certain remedied measures could be _ 

taken to continue the analysis. These remedial measures are 

described in A2.7.3 below,

A2,7d2B Analysis under end moment loading only

The method for obtaining initial trial values of Mab an<^- ^BA 

has adready been indicated in §A2.4. If the column behaves 

elastically under end mommnt loading only, these initial trial 

values wll prove to be correct.

If, however, the mommat loading is such that plasticity is 

induced in the column, initial trial values are obtained which are 

too large. If the values are such that the capacity of one orobher 

of the division point cross-sections is exceeded, the curvature 

calculation will fail. To deal with this a facility for reading 

initial trial values manually was inserted in the compeer programme.

With regard to convergence, difficulties were occasionally 

experienced when initial trial values of and inducing a

high degree of plasticity, arose. The procedure would diverge until 

eventually a failure in the curvature calculation occurred. In such 

cases the ma^i^saL read facility was used to read lower trial values.

A2.7a3. Analysis under axial load and end moErnnts

Between stages in the analysis the reference point deflection 

Dgg was increased by a specified fraction called the stage fraction.

To obtain trial estimates of P, M^g, M3A; and Do, D± , ... D-g-, . ...

D]g, appropriate to the increased value of D-g, a compplcated procedure 

based on the results of the previous two stages in the analysis was
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used. Further details are not given because the author is now of 

the opinion that a straightforward extrapolation procedure would be 

just as accurate. For the first stage after the analysis under end 

monmnts only extrapolation is not possible,, and a procedure based on 

the results of the reduced critical load analysis could be used.

If the trial estimates of P, M^-g, are not reasonably 

close to the true values the calculation can diverge. No check on 

divergence was included in the progrmme since the process very 

quickly resulted in ridiculous values of P, M&g and which, led

in turn to failures in the curvature calculation. The remedy in 

such cases was to reduce the stage fraction and start again, 

recalculating Dr and making new trial estimates. By milking the 

stage fraction small enough the analysis could always be continued, 

although the calculation time naturally increased

Wiere an analysis diverges it is possible in the curvature 

calculation for values of (Px)cj (®x)c# ejo $x •’»« etc• to be 

stored which are very far from the true values. To avoid convergence 

trouble after the stage fraction modificatiot, the current values of 

(Px)c .o.,. etc, are replaced by the values corresponding to the 

last successfully completed stage in the analysis•

A difficulty can arise with equations A2.21 where stocky 

columns subjected to loading other than near-symnmtribal single 

curvature are concerned. In the early stages of axial loading on 

such columns the influence on the curvature of the bending mornmnts 

due to axial load can be much leas than the influence of the axiaT 

load itself. It is then possible for a modification in P to produce 

exactly the same effects on Xb* and Ar as a combbration of

moddfications in Myg and Mra Til conditioning of equations A2.21 

results and ridiculous solutions for P^ , (Mja))^ and (Mgj^ are

obtained. In this case reducing the stage fraction cannot lead to 

a solution and thus where this trouble was experienced the analysis 

had to be abandoned. A method of solution for this type of problem 

is to find the deflections corresponding to specified axial Toads in 

early stages of loading, switching to finding the loads corresponding 

to specified deflections at a suit;able point. Detailed procedures 

for this approach have not been formulated.

With regard to the initial estimates for Do , D± . .o,. .djj
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it was found that generally the estimates were very close to the 

tiuie values and no convergence difficulties were experienced on 

this account.

The initial factor controlling convergence is the stage 

fraction. This was supplied as part of the initial data for the

progrmme# Where curvature calculations failed, indicating a

divergent calculation, manual control was provided to mocd.fy the 

stage fraction and re-enter the Estimating section. This msaiual 

control could be replaced by an automatic procedure built into 

the progamnme

A2„7 A. Reduced critical load analysis

The initial deflections for the first calculation, i.e. after 

the analysis under momenh loading only, were taken as proportional 

to the deflection from the moment loading analysis, adjusting these 

deflections such that the reference point deflection was equal to 

unity. The initial values for P’qr, (Mx) CR’ and (Mba)cR’ were re an 

in as part of the data, although values of zero can' be used. For 

analysis at other stages of loading, the solution appropriate to the 

previous stage was taken to give initial estimates.

Convergence difficulties arose only with columns where the 

critical loads associated with the single curvature and double 

curvature modes were very close to one another. If the previous 

stage had resulted in a predominantly single curvature mode of 

deflection, and a double curvature mode was appropriate to the stage 

being considered, the deflect inn moddfication procedure led only 

very slowly to the solution. In the progrmme 100 iterations were 

specified as a limit and occasionally this was not sufficient.

No convergence difficulties arose w.th the calculations for 

the Shanley loads for the columns bent in symetrical double 

curvature, carried out using the auxiliary SIRIUS autocode progamime 

A symmetrical sine wave was used as an estimate in this case. The 

stiffnesses in the upper and lower halves of such columns are 

symetrical and thus the single curvature mode of deflection is 

sy-metrlcal and the double curvature mode is antisymmetrical. The 

critical load for the single curvature mode was found without 

difficulty even when the critical load associated with the double 

curvature mode was the lower of the two. The critical load for the

86



double curvature mode was found by working with the haL_f^1-doUupua 

(Figure 2.5 b) .

A2,8 Flow dlagrm for

The flow diagram for the general case of analysis is shm 

in Figure A2.8. The flow diagram for the special case of analys' • 

for columns bent in syrnim^itic^i^l double curvature da similar , tie 

initial, data being taken from the htlf-"Cotmlt. The analysis for 

reduced critical load in this case is slightly different in that the 

whole column must be considered.

The data to be stored after each of the major steps in the 
progamme is given below 0

Data read, in initially and stored

i) Stress/strain diagram detials

ii) Cross-section strip details for each division point cr- 
seotic

iii) Initial eccentricity at each difdtion point

iv) VtJtr-s of N, R, \L, and saage fraction

v) Values ff and Kg

vi) Va.lues of and Mjj

vii) Trial values of P’qr ’ (BABCCR* (BBa)g£

Data to be stored after analysis under end mommnt loading only

i) Store deflections Do, D , ..... Db, and mompnts M.n andM_.

(for use in estimating values for first analysis under end mommat 

loading and axial load).

ii) Calculate strains at each cross-section and store in strain 

history if yield strain e'o is exceeded (for use in curvature 

calculations if unloading takes place).

iii) Store (Px)c> (Mx)c, ..... XxZx ~ Yx2 , for each division 

point cross-section (for use if curvature calculation fails in first 

analysis under end m<dppnt loading and axial load) ,

Data to be stored after a reduced critical load analysis

i) Store P’gg, ^MB^CR (Mba)qr* and deflections at each

division point, (for use as estimates for next calculation).

Data to be stored aftei an 

axial load
analysis under end loading jod

i) Store Do, D± , .......... Djj, and P, , Mgg from previous
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analysis and replace with the values from the analysis just 

completed (for use in estimating the values for the next 

analysis).

ii) Store (Px)c? (Mt)c, .......... " Yx2, for each division

point, (for use if curvature calculation fails in next analyas)

iii) Calculate strains at each cross-section strip and 

overvwite the value in the strain history if it is exceeded, 

except where the calculated strain is still below the yiell 

strain e’o.
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APPENDIX 3

Aa3 Detailed, experimental procedure for column tests

The lay-out of this appendix is as follows

Page No.

A3Tests on pinned steel columns 90

A3e1.1o Preparation of columns 90

A3 J.2, Details of test rig 90

A3» .3, Test procedure 91

A3d .4, Determination of yield, stmss 91

A3o2 Tests on aluminium columns 92

A3a2,1. Preparation of columns 92

A3a2.2o Determination of stress/strain. urrees 92

A3<,2„3c Detsails of test rig 92

A3.2.4. Test procedure for pinned columns 93

A3c2.3<> CaOLibration of restraining beams for tests

on restrained, columns 93

A3020.60 Test procedure for restrained, oolmmns 97
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A3 J Tests on pinned steel columns

A3O1 .1 o Preparation of columns

The cross-section of column chosen for test was %’* x 

failure being induced by bending about the weak axis. The columns 
were prepared by machining down from % %" ordinary MBS„ black

bar. Tests were carried out without annealing. All specimens were
prepared from the same delivery of %s" x %" bar.

After the columns had been accurately maohined, cross arms were 

welded on. at each end in order that monmnts could, be applied during 
besto The application of axial load was through case-«h.ar?ctntd steel 

saddLes which were fitted at each end. Figure A5.1 shows typical 

details of a test column. Alignment of the steel saddles was checked 

and adjusted by using a jig. The straightness of the specimens was 

usually well within 0*005" and the centre section was always aligned 

with the limes joining the saddle grooves, the ends being adjusted 

as well as possible.

The presence of the welded cross-aim and steel saddle me cant 

that approximately %” at each end of the columns was rigid.,

Approximately 80 columns were prepared in lengths from 4'25"

- 16*25" overall, giving an ^/r range of 60 - 250.

A3®1o2. Details of test rig

Details am given in Figures A5.2 - 4, and Plates A5.1 - 4. 
Axial load is applied through a lever with 10 x magntficatiot 

acting' through an assembly supported by flat springs which allow 

relatively free movement over a short range. The axial load is bal­

anced by a 5T capacity Ski-Hi hydraulic jack, with which the axial 

shortening of the column is taken up, This ensures that the assembly 

remains in a neutral position with respect to the flat springs and 

the lever load is carried by the oolumn alone.*

* This axial loading system was designed by Mr J&.S. Smith, prior 

to the author's start on this research.
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The mommnt loading is applied, as a oouple at eaoh end of the 

column to avoid affecting the axial load.

No means of eliminating eccentricity of loading about the 

strong axis of the column is included, it being assumed that the 
much larger mommnt of inertia about the strong axis makes the effects 

of any such eccentricity negligible.

A3.1o3o Test procedure

In all tests the end mommnts were first applied under a smO^L 

axial load. This axial load was necessary to hold the specimen

against any shear from unequal monlpetso

The axial 'Load was then increased and deflection readings at 

the centre of the column taken at each increment of load. Large 

increments were added at the start of a test and smaaier increments 

as the maximum load was approached.

Creep under constant load occurred with, most columns, but this 

settled down quickly. About two minutes were allowed between load 

increments when creep was present. Collapse was not usually 

catastrophic, but consisted of a slow steady creep under constant 

load, eventually becoming faster. CompUetg collapse of the columns 

was avoided by the descent of the loading: lever on to a stop.

Visual inspection of the specimen during and after test revealed the 

locations where plastic zones had developed and this was noted down 
for each test.

A3.1.4, Determination of yield stress

After the series of tests was comppeted the yield, stress of each 

column was determined by performing beam tests. For the short columns 

the cross-arms were out off and extension pieces welded on to give a 

beam of 12" span. For the longer columns (12*25" and 16*25") no 

extension pieces were necessary. Two equal loads were applied at the 

third points of the beam giving a central region under constant bending 

mompgt. Load was added until the central deflection was increasing 

slowly under constant load. The central bending moment then

prevailing was equated to the full plastic mommnt of the section and 

the yield stress calculated.

The yield stress was found to lie in a range between 18 "5 and 
19*5 Ton/in®, and a value of 19 Ton/i.n2 was assumed when analysing
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the results.

A3°2. Tests on aluminium oolumns

A3.2.1, Preparation of columns

The columns were cut hy handsaw from the same piece of 
HE3CWP aluminium alloy plate, nomi^al^y % " thick. They were then 

machined down to 4" width. The depth of the plate was found to vary 

between 0*230" and 0*233" and for convenience the columns were 

grouped in two batches, the first containing columns approximately 

0*250" deep, and the second containing coltmns 0*253" deep. Each 
set of tests on columns of a particular length was mo.de on columns 

selected from one or other of these batches. Approximately 60 columns

were prepared, in ’Lengths of 4% ", 6% ", and 8x".

A3®2.2, Determination of stress/strain, curves

Two specimens, prepared from the same piece of plate as the 

columns, were tested, in tension using a Baty extensometer over a 2" 

gauge length.

After analysing the first series of tests, there was some 
doubt as to the validity of the stress/strain curve obtained from 

these two specimens and two further specimens, selected, at random 

from the columns, were tested. For these cases the curves were 

obtained in two stages, first with Huggenberger gauges (over a 1" gauge 

length), to determine the initial part of the curve accurately, and 

then with the Baty extensometer up to about 2/ strain.

The loading on the specimens was initially applied in 
increments corresponding to about 1 Ton/ina stress, dropping to lower 

increments as yielding coimneeced. After each increment of load, the 

stress was held constant and the strain read after creep had settled 

down.

The results from all four tests are given In Figure A3.5 along 

TO-th the curve used in the compulor analysis. The curve in 

compression was assumed to be the same as i.n tension.

A3.2.3. Details of test rig

The axial load was applied through two loading heads which 
were designed for a maximum load of 6,000 lbs. The column ends 

were clamped into end fittnngs which were held to the loading heads. 

Traversing screws enabled the end fittnngs to be adjusted in position.
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Details of the loading headsand end fittnngs are given in Figure A3.6 

and Plate A3.5,

The loading heads were initially constructed on a "gi^mbc-al" 

principle to allow freedom of rotation in. any direction. For 

convenience in this series of tests the apparatus was adapted to 
give freedom of rotation in one di rection only. This is the m^^on 

for certain apparently superfluous details. The centre of rotation 

of the loading heads is at the point where the column emerges from 

the end fitting. Since the end fittnngs are %'* deep the effective 

column lengths were 1%’’ less than the manufactured lengths. The 

effective lengths in the tests were 5*6.2", 5*12", and 7*24".

The loading heads were placed in an "Olsen" 200,000 lb testing 

machine, the upper head being cl^tmled to the travelling head of the 

maisihine and the lower head simply resting on the testing machine 

railte

Levers were used for applying end mOIeents in the tests on 

pinned columns as shown in Plate A3.6, For clarity the apparatus is 
shown set up outside the testing machine. The lever arrangement 

shown is for case (a) loading (Figure 4.1). The lever arrangements 

for the other loading cases are shown scheIeetically in Figure A317.

The apparatus for the tests on restrained columns is shown in 

Plate A3.7. The restraining beams used for this series of tests 

were of mild steel, 0*500" x 0*500"«. The support assembly at the 

ends of the beams is shown in Plate A3.8. The ball-bearing through 

which the beam passes provided a rotational freedom not required in 

this series of tests. The assembly provided a simple support which 

was raised or lowered, thus providing the same effect as an external 

moimnt applied to the system. The span of the beams could be 

adjusted to cover a range of restraint conddtions. 2" long 

electrical resistance strain gauges were attached to the top and 

bottom of the beams to enable the bending mommnts at any stage to 

be determined,

A3.2.4. Test procedure for litnti columns

Stub beams were first inserted into the end fittings which 

were then clamped to the column ends. The lower end fitting was set 

in the lower loading head and held in place by lightly tightening 

the traversing screws. The travelling head of the testing machine
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carrying the upper loading head, was then lowered into position until 

a small axial load of about 100 lbs was being carried by the column. 

The traversing screws on the upper loading head were also tightened, 

up lightly.

To align the column dial gauges were set to measure the 

deflections of the centre and one of the quarter points of the 

column. A small increment of axial load was applied and the 

direction of increase of the central deflection indicated the 

predominant eccentricity and also 'which way the column ends had to 

be moved in order to ediminate the eccentricity. One orobher of 

the column ends was traversed to and fro until an increment of 

load of 1000 lb did not alter the central deflection more than 

0*001”. At this stage the direction of increase of the quarter

point deflection was noted. To eliminate the quarter point deflection 

the ends of the column were moved by equal and opposite am 001^3,, as 

near as could be judged, and then one of the ends was readjusted so 

that the central deflection again did not change more than 0*001" 

under an increment of 1000 l.b load. If the quarter point deflection 

under the increment of 1000 l_b was more than' 0*001" further 

adjustments were carried out. The column/reckoned to be correctly 

aligned when both the central and quarter point deflections altered 

less than 0*001" under an increment of axial load of 1000 lb.

In most cases alignment was not a serious problem as 

careful loosening of the traversing screws enabled the end fittings 
to be replaced in the loading heads in almost exactly the same 

position. Wien alignment was comppeted, a dial' gauge was set to 
measure the central deflection. For the case (d) loadings in 

symlmtrical double curvature the deflections of one of the quarter 

points was also measured. Dial gauges reading to 0*001" were used.

The end mommnt was now added in increments, adjusting the 

travelling head of the testing machine between increments so that 

the axial load, on the column remained at about 200 lb. This was

necessary because the bending of the column effectively shortened 

the dist£tlcg between the ends of the column and caused a reduction 

in axial load. In one case, before this effect was noted, the 

lower loading head was lifted right off the testing machine table 

thus upsetting the deflection readings. Also under case (b) and 

(d) loadings considerable horizontal shears were developed which on
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several occasions caused the lower loading head to slide sideways, 

necessitating a complete restart to the setting up procedure. The 

200 lb axial load was generally sufficient to prevent this happeningf

The deflection after applying the moment loading being noted, 

the axial load was added by mani-pulating the testing machine 

controls. Loading was applied initially i.n increments reading the 

load and deflection after each increment. Wien the load was near 

the maximumi considerable dropping off in load (with a slight increase 

in deflection) occurred when the travelling head of the machine was 

brought to a halt, for convenience it was decided to carry out the 

final stages of loading to collapse with the strain control of 

the machine set to its lowest value. This gave a slow continuous 

increase in deflection and it was found quite convenient to note 

load and deflection simultaneously. Immediately the load began to 

drop off testing was discontinued.

Removal of the tested specimen was carried out by raising 

the travelling head of the testing machine until the axial load 

reduced to about 200 lb, removing the end moment loading levers, 

slackening off the traversing screws, and then raising the 

travelling head of the machine clear so that the column and end 

fittnngs could be lifted out.

A302b.5o Calibration of restraining beams

Two calibrations had to be carried out on the restraining 

beams, first to calibrate the strain gauge readings in tonus of 

moment on the beams, and second to find out the effective stiffness 

of particular spans of the beams.

The strain gauge readings were taken on an 11 channel direct 

reading strain bridge, produced by Teequipment Ltd., Alfreton Road, 

Nottingham, (Code No. C.U.11). The readings on the dials of this 

instummnt had to be adjusted until a line on a cathode ray 

oscilloscope became horizontal.

To perform the moment calibration the beams were inserted into 

the end fittnngs which were then gripped fimly in a vice. Momeets 

were applied by adding weights at a specific distance from the strain

» If the author were to carry out more tests the lower loading head 

would be fimly fixed to the testing machine table„
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gauge centre line and the corresponding changes in reading on the 

■reequipment bridge recorded. From the mean of several readings 

the calibration factor was worked out. The centre line of the 

strain gauges was at a distance of 2%" from the of the

column. so that the bending mommnt at the column end is given by:-

Mcol. - is ( 'Lt - z-75 )

where Mg is the moimnt at the centre line of the strain gauges

and Ljis the span of the beams.

The stiffnesses of the beams were first calculated assuming 

that the end fittnngs gave a rigid beam/column joint. After the 

first series of tests it was realised that considerable deformation 

was taking place in the end fitting joints.

The stiffnesses were then determined experimentally by gripping 

the end fittings in a vice such that the beams projected horizontally 

Loads were applied at various points along the beam and the

resulting deflections under the points of application of load 

measured. Dividing a given deflection by the distance from the 

column centre line to the load gave the rotation which would occur 

in a beam of that span subjected to end mommat equal to that applied 

by the load. This procedure did not take account of the rotation 

in the joint between the column and the end fitting. This was

assessed independently by inserting a column intro the end fitting 
and clamping; the fitting in a vice such that the column projected 

horizontally. A load was then added and the deflection. under it 

measured. Knowing the column size and the modulus of elasticity of

the column made rial the deflection assuming a fully encastre 

conedtion was calculated. The difference between this and the 

measured deflection divided by the distance from the load to the 

end fitting, was taken to give the rotation in the joint.. Thus 

the total effective stiffness was calculated and a chart drawn up 

giving effective stiffness against beam span.

After the series of tests had been competed the rotation 

in the column to end fitting joint were reassessed by a morn 

accurate method. A spare column was fitted intro the end fittnng 

which was again held such that the column projected horizontally. 

Mirrors were attached to the column close to where it emerged from
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the end fitting and also to the main body of the end fitting. A

telescope was arranged to view a scale through these mirrors, and a 

used to obtain the relative rotation between the column and the end 

fitting body when a load was applied, to the column. The rotation

in the short length of column between the point of attachment of the 

mirror and the end fittnng was calculated from a knowledge of the 

bending mompet, modulus of elasticity and mommnt of inertia of the 

cross-section. The rotations in the joints measured by this 

method, were of the order of twice those obtained from the method, 

described in the preceding paragraph. In the author’s opinion the 

discrepancy is most probably due to an experimental error being 

ma.de in the first method,

A3« 2.6. Test procedure for restrained aluminium. columns

The end fittinngs were first attached to the columns and the 

lower end fitting set in the lower loading head. The upper loading 

head was lowered ifuo position and the traversing screws tightened 

up lightly under a load of 200 lbs. A rough preliminary alig3nment 

was carried out if necessary at this point. After the aero of the 

beam strain gauges had been read the support assemblies plus the 
beams wrere moved up into position and the ends of the beams inserted, 

into the end fittings. The end fitting joints were tightened up and 
the support assemblies clamped down to the testing machine table.

The final alignment was carried out as follows. The beam 

supports were adjusted such that the beam bending mommnts wTcre zero, 

i.e. no mommnt was being applied to the column. This was done by 

setting the appropriate reading on the Teequipment bridge and 

adjusting the beam support until the trace on the oscildoscope was 

horizontal.* After two or three adjustments of each beam in turn 

the desired coned.tion was achieved. Attention was now concentrated 

on one end of the column and a small increment of axial load added. 
The direction in which the moomnt altered was noted and the 
increment of load removed. The end fitting was then traversed in. a

direction to offset the development of this mommnt and both beam 

pd^m^t:s readjusted to zero. The increment in axial load was again

added and the alteration of mommnt noted otcg more. This

* The trace could be clearly seen from up to 10 ft away which 

considerably facilitated this procedure.
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procedure was continued until the moment at that end was unaffected, 

by the addition of axial load. Attention was then transferred, to

the other end and the same procedure applied thete, By deeding 

with each end in turn as often as necessary was comppeted.

Correct aligrmient was assumed whan an increment of 1000 lb. axial 

load caused both beam momeeLts to alter less than 1 lb.in. This 

aligning technique was found to be much superior to that adopted 

for pinned columns though it took longer to carry out.

The moment loading was simulated by raising or lowering, the 

beam supports as shown in. Figure 4.8. The value of (M^^p ~ Q wa.. 

decided on prior to each testand the corresponding reo,dings on the 

Teequipment strain bridge worked out. The supports were then adjusted 

until the required value of (Mg)p _ q was obtained. This-had to be 
carried out in stages, bringing the axial load up te. the nominal 

value of 200 lb. between stages. Cam was taken that the values of

at any stage did not exceed the required values.

The axial loading was applied in increments in the early part 

of each test, and readi.ngs of axial load,beam strain gauges, and 

central deflection noted after each increment. At roughly 80$ 

of the maximum load the strain control was set to its lowest value, 

and readings thereafter taken "on the run'1. It was found that the

deflection then usually increased very slowly and generally did not 

alter more than 0*001" while the berm strain gauges and axial load 
were being read.
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Plate A5.1 Test rig for rectangular steel columns.

Plate A5,2 De'iils of axial loading head



Plate A3.3 Application of moment loading.

Plate A3.4 Lever system for anlying moment loading.



Plate A3.5 Loading head for tests on tltmiii,lp alloy columns.

Plate A3.6 Arrangements for tests on uftnei aliminim columns, 
(set up outside testing machine).



Plate A3.7 Arrangement for tests on restrained, aluminium columns

Plate A3.8 Support
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Fulcrdm knife- edge seat 
holder (Free fo • slide 
horipntoltyy

This po rt bolted 
/ fa channel upright

Bolt with threods 
to opposite hand 
to qIIow adjustment 
of cross - head to 
horizontal position

elevation
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Blocks welded to side 
pieces with undersides 
accurately machined

Fulcrum knife -edge, 
seat holder
Fulcrum knife-e’dge ( Force 
fit in lever body^ SECTION B-B

[
T
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to channel uprights

Clamping. plate
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Steel wire looped 
Over V- notch in 
column cross-arm and 
clamped +o fitting 
at end of lever

Lever fulcrums carried by 

brackets bo|te.d to channel 
up right's ( Near-side > u pr;.ig hts 
and brackets omitted)

Cross-arm (pivots On 
knife-edge suspended 
■From lever)

(a) Lower moment leading

Wire threaded 
through holes in 
beams and held 
by screws

Pulleys running 
on, ?bafl- bearings

Ball- fc> farms 
forming pFvof 
( Beam and 
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Steel wires

Section A/A
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