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THE FACTORISATION OF WINIPE ADLLIAY GROUES
by
ArDe BANDS. M. Sc.

A famous conjecture ol Minkowaki, concerning the
oolurnation of spece~filling lattlees, was Tirst proved by
ﬁ&jés in 1921 by tranglabing the problem into one igvalvig@
£inito ebelisn groups, The problem solved by Hejds was one
concerning & gpeclel bype of factorilsation of Tinite ebslisn
grovpiE. lu bthe peneral problem copsidercd in the thasis no
regbyictlon is pleaced on the nature of the Factora. It wasy
originally conjectured by Hagéé that, in eny faetorisabtlion,
one of the” factors must possogs a nou-Lrivial subgroup as &
factor. However, Hejos himsalf soon found thet not a&ll finite
abelion groupns possess thisg properby. Those which do were
called Pgood?® wnd bhose which dov not were called “hadh,

Further conbadbubions bo deoberwmining those groups which
are good snd those which ave bad wers mode by'ﬂédei snd do
Bruljon. But for groups of mahy types bhe problem was leflt
undecided, In this thesis bthe problem is solved conpletoly
for Tinite abelisn groups. A speeial cuse of this problem for
cyelic groups was shown by de Bruljn o be eguiveleont to a
con Jecbure of hig concerning bhapes for the seba of integers.
This conjecture and @ genarallsation of Lt are also shown 6o
be trud.

It dg shown irst that a oyclotomio polynomial 1o
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irvodueible over sevbadn fieldp ﬂ?lﬁ@éﬁ@i@f unALy . Thiy
axboansion of the uwellelkhovn ropald ﬁﬂmﬁu& gyolotonilo
polynomial, iy dlreeduclible over the potlionsd fleld ig beslo
to pha following work ond lo umed frelpently threeughounl the
thosis

A theorer, similey o the Shoorans of de Bruljn, sbhowing
Lheat cortaln types of peoups ar@ Bed 1g Lhen proved, whamp
i the nedn pers of the thesis @ll the groups not abhovm o
be bad by ohis dheorsnm of oune OF Yho bheoroams oF do Hruljin
are shovn o o guod.

ﬁagd@ grave & sothod whieolh, bo olelsed, would glve all
Taeborisobiong of o pood grovps However 46 ig shown thad &
poRvegbion s needad in this soethod snd the comreobod method
is bhen presonded.

'3

T fincl soebion s conewmroosd with Ghe exbtension of

2 My gy

bl reandis bo gerdoln typed of Indinltoe abolisn groupc.

Undor bthe rogbrietion had ongs of dthe Paebors phell hoave only

LN

& Finsgo pupor of elenments, slwlilay tesulbts to bhopo proved

For Pinide proups ere obteined Lov the Eﬁ&&&&!L%H%Nwﬂ Ay

vhgan srouss o the nfinibe acaad, _
scta.mathl.dcad.8cl.Hungar.,Vol. 8, 1957, pp 65-86
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ENTROIIRTC

A fapong oondegtuwre of Minkowald ooneenming the csolumnation of
apaae £330, intticon woo fizsd proved Ty Hodds in 1949 by tvenge
tobing the probion Into one leesolving finlto ebolisn grouss. The
seoblon ooived by Bejos wan o spovial opso of the problen of tho
Footorlaation of fipite obhellen growps. In this gonoeald problam 0o
soptriotion s placed en the matuve of dhe Pagtorn. It wos
orighmnily comjectured By Hadds thad In oy fecloxipation one of the
Faotors st posson o nan-tyiviel aubgrowp as o faciov.  Howevaw,
Hados hlmooif scon found thod noh ol foite ehellen groups satialy
this oonjoobtusws.  Thooo vidlah do wore eallel “ooed® and the remalning
grovps which do 006 woro callod “od¥, IMpther contzdbutions to the
problom of dotorwdning those grovps wiich apg good and thoge which
axe bad woere mode by Réol and do Braaddn.  Dut Qo meny grows the
problon vos 2elt ondecided,. & liad of those groups de glven ‘i:g? &
Beuddn (1, ps259). In this thopls thio problem s completoly molveds
e Bruodin aloo Llvked o special cage of Hw problom with o peebios
conoerning Boovs Doy the sote of ntogors. He pul Lforward a
oonjoeetare concosning coptaln factorirniions of fnlteo ayalie groups
ooivalont o hic condooture conosuning the integmen.  This conjeoturas,
snd o ponogalination of A%, ara also choun to bo uae.

Fhe senpe of tha thosis s aow owilined.

Ghapdor I lo an Intwduactouy chepior dn wvhich e Cudessntsld
dofinitions ond notetions ayo presented. Thon gortaln prelimiangy

rasul s needod later dIn dho thosln oro prowads OF these Theoyem 1.1



ot the frredusdbility of he grolotomio pulynsmiale over oertain
fialds of zoots of wdty o tale o the folleving worls ond fo wpud
frogueatly theougkout the remadnder of the thosisn. It enubles wn in
masy wowes bo substitate tho wee of o gyoletvele poldyacmied of wepdas
@ power of a pedne for rore menorel oyelotomia velynonisle.

I Chaptew 1 the theerons of de Bswljn on bedl growps oro
Lisged end one now theersm 0f & slndiar kind i oddod o thom. This
theonon ahevs thed e geoups of T of ths youes, Listed fw do
Byupidn o undecided, awe, in fued, Dode

In Ghopter IIZ the sweults on fiplts gyolle gooupn ave
prageadted. The poneradisation of the conjeoture of de Dralln 1o
proved dn Thoowon 3.2, Then 11 do showm at growpe of thy theoe
womndning widesided Yypos of Dinlte grolio growns ave gooll.

Choptor I¥ decla with he nonewsyelie goovps. Horo apdn 16 ig
shown, toldng fubto cocomnd the seowlss of Uheptey 11, thet the giovps
of the ronalndng wedeoided Sypen ave good.

Efz:i;jéaa wal fozverd & methed vhiaoh, he oladsed, would glve 5l
Lantorlantions off o good gatip. 1o Sueptsye ¥ o ascosseary corxeniion
b thie method In madde. I% is thon shoom thot o aldoilor methodl awn
be appliod o cortoln gpeslel hypes of fustorisation.

woen ke dlocoverad thet mot oll groups ero geod, Waibs pui
fovaisd o sorg gonsyald sonjecture consarting tha Quseleporiodioity of
ome of the faetoye. No gopomal reauld conoovadag this condoctvic hoo
yot bosy proveds.  Bud dn Buwpitor ¥ 1% 1o showa thet the groups of
one of the bypos, which have boen shown @ Lo bad 49 ds thesin, do

indeod entinfy the otnJocburs.



Gartadn gensrelipatione o infiplte chedlon groupn Brd medce in
Ghepter YIL. I3 38 shown in mony of the oepon whore o geawp of typo
[‘fa A] bag ocowred eardiler dn the thesis that Lt eon bo yoplzoed by
& group of Gpo { 0¥} Bub vhe rostriotion i made dn o1l cases
what ong of tha footore ahall hoave & fnlds meibor of glenonis.

Hpcopt for pome prolialnogy remorks ot the baglondings of
Chaptors § ond YIY el the work in the thopis fa olalved no originel.
Of the formally ototed vesults, Dowmss 1.2, Iowma 5.2 cod Yhooron 6.9
world appeny 1o ke owa 0 previous contlbutors to the subjeet tus
are glven oo thay do not ecom o hove Loon foymelly oxoevod helore.
Taoorom D.5 An o eoyseotlon of o wery almilor thoorom by ‘i-;fagiéa « AR

othor thooroms ond lowmmms axe odedned @ bo original.



CHAPTER T
WU T ey UL

Introduction

In Chaptey I the problem of ihe factorigation of abelian
gruupﬁ is gtated and the fundawmental notations and deffinitions to he
uged throughout ths thesis are given. T4 dis then shovm that the
problem can be stated in terms of polynomials and of complex numbers.
These interpretations of the problem are due Lo Hejos and to Védel.

Ceriain preliminary resulis, which sre  be used later in the
thesis, are then obteined., Theoram 7.7 is an extenslion of & well
Inown thaorem on oyelotomic polynomials. Temms 1.2 and 1.3 are
developments of results due to de Bruin and Lemwma 1.4, lewma 1.5
and Lemmy 1.6 are Purther results concerning products of cyelotomic

polynomials.

Preliminapries

Unless otherwise stated the word group shall mean finite
abolilon group throughout the thesis, CGroups and subgroups will be
denoted by Jetters like G, B and K; subsebs of grows by &, 6,
3, etc.; elements of groups by a, b, & &, gte.y e will be
ueed to denote the unit element. I A and B ave subsets of a
group G, the product AR ig defioned fo be lhe set of all elements
off the fora ab, where a dg I & apd b Is in R If evexry
element of AR 1s cxpressible in only one way ss  ab  the product is

¥,

5. I every element of G occure in a divect product

aaid to be diyeo



5.

4B then G = 2B and this is called a factorisation of (G: the
subsets A and B are oalled the factors of G.

A subset A of a group G 1is said to be periodic if there
exists au eleseat g of G, g# e, such that gi = A. The
element g 1s called a period of A.

If A and B are subsets of a group G, then Ac B is used
to denote any one of the subsets " ?i.\ a, bi s Wwhere the clements
of A are 8.5 By eeey B and the elements l'oi are arbitrery
elements of B. By an expression of the fom Ay o 42 . A, ° Ab .
cee o Ay is meant any one of the subsets obtained by brocketing

the above expression with n-2 breckots to tho left of A, and

1
bI‘OkOtO ‘f“r Azy A}, LA AN ] An. ’ 1000. w bmetmg fm m
left.

n L)

If A= 2 a asd B = 2. b are aubsets of &
gow G then A = ( I & )( 5 b, ) where the
maltiplication is carried out as though J. meant addition and the
distributive laws held. Clearly the number of elements in a direct
product is the product of the number of elements in each term. Thus
the nmunber of elements in a factor of a groap € is a divisor of the
order of G. If G= AB then G = (gi)(hB) wher¢ g and h are
any elemonts of G. lience it may be assumed that e is in A and
e is in B since any other factorisation may be cbtained from such
a factorisation by the above method. This assumption is made through-

out ths thesis.

= Z, in used with group clements to mean set theoretic union.
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of unity and relationships of the fom
A(x) B(x) ® 1+x+ e 2" (mod (P - 1)),

that the gyclotomic polynomials will play an important part in this

treatment of the problem. Throughout the thesis F (x) will

th

denote the n gyolotomic polynomial. It is well known that the

qyclotomic polynomials are irreducible, to the extent of a constant
factor, over the rational £101d." The following extension of this

result is now proved.

THEOREM 4.9 If n and m are relatively prime, the a%

qyalotomic polynomial F_ (x) 4s irreducidle, to the extent of a

constant factor, over the field of the luth‘ roots of unity.

Proofi Iet ¢ and ¢ be primitive rwots of unity of orders n

and m respectively. Let A(x) be a polynomial with coefficients

th

from the field of the m roots of unity such that A(p ) = O.

To prove the theorem it is sufficient to show that Al p‘ ) = O for
all integess 4 relatively prime t© n. It may be assumed, by
mal tiplying throughout by a oconstant if neocesssary, that

s
Alx) = 2, &, x* where a_= 0, b__ ¢  and the coefficients

b are integers. Then
r,s
)

S
Mp) = 2 e gt e 2w S .0

For each pair of integers r and s let tr be the unique integer
Bl

<
such that o ¢ tr.n< nm ot 0@ s {mod m) and

- S;z, for example, Van der Waarden, Modemn Algebra, Veol.I, pp.
1 -1w'
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P"/ )tl'.l

f

tr,u 2 r(mod n). Then o = a(p) = g br,s(

th

Butlod’inannm th

primitive rcot of unity and the mm
ayclotomic polynomial is irreducible, to the extent of a oconstant
t
factor, over the rational field. It follows that 5, b ((p<)%) ™®
s ’

s 0 for all integers 4 1elatively prime to nm,

Consider the get of N mubers 1, 1 + m, «ss, 1 + (n=1) m.
These formm a complete set of residues modulo n. Henoe among these
are ¢ (n)® numbers incongruent modulo m and prime to n. let
d = 1 ¢+ can be any such murber. Then, since d and n are
relatively prime and 4 and m are relatively prime, it follows that
d and mm are relatively prime. Thus

0= Db _((pr)htme = 35 b (o"*mp“)"’:ﬂ
L .

B is T8 ,

L
) % bl'.l (o7p g )t:'.s N S br.n 7 (,Pd )1'
'?‘»‘P“)r = a(p?.

This completes the proof.

COROLLARY. If the greatest common divisor of m and n is 4,

then F_ (x) 4is irreducible, to the extent of a oonstant factor,

th

over the field of the m roocts of unity.

Proof. let n beequal to 2k end m be equal to 2{. Them k
and 1 are relatively prime and 30 k or 1 4is odd.
If 1 is odd, then n and 1 are relatively prime. Therefore,

by the theorem, F_ (x) 48 irreduciblc over the field of the i

E  P(7) denotes Euler's ¢ funotion.
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roots of unity. But, since m = 21 and 1 418 odd, this is also the

f'ield of the mth

roots of unity.

Suppose that 1 is not odd. Then k 18 odd. et p be a
primitive a®  root or unity. Jet A(x) be a polynomial with
ooelficionts 'rom the field of the mt'h roots of unity with
A(P) = O« Then, as before, it is sulficient to show that is(fd) )
O for all integers d relatively prime to n. Such integers d
are odd. Tet B(x) = A(-x). Then B(-p) s A(P) = 0. How «p
ts a k™ primitive rot of unity. For p2¥ = 1 and p¥ £1.
Therefore fk a2 =1 and (--f')k = -Pk = 1. Further
(-p)l' = o implies pzl‘ = 1 and so that 2k is a divisor of
21, Hence, since k end m are relatively prime, B((=p)%) =0
for all intsgers d relatively prime to k. Tet 4 bLe relatively
prime to h. Then d 4is also relatively prime to k. 7Thus

alpd) = M-=p)YH = BlU(-pP)Y s o
This complectes the proof.

It is well-~known that the nt'h

cyclotomic polynomial F‘n(x)
can be expreasoed as I-‘n(x) = JT (::"‘/‘l - 1) # (a) , where the
N
product ia taken over all divisors d of n and u (d) is the

oBbius function.™

JEMMA 1.2, If N = mn, where m:apA and p 1is a prime not

dividing n then

= X
J;{T mal® = S

® See Van der Wuarden, Modem ilgeirs, Vol. I, pp. 108.
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Proof. d’/f: P (x) = ;/’I Fa (x) / dg Fa (x)
a X -1

De Bruijn proves in Thecrem 2 (2, p.5374) that if A(x) 1s a
polymomial with non-negative integral coeiflcients of degrec less than
n, where n = p" q" and p and q are distinct primes, and

ir ¥ (x) [ A(xj, then /(x) can be exvressed us
A o PR « /Y v 1) 5 A = 11/ & 4)

where P(x) and ¢(x) are polynomials with non-negative integral
coeffieients. 7The following extension of this theoren is now proved.

LENMA 1.3. ir N:pA q“ ¥, where pA = n, q”:m and p

and q are distinet primes not dividing U, A(x) is a polynomial
of degree less than N with non-negative integral coei'ficients and
Fomd (x) divides A(x) for all divisors 4 of ¥ then A(x) can

be expressed as

N
X -1 2 -1
AlX = A A (X
(x) S I E(X)"_T—an'-' (X
where Ap(x} and f.q( x) are polynomials with non-negative integral

coci'ficients.

Proof. Repeated use is made of Theorem 1 of (2, p.372) to show

that such a representation exists with nolynomials with integral

& e
coefficlents. JTet M= T 4+, * , where the numbers r, are

: i
ie
distinct primes. Then, since F, (x) l A(x) it follows by Theorew

1 of (2) that

£
{ {
(1) A(x) =?:;p—-.—1}3:(1) WT—-'T Bq(x) + Z WF}% Brﬁ(x) .
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Now if 8 1s a prime dividing N, then by Jemma 1.2, :‘N/q((x)

divides (xz'\'y - 1)/(:N/8 -1) irand only if 8 # r.. Therefore,

since FN/ (x) | alx), 1t follows from (1, that FN/rk (x) l Brk (x).

T
Hence, by Theorem 1 of (2),

w/x, N/::-k K-t n/ri
B_(x} = x -1 1 x - 1 1 E x -1 PR
Tx !*lfprk Bp (x) + N7qu Bq (x) + : I"'/rir'k Bp (x,

X -1 x - 1 S S - 1

/r

X k. 1 B 1 (x)

/1,2 r, \X/»

x -] K

the last term only ocourring if r, divides N/r,, i.e. if v, > 2.

k k ¢
%hen tiis expression for B, (x} 1is substituted into (1) and
k
. N/r
N k N n
= 1 i xn/pr = is written as x =1 . —:%V;r——l-
xN/rk-i X l(-1 xN/p-1 x‘k-1

wit) similar ohmsnges for q and for T » the f'ollowing expression
for Alx) is cbtained:-

N " N " lé-’ v / "
o ~1 3 A - » =~ B (x»
PO« S ) o L nlh B O & Z (=
A=) N/ 4 & N Z oend 72 I
ad -~ e - RN .y

the last term only ocourring if V, 2 2. Contimuing, step by step,
in this way usm F, 2 (X), seesy F v (X)’
N/rk N/rk k

F (=) 4
N/ » 1% ) e F (») the following expression for A(x)
-t '/{ N/M
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is finally obtained:

Alx) = xN-1Bx( 2 - 1
xN7p-1 p x) * xﬂ7q-1 (x):

where Bxp(x) and B.q (x) have integral coefficients.
Now the method of proof of Theorem 2 of (2, ».374) with
= N/pqa can be used to show that Ap (x} eand Aq (x) can be found

with non-negative integral coeffieients such that

1
A(x) —Wﬁ.& (x) —§;E——A (x).

This completes the proof.

i

LEMMA 1.4. If n and m are relatively prime then |/ F d(x)
F(x) s
 (x).

Proof'. The proof is by induction on the number of distinct prime

A
divisors of m. Jet m=q where q 1is a prime. Then

’TF ) .—.F@»),F VD) Flcw... Fo o4 @

nd 4
d[m " ) n/d  pmldy)
(Tr (/» - )(J/n =) "'“d/'”’(,x -t) /
) d
Lo "w-/) e ™ VEDHED r " o™ U)
din ' d/n gl/”
A
W 8 L e
(Wé(« -!) 77(/»1/-/)” )
d/n d/n

T % gy B
d/n )

{
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Since MK {c) =0 if ¢ 1is notl square free only those divisors d

of n, and the corresponding nurbers dq, such that d 1is square

free, need be considered. In this case w (dq) = - #(d). Then
n d i - ()
/Tr ‘;‘; 2 L/”J = 7T L/;O /d-—l) 0 ,77/ @, /d- l) »(‘) 77’6,9 "f/d-.()"'
dim djn d/n dfn
igid . -ml ot/ ",
T (= “ 0, T 77’(‘/; e/ =) "
djn , dir
i I e
= > - ’
d{n

5 F )

n

Suppose that the lemma is true for nurbers m with k - 1

prime divisors. Jeut q be a prime mot dividing m or n.

Ten T F @ = 7 F,e WF e T F, &
= F (x) . R (27) sen F o (=™

A
mq
r, (x Y

The first step follows by the inductive hypothesis and the second by
the argument already used.

This completes the proof.

LEMMA 1.5. If every prime divisor of m is a divisor of n then

m
A (x7) = an(x).
Proof. The sguare f'ree divisors of n and of nm are the same.
Therefore T'h ") = T (= m"/d- /) e

4l /4 @
~ M
W (=" -i)

d/nm

&) .

nm

I\
i
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TEM¥A 1.6. If m=ny n, where every prime divisor of n, is a

divisor of n and no prime divisor of n

T;(éb'n) = I F d. ),

5 is a divisor of n then

nn,
d[ny
m gy ™
Preoof'. }'-” [/x, ) = F; ((4& ) )
n
& finm (= *) , by Lemma 1.5

77’ Finn,d.ézd » by Lemma 1.4.
d|n,
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CHAPTER IT

Introduction

a1
L

r.;'h

was conjectured by Halds thet in eveyy factorisstion of a

groun G iluvolving two factors, at lesst one of the faciors was
periodic. However, Hajds himself showed that this is not the case.

He called a group pessessing this oroperity “good” and groups admitting
of factorisations AB= G with neither A novy B periodic he ealled
“Lad', Da Bruljn dmproved on Hajéé’ results concerning bad proups.
In this vhepler & sufficlont condition for a group to be bad is

given, the theorems of de Bruljun on bad groups ave siated and one new
theorem of' a similar type ls then nyoved. As o congequence of this
theorem it is ghown that groups of two of the types listed by

de Rruljn as uvngolvad cosas are bad.
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THEQOREY 2.1. If a group G possesses a proper subgroup H and
H admits of factcrisations H = AB = AC, where A is non-periodic

and B and C have no period in common then G 1s bad.

Proof'. Let k1, k2, ey kn be a set of coset representatives

for G by H. Iet D =Bk, +C(k2+k5+ +kn). Then

AD:ABk1+AC(k2+...+kn) = Hk,,+li(k2+...+kn) = Ga

Now A is non-periodic. let g be a period of D. Then
g=h ki for some i, 1< i € n, where h 1s an element of H.

Consider h ky B k,. Now ki k, = h, k for some j, 1 £ j € n,

1)

and some element lrl,l in H. Thus hki’bk1 =hbh k.=h, k.,

LI 2
where b is in B and h2 is in H. It follows that, for some

fixed Jj, h ki B k‘l < H kj . But h ki D = D. Therefore

; ee e . Y =
hkin‘i Bk1+Gk2+ +Ckn Thus if J 1 then

hk, Bk, = Bk, andif i>1 = hk Bk = ij.

o

In the second case it follows that C=h ki kJl k? B and thus that

any period of B is also a period of C. Since B and C have no
period in common it follows that B and C must be non-periodie.
Thus H is bad and it follows by the result of de Bruijn that sub-
groups of gool groups are good, Theorem 4 (1, p. 263), that G is
also bad. In the first case h ki B k1 = B lc1 and therefore

h ki B = B. Since B is contained in the subgroup H it follows

that h ki is in H. Therefore h ki C k2 is contained in H k2.

Buthki C k2 is oontained in B k, + Ck, # 24 @8 kn - It follows
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that h ki c k2 = C k2 anéd hence that h ki C = C. Therefore

h ks is a period of both B and C. But this is not possible.
Therefore, in this case, D 1is non-periodic and AD = G 1is &
factorisation of G with both factors non-pericdic. Thua G is bad.

This ccmpletes the proof.

It will be shown later that this is also a necessary condition
for a group to be bad, but no direct proof of this has been discovered
and it is not proved until the problem of deciding whether or not a
;roup is good or bad has been completely sdved.

All the groups shown to be bad by de Bruijn do have this
property. Indeed, it is the property used by de Bruijn to construct
his non-periodic factorisation.

The following is the set of results obtained by de Bruijn on bad
EIOUPS-:

(1) If G possesses a subgroup H which is a direct product
of subgroups H1 and H, of composite order and not of type {2,2}

2
then G is bad.

(2) If G possesses a proper subgroup H which is a direct

product of cyclic subgroups H1 and H, of the same order and this

2
order is greater than three, then G is bad.

(3) If G possesses a proper subgroup K and K a proper
subgroup H of type {},3} then G is bad.

(4) If G possesses a proper subgroup ¥ and K a proper

subgroup H which is a direct product of 'wo subgroups of type {2,2}

See de Bruijn (1).
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then G is bad.

The followinyg theorem, which is similar to those listed above,

is now proved.

THEOREM 2.2. If a group G possesses a proper subgroup X and
K a proper subgroup H which is the direct sum of a subgroup L

of composite order and a subgroup of {ype {2,2} then G is bad.

Proof. It mey be assumed that I is rot of type {2,2} since de
Bruijn has already shown that the theorem is true in tihls case.
Then, by Lemma 1 of (1, p. 259) L contains a proper subgroup M,

of order greater than 1, with a set of coset representatives 1., 1

1’ 2)

seey 1, of L by M which is notl periodic. let k., k ains K
k 1 n

o7
be any set of coset representatives for K by H. Tet b and c
be elements of order 2 generating the subgroup.of type {2,2] .
et A= (A, ..., A} (e s (). (M)
+ A M. ('f’,jz A~) , where 1, 1is an element of L but not of M

and ¥ -#& indicates all elements of M except & . Iet
3 = (e, L). (4, X,,... ,%5)
ol € w e [ By .., L)
Then AB = (A, .., /14,.}.(z(/,/&-;).(x-),(&l,é-),(ﬁ,,...,»&A‘)
ol .oy Hads (4, ~).(M-1—).(L,,J)-(/ﬁ,...),&‘)
+ 4. M. (2 Lod) (e 4). (4. s #4)
a Ay s An) (2) (&4 = b)) (4,,..., 44
# Ay nn A )i U-2) L8 b oo, Ay (4, .., Z4)
+ A.M. (e, b Lrw, L o YL oy v+ 5 44)



18.
= (zﬁ.,). 5 ’Z,..) (“V/ ’é:'az’&")' (’ﬂi)"') j‘)M

+/£,.L.(,e//,£),,£‘,’/iz/gv)
=(/&"""”&")'L'(”a/(im«g'o)f-%,l.(xv,#)
b b s Oy b i, e
(A, .., A). L. (% 4 <. /40)+/:€,.L- (2, 4, o, )
(/1@,,/‘,_,...,4@,),4
X

W

|

Similarly, since (e,c ) ~ (e, bc) = (e, ¥, ¢, be) also, it
may be ashown that 40 = K.

Tet g be a periocd of both B and C. “hen, pince ! and
C are contained in H, £ is an element of H and so of cne of the
forma, l, 1b, le, 1lbe; where A is an element of 1. Mow if
g= A then it takes j,,j,, S j[} into Q%,/g.,, . j,,‘) .

But this set is not periodic and so this case is imnossible 2 b

e

could be a pericd of B but could not be a seriod of € sinece
A LA 18 not in €. Similarly A£c oould be a period of € but
is not a period of B. /Zbc is not a period of either B or C.
Thus B and C coun have no reriod in com:uon.

let £ be a period of /. Them f{ 1is an element of K.
Therefore multiplication by [ will permute the cosets m».,. l[kz,
couy Bk . If / AM (e, 00 4e) = AM. (o4 4)
then /f M. [,C/, /é ,ﬁ,‘,) - M(‘V/»J; a&o and { is an elemant of
1, Theyefors £ 1is of one of the forme 4', LM Ll L' Mn
where 4’ is an element of 1. Clearly f can only be of the first

or last form. But, since { 1is in H, it must also take
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(&, 4) + (£ ). (M-2) iuto 1tself. &' cannot do this, unless
A a e, since il does not lile in this set. £4< only does tnis if
A'z=e . but beo is not a period of ¥.(e, 1,b0) since 4 is
not in M. The remeining possibility is that £ take /f, M. (‘b;’gz}")
into A, [ (& be)+ (4, ~).(M-2)} . tHow £ 1s of the form
A £, /{J- L4, JJ}A/ or /{_,‘Z/L&/ , where £ is on element of L.
Tet £ =k, 1. Then both 44 and A4 110 in A M .
Therefore (ﬁ/‘,)zl,l; lies in fl:;-%‘;M . Thus /é lies in ¥. BHut
this is not the case. Therefore A 1is not periodic.

Hence, by ‘heoorem 2.1, C 1is bad.

COROTLARY. Croups of tyre { '/'A, 2,2 }, including those of tyre
{2‘,2,2} , where p is a prime, are bad if A 2 4.

Thesc are the only groupas to which this thecorem apnlies Lo which
one of the theorovs of de Fruijn, which are listed above, does not

already anpply.
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CHAPTER IIT

Intrcduction

In this chapter a lemma is first proved which is applicable to
all groups, dealing with factorisations in which one factor has two
or three elements. But the remairder of ihe chapter is devoted
entirely to cyclic groups. It is proved that if AB = G, where G
is a c¢yclic group, and the number of elements in A 1is a power of a
prime then A or B is periodic. This iz a generalisation of a
conjecture by &Bruijn that the result held when the number of slements
in A was a pr:hn«a.’l In the final part of the chapter it is shown
that groups of' type {pa, q2] N {pz, ds r} and {p, q; s} %
where p, q, r and s are distinct primes, are good. 7This,
together with the previous work of Rédei, Hajds and de Bruijn, com-~

pletely solves the probierm of deciding whether a finite cyclic group

is good or bad.

Factorisations in which the number of elements

in one factor is a power of a prime

LiMMA 3.1 If G is a group and AB = G where A has two or three

elements then either A or B is periodie.

Proof. (i) lLet A have two elements e and a. Then

(e, a) B=G. Therefore a (e, a) B = (&, a2)B = aG = G.

* See de Bruijn (2, p. 371).
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Comparing these two results it is seen that (e, a) B = (a, &2) B.
2
Therefore e B = a“B. It follows that B is periodic or that
2

a- = e, in which case A 1is periodic.

(i1) Tet A heve three elements e, u and b. Then
(e, a, b) B = G. Therefore a (e, a, b) B= (a, a2, abt) B = G.
It follows from these two results that (e, b) B = (a?, ab) B.
Now if bB and abB have an element in common, then eB and aB
have an element in common, which contradicts AB = G. Therefore

bB = a2 B and so eB = abB. It follows that B is periodic or

that b = 8 and e = ab 4in which case a is & period of A.

This completes the proof.

THEOREM 3.2, If G 1is a finite cyclic group, AB =G and A

i’
has p elements, vhere p is a prime then either A or B is

periodic.

Proof'. Jet the order of G be N = px n, where p* = My P

does not divide n and A2 4 . Tet p“’ = v. Ilet a and b
be generators of G of orders m and n respectively Then g = ab

generates G and it may be supposed that

b g
i A g
A = ~O /@ = ¢ a
= s 7 =
N/ peur As ;e Nqud' v,
B - Z: A ‘ /g = Z 7/
Fay &2
where L = fl = Yc = Al =M =V, =0 and o g o < m ,

05?;‘";05)’;<N,°<

6 ¢V, <N . Then o&; =y, (med m),F‘s{;(M'Q,

~
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P s Agf" A;
AW)‘Z/,V‘ 3"_(/»)3. ~x

- o 2 L=

o N/ o~ _
o = 2 =, B = 3 =

=/

-

{ =/ ¢

Then, from AB = G, it follows that
m -1 m
A(/»‘V) .3(’”) = n(tt 2 +... + 2% )[Am-l[,a_,))
- o~

Therefore, for each divisor r of m, with 4>/, E.LM") /ﬁ‘é»). 3;0»)
and 0 F ) [ A > or F (»)]) B (x) . since F (1) = p,

M .
Af1) =p and B(1) = p? " #n, it follows that F, x) divides

A(x) for precisely M# such divisors r of m. Iet these be

s, S >rp

Ty Ty ooy r“ with r, > r,

These resultis are now used to show that no two of' the numbers

Py
d-
d; ooccurring among the exponents in Z ~ ' are egual. Suppose
L3

that two such o are equal. Then there is a coeificient at least

equal to two in Aa(x). If r, < m, the exponents of Aa( x) are

reduced modilo r,, l.e. A (x) is reduced modulo (x*! - 1), to

give Aa1 {x); then, since . (x) divides Aa(x) and x' -1 it
1

divides Aa1 (x) and the degree of Aa1 (x) is less than r, -

Therefore
, 5! - r4 (h-1) A /P '
A = A 0 (1+= N ).
<
/
The degree of A: (x) is less than ~, - (7‘" ‘) 1 //" = ""/7".

Now A’; (x) has non-negative coefficients of which one is at least

4

two. It follows that A: (x) has non-negative coefficients, one of
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A
which is at least two. Since F_ (x) divides Aa(x) and x - 1
2

it follows that F , (x) aivides A:’(x) and thus that it dividss

‘ !
A; (x)« XP r, < r / p the exponents of A: (x) are reduced

f

modulo T, , i.e. A: (x) 1is reduced modulo (x'* - 1), to give

Aaz(x). Then Aaz(x) has non-negative integral coefficients of

which one 1s at least 2 and it is divisible by F, (x). Therefore
& ;

P

4: w) = A w1+

/
1t follows, as before, that the coefficients of Ai (x) are non-
negative and that one of them is at least two. Continuing in this

way using F (%) wens F, (x} the following result is finally
3

“
cbtained: -
M W’ n",,,/%« A Tul P
A = = A ) (1+ = sy o e B )
- <~
(w#0) !
where the coefficients of 4 (x) are non-negative and cne of them

is at least two. Thus the sum of the coefficients in A: (x) is at
least 2p. Working back from this it is seen that the sum of' the

cocfficients in A1a (x), and so in Aa(x), is at least 2 pv. But

L
o
this sun is pv. It follows that the numbers <« ., in 2, = ’

L2l

are all distinct.
From AB =G it follows that
= moth (/"' ”"))
A@)'X@) ] [[fwf s )( .
Therefore for each divisor 4 of N, with 4 > 1, 71@’)/ At . B
and so F;va) / A& or F;_Lw)/ B)
b 9 o F’m‘ Lw/3(w) for each divisor 4 of n, then, by

Temma 1.2, ((mﬂ-l)/(mﬂ/ﬁ'l)) }zév) and so gN/p is a period of B.
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Thus it may be assumed that, for some divisor 4 of n,
F‘m‘(x) divides A{x). Tet p and 4 be primitive rootis of
unity of orders m and n respectively. Iet n = dk. Then
T = fd"" is an (m-:l)t'h primitive root of unity. Therefore

Foa (7) = 0. Hence A(T) = 0.
P o
3"- “: 4‘ 5
Thus 25 7 = 2, p e i 0. It follows by the

ins Lat
irreduecibility of F_ (x) over the field of the 2a®  svots of unity

’ﬁ'd" oA ,‘ ’,’

that Fm (o) } Z ~ g « Therefore
i=1
. 3 2 -t) m/
ﬁ/x’“{ "F‘ C(,x,)(h‘/.vm/’"f +40& 4')

=
L=

Since o $4; {m , it follows that the degree of C(x) is less
than m - (p-1) m/ p, i.e. less than m/p, and therefore that the
coefficientsof C{x) are nowers of & , no sums of powers of &
occurring, since no two exponentas o; are equal. Since there are
pv terms on the left and p terms in F , (x) there must be v

terms in C(x). Iet the exponents occurring in C(x) be tys o

sesy t, with 0 = t, < t2< e S 1< n/p. Thus the numbers

*‘: are t1, tz’ "vey tv, t1 +n'/p: ®0 sy tv + Wp, t1 + 2UVP’ soegy

1,0+ (p=1) m/p @and the coefficients of .« P

b, #( ) m/ P g ot ”QI’«.

0 in ~ & are equal for each j , where
¢ v

J 2 0O, 1y eevy; % It follows that the corresponding exponents

k g, arc equal modulo n, and so that the corresponding numbers g;

are egual modulo d. Conversely, if the exponents o are as above,

and the corresponding nusbers p ; are egual modulo d, where 4 l n,
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then i"mﬂ(x) | A(x). It follows that if Fmdfx) ' (x; m»o docs

l-‘m(x) whenever c! d uand also that if F (x) | 4(x) and

- \ . 3 " . ; > f
I‘ndz (x} I i{x) so does }md {x; where 4 is the lowest common

multiple of d1 and @ nrovided that d, and 4, ware divisors

2! 2
of n.

£ oS A (x) , £(x} then, f{rom the above results,

Fa {x) ’ AMx) for all divisors 4 of n. [ence, by J.erma 1.2,

((/70 N—: )/ (= N/fv-n ))}A(w) and {;W/p js 2 period of 4.

let w be the greatest divisor of n such that ¥ @ 1/?6*)
It may be assumed that « < n ., %hen, by the above results, ii' ¢
divides n, F,,,C*)/ﬂb) if and only if 4 l 4 . The information

about A!'x; which was obtained above nay e written as

= f:'f wta*h"“r* "i,sm

A«

(21 S=
where, for each 1 and for cech pair =, and 52, o < 5, 8 4’
o < ~#4, ¢ '}" > ’ti + A, v 4 ,['.. s|m-:-'t‘;_+o,m+4"-)s‘ m[ meda)
and 80 4, + /ﬁi,s »/v Sozle‘-'s‘/ﬁ[mdu)

let Qv Qs eeey be the set of prime numbers such that

there is a power of Y dividing n which does not divide u. Tet

the greatest powers of -8 dividing u amnd n bo respectively

. o
q_,f‘ and  q * . dhen d‘._ < 8, . For each w,. such thet

¢£ Sw; § 9 , = w;d("‘) divides B(x) for every divisor 4 of

9.
N/m 4y ¥ G Repeated use is now made of Jemna 1.3. Prom
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&,
F" 3 9'd. C/x")/ 362 for all divisors d of N/m Q it followvs

that

N N

x -/ N :
(1) S = —r au s + = 5 e

20 -/ o =i

where B . (x) and Bq (x) have non-negative integral coeffieients.
1

let B (x) be chosen to satisfy (1) so that the sum of its

ceafficients is a maximum. Now if 6, - ¢ 22 , F;q o,-/d (G } e
/

6,
for all divisors d of N/m¢" . But, by Lemma 1.2, all these
N w N/p :
cyclotomic polynomials divide (x - 1¥x - 1) and do not divide
N w . N/q . : : ;
(x' =1/Ax” ™ = 1). Therefore, from (1), they divide BcL1 (x)
and, also from (1), the degree of ]3q (x) is less than N/q1.

1
Hence, by Lemma 1.3,

N/¢, N/q, '
x X =l B fw == B
131 () i 4 N/ 2,
' G -/ o~ gy

where Bp1 (x) and Bq:: (x) have non-negative integral coefficients.

Substituting for Bq (x) in (1) it is seen, from the maximality of
1

Bo(x), that Bp1(x) = 0 and thuas
‘ Y ARSI
.« I e) ¢ e
o = =g~ % v/ ¢
x J o =/
Continuing in this way, using &,-2, ... ¢ +/ , the following
formula for B(x) is obtained:=-
"o o e B
o - -
) = — & o + -
(2) E o Py 7 N/q.,"?‘ g,

" =y -~ =4
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&
Now szp'd ) divides RB(x) for every divisor 4 of N/mg, 7
3

N 9% 8
and so for every diviesor 4 of / me, % . Applying this to (2)

- ~
a of N/mg 9, « From (2} the degree of 31’ > 4n less than

g -9
N/, ‘ « Therefore, by lemna 1.3,
. ”/ ol“l
N/q' I-e o - ¢l
B 1 2 X e & e * =— B )
b Y

ql N/,/\,qlo;”l l" N/tl. 4'9'—"
Cad -/ R ==

/

o
where Bp (x) and B, (x) have non-negative integral coefficients.
b §

Rl
Substituting for & (a in (2] it is scen from the nuximality of
i

]
Iﬂ“p(x) that B (= =0 and then

# N
s f
3 @’) = ”/#_._._ fﬂ (a'-) i N/i"l'plq q’

Continuing in this way, using Qps =ees Gy the following expresaion

for B{x] is finally obtaineds~

N
N
A e = )
B = /A 3/‘, . & N &/ n 3«-
A B S =
N 4 .
- w -
2 -/ <

where the coelficients of Bp(x; and Bu(x) are non-negative
integers.

Now, using the above expression for B(x), consider tho number
of exponents in A{x). B{x) which are congruent wodulo mu. I1i one
arises from A(x) Bu(x) . (xT’ -1)/ (xm‘ ~ 1} then all possible
expanents congruent to it, modulo m wu, arise from this term. But,
as no term in Alx). B(x) ocours twice, the same must therefore te

\ N N/
true for exponants arising from a(X) By(x) (x - 1)/(x LR DR



28.

Suppose that some coeffiecient in Bn(x) is non-zero and so that

terms do arise from it.

v v/ A (A1) N/
x =1 5. | >+ T ol .
m”’: 1"-—/
Now the numbers O, N/p, 29/p, «.e, (p=1)N/p are congruent to O,

n/py, ++sy (p=1)n/p (modulo m) in some order, since U, n, 2n, «e.,
(p-1)n are congruent to 0, 1, ..., p=1 (mod p) in some order.
Let hj N/p be congruent to J m/p (modulo m) for j =0, 1, 2,

eeey p~1. Then h, N/p + t. + 8, m/p + k m 3is congruent
j1 i 1 1131

to h. Np + t, + s_.mn/p + k m modulo ma if and only if
3y 1 2 1,3,

Jyv8 = Jyvs, (mod p). For if Jyrs = 3, +s, (mod p)

then, since h, N/p = J, /o + w, m and h, N/p = j. n/p +
J 1 J1 d2 2

w;j Ky the two numbers are clearly congruent modulo m. "urther
2

(,4? N/ ot Bobs,m/fo + 4, M) - (/'eiz Nfot 5 Smfper Ay ™)
::(/‘}J- /b - /{;J" m/Ah)n + [ S+ f[‘-)s’fv o s "{;,;" 4) m/ A

But u’ n and §,+ ji,s, ’f' - Sz""{;‘,‘ -~ (mod uj. Therefore
the two numbers are also congruent modulo u. Since p doces not
divide 4 it follows that the twoe numbers are congruent modulo m u.
Conversely if the two numbers are congruent modulo m u then, a
fortiori, they are congruent modulo m and hence, from

.4€J-' N/%f + S,’"/%t = /A‘;; IV/%« + S, m/p (med m),

it follows that 31 + 8, =

i Jy + 8, (mod p)}. Now for any given

nunber %, 0 g £<4A there are p different pairs 4.S; such that

ji*si = t (mod p) where o y'<fv 0 <5 & /,.. Thus in the
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product A (v 3;’(”"’) (“{‘)/é"u/t’) if any exponent occurs, therc are a
multiple of p exponents congruent to it modulo mu . Thus the
exact number of exponents in A o 3;,1”") (Wﬁ"’)/éw%—ti) congruent to any
given exponent modulo mu is a multiple of p. But the total number
of such exponents is N/mu = n/u which is not divisible by p.

It follows that 37‘@) =20 , Therefore Lw”-:)/(w ™y
divides B(xj. Hence g™ 1is a period of B.

This completes the preof.

Certain consequences of tiiis theorem concerning other work by

}Lajc;s and de Bruijn will be mentioned later in the thesis

GUOD CYC' IC GROIPS
There remain three tynes of cyclic group which have not been
shown to be good or bad. In each of these three cases Thecrem 3.2
applies to all but one essential type of factorisation. The remaining
tyoes of factorisation arc dealt with by direct application of Theorem
1.1 in the case of the groups of type[//»f.g,r} and[f-, 4, A} > B

group of tyne [»ﬁ:g‘} is considered first.

. 3 _ . L 3} ‘
THEOREM 3. 3. If G ds a group of tyve A4, 4§ , where p and q

are distinct primes, then C is good

Proof. Tet AB = G. The essentially different cases whic!: have to
be considered are those in which A has p elements, p; elements
and pq elements. ‘he {irst two of these are covered by Theprem 35.2.

lLet p2q2 = M. Tet A have pq elements. Then B has pg

clementa. let g be a generator of G. Tlet A = s i

Y
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#e #1 A
' “; B
and B ‘.Z 7’f‘ . Tet Awrw =Z¢’ and 3‘(‘9‘2“’ .
tel i=/ P
Then from AB = G 1t follows that
. - ) n
A(w}.?@v) !(If%r...-f-f/n,)(,wd(/x/-l)).
Therefore Eu'v)} Aix). B0 ana so 7':‘@)//‘7(») or };‘PJ/PC’*J.

Since A and B have the same number of elements it may be asswued,

without loss of generaiity, that 7:; e / /9 w) Then by Theorewm
2 of (2, p-3/4) it follows that
" n
<Al ) p 2l A ),
A x> = —wk_ Ayt = 7

where Ap’x) and Aq(x) are polynomials with non-negative integral
coefficients. Now AW = fyg= /wq)‘(l)f 1 ’g(f/ . lherefore either ,4"(:/ “q
and A'o) =9 er ,4{0) = 4 and AAO) =0 , TIn the first case
n ,y | n *f
A =0 and (Qv"“)/mf : ~/))/9(”J , i.e. g d is a period of
1 ,4 " . /4 )
A In the secund ca:ze /,(“)za and (L”” =t (™ ")} A ; X.és
e g
7» is a period of A.

This completes the proof.

i
THEOREY 3.4. If a group G is of type | A5 4, S S SSR———

and r are distinct primes, then G is good.

Proof'. et a, b and ¢ be generators of G of orders p‘?, q
and r respectively. Ilst p, 4 and T be primitive roots of unity
of' orders p2, q and r respectively.

let AB = G. The essentially different cases which have to bLe
considered are those in which A has p elements, p2 elements,
q etements and pq elements.

The first three of ihese are covered by Theorem 3.2.

Tet A bhave pq elements. Then B has pr elements. Let
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e

¢, B ¢ i
A = Z -~ 4 o and .B = Z ~ A e « 7T1hen from

iatl L=

AB =G it follows that

Ao L 4
4 o ’ S y) mw-‘k’% -t)).

(Z-vﬂ‘){g Y = 7‘ [t fease PaE A 8

Y /zr /‘(,‘
Therefore 7;-'_(”) divides Z? Z; o . But 7;;(') -

L (e

and q does not divide pr. “Therefore F (x} can not divide
ﬁ: % and hence % () divides il Tt follows that the

CE/ £/

nwrbers #; are U, 1, ..., q-1 and cach of these must occur p
times. Similarly it can be shown that the numbers Y, are C, 1, ...,

r-1, ea.ch occurring p times. Also from AB = G it follows that
(Zm )(Zd— ‘) = g+ '*/”4- T )(wnt(w-—u)
tat

Therefore sz(x) and F (x) divide (2’” )( - ‘) . Since

Ar .
F‘ () = T"U) = /v » it follows that Fn(x) divides either ﬁ' 2

Py ~ L ES
or ~ and that ¥ qz(x; divides the other.
it 2

Replacing a’: b and ¢ by p,5 and 7 respectively, it

q ¢

- c. ¥y AL Mo

follows that | Z P o’, )il P & 7> 4 a2 8.
i=f

Y
Since q and r may be interchanged it may be assumed, without loss
of generality, that [ P“;J' £ ”"’n =0 . ‘fThen it follows, by the
irreducibility of Fq( x) over the f‘ield of the (p r;th roots of
unity, that Fq(x) divides Z P T’ ‘...v e and so that

Y]

Y e’ =2, prhrti, .. = 2 por’

i p =0 f Eop: 23;.. =@/
From the results above each number g; occurs preoisely p times

and so there are p elements in each sum.

= “here ,_Z}_w indieates that the suwmation is taken over those
integers 1 for which g; = O.
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A AL
=2 T T ¢ A
3 et A"; ‘ :;P‘ = £/ ‘;’36. :,4 ’ whem o i
ant & & 4 % g . Then P is a root of the equation

/)1 Qe =0 and s0, by the irreducibility of Fp.-.(x) over the

7/

; th F,o0 | 8 et .
field of the r roots of unity, 44 Sy // 4 ‘(‘( « Since there
r
are 2p tlerms in /44 L , either ﬂ&ﬂgw is zero or else the
exnonents of x in /)J,C{w are m, M4pP, eee, m+p2-p, N, N+P; sss;
n+p2—p wvhere C 3y m < p, U ¥ n < p and m may be equal to
n.
I1f for some pair k, h, /qfl,ﬁ‘” #0 and m # n, then the

coefficient of xm, xmip, & 5y P TP 5re equal, and the

coefficients of xn, xmp’ R xnﬂjz P are equal .
s AL T,
If r # 2, then 7 =-7"  is impossilie and so m, msp,
2 o 7 ~i
eesy Mip =p must occur as exponents in = A o and

2 <
n, nN+p, ..., N+p -p as exponents in % £ e or vice versa.
Pl =

o e
Henoe.ZJPT =0 anésoz f?’vo for L =o0,0,..., ¢-(
4l o t )
If ¥ = 2, then 7 ==l and 7V =-7 is a possibility.
xL’
let us supose that Z . f’ (-U 7 ¢ . Then these ex onents «;
L)ﬂ.

are not all congruent to m, nor all congruent to n, modulow

The complementary sets of «; congruent to m modulo p and to n

Ay A
modulo p must occur in Z p =v ‘. 1et os £<¢
‘J}:'—'" P
It 4 4 £L/”) =0 then Z Y, i contains the same exponents
g th":
ol -

L; &8s e g Ay > #2 then, from the above,
t','p “*

2 % "  contains the complementary sets of exponents ¢ to

& s't
£ y < and so )tﬁ.'he game sets as Z Now F;,W) or
LBt q f .
¢ o} o
"F-" ) divides Z: w» . I 7:@” x then there are

e®{

the same number of o , namely q, congruent to U, to 1, ..., and
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toe p=1t modulo p. This is impossibtle since every o is congruent

tc m or to n modulo p and since r =2, p £ 2. If

i

F/“(M / o i thien there must be the same number of exponents
L'

o; equal to m, Lo mp, ..., tO m+p2-p. But certain of these
occur with those f;rl such that A* l('&)eo » while others occur

4
with those g, =4  such that ”‘ V¥ 10 and these two numbers cannot

be equal, since their sum is q and q is odd as r = 2. ‘herefore
A o
if r= 2, Zt P ‘(w/j‘r =0 for 1'301/,.-»,[—/ also.

=
1 g /(* A(m) # © {or some pair k, h, but in every such
'’ m m ﬁ

case m = n, then the coefficients in '41‘('*’) of ~ , »

me b2 p

ey MK are egqual. These coeificients are cof one of the {'orms

€ ts t 1, t; 4
T €T 3T o or -T ~-7* . If + +#2 , then it is

easily seen that different types cannot be equal to each other. Eut

neither the first type only nor the last tyne only can occur, as there

are both plus and minus signs in A‘ 1«[”) . ‘Thereiore only the second
(]

type occurs. Now as ALI(”) #2 the coeffieients cunnct be zero. I

7 ¢ t 1 t)
2T 2P 2™ witn £ 34 and A3 #4 then T T T oT

ty tb 12 +
= 0 » Therefore F, (/»)/ x4 - -’ . Since

o §YH < * the remaining factor can only be constant and

since all the c efficients in Fr(x) are positive it must be zero.
Therefore ;t, s 'tz and 'tz vt‘. « It follows that all the vowers of 7
with a plus sign are equel, and all the powers of 77 with a minus
sign are equal. Butl the plus signs occur with pi = 4 « Therefore
in 2 ; ,ﬂ“‘ -'.'L. the exponents o; are m, mpP, wea, m+p2—p and all

the exponents ), are equal. Therefore Z i f""-,- r ‘2o and hence

R4

N0 L ¥
T =0 f‘or /tﬂo,l),,.’t"l
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If r=2 then T = =1 and the coefficients in A&,,{ )
must all be +2 or all -2. If al]l are +2, then y; = 0 when
pe = Yy and [y, =/ when pg; ,,[, . Since no element occurs twice
in A no &; can occur twice with g = & and y;=¢ ., fTherefore
the numbers i ocourring with IG;MQ/ are m, M+P, ees, m+p2-p.
Similarly, if all the coelficients are =2, the exponents 4; occurring
with g; = £/ are m, MiP, eee, nupz-p and all y, are equal.

R £ ¥e

o ok;
Therefore, in each case Z . P and so 2: o o = 0
e . Cipce

f'or t=0, 1’ so ey q"1.

b S
Thus, if for some pair k, h, Ay g0, 22 , F 7 '=o0

Lo Pl
’ ol; ]
for £ =94,...,9/ . Therefore FD;(x) divides ol and

ip;= Z
since there are p terms in the sum it follows that the numbers «;
are m., M, + D, eee, W + p2 - p and that all y . in each sum are
egqual. Hence a' is a period of A.
There remains the case where A 4 L = ¢ for all pairs k and

o
h. In this case tha coefficients of each  » in /) 4 4 ) are

zero. Thus for all k, hand t

4 Y
2a w9 - 3 T = 0.
i}lﬂil&‘d" =t l:;ﬂ‘-:,“d.‘-l t # ”
From this it follows that 7';@9) divides 5" o - Z e

e A=t ket
This polynomial is either equal to zero or to * F,.(=) . For since

its degree is leas than or equal to r - 1 it must be a constant
multiple of l?r( x) and as A contains no element twice there cannot
be two or more equal Y, with ﬁ : A and o, = T or with B sl
and «; = z . It follows that any given expunent «; occurs the

same number of times with sach j3; , or else r times with some
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Pi and not at all with others. Zach g; occurs preciscly p times

and from Ff» () or r}; (#J)  divides 2 - there are at
=t
most q of any 4; . Since there are q distinct § , those «;

ocourring with each g; occur only once with each g; and from the

above occur with the same y;, . If 7‘;,@9) divides s 2™ then
iz

there are q exponents «; such that o %« § Aot q exponents

o: such that /\- § ot; ¢ ‘7{"1, ... , and g expounents #; such

that # - A S & $A~ . 10 P aivides g »*¢  there are q
Czr

exponents #; congruent to U, to 1, ..., and to p-1 modulo p.

Now from the above any given exponent ocours q times or in multiples

of r. Since r does not divide ¢ the second case cannot arise.

fience b 1is a period of A.

This completes the proof.

THEOREK 3.5 If G is a group of type { M 1 © s] , where bp.

g, r and 8 are distinct primes, then G 1is good.

Proof. Jet &a, b, c and d be generators of G of orders p, q, r
and s respectively. Tet p o, T and «~  be primitive rvots f
unity of orders p, q, r and s krespectively.

Tet AB = G. The essentially different cases to be considerecd
are tiose in which A has p elements and pg elements.

The first of these is covered by Theorem 3.2

et A have 0nq elements. Then B has rs elements. let

P

15 . .
@, b v & Ao M v e
A=Z°£/\'//¢* and B‘Z""/gx—‘d » It is
(ef t &

assumed that «, =g =), = $ = A, fy =V, 26, =0, ‘fThen, it can be

shown as before in the proof of Theorem 3.4, that the numbers «: are



0,4, . .., f-t , each occurring q times, that the numbers g,
BOE D0y ooy , each occurring p times, that the numbers
v, are O,(,. .., 4-/ , each occurring s times and that the

numbers 8; are o0,/ . ..,3-/ | each occurring r times.

When a, b, ¢ and d are repleced by rcots of unity of
suitable orders, in AB = G, prcducts of sums of complex numbers equal
to zero are cobtained. Use will be made of the fact that one or other
of' the correspending sums arising from A and from B is gzerc in

cach case It may be assured, without loss of generality, that

Z I J,‘ ‘ws"= o.

taf
C is shown to be good by consideration of the various

combinations of swis of products of two roots of unity, one p or ¢

the other 7 or w , equal to zero.

te _ :
W Z et -

i =t
tow oy
implies that (v)/ Z and sc that
= : - ¥;
FE SR S U
PR 'SPy Lz Pt

Since there are g terms in each of these sumg, there must be
precisely the same vowers of T occurring in each sum. Therefore,
if (1) holds, the numberas y consist of q blocks, each block
containing p equal elements.

Similariy,
e d: H

(2) 2 p @

L

M
Q

implies that 5; consists of q blocks of p eqgual elements,
he B ¥

(3 2u ¢ T =°

i=s/



implies that Y; consists of p blocks off q equal elements,
M; o o
) La ¥ W =90

Lol

implieg that 5‘; consists of p blocks of g equal elecmentis,
As
- R &%
(5) 2. fF T "= o0
=y

implies that A consists of s blocks of r equal elements,
s

] A} 8
(6) Z_,p x = o

Yy

implies that f\; consists of r blocks of s ecqual elements,
s

“; oy
(7) Z g = 0
implies that u; consists of & blocks of r egual elements, and

45
#y ‘
8 2w’

i/
implies that M, consists of r blocks of 8 equal elements.
From AB = G it follows that (1) or (5) is true, (2) or (6) is

true, (3) or (/) is true and (4 or (8) is true. The possible

combinations of these are now considered.

(i) (1), (2), (3) and (&) true.

(1) and (3) imply that all y, are equal. (2) and (4) imply
that all & are equal . Since no element can occur twice in 4 and
there are only pq different pairs (J;, #;) each of these pairs must

be present precisely once. It follows that ab is a period of A,

(4i; (1), (2) and (5) true

(1) and (3) imply that all y; are equal and so that y; =0

=% DX 4L
? ﬂ'r W =0 {4t follows that

‘Q
for all i. Therefore from <, 7 ‘o
¢ . .
d: Bs 8 ¢, 8. B
g: P ¢ ) 20 Therefore Fi(”) divides g pow

Lsid P
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1t follows that

& &
A js o w

Z P wd Z f u P ' . ",Z_‘;i-, f)

"J.p.,=o ’1 LJ,"‘ l"
But, from (2), 2. p ¢ . ‘herefore for each k, k = C, 1.

e b _
seey q=1, .Z;} P w =0 . But f. takes the value k, n times.
¢,
‘*.'

fherefore, trom FLW/ 2 it follows Lhat the numbers o

‘lf’ ‘
in each such sum are 0, 1, «¢e, p-1 and that all 5. in each sum

are equal.

Hence a is a period of A.

(i7i) The other cases involving three of the first four relationships

being true are similar to (ii).

(iv) (1), (3), (6) ana (8) trus.

(1) and (3) imply that y = 2© for all i.
o M d ¢
(] (Y 25 P {2
If poor ‘w =0 then, since y.=o0 | Z p =0
PR PN
which is (2). (1), (2) and (3) imply that A is periodic, from
1
5 PR PO I
(11}, Similarly if -4 4 T W =0 then, since y, =0 ,
7e Ixy
" §
%j o'ﬂ w =0 , which is (4). (1), (3) and (4) impl;, that &
[:I y V 05'
is periodic, from (iii). Thus it may be assumed that Z g riw =0
A5 i /" D‘: P ]
and that Z" 7 w =0 , It follows from these that
Al 0
Z F [ ] . — = Z A‘ (2] i
e VY;s0 (.J' Vo
and that » " . o
¢ ¢ = L ¢
0w = = D2, 0 w
Vs A=
o . " A 8 — “: o;
It follows from (6) and (8) that _Z. P w =2 2, 78 w av0
¢ ’{"& .'_"/;'é/
for' k¥ = O; T5 swiey P-1s But there are 8 tenns in each sum.
; Al 9, 1 9
Therefore, from . .= | o &P v and /-, (% | .2;‘ &
' LA ) Gr

it follows that the numbers ¢: occurring in each sum are U, 1, cee,

s-1 and that all A; and all A in each sum are equal. Thus d
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is a period of B.
(v) (2), (4), (5) and (/) true is similar to (iv).
(vi) (5), (6), (/) and (8) true is similar to (i).

(vii) (5), (6 and (7) true.
1t may be assumed that (8) is not truc and thus that (4, is true.
From ( 5) and (6) it follows that 8ll A ;=0 . It follows that if

M, B Hi ‘
Z] p"e® " e  them Zo’ w. = 0, which is (8).

o8 e a;, P 8¢
Therefore it may be assumed that 2 p & W =0,

izt

M Ve @
If >, ¢ 7% 'w ' = ©  then it follows that
L2

U v M s
Z s ' = ... = Z & TV*.

i:@:20 L_',’."S-'l
i He Vv;

From (7) it follows that ,? L & =0 _fer bk = 0, 1, seey

[ s £
s~-1 But there are r terms in each sum. Therefore, {rom
" He v,

-T'..""/-%"g g , the numbers V. in each sum are C, 1, ...,

"J (4

r-1 and the nunbers K in each sum are all equal. Hence ¢ is a

period of B.
M B oy 5

Therefore it may be assumed that bR 4 r w =0 . The
DY

following suns derived I‘rom A can now be taken to be zero:
'{—Lﬁd- Zl . B o B ngﬁﬂéc(;
&__,pa' JTN‘Z,oo’w,L‘o’w_
o=/ L‘-’ izt I=1

From the last two of these it follows, by a now familiar arpument,
<1 v B. #.

that £y, ,9 @ =0 for k = 0, 1, wesy D~1. ihere are q
Lisk 2.

terms in each such swn and therefore the numbers f; are C, 1, ...,

q-1 and the nuwnbers §, are all equal in each sum. From the first

ﬂ v &
two sums above it follows, by a similar argument, thet Z g w =
ol =

for k = 0, 1, ess, q-1. DBut from the above the numbers A. in each

o

such sum are U, 1, ess, =1 and all the numbers ¢ are equal. It



follows that the nwnbers Y; in each sucn sum are alsce cqual.

Therefore b is a pericd of A.

(viii; “he other caseswith three of (5, (6), (7) and (&) true are

similer to {vii}.

(ix; (1;, (2}, (7} and (&) true.
From (7) and (£, it follows that Ki =~ 2 for all 4. Ti

A 5
Ao M Ve A bk B
ﬁ p & T =0 or Z o ‘vt wta 0 it follows that (5, or
g =
(6, hold true and thus by (viii, that , or B is periodie.
ol ¢ ﬂs‘  § e
Thereiore it nay be assumed that . p 9 T =0 and that
ht LI TR T =
P oW = 2 . It follows frow these that

(& ok Y, ol r.
2 P e a p o _
¢ Pc' 20 <3 A’"“Z“‘ an:
s, 4 a; &0
Z’ A B o - 3 f w
i3 JE? ‘Jpc’Q‘ : 8¢
Therefore, from (i, and (2), Z L Z f’ w =0 for

i pod peh

k=0, 1, «o, g=t. Since Lhere are p elemsnts in each sun it
follows that the numbers o, in each sum sre U, 1, easy D=1 and
that all Y: and all Si in each sum arc cqual. %fus a 1is &

period ot A.
(x; {(3), (&), (5) and (6) true is similar to {ix,.

(xi; (1), (&), (€) and (7) true.
s’ &, B ¥
Supose that 2. p &' 7 '=o0. From this end (1) it foilows,

Py
F.
by a familiar argursent, that Z 4{, f 't aop for K = U; 1, eeey

g=1. Since there are p terms in each sum it follows that all Yy,

in each sw: are ejual and that the numbers «; in each swn arc

¢ . . Ao
&y P ¥ 8, B ¥
Us 1, wvey p=1.  Also from 2up ¢ 7 W 'z0 gng Z PP

(& )

¥
L' s &/

< X ’ Y
i_t. f()llows t)Aat _L‘ Py ,p G’; 5 20 fOl‘ k e i.t, 1, “eny 5‘1 v 1'“1
S
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{4) each S; oceurs a multiple cff q times, say 4{/‘ Z times flor
Si :4{, s &ud that the numbers g ocourring with it are C, 1, «..,

q=1 each occirring hk times. HNew, if for scme k, i, = p, then
: A

oy PN
&ll S; arc esual, and so sgqual to zerc, and 2 P ) = O

L =

which is (2). dhen, from (1,, (2} and (4), & 4= perivdic by (41i,.
TL may be assumed thsat /K/‘ < ’/" for each k. “rom 2 4 /od"(’d(rr‘?
it follows that

=
-
= ., . = {

\'J.Jl-’ ‘/:/S" el

Z/‘ ;; a lp::o
Eut it is known that in each sum ﬂ;’f‘f » all y. are equal, say

ta yj, . 1t follows that ‘
X' 4; r A
[~

4 Z"'
T ; i =R = i Z ‘p
57";‘£ B 2o oo Brad Al
- - ) ’c Ty /’s\: ’?-'
inerefore for each pair 1, m with o5 £ <g, o g m 4 ¢,
I i
: Ye A J, Az
Fglx) divides x 20 Ty Pt » It a#2,
iydpck B2l Lidooh po=m ]

this polynorial 1z zerc. 1ut, since /i{',/‘ s //" and there are h,{

“q
Lerms, Z 4" o Therei'ore ' =Xy . 1L follows
i;:;xz&lp';.j F {; m
. /
that all r‘.’ and so that all y;  are equal. If s =2 wly’ #/,
o A
then Z g +- Z f = 0 . But since s = 2, p 1is
8ok Bl ST peem
odd and so does not divide Zh, Therefore this is impocssible and a0
all y: are equal.
; +t : e
3 el 00 o ~
iherefore T = . =0, which is (3. From 1), {3,
Lt PO

and (4, 4 is periodic by (31ii). e

Similarly it can be shown that if 2 P

(=

o i 8¢
i Fw = 0 ihen A

s
Z‘ Al ML Y
is neriodic}s Therefore it way te assuned that <& f ¢ ¥ =0
& A%
oL ¢ 5, L o T
and that Z f: o"d‘u =0 . How from (7) and Z Ip g v =0

&2 et
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vi
it follows that 2 i ‘f 7’ = 0 for k = U, 1, eeey p-1.
(A E
But from (G, 1t follows that each A; occurs a multiple of = tiimes,

S8y hk:s times for ); 24& . It h =r, for some k. tihen all A{

k
are equal and so (5) is true. (5,, (6) and (/) imly A or &

periodie by (vii). 7Thus it may be assumed that A‘,( <+ for all k.

“ v,
For some k, /"4( >9 . Then frem 2‘:1"( Y =0 it follows that
OHn
N
7:7"_ (=) divides z ;, » " , where © $§ K¢ <¢7¥ and k-spM; ("‘"'lf),

AR
K; = V:(med s} . Theretore by iheorem 2 of‘ (2, p- 3/4)
P

L
Z g8 _.ﬁ"‘.{.~—_{(~) +L f(m)

c,d‘-.. ne =/

vhere iq(x) and f‘r(xj have non-negative intepral coefficlents
Substituling x = 1 4§t follows that Ae'{‘ " Mgt whore

‘f_,(u 20 and n.-ﬂ(u?O - If m, = ¢ then r
divides hx’ witich is not nossible with o < 4‘-‘4* . lherefore
R T T Sumting over all k it follcwa that 2 l‘S = FS =mgent
wihore m2o From this it is seen that r divides m and ticrefore
mz+& But +#S ,P mg . Tt follows that q i3 less than s.

“u, 8¢

I 0
Similarly, using Z‘ P e 'w =0 and (6, it can be shown that
l=

or P is pericdic or that p < r.

#1 s ¥ B¢ //‘Q o
ir ZP T W = 0 then.smceZﬂ ™ =0 , the

¢ o=
same argu<ni can be ueced again and it s found timt A or I is
Y b s
periodic or that r < q. 7 Z & T W =0 then, since
L p‘: ‘ J“’ v
2_, g & =9 , it can bve similarly showvn that / or E 1s

c=

neriodic or that a < p.

But it is not poasible that q < s <p < r g. It follows
tint P ’?" ud F0 or that Z 5 T' w 7"0 « From the

L=t (=7
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symmetry of this case in p and gq it may bte assuned, without loss
s

AL v 8, ,
of generslity, that Z P T w =20 . From (6] it follows that

i=t

A, B¢
Z P w =9 for k = 0, 1, eeey r-1. Since there are s

elements in each sum it follows, as bef'ore, that all A; in each sum

are equal, say to /\4’& and that the numbers 8. in each sum are O,
s

A WL v
1, <eey 8=1. But Z i g L0 = O.

L=

Theref'ore
. “: ac #M;
Z F L g == ) o = Z’ P v
C- V=0 ;;I‘-f-l
%

But, from above, all A in each sum are equal. Hence

i : L M
3 & B ” I

L Voz0 A = o

il

Since there are s terms in each sum and g does not divide & no

/ Lol !
sun is zero. Therefore, as before, Ay = A =mo.. = /\4-_, . 1t follows

2 S Y
that all A, are equal and so that p ™ =0 , which is (J).

t =/

From (5), (6) and (7) A or B is pericdic by (vii).
(xii) (2), (3), (5) and (8) true is similar to (xi).
Teis completes the proof.

A
It had previously been shown that the groups of type {/— }
2 01 —
{7(' %4 and {/r, c,d-} , wWhere p, q and r exe distinct primes,
are good-! Xach of' these resulis is an immed  ats conzeguence of

Theorem 3.2.

*~ See linjos (6). Redei (9) and de Bruijn (2).
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CHAPTLR IV

Introduction

The following is the list cf' types of groups which have not
yet been shown to be good or bad, as given by de Bruijn in (1, p.259;:
{g'\,z} (A >/),’[1),2,2} cawy ; fataa.a} 5 [a%a%})
[phoaa)ifpontads [foamad o (planels
] 7‘; Bta,d) s 4 oy, 22}, [u3.8)0 £ P 335 EA20)5
fat3] ¢
where p and q are distinct odd primes.
It has becn shown in Chapter (T that the groups of type {/ﬁtl,l}
and [2.'\, 1:1} are bad whenever A 2+ . Tt is the purpose of this

chapter to show that the remaining groups listed above are good.

(tood Non-Cyclic Groups

THEOREY 4.1 The groups of type [2, 3, 3} and {3°, 3} cre

good.

Proof. This follows immediately from Lesma 3.1.
The following lenma, which is similar to lemma 3.1, is useful

in shiortening nany of the proofs for groups with subgroups of type

{2, 2] .

LEMMA 4.2 If G is a group, AY = G, A has four elements and
two of these elements have a common square then A or B is periodic

°roof. Tet the elements of A be (a, b, ¢, d) with a° = b~ .
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Then
(1) (a. b, ¢, d) B = G
¥ultiplying (1) by a and by b 1t follows that

(2) (a°, @b, ac, ad) B = G,

(3) (eb, b°, be, bd) B = G
Comparing (2) and (3) and using 2% o BF » it follows that (ac, ad) B =
{be, bd) B. Now if ac B and bec B have an element in commcn 80
also do aB and b E, which contradicts (1. Therefore ac I =
bd B and ad B = be B Thus B 1is periodic or ac = bd und
ad = hc. In the latier case

B (P ak, aBh) s (B8 0, B, B he) = o ),
and s0 A is periodic.

This completes the proof.

THEOREM 4.3 If G is a group of type { 2%, 2, 2, 2} then G
is good.
Proof. let a bLe an element of G of order four. 7Then the square

of any element of G is either a° or e. 1let AB = G. It may be
assumed that A has two or four elements. I{ A has two elements
then, by lLemma 3.1, A or B is periodic. TIf A has four elements,
then, since there sre only two sgquares in G, two elements of A
must have a comron square. Therefore, Ly lemma 4.2, A or b is
periodic.

1tds completes the proof.

THEOREM 4.4 The group G of type {2°, 2%} 1s gooa
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Proot. Let & &nd b generate G with a"= b4= e. Let
AB = Go If A hes two c¢lements then, by Lemme J.,1, A or
B is periodiec., 1t may be supposed that A end B have each
four elements., Dy Lemme 4,2, 1f a factorisation exists
in wvhich A snd B ere both noneperiodie, then no two
slements of A and no two elements of B have a conmon
sguere, There are only four squeares in G, namely e,az "
b end @ b’, 1t follows that the squeres of the elements
of A and of B must teke tLhese once euche Let

A= aw"  sadome T aw,
fhen, from 4B = G, 1t follows that

(Zx¥ ) Zx™) = aexexx’) (moa(x-1) ).
nerefore F_(x) = (x'+1) divides 2, x°° or S x''e It may
be assumed without loss of generality that (x'+ 1) } Z x“ N
fhen the numbers «; are 0,0,242 or 0,1,2,3. From the
form of the squares of A they must be 0,1,2,3, Now if
e’ =cthen 0 e and 4 b = d then 4 = b, Thus, by
rensming generators if necessary, it may be assurned that
A has the form e,u.(e or b”],azb,as.(b or b3). The four
yossible cases are counsidered., Now if g and g, &re
different elenments of A then g, g;' cannot occur in b,
Utherwise g, occurs twice in AB &8 g, = (g, )(e) = (g'_z)(g,g:l )eo
if A i@ e,a,azb,azb then, letting g¢,6 = e,z = a3b;
&, = tfb.ﬁt1 = @38, = 8,8, = & bjg, = B b,g, = a, 1t

follows thet B can have no element whose scuare is & b 3



47,
if A 18 e,ab ,a’b,e’b then, letting g, - e,z = &b’
G,= 80 4@, = e}g, = 8 byg, - a'bjg, = 6'byg, = &b, it
follows thet B cen have no element whose squere is a'i
if A is e,a.a‘b,agbz then, letting g, = €,g, = &jg, = &,
€,= ©g, = 8 byg, = e'b je, = ajbs,gl'- a’bt , 1t
follows that B can have no element whose square is & 3
finelly if A is o.abz,u"b,a’ v’ then, letting ¢ = e,
b g = &b b6, = ©}g, = @b ,g = & bjg, = a'b,

n

€.
ab” s 4C foliows thet B can have no element whooe

€,
squere is & b‘. lherefore no factorisation exists in
which A end B sre both non-periodic. It foliows that G

is good,

THEOREM 4.5 I1f G 18 & group of type {a’,a.ai end

AB =~ G, where A has four elements, then A or B 1s periodiec.

A..
Froofs Let & = . Let 6,b ena ¢ generete G where

am 2 2

e = b = ¢ = e, Let
¢ ‘¢ rc' r+Mm
= Z a“ blx ¢ = 2 a“‘+ P (a b), b
dotmye 3 A;+mB-tm - ; - v
- a - 'g(ac) Za P J(ab)ﬁ (e 6} .

Let B = Z & bm ¢'. If two elements of comuon square
occur in A then, by Lenzwm 42, A or B 1s periodic,
fherefore it mey be essuned that no two exponents «

ere congruent wodulo n.

From AB = G it follovws that



m am
4 A A am-1 AT
s\ ‘ faa. wmod (o ~1)
(Z./W )(ZN );4.(11‘:.1- + )C/
tny =/ - A o am i
Therefore f:,..ld-) = 2% 4, divides E 2 °  or Z 4 * . Since
o L (2
the degree of 0, ~ & is less then zm , it follows that if

2q

v
",

b i ¢
(o mﬂ)/ Z. 2 then if =~ occurs in the polynomial so does

1, + m

e . But it has been assumed that this is not so. Thus x + 1
im 3
Al .
divides Z < . Similarly it can be shown that x + 1 divides
m a 1m im
= AL +m ML Ay +m U, drtmpk, +m U,
_Z_’ x , Z,,, : and Z o~ ;

These results are now used to show that a is a period of BE.

The following notation is used: (,’g,, L, m) = i/ii, j,, m,) modulo
(2m, 2, 2) is defined to mean A, z & (meds=), L z L (meds) and
m £ M, meds) . It is shown that (m, C, O) is a period under
addition of the three-tuples (A; ., V) modulo (2m, 2, 2).

Suppose that k occurs in the expnents 4; . Since no element
occurs twice in B, k can occur at most four times. Jet k occur
four times. fThen (k, ¢, O), (k, G, 1), (k. 1, 0) and (k, 1, 1)
mnust be the corresponding three-tuples. Since {/wm-r /)l ij, /v'l"
the numbers +. have m as a period modulo 2m. Therefore k + m
also occurs four times. It follows that the corres onding tnree-
tuples must be (kem, G, ), (ksm, O, 1), (kim, 1, 0) and (k+m, 1, 1).
(my, O, O) is clearly a pcriod of these sets modulo (2m, 2, 2).

let k oceour precisely three times among the exponents /..

Tet (k, 1, n) be the missing three-tuple. As above, since k
occurs three times precisely so also does k + m in the numbers A;

In the numbers A;+m M " /1{+m (L+1) occurs twice and k + m 1 once

from A/ -4@. . The only other A; giving rise to these two numbers
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is k + m. Therefore from [/47-4*"',“.', LI hvm (Lei) occurs once and

k +ml twice, since dormp; has also m as a period modulc 2m.

Tt follows that 1 occurs once and (1+1) twice with k + m.

Similarly, using Al tmV; y 1t can be shown that n occurs once

and (n+1) twice with k + m. It is easily seen that (k«m, £ , ni1),
(k+m, £ +1, n) and (k+m, £ +1, n+1) must be the three-tuples
oceurring. Hence (m, G, U) is again a periocd of these sets modulo
(2m, 2, 2;.

Suppose that only one k occurs among the numbers A; . Iet
the corresponding three-tuple be (k, 1, n). Then, as above,
precisely one k + m occurs. Tt is easily verified that (Arm £ )
is the only three-tuple wiich satisfies d: +#m .  and A; +m V]
pericdic, with period m, modulo 2m. lHence (m, U, U) is again a
period of these sets modulo (2m, 2, 2).

There remains the case in which k occurs twice among the
numbers /A ; . The corresponding three-tuples may be of the form
(/{, £z, n.),('*g, Ernn), (’é,ﬂm)(é»‘ﬁ—, a+i) or k L.,"/a{‘é, betyned) . The
{irst two of these are similar and only the first and the third cases
are considered. Iet Lj, £, n) and L/f, Ct, n) occur. Then it is
readily verified from 4; that k + m ocours twice, from A;+mV;
that (k + m, n) occurs twice and from A.*mu; that (Aem, L)  and
:',é,.m, wti ) ocour once each. Therefore (A+m, 4,n)  and (45*'", Lain)
occur. Hence (m, G, 0) is a period of these sets modulo (2m, 2, 2).
Let (K &, n/ and yé,fz* 7, ") occur. 'hen it is readily verified as
before that k + m occurs twice and that }, «'9*«, a,ntl oceur with it

n N / 7
once each. But if (f&+m, £, nrt) and ;ﬂf-"', L+, 7)  occur then the
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numbers A +m Mot MV,  gpiging {rom these four three-tuples are all
congruent to AK+m/£+s) modulo 2m. But numbers congruent to k
(modulo m) only arise from A¢ <4  and A; = Aim . Thus these
sets do not give A;tmu. +m V; periodie, witi: period m, modulo 2m.
The only other possibility, which must therefore haovwen, is that the
three-tuples are (lfm, ﬁ,. n) and ("‘1‘»1,[4/1 nt+i) . These sets have
(my O, O] as a period modulo (2m, 2, 2).

“ince (m, U, CU) is a period in all cases, it follows that

a" is a period of B.

THEOREYM 4.6 If G 3is a group of type {22, 2, 2} or {25, 2, 2)

then G 1is good.

Pruof'. Tet AB =G. It may be assumed that A has two or four
elements. In the first case A or B 1is periodic by Temma 5.1. Ina

the second case A or B 1is periodic by Theorem 4.5.

A
THEOREM 4. 7 If G is a group of type {2 , 2} then C is
good.

A=l Am X
Proof'. let 2 =2m . let a and b generate G with .¢ =#L- 2B,

“hen a and a" b also generate G. Jet 4B = Q.
& : ditm 3, 7
et A =e4F 21 o /1@9-"/3') and

T AL M AL tmou; M
3 Z‘ “O /6‘ = Z <R, é"" M,g‘ J '
From AB = G it follows that

. 3 L 4mMmp5; Altmpl; am-t 4?"-’"
(57 Y ST M) 2 (2 25N A ) (e T Y ),

4]

” o A
Therefore -F“‘W) = v 4+, divides 2 PP or Z/» and divides

Z et mBL <1 AlEmM

or /2, x . The two essentlial cases to consider
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are that in which F,,(») divides two polynomials arising from the same
factor, say 4, and that in which EJ"J divides one polynomial
arising from A and one arising from B.
let 20w i divide Z N“ and deé*.‘ﬂa » ‘tThen the numbers

4; and the numbers «;#mg. are pericdic, with periocd m, modulo
2m. It k occurs twice among the numbers 4; then so also does

k + m and since no element can occur iwice in A the corresponding
pairs [edi, f¢) are Mm), (?4, 1L A+m,0)  ana em ) . Thus

(m, U) 4is a period of these numbers (£ f.) modulo (2m, 2). If k
ocecurs only once then so also does k + m. If (k,& ) oceurs then
it is easily verified, using &i#mg; , that (#+m L) rust also occur.
Thus (m, C) is again a periocd of these numbers (o, p. modulo (2m, 2).
It follows that in thds case a" is a period of A.

In the second case, it may be assumed, by renaming generators if
necessary, that nd";-l divides Z /x’d; and Z w"é*m#i « Then if
(k,ﬂ ) occurs among (%, f:) so must é‘*'&l/ or (4‘%'",/*'/ and
if (k,& ) ocecurs among (A;,#.) =o must (/,;jfl) or (Jfﬂ,l/ .

T{' always whenever (k, V4 ) ocecurs among (A,M;) so also does

!j,ﬁn) then b is a period of B. let (k, £ ) and (kem, £ )
oceur among (M4 . Tet (A, 4) be any pair among 5,8 . If

é&,ﬂ"/ ./ "6‘}:@ 5*-2,

occurs then < arises twice in AP as
[4&:5' Z')[&Lf; E) and as (41'”2 j')(w*'"%‘). But this is not possible.
‘Therefore /,—i ¢m, L+1)  occurs among (o, fr)  whenever #,4) oceurs.
It follows that a b is a period of A.

This completes the proof.
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THEOREY 4.8 If G 4s a group of type {#, 2,2 }, where p is

an odd prime, then G 1is good.

roof. let a, b and c¢ be independent generators off ¢ of orders
p, &4 and 2 respectively. Iet p and ¢ be primitive roots of
unity of orders p and 4 respectively. Iet AB = G. The
essentially different cases to be considered are those in which A
has two, tour or eight elements.

If A has two elements then A or B is periog by T.emma 3.1.

Let A have four elements. Then B has 295 elementa. By

Jemma 4.2 if two elements of A have a common square, then 4+ or B
a

'
iy B X Y
is pericdic. Iet A * o a PR LTS LK el T 5 T ek

(s/ (€7

From 4B = G 1t follows that LZ-'/ )&é 07)26 and therefore asinee p

¢
does not dividegthat . f’h = 0 . Therefore L”'J/’Zf ot
£ o
and so the nu:sbers A.‘ are 296 /,17, .. )(" /L-/ « ‘4ihey may be
a=sumed 1o be in this ord Also
o ,gb a- K 12
(Z Pt Nes po ) J -
LAY . g
1F Z ra""" O,F~ = 0 then F, (x)} divides Z /’ " .
cs/ ce
*« P x
Tt follows that if A contains the element a b c then it also
ok é?f-l ‘f
contains a b’ ¢ . But this is not possible since these two

F L

Ac M
elements have & comnon square  Therefore Z P & =@
- 4 sl

Similarly, it may be assumed that 2, p"‘ 5 i =0, using a, b
cwi
2 ﬁ Al M
and b°c as generators. It follows that b' (x) divides w0
g’ A, My 4V i et
and » & . Therefore the coef{ficients of ~» ., »,....*

are all equal in each polynomial. From the first polynomial 1t {'ollows

that
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u. ‘ “1 "9 M ol ‘
g +0 ’ =0 0 = L, ™ & il + & i
"’.l-l “ 1 ‘
From 7';(%) divides =~ + x “‘— m"l’,w »4 it follows that

Mo, =M Lr2 [/ﬂwal#') and /",z-, 2 phgte (make) or that the
24 .
Jc M-
polynomial is gero. In the {irst caseovery coefficient in 2 A
(- |

must be zerc and so MK,y = M g+ [met¢)  for all k. If this is
not so then the second must hold for all k and £ and 80, by
re-ordering pairs if necessary, it follows that a,=d;= ... =44, and
that M, - A(* It ML/, « Similarly results hold for U;+2V,
(mod 4) except that no re-ordering is possible if the 4 have already
been re-ordered. From these two possibilities in each case iher: are

four sossibilities to consider

; : = Vg +2 (med
(1) Hp, = My g #2 (et d)i Yoy, t2Vg, © Mogra ¥ g+t (omedd)
for k =1, 2, «ss, p. Then subtracting it follows that 2%/, & *Y%
(mod 4) and so that V,4, 2V, 4 (mod 2} for k =1, .e., p.

In this case b° is a period of B.

(11) Mg, = Mg r2 (mede)

M, + LV, T My + % U3 TR ﬂlﬂ-}*l'/,_#-, (Md‘*) and
My b 2V, Ty +2V, = ... = Jay 2V 4 (amod &),
Since & is in B it may be assumed that M, = =0 and so that

M, + 2V, 20 , If M, +#3/, is odd then M; is odd which is not
consistent with M, 2 M, +2/medy . Then

Mok © 2V g, ~M g -2V, p = 0 (mod4) for all k or

(1

Mok =34, =il -2 Yy 2  (mod 4) for all k.
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i

Subtracting W, 4, M g -2 O (mod 4) it follows in the first

case that 2 V, 4, -2V, 4+2 d (mod 4) and so that

Uzl., 1 = V, 4 (mod 2) and in the second case that

2Vig4., 2 Vig & © (mod &) and so that V, - Uu!"(”“"‘“)

for all k. Jn the first case bzc is a period of‘ B and in the

second case b'/'j is a period of B.

(iii) Hoephyg=. .. =/“1%—/J ﬂl=““ =, .. =,(1'LJ'M‘_L'¢2_1£‘—’; ﬂd*l{‘*‘/" i"_j
is similar to (ii).
(iV)M"“s"---‘-‘l“z{,-‘}ﬂ;’”,,-’-"'-‘—,u;,(/)'

/éﬂfm/,“d*) and [;{,;i+-2.l/“€ = mof‘j/»wdf')

W

Pal, #2Vyd.,

in the sense that if, for some k, one is 4 then the other is m.
If 1=m then V =V, = .. =V, , ; V =V, = .= Lp  &nd
a is a period of B. Now if A 2 mir(meds) then

g, * 2 Vg, =g ~2Vuf = 2 (edd)

and so by (iii) | is periodic. Thus it may be assumed that 2

and m are of different parity. For some k, , let p j+2V, 2 madt)

then 2V,y = L-my = L-sy (mode) | 16 for some Kk,

11

Mid, = 2Vik, S m(rely) ynaq 2,4 m-M, (nodé) . Tt tollows
that - M, and ,Z- My are both even. But thls contradicts m and
’,0/ having different parity. Therefore all K, + 2V, 4 are
congruent modulo 4 and sc also are all Mg, +2 1/2 4o . But since all
M, 4. are equal and all M, 4 are equal it follows that all 2V, /_,
and all 2V} are equal mod 4 and so that all V,/  and all V, 4 are

equal mod 2. Therefore a 1is a period of B.



Jet A have eight elements. Then B has p elements. Tet

'3 oy ;
A = 2. ’(‘/(fp‘ ¢ ana < SR P . Then, as before,

t21 .
’Ff» o) divides f e and the numbers /l‘- are C; 1, ..4
¥
F: b +2y;
p=i. Also, by & similar argument, 2 S = 2 a ‘

L (=

g g g a
Z (=10 = Z 1) etk - z (-:) = Z (P, e
{=s

g =

I iv I TRED ¢
Iherefore F, (x) divides 2, & and s and
4 (22 L=
'3 ; [ ¥
: B .3,
F(x) divides 2= , 3 ke Z - ang 5l
i=t ier Sk ¢ <

£

Therefore  F, (w. F, o = (1+ mt »#27) divides X~/ ang

% s
L=t
¥

ﬂ; +2 r‘
Z x and so the nurbers f: and the numbers g:+207

ME 7

(mod 4) are O, U, 1,1, 2, 2, 3, 3. Also the numbers ). and the

numbers £+ ) {(mod 2) axre O, U, U, G 1, 1, 1, 1. IlLet 4 g
denote the .umber of times the pair (k, £ ) occurs among (pes¥ed
Then the results above about f: and y; can be expressed in the

following set of eguations:

(1) A'e& A’/o)o 4 o 1t Wiye 1= T Wy oWy, +w3 o ”‘_’;, =& .
+ + = ¥
(2) ¥. ®o (”dl) M’)’ = /v'/" X240 30
] ) ~ + U"} *Mlll +/”.?II —P 2
(3) &l (mon2 0,1
e Wy T * it % I
(1) poryso (ndi) 2o, ;
+ gy, + . ¥
(5) pevy: &1 () o+ Po 2t Py
=2
(6) o zo (»de) o, , + %,
; -
(7) pcs! [ e ¢) o, , *
= 2

(8) B 74 [/MV((‘j
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(9) Re53(med &) 20

o, -3,

PR

(10) Botay, =o(mebe) o4, + A =&
(11) g:+4¥: 2 2 ( meod ¢) ot %2, e
(12) por 1, = 1 ( modt) A0 o
(15)&"1)’1’3(”““{") GOn T30 -
(2) + () + (6) + (8) - (1) gives (14), 2%, + 2x, =4

(35 + (5) + (6) + (8, = (1) gives (15), 2x,, + 2x,, = 4

(2) + (5) + () +(9) - (1) gives (16), 2x  + 2x,, =4

(3) + (4) + (7) +(9) = (1) gives (1/), 2x + 2x,, =14

(6) and (11) give Xg, = X, , and from (14) x,,=x,,= 1

(7) and (12) give x = X, and from (1/) x =x,=1
(8) and (11) give X =%, and from (15) x,, =x,, =1
(9) and (12) give x , = x, and from (16) X, =X, = 1

Therefore the pairs (g, ;) are (0,0, (04),(19),(14),(3,5),(11),/3,0)

and (3:./) . They are assumed to be in this order.

From AB = G it follows that

e ; g . '7“ g 2V,
LR A, M ai tay. A, M3V,
2. p 5ﬂ.§p #w J1 g o

L] cef v =

2/[
3 g
o fo+d A MtV £ ﬁ Ao M
=200 e 2{“ P = Py B e )
CR el f =/ 3
Therefore one term or the other in each product is zero If
e M Ao Mg
p =7 then f;{@v‘ divides x o and so all
Y e
M

0 are equal and thus all M. are equal and so egqual to zero



&
- 2 <7 % f¢
(x;, divides 2, p =
C =i

: “ B
mod 4. 55 5 Z p o = 0 then Fh
¢=t

o z
and theref'ore the coefficients of x and x are equal and the

J 6

k3 . al,; L7 qu o
coefficients of x and x are equal, i.e. p rp gl AR

#s oy “,; og | .
apd p #p "= 9o £p » Similarly from the other products it
. d‘ ‘6 otz ‘:
follows that all H; +#+2V, 2 0 (mod 4) or that p +p “=p +p

s

and ,ﬂdff- ,odi‘ P +;L' ; that all M;#V, 8 0 (mod 2] or that
U Pt T M e g™ " and et al) Y » o
(mod 2) or 1“.‘1’fat fd,* P-‘s* P"F - /:d’ = /;d"-f- P""f > f“+f‘8.

Let P i Pi + If M; zo0 (mod 4) and Vy Fe (mod 2) for
all i then a is a period of BE.

If  wu;

[11]

o (mod 4) all i, but not all V. = o (mod 2)

then

(18) P+ Fu = PT P 5 (19 Pa*+ Py = P * P

(20) p.* s * Ps * Pa Fad Py ® Po *Ps and
(1) p + Py + P +Pp Z [r Pt Pt P

g
Then from (20) and (21) each sum of four is equal to 4 <,Z, P:) and

therefore the sums in (20) and in (21) are equal. Therefore

(22) Pat pr = p_+ Py and (23) po+pe A/

From (18) and (23) p,2p, and fg =f From (19) and (22) g, =p,
and fr=2f . Tt follows that ¢ is a period of A.

Ifall V: 3 0 (mod 2} but not all u; = o (mod 4) then
Pitfr * FstPoi BtPecspPatPpilithahtlPesptp=foth-
It is easily seen {rom the irst end third of these that Pe <Fss /oa ‘fs

and from the second and fourth that Ps = Prv Putfp Tt follows that



b? is a period of A.

If not all pu;z0 (mod &) nor all V; 50 (mod 2) then both
H;+2V; =0 (mod &) and M:+V; 30 (mod 2) do not hold. Therefore
Pt “ftb i Pst Pl =Pi*Pe i s el Po * At levlth
and either p,+ f, = Fatly S f1? fy = fo+ /o or else
kg Ty PPe TPhFEPBTPtN . In the first case b°
is a period of A by the preceding result. In the second case again

¥
each sum of four elements is (‘;2 fi/ and therefore pfi+p, = f, *Pp

and p.* fr =fitfe . This leads %o g/, f </, 37/, f<F; and thus

Ac is a period of A.

This completes the proof.

THEOREM 4.9 I G is a group of type [p, 3, j} where p 1is &

prime, then G is good.

Proof. By Jemma 3.1, it may be assumed that p 1is greater then
three. let AB = G. If A has three elements, then, by Terma 3.1,
A or B is periodic. It may be assumed that 4 has p elements.
Then B has ¢ elements. let a, b and ¢ of orders p, 3 and 3
respectively be independent generators of C. let ¢ and W e

)r:imigive roots of unity of orders p and 3 respectively. Ilet
q
fg f- A o B ¥
Z"" A ‘ and 3 2 o b . Then from
i -
M
AB = G it follows that (Z,’ P )/21’ *2 e and so0 that F (x;
o §
o
divides 2: x as it cannot divide Z A « 'Therefore
LY ot ¥
‘ i hu; + 4 V;
the nuwbers % are U, 1, ee., p~1. Similarly Z w =0,

e §4 48, 2 5 s i, Kedne

Therefore these numbers /ﬁﬂ;*’gv" are 0, C, G, 1, 1, 1, 2, 2, 2{med.
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let (m, n) occur x, times among the pairs (M;,¥Y: ). Then

m, n
the f'oliowing equations are obtained: 2 Wq’” =3 wnere for each pair
k and 2 the summation is taken over those numbers m and n such
that km + In 3 t (mod 3) for t = (G, 1, 2. There are thus
twenty-f'our equations. Any given coefficlent =, ,a, occurs 8 times,
by choosing k and } and determining t. If »m, a occurs in the
same equalion as n.n, » then A(m-m) + Ll -m) =op (mod 3).
If m, # m,, /& may be chosen as 1 or 2, and k solved for.
If n, ¥ n, , k may be chosen as ! or 2 and 4 solved for. ‘hus
if (m,, n, ) is not the same as (m,, n, ), P, n, OCCUS twice in
the same eqyuation as ~, , . Adding all equations involving My m,
and subtracting 2 2 Ay = 1 g , where the summation is taken
over all m and n, it follows that 6%, =24 -1¥=6 . Therefore
2 =! . 'The pairs (M;,V;) are (0, C) (¢, 1) (¢, 2, (1, Q)
(1:; 1) (%, 20 (2, v} (2:1) (2 2}

From AB = G it follow;a also that

+ - 3 '}[.'-f' «Zb’c 1 Al ,&u-«v-,et/;

20 p o Z fr w :

Lak ¢ =4

= 0.

Suppose that the left hand factor is zero for two independent pairs

QB,) ¢ '(Ae,, 42,_) modulo (3,3), i.e. two pairs such that

o, Aen A, 1 bsnh)z o) (vod 3,3) implies (1, 1) 2 @0) (ot (13D,
then it follows that A, Bot Z,r; = o0 (mod 3) and that A ﬁ:*jn)'e o0
(mod 3) for i = U, 1, ees, p=1. Then (A A . | A-H‘-‘ *

(AL -ALb)g. = o (woa3) aa AL -AL § (w013,

Therefore y, = © (mod 3) for mll i and hence § = o (mod 3; for

all 1. It follows that a is a period of A. By choosing new

generators, if necessary, it may therefore be assumed that
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7 2 'fagl/,-
2 ,'\"w""‘ = o for all P $o . Consider those pairs (k, £ )
/
L=l £
with £ = 1. let Pma = ‘,_%::” yfn . Then the following

= L i a5 -
equations are obtained : 4.‘{'_‘—:‘ st/ f',;)"' $ == ¥ =
constant, where o § 4 < 2,0 ¢t <3 . written out in full these
are

PO,!‘ *PIIO.* PZ,G o Po)‘-*PI"* Pz/ = f’l‘*F‘f“*Fz,z

- fo..o o f‘ll m P‘:’ o ’0,1 ¢ P"‘ * P"r" = P‘l‘ e pf,l *."I.
= = *
= Fo,c T P'” + Pz,z ypo,( "'-/0," +P1", /Dv,z P =

Using each column it is seen that

X 3
Fl,o e f;,a ® fl-’ i fz,r = fa,: e f’z.: o %Z ID .
CoM Fo
fl,l r P‘a' = P‘I. o F"lz = Flrl. “-P;p = é ‘Z PA‘,
! M o ‘.-
f;,z. + P:,,: = F:,/ o Pz,a = P‘f‘ *f"‘ - {3’ Z f :

From these ii is clear that Boe Py P ar§"’ #P“o - .ngfl’ﬂ
and going back to the first row of equations that Poso < Poi ® Po,z
But it has becn shown that the pairs (m,n) occur once each as
(;(,-,v;) » Therefore ¢ is a period of B.

This completes the proof.

THEOREM 4.10 If G is a group of type {p, 4, 2, 2} where »p

and q are distinct cdd primes., then C is good.

Proof'. let a, b, ¢ and d be independent generators of G of
orders p, q, 2 snd 2 respectively. Let p and ¢ be primitive
roots of unity of orders p and q respectively. Tet AE = G.

Iff B has two elements then, by Temma 3.1, A or B is

periodic.



let B nave four elemsnta. Then / has py clecents., Fy
Terma 4.2, 1t moy be asswned that no two elements of U have a comen

sguare. .e -
. Al p M vy .
E@,& & A AP I

ihen, ifvou: 4ib =G, {1t {oilows Ulhat ( gﬂ )(Z p ) =

(el
« ¢
M : M =
(2:5)(ZK‘)-(ZF e FOrE pre”)
¥ince p dees not ivide f'our i? /’ * D is imocassible and since
P 2
q does not livide f{our Z{”‘-a is also imseasible. Using

e ¥4

Theorem 2 of 2, p.3/4) anid substituting x =1 it is seen that

Al
Z P “f“"‘, implies tiat & = ”‘/‘f ng , vhere m2Z 0 and

cee

ny U. But since p and q are odd primes this is not noseible.

Therefore /‘ %Q
£ " ) ;
g/’ o .Z ot Z,o“*f"‘ = 0,

e
From gf =0  §{ follows that the nwbers £ are C, 1 a...

&) B
p~l, eaon occurring q times From % P ‘o ;"-' 0 it follows
c=r

th&tZ‘F‘:“Z‘ﬂ":...;z 0’”.

t‘;d"so L “‘GI ‘.JJ" -}-l

But f 0';"20‘ ‘herefore Z o’ £@ for k = U, T, eeey
el g f

p=1 From above there are 3 tems in each sum. Tt foliows that
the nunbers g/ in each sum sre €, 1, ..e, g-1. Therefore the
pairs («;, pc) are  (00), (e1), .o Lo q-1) (o), - - ,((f-'),(f"))-
Thicy are assused to be in this orler.

Also from AB = G 1t follows that
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/‘z r = ; & ' L

e rgw - (5 iz e )=(Zc—u S0

(=l Ced bl co! .
Slnce two does noil divide pq it follows that ZC") ﬁc"’) =

cet c

V;+ 8
- Z (=) = 0. Therefore the numbers V.., +ihe numbers &
and the numbers V; + 8 (od 2) are G, U, 1. 1. Let (k, <& )

oceur ""?/, times among the pairs (U.‘) o)
/

Then the following eguations hold.

~ P = -
0,0 T oy T oML T A
pe-4 I 2
/)66" - 0,1
= 2
Vo,o © NIIO
o+~ X = Z .
mn,a L

Adding the last three of these and subtracting twice the first it
follows that 2 ~, =2 . Therefore ~| >/ and hence </, 6 =
/4 14

-,-_/,a"csn’/ '

“Ot

.  Therefore the pairs (V¢, 8:) are (U,0)
(C,1) (1,0) and (1,1). 'They are assumed to be in this order.

A W,
If Z P o, c—,) ‘«0, where 4 is V. ,68: or V;*+9

2
e

Al H; Ao “t'
then Z AR Z p . There are two terms in each

yugz0 CoWe L i AL u: 3
sum. It follows that 7';(”) }Z < x - Z o =~ ' . Therefore
Lyt .
_ . -
the coeff'icients of =~ , #, .. -, % are equal. 1If not all the

exponents arise then each coeff'icient is zero and so ,t&/ swn s

< Al g < A M
L P and <» p o 4N identical. Tiis is the case
el ‘.:“).,'31 :

if p> 3 If p=3 then q) 3 and the argwient can be repeated
interctanging p and q and p and & . It follows that B has

-~

two elementz with equal exponents A; and M¢ and so common squares.
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e

.} o, F‘: a
Therefore it may be assumed that Z. 14 o &1 =0

M R .. ol
> /’Afﬁ'@u =0 ; Z /’“‘f'e‘(-u T ap

L7
Consider the following relaticnshins

(\L VI.. ¢ § o- 4 Al v, +08:
(1) zé, prev =0 5(2) 3 pleniao; (3) Z; pleo o,
B ¢ s/ L=

M v 5 M 8 € M yirbi
(ll-) i & 1) 0 (5) S V)] =0 ; (6)2 & ‘(-U ’ =0.

red (st s

A 1 y » 4
(1) implies "‘P" . F“+fa“ 3 (2) implies p“+p ‘s,o"+/:"“3

A/ p) #, M Ms M
(3) implies p ffa" epbff P, (4) dmplies & +0 =8 40 ¢,

M #3 s My # My Hs ¥
(5) dimplies & +6 =0 +0  ; (6) implies & +7 =¥ +7 .

(1) and (2) dmply A =4 and A =4, ; (1) and (3) imply A=d and ), =4,
(2} and (3) imply A=4; and A;>JA, ; (4) and (5) imply 4, <p, and m, =A:
(4, and (6) imply M, =k and p.-# ; (5) and (6) imply M.=p: and s =K,

Since no two elements of B have a cormon square no two pairs (:\:,M'c )
are equal. Certainly not all six relationships can hold. 8ince »p
and q cculd be interchanged and any two of ¢, 4 and c¢d icrm an
independent set of generators, it may be assumed, without loss of
generality, that (1) does not hold. Furthermore, if (2) and (3) hold
true then both {5} and (6) do not hold. It may be assumed that either

(2) does not hold or (5) does not hold. Thus there ar: iwo cases to

consider.
(3) not (1) and not (2.
ﬁe .lb’ 6'&'
Since (1) and (2) do mot hold it follows that S, P (9 =

ﬁ‘{ " ;\i . . l_" M oy > f(
e

-
( =l



Ay 8
Therefore, by a fawiliar argument, Z F B 24 P C-f) =0,
")p‘.rg& (uﬁ. ‘
for k = 0O, 1, sess g=1. There are p terms in each sum.

Therefore the numbers d: in each sum are 0, 1, ..., p=1 and all
the numbers Y, and all the numbers 8; in each sum are equal.

Therefore a is a periced of A.

(ii) not {1) and not (5).

4e .
Since (5) does not hold it follows that 2, & (-4 = O,

o LI g ot ) £ ¢
As above Z ; f U =@ and from P g v =0 it
;_; P‘- te¢

Fe &
follows that ; Z B S g for k = 0, 1 5 veey q‘1 and

L,'gk‘- =
4= 0, 1, sssy p=t. Frem the assumption about the orderin; of® the

vairs (%, g.) these resulis may be expressed as

i * ( G = . - j s
- g+ (O;_WH for A=, ..., 4-1,1. and
= g = & = J' . . . ’l
Sq+t 5¢+42 i Ss; 1) for J= 9,1, P /( ‘
$a p
A ¥+ 9¢ |
Put z P 5 (=) =0 . It follows that A
:5; l v J
. ¢ J,‘,‘ ‘
gov 9 .. b & d )

E - ("") Z & CU . Y ST
=t C= g+
lNow the nuwbers Pf; in each sum are 0O, 1, «ee, q-1. Therefore,

subtracting any term from the first and using the fact that F,,(x)‘

divides the co:responding polynomial obtained by replecing § by «x,

AL P Trtdy Fio e
it follows that (-+ =k i Y . (=) - ) BT REr
f'or r = 2, esey ¢ 8 = 1, eseey p-1. It nay be assumed that
xr e & =0 . Therefore, from the above Fsqes * u"’, =o + 'Thus
5. 4
s"l*‘ / )d’f be g . .
|- (=1) 2 = Y . Each side is either

zero or 2. If, f'or stcme s, each side is non-zero, then Ye *° for
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@1l r. ‘Therefore ). =¢ for all i and a is a period of A.
If, for all s, each side is zero then 951+, =2 for all s and
thercfore 4§ =0 for all 4. In this case b 1is a period of A.

et A have p elements then B has 4q elements.

P . ye
tot & =2 Lo A 2B e B o S o W oe ,,10"

Y Lef

i §
Al Ay L o
From 4B = G the following relationsiips hold: (Z P X 2? o =
b.=f ‘.ZI
As before P =0 and the numbers «{ are O, 1, ..., p-1.
+ ¢ s/ “f
. “q . M
( D, & F)/ 2 J”‘): o . Asbefors 2 & =0 and the
e & ¢!
&4 (=
&2 v, 4 6/
is seen, since 2 does not divide p, that 2, J ' = 5. (U -
" =7 e
gf Ve +8¢ g
s £y Y =0 , [From these it follows, as above, that the pairs

P
IU/;)&‘:) ars (U’U)v (O~1)y (1so) and (1,1), each occurring, Q
times.

Considexr the following relationsiipa.
é' di B .
(i 2ip & W B
caf
£

(7, implies that Fp(x) } Z 5"/‘ and therefore that aill

¢ =

nurbers g: in this sum are equal and so ejual to zero.

@ 5 pHen w0

¢ =

(8) implies thaet all )y, are zero.
ﬁ 4." 8¢ '
(9) 2 P =25

-

L2

(9) implies that all §; are zerc.



{4
(O

# g
. o oT % :
(o) 3 pTrew -
cel
(1¢) implies that all ;7 9, are zero modulo 2.

oo
ary 2 pelevT =0

¢ ®d

(11, implies that all 8. and all ¥ are zero.
/ﬁ‘ d. F- s
T ¢ - . '
ey & f 7 Ew il

Cat

(12) implies that all f° and all 8. are zero.
(‘_ + Jl.

oy f; - -
(13) 2 p o U o

¢ =i

(13) implies that all g; are zero and that all y; * &/ are

zero modulo 2.

If f: =¥: =4d;20, foraell i, then a is 2 period of A.
If g =rc=0 forall i but not all 9. are zero then (9), (1C),

(12) and (13} cannot hold. Therefore from 4B = G it follows that

a8 g A, v 48; »
2 PEn = Pl -
ey

“y
Al M 0 Mo omp V.48
o Z"OJ‘(-I) = E_”)‘o’ L(-U° =0
L‘

isd Y

a; 9 M, w;#¥;
ence E P QD = Z F v =0for k=0, 1, see, g-l.
T < & M =

But there are four terms in each of these sums. Sinece Fz(x) divides

a; 8 7 Ad vit®;
Z | and /., F it follows easily that the

t','diiﬁl ‘;/. Wy =
numbers B; in the first sum are G, O, 1, 1, with the coefficient of

34 equal to the coefficient of x and the numbers V; * $s in the
second sum are O, U, 1, 1 {mod 2}, with the corresponding coeff'icients

B g
al=o equal. WNow, since (., =° it follows that . Fg” T $# @,
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«q
1 o v, S Ve
Therefore Z & (1) =0. But 4L, U =0 | Tt follows that

(.‘I Cat

Z 1) ) =P

$3pte ‘ﬁ and so, since there are four terms, that the numbers
Pl al”

V; in this sum are 0, G, 1, 1. Theref'ore, in cach sum with u;w&
the numbers V;,8; and the numbers v, +8; (mod 2) are O, G, 1, 1.

As before it follows that the corresponding pairs ( V;,8: ) are

, ‘ Ai
(0,0) (0,4) (1,0) and (i,1). Tet p - 2 ,
4.mn VMLV, 80) = (A, a)
Then from the sbove results it follows that there is only one term in

eachh sum and that, for each k, k = 0, 1, sss, g1,

.’-

P i Phe ™ Phaa* Py s % Lt 0™ Choi™ B

Therefore Pl &

o,0 'Pl,.,, i

d is a period of B.

and f»é,l,o = Pé,:,: = It follows that

If g-ed =0 for all i but not all y; are zero it can be
shown similerly that ¢ is a peried of B.

If B.=0 for all i but not all »p. nor all §i  are zero
then from not (8}, not (9), not (11) and not (12) it can be siown by
& similar argument to that used above that cd is a pericd of I.

If' not ell g, are zero then (73, (11), (12) end (13) cannot

hold. Therefore

&1 »{ ;
&1 . 5 My ve s A A; 0; Ao M V19
S s 3Tt B B
T T C=t e

Frorm the first two of these it follows that

Z .»b‘duy . j{;: fl\c & -0
I

C,Veno C V™

There are 2q terms in each sws. Therefore, acplying Theorem 2 of

(2, p.374) end substituting x =1 it follows that 29 =m ﬁ*" '



68

vhera m o0 and n2z2¢ ., Sinoe p2> 2, it follows that m = O
and n = 2. This fmplies, by Theorem 2 of (2, ».3/4,, as has been

AL .
previcusly shown, thut b is a period ef Z i o /é“‘ for
PN AL

k = 0. %, Therefore the numbers #:; in each sum are o, U, 1, 1,
o0y g=1, =1, and the nuwiers A, ure rl,' coccurring witi, 4 equal
to U 1, seey, Q=1 and A" occurring with &, equsl to O, 1, s,
g=1.

Similar results can also be shewn for 8 and for Vit &: .
iy given number A; rust ocour & muiticle of 3 times. let it be
lgq times wiere £ =1, 2, 3or 4. et oo ® i 85 and x,
be the nusber of times that the pairs (0,U), (0,1), (1,0 and (1,1
reepectively occur with this nwrber A; . Then from the sbove
g0 ¥ #o, is a maliiple of gq, ot 20 is a maltiiple

of g and Wy ;¥ %, is & multiple of q. From the eguations

“ = ,Z = .4 31
. Py B Lk i, /gf 5 e, T X, 'R Xo,o + ho > ¢

and a0 +~ .—.igi it iocllows that = ,Z,+1.+/£,~£4

o0 Iyt o0
2
Since X0 is an integer and < an odd prime, x ,, asusl be a
maltiple off q. Therefore x,, , X, and S ara muliiples of

Q. “ince it has been shown that each palr (Vi,0¢) oocours g tizes
al together these multiples must be ¢ or 1 ami if it is 1 this
acccunts for all such airs (V6 . Consider tie numbers pu,
occcurring with such a set of q eiemsnte, in which all A/ are ejual
and all cairs (V:,0:) are equal. Then since E  contains no element
toice the numbers 4&; nust be different end so must be (. 1, ..e, a-1,
Therefcre b 1is & period of ©.

The case in which /. has ¢ elements and T 4o oleronts la
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similar.
There remains the case in which A has 2n clements and B

has 2q elements. Jet

ap . o e J T
A N Z Id./@ ﬂ‘”’.ld s,_' M B .—.":;ZI o 7 4
o |

Then, as bef'ore, it follows from AB = C th:.t the numbers eo; are
U, U, 1, 1, «eee, p=1, p=1 and the nubers #; are 0, C, 1, 1, ...,
a=1, g=1. They are assumed to be in these orders.

From AB = G it follows that

% . o .
(14) I R B ™ s B,
¢ =t
= P M < M - .
or (15) 2 A .
i3t
% ot e ¥
(16) f{’ ¢ Fpu™ =@
¢t
A " . . .
Al K : =0
or (17) Z} P o U
L=
' 'y
B d; ¢ J‘.*' “_
(18) Z‘: p* o P e
{ = V. 6‘: e

. 2
s A “e - ‘
or (19) j B
(.1

At least iwo relationships derived from the same factor must hold.
Since p and q may be interchenged and any two of ¢, d and cd
generzte the subgroup of type {2,2} it may be a:sumed, without loss

of generality, that (14) and (16) hold

:V_L: & B K ; i _p W
; Pl P’(_.() “z 0. Therefore Fp(x) divides Z % &

[ X [

It follows that

: : < { Fi &
Z -3 p*c_‘) L i : Z P IK(-IJ Y 8. .. @ Z /& O e .
C ;20 $s dre ik 2



(G

pe ¥ ¢ Ko
There are two ierms in sach sum Z g o0 - 2 ' 4 # (v ey
ey =4 Ay =&
for all pairs k and A " CLk<<p, O § &< D 1herefore
¢ ¥ Fi L
F’?( x) divides 2 4 ﬂ x @ - Z g « Therefcre the
B CoRg "[ c'J'sL;=L
coefficient of x° and x are equal. If one coefiicient is missing

a sum of two o's is equal to another such sum and since q ) 2, as

has been previously shown the sums must be identical.
B' B & A

G +¢ -0 ® o g is impossible. Therefore x ° cannot

occur three times and x once or vice versa. If x ° ccours
s

. . »8" ‘z' fs’ f«
twice and x twice then either o + 5 x -8 - or

i ! (A
o A - F = o '~ * . But the first of tuese is again impossible.

/
frd

In the second case g,' = §' and g':=B,' or 8 '*f; mnd B, g’

These results may be suwmarised as follows. If in one pair

Z Kd be o T ihe numbers ); are both equal to © (or to 1

e

t.en in all pairs they are equal to O (or to 1) and the same two
numbers §; occur in each pair. If the numbers y,; in one pair are

O and 1 then in all pairs they are O and 1 and either all the g;

ocou ring with Y. -o are equel and all the . occurring with y. =y
are equal or clse the two 4, 1in each pair are equai.

¢

2
. S 5’;
Similar results follow from ﬁ p e =) € &=

[
Iff all &, =v¢ and a1l 4. =© then a is clearly a period of A.
If all Y, =° and the numbers 5; occur in pairs C, 1 then, if
the numbers f; occurring with §.- :c¢ are all equal and the numbaors
B. occurring with §-=/ are all equel a is a period of A, and
if the two g, in each pair arc equal then d is & neriod of A.

The case in which all 9, *°  and the y; occur in pairs O and 1 is
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similar. Tet the nurbers ¥; and the numnbers §; occur in pairs
O and 1. Then 1if the two g; 1in each pair are equal cd is &
period of A. If all g, with ¥y =¢ are equal, all 4 with

{ are equal, all £, with b =2  are equal and all g; with

ye
$, =/ are equal, then either all p; are equal and cd is a
period or else =0 ocours with the same J; and g, =/

occurs with the other §; in every pair so thali a is & period of A.

This completes the proof.

THEOREM 4.11 If ¢ is a group of type {p, 2, 2, 2, 2}, wiere

p is an odd prime, then G 1is good.

Procet'. let &, b, ¢, d and f be independent generatlors of G of
orders n, 2, 2, 2 and 2 respectively. let p be a primitive
root of unity of order p. Tet AB = G.

The cases to be considered are thuse in which A has . 2p,
4p and 8p elements.

If A has 8p elements then B has two elements. By Tema
3.1, A or B is periodic.

I A has 4p elements then B has four elements. By lemma

4.2 it may be assumed that no two elements of B have a comwon sgaare.

¢ =/

Tet * A: Y v 'R P
" di o ; . ;‘. €. _ . (} LA/ .4— ¢ J .,.
A :Zt',dr Ar ﬂ‘x/a’A" f‘ M—Jr ‘B - 2 s f
¢ =l
&

. A Bu. + 8V +m8: +n
Otm<2, 0Sfn<2 and k+ £ +m+ n> G, then I"Q(x) dividesq 5
&
Ay ; ¢ 0,; . ;
; ‘e Augn &VEx % A and it follows that the numbers
UM N¢gy U INS Z and K+ 4~ + W+ 0> U, Then Kol X) aarvides

> 0
; A ’ s 8 - b )
Z p ~m /&“’* wid e b 2 and it follows that the nunbers

i



A+ LV, tmO +2¢, are C, O. 1 and 1 modulo 2 end that the
coefficients of x° and x are equal. Therefore the powers of p

in each cosfficient sare identical. Tt follows that P has two
¢ JJ,-,)/lﬁc’*ﬁ)’c smitnec

elements with a common sgquare. Therefore [ = 0
L=
for all such sets k, A , my and n.
A
2 P ‘=0 is not possible since p does not divide four.
L =1 bﬂ

d;
Therefore Z f =0 and it follows that the numbers +«; are

L/

U, 1, eee, p=~t each occurring four times. The coeff'icients of
/L-; “7(' o f;‘- + 2 r; +m f; +n &;
f", - PRUTEEY in Z g & are eqgqual, and

P

hence equal to -4, =2, O, 2 or 4 for each set k, 2, mand n
Therefore, for {ixed k, & ,m and n, in each set of four in a
coefficient of Ip*; there are alwsys the same number of' exponents
congruent Lo U and congruent to 1 modulo 2. Jet the nwrber
congruent to C be ’ti_ﬁ,m,n . For any fixed o. , say o =%,
let the nurber of four-tuples cccurring among the coef'ficients

(B:, we, 8¢, , &; =4, equal to (0,0,0,0), (¢,0,0,1), (0,0,1,0),
(049,1,1), (0,4,0,0), (0,1,0,1), £0,4,4,08), 10,4.4,1), {1,0,0,0),
(150,0,9), 1.0,%5,0), (3,010,380, (95,1,8,0), (1, 1:0,1) and (4,1,1;%)

) —
be x 0,000 » % 0 0Dy B S _Je respectively. 'Then the

following equations hold.

- z
Z i ’I:sbz S,,f“ ,ﬁ,j,ﬂ,h 4
(S,,SHSJ,S,') ;,,‘5‘4. ,gﬂ,pm ijﬂs” Eo(m-dz)
S ! N -
2—0 W‘;}’D) S’) S’ - ‘J /
(S” Sx, S" 5“) ; “S. +* 253 fnsj*”" E/(*J.‘)’

These equations are shown to nave a unigque solution. Any

particular unknown v occurs 15 times by cnousing
SyoSaes S0 20
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k,}},m and n with k+/£+m+n>0. Ir -~

sm.' s"" SM’ sh?
is any other unknowvn then it occurs in the same eauation as

~ if* and only if

o Bt SJ;’ ' Sh,

3¢ S, 7 Sa) * A B0 % Bya) il Ay, = 53")+n [501/ =~ $4,2) 20 (moda).

At least one of the nwibers §, -5;,,! %) &, is non-zero. The
other three coefficients from k, £ , m and n may be chosen, with
non-zerc sum, in seven ways and this coefi'icient scvlved for

i 0 B e : a0 b o
uniquely. Therefore S § B and £ % j oth occur

L1 TR0 T3 g S/,u 2,12 73,30 %1

in seven equation$. Adding all egquations involving «

S 3.0 8,4

ne

and subtracting seven times e a5 s =4 from this, a
1T T3 %

definite value is obtained for & ~_ ¢ ¢ 5 and so for
S0 22,00 73,10 e,

i Therefore the equatlons have a unique sclution.

S:.I'S‘w' e S}H' S"'

Therefore for each «, o & & < p , the same four &4-tuples ( A7, 9.,

£, ) ocecur with A =« . It follows that a 1is a period of A.

et A have 2p eolements. Then B has 8 elements. Tet

“/\" . ’ ) “ v p. ¢
L o e &2 5.' € ¢ % L C ¢‘,
/:‘ 2 -,“ <4 /&ﬂ,(/ A f and 3 * Z o~ ’5 <~ 'd % >
C=1
i
g ~
Then .. ¢ ~ 0 and so the numbers & are 0,0,1,1, ..., p=1,
Y_)-1o . ,
%/,‘,‘ , ok ‘ £5 4o ’gd'.,' M-J‘- +n G
I Zi P & =0 , where U ¢t k <2,

0 S£< 2, Osm<2, 0Ssn< 2 and k + j+m+n> O then the

-1
coefficients of ,ob,,v,. i gl + are all equal. Theref'orz each
coefficient is -2, 0, or 2 and so the pair of numbers /gf)t *'2[; LIEIR

for d, = a are becth 0O, both 1,0r O and 1 for all « If this

; { \ £ Y x
haovens for four sets (A, ﬁ,, M,y A ), eee ( ' v+ My, ) independent



(-

modulo (2,2,2,2) then it oasily verified that the pairs f; , the
pairs a o the pairs § ; @and the pairs €; are the same pair for
all <« in each case. If all these are O, U or all are 1, 1 +ihen
A contains the same element twice, which is impossible. let
E o voes B 1¢rs$4 be the generators corresponding to the
pairs which are O, 1. Then E,-8, -+ 8, is a period of A.
Therefore 1t may be assumed that the above result dces not Liold
for four independent sets (k, & , m, n). If (k,, £: , m., n;, j
i = 1, 2, 3, 4 are an independent set modulo (2,2,2,2) tihen the
four elements & Agl",,} mi,vf " generate the subgroup of type

o lﬂ‘.-fl[_-rmf;f ne;
P v Po. For if t.is is true

& L .,
A g f"‘

[2,2,2,2}. By renaming generators if necessary, it may be arsumed
zf‘
that for all k = 1

*
R |

for k, =1 then the corresponding generator

may be renamed b, and /5,, <, /J,é is a set of generators. If, with

8 ai hopir g embiene
ihis new set of generators, Foo(-n ‘ = o for

c= }
v

some ,(f, = 1 then setting <, * ya

Ly , W , M
<~ d f p 'éu “y s ’d’: f
is a new set of generators. If necessary d, and f,  are

constructed in the same way. DBut by the above assumption

2}; o kgt i Imds#NE;
2,7 =0 cannot be zero for the r'our sets

i 2

corresronding to b, , ¢, , 4, and 1, as these are independent.

Thus, by renaming generators, if necessary, it may be assumed that

g i M rR v EmE o rn g R )
> p e co foran L, moamdn, 0 b

g
g 7%
Then sz(x) divides 2 3 , where © § O <if una

v et

g

.

n

A; (mod p) end & 3 M, ¥ A Vit m 2. +129. (mod 2). Therefore



by Theorem 2 of (2, p 374)

£
St 2 e 2 e,

-1
L=t | o

where f‘p(x) and f?(x) have non-negative integrel ccefficients.
Substituting x =1 it follows that 8 = 2 ff,(f) + %—f,(l) i It

p > 3 then it follows that {%(’)-'- ¢ and f,,(‘) 0 ., If p=3 then

— =e 3 - \ *‘
fp(1) = 4 and f2(1) =0 or i‘p(‘l} ~ 1 and f2(1/ = 2.

Tet » be greater than three. ‘ihen f2(x) = 0 and

2 ﬂ, s “;
’”’A ~4 ._.,,,,"‘H is & factor of 2 ool . Since p is odd
= s

it follows that half the numbers 47 ere oid and half are even.
Therefore the numbers U, + LV rmb tn ¢.: are 0,0,0,0,1,3,1,1
(modulo 2). Furthenmore these split into pairs O and 1 such that
the two corresponding 6 are equal modulo p, i.e. such that the twe
corresponding A, are equal. Thus A; occur in sets of two equal
elements, say ztA for A= A and ihe corresponding

“u; + Ar;+mo; +n¢. ('_rcn‘l-) are U and 1 each ocourring ’t,(
times. Let the number of sets (#:, V., 9., f‘- ) such that

Mo=p, VoV, 00= ®,4.=¢ ocourring with de= A be . 0,4 *
Then from ihe different values of . » m and n the following

equetions are obtainedi:- Z 2 « X X ., where for
”l V/ 9) P

each f , i, n and t the sumration is taken over those MK v, B0

and d such that M + Lvrme +ng = T (imod 2) where

t =0o0or1. Let be any of the unknowns. Then it occurs
Mlvl o)p

in eight equations obtained by choosing L y m and n arvitrarily.
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can clearly never occur in the same equaticn as ~
w;ﬂ»l,\’,bﬁ ly l 2 "J“/ol¢

i =,
#iv

if and only if (m-p')+ L(v-v)+ m(B6-0')4n|gd-¢Y =0 (mod 2).

XL is any other unknown then it occurs in the same squation
7 7/

“ome number from v-v',e- 8', ¢-¢’ is not congruent to O (mod 2}.
Thervefore the other two numbers from & , Mm and n may be picked
arbitrarily and the remaining number found uniquely from the equation.
Thus this unknown occurs in the same equation as x4 v,p, ¢ four

times. Adding all equations involving vy, g,y and subtracting

four times Z 8, P : ”‘t,; it follows that
- - (A= ®
‘f Mﬂ,l’/9;¢ ik /)0“+/)V,8,‘ ol 8‘&'{ #’é A)
Ther«fore /"F v, ® ¢ N s v, 8, ¢ « It follows that b is a
Y ’ 2 ’

period of B.

If p 1is equal to three but the nuwbers ;{,_4-/@".;‘*":9(*‘% arc
0,U,0y05% 1,1,1 (modulo 2) for a1l £ , m and n then the proof
goes through as above. If for some £ . m and n %/& () =1 and

f ;
’b' i 0) =1 then
g

« v, T
Z ot om ) e e (1 Tt (o

T
+ % 3)

.0 — - .
waere O eT, <3 and © & Th & 2, 8 73<2. TFurthermore if

; ¢ 3 Ta

] 5. . 4 ‘
Ty then x b P irne and (4 s ¥ N oo ) wilat1)( 02 sat)
< ¢ T
Thus S " 3 {2 W+ tx"+ e )
L

Bl
The result then follows as before. It may therefore be assumed that

. 3 ¥ ,
T, =Ty . fThen from (x40 = ' there is one odd and one even

P
’) there are six odl or

T
exponent and from (/+ " 24
six even exvonents. The numbers M; + £Vt i+n{ (nds) in this case

are 0,0,0,0,0;,0,0,1 or 0,1,%,1,1,1,1,1. Consider such sets,
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arranged in some order, pcssibly different from that showvn, and alded
1o them in pairs, modulo 2, another set from these or from
UyUy0,0,1.1,1,1 arranged in any order. It ic easily verified that
four U's and four 1's cannot arise in the sum. /{ U's and a
plus 7 ('s anda 1 gives 6 o0 's and 2 1's or &8 CQ's;

7 O's anda 1 plus 4 C's and 4 1's gives 3 U's and 5 1's
or 5 0O's and 3 1's; ete. Therefore if ;¢ Lv. +m B; ¢n, ¢,

are [ CO's anda 1 or 7 1's anda O it {ollows that

g P .
2: Bty B sy Qaen, B & i vty g ¥y 9 TR
(=)
Csi

7o . Therefore
(3 » ; T B .
> 9 ViYpr Lty +nem)d - emin) &
. P \ \ d. . { ) [
for all (L., m, ™) F#(£4.,.M,0, LL“)
i = &
¢ = é - L
v 48 ¢-Ur; + m z).- r¥Nn €
g:+p- ° (mod 2). 'Therefore 2, v = 0
P ¥}
forall ¢4 ., m and n ,0 & £<2, @8 ML, g5 ¢ ¢y and

A +m+n > 0. Tt follows that each set of numbers .4y, +md;#+né:
is three 0O's and three 1's. Bul if ). is three 0O's and three
1'e and d’: is three U's and three 1's then p.+ L clearly
cannot be three C's and three 1's modulo 2. Thus the case p = 3
is also covered.

Theire romains the case in which A has p elements and B

heas sixteen elemsnts. let

(6
, oMz v: .8 .
) - A 5 4 . y S -3 ‘ v . Y /s
A = . ,‘,“"l' .-.‘_.I'. d‘ o [ [ M ‘P - 2—1,“_ /l’ & l Z{
‘:' v2! g
¢ _;41 b
Then, from AB =G, it follows that o p =0 and so that the
(> /b

‘!ﬂ" IS L/.' -~ 9" f’l’i

numbers «; are G, 1, «¢., p=1. Similarly Z(") =7

L
Py

for a1l k, ~ , m and n such that 6% he2,08 £42,08m <2, 080

and ,{’,« Lsymen >0 It follows that the corresponding numbers
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/&“‘:+,3,/,+,¢¢9‘- -rn’f‘- are sight O's and eight 1's (wodulo 2).

TLet the four-tuple (M,V,8,¢) ocour times among

“a‘ﬁ"'

(Me,v::8;,4) - Then the egquations S x

= ,,,V’,’Psé’ , where for each

k, A y m, n and t the summat on is taken over those (M, 7, 0,¢)

such that Aus Lveme +ng z U(md2) ogtcr, follow from above.

Any fixed unknown occurs fifteen times, choosing k, £ ,

“':’gﬂﬁf‘
m and n arbitrarily with k + L +m+n ¥ Ua Any different

unknowm
i (] Y
L /3;¢‘ "/y} ’;4’

and only if A (w'-p' )+ L(v'-v") &m (0'-0")sa (¢ g%z 0 (mod 2).

oceurs in the same equation as 5 4t

As before this can havpen in seven ways with k + £ + m + n > O.

Adding all the equations involving ‘oﬂ’v'a , ., and subtracting scven
> Sl L
=lb = |S.¥~716=8
times 2 /x'u, o { it follows that s M”,lv,),:', {
Therefore # , , ,. =i . Thus the four-tusles (#:;,v:,0.%) are
#0000

(U,0,0,0), (0,0,0,1), (0,0,1.0), vee, (1.1,1,1). They ars assumed to

be in this order.

4 @ Kp+ Ly, em8iene;

I Z P ey = 0 then from Fu(x)
Y
*" Wi 1" +-/£;:_ +m¢f‘- tng;
divides Z % (=) it follows that all the

Y
numbers jﬁ. “lr;“""{i"'ﬁ €, are equal, and so equal to zero, modulo
24 If this happens for f'our indenendent sets (-l,, Lm0, s ot 1&, /a; ™2, )
modulo (2,2,2,2) then it follows, as before, that g =), = d; = €:=0.
In this case a 1is a pericd of 4.

As in the previous section, by renaming generators if necessary,

2 A ﬂ;*lV:+m0;+"¢£
it may be assumed that [/, p -0 =D for all /5,

P

m and n, O $ .Z<l,oém<zla$n<z . But it is known that the

numbers m,,ﬁ V. +mB:+n¢. ere eight O's and eight 1's. Therefore



79
in each case one sum of eight powers of f is equal o
another sur. of elght powers OF p It is emsily seen
thet this can only be the case if the sunris ere ident-
jcal. Writing p“:f; the followins ecuetions hold :-
By mim) = (01980 e e pyt o fe Pyt 07 Py = et Bt Pt fs? tut Bt o = 5 1

(L, mr)= (10,); p,+pytls Tt Prot P *Puths ™ Pt Pe /o ¥ Py Hhy 1 h 47,4, = “2 ;.
(B, mony= L0 LAl 4Bt 1 R ot BT N B fo 40t o #h hy Ry A 2
L) = (ot ty ¢l et u Bt 2BHR e py Hy# Rt hrth 3.
L, mny= (hoR)s faf e ftfuthiyt fatbetBe ™ I £ 10t bt Py # Py ot P 2l =52 i
L, myn) = oo ®0 08t ot (ot ot P Pat iy B RGPt ot f th RS2 e

((Z, ’""‘) o U' "")"f’-*f**f"f’x *l’" +Pn "'Pu "'/?b "fr*'fv*f’r'& *fﬁ‘ */"..fﬁ:*ﬁs :{Sﬁ‘.
Lom) GOS0 Lot Bt hlatlat f3t hou = BFHGHEARY (G ep, #he = 4 8p:

Clearly Ps end fi,, cennot occur in the gane sun as the
corregsyonding four-tuples huve the sunme (v, 6. ¢) but
different g « 1T p, is &ny other unknovwn then p und

fe occur iu vhe seme sun if wnd only ir the correspouding
rour=-cuples (#..6,8), (u,,v.,a,,g) are such that M+ AvitmB, ¢n é,
gy.+ﬂqm 9‘“&(“;&) oihis haprens for Iour choices of,ﬂ,

. end n. Thus &dding &)l suns involving fi»

swa re =4~2f’c end edding all suns involving By #
t#s(madf)
ot & 2 Po = # 2 P ;it follows that &f, =84, »

t ¢ 548/ mud®)
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and 80 thatl Ps = fu-y . iherefore b is a perlod of B.

ihls completss the proof.

COROTIARY If G 48 a grow of type {p, 2, 2, 2} or {v. 2, 2}
where p 1s an odd prime, then ( 1is good.
THLOREE 4.12 It G 1is a grous of type {pz, 2, 2, 2} , where

» is an odd prime, then C 1is good.

ryocf. Tet a, b, ¢ and d be indepvendent generators of O of
orders pz, 2, 2 and 2 respectively. let p be e +‘tk nrimitive
root of unity. Tet AB = G. The cssentislly <iiferent cases which
hava tG be considered are those in which A has 4 p2 elements,
2 p2 alements, p2 elemonts, Sy elemente and 4» elements.

Tet A have 4 92 alements. 1hen B lwe two ¢laments.
Therefore, by lemma 3.1, A or B is periodic.

Tet A have 2 p‘)2 elerments. Saen B  has four elements. [y

femma 4.2, it may be assumcd that no two elements of B Lave a

common square. let:

: : M, ve 8/
f»«ﬂﬂlc wcz ZA v A

L
Ther, from AB = G, it follows that (Z(j’f‘) l Z(f””) )
2[\" st
(Z P )(Z f ) » “inoce p does not divide 4 it follows

Y] At At é‘
that
{ (f 2'

=0 - Therefore F,Qv) , "F;,@n
c=1
2 ({+ 2. +~4 ) divides f e “ . Hence the nurbers &

-,
"

»
<.

are 0, O, 1, 1, sesy p)"‘i P —l. They are asaumed 10 be in this

order.



&1.
‘ﬂ#j"i +mO:

= 0 , vwhere -X#-i+m>o , then it is

b
1w 3, pen

(=t

easily seen that the numbers jﬂ;{- [V,; m B, are O, Q, 1, 1,
(modulo 2; and that the corresponding numbers A; are equal in

pairs. But if two A; in 5:'. 4-“£ are equal then B has two

cet

elements with a common sguare. Therefore it may be assumed that
2
2
A; /& -+,£ , 4 ™ Y
ﬁf(—l) A Ti ‘=0 for all k,/g,m,()sk X 2,
L=

g §4£€ 2 0§D ind k+ Baem > 0 Fiow tile i%
’ﬁ “i Api+Lyndi

follows that sz (x; divides ® [~t) . Hence
C =1
Y o pr-4
the coefficients of » , = §isvsy 8 are equal for
> = 0 ‘ 3 eewegy p-1 'lhcmi'om
arpsptaf
/‘F +£y‘+mg alraf 45;4—,5%9" Z% 4,‘.ity;*ﬂ[:
ZU = e o Sy G :
Pt eamisptaf

for 2 & 1, 2 cesy Y Kach of these is either -2, O or 2 and
thus the numbers /I pe rl‘r;*h:; in each sum, for fixed r, are
either tw¢ ('s, two 1's or O and 1. It is now shown that the
pairs (g,,x.,8;) 1in each sum are the same. For fixed r and =

let 2 dencte the number of ( ﬂ.u)’;;‘fi) occurring with

(2

(\; =T+ pS . Then the equations Z- Cand =
# lﬁfﬁr*u 3 b meds) Ainmtr

arise and the constant X does not deoend on s. iny fixed unknown
occurs seven limes with k + L sm> o0 and any other unknovm
occurs in the same equation with it three times. Thus a4ding all

equations involving one unknown and subtracting three times V2 €2

(7 2)
from it a solution, which must be the only solition to the equations

is obtained. It follows that a  is a period of A.
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2 : 4
let A have p° elements. Then B has eight elements.

z
¥ ; ; :
* ¢ . . A‘ “t vb 9‘:
Tet 4 = ﬁ’ad.}p,(/a’,/d& and JF = Z,«, D PV
v

F =y

= /.& ﬁ " ﬁl i
Then, from /B = G, it follows, as before, that Z(f ) e Xip o

; c=t & =
4 &
Thexrefore F;.. @) . 7‘;,, @) divides Z x/ and so the nu:'bers
=y

di 8¥6 0, 1, wess P1. Alno fom 2D =G 4% follews that

1 3
i‘ . 1“» 4—1«»'; +mPB;
L, & =0for05k<2,0$/z<2,0€m<2
. 2!
and k + /2 +m > C. As in the previous theorem it can be shown
that the three-tuples (s:,V;,8:) are (G,0,0), (0,0.1), (C,1,0),

eesy (1.1,1). They are assumed to be in this order.
1
é a: P }’73’.: rm 4 ,
1f p (- 2 0 then 7T .(z) divides
« ‘Therefore the coefficients of

~ , % 3 wg W are equal for r = O, 1, eeey p=1.

Fach term arises once only. fGhercfore the corresponding numbers
/é,“: ¢£(y“ Fmd are congruent to one another modulo 2. If{ tiia
happens for three linearly independent sets (,4@,, -('},,m,))(j.,l,, Mg ),
@ﬁ,,,ﬁ,,m,j modulo (2,2,2) then the correspondin; three-tuples
6:,7:87) are equal. In this case a° is a period of A.

Therefore it may be assumed that for no set of three indenendent

v "'ﬂ'ir s'
three-tuples is éde("))é}‘ M 6

L=/

. 48 before, by

renaming gencrators if necessary, it mey be assumed that

? A Ml-'-f-/bb’:fmﬁ.' ’ s < "
ZP =0 =0 forall 4 aend m, P § L<3,0eMeL.

M+ /ﬁ Viotm B
Thereforz the coefficients of gl such that

CE



{:j‘
U; + ,Zy‘. +m8; =2 0 (mod 2) and such that + LV 4m8; = (mod 2)

are cqual. Letting p"" = P, the following set of equaticns is

obtained.

n

(ywm) = (0,0 5 PTRA P FA, be *Ps* Fo *'/Dg‘fzfz-

bt Pt Py P, =2 )

(/glm) = [o,1) . Pr * Ps 4-’06.,!./)8
PJ""/’@*P;'*}% 3{'2/0{.

Qe,n) = C’a") J Pr "'P; + P’! » f}

(2/"‘) = (1) b ¥R theh chth T TS ‘/{Zf’é-

By inspection it is seen that each f; occurs four times, that

[ § . - . N ‘
goe,i 8 ¢ (mod 4), never occurs in the same sum

Pc where

as p, and that p. , where J# ¢ (mod 4) occurs twice in the same

equation as p; . Thus adding ell the sums m't'l\,_ :nd subtracting

-3
twice D ?; s it follows that z2p, -2 /’..,-'v{h’é ~2)3p. =0 . ‘iherefore
I
pe= Py » Where (2 ¢’ (mod 4). It follows that b is a neriod of
b.

let & have 8p elemsents. Then B has p elecments. Tet

* -
j M g B a S e

&=

g4 ;
Then 2 )J)(g *)) o and (Zé,o )[Zf )0,

bE g =
Therefore Fp(x) divides 2{ s or 2 P and %,@’)
f= 2

A
) .l' Ai
divides f > " or Z o . Since Fﬁ‘ () « Fi_C’J '/L

iz el

i1 follows that I-‘p(x} and Fp 2 (x; do not buth divide the same

g

poclyncmisal.



g ’&ﬂ"’ﬁfz simdy %’ jﬂ;a‘—lv‘: mb;
Also () (n ™ )('2 U ) =o for
T EE8
all k, £ , m where 0§ k<2, 0 <$4€ 2, 0§m<2 and
k+ & + m> 0. Since 2 does not divide p it follows that

_5: =V =0 . ‘YTherefore the numbers "éﬂ; ""él'; tmog,

L=

modulo 2, are ¢ and 1, each occurring 4p tiees. letting

Py o § be the number of times (£.X,9) occurs among the three-tuples
(8:,5::5) o then equations are obtained, similar to sets previously
obtained, and by the same methods it can be shown that s, . 5 = A
for all (§, y.§) . Thus the three-tuples (£..7:.4) are (0 0,0,),
(0,0,1), ..., (1,1,1) each ocecurring p times. It is assumed that
the first p are (0,0,0) the second p are (0 0,1}, ..., and

*

Supnose that Fp,_ (x) does not divide Z o . It

that the eighth p are (1,1 1).

4, ¢ =i i

Z Al ,ﬁ"‘; 3 L Vo +m 8 %’_' Al ,é/(‘-fﬁi’; rmB;
Lv [ (=4 =0  then Fp’ (x) divides I &9 ,
e -

|:=I
It follows that the numbers A{ are 8, S+P, ees, s+p2-p , Wwith all

Au; + £ V:+m0: 2 0 (mod 2), and thus that F o (x) divides

R 6 Apdnend:
_ 2 . It follows that, in this case, F eV o
t= i ¢t =i
4 T —
for all k, and m. let P; = P « ‘1hen, i'rom the
c:d-‘)ffl

information about the exponents A B t jd’; rmd; » the following

eguations hold: -
(j’ Lom) = (o) 5 p* fre Petb =it Pt fy *f 7 ’liEPa ,
l/ﬁ' Lw) = [ohe) & B *th TPl * Bt e thtlfs ~ £ 5P
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(xf},&m) =2 (L) 5 PprPut Py 2R P et Py ='-;f2 Py .

Using the four equations in wvhich k =1 it can be shown, as before,
that £ </fp fo2PesfssPrsfyr f¢ - Similarly using tie equation
in which £ =1 it follows that p,=fs,fi<les P <ps) i+ Py &nd
using the equations in which m =1 it follows that P 2fus P = Pes

Ps *fo, Pr=fp - From these it follows that p, - f o= Ps>p~f /%S5
Now each F)- is a sum of p powers of a primitive root of unity of
order p2. It is easily shown, by familiar methods, that two such
sums can be equal only if they are each zero or else if they consist

of identical powers. If all p; ore zero then sz (x}) divides

&

each corresponding volynomial and a° is a period of A. If soue
P; is not zero then all sets p, are identical and all the elements

of order two are periods of A.

8
” A; o
¢ v then F, o £ Pt Suppose that
f' 1" £ =t ﬂ i ®

. . ,L ¢ mD;
Z(’AC—:)‘M‘* "8 & =

. N Then, as previously stated, the
iz

numbers /‘; are 5, S+P, esey s+pz-p and the nurbers j“‘+j Vi+tm®;
are all congruent to ¢ modulo 2. If this occurs for three
independent sets ( 4&,, 4. m) 3 % ,3‘, 4,.m) and Z},, [zz M) modulo
(2,2,2) then all the numbers K; , all the numbers V; and all the
nunbers ©;, are congruent to 0 modulo 2. In this case a is a
period of B. Tt may be assumed that this does not occur for three
independent sets (k, i N m) and thercfore, by renaming gencrators.

if’ necessary, that it does not occur for k = 1. Thus



’/\« d: p"* l)’;inl; z
Z P ‘(— 1) =p for all /é and m, ¢ & #< 2 and
- ’41 .

3%
“;
USm <2 letting p, = Ry ¥ f it can again be shown that

ft‘f,.i‘-?f;"Pb;fs‘/‘i)/‘. :/3 » Jdther f-‘c and ft*b are
identical sune or e¢lse are gerov for t =1, 2, 5, 4 7 all pairs
o -
are zerc uhen F/‘;(m) 1’ ot and a isa a period of 4. If
Crgruhe

and are ldentical for t =1, 2, 3and § then b I8 a
Ps Pees

period of .. Suopoge, if possible that some f; 8are zero anl some
are non-zero. Since f;ﬁe) / -l it follows that thore are

;:I
eight «; congruent to (¢, to 1, ..., and te p-1 modulo p. I
ir
L
Z P o then &ll theso ¢; are congruent modulo p. HE
ceg-n e

P. <Py, thon the < in each sun are identical and so occur in

paira. It follows, 1 both cases arise, that 8 = Mp + N2 where
M2 U and N2 0 and in some cases M 2 G.  But this cannot haspen
if p > 3. J¥ p= 3, then E has three elements and Ly Tamma 3 1,

A or B 1is pericdie.

Tet A have 4» elements. Glien ' has 20 olemente. et
4'5' zﬁ’ ). . v .
oly S x; = a0y ¢ 2 8.
A - Zr @ l»g'p‘ﬂ A and 3 e e d :
i=t i

Then, i'voo: B = G, 1%t follows that

('5 ~“‘)(§,~*~‘) sl hmr o v omed (20,

-
|,"l e s/

o 0
Theref'ore r‘p( %)} dlvides Z 2 or 2 ,x‘k and }‘:p’ {x)
ol cE
“Hoo k",
divides Z - or Z ~ .  Since F%.(U = F/A(n s.f they
cet {2

cannot both divide the same polynomial
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z/' ¢ | ¢ i
let F_, (x)} Z ! and F/V(W)/ Z ~ ' o+ Then the
. c=l L=t

numbers A; are 5,55tk St P GS*R A S+ Ak where

Ce¢s, < p, OUgs,<p and s, = 5, is possible. ‘the numbers

«. are congruent modulo p to O, 1, seey p=1, each number

“

ik
occurring four times. If Z p t") #pe v it m B =0 then

K. +Av;+m 8;
. {x) divides f ™ -~ i"“‘ and the coefficlients of
ts
s 3 Surpl
“9' ,,ys"'/")_”, S*”ﬁ o and of .oo',’/_w’*’(:..,,/v‘?‘ﬁare

equal. If s, = s, the coefficients are sums of two powers of -1,
and the corresponding exponents must be both zero always, both 1
always or O and 1 always. If" this occurs for three independent
sets (4",, ,Z‘, m, ), [48., ’g.u”'xjg C*‘,, Z,; my) modulo (2,2,2) then. if
s, # 8, the three-tuples (#,,V;, $:) corresponding to A; < &,
Ap s 8+ /j»,. iy r\_- =S,~'l~"l« and corresponding to A, =58, A; = S */‘)"' ?
Are S //J'}« are equal. fhus a  is a periol of E. Ir s, = s,
and ihe pairs are always both U or both 1 then tne pairs
corresponding to A- : 5  are the same and B has two elements the
same, which is not nossible. If §, =5 and ihe pairs corresponding
to generators g, , «vsy, £,, where n=1, 2o0or 3 are O 1 then
g, -+« &, is a period of B. Thus if for three independent sets
(k, {f , m) the corresponding sur is zeroc, B is periodic.

As before, by renaming generators, if necessary, it may be

ﬁ’ o ﬂ "'/ZJ’ m by ,
assumed that 24 F &Y =0  for all .£ and m,
i

2 ¢ s v - ’# Ji
0 § < 2, 08§ m< 2. Then sz w)  divides 2 g where
(<
2
o§0’;<z/»){£;,¢. (mod p?), &

‘

pe+r Ly, +m & (mod 2).



Therefore by Theorem 2 of (2, p.374) it follows that

& l%t Z/"
(; ) -1 ) ) e | /)
> "-“r“f,(,"")*wja"”)
L s/

mﬁ"l /‘zﬁ"

where f‘n( x) and f‘2( x) have non-negative integral coefficients.

Now the numbers &, (mod p) and therefore the numbers & (mod p)
are congruent to O, 1, ..., p=1 each number occurring four times,

i.e. precisely four numbers 4&; are equal modulo p. Now any term in

2
1’.,( x, provides two exponents occurring in the product {_w__'_ f;) { %(,,J
£ > ﬁb

o |

congruent modulo p2 and so congruent modulo p. Any term in I‘Z(x;

: »
provides p exponents in the oroduct *—' ; () congruent
,‘v}ﬁ’/ s
modulo p. It follows that f'z(x) =0, since & = 2M + pN with
4

M2 0 and N2> O is not possible. Therefaore Z x
C=/

az;: .l

The degree of i'D(x) is clearly less than p2. It follows that the

numbers ¢. occur in pairs s and s+p2. The corresponding
numbers <. are equal and the corresponding numbers g+ < yo+md.
are O and 1. let any given number <, =&  occur 11:,_ times.
Then the nurbers A+ 4y;#m 3%  ocourring with it are O and 1
each oceurring T, times.

If =4 4.8 indicates the number of times the three-tuple

(B,r,d) occurs with %; 2d , a set of equations is derived, as

before, which siow that W ok = Pk Therefore b is a period
of A.
¢ ’ e i
( o~ T ¢
let F,‘, ) / Gd and 4 W/ Z Cadl . Then the
/ e e

2
numbers «; are S » §5 8, §, B% P, 8, + P, sae, 8, + P -~ D,
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s“ + pz - p where O ¢ s, < p and the numbers A, are congruent
2 a
- Al - ,2/_‘ rmé
mOle.lO P ‘LO 0, Q’ 1, 1’ es ey p"' ’ p—1 - If f f L"IJ ‘-‘(‘* —‘ [=4
st

where 0 S k<2, 0§ 2<2 0¢m<2 and k+.£ + m> O then,
since p numbers A; camnot be congruent rodulo v, it follows

thiat the numbers /‘; are actually equal in pairs and that the
exponents ,ﬂ’l; 4~jt/,- +mb; corresponding to any A, = A are U
and 1. If this occurs for three indevendent three~tuples (Ag,, 17/,; m, )
l/&, Z:.'":.) and (/&3, l_,,m,) modulo (2,2,2) then if the corresponding
generators are g , g  and g, it can easily be shown, as before,

that g, g, &, is a period of B.

If for nc three-tuple (k, £, m), 2, P &1 =0

L=/
g a; j,b *irr}'h‘}
then for every three-tunle (k, A , m), s f (=) =0

L

f s Apt s,
Therefore P’Dz (x) divides | x =) . It follows

L =14

$ S+ S

that the coefficients of ~  » — in this poulynomial
are equal. ‘There may be sums of one, two, Lhree or four nowers of
(-1) in each coefficient. But for given s therc will be the same
nunber for g, for s+p, +.., and for Svpz"pn Thus in cach
coefficient there must be the same number of exponents congruent to 0O
modulo 2 and the same number of exnonents congruent to 1, modulo 2.
let a2, ¢ be the number of three-tuples (f, ¥, 4 ocourring in the
three-tuples (/3:,1‘.-,5.') which correspond to o,y = S+ 7 7(’ . Then

the equations Z x ies X ‘) Lmts where the summation is

taken over those numbers /»,‘ " such that .Ip + /53'*»‘ d &¢

(mod 2). and the constant is independent of r, fpllow from the above



result. By showing that eny Nﬁ’r' , occurs seven times

W,

with k+4+ m>0 end that a y other unknowvn g o 5

occurs in the seme ecuaetion with 1t three times,it
follows,sas vefore, that the solution of these ecuations

is unicue.Thus there is the sume solution for every r

#

end so a is & period of A.

de Ayl virn's;
Let 2 pten b - o for some three-tuple
(et

(k,2',m') o ithen vhe nuubexs M heve been shown to be equal

y »tl/,'f‘o"
in peairs. 1f '/") (il "“‘ g =0 then Fp(Xx)

3 tei
o;
divides ‘/",)"“ +£“ i

e B "‘p ‘ |
X 43X ye0a,X ,“here r, = J(mod pj,ere ecual, Thus

end so the coefficients of

the corregponding exponents »Iy;+5t/;f~9¢ rast be both O,

or bothl ,or 0 end ! (modulo 2) for every je I1f

'/" e Vetmb
Z(f’“) M B dreent

L:l

rodulo (2,2,2) then,since A ere mctuelly ecual in pairs,

=0 for three independent three-tuples

gore pairs /fﬂ"* ["; tmb, corresponding to e T, nuct be
O and! . Then if the corresponding generators are g,,

sve,f, WhHEre 1< D & O, g eeeg, is period of B.
2

‘\. " [V f’*o-
12 5 5% ""‘-*z’ t=8'_, then ﬁq’“ en T =5
=k

Q=
also,since Ghe nuubers 4; wre ewual in pairs end vhe

corresponding nurbers gu'v—é" +m8: sye 0 and | rodulo 2.
< ~ N 4# «// rmg Zt R ’&M ,.,;V“fﬂo;
Therefore if 2"/ (v then i

/ L=t = s ) +0
%, /ﬁ e é! “/J "‘4 % o 4(;; & ,,/(..,.,-.‘a,
and ooz,¢ G =oand 2 p () & 0.
L‘l
iz"’ '}"(’.: /“\,,(/ll\, f-m.-(’.—

ow it mey be assumed that 2.(f 7 v =0

=t
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for not more than two lndependent chree-tuples (k, ,,f oL, ),

(k“é; sI2, ) LBy reneming generstors ,1f necessary, it
“ )L_d; 3‘. f-&r;*NJ..
mey be assumed that ("™ €9 -0 snd
) o 3 |
iﬂ o'L'- }.‘*Z)‘;f&&‘
A =0 for &ll étnd m where 0 ¢ 2,

=4

S € 2, 1t follows Lhat F# (%) end F,L(x) divide

e ﬂ; + ﬁx' *F‘-J\l g ol ﬁ;--r ,6";*‘#—“:
% (=1) o lherefore X (1) =

C‘:, ‘.',"‘

i

F+g (x).F"(x)OC(XJQ “Bllt F%—‘(x) °F/»(x) = fHA *%"&'(

S fﬁrl:?‘ .‘Jl.'

and the degree of 2 ~“%o” is less then p*.

ceh

Therefore C{(x) is just e constent C. Substituting X <!
ﬂa‘*'e‘.’ o f‘

it follows that & ¢U = p°Ce  But
-4p < co s 4p &nd _ZC—‘) is even.
P Y] et

Therefore =4 pC € 4 and C is even. Sing p is an odd

o i:" it."'.i“.o.

prime it fol:ows thet C = O, Therefore £ ~ ¢#

&
Thus any given number 4:-=d occurs aneven  number of
times. Lel « =4 occur 2%, times. Lhen the corresponding
nurbers g.r{ysmf:ure 0 end ! nodulo 2,each occurring t,
times. Letw,,  be the nunber of viues (5,0:9) occurs
sr.ong, the three-~tuples (/3;,3:-,{-) corregponding 0O oy =d

Ihen the following ecuations arise:

(N

-
=

f k. P : A +
(n.‘é) ") ™ (O: 22 0,2,0 » WO)‘J' * O o 2,41
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A%y ® Td .
1,040 * L e A
+* + %) 0,1 of TR - td’ !
Lomy =l
( ’ m) - < 0,90
F = T
e
o0, +~°;h’+ 150, s
28
= %
’ ; + + = “a
) = (10) et
/
= ta
e + x
/’”0,1,9 > mo;',’ * 16,0 10,1
=Ty
+ / ’
3 A + 1,01 T
/@ =u'l)‘) ) A% o0 Wo,n! R o
/ ""') -~ AL
(X
+ = ta
P el
e,
0,% 0,0 !

Ao v and b il do not occur in the same equation. Xy5 8
occurs four times in all. < ,where ( y'.¢" ) is not

Bloo,8
jdenticel with (), 4 ) occurs twice in the same equation as Ay s

Adding all equations involving .« and then subtracting twice

pord

Z g =2 C@ it follows that 2, o e 2

- —.Irtd-l-lt,“o
£

Ld

Therefore -2, ., ¢ Tt follows that b 1is a period of .

o
IJ')J -

This completes the proof.

THEOREM 4.13 If G dis a group of type {pj. 2y 2}, where p

is an odd prime, then C is good.

Proof'. let AB = G. et a, b and c of orders pj, 2 and 2
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resnectively generate G. Tet p be a primitive rcot of unity of

order p3 . Let

i = 5 «“4F8 0 ; 3= 3 " A e

It is not yet necessary ‘o specify the number of elements in A or

B ¥rom AB = G 1t follows that

? ; : Al e\
(zpct.'. )(ZPA.) =(Zfd~(—')p‘)(zf =0 )_

: A MY
= (2 p%en XZf ey =(Zp e Ty 5 p e s

It may be assumed that z f‘“ = O,

Suppose that two of' the other sums of complex numbers arising
from B are zerc. Since any two of b, ¢ and bc generate the
subgroup of type {2, 2} s 1t may be aasumed, without loss of
generality, that Z (’ MC"‘) e = z pacé'/) V;'o « Therefore

A¢ I'H AL "
F 3 (x) divides Z % ‘&-a) and Z x ) « Then if
LT drf-nf’

0 §«< pz the coeftficients of o , »~ g u g AP are

equal in each polynomial. If any coefficient is non-zerc then cach
z

exponent o, s+ AV, ., d U P must occur at least once.

) db
Then since Z £ =0 it follows that F A3 (0 /ZA’/

tierefore that if g occurs among the exponents <: so also does

r hC, fra £t ..., prh-vA’  where o ¢ g < A% . Tt follows
that A+ g # tf") fz occurs among the exponents in (Z/““';)( P "9
as (o # if-1J ’/‘z)f‘ﬂ, @* (A-2) //‘?)'6’9" ). suy He /’4-(4-:) £*)
that is p times. If there are any extra terms with A; = a+ £ 4”

or any terms for which the coefficient is zero then these exponents
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must occur an even number of times. Thus any exponent in

d; ’
(Z o )(Z/,oa‘) occurs M, /H' M 4 times. But it occurs four

N
times. Therefore m, = U and every coefficient in Z > (=1

and in Z ooA;(_-') i is zero. If an exponent A; =4 peccurs four
times then the corresponding pairs ( M:,¥; )} must be all different
and so must be (C, ©), (0, 1), (1, 0) and (1, 1). If an
exponent A, = & ocours twice then the corresponding numbers u;
are U and 1 and the corresponding numbers V; are (U and 1.
Tt follows that bc is a period of B.

The other cases to be considered are those in whicnh all the
polynomials derived from 4 are divisible by F g (x} and in which

precisely one polynomial derived from B is divisible by E‘p, (x).
i bl A a; X
Tet Fp3 (x) divide 2 ,2/’” (50" S Zm (-¥ " and

o, et §
Z ~ (_J:)ﬂ r. Suppose that the exponent « occurs k times

2
among, the exponents d; . Then =o ealso does the exponent «7+ ,ﬁ./.

d ot A’ L (fo-t) A
The coefficients of ~ , ~» g @ % g AW are equal in

each polynomiel. Therefore there are k  exponents f, -¢ , k,
exponents . o and k; exponents g+, congruent to C

2 " . g vl %‘
modulo 2, corresponding to o, = , for each J . let the

vair {(g,y ) occur o £ times among the pairs (#.,¥:;) ocourring

2 B ;
with d; = &« +£4° . Then the following equations arise:
mﬂ,o + /x/o” = »‘, £ L TR w"’ = s i
- j J Ve "4 -+ /Vl,l = 1 N j‘ ’
/Vo’a + ’”4,0 2 LYY
= /£ = ’j
x r 2, = 443 ) o, i - A, v
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Adding the equations involving 7, ¥ and subtraciing
A A, D =4 it is seen that there is a unique solution.

'0"'

Therefore the same pairs { 4.,Y; ) arise with «; = «+ LA?
. 2
for all # . It follows that a” 1is a period of A.

In the remaining case it may be assuned that F‘p; ( x divides

o; ¢ Be o : A .V
St 2 e, 2 » 2 L 2w e TN
As in the first case it can be shown that every coefficient jn

Z‘A’/M(-l) ndite is zero. It follows that each &, = A occurs
an cven nunber of times and so that the number of elements in B is
even. Jf B hes two elemenis then, by lLemma 3.1, A or B is
periodic. It' B has four elements then,by the above information
ebout the exponents A; , B has two elements with a common sguare
and 80 A or B 1is periodie. Using the first three volynomials

above and the notation of the previous paragraph it again follows that

= /k/; o~ Ry ]

‘& -
?
21
?

~ o x =
o * e i

I =4,  » ¥ < b

X g v is the number of times that (g, y) occurs with ,,1..“(*4',(2,
‘-(,

Since A contains no repeated element ¥ is ¢ or 1.

By
Therefore C Yk 4, 0§k § 2 and 0§k -k, § 2. Further
if any k; or k=~k; 1is 0O, both x's in this equation are O
and a solution is unique, and if any k; or k - k; is 2, both

%x's in this equation are 1 and a solution is unique. Under these
’1.
conditicns a° is a period of A. The only other possibility is that

/{' .-il - 4@- /£, = #-l‘ x| . Therefore k = 2. Therc are now

two sossible solutions: .« > X = A2 = v =90 and

0,0 et 2 o5 o



96.

L

o, R, FO, M s gl bc is a period of either of the pairs

of eiements of A arising in this way. Thus if all elements arise in

pairs of these kinds bec is a period of A. Tt may therefore be

assumed that certain pairs «; arise in this way and that other

elements arise, as above, in sets of p with a’ﬁz as period. Thus

there ere at least 3p elements In A. Therefore E cannot have

2p?, 4p° or 2p° elements. Therefore B has 2p or A4p elements.

If B Pas Lp elements then A has p2 elementa and from

(22 %) gm“‘) C b D s T et i Pl
=t

Y

it can be si.own, as in Thecorem 3.2, that no two numbers «; are equal.
This contradicts the case k = 2 used above. Therefore the only
possibility remaining is that A have 2p2 eiemenis and B 2p
elements. From the case k = 2, i.e. a number o, =4 arising
twice, it follows that A; cannot arise four times, as this would

give an exponent arising eight times in (2, md")(.z /»A‘) . Therefore

any exponent A; oceurs twice and the numbers wu;~ ¥ corresponding
to it are 0 and 1 (modulo 2). Thus the corresponding pair of
elements in B can be of one of the forms .« , & ,5;. A A RS ,[;4,,
: A A
/G-A/g'; @ /g-x/, @ <~ . If &« = arises twice then the elements in
A, to give no repeated element in AB, are easily verified to be
ol ol [ o
only of the form .« , 4 Aﬂ'»v of & X0 o Thus if every «; occurs
twice bce is & period of A. From
s 3
A - . 2 % -y 4 ‘
( M"ox MAZ) 54_(,.;,,‘,,.,,.4-//;’/ and[a/ "l)/
Y
2

e 7]

2
ol
and T;J ) } ﬁ "~ it follows that .F%L ) o F%w) divides

is/
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O“
E o~ and that the other of these iwo polynomials divides

y ! o It Fp’- (x) divides Z ~ ' then F%J @ Fpe) =

2 2 ) 2%2' )
= (H-,x,'ﬁ* g ¢m" %) divides f P . Since Z o~

tet g

3

has degree less than p it follows tiat the other factor has degree

less than p. Therefore this factor has non-negative coefficients
end the sum of its coefficients is two. If one coefficient is two
every number «; occurs twice and 4 is pericdic. If each
coefficient is one every nuwnber o; occurs once only and A is

periodic. From

1ll ) : A % ay “a;
(2(,")".L-IJF°)(_ (f’%‘) &2 ) o
c:‘ L =1
apt sh
Al M,
it follows that /J (vJ divides 2 £ (—l)/g or 2 o

C=1 s

& i F/"" *)  divides Z 2 (u then Fp ) Fpé”” divides

Y

i *
Zﬁ de Bi
I 4 . The degree of the remaining factor is again

(=4

less than p. Tt follows again that every ; occurs once only or

that every «; occurs precisely twice and so that A is periodic.
2k

I{ may therefore be asswned that F%, (») divides Z x A and
9’3[
f A M
" (-0 . Each number A ; occurs twice. Therefore the
L=\

nunbers A; are congruent to U, G, p, Py, see, pz-p, p2-p modulo p‘)
Thereflore tne corresponding coefficients in the second polynomial
are equal. Thus the pairs of numbers M; are either always Loth U,
or are always O and 1. In the first case the corresponding
nuwbers V; are ¢ and 1 and ¢ is a periocd of B. In the

second case, irom the four possibilities stated previously, only
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A A
a , a'\b and a'\ be, a ¢ are possible. Therefore b 1is a

period of B.

This completes the proof.

COROLLARY. A group G of type {p°, 2, 2}, where p is an odd

prime, is good.

Proof. This follows from the preceding thecorem and Theorem 4 of

(1 § p.265).



CHAPTER V.

Intynduetion

Tn his paper (5, p.161) Hajés pives a method which, he
glaima, will give all factorisstions of good groups. In this
chepter it is pointed oult thal o corvection is needed in his work.
The covrected method is then sianted and a complete proof is given,
since Hajéé has not given full details of his proof. In the next
nart a result of Hajés on the infinile wyclic group and Theorem 3.2
are used, togetber with the above method, to give all {factorisationsg
of the infinite cyeclic grovp in which the number of elements in one
factor is a power of & prime. In this part of the work the inte.crs
are used as the representaticn of the infinite gyclic sgroup and thoe
additive notation is used, The necessary changes in the various
definitions and rvesulis which are needed avre asgwned to be wade to
it in with this notation. The firvst resuli of this chapter iz a
consaquence of the work of de Bruljn on bad groups and of wosi of the

results in Chapters I, LIT and IV of this thesis.

Factorisation of CGood Groups

THECREK 5.1 A group G dis bad if and only if it possesses a
propey subgroup B aduitiing of {factorisations H = AB = AC where

& is non~periodic and B and C heve no pericds in common.

Proof. By Theorom 2.1 & group ¢ with this property is bad.
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urthor, by the results of Chapters ) and &4, the ouly bad grours
are thore which fellow from the Tncoyrems suoted or proved in Chapter
iX, ITn Theorem 2 2 the subyroun ¥ is shown to have the reculred

property. In Theorem 1 of (i, p.26C; i = :c:l - .&L:? and it is alown

that % is non=periodic whilie e, and C2 have no pericd in common.
Tn Theorem 2 {1, p.261) it 48 easily verified that | = AR, = AlL,,
that 4 18 non-periodic and that H' and H,’, have no common

period. 1In Theorem 3 (1, p.262) it is ocasily verified that

1 : a
1 and va Lave

no ocormon period. It oniy remwins to show that the group [ of

L Avi = AV that A  is non-periodic and that V

2"
tyve {2, 2, 2; 2 2} adwmits of such factorisations. ''sing the
notation of {1, ».262) it can be verificd that a4 as given,
B=(es,t,st) and 8 =(&uv4v) arc such ihat H = AB, = AP,

vith . none-pericdic and B, and B, having no conmon »ericd.
[ 4

1
Tnis comnletes the proof.
The open question stated at ithe end of the "Remark™ in

{1, p.261} is answered in the negative by Thecrem 4.3 wher It waa

s .own that a group of type [2‘?, 2 & 2} is good. Theorem ... jives

the necessary requirements for a ;roup to be bad containing subgroups

of the type in question.

Talk¥a H.2 If a subzet & of a group G is periodic then the
g2t ©f all perieds of 4, together with the identity e f'orm &

subgrouy H of ¢ and there la a subset C of 4 such that 4 = HC.

root'. Tet h be the set of all periods of &, togetner with £/

then, if £ end h ars elements of I,
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(gh)A 2 g(ha) & g& = A

Therefore gh 1is an element of H It follows that 1I is a subgroup
of G. JLet a, be any element of A. Then «Ln., is in A for
81l elements A& in H. ‘Therefore Ha, €A . It Hoa #F A

let a, be any element of 4 not in Ha,. fThen H a, A and

lia, and Ha, have no element in common. For, if ,.{’,, &, = ’*e; -
with £, and A, in H, then 4, =-A"4a is in Ha,, which

is not so. If H (a,,4,) #A then let a, be any element of A not
in H(#,s,) . hs above Ha, € A and H(e,as) and H 4,
have no element in common. Continuing in this way, since A has

only & finite number of elements, there exists (4,, 41, ..., Wm)

such that H (4, ...,4an) = A.

THECREM 5.3 It G 1is a good group then all factorisations

G =AB of G are given by
A=K, Kio Kz . ... a Ko ;
33 /(,o K’L' X D o 5% O-Km,

where, in each factor, the bracketing is from the left, i.e. there are

(m « 1) brackeis before K, and one each after K,, ..., K, and

29
for each j, j =/,2,...,m H. = K; Ky oo K., is a subgroup of G,

H2 = G, and K1 has one element only.

Proof'. The proof is by induction on the order of &. Let C be
of prime order. ‘hen the only subgrcups are G and (&) and the
only factorisations are G = g0, where g 1is an element of G. EBEut
if n=2, K,=G and K, =g, , which is the only possibility wit.

K, strietly containing K, , then A =gG =G and
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B»golG = 8,8 =8 , where g is any element of G, as
required.,

et G be a good group of order n. It is assumed that
the theorem isg true for groups of order less than n. By
Theorem 4 of {(1,p.R63) all subgroups of G are good. Any
guotient group of G by a subgroup H is isomorphic to
some subgroup of G and so is good. let AB = G. Then A or
B is periodic. Since G is sbelian it may be supposed that
A is periodiec. Iet H be the set of periods of A, together
with the identvity €. Then, by Lemma 5.2, H is a subgroup
of and there is a subset C such that A = HHC.

Then G = AB = HCB. Therefore (B is a set of cogetb
representatives for ¢ / H. Let b and T denote the cosgebs
corresponding to b and c. Let B and € be the subsets of
cosets corresponding to B and C respectively. Then B.C =
G / BE. But G / H is good and of smaller order than G.
Therefore there exist subsets K, H/H,K,H/H,...,k,HE/H such
that (K;H/H)...(K,H/H) = H;/H is a subgroup of G / H for
each j,j= 1,2,¢eee,m , H,/H=G / H and such that

B = (K,H/H) ¢ (K,H/H) & (H/H)? o, - (KaH/H),

C = (K, H/H): (K,H/H) ¢ (5,5/B): ov o (K,H/H),

The notation is used to indicate that if a circle occurs
in the product for B, then & dobt occurs in the
corresponding position in the product for € and vice
versa. The circle occurs in the last position in the

product for C, since, if a dot occurred here, every
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element of K, would be s period of A. Since B und C are
subsets of cosets it follows that B = (K, Kaiio Kz ... - KmJo H
and C * (K, oK%Kz ---©Km)oH where this notation is used to
indicate that B 1is one of the possible seils indicated and so also

is C. Then

A = ((K 3Ky 2K 5 -+ oKmloH).H = K ik 2 - oKu-H

Tet H= Kmer - Then

A = ’(:;'»'Kz °K3: o - "Km-/(lnr),
B =K 2K, il = « = ~Knmo Kmsr,

Furthermore K; ..- K- Kmye; = Hj ,4’»% j z4,2,...,m

and H, is a2 subgroup of G and H, = G. Kmy, = H il 86 L#
J

& subgroup of G.

This completes the proof

In his statement of the theorem Hajos said that the sets Kj
were themselves subgroups of G. That this noed not be so is seen
by considering any group of type [%A} s, WwWhere p 1is a prime and
A2 . Then G = (#) . G is the only product of subgroups
equal to G. Thus the only factorisations given by the method of
Hajos are C = g, which are clearly not the only possible factorisa-
tions.

In the result as stated each K,j is a set of coset

representatives for Hj by Hj-1’

J =2 eew; B Since all
sets of cosct representatives for quotient grouns of finite abelian
groups have been determined, the method does give all factorisations

of the group. The subgroups H, can be any chain of subgrouss such

J
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that G = Hy2Hy 2-.-2Ha2(®) ., The crder of A, in the statement

of the theorem, will be the product of the orders of ¥,, K

i X

1, “. LI
etc., and the order of B will be the product of the orders of K,

K K

5,, vew etc.

7’
Hajos (4, 160-1) has shown that if' in a {actorisation of the
set T of integers one of the factors is finite then the other is
vericdiec. Thus if A and B are sets of integers sauch that A + B =
I 1in the sense that every integer d can be expressed uniquely as
a+b=4d with a ¢ A and b ¢ B, and the number of elements of
4 is finite, then there exists an integer n > (O such that, if
be B, then b+ n € B. As before it may be assumed that O is
in A and B. If the number of eloments of A 1is finite it may be
assumed that O 1is the least element in A. If n is a pericd of

B and B, denotes the set of integers b in B such that ¢ £ b <

n then B 1is the union of the sets Bn + k where k is ot/,...

Jet 4 + B = I, where the nunber of clements in A dis a
power of a prime. Consider A + Bn added modulo n Every integer 4
such that 0 §dd<dn ococurs in A + B. Jet a,¢ A and L,& B
be such that a, + b, = 4. Then there exists an element b « B,
such that b 2 4 (mod n). Therefore a +b = d (mod nj. No
two elements of 4 + Bn can be congruent modulo n. For if
ey B myw ¢, (mod n) with o5 4, < n,o0 ¢ 4, <n and
0 a, # 2, it follows that there exists an integer k, such
that _a, + (,&4«4{‘ n) = az+ Ir_? wiich is not possille since 4+ 1‘, h

is in B. Therefore A + Bn = In, modulo n, where In is the set

of integers betwgen U and n~1 considered modulo n and thus is a
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cyclic group of order n. It follows by Theorem 3.2 that A or Bn
is verilodie.

Ifr Bn is periocdic with period m, then m ¢ n and m is a
pericd of B. It may be assumed that A is pericdic. If m i3 a
period of A then A ZA,+ (em ..., &-Um) (modulo n )
where Am is the set of elements of A congruent modulo n to
numbers less than m. Then it can be shown that A, + & =27
(modulo m). The number of elements of 4 is a divisor of the
number of elements in A and s0 is also the power of a prime. Thus
again Theorem 3.2 can be applied and one factor or the other is
periodic. The argument cun now be repeated and this is precisely
ihe condition necessary for the proof of Theorem 5.3 to go through.
Thua, in additive notation, the formalae of Theorem 5 3 giv: all sets
A and B (modulo nj. fetting n run through all multioles of the
order of A &ll such factorisations are obtained.

As shown above the metihod also gives all factorisations of a
finite cyclic group in which the number of elements in one factor is
. powar of a prime. Tf the number of elements in A is a power of a

prime and

A =K,. K)_QK_]-

then since the order of A 1is the product of the orders of K., K,
e, 843., the orders of K,,K,,... mast be powers of this prime
and so there is a restriction on the orders of alternate quotient

groups in the chain G = H, = H, 2 Hy2 o0 2 H_ 2 (e) .
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CHAPTER VI

Introduction

When llajos discovered that not all groups are good, i.e. that
there exist groups G and factorisations AB = G 1in which neither
A nor E is periodic, he put forwerd the followin; coinjecture - if
G is a group and G = AB then one or other of the factors, sgy B,
is guasi-periodic. Such a set B ia said to be quasi-periodic if
there exisis an integer m greatler than 1 and elements €4 such

that B = B'l + B2 ¥ ves + Bm and ABi a gi AB1 where the

elements &y form a subgroup of C.

Wo fundamental result on quasi-periodicity is proved in this
thesis. But it is shown thai the factorisations of groups of one cof
the tyves which have been shown to be bad in it, namely those of
type {p'\ , 2 2}, where p is an odd prime, do indeed possess this

property.

The Quasi~periodicity of' certain Types of CGroups

THEOREYM 6.1 If & group G is good and G = AB then one of the

factors is guasi-periodiec.

Proof’. Since G 1is good one of the factors, say A, is periodic.
Then, by Temma 5.2, thcere exists & wobgroup H  greater than (e)
such that A = HC. l.et the elements of H be Eqr coes B with

g = e. let AJ. = g).c for 3 =1; aewy Bt “hen



107.

AjB = gJ.CB = E’;j AiB for j = 1, eeey m and H 1is a subgroup

with m > 1, as required.

A
P ROREN 6.2 If G is a group of type {pn" , 2, 2} where p is

an odd prime and £AB = G then one of the factors is guasi-periodic.

Proof. Iet &, b and ¢ be generators of G of orders p’\ L -

and 2 respectively. let P be a primitive root of unity of order

A
b I Jet

-

A: 4 B v,

“ 2 : . “

2 - Iﬂ‘,ax;-?"z""&”'

It is not necessary to specify the numbers of elements in A and F.
From AB =G 1t follows that

(ZpexZpY) = (Zp¥cwfx 2 p¥ 0" =
: : R/ . gy A, MV
= (& f’“(—/)x‘)(z f"‘(—v) ) = (2 pHen bthiy® o0 )=0.
, : A ‘
Therefore Fp.\ (x) divides 2 A" s Z m“ 4 ST oo e £

LR A . o S
or Zm eu Z/ﬂ C"U or P c-()v' , and Zw L—l)F‘

(, “i+
or Z/:a (=1
It may be assumed, without loss of generality, that P‘p » (X
d.
divides 2 @ Then if the exponent « occurs precisely ¢ times

o A- A 1
in 2 " so also do ilhe exponents J-+/‘ arz f o’-v"(/"'.)ﬂ

- ‘t' A': - N‘(” ’}
where C $« S pA’ . #rom (L» sz Ja k1t +-- X Y,
. A;
it follows that Fﬁ“ () /Z' 2% or Z ' where /1 S # S A,
Al A s A
but that it does not divide both as p does not divide 4p° .

- Al
Therefore Fp A (x) does not divide Z V2

Suppose that F_, {x; divides two of the other polynomials
L

derived fromw B. Since any two of b, ¢ and bc generate the



supgroup of tyone f2, 2] s 11 may be assuwed without loss of

< A “4’, )c \/.'
generality that Fp,‘ (x) daivides 25 ~ -0 and S, # ‘v
A=y
& *ﬁ"' MJ'("U"

- -l
Then if U § o< p*"' the coefficients of ~ , % 3 7
in each polynomial are equal. If the coefficient is even then the
number: of ='s occurring is even. If the coefficient is odd then

the number of o 'S occurring is odd. let some coef'ficient be odd,
ay atriper) #A
e vop B ‘

LD

then ~ * occurs once or three times and so do
let «; =8 cceur in Zm“" . Then o+ gl-l) ’f"d-'i-[ occurs &s an
exponent in the product (X PPl & MA':) as  (wrlp-) 4 ) 4 g,
(ot + d"") '/‘A_,) R ”"'A“) gosaw g el "(7‘“)’/";-‘)-

Thus it occurs at least p times and if more than p times, from
exponents occurring three times in Z o » 1t occurs p + 2k
times. If it arises also f{rom even coefficients then it occurs an

even number of times from these. But it occurs four times and

v + 2k cannot equal f'our. Therefore every coefficient of x% is
even. If the coeff'icient is not zerov then md, Y fJ-I) s /v"ﬁuﬁ‘.l

must each occur at least twice and so, as above, some coefficient in

(2 md;)(z /X)A;) occurs at least 2p times, which is not pussible.
Therefore every coefificient is gero. If x “ occurs four times then,
since the pairs (M., v¢) occurring with A, = must be distinct,
they are (U,0) (0,1} (1,0) and (1,1). If x™ occurs twice then
the numbers u; are U and 1' and the numbers V; are O and 1.
It follows that bc is a period of E. Therefore, by ‘heorem 6.1,
B 1is guasi-periodic.

The other cases to be considered are that in which th (x;

divides one polynomial arising from B and that in which F , (x)
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divides every polynomial arising from A.

g . ol < LI i
Let F’p;(x; divide ZN." ’ Z ~ (_.,)’ Z ~ e

B +¥:

o«
and 2. » Cen . Suppose that the exponent « occurs k

times among the exponents o«; . Then so also does the exponent

Asr 5 A=/
A=y a o oA ~p-1)
d+ £ f‘ " The coef'ficientsof ~ , = o g ol £ in
oe g o« Y ol Y
Z (1) ) Z # 9" apad S w0 heedy are equal
in each polynomial. Therefore there are k1 expcnentzs . o
k2 exponentis y. =o and kj exponents g »); congruent to U

Y/ -/
modulo 2 corresponding to &; = &7 /~ for each £ . lel the pair

B,rx’) oceur ~r £y times among the palrs (g.0:) ocourring with

A=t
o“; = drlf « Then the following equaticns arise.

A o, e, = K- A

R
R

ey T = /tez : Hagr * WL, W 1' j" :
~ - = /I’ J' ﬂa" + X = »l- /za .

But adding the equations invclving <y y and subtracting

T A = k it is seen that these equations have a
/ ,0 ), e L)

unigue solution. Therefore the same pairs (f;, y;) arise with
A~/

A- ;
o; = &+ 457‘» ’ {for all /Z . It follows that 4«’& is a
period of A. Therefore, by Theorem 6 1, A is quasi-periodic.

In the remaining case it may be assumed that F A @) divides
o, oL B < & Ac K *+v;
- - P 74 -
2/:(/ )Zm (-2 Z/ﬂ ) andZ o) '

Then using the same notation as in the previous varagrapnh the first
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four egquations above are obtained. But no result concerning k5
arises. It is shown that a unique solution holds in all but one of
the possible cases. Since no element cccurs twice in 4, »y

’

is equel to U or 1 andso O $ k ¢4 O sk €2, O k, g 2.

2N
Then
- S A —3 a b
/”O)a e o M‘,I - "l , l,o * ~ 0y " "I
mo,o * ’”v,o = 2 . M’ﬂ £ igh, ‘g' z

If k = 0, 1, 3, 4 tihen some k1 or some k-k, is equal to U

i

or 2. Therefore the iwo numbers g,y in the corresponding equation

are both O, if' k, or k—ki = O, and both 1 if k

5 or k_ki =

3
2. Substituting these results into the other equations a unique
solution is obtained for any such fixed set k, k, and k, . If
k = 2 and some k, or k-k; is U or 2 tihe solution is unique as
above., But if k = 2, k = k =1 then =»,, - w,, and

oy but x, =x =1

D sx z0 and x =0 a
0,0 o Lo %P LFY] al‘ * o _e ~/

’ 0 o i 0 e

are both possible solutions. %o the f'irst solution correspond the

v A, f\‘“ b ﬂ"'

elements .« - P and to the second correspond ihe

d-1 B LY
+ o4
elements .a “+h ﬁ , & 7( /(fnv

. If only these types occur
then bc is a period of A and, by Theorem 6.1, A is guasi-
periodic. However for certain & these types may occur and for

other # different values of k, k, and k, may give rise to

different types. Tn this case A need not be periodic.

Such a set A is now split up into p disjoint subsets. Ilet

o/ ¢ ; A -
A). be the set of clements &« & £ ,ox‘ such that (j-u) A ‘5 i <Jp .
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Az

1)
T'}]en A = A' C 2 112 + s * A}l L] T;et /’v; = ,a,LJ /L 0 Then

A, = g.4A , except for those sets in 4 arising from k = 2,

k, =k, =1, as shown above. Iet C. be the subsetl of Aj
v/ .

A M, +V;
arising from this case. Now FD’\ (x) divides 2 ~ (v and

=~ 4=
therefore the coefficients of %, x '/ A

R 2

in this polynomial are equal. As has already been shown from

consideration of the exponents in ( Z /x/"')(zm‘\") the coefficient
of sagh 2> An Z m“(—u"‘#v" must be zero. Since k = 2, no
nuwiber A; can occur more than twice. Therefore 4, ># occurs
twice or not at all. If it occurs twice the corressonding numbers

m;+Y; are U and 1 (modulo 2j. Then the corresponding elements

in B are ,@ﬂ’gﬁjaﬂ/g'aﬂ/g'pj,‘;ﬂ,f/,aﬂlq,ﬁé or ,o,'p,aix/

- P ’

It is easily verified that the product of any one of these pairs with

4- - .
at 4 p aw LAY 2 2L gud /‘3 4 Y T
Y »(/;J o ~ or with « , A Arer is )
A=) ; A=i P A=/
ok + - 'é 2 d-f‘ ¥’ L o P Vi
A f F Ar a g * rer efr £ 4 Ara

4 2

Therefore &;F =5 ¢, B . 1t foilows that A; 8= 9, A, 8.
The elements ¢,,..., #4 form a subgroup as required. Therefore

A  is quasi-pericdic.
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CHAPTER VII

Introductiion

In this chapter extensions of some of the preceding resultis on
finite abelian groups to certiain infinite abelian groups are considered.
The result of Hajo’s on the infinite cyclic group has already been
mentioned. Results similar to this are proved for groups of type
{p™°} and for certain direct sums of groups of this type with
finite abelian groups. A generalisation of Theorem 3.2 to such
groups is proved. Throughout the chapter it is assumcd that one of
the factors has a {f'inite number of elements: cases in which both

f'actors are infinite are not considered.

Factorisations of certain Infinite Groups

The group of type {p”} may be defined multiplicatively as
the set of all p’\ -th roots of unity, where A = 0, 1, 2, ..., and
p is a prime; see, for oxample, Kaplansky (/, p.4). Every element
of this group has finite orxrder, this being a power of p, and every
nroper subgroup is fin te, being a cyclic group of order pA , for
some fixed integer A . If a and b are two e¢lements of orders

p"\ and p“’ respectively, where A > # , then ab has order

[ “w
pA ‘ For (—4})/‘:4/\?‘/. Ther:fore the order is p Y where VOR -
TSI A 4

‘“hen (at) =a” =& ., Therefore v 24 . But (@.J') v,

Thus Vv = A . If a and b have the same order, it is not possitle
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to specify the order of ab without flurither knowledge of the

elements, but it is less than or equal to the order off a and b.
The problem of the factorisation of such a group is similar to

that of a finite group and the definitions are carried over from that

case.

THEOREM /.1 If G is a group of type {p™} , where p is a
prime, and 4B = G, where the number of elements in A 1is finite,

then either A or B 1is periodic.

Proof'. Since the number of elements in A is finite and every
element has finite order there exists an integer A such that the
order of every element of A 1is less than or equal to p 8 . For
each positive integer pu let B, be the set of all elementis of &
of order less than or equal to p"L . Jet B - B', denote the
remaining elements of E. Tet pu 2) . ‘Then no elerment of order
less than or equal to p“' arises from A(B - B, ). Also no elerent
of order greater than p“ arises from /B, . Therefore, since
/B =G, AB, is equal to the set of all elements of G of order less
than or equal to p"~ Thus ABW = H,, where 0. is the subgroup
of G of type {p*}.

Iet g be an element of G of order p“ . Then g generates

[

. e ol
Hy . let A = 27“ and B» = Z?’ﬁ . let Aev = 2’”

I

ey

[
- 4‘
A B @ = (1+qm+ ... +x X med (27 -0)),

Thercfore Fp“,(x) divides A(x) or B, (x): If FD,.(x) divides
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g1
A(x) then ?j’ is a period of A. Therefore, it may be

. oo
assumed, that FP"'(X) divides B, (x). Thus 7* is a period

w-)
of B“ . But 7"' is of order p. It follows that all powers

of’ P 4 /‘“—l » and so all elements of G of order p, arewriods of
By - This is true for all #24 . Let b be any element of

B. Then, since b has finite order, there exists an integer p 24
such that b is in B . Therefore if h is any element of G of
order p, hb is in B“t and so in B. It follows that h is a

period of B.

THEOREM /.2 If G 1is a direct sum of a group of type § p™}
and a group of type {q where p and q are distinct primes, and
AB = G, where A has a finite number of elements, then either A

or B is periodic.

Proof. Tet H be the subgroup of G of type (p™} and K the
subgroup of type {qf . Then G is the direct sum of H and K.
Thus any element of G can be expressed uniquely as an element of
H multiplied by an element of K.

let A = Z’l, 4‘.’ where the elements Af; are in H and
the clements /é‘ are in K. Since the number of elements in A is
finite there exists an integer A such that overy 4. occurring in
the expression for A has order less than or equel to 7"3 . For
each positive integer u let 3',, denote the set of elements b of
B such that the greatest power of p dividing the order b is

less than or equal to p”. let B - B, denuvte the remaining

elements of B. For each u 2 A » A(B-B,.) contains no element
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whose order is not divisible by p and AB, contains no

element whose order is divisible by p“H ‘ Since AB = C = l.X

it follows that &B, = H,.K where II, is the subgroup of H of
type [p*} . Thus H,.XK is a group of type {p“ » 4}« By
iheorem 4 of (2, p.376) it follows that A or B, is periodic.
If A 1is not periodic then B, is veriodic for every integer #
greater than or equal to A . Since any power of & period of B,
is also a period it follows that either every element of C of order
p 1is a period or that every elecment of G of order ¢ is a period.

If g and g, arc elements of G of orders p and q respecltively

]
then, for every u 2 A , &, or g, 6 is aperiod of B, . It
follows that one of them is a pericd infinitely many times. JTet this
element be g. . Then for any number #2A there exists a number
V >2m  such that &; is a period of B, . Let b be any element
of &. Then b is of finite order. By the above argument there
exists V2A such that b is in B, and g, is a period of B, .
Therefore g.b is in B, and so is in B. Thus g, 1is a period
of B.

This completes the proof.

THEOREM 7.3 If G is a direct sum of a grouwp of type [2%}
and a group of type {22 and AB =G, wherec A has a finite number

of' elementy, then either A or B is periodic.

Proof’. et H be the subgroup cf type [z"’} and K the subgroup
of type {z} such that G is the direct sum of H and K. let
A = Z ﬂ.’. /&; where the elements h; are in H and the elements

k, are in K. Since A has a finite number of elements tihere
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exists an integer A such that every h; occurring in the exoression
for 4 has order less than or e¢gqual to 2A . For each positive
integer ¢ let B, be the set of elements b = hk of B, where

h ¢e H and k € K, such that the order of h is less than cr egual
to 2 ,u-. ilen, as in the previous theorem, AB, = H, .K [or all
r?)ﬁ » where H , 1is the subgroup of H of type {2“} . Then
by Theorem 4./ either A4 or B, 1is periodic. If A is not
periodic then B, 1is periodic for all »24 . Since any vower of
a period of B, 1is also a period of By it follows that B

has a period of order two But in G therc ere only three elements
of order two. iherefore one of these is a period of B, for an
infinite number of & . As in the previous proof’, this element is a
period of B.

This completes the proof.

These three theorems show that in the three cases where an
arbitrary positive integer A occurs in the exvression for e type of
good finite abelian group the integer A may be replaced by o0
provided that one of the factors is still finite. In the next

iheorem it is shown that this is also true for Theorem 3.2.

TEROREM 7.4 If G is the direct sum of groups of type {»ﬁ-;‘\i}
where 1 = 1, ..., kK and the numbers p; are diff'erent primes and
the exponents A; are positive integers or infinity, AB = G and
ithe number of elements of' 4 1is a power of a prime, then eilther A

or B is periodic.

Proof. let G = Hl - Hy o+.e Hg where for each i, Hi is a

.

group of type {p‘:‘\‘z . Then every element g of G can be
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expressed uniquely as & = A jg »4‘ where, for each i, h, is

in H,. let A = JZ,"e'/ /’ez‘;---/é'i where hij is in H, for
each 1. Then, since the number of elements in 4 1is {'inite, for
each i, there exists an integer V; s8uch that every hc; in the
expression for A has order less than or equal to %;v‘; . lLet

B be the set of elements b of B such that

ek F ”(é whers “'L is in I, and has order less than or

" : i g
equal to P, , wher: the nuibers x; are non-negative integers

less than or equal to 4; . let J§-38, ug be the remaining
elements of P.
Suppose that A; 2K, 2V where y; 1is an integer for

1 = 1; 25 sesy ke Tet H, denote the subgroup of I, of

L

“.
order p. ‘' . Then A(B - B, )} contains no element of

l)"'}“.‘
M, Hla“. — H‘M’I but every element of A E“.,w.v/‘t is in
. = A B - H e H ) ”
Hou.. }fz)‘. o lﬁ,## Therefore, since 4B =G, AB g w Ay
Since the numbers p. are distinct primes B s Mg y) is a

finite cyclic group. Since the number of elements in A is a power

U;
of a prime and, from above, divides /' %.‘ it may be assuned

L=
v g
that A has p elements, where v £ 4,.
It is necessary to use the precise result contained in the
proof of Theorem 35.2. Tet g generate H IL/’é “yp Tet
7

WIREE
L;

A = 2 i - Ru,)‘..,aq = 2—: ?/}z 3

. : 2w 2 , A
Bt & 27§ B, ag®® ¢ g
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£ A

# %
ret 77 A =N and m 'ﬁ; =M . Then the resulis

is/ (=2
proved in Theorem 3.2 are as follows. i 7:19') / Ao then
N/, F
; : L : g St
?, is a period of A: if %'d.¢ (=) / 3“”-_)"‘,0'/ for every
4 N
divisor of M, ¥ is a period of B”')m’”‘ : if
F,u w] Ao where 1 € « ¢ M and « 1is the greatest
P l #
A o s
divisor of } such that F%] “ = | then ¥ is a
) W

period of Bh/,‘,It may be assumed that A 1is not periodic and so
that F (x) does not divide A(x).

let 7,, ... ,74  be integers such that A; 27: 24, and

/‘/ " 'L ITG"‘".' ’£ 7‘2"/‘;
i { %

‘st i= (®

Then, as before, it follows that A 8.,.””_)74‘, - //,,,,, Al "/LTZ'

Let h generate /| o»-H{ 7 such that 'x""j’ . Then
) R

A = Zfdir.zxn‘iand Iru._,f,-‘ = Z»f{,;. Let

na; &
A = Za"™ o Alw")  woa B ) = ST

. n
Since F (x) does not divide A(x) it follows that r, (x )
does not divide A(xn ) and so, by Lemma 1.5, Fin (x) does not

» 5 7
; Ry .
divide 4~ (xj 454 divides Zw’)

) if and o
J/M 7 B

—

if F‘“' (x) does not divide 4(x). F “, (x) does not divide
! .‘7;"" 5
A(x) if and only if F/.“' (x' " ) does not Aivide A(x") =
; 4 7,-M,
A" (x). But, by Lemma 1.6, Fﬁ o (% ‘ )= i F:T, &) ., ‘herefore
] d/m M

ir M F, (» divides } () | F, ; (x) does not divide
d/H 4 ’d' “')...)‘1,‘ ) ,I
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nx (x). 1t follows by the resuvits in Teuma 5.2 that ]T }?T'A =)
diMm

Na/.
dividen BT:,--—;"[(‘) and so that /& "t is a paricd of 3:-,,,..,7"
/'e Nn/ ok, l’/f, M/f'l

= 4 . Therefore if b 4 is a period of

it is alszo a period of 5

sy s T for all 7; 2a;

Bu,, Y

and so is a period of B. If Ff; o ( [AG) where «Su <M
u

and «|M then Ff‘,“',(”.)//”*') o But, by Teuwa 1.5, kaf,“(”)

divides F o, (»") for every divisor d of un. 1 for sone
/ i

divisor ¢ of rif which is not a divisor of um, F,L T L*J/A e

x
then by the results of Thoores 3.2, ’;‘7, 1..@‘) / A =) where

Im is the lowest common multiple of wr and c. Then F 7, d(“)/ A*G-J

for every divisor d of Ilum. But 77’ P /- T, Jl = f”;‘u, Y (% ")

by lemma 1.6. Tuerefore Fym , (¥ ') aivides A(x") ana so Fpay (=
1 (]

divides a(x) and from the above “/ 4 » Therefore if u is the

greateast divisor of M such that Fﬁ * (u) [A@) then un is the

greatest divisor of md such that F -r, C/r«) / A(a) . irerefore
b ;
i€ ¥ w isa reriod % 'B‘u,,_,,,u" A um 34 o neriod of 37-,)_,,,7-1

ﬁ g m %ﬂ r M
for all T; 2M; . put AP Y - # . ‘herefore

e
% ' is a period of B.

Tnis completes the proof.
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