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(i)

Preface

The work described in this thesis is concerned with 
the measurement of the rate of self-diffusion on metal 
surfaces. Experiments have been carried out on nickel,
gold, iron and ulatinum. The work was performed under
the supervision of Dr.P.Mykura at the Diversity of 
Glasgow, during the period 1958 to 1961. The technique 
developed for the diffusion measurements is based on 
measuring, by interference microscopy, the rate of 
smoothing of scratches on metal surfaces. Tart of the
experimental work on single scratch smoothing on nickel 
and on adsorption effects on nickel, was carried out 
jointly with Dr. Mykura. The multiple groove nickel
experiments and the work on gold, iron, and platnnum, 
were performed independently by the candidate who was 
also responsible for the interpretation of the results.

■aat of this work has already been reDorted in the 
form of papers for publication. These are :

(1) " The Measurement of Surface Self-Diffusion Corrficirnts
of Nickel by a Mass Transfer Technique"
(J.M.Blakely & H.Mykura : Acta Mee., 9,23,(1961).)

(2) " The Effect of imnuuity Adsorption on the Surface wree
Energy and Surface Self-Diffusion of Nickel"

(J.M.Blakely & P.Mykura : accepted by Acta Me., 
submitted Dec. i960 )

(3) ” The Effect of impuuity on Surfaces of Peated Gold"
(J.M.Blakely : accepted by Trans. Earaday Soc., 

submitted Jan.196l )

A reprint of the first is included at the end of this 
thesis.
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1. General IntrocLuctoon

Studies of the migration, or diffusion, of atoms in crystal­

line media are of great interest both from a practical and a 

theoretical point of view. An understanding of processes such as

sintering, crystal growth, recrystallization, for exarmpl,requires 

an appreciation of the basic mechanisms by which atoms of a 

crystal lattice may migrate. On the other hand, experimental 

determinations of diffusion rates in crystals, and in particular 

of the energy required for the funnamenial diffusion act, would be 

expected to shed some light on the nature of those regions of the 

crystal under observation.

1n polycrystalline maaerials diffusion problems can be 

divided into three distinct classes. These are (a) diffusion 

within the lattice of the crystal, referred to as volume or bulk 

diffusion, (b) diffusion at the bounding surfaces of crystals, 

and (c) diffusion along line imppefections, dislocations. Class 

(b) can bee surdnvided saccoling aa the bobnUnng suuface is free, 

or is adjacent in the polycrystallinf aggregate to another of 

different atomic arrangement so producing a discontinuity in the 

periodic lattice. Such a discontinuity is called a grain

boundary.

1u general, theories of volume diffusion under thermal 

activation, are based on three fuudamenial processes, viz the 

atom (or ion) interchange mechanism in which an atom alters its 

position by exchanging lattice sites with a neighbour, the 

interstitial oochauium where the path of the migrating atom



passes only between normal lattice sites, and the vacancy 

mechanism. The last of these processes depends on the presence

of point defects within the crystal, vacant lattice sites, whose 

migration through the lattice is equivalent to the motion of the 

atoms themselves. The ^^c^i^^nis^m dominant in any particular

migration problem will depend both on the nature of the migrating 

atoms and of the lattice through which they move. Thus for

example the diffusion of carbon, whose atoms are relatively 

small, in gamma iron is adequately explained (1) in terms of the 

interstitial process. On the other hand, for self-diffusion in 

face-centred cubic (f.c.c.) meeals, theoretical calculations 

(1, 2, 3, 4) of the thermal energy which must be supplied for 

each of the three diffusion processes, show that in general the 

vacancy mechanism is energetically most favourable. The

activation energy Qy can in this case be divided into two 

contributions, the energy required to create a vacancy Q^, and 

that for its motion in the lattice Q^. Qy and Qf can be 

independently determined by tracer measurements of the tempera­

ture variation of volume self-diffusion coefficients Dv related 

to Qv by the equation, Dy = const. exp(“ -fgy) and from measurements 

of the residual resistivity r, in quenched materials expressed in 

terms of Q^ and the quenching temperature by r = const.exp

) • Such measurements have for example been carried out 

on Cu (5, 5). The agreement of theory and experiment is reason­

able, indicating that to a first approximation Q^<* Qn.

(Qy= 2eV).

While a considerable amount of experimental data is now
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available on volume diffusion, very little qumtitative data 

exists in connection with the problem of diffusion at grain 

bo unifies and free surfaces of metals. As pointed out by Le

Claire (7)(1955), this is due largely to the fact that while 

volume diffusion cm be studied separately from bound my diffusion

the reverse is not true.

The principal aim of the work described in this thesis is to 

determine the rates of atomic migration on metal surfaces, to 

derive activation energies for the process^a^ to investigate the 

variation of diffusion rate with surface orientation. 1t was

hoped that such studies might provide information on the nature 

of the diffusion process on metal surfaces, and perhaps on the 

structure of surfaces at high temperatures. The technique

employed for diffusion is based in principle on

observing, by use of the interference microscope, the rate of 

change of a geomofrically simple surface profile, namely the 

decay of a sine wave. Certain observations have also been made

on the closely related topic of the variation of the surface free 

energy of metals with crystallographic orientation.

The relatively meagre amount of data on surface diffusion, 

available at the commencement of this work, is discussed below 

together with some more recent and apparently more reliable 

results. A brief review is also given of previous surface

energy work on ^^I:^1s in so far as it is relevant to the present

observations.
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II. Review of Experimental Data

Ila Surface Diffusion

It is generally believed that atoms at the free surface of a

crystal are more mobile than those either within the region of

grain boundaries or in the interior of the crystal. Following

Turnbull (8)(195l), this can be expressed by stating that if the

rates of diffusion at free surfaces, grain and within

the lattice of a particular material are expressed in terms of

diffusion coefficients, D , D, and D respectively, the activation 
s d V

energies for the three processes being Qe, Qb and , then it is 

expected that at any given teq^ere^^^j'e, Dp> Dp > Dp and also 

Qs< ^b Howwver, sufficient data is not yet available to

allow a direct comparison of the constants of the three types of 

diffusion, except perhaps in the case of self-diffusion in silver 

and the diffusion of thorium in tungsten (Turnbull (8)) which 

support the above statements.

Evidence for surface mobi^^ty

The high mobi^lity of atoms on crystal surfaces was first 

demm^ntrated experimennally in the work of Volmer and Esterman 

(9)(1921). In their study of the growth of hexagonal crystals

of m^i’ci^i’y, from the vapour phase, it was found that the linear 

rate of growth in directions in the plane of the hexagon was 

about 1000 times greater than could be explained by calculations 

of the number of atoms impinging on the edges. This led them to

postulate that atoms which impinged on the hexagonal planes,

might migrate over the surface and become incorporated in the



lattice at the edges before evaporation can occur. Modern

theories of crystal growth (Burton, Frank and Catiera(1O)(195l))

also include the role of the surface diffusion process.

Observations on the rate of growth of crystal whiskers for

example (Nabarro and Jackson(11)(1958)) can only be interpreted

satisfactorily by taking account of migration along the whisker

shanks. Goim^^) (1957, 1958) has studied the rate of growth of

mercury whiskers in the field emission microscope and derived a 
o

value for the surface self-diffusion coefficient of Hg at -78 C 
-5 2of 5*4 x 10 cm^/sec. Using equation (4)pV0he estimates a

surface diffusion activation energy Qo of about O.O^eV, It

should be noted that Gomet,s result and other evidence of high 

surface mobility from crystal growth experiments, really applies 

only to planes of low Miller indices such as occur in growth 

forms. Further evidence of high rates of diffusion on random 

surfaces, compared to diffusion within the interior of crystals, 

came from observations on the spreading and aggregation of thin

films.

Detection and Measurement of Surface Diffusion

(i) Thin Film Work

The spreading and aggregation of thin films has provided 

further though largely qualitative information on surface 

diffusion. Critical reviews of these early experiments exist

in the literature (Barrer(13)(1941), TurnbuH(8)(1951)). Since 

the present work is concerned with surface diffusion in a one- 

component system, only a very brief account of the techniques and 

results will be given here.

Several observations have been made, by optical microscopy.
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of the break-up of thin metal films on a veriety of substrates, 

at temperatures where volume diffusion would be expected to be 

negligible. Thin films of Ag and Au on quartz for example, ware

found to break up forming a series of small globules (~ 1^ 

diameter) separated by relatively large distances up to lO-A, at 

temperatures below 3OO and 400°C respectively ( AKlrac^ 14) ( 1935 ) )• 

Similar conelusions were drawn from electrical resistivity 

measurements on thin films of alkali mt^;Lu on pyrex (App^ya^ 

(15H1937)).

As pointed out by Tiu*nbun(8) considerable care should be 

taken in drawing any conclusions from this type of experiment. 

This caution is based on the uncertainty as to the actual trans­

port process, and on the belief that the thermodynamic properties 

of maaerial in very thin films may be quite different from those 

of larger crystals.

The first actual quantitative measurements of surface 

diffusion were concerned with the migration of certain foreign 

atoms over the surface of msea!!^ tungsten. These studies were 

based on the discovery that foreign atoms such as Ba, Cs, K, Th, 

etc. on surfaces of tungsten produce changes in the photoelectric 

or thermionic properties of the Thus the work function

of pure W is 4.5® while that of thoriaten tungsten is » 2.6eV

(16). Bosworth(l7)(1935^ for example made use of this effect 

to study the migration of sodium over tungsten by observing 

changes in the photoelectric current emitted when a narrow light

beam traversed the surface.

The increase in thermionic emission from tungsten due to the
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it

DS > Db > DV and %<%<% •

presence of thorium on the surface, was used to provide the first 

qualitative data on the relative pagnitudet of diffusion within 

the lattice, along grain jr^l^c^^t^iLes, and at the surface of a 

metal. The results of these experiments have been collected and 

analysed by Langmmlr(l8) ( 1954)* He finds that the three diffuson 

coefficients can be expressed as
Dv = 1.0 exp(- —)

Db = 0.74 «^3P»(7 )

D = 0.47 exp -o 0

which is in agreement with the postulate

However, this data cannot by any means be regarded as establish­

ing the relative relationship between the constants of the three 

types of diffusion. In no case were measurements made both of

diffusion coefficients and activation energy. and D were

determined only at one temperature in each case, 2400°K and 165^/1 

respectively, Qb was derived from experimental measurements while 

the other constants were deduced from the sepi-eIppiiical Di^hman- 
Langmuir equation ( 19) ( 1922 )0~D« exp( - ), where d is the

atomic distance, NQ is Avogadro's numbbr, and h is Planck’s 

constant .

The measurements just described although of historical 

importance, are not sufficiently accurate or commlete to 

contribute significantly toward an understanding of diffusion on 

metal surfaces. The scope of this technique is very limited and 

in order to investigate surface diffusion in a wider range of

systems other methods have been devised.



( ii) Radioactive Tracer Techniques

The use of radioactive isotopes for the study of volume

self-diffusion is now well established and fairly refined 

experimental techniques are in use (eg see ref.(5),(20)). It

would appear at first that the radioactive tracer technique 

should also be well suited to an investigation of surface self­

diffusion. The difficulties involved in its use are however

fairly serious and considerable care must be exercised both in 

the design of experiments and in the analysis of the measure­

ments. These difficulties arise from the fact, stated earlier, 

that surface diffusion is always accompanied by diffusion within 

the lattice and in the case of polycrystalline specimens by 

diffusion along grain boundaries. In addition radioactive atoms 

may be lost by evaporation. It has been suggested (Le Claire 

(7)(1953)) that a correction can be made for loss of active 

maaerial by diffusion into the lattice by applying Fisher's 

analysis (21)(1951) of the corresponding grain boundary problem. 

No treatment has yet been given of the correction to be applied 

for lateral diffusion along grain bouninaies. In addition to 

these inherent difficulties, considerable attention should also 

be taken to ensure that no sharp changes in curvature exist on 

the surface along the direction in which diffusion is measured. 

The existence of large curvature gradients would produce nett

transfers of maaerial on the surface (as described in the next 

section) and so might introduce some error in the final analysis 

which is based on a purely random walk problem.

Due to these difficulties the radioactive tracer technique



has not yet yielded any extensive or reliable data on the problem 

of surface self-diffusion. No really well defined experiment has 

yet been carried out. For such an experiment it would be desir­

able to use single crystals (Turnbun(8)) apply corrections for 

lateral diffusion, and to provide some assurance of the validity 

of these corrections by integrating the initial and final surface 

activity distributions.

Nickerson and Parker (22)(195O) meas-md the rate of diffus­

ion of active silver along the surfaces of a bundle of poly­

crystalline wires. Radioactive silver was deposited from the 

vapour at one end and the distribution of activity along the 

wires, after annealing at a fixed temperature in vacuum, was 

found using a counter with a lead collimator to allow small 

regions of the surface to be counted. The temperature range used 

was very soan, 225 to 350r0 and the actual values of Ds have a 

fairly large scatter. These authors, assuming that the diffusion
coefficient could be written as D = D exp(-^5/kT), derived 

s o 7
values of Do = 0.l6 co2 T sec and Qs = 0.45®r« Such values appear

to be reasonable when compered with the results of grain bound ary 

and volume diffusion measurements in silver which were found to 

follow the equations = O.O25 expl-Tr'iTr) with = 0.9®V

(Hoffman and Turnbull( 23 ) ( 1951 )) 811(1 = 0.89 expH^/kT ) with

= 2eV (Johnson^/lH^^)). Nickerson and Parker's results 

are however liable to the errors arising from loss of maderial 

into the lattice, along grain boundaries and by evaporation.

These errors would be expected to increase with temperature so 

that the activation energy found is probably less than the true

value.



Winegard and Chalmers (25)(1952) carried out further studies

on silver surfaces. In this work both polycrystalline and single

crystal specimens w^re used in the temperature range 25O to 400/0.

The annealing atmosphere is not stated explicitly but this was

presumably nitrogen as used in preparing the single crystal 
no

specimens. The spreading of a vapour deposited film of Ag was 

detected by the autoradiographic technique. Certain assumptions 

were made in interpreting film blackening in terms of the 

concentration of active silver, but the authors claim that even 

with such assumptions the values of Ds obtained are correct to 

within an order of magnitude. These are shown in table I. The 

chief conclusion drawn from this experiment was that the 

diffusion coefficient decreased with annealing time^attributed to 

changes in surface shape/such as the smoothing of single crystal 

surfaces and grain boundary grooving,which were presumed to occur 

during the initial stages of annealing. This effect together with 

the sources of error already mentioned suggest that the results 

should be treated with reserve. The inconsistency of radioactive 

tracer results on silver is apparent from table I; the two sets 

of results differ by a factor of=/ 10I in the value of Dp at the 

same temperature.

The rates of migration on surfaces of copper single crystals

was investigated by Hackerman and Simpson (26)(1956). These

workers measured D only at one trpplrature, 75O°C, the annealing 
s

being carried out in a hydrogen atmosphere. The aim of this

experiment was to mmasure the relative rates of diffusion on the

three principal planes of Cu, i.e.(Ill), (100) and (110) and to

see how these rates varied along different crystallographic



Table 1

Results of Surface Diffusion Experiments on Ag, Cu.

Tempprature(00) Ds (cm /sec)

Nickerson 225 0.56 x 10-6
&

Parker ( 22 ) 2 50 0.83 x 10-5

350 0.41 X 10-4

’"inegard
&

single
crystals

250 No diffusion detected

Chalmers 325 2 x 10-9
( 25)

400 3 x 10*9
(mean
values)

poly- 250 2 x 10-9
crystalline - o

325 S x 10 J
_Q

400 2 x 10 "

Hackerman
Sc

Simpson(26)

750
(100) plane;

(111) plane; 

(110) plane;

6.5 X 10-5

2.8 X io”>

2.6 x
c.

10’"

5-4 x 10-5

[110] axis 

[lOOj axis
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directions on these planes. Their results are summarised in 

table I. In this case a sharp point of a fine Cu wire was placed 

in contact with the surface to provide an effective point source. 

Lateral diffusion was again neglected. According to Mullins and 

Shewac^n( 27K1953) if loss of Cu ' atoma into the bulk is included, 

the true values of Lg ara aa llaat 110 timas greater than those 

reported. The actual orientations of the surfaces used did not 

coincide exactly with the low index planes under investigation, 

and aay have been several deegeee from these planes - the 

authors do not state this cclaaly and express the deviatoons as 

percentages, the meaning of which is not at all obvious. The 

values given in table I should be regarded as applying to surfaces 

near these low index planes although the angle between the actual 

surface and the plane aay not be the same in all three cases.

Hackeraan and Simpson put forward an explanation of the 

apparent anisotropy of diffusion on the (100) plane (i.e. Lg 

along [lio]^' 2^- tiaes Dg along [lOOj , fig(l)) in teras of 2nd 

nearest neighbour interactions. The difference is however aore 

likely to be due to the deviation of their surface froa a (100) 

plane; the aaasured Ds aight for exaaple be expected to depend 

on the direction relative to the general direction of surface 

steps.

The only other investigation of surface diffusion on aetals

using the tracer technique, described in the literature, is that 
b I

of Fraunfelder (28)(195<0). He studied the diffusion of Cu over 

surfaces of polycrystalline silver and obtained the result that

at 75O°C. Ds = 8.3 x 10_7 ca2/ssc.

x-See Over /-



x The surface referred to as (100) actually deviated from 
plane by about 10/ and was close to (50)
(Private commpniiatioi with "rofessor Hackerman).

thi s
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Grain boundary groove profiles.

■rofile at the inter­
section of a pair of twi 
boundaries with the 
surface. ( after Mykura



(iii) Mass Transfer Techniques

The measurements of surface self-diffusion described above 

depend on the use of distinguishable atoms. Other techniques have 

been developed in which diffusion data is found by measurement of 

a nett transport of maae^a^ This transport generally occurs 

under the action of surface tension forces and is in such a

direction as to effect a decrease in the overall surface free 

energy of the system. Since curvature gradients must exist in the 

surface profile in order to produce a nett transfer of maaerial 

the method necessarily involves a range of surface orientations.

In certain techniqueS/this range can be very large with the result 

that their use for an investigation of the dependence of surface 

self-diffusion rates on orientation is virtually impossible. With 

the method used in the present work greater control of the orient­

ation range involved can be achieved than in any other technique.

Herring, in his paper ’’Surface Tension as a Mooivation for 

Sintering” (29)(I955), has given an excellent discussion of the 

transport of maaerial in and on crystals under the influence of 

surface tension forces. This work has provided a mathempttcally 

sound foundation on which the apparently most successful techniques 

for the measurement of surface self-diffusion are based. Herring 

has shown that the transport of matter can be described in terms 

of gradients of chemical potential. Under the assumption of 

surface-volume rquilibrlum, i.e. free interchange of vacant lattice

sites and interstitial atoms between the surface and the region 

imimeiiaely beneath it, he calculates the difference in the 

chemical potential uof an atom and u of a lattice vacancy 

immedi^^ beneath a smooohly curved surface of principal radii
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of curvature R. and R i 1
( \ ii I—) - He = a LyR. rj R,+ r-x

where Uc is the value of (p-aj corresponding to a planar surface

(R( ,Rj = oo ) , J! is the atoaic voluae, the surface free energy per-

unit area and a and n correspond to directions on the surface 
* j

associated with R and R . The iaportance of equation (1) will be 

discussed in soae detail in section III.

The actual aechanisas for rnaaerial transport have also been 

considered by Herring (29,30,31)• These are plastic flow, voluae 

diffusion, surface diffusion, and evaporation-condensation. The 

rnc^l^^^ni^a doainant in any particular transport problern depends on 

the linear diaensions involved (30) and on the relative rates of 

the three processes for the aaaerial under consideration. In 

general when the linear diaensions are very saall the doainant 

transport aechanisa will be surface diffusion, while voluae 

diffusion and vapour transfer becoae aore iaportant with increas­

ing diaensions. T^us for exaaple the rate of growth of the neck 

in the sintering of a particle to a plane (fig(2) ) will, in the 

initial stages, be due to surface diffusion and this will becoae 

relatively less iaportant as the neck diaaeter increases.

Sintering
Prior to Herrings’ theoretical work (29), Kaczynski (32) 

(1949)(33)(1950) carried out a set of experiaents on the sintering 

of saall spheres of Cu and Ag to plane surfaces of these aaterials 

The annealing ataosphere used was hydrogen in the case of Cu, and 

hydrogen or air in the silver experiaents. In the latter case no 

dependence on the ataosphere was detected. Kuczynski’s theory

predicted that the diaaeter of the neck between particle and



Vs -R
plane (fig. 2) should vary as t", t » t * or tz according as the 

dominant transport mechanism was plastic flow, evaporation- 

condensation, volume diffusion or surface diffusion. In the

majority of the measurements the neck diameter was found to vary
I/s

as t so that the mechanism was identified as volume diffusion.

For very small spheres of Cu, however ( < diameter) the 

measurements indicated a t dependence at temperatures of 400,

500 and 600°C. Results were in this case calculated on the basis 

of surface diffusion. The resulting values of Dg were fitted to 

the usual Arhenius equation, Ds = Dq exp(-^s/kT ), to give 

Dq = lo'Scimgsec and Qg = 2./[eV.

Some idea of the accuracy of an experiment of this type may 

be obtained by comparing the volume diffusion results found for 

Cu with the most recent tracer values (Kuper et al, ( 5), 1954 ) ).

The constants DQ and Qv found from the two methods were:

Kuczyiski DQ = 70 cng/sec : = 2.4eV

Kuper et al DQ ■ 0.90 cmS/seo : = 2eV

These correspond to values of Dg differing by a factor of 10 at 

1000°C. Due to the different activation energies this factor will 

be more or less at different temperatures.

The assumption of surface diffusion dominance at sm^].l

particle sizes and low temperatures has been criticised by Cabrera 
1/5

(34) (195O)> who suggests that x oc t both for surface and volume 

diffusion. Herring (31), on the other hand, supports Kuczjyiski's 

treatment of surface diffusion but states that further experiment­

al data is required before accepting his results. No further 

results on surface diffusion have however appeared from this

source although several investigators (see eg. Meechan(35Hi960)) 
(Kinfery and Berg( 35 )( 1955 ) ) •
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'/shave found a t ' relation which they attribute to volume diffusion. 

Field Emmssion Microscopy

MuHer(36)(1949) used the field emission microscope to

study the rate of blunting of very fine tungsten points of radius

of curvature, r < l^. The change in curvature at the tip was

followed by measuring the voltage necessary to maintain a fixed

electron emission current, and using the relationship between r

and the voltage required. MuHer assumed surface diffusion to be

the dominant transport mechanism at the lower temperatures used,

and derived an activation energy, Q 4.6eV for self-diffusion ons
tungsten. The validity of assumption that surface

diffusion accounts for the observed changes has been questioned by 

Herring(31). Boling and Dolan(37)(195^) have however provided 

experimental evidence to support MuHer. More recently Barbour et 

al(28)(1960l have used a refined technique to study self-diffusion 

on tungsten. These workers used a pulsed electric field, micro­

second pulses applied 30 times per second, so that the time during 

which the field acted was very small. The effect of the electric 

field on the surface migration was thus considered negligible. By 

assuming that surface diffusion rates and surface free energy ( )

are independent of orientation a simplified version of Herring's 

equation (l) was used to find a theoretical expression for the 

rate of shortening of a tungsten needle. ComplLaisrn with 

measured rates led to the following values for self-diffusion on 

tungsten.

Q = 3.14- O.OBeV s
Do = 4 cm^sec.

These experiments w^re carried out in a vacuum lo pp Hg) at
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teaperatures between 1500 and 2600°C. The above values of Qg and 

Do are average values over a large nuaber of surface orientations. 

The wide range of orientations which is necessarily involved in 

experiaents of this type aakes the technique iappactical for an 

investigation of the orientation dependence of surface diffusion. 

Grain boundary grooving.
The appearance of grooves at grain boundary-free surface 

intersections on annealed rnetal speciaens has been observed by 

aany workers (see eg. Chalaars, King and Shuttleworth(39)(1948)). 

The kinetics of groove foraation have been treated in detail by 

MuHins (4<0)( 1957) who considers the role of the two transport 

processes surface diffusion and evaporation-condensation. The 

theory developed is essentially that used for the present work and 

will be considered later. MuHins has shown that when surface 

diffusion is the doainant transport aechanisa, the rate of change 

in surface profile is described by a 4th order partial different­

ial equation

............. (2) (see fig 5)

where B = -- ,JL = the atoaic voluae,° = nuaber of atoas/unit 

area of surface. The 4th order dependence is iaplicit in Herrings 

scaling laws (30) and an equation siailar to (2) was derived by 

Mykkua(41)(1954). MuHins has found a solution of (2) for the 

case of grain boundary grooving. If w is the distance between 

the aaxiaa of the profile on either side of a grain boundary 

intersecting the surface noraally, fig(3), then
%W = (4.6)(Bt) (3)

Froa equation (3) it will be seen that w varies as t if

surface diffusion only need be considered. In the case of



grooving by evaporation the profile is of the form f ig( 3c ), i.e.
kz

no maxima but the depth d varies as t . Mullins has not

considered the case of grooving by volume self-diffusion in the 
7 s

solid meeal, but from the scaling laws, w should vary as t .

This theory has been applied to measure surface self­

diffusion constants for Cu. Mullins and Shewmon( 27 )(1959) have 

tested the theory by observing, by interference microscopy, the 

development of grain boundary profiles on bicrystals of Cu 

annealed in hydrogen at 930°C and 1035Sc« Within the accuracy

of their results w was found to increase as t at both tempera- 
r ctures even up to widths of about 26 microns at 1035 0. Recently 

Gjostein (42)(l961) has used the same technique to obtain more 

extensive data on the variation of the self-diffusion coefficient 

of Cu with temperature. The initial surfaces of the bicrystals 

used by GJostein were 8-jg to 11° from a (100) plane. At teopera- 

tures above 823°C, he found deviations from the t relationship 

which he attributes to a contribution to grooving from volume 

diffusion. At a temperature of 1020° C the average slope of the 

log w versus log t curve was found to be 0.31, the error probably 

being- 0.02. Gjostein’s curves do not show any consistent 

increase in slope with increasing w, at a particular temperature, 

as would be expected since surface diffusion will always be 

dominant at very small groove widths. Corrections were made for 

the effect of volume diffusion using a method suggested by Mullin 

and Shewmoo(27). The temperature range used in these experiments 

was 720 to 1070°C, all anneals being carried out in hydrogen.

The resulting diffusion coefficients agree reasonably well with 

the values found by Mullins and shewoon and give
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At 720°C and below,surface roughening and pitting were observed. 

The grain boundary grooving technique for diffusion measure­

ments was developed during the course of the work described in 

this thesis, by Mullins and Shewmon, and Gjostein. It has been 

used here principally to provide values for comparison with those 

found by the technique described later.

The results of surface self-diffusion experiments available

in the literature are summaaised in table II.

11(b) Dependence of Dg on surface orientation
It appears to be generally agreed that the rate of surface

diffusion, defined by the coefficient D , should be dependent onS
the crystallographic orientation of the surface. The experiment­

al evidence to support this is however largely qualitative. The 

only qualitative data available in the literature is that from 

the experiments of Hackerman and Simpson(26) on tracer diffusion 

on Cu (table I). Their results show a dependence of Ds on 

orientation but due to the- uncertainty in orientation and the fact 

that only three different surfaces were used, no generalizations 

on the variation of Ds as a function of orientation, for the

f.c.c. lattice of Cu, are possible. The variation of D_ with B
direction on a surface near the (100) plane of Cu is perhaps more 

strongly supported by Haokarman and Simpson's results.

As stated earlier (p.H ) Herring(29) has shown that mass 

transfer can be described in terms of chemical potential gradients

or curvature gradients. The fact that material is transported

across extensive regions whose curvature is below the limit of 

observation, has been taken to imply high surface diffusion



 

Table 11

Reference Me thod Metal Atmosphere Te]mp.Rnngs

Winegard
&

Chalaers 
(25)

Tracer Ag Nitrogen 250-400°C

Nickerson
&

Pa.rker( 2 2 )

Tracer Ag Vacua
(10 ‘rna Hg)

225-350o0

Li °
Parker(43)

Tracer \u

Hackeraan
&

Sirnpson(25)

Tracer Cu Hydrogen 750°c

Kuczynski 
(32 )

Sintering Cu Hydrogen Z00-600°C

Gjostein 
( 42 ) *
MuHins S. 
Shewaont 27)

Grain
boundaries

Cu Hydrogen 720-1070°C

Barbour 
et al (38)

Tield
eaission
points

w Vacuua 
(10’ma Hg)

1500-2600°
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Table II

2^o
[cm /sec)

(contd.)

Qs
( eV )

Qb
( eV )

(23
Single - - 0.9
& Polycrystal »

Polycrystalline 0.l6 0.45 If
wires

Polycrystalline 7.6 0.68 -

Near (100),(111)
& (110)

107 2.4 -

Near (100) 5.5 x 10' 1.7

Qv
( eV )

(24)
2.0 -

(20)
1.81 O.37

(5)
2.0

O.23

1.2

0.9

Large range of 4*0 
orientations

3.14 6*1 0.51

x , »
Estimated by Van Liempt (44 ) by assuming Qv, 
energy for self-diffusion in tungsten is the 
for the diffusion of iron in tungsten.

the activation 
same as that



coefficients for these regions. Thus ) has

suggested that D is very large on the (100) and (111) facets s
observed in his study of striations on silver. Similar conclus­

ions were reached by Gomer (46)(1953) la his emission microscope 

studies of Nickel fil^jments.

11(c) Surface Diffusion Models

The problem of surface self-diffusion has received very 

little attention from the theoretical point of view. In the 

majority of surface diffusion experiments which have been carried 

out to date, it is extremely doubtful if any serious claim could 

be made that pure surfaces were involved. It would however be of 

importance to consider the possible mechanisms for atomic 

migration on a pure surface before attempting to take account of 

the presence of foreign atoms.

In this section previous moldls of surface diffusion are 

discussed together with some further suggestions. Two types of 

surface can be distinguished according as they coincide with 

atomically smooth or low index planes or with atomically rough 

planes of high index.

( i) Atomically smooth surfaces

It has been shown theoretically by Button, Prank and Cabrera

(10 Hl 151) tt^ suuffces coniising oo the mmot clooeey ppaked

planes of a crystal will remain ordered, with respect to the

height of the surface all the way up to the mel'ting point. This

view has been supported by MuHinsl 47 )( 1%O ) whose calculations 
cubic

apply to the (100) plane of a simf>k , crystal. The only impeefect- 

ions existing on such a surface will be single self-adsorbed atoms 

and vacant surface sites. In this case surface migration may be



pictured as the action of atoas between identical squilibriua 

sites above the coaapltely filled layer. Interactions between 

diffusing atorns aay be neglected provided that the nuaber of 

such atoas is the nuaber of adsorption sites available on the 

surface. This type of surface aigration has been considered by 

Lennard-Jones( 48)(195*7) and is the diffusion aodel generally 

assuaed in treataents of evaporation (Ksasks and Stranski (49)

(1956)) and crystal growth (10). Lemiard-Jones has shown that 

for atoas aigrating on an atoaically saooth surface, the diffus­

ion coefficient, D_ , aay be written as

Ds - <Za f exp(-^VkT ) = D° exp(-°V/kT ) .......... (4)

where d is a gsoaaStric constant (I for ( 100) surface , ° for (111)

surface), f° atoaic vibration frequency, a = average distance

aoved per juap, and Q is the energy of activation, equal to the s
height of the P.E, barrier between neighbouring equilibria 

sites. The height of this P.E. barrier has been calculated (see 

ref (10) p. 302) to be about L where L is the energy of

tubliaatios. Goaae's value of Qs for aigration along the atoaic­

ally saooth surfaces of Hg whiskers is in fair agreeaent with 

this estiaate; here Q^ L where L the heat of subliaationT 1 J g g

of Hg 0.65eV( 30 ). In the case of Ni, where L & 4.3°V, Q s s
for aig^^on on a saooth surface aight be expected to be about 

0.3eV.

a the distance aoved per juap is usually put equal to the 

interatoaic spacing. It appears plausible however that an

activated atoa my next be adsorbed several spacings distant.

An increase in juap distance to 10 interatoaic spacings would

increase Ds by a factor of iQO.



Thus for close-packed surfaces self-diffusion may be 

pictured as the motion of atoms between equilibrium adsorption 

sites with a very small activation energy the actual distance 

moved per jump being perhaps many times the distance between 

neighbouring sites.

(ii) Atomically Rough Surfaces
For surface orientations corresponding to planes of high 

Miler indices^the theory of Burton Frank and Cabrera (10) shows 

that at temperatures considerably below the meeting point of the 

metal, ’surface meeting' occiurs. Thus at high temperatures one 

may picture the surface as a partly disordered layer in which 

there is a more or less random concentration of vacant sites.

For such a model the most probable mechanism for surface diffus­

ion is the vacancy mechanism. The activation energy should be 

considerably smaller than the corresponding process in the bulk, 

as the vacancies nre inherent on the surface and each is 

surrounded by a smaHer number of metal ions. Thus Qc in this 

case would be expected to beCQ^the energy for vacancy motion in 

the bulk. 0* iOy ( 3) (6) , so that Qg should be<i^.. For Ni 

where 0 = 2.76eV (Reynolds et al( 51)(195*7), Hoffman et al ( 52 )

(1956)) a value of Q_< 1.3eV would be expected. similarly for 

Cu, Q should be<( leV. According to equation (4) the diffusion 

coefficients for atomically rough surfaces should be smaller than 

for low index planes. This difference is liable to be greater 

than that due to the different activation energies as in the case 

of high index surfaces the jump distance is likely to be only of 

the order of the interatomic distance. The frequency factor Dq

% —— — w 2.
(=0a f) would be expected to be« lo to 1q cm /sec taking



0 \%
a = 3A, f =10 /sec which are typical values for metals.

( iii) Comm prison of the tracer and Mass transfer techniques:

The fundamental difference between the tracer and mass 

transfer techniques is that the first involves a fixed surface 

orientation, while the latter requires a range of orientations, 

and this range changes with time.

For surfaces whose orientations do not lie very close to low 

index planes,,the two methods should yield the same values for 

diffusion coefficients. This will be the case for general 

surfaces. When surfaces very close to atomically smooth planes

are clnsieefed the situation is liable to be quite different. 

Since the surface free energy of crystals is expected to vary 

with crystal orientation (discussed below) the driving force for 

miss transfer is not known unless both the surface orientation 

and surface free energy variation is known. For any plausible 

variation of surface free energy () with orientation, the 

range of orientations to which the mass transfer technique is 

inapplicable will be very small. Only when the surface profile 

under observation contains an orientation within about 5° of the 

(111) or (100) poles in the case of f.c.c. metals should any 

error be incurred.

In his work on grain boundary grooving in copper, Gjostein 

(42)(1961) used bicrystals with surfaces near (100). In this 

case the curved surfaces of the grooves would generally include

orientations very close to (100), so that the assumption that the 

surface free energy does not vary over the range of orientations 

involved may not be valid. On the basis of Herring's predictions

(31)(1953) regarding the effect of temperature on the variation



of f with orientation, the error should be greatest at low 

o
teapesatu^et. Gjostein does in fact report that at 720 0 and 

below pitting and roughening of the surface did take place.

This he attributes to a surface reaction or theraal faceting.

If the latter is true the assuaption of constant V would, 

certainly not be valid. Gjostein's activation energy of 1.7eV 

for surface aigration on Cu seeas very large in relation to the 

value of 2eV(3). The explanation aay lie in false assuap-

tions in the theory. Since the calculated value of D is very
P p

sensitive to changes in Q the large value°6.3 x 10 ca /sec.« s
aay be due to the apparent high activation energy.

(iv) Effect of irnpuuity on surface diffusion

It has been suggested by Goaer (53°1959)» in his study of

the diffusion of adsorbed gases on surfaces, that adsorbed atoas 

aay be arranged on an atoaically rough surface in such a way that 

it reseables a close packed plane. The effect of adsorption in 

this case is to cause an eshascsmsst of diffusion across the 

surface. The experiaents of Mair et al (54) (19559) have shown 

that iapuuity on surfaces of gold causes a suppression of 

evaporation. The latter result indicates that surface atoas are 

bound aore tightly in the presence of iapuuity. Since changing 

surface orientations are involved in aass transfer experiaents 

Maar’s conclusions are aore relevant than those of Goaar. It 

would be expected therefore, that iapuuity on surfaces would lead 

to a suppression of surface diffusion which produces a nett

transfer of aaaerial.
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11(d) Surface Energy

The changes in surface shape measured during the present 

work, and in other mass transfer methods, are mooivated by changes 

in the total surface free energy of the system. Values of the 

specific surface free energy are required to evaluate surface 

diffusion coefficients from measured shape changes. The methods 

that have been used to measure the mean surface energies (f) of 

m.eUls have been critically reviewed by Udin (66H1962), Fisher 

and Dunn (56)(1962), and Mykura (41)(1964). 1t appears that the 

'wire pulling' technique is the most successful and the values of 

1 used in the present thesis were obtained by workers using this 

method. The values for the metals used (Ni, Au, Fe, Pt) are 

listed in table 111, together with the atmosphere in contact with 

the various surfaces during measurement.

The work of Buttner Funk and Udin (66) has shown that 

adsorption of oxygen on silver surfaces causes a decrease in the 

average surface free energy. The experimental value of t for 

silver in contact with air was 450 ergs/cm2 as compared to 1140 

ergs/cm2, when a helium atmosphere was used. Herring (31) has 

discussed the variation of the surface free energy of crystals 

with orientation (the %g-plot) and the possible effects of adsorp­

tion on this variation. He predicts that the adsorption of

impuuity atoms on crystal surfaces, in amounts sufficient to

change the average surface free energy significantly, will 

probably also produce appreciable changes in the shape of the

plot.
I

1nformation on the dependence of \ on orientation has been

obtained from observations on faceting, the break-up of flat



Table 111

Metal Atmo sphere is (ergs/cm°) Reference

Nickel Argon
X

2,000 (67)

Gold Helium 1.450 (55)

Iron Argon 2 ,m (77)

Plttlnui
XX

2 ,000

X see asK) Tabee 7,

XX No ]^e^arallece to a measurement of for soldd T?t
has been found in the liaetature. A value of
2 ,000 ergs/cm° has been assumed.



surfaces into striati^s, grain boundary aigration, and froa a 

study of twin boundaay-free surface intersections. The forna^on 

of low index flats on wires of tungsten, tantalua and aolybdenua, 

directly heated in an inert ataosphere (Saith(57)(1954)» Nichols

cusps at these orientations. Siailar faceting has been observed 

on the sharp points used in the field saission aicroscope (MuHer

( 3^)(1949).

Striations have been observed on the surfaces of a large 

nuaber of aeeals. The appearance of striations on silver has been 

studied aast extensively (see eg. Moore (45)11958), Chalaers,

King and Shuttlewooth( 39 ),(194'8)). These investigations indicate 

that in the presence of oxygen the surface energies of the (111) 

and (100) planes are respectively about 0.8 and 0.9 of the value 

for a randoa surface. The disappearance of solutions on heating 

in nitrogen or hydrogen is taken as evidence that 1 does not vary 

appreciably with orientation unless oxygen is present. In this 

case the effect of adsorption is to accentuate the cusps in the 

t°-plot at those orientations where they noraally be expect­

ed to occur for a clean f.c.c. acetal, and in addition the close- 

packed (111) plane still has the lowest free energy. The work of 

Water and Dunn (59)(^9&0) on silicon-iron (b.c.c.) has shown, 

however that iapuuity adsorption can aake the surface energy of 

the (10C) plane less than that of the (110) plane; the latter is 

the aost closely packed plane of the b.c.c. lattice and in clean 

conditions should have the lowest free energy. Water and Dunn

observed the aigration of grain boundaries aooivated by a decrease 

in surface free energy^between crystals whose surfaces were close



to (110) and (100) llltrs. 1n vacuum (<10“- cc Hg)-the (110) 

oriented grains grew at the expense of the others while in impure 

argon, those with surfaces near (10(0) extended-and developed 

mea'ked striations. Evidence will be presented later in this 

thesis to show that icpuuity adsorption has an appreciable effect 

on the Y-plot of Ni.

Mykura (60)(1967, 196l) has shown how the X_-plot of f.c.c. 

^^I^^ZOs can be derived from a study of twin-boundary-free surface 

intersections. Herring's equations (29) for the intersect ion of

three interfaces were applied to the case of a pair of twin
' i?

boundaries meeting a flat surface. Wien is appreciable at the

orientations of the twin surfaces, there are effectively forces

acting at right angles to the surfaces. At one of the twin

boundary-surface intersections these forces act in the scme

direction as 1 the twin boundary tension, while at the other they 
T

act in the opposite direction. As shown by Mykura the effect of 

the orientation derivatives of is to produce a profile as shown 

in figure (4) where one 'groove' is inverted. Such profiles were 

first observed by him on specimens of Ni and Cu. 1nverted grooves 

need not necessarily be confined to the intersection of twin 

boundaries with the surface, but may also occur for low angle 

bound^ies provided the boundary energy is sufficiently scaH.

The occurrence of the latter has not yet been reported in the 

literature.



 

 

 

Ill Theory

(i) The Sine Wave Technique

On the basis of Heering's work (29), the theory of mass 

transfer along a curved surface of a crystal has been given by 

MuHins (40) 11957), ( 6l)(1959)* MuHins has considered contribut­

ions from each of the three transport processes, surface diffusion 

volume diffusion, and evaporation-condensation. Since the assump­

tions of MuHins' theory are imponcant in the present work the 

derivation of the equation governing mass transfer by surface 

diffusion will be outlined briefly.

Consider a surface which lies near the x-y plane and is 

everywhere parallel to the y-txis°sl that the shape of the surface 

is specified by its intercept on the x-z plane (fig 5)* Det K be 

the curvature at any point on the profile. from equation

(1) p. 15 , the increase in chemical potential of an atom trans­

ferred from a point of zero curvature to one of curvature K is 

ji(K^=-TLY.K .................... Z X V( 5) assuming ° is

independent of orientation. If it is also assumed that the

surface diffusion coefficient D is independent of orientation,
s

Herring's equation for the flux of atoms across the surface becomes 

— .............. (6)

where s is the arc length measured along the profile, = no. of
r

atoms/unit area. When \ is independent of orientation. Herring's 

statement that mass transport is mooivated by gradients in

chemical potential is equivalent to saying that material is trans­

ported due to curvature gradients. The increase in the number

of atoms per unit area per unit time = and the rate at which

^2.any element of the profile moves normal to itself =



(b)

(c)

(a)

Possible initial surface profiles 
which after sufficient annealing 
would beo^ae sinusoidal.

*

figt 8

t z

Scratch profiles (^initial 
fora,(b)after a short anneal 
(c)an asyamaSric pro-file.
(b) and (c) show the 
diiensiost z and .

(a) Perfect sinusoidal profilejb) 
typical profile used in experiaent 
(c profile after a very lons- 
annealing period.



 

for small slopes.

Also for small slopes 4 » so that we get

= _K^Z ............................(7)
-•k v n\) ~ ^x**-

where g = 2i2o_?±2 . 
k"T

Equation (7) is the differential equation governing the 

transport of ma^rial on crystals by surface diffusion, and is the 

equation derived by MuHins.

1f MuHins' assucpHon, that the surface diffusion coefficient 

is independent of orientation, is not cade, the equation becomes

considerably more comcHcated. That is if ^9 terms are not

neglected the equation is of the form
i7- = Il _ jilt 1 tz \ , ox

^x1*- Ut v /Vax2 ixsy ............. (0'
I

where I is still assumed to be constant. 
s

Equation (7) has been solved by MuHins for the case of a 

grain boundary groove as mentioned earlier, and also for an 

initial sinusoidal profile.

For an initial sinusoidal profile Z - a sin wx where
inx ,

w ~ , A = wavelength, the forc after time _t is

z(x,-t'= .................. (5)

and —? =-Bui4Z .................... (1°)

The theory thus predicts that an initial sinusoidal profile 

will decay expontntia^y due to surface diffusion, with a decay

constant proportional to '/a- .

The corresponding solution when all three transport processes

are taken into account is
Z(>/t0 ~ Zo - (SuV 4- Cue 4-

(ll)(Mullins!6l) )
. 2

where Cw and Aw are the decay constants due to volume diffusion
a MX„ MX

and evaporat ion-condensat ion. C = k“T and n - (•2, ft mV2- (kip/*2

3
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where p is the equilibrium vapour pressure (dynes/cm2) over a 
o

flat surface, and m is the mass of a molecule of the vapour from

the solid.

It should be noted that the contributions to surface smooth­

ing of the three transport processes, surface diffusion, volume 

diffusion and evaporaaion-condensation depend respectively on 
■4^ and .

Application for the measurement of surface diffusion coefficients
Mullins' theory of surface smoothing has been applied in the 

present work for the measurement of surface self-diffusion 

coefficients. It will be assumed for the moment that surface

diffusion is effectively the only transport mechanism contributing 

significantly to smootihing. The validity of this assump tion will

be discussed later.
t

It will also be assumed that V and D are constant over the s e
range of orientations involved in the measurements. In certain 

cases however, this latter ass^u^^ption is shown to be invalid, and 

the observed mass transfer would probably be described better by 

an equation of the form (8).

Consider a general surface corrugation parallel to the 

y-axis with a profile in the x-z plane of the form shown in fig(61 

These profiles may for example have been produced by chemically 

etching, or by ruling a set of parallel grooves with a sharp 

instrument.

Such profiles could be represented by Fourier series,

2- ” A 4- PLsn Zw 'X+---------4-ft .smuto- 4-  ......................... ( 12 )

ApppLying equation (9) to each sinusoidal component^shows that 

after time £ the profile will be
z(*,-i)=(ft(sihwx')+--------+ “ ..............(is)



 

 

 

 

 

 

 

 

 

 

Due to the factor h in the exponential, all terms after the

first decay very rapidly and the surface soon approaches a pure

sinusoidal form. For instance after a time of one fifth of the 
U u

characteristic time, /Buy , the fsndameneal has decreased to

82^ of its initial amplitude, the second harmonic to 2^^ and all 

higher harmonics have effectively disappeared. For lO-ZOa^/sec, 

and %%10^cm, (which are typical values shown later) 0.2X is^Jhr.

Use has been made of this principle in the present work, 

where sets of pfa’adel grooves were produced by a simpUfied 

ruling on the surfaces of cold-rolled metal specimens.

On annealing for a short time at a high temperature, recrystalliz­

ation occurs and the surface smooths by surface diffusion to 

assume an almost sinusoidal profile. Measurement of the rate of 

smoothing of such profiles will then yield values of B (and hence

D ) using equation (9). s
Single Scratches.

In the initial experiments, facilities for producing sets of 

closely spaced pmdlel grooves were not available. In view of 

this, single scratches were used. A single scratch on a metal 

surface, made with a rough instrument will have an initial pi'c^ile 

as in fig(7a)., assminng that no maaerial is removed. If such a 

specimen is now annealed for a short time at a high temperature, 

surface diffusion causes the profile to become smooth, of the 

form fig(7b).

From equation (10) the constant B can be written as
Az X (14)B = =ZlSTTAt ..........

where AZ = (Z, -Z ) ,Z( , and Z are the am^ULtudes before and after an

annealing time ZA^and 2. is the mean cpplitsde during this interval
Z,+ ^2

( )
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If we now assume, that for a single scratch, the surface 

between the two maxima on either side of the groove sm^c^^hs like 

a pure sine wave, then measurement of the rate of smoothing will 

yield a value of B using equation (14) and hence D . This assump­

tion. obviously involves considerable approximation. The net mass 

transfer depends on the curvature gradient and beyond the maxima 

of the scratch profile, this is clearly less than that which would 

result from a sinusoidal profile. This causes the maxima to move 

apart as the scratch smooths so that increases with time and 

also leads to a smaaier value of AZ . In the measurements on

single scratches was measured at a level midway between the

crests and the base of the scratch as shown in figure (7b) . In 

some cases slightly assywnetrical scratches were also used. The 

values of z and A/2 used for these are indicated in f ig(7c ). Due 

to the increase in ) during experiments^^ value used in equation
(14) was that given by V = "z 1 ) .................... (15)

where \ and \ are the effective wavelengths before and after 

annealing.

Due to these approxirnattons, the absolute values of B and Ds
obtained from measurements on single scratches, are liable to a 

systematic error. The magnitude of this error is difficult to 

estimate. The value of \ used, (given by (15)) is probably too 

sm^l. so the resulting values of B and D_ are likely to be smaller/ o
then the true values. The systematic error may be of the order

of

The relative values of Dg at different tempeeatures, or for

different surface orientations are not affected by this, so that

no error in activation energies for example can be attributed to
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this source.

Mu■ltille Scratches.
In this case the systematic errors discussed above are not 

present, and the main errors arise from inaccuracies in experiment­

al eeasurements. These will be discussed later. It is however 

difficult experimennally to produce on a mees! surface a set of 

parallel grooves of spacings 10 microns, which, after an initial 

smoothing anneal, gives a perfect sinusoidal profile of constant 

wave length and amelitude (fig 8a) as required by the theory.

Fig (8b) shows a more typical profile used in these experiments. 

For convenience of measu^eeent, sets of 4 or 5 parallel grooves 

of spacing about 10 microns were norm^aiy used. After an initial 

smoothing anneal, profiles of the form in fig (8b) were observed, 

where the reduction in depth of the extreme grooves was less than 

average, due to a lateral shift of the extreme maxima as described 

above for single scratches. In such cases, measurements were made 

on the central portion of the profile as indicated, and the value 

of B found from a plot of log (amelitude) against time. Some 

error is involved in this as after a sufficiently long annealing 

time the profile would be of the form in fig(8c), i.e. of wave­

length 4O. However since the decease in amelitlde in a given time
J

is proportional tr"^(equation(14.)), the error in the measured 

decrease is only of the order of 1 part in 200., i.e.*. 0.5$. Even 

for a set of 3 paraaiel grooves the error from this source would 

be < 10$.

Cont^ibutions of the Transport Processes

The discussion so far has assumed that only surface diffusion

is operative in causing smooThing. Also it will be noted that no
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contribution from the mechanism of plastic flow has been included

in Muulins' equation (ll). The transport of inmater by plastic
4ar crusioXs

flow has been considered by Herring (31)1 who suggests that^the 

mechanism is inoperative in cases of maae^d transport motivated 

by changes in surface free energy. There is no ^3^l^^ILp^ene^c^l 

evidence that plastic flow can occur under the action of surface 

tension forces.

The most convenient range of wavelengths for sinusoidal 

surface profiles^ rrom the experimental point of view^is from 5 to 

20 microns. For a large number of meMs, surface diffusion will 

be the dominant proc^iess causing am^ULtude decay at temperatures 

which can readily be obtained (up to about 1300SC). The dominance 

of surface diffusion can however be readily checked in the follow­

ing ways.

I. The decay constant in equation (11) is measured experiment­
ally. It is then assumed that Bw4^S Cw3 + Aw2 or BS XT + ^CS2- .... ( a) 

so that the measured decay constant = Bw4, and values of B 

calculated accordingly. The validity of this assumption can then

be tested by collaring the resulting values of B with those found
c. A/

by commuting the quea^^es X ^^from published data on volume 

diffusion and vapour pressure for the meed considered. Suitable 

corrections may then be applied. Generally assumption (a) need 

only be justified at the highest temperature used since the 

activation energy for surface diffusion is expected to be less 

than that for volume diffusion or evaporation.

II. If several sets of grooves of different spacing are measured 

at the highest temperature used, then a plot of log (decay const) 

against log (A) will serve to decide the dominant transport
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process. The slope of such a curve would be -4 ^or surface 

diffusion alone, -3 for volume diffusion, or -2 for evaporation- 

condensation. The measured slope will then indicate the relative 

importance of the three processes.

The latter method is more direct and does not depend on the 

accuracy of volume diffusion or vapour pressure data. However, 

its application is much more tedious but is necessary in cases 

where insufficient data on volume diffusion or evaporation is 

available, and would be preferred in cases where the contribution 

of the other processes is to that of surface diffusion.

It should be noted/that only that part of the bulk diffusion

coefficient which is due to the vacancy or interstitial mechanism

should be used in assessing the importance of volume diffusion in

the observed profile changes. Only these mechanisms are capable

of producing a nett transfer of matteial. In cases where

diffusion occurs by direct interchange or a ring mechanism, the

value of to be used in the above calculations will be less than v
that determined by the radioactive tracer technique.

If volume diffusion is dominant at large wavelengths then the 

technique could be applied to the measurement of volume self­

diffusion coefficients.

(ii) Grain boundary Groove technique;
The use of Muulins' solution (40) of equation (7) for the 

case of grain boundary grooving has been described earlier. From 

equation (3) pJ/ it is easily seen that if s, and s^ are the 

semi-widths of a grain boundary groove (fig 3) before and after 

an annealing time At at a fixed temperature , then B at that tempera 

ture is given by



 

 

s s

At
.......................... (16)

Equation (l6) has been used to determine values of B 

from grain boundary groove measurements, during the present

work.
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IV. General Eixperimental Technique

Experiments have been carried out on the m-mlals nickel, iron, 

gold and platinum. The general experimental procedure will be 

described here and details applying to particular cases will be

mmationed later.

( i ) Specimen preparation
Specimen maCe^icls used were norm^dy obtained as flat cold- 

rolled sheet of thickness 0.1 to O.5 mm.. Specimens of area - 1 

square cm. were used. These were used in some cases in the as- 

rolled condition while others were ppeha.cicaCly polished. On ann­

ealing such specimens for a short period at a high temperature 

(eg. S hr at 1000°C for Ni) comptete ^crystallization occurs 

generally producing stable grains extending through the thickness 

of the sheet. With specimens used for scratch smoothing

the scratches were made while the specimens were in the 

cold-worked condition. The initial anneal then served to produce 

smooth scratch profiles on the individual crystal surfaces of the 

polycryEtd-line specimens.

(ii) Scratching and Ruling
Single scratches were made on specimen surfaces with a clean 

razor blade to form a cross grid pattern. Apppoximpcely symmeri- 

cal profiles (fig 7a) were selected for measurement the ’wave­

length' generally being about 10 microns.

Sets of closely spaced paellel grooves were produced by 
means of a simppified diffraction grating ruling maahine.* 

x Dr. Holborn of Aberdeen Uneversiey provided much useful advice

in the design of this instrument.
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This is shown in fig(9). The soft iron head D, to which 

the ruling diamond is attached, is held against the 

smooth face of the brass block due to a flat pole magnet 

housed in a cavity within the block. The diamond, with 

a tip radius of curvature of about 3^ » rules a groove 

on the specimen surface on moving the carriage I p<aallel 

to the smooth face of the brass block. Further grooves 

are produced after displacing the platform J and specimen 

by rotating the graduated circle. A rotation of -about 10° 

produced a groove soacing of 7.2 microns. The load on the

ruling head was adjusted by adding lead weights and was 

normally lo-aogm wt. For a set of parallel grooves of

average spacing 10^ deviations in spacings were normally < 1^ .



 

 
 

 
 

 
 

fig. 9

A Aluminium disc.
B: Micrometer screw
C Flat pole Magnet
D Adjustable soft iron head supporting the ruling

diamond and with soft solder contacts on brass 
block K.

F Specimen clamps
G Ground flat steel base
H: Loose pivot
I: Carriage which moves the diamond in a direction

perpendicular to the direction of motion of 
the platform. J.

J: Movable platform to which specimen is clamped.



 

(iii) Specimen annealing

Heat treatment of specimens was generally carried out in two 

vacuum furnaces. The basic design of the type of furnace used has 

been described by Mykku'a (41) and the arrangement used in the 

present experiments is shown diagramaaically in fig(lO). The 

specimen is contained in the crucible C and placed with its plane 

near the vertical to minimize the effect of grain boundary slicing 

along grain boundaries at right angles to the surface. The 

crucible lid and radiation shields and were generally of the

specimen maaerial while the outer radiation shields S surrounding 

the winding were of comm-medal Ni sheet. 1t was hoped that with 

this arrangement, any impurity present in the residual furnace 

atmosphere would be deposited preferentially on the cooler outer 

shields. 1n one furnace the crucible, crucible and winding 

supports, and thermocouple insulation were of alumina, while in 

the other they were of fused silica. Molybdenum windings were 

used in the alumina furnace, in which the highest temperature 

heat treatments were carried out, and platinum or nichrome wind­

ings in the silica furnace. Power was supplied as shown in the 

circuit in fig(lO), the current through the winding being con­

trolled by a variac transformer. The outer vacuum-tight case was 

water-cooled, the flow rate being kept constant at about 4 litres 

per min., as measured by a ’Flowtrol' meter. A pressure off 10"5 

mm Hg, indicated by a Penning gauge, was maintained within the 

furnace during annealing by an apiezon oil diffusion pump backed 

by a rotary pump. 1t was believed that the residual atmosphere 

was mainly hydrocarbon oil vapour. The heating and cooling times

were normally short (~ 15 minutes) compared to the annealing



 

Diagrams showing the ontical equivalence of (a) the Linnick 
and (b) the Baker interference microscope systems.



intervals used (3 to 200 hours), and should cause negligible 

error. A safety switch ensured that the power supply to the 

furnace and diffusion pump were cut whenever there was a break 

in the water supply.

Tempprrtures were measured with chrome1-alumel thermocouples

except for heat treatments in the alumina furnace at temperatures

above 1200o0 when a Pt-13^ Rh thermocouple was used. These were

calibrated using data from SA^ihon's ’Meeals Reference Book’ (15’

(1949) and the calibrations checked against the melting point of

gold. During anneals temperatures were maintained constant to 
0

better than t 10 C.

During periods when the furnaces were not in use they were 

held under vacuum, to reduce adsorption on the various commonents, 

and consequent degassing on further heating.

(iv) Specimen Observation
Soecimens were examined in air by ordinary and interference 

microscopy. The mass transfer technique developed in this work, 

in conjunction with interference microscopy provides a fairly 

accurate method for the measurement of surface self-diffusion 

coefficients. The results reported later are mainly derived from 

measurements on micro-interferograms.

Measurement of surface topography with the interference microscope

The aim of the micro-interferometrie technique is to provide 

an accurate contour map of the surface under observation from 

which the size, shape etc. of small topographical detail may be 

found. Although accurate data can be derived from interfer ogrms■ 

considerable care must be used in their interpretation. Several
tollman W/ocd

authors (Mykura (41)( 62 H1954), Ingelstam(63)(196o) ,^Gates (64) 

(1956)) have discussed the sources of error in interference



microscopes. Those which are important in the present work are 

discussed briefly.

A Baker interference microscope was used. Optically, this 

is almost identical to the Linnick system in which interference 

fringes are formed by light reflected from the specimen surface 

and a flat reference surface. These systems are shown in fig(ll). 

In the Baker micro scope the reference surface is contained within 

the objective lens (silvered spot S) in which there is also an 

opaque disc (0) to prevent light being reflected directly into 

the eyepiece. Veaiatim of the wedge angle between reference and 

specimen surface is achieved by of a tilting stage. The

chief disadvantage of having the reference surface fixed within 

the objective arises from the fact that it is generally not exact­

ly parallel to the focal plane of the lens. Thus only in a small 

region, on either side of the line of interception of the focal 

plane and the virtual image of the reference surface, are sharp 

fringes produced. Outside this area the path difference is too 

great. In addition the area over which sharp fringes are obtain^ 

depends on the direction of tilt of the stage, the area being 

greatest when the stage is tilted about a horizontal axis parallel 

to the tilt axis of the reference surface. The area of specimen 

illuminated cannot be easily controlled with the result that li^it, 

scattered into the objective from regions outside the field of 

view, causes a reduction in fringe contrast.

The simple relation between the fringe system and the depth 

of the wedge between reference and specimen surface, (i.e. 1
y lolrnon Qnc) Wo<xi -> and.

fringe=^r), holds only for normal incidence, Gates (64). When
A

strongly convergent illumination is used, as in the Linnick or



Baker systems with objectives of high nrmarical apertures (N.A.), 

the above relation does not hold exactly and leads to errors of 

the order of 10$.

To eliminate this source of error the Baker instrument was 

calibrated for a 4 mm interference objective as follows.

The height of a cleavage step on a silvered mica surface was 

measured at objective aperture settings of 1.0 to 5-0 scale divis­

ions, (i.e. N.A.'s from 0.15 to 0.7 rpproximaaeey ^as^iming the
L

fringe interval to correspond to 2. . Due to the central opaque 

disc in the objective, the aperture cannot be reduced sufficient­

ly to produce almost parallel illumination and allow a close 

estimate of the true step height. For this purpose a Linnick 

instrument was used, employing a X25 objective and aperture 0.5 

scale divisions, N.A.^ 0.05. The results are su-rised in table

1V which shows the percentage error at different aperture settings
V

and the effective values of % to be used. At the setting general^ 

used in photographing surface profiles (3.O scale divisions) the 

fringe interval was taken as 0.3 microns for calculation purposes.

Although the effect of oblique illumination must be taken 

into account when absolute values for the height of surface irreg­

ularities are required, or in angle measure-nts, it does not 

introduce an error in measuring the rate of decay of sinusoidal 

profiles. Provided that approximately the same fringe spacing is 

used for successive inter ferograms (see eg. fig(2i+)) the error cai

be eliminated by taking one fringe as the unit of depth in plott­

ing the rate of smoothing. All measurements were made on prints 

enlarged to a marnification of xlOOO so that 1 mm = 1 micron.

The experimental error in diffusion coefficients from scratch 

smoothing measurements (eg. fig(24)) arises from inaccuracies in



 

 
 

 
 

 
 

 
 

Table IV

Cali.bration of the Baker Interference Microscope

Aperture 
(scale
divisions)

1.0 1.5 2

Fringe
displacement 
(No. of
fr inge s)

5.05 5.03 5

Apparent step 
height 
(microns)

True step 
height 
(microns)

1.379 1.375 1

Err or 5.50 5 • 80 6

Effective 0 
(microns)

0.2894 0.2900 0

Baker

(Hg green l^^ht

Linnick

A= 5461A) (T1 green0 
X- 535W

0 3.0 5.0 N.Af 0.05

00 4.89 4.81 5.38

366 1.337 1.315 1.46

1.46

40 8.40 9.90 -

2920 0.2986 0.3035



the wavelength and slope of the decay curve. \ can be measur­

ed to within about 0.25| . For a wavelength of 10°, this intro­

duces an error of about 10%; the final error is of the order of 

1 20°.

Orientation Measm’emenns:

Surface orientations were determined, in the case of f.c.c. 

crystals, from measurements of the angles between the traces of 

annealing twins. The problem is essentially the determination of 

the direction cosines of an arbitrary plane, from a knowledge of 

the angles between its intercepts on the surfaces of a regular 

tetrahedron. The solution can be obtained graphically (Barrett 

(65)(1952), Mykkra(66) (1958)) and this method has been used in 

the present work. An analytical solution has recently been 

derived but this has not yet been tested. The orientations 

determined by the twin trace technique are generally accurate 

to about 2°.

For b.c.c. specimens ofo^iron, the x-ray back reflection 

technique was used, employing a Hilger microfocus X-ray tube 

(see fig(46)). The orientations found by this method are also 

believed to be accurate to within 2°.

x Mainly by Dr. J. Gumming of the Physics Dept, of Glasgow
University.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M V

V. Surface Self-Diffusion Experiments

The experiments performed on nickel, gold, iron, and 

platimm wil be considered separately and a general discussion 

of the results given later.

Va. Experiments on Nickel
Introduct ion
Measurements wem made on the rate of smoothing of single 

and multiple scratches on individual crystals of polycrystalline 

nickel specimens. The results show a marked variation of self­

diffusion coefficient with crystal orientation. It was also 

found that "flats'' of exact (100) and (111) orientation develop 

when a curved surface includes such a low index plane, and this 

is taken to indicate that the surface diffusion coefficient for 

such a plane is much greater than for one of random orientation. 

At the lower temperatures used impuuity adsorption was found to 

have a large effect on the variation of both surface diffusion 

and surface energy with crystal orientation.

E^cpeirime nn&1
The experiments were carried out on Ni sheet. In one set of 

runs 'specpure' Ni (from Johnson, Maathey & Co.) was used^the 

main imp^^ies being: Fe 0.002 , C 0.0002 , Ag 0.0001 per cent., 

non-meeaaiic imp^rties not given. Another set of runs was made 

on com^^rrc^^ Ni sheet whose main impuliiies were : Fe 0.2 ,

Cu 0.2 , Mg 0.1, 0 0.05, S 0.005 per cent.

Both grades were used in the "as-rolled" condition, except 

for pure Ni specimens used at 900°C and 1200°0, which were mechan­

ically polished. Single and mnutiple scratch experiments were 

carried out at different times so that the same specimens were



TT

not used for both sets of experiments. Single scratch experiments 

were performed on both ’specpure’ and commerca! Ni sheet, while 

in muutiple scratch experiments only the latter was used. Ann­

ealing was ca^^ried out in a continuously pumped vacuum («? 10~5ppHs 

at temperatures between 800 and 1220°C. 1n the case of single 

scratch specimens, the cummlative heating times were 2, 6, 12, and 

22 hr at 1200°C, 3, 23, 70 and 170 hr at 800°C and proportionate 

times at intermediate temperatures. For muutiple groove specimens 

the corresponding times were 3» 8 and 18 hrs at 900°C, and 1, 3 

and 5 hrs at 1220°C. All specimens were subjected to a short 

initial anneal at a temperature of 1000°C or higher when recrys-
I

tallization produced stable grains of about 150u diameter , many 

grains extending through the thickness of the sheet.

The specimens were examined and photographed after each heat 

treatment by ordinary and interference microscopy. The scratch

profiles were obtained from measurements of the interferograms. 

Measurements were only made on single scratches which were approx­

imately sy^m^^al and multiple scratches of nearly uniform depth 

At each temperature the rate of scratch smoothing was on

at least 25 different crystal surfaces. Data on the variation of 

Ds with orientation was obtained by determining the orientations 

of a large num^^ir of crystals on the 1000°C and 900°C single 

scratch specimeIe, by the twin boundary trace method.

(i) Results on single scratches
The smoothing of a typical single scratch profile is shown in 

fig(12). The values of B and Dg calculated are given in table Va. 

These are averages of the measured values and are thus averages 

over all orientations. The values of i^ required to calculate Dg



a

fig.13b

fig.12: Smoothing of an approximately symmetrical scratch an/ 
development of a grain boundary groove (a)afttr 2 hr at lOOO~C, 
(b) after 2l|hr at °OO°C,(c) after 47 hr at SOCOC. The value of 
D calculated from this scratch is 0.1 x 10'°cm./sec and from the 
g?ain boundary 0.8 x 10cm2/sec.

fig. 13: Abrupt qhange in the smoothing rate of a multiple scratch 
Cheated at l000^C) where the orientation changes due to twinning. 
The arrangement of twin and grain boundaries^ shown in fig.13b. 
?or grain A, Ds = 0.6 x 10-7 cm^/sec; for B, 7 x 10“7, and from 
the grain boundary BC, 6 x 10"7 cm2/sec.



  

 

    

 

  

 

 

Table V

Surface Diffusion Results on NI

Pure Nickel Impure Nickel
Temperature

(°C) (ergs/cm2)
B

(cm4/sec' 
(x 10-2°)

Ds
(cm^ 'see)
(x IO'6)

B
{cm4/sec) 
(x 10-20)

^s
(cm1*/sec 
(x 10-6)

Va 1200 180c 2.1 6.07 1.9 5-5-

Single HOC 1850 1.4 3.67 1.0 2.6
Scrat ch
Result s 1000 1900 1.2 2.84 0.7 1.6

900 1950 0.5 1.06 - -

800 2000 C.29 0.55 0.16 0.3

Vb 1220 1790 3-25 9.73

Mult iple HOC 1850 1.69 4.5
Scratch
Result s 1000 1900 0.83 2.01

900 1950 0.31 0.66



T S
0 i 0

from B (= ——---- ) are extrapola^d fomm Hayward and Greenough(67k I
(I960); -T' was sp! eequl to d^ where d is the enreraOpmic dist­

ance^ 2.5%. In a dditton to ttie systematic errors disuuseed nn 

section 111 p.5l , ttees may be in error by - 50 per cent,

due to measuring inaccuracies and possible bias in the orientaton

of the crystals measured.

Values of B and Dg were also calculated from measurements on

20 approximately symmetrical grain boundaries at 1000°0 using

equation (16), to give a mean value of Dg of 5*5 x 10"^ cm2/sec

for pure Ni. The development of a grain bom&nry groove can also

be seen in fig(12). 1t will be noted that the value of D at s
lOOoOc from grain boundaaies is almost twice as large as the value 

in table Va. The agreement is however tolerable, as some bound­

aries with one slow diffusing grain were rejected due to ass^m- 

metry, so that the result may be biased toward orientations with 

higher values of Ds.

Dependence of Ds on surface orientation

The effect of surface orientation is shown by the marked 

change in scratch smoothing rate observed at some twin and grain 

boundaries. ?ig(13) shows an example of this. Here the differ­

ential smoothing of parallel grooves can be seen. These were pro­

duced during the rolling of the material. The relation between 

surface orientation and diffusion rate was studied at 1000°C and 

900Oc for pure Ni. The rate of smoothing of similar scratches on 

the surfaces of crystals of different orientations was assigned 

a relative value: fast, medium, slow or very slow. The results 

are shown in fig(14ab). 1n fig(14a) the directions of diffusion

are also shown. it will be noticed that in fig(14b) (900°C
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Variation of diffusion rate (a) at 1^00 C and (b) at goC°C, with 
surface orientation for oure nickel. • fast, x intermediate,

o slow, ® very slow.
(c) Vaaiation of the surface enerpy ( with orientation for 
nickel 60 ). Values of are normalised to Five a value o
unity for the (ICO) nlane.



result) no points have been included near (110); this will be 

explained later. The results show that the diffusion rate is 

high over a range of orientations near (111), very low near 

(100 ), and also low near (11(0).

The degree of orientation dependence decreases with increas­

ing temperature. This is shown by the distribution plots of the 

individual values of Ds (fig l°a) at 900°C and 1100°C (the largest 

number of values were obtained at these tepperatures). The ratio 

of largest to simaiest measured value is 250 at 900°C, and 12 at 

1100°C.

The large variation of with orientation also causes the

formation of tssymproical grain boundary groovee°as indicated in 

f ig( ^□^between fast and slow diffusing grains. Assympr^y could 

also arise when grain boundaries do not intercept the surface 

normally. Howsrer, abrupt changes in aesypmprry when the orient­

ation difference changes abruptly at twin boundefies (fig l8a,b° 

can only be accounted for by different diffusion rates. in such 

cases equation (16) cannot be applied separately to give the 

diffusion constants of the two grains, since there is a continuity 

condition to be satisfled at the groove root. Thus it might be 

expected that a slow diffusing grain would appear to have a larger 

diffusion constant by being adjacent to a fast diffusing one, and 

vice versa.

in addition to the variation of Dg in cases of general 

orientation there is an even more striking change at exact (111) 

and (100) orientation. When the orientation range covered by the 

curved surface of a smoothing scratch or of a grain boundary, 

includes these low index planes, the normal profile is distorted



N

(a) Distribution plots of values of D° at goO°C (------ ) and lOOO°
( ------- ) from single scratch measurements.

(b) corresponding clots for multiple groove results.



fig.lS (a)(b): Distortion of grain boundary groove profiles due 
to the formation of flats oq and rs. (c) asymmetrreal groove 
between grains of different surface diffusion coefficients.

fig.17: (111) flats observed on a scratch profile on annealing ait 
lOOoO, after (a )70 hr, (b) 60 hr, (c)IOO hr.

/ over



fig.l8: Intel*ferograms (a) and (b) show marked change 
in grain boundary asymmetry where the misorientation 
changes abruptly due to twinning. (c) and (d) show 
examples of exact (111) and (100) flats respectively.
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and flat regions of the low index plane appear (figs l6, 17, 18).

The formation of low index flats is thought to be due to a lower

surface free energy at these orientations. they persist on

reheating shows that there is active diffusion across them. Any

curvature of the facets is too small to be measurable; assuming

that in this case also the rate of mass transfer is proportional

to curvature gradient, the diffusion constant for the low index

plane must be much greater than for the adjacent general surface.

Similar conclusions have been reached by Moore (45)(19°8) from

his study of striatic^s on silver and by Gomer ( 46) (1953 ) 1° work

with the field emission microscope.

No evidence was obtained on the variation of D with direct­s
ion for a given orientation. The techniques used are, however, 

more sensitive to variations with orientation than to variation

with direction for a fixed orientation.

Each individual value of D must be interpreted as applying 
s

to the small range in orientation covered by the curved profile

of the scratch. The value of L obtained will be biased toward s
the smalLlest value for the orientations included as this portion 

of the profile will determine the net flux of atoms. This is also 

true for D calculated from grain boundary grooves, and the range 

of orientation is usually much larger in this case. in fig(19a) 

the poles of crystals A and B (fig l°a,b ) are shown, together with 

the range of orientation and direction of diffusion of the 

scratches. Pig(19b) is the corresponding stereogram for crystals 

B and C and the grain boundary groove between them. As can be 

seen the surfaces at the grain boundary range over about 12° in 

each crystal while at a scratch it may range over ± 40 and this



+ 0decreases on further annealing and is still measurable at - 2 . 

Discussion of single scratch results

That volume diffusion and evaporation-condensation can be 

neglected is shown by the graphs in fig(20). Here the variation 

of the decay constants Bw4, CwW, and Aw2 (equation (11)) with 

temperature has been plotted for values of the wavee-ength) ( = % )

of 2 , 10 and 50 microns. The values for the vapour pressure 

required to calculate A were taken from Dushman (68)(1949), volume

diffusion constants used in the calculation of C from Reynolds 

et al (51) and Hoffman et al (52.) and the mmasured values were 

used for B. The graphs show that at low tempeeatures and short 

wawlengths, surface diffusion is highly predominant and even at 

the meeting point the other processes may be neglected for wave­

lengths up to 10 microns. The assumption that surface diffusion 

is effectively the only process operative is therefore justified.

The small difference in results obtained with the pure and 

the commetcial nickel indicates that any contamination is more 

likely to have come from the furnace atmosphere than from impurit­

ies present within the specimen. At the higher temperatures^the 

furnace should be self-cleaning and no difficulty was experienced.

At lower temperatures the surfaces of some grains broke up into 

striations and in a few cases visible deposits appeared. Fig(21) 

shows a typical region of a contaminated Ni specimen. Such spec­

imens were rejected and measurements made only on specimens which 

appeared clean and on unstriated crystal surfaces. It is quite 

possible that, even though such specimens were clean to micro­

scopic examination, they had adsorbed impuuity on the surface dur­

ing annealing.
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fig. 19

fig.20

fig.20 : Vsaiation with temperature of the relative importance 
of t"Ee three transport mechanisms in causing surface smoothing. 
At the melting point the surface2diffusion contribution exceeds 
the others by factors of 103, 10 , and 3 , for wavelengths of 2,

10, and 50A ♦ respectively. ^or \ > 3 50 — , evaporation - 
condensation nredo^ii^att^is.



H--------- i---------—»—------ >--------- •--------- i------------rt-----
6 7 8 ’ '° I' 4 I

IO * “t~
I

fip.21: 0rientation dmendent contamination on the surface of a 
' cure nickel specimen annealed in a poor vacuum.

fig.22 ; Plots of log^Dg against l/T for oure and impure nickel.
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The average values of Dg from table Va can be fitted to

the usual equation D = D expl-^V^T) as in fig( 22) and give 
s 0 '

0 = 0.781 O.leV and D « 3*0(± 1 ) x 10”3 cmm/seo for pure nickel
s -

and 0 = 0.921 O.leV and D = 6.8( 2) x lO”0 cm^^/sec for the
s o '

impure nickel. As the spread in measured values of Dg increases

with decreasing tem^^^^tiuire, the activation energies for purtie-

ular orientations will be larger and sm^ler than these. If it

is assumed that D varies with orientation at all temperatures in 
s

the same way as measured at lOOO0C and 900°0 (fig l0ab) the 

measured values at each temperature can be divided into a "fast" 

half corresponding to orientations near (lll)^and a "slow" half 

for orientations near (10(0). The separated average values for 
the pure nickel results are plotted as log^Dg against % in f^g^( 20 )•

The "slow" results decrease very rapidly with temperature and 

can be explained on the basis of increasing impurity adsorption 

on orientations near (100) at the lower tempeeatures.

Evidence in support of this has been obtained by Mytaual60) 

who masured the variation of surface energy with orientation for 

pure nickel, heat treated under the same conditions at 1000°C.

This is shown in figure(l0c). The surface energy is lowest at 

and near the (100) plane, whereas it would be expected to be low­

est at the (111) plane (the close-packed plane). The variation 

of surface energy and surface diffusion are consistent with orient­

ation dependent impuuity adsorption with a maximum near the (100) 

plane.

Prom fig( 23), 0 = 0,62 (±0.08 )eV and Dq = 1.9 (±0.6 )x 10"6
S

2
cm /sec for orientations near (111), while near (100) 0g = 1.7 

(-0.2)eV and Do = 0.66 cm2/sec. Prom equation (4) section lie,



2 I ID can be written as d a i where d = h or-r . Taking the jump 0 Q cm. in 1
distance a% 2.5 x 10“°, for nickel and f 9 x 10 sec"~ from 

A
the Debye theory (69), gives D 1.5 x 10“^ cm2/sec which is in 

0
fairly good agreement with the value of DQ near (111).

The activation energy, 0.62eV, also is reasonable in relation to

the known activation energies for volume self-diffusion of nickel

2.750V(51,52) and grain boundary diffusion l.leV (Upthegrove

and Sinnot(70)(1958)1• The apparent activation energy of 1.7©V

obtained for surface self-diffusion on orientations near (100)

can then be interpreted as the cornmination of a true activation

energy plus the suppression of diffusion at lower temperatures by

increasing impuuity adsorption. The very large D obtained for 
0

these orientations is due to the eact “that the vaaue of VD calcul­

ated is very sensitive to changes in Q .
if

1t is interesting to note that^the experiments of Gjostein 

(42) on grain boundary grooving in Cu, surfaces near (100) were 

used and there also a large activation energy ( 1.7e7) was found. 

1t is possible that this is partly due to imppuity adsorption on 

the Cu surfaces, although Gjostein claims that this did not occur.

More will be said later about the effect of impuuity on Ni 

surfaces at the lower temperatures used.

(ii) Results on MuetipUr scratches

Sets of parallel scratches of spacing less than 10j were made 

on the surfaces of specimens of commeeeial N± vs Vescribbe earlier 

(section 1V). The smeofheng of a typical mueeuple vcratch 

profile of wavelength about 6.5p is shown in dg(24). Measure­

ments were made on syemer^ictl portions of the profiles and

values of B calculated from graphs of the type shown, the



fig.23; Plots of log°Q D 
against 1ZT for nickel surface 
orientations near (111) (circfc 
and near (100 ) ^(cros^s).
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fig.24 : (a) Smoothing of a multiple scratch on a Ni crystal 
surface. (b)0rdinary photograph showing the twin A to which 
the interfer oghams refer. (^Corresponding plot of log(tpplitudrj 
against time. ( \ = 6.5 microns).
Note that the extreme grooves have smoothed more slowly as 
described earlier.(fig.8)
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fig.25a: Interferogram and corresponding ordinary photograph 
showing changes in smoothing rate at twin and grain boundaries 
of muUtiple grooves of wavelength 8 microns after annealing at 
lOOO°C.

5O/t

fie.?5b- Sawtooth nrofile due to (100) facets on miltiple groove 
—z—<— after 5 hr at 1100°C.
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fig.26;?lot of log-,° Dq against 
l/T"for multiple sciatch results 
(all orientations included).

lOOO‘

Q = i-3 ev.
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fig.28a;Orientations'of striated and unstriated surfaces at 900°C
---- # unstriated, ° faint striated, x strong striations.
The lines through the points represent the traces of the exposed 
planes and show that they correspond to (100), (110),(210), and 
to a range of orientations near (410) along the base of the unit 
triangle.

fig. 28b: Orientations at which exact flats were observed.°The open 
circles indicate the most common orientations. At (111), 8 flats 
were observed, 4 °t (100), 9 at (110), and 7 near (410).
Accuracy of orientation of the flats was better than 3°.



   
 

         

 

   fiR.27: Example of asymmetric smoothing of multiple scratches on Ni. This 
can be seen by the displacement of the maxima across the twin 
boundaries.
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experimental error in individual values of B, being about t 2uyo. 

Experiments were carried out at 90(0, 1000, 1100 and 1220°C. The 

average values of Dg obtained are shown in table 7b. The depend­

ence of smooohing rate on orientation was again found to be very- 

marked and an example is shown in fig(25a). Pig(25b) shows a 

’sawtooth' shape due to the formation of (100) flats on the groove

profiles. The range in the individual values of Ds found at each

temperature was considerably smaller than in the measurements on

single scratches. At 900°C the smaHest and largest values of 
oBo differed by a factor of about 15 and at 1100 C by a factor of 

about ji^as compared to 25O and 12 in the single scratch case.

The distribution plots of the individual Ds values from mQtiple . 

scratches are shown in fig(15b) which provide further evidence 

that the dependence of diffusion constant on orientation increases

with decreasing tempprature.

Biscussion of Muutiple Scratch Results

Comppaison of the mean values of B in table Vab from the 

single and m^H;iple scratch experiments shows that the muutiple 

scratch values are larger by a factor of almost 2 at the highest 

temperatures used. In fig(26) the m^^^iple scratch results are 

plotted as log°B° against Vt ; the straight line drawn corresponds 

to an activation energy of 1.2(1 0.1)eV and a frequency factor Bo 

of about 2 x 10“° cpP/scc. The positions of the points (fig(26)) 

suggest that they could be fitted better to a curve increasing in 

gradient toward lower temperatures. This is what would be expect­

ed when temperature dependent impuuity adsorption occurs; the 

gradient of the curve should tend to the value for a clean surfare 

at high temperatures. However a larger number of points would be



required before it could definitely be established that this in 

fact occurs in the present case.

The difference in the values of Qg and DQ , and in the range 

of the individual values of Dg from the single and multiple scra^ch j 

experiments, can be explained on the basis oo the eifferenr -i'

orientation ranges covered by the profiles in the two cases. For | 

the multiple scratches used (see fig(24)) the curved profiles 

included orientations up to about 12° on either side of the

general surface, i.e. a range of about 24°; for single scratches I
o li1the range was generally less than 10 . Dg obtained in each 

measurement in the multiple case refers to a range of orientations fl 

of about 24° and will probably be biassed toward the slowest value.

for this range. Thus the very large values of D and also the s
simaiest are not included in the results.

In some cases, the range of orientations is such that Dg

varies appreciably over the curved profile even when this does 

not include a low index plane. In this case the profile decay 

would be better described by equation (8); an approximate sol­

ution shows that this predicts an asy^m^^ decay. This effect 

can just be detected across the twin boundaries in fig(27), where H 

a lateral shift of the maxima has occurred.

(iii) Impprity adsorption effects at 900°0
In the surface diffusion measurements described above, only

unstriated crystal surfaces were used. Howwver it was noticed 

that striations were visible on the 800°C and 900°C specimens.

Fig(28a) shows the distribution in the unit triangle of a
I I■ I

number of striated and unstriated surfaces oriented on the 900°C 

specimen. The traces of the exposed facet planes have been drawn.!



In fig(20b) orientations are plotted at which exact flats formed 

at surface irregularities such as grain boundary grooves, 

scratches, and humps caused by embedded particles of polishing 

material. Pig(29) shows examples of the facets observed.

The photomicrographs (a)(b)(c) and (d) of fig(30) are typical 

exam^^es of the types of striations observed. In (a) faint 

striations can be seen on a surface near (100): in (b)(210) 

striations are shown; (c) and (d) are examples of (110) stria­

tions. In (d) the striations can be seen to persist across a 

twin boundary as the two twins have this common (110) plane. The 

effect shown in fig(^0c) where regions near twin and grain bound­

aries are clear of striations°due to the change in surface orient­

ation, was fairly common. The formation of striations only near 

grain boundaries was also observed. By counting about 600 twins, 

it was estimated that the fraction of the total specimen surface 

broken up into striations was about l6°.

Discussion: Surface energy.
The previous results of MylrnralGO) showed that impnity 

adsorption could cause the surface energy of the (100) plane to 

be less than that for the close packed (111). A similar relation 

was found by Waater and Dunn (69) between the (100) and (110) 

planes in iron-3<° silicon alloys (b.c.c. ). All these orientations 

correspond to atomically smooth planes which in clean systems 

would be expected to have the most prominent surface free energy 

minima. It is conceivable however that the positions of foreign 

atoms on other surface orientations may be such as to produce an 

approach to planearity and indeed to leave a smaller number of

bonds unsatisfied than on the simple plane. In such a situation



( a)

fig.29

(b) ( c )

fig.29*: (a) Example of extensive (111) flats on a scratch and
grain boundary nrofiles ; in (b) and (c) faceting is seen at 
sm^^Ll surface irregularities, in (b) (4!_O) facets, in (c) (110) 
facets.
fig.30:Striations on Ni surfaces at 9OOOc . (Described in the 

text:):
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greater energy depressions would occur at these orientations.

The formation of striatic^ (fig(30)) shows that there are 

sharp minima of the surface free energy (i.e. point cusps in the 

t-plot) at (100), (110) and probably (210), and also a line cusp 

on the edge of the unit triangle from about 10° to 15® from the 

(100) pole along the [010] direction i.e. for orientations near tc 

(410).

The absence of striatoons near (111) does not ^^an that there 

is no cusp there; for the orientation derivatives of at orien­

tations near a cusp can prevent striation formation. Similarly 

the much greater extent of striation formation for the (110) cusp 

in the |_lioj direction than in the [ooi] direction, does not imply 

that the surface free energy increases more rapidly or rises to a ’ 

greater value in the jl1^n] direction. It is much more likely to 

be the effect of the orientation derivatives in the equation for

(17)

striati^on stability (Myykra(60),

t< _ ....................

where Yo is the surface free energy of the exposed facet plane and 

t.that for an orientation at an angle 6 to it.

Pig(31) shows plausible variations of 1 and graphs of equat­

ion (17) for the |00l1 and 'lio directions from the (110) pole, 

which would give the observed limits of striation formation.

The occurrence of the point cusps observed is ascribed to 

impurity adsorption. Connideration of simple surface models 

(fig(32)) shows that the (210) and (110) are particularly suited 

for trapping adsorbed atoms. If it is assumed that the adsorbed
1

impurity consists mainly of oxygen, then a cnpperisnn of the

radius of the oxygen ion (71) with the spacing of atoms on differ­
ent
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fig.32
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fig, 31: (a) and (c) are plausible variations of the surface
free energy near the (110) pole along the [OO1 and[lio] directions* 
respectively. 1n (b) and (d) the corresponding nlots of (ty?5tos8 
(broken curves) and I+fy>v3e) sm0 (solid curves) _show that ° 
striations would occur up to about 6° along- the ^)0l| direct ion

' over/



and all the way along to (210) in the IllOj direction.

fig.32: Possible arrangement of oxygen ions (broken circles) 
on Ni surfaces . In (c) the shaded circles reoresent atoms 
0.5 d below the (110) plane. In (d) shaded atoms lie 0.22 d 
below the (210) plane and those marked with a cross 0.22d 
above it. (d = interatomic distance 2.5 A )
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planes gives an indication of relative ease of adsorption on 

those planes. The diagrams indicate the most probable arrangement 

of oxygen ions adsorbed directly on nickel surfaces of orientation 

(111), (100), (110 ) and (210 ). The binding is greatest on (210) 

and weakest on (111).

Since this work was compelted.^Germer and Hartman ( 72 ) (ig60)

have published the results of an electron diffraction study of the

adsorption of oxygen on (100) Ni surfaces. An adsorbed oxygen

layer nranged as in fig(32b) was found to persist at temperatures 
-10

up to ~ 880°C in a vacuum of about 10 mm Hg.

Surface diffusion
The occurrence of (111) and (100) flats has already been 

discussed and is taken to indicate much higher diffusion constants 

for these planes than for surfaces of random orientation. Similar 

conclusions apply to the flats observed in this case also at (110) 

and near (210) (310) and (41(0). The higher diffusion constants 

can be explained in terms of larger atomic jump distances and 

perhaps lower activation energy on surfaces which are rendered 

smooth by impurity adsorption. That is, the impurity causes 

atomically rough planes to become effectively smooth and allow 

other nickel atoms to move across them more easily. The type of 

trapping site shown for the (210) in fig(32d) is common to all 

orientations between (210) and (410), and probably accounts for 

the flats observed in that range.

Vb. Experiments on Gold

Introduct ion 1
The effect of different atmospheres on the surface properties 

of solid gold at high temperatures, has been studied by several 

workers. The surface tension meaallurements of Udin et al (55)



(1952), (73)(1953), showed no significant difference when the ann­

ealing atmosphere was air or purified helium. Similar experiments I 

on silver did however show a large decrease in surface tension in 

the presence of oxygen, ascribed to adsorption of oxygen atoms on 

the silver surface. The work of Mair et al(54)(1959) showed, on 

the other hand, that the rate of evaporation from heated gold 

surfaces was enhanced by the presence of oxygen at low pressure.

It was concluded in the latter experiments that the observations 

could be satisfactorily explained as an imppuity effect. This 

impuuity was believed to be derived from the apparatus., and the 

increase in evaporation rate in the presence of oxygen was ascrib- H 

ed to the removal of the impuuity as volatile oxides. It was also: 

found that impurities initially present in the gold, diffuse to 

the surface and produce a larger impuuity concentration there.

In the present experiments an attempt was made to measure 

surface self-diffusion constants for gold. Strong evidence was 

found to support Mair's conclusions regarding surface contamin­

ation. It was also found that the impurity produces an apprec­

iable variation of surface free energy with orientation and prob­

ably causes a suppression of surface mobility. The changes in 

surface topography observed here are attributed mainly to bulk 

diffusion.

Experimental
Gold of two purity grades (supplied by Johnson, Maathey and 

Co.) were used: (a) 'specpure' gold, main impuuities quoted being, 

Si 3 p.p.m., Ag 1 p.p.m., others less than 1 p.p.m., and (b) assay! 

gold, used only in initial test experiments. Preliminary anneal­

ing runs were made both in air and in vacuum («10"5 mm Hg).



 

Microscopic examination showed that the surfaces were becoming 

increasingly rough and contaminated as the heating time increased. 

The amount of contamination was not noticeably dependent on the 

atmosphere although the degree of roughness was generally less for 

specimens heated in air. This is consistent with the assumption 

that the roughness is produced by evaporation from a surface over 

which there is a non-uniform distribution of impurity^obtained by 

diffusion from the bulk.

The rate of evaporation was found to be markedly dependent 

on surface orientation. Pig(33) shows, on a vacuum annealed spec­

imen, a marked change in surface level across twin boundaries, the 

smoother surface being higher. To reduce the effect of evapor­

ation roughening, and since there appeared to be no direct inter­

action between the gold surfaces and the atmosphere, specimens 

used for calculating surface diffusion coefficients were annealed 

in air in fused silica crucibles within a silica furnace tube.

An attempt was made to remove the impurity by successively 

melting in air in dense graphite crucibles, dissolving away the 

surface layers in aqua regia and flattening between ’mirror steel’ 

plates to a form suitable for microscopic examination (i.e. flat 

sheet about 0.5 mm thick). This was repeated until little or no 

impiuity was visible on the flattened surfaces. This process pro­

duced smooth initial surfaces which are difficult to produce on 

gold by mechanical polishing. Single and muHtiple scratches were 

then made on the surfaces in preparation for diffusion measurement

nesuits
Scratch S^c^^Q^^hing Measurements.

Surfaces initially free from contamination^in general showed
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fig.33: Interferogram of a gold surface showing how the
evaporation rate depends on orientation. The level of the smooth 
er central twin, as measured from the fringe shift, is about 0.6 
microns above the other. After 12 hr at 1040°G in vacuum.

fig. 34: Distortion of a multiple groove profile on gold due to 
particles of im^o^rity on the surface.



some residual impuuity appearing as experiments proceeded, the 

amount decreasing with increasing temperature. The amount of 

this impuuity was however small compared to that found in the pre­

liminary anneals. Only scratches of relatively large widths were 

suitable for smoothing measurements. Smaaier ones consistently 

had a higher concentration of impuuity along their lengths pro­

ducing distorted profiles and inhibiting smoothing. Fig(34) shows 

a muutiple groove profile on a gold surface on which there are 

particles of impunty. In addition only at the highest tempera­

ture used, 1035-5°C, did sufficient crystals remain reasonably 

smooth and sufficiently free from contamination to provide a
1

sensible mean value of the surface diffusion coefficient. The 

average muutiple groove wavelength used was 14 microns and the 

average single scratch Mdth 2 5 microns. The rate of smoothing 

on about 20 different crystal surfaces at 1035°C was measured in 

each case to give the following apparent values for D
s

Muutiple scratches ( \ = 14/) : Ds = 1012 x 10“5 cm2/sec

Single scratches ( X= 25/) ; D = 8.7 % 10“/ cm2/sec.
* s

The range in the individual values of D from single scrafrhes f s
was 5*5 x 10"5 to 10.7 10~5 cm^/sec i.e. less than a factor of I

2 between largest and smaJLlest.
j n2)

In the calculation of D e from measured values of —-— ) ,1
S i ’ kT ’ ■

/ was taken as 1450 ergs/mm/ (73), andJl' put equal to d/ , where 

d is the interatomic distance 2.88%.

Grain boundary groove measurements

The thermal etching of grain boundary grooves appeared to be 

less affected by surface imp^'ity. Even at temperatures down to 

900/0 the maaority of groove profiles were apparently of the
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normal shape due to surface diffusion. Examples of grain bound­

aries used in the measurements are shown in fig<35)* At each temp­

erature a number of markedly assymnetrical profiles were observed 

due to grain boundary sliding and migration (fig 36abbut such 

boundaries were rejected.

The results (assuming the ggoovLig etcianiem to be surface

diffusion) obtained from measurements on at least 20 boundaries

at each temperature are summmaised in TTble VI. This variation

of D with temperature corresponds to an apparent activatoon s
energy for surface diffusion of about 3 eV per atom.

At 1035o0 dihedral angles were measured on 20 symmerical 

grooves to give a mean value of 164° 7' » the range in the measured 

values being l6l° 12’ to 168® 44’• This corresponds to a bound­

ary free energy of 0.28^ i.e. 406 ergs/cmO taking 1450 

ergs/cm2,

Surface Energy Observations

The surfaces of a large number of crystals broke up into 

striations. Examj^^es of striated gold surfaces are shown in figs 

(37) and (38). 15 crystals on the 1O35°0 specimen were Greeneed

from measurements of the angles between the traces of annealing 

twins. The result is shown in fig(39). The striated surfaces 

correspond mainly to orientations near (111), only two near (100) 

and none near the (110) pole. The distribution of striating 

orientations is assymnetrical with respect to the (111) pole, 

extending further along the |oilj zone

A large num^^^r of twin boundaries 

inverted grooves of the type described 

example is shown in fig(40).

than along the jlloj zone .

were obseo0000 the [lio] 

by Myikira ( 60). An



(a) (b)
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**6±35
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fig,35: Examples of grain boundary groove profiles used for 
di Ffusi on at 1035°^- ( after 18 hr in air)

fig.36: Asymmetrical grain boundaries (a) due to boundary migrat­
ion in the direction indicated, and (b) due to slidig^ alonr the 
boundary in a direction normal to the surface. In (b) one grain 
is displaced vertically 0.3e relative to the other.



Table VI

Appea^ent Values of D from Grain Boundary Measurements on Gold

Temperature Ainealing Average Groove Average Apparent
Time width (microns) Do (cm2/sec)

(°C) (hr) •

1035 11 24.28 2.1 X 10'.4

1020 23 23.19 1.4 x 10"4

920 16.44 1.6 x 10'5

900 50 14.73 9.5 x 10-G



fig.37* Ordinary photograph and corresponding interferogram 
showing striations on a gold surface (twin A) oriented about 10° 
from the (111) pole. Portions of the twinning plane are exposed i 
on both twins A and B although B is un-striated except for facets ' 
at surface irregularities. The orientations of A and B are
shown circled in fig.39.

fig.38; (111) facets on a set of parallel grooves passing across 
a striated surface, 6°from the (111) pole.



fig.39; Distribution in the unit triangle of the orientations 
found for striated and unstriated surfaces of gold. The circte 
points correspond to the twins A and C of fig.37-

fig.40: Inverted twin boundary with a slightly asymmetrical 
grain boundary proove to the right. See also fig.34 -



Discussion 

Scratch Smaobhins
The apparent surface diffusion coefficients Dg of 10 x 10“5 

c 2
and 8.7 x 10“/ cm /sec c^taned from multiple and single scratch

smocohing measurements aae very argee . Acorni^g to equaoio n (4)

the surface diffusion coblficCent can hb wriiten aa D = s
■a2f exp(- Q^/Vt). Taking f as 3 x 10/2 sec”/, putting a equal to

the interatomic distance 2.885., and assuming a value as low as

-5 20.4eV for Q gives a value of D <10 J cm /sece 
s s

If, however, one assumes that volume diffusion is the dom­

inant process causing smoothing then it can be shown (see section 

III, p. 55 ) , using volume diffusion data on Au (20) that at 1035/l '' 

one should obtain an apparent surface diffusion coefficient of 

5.9 x 10"/ d^m/sec for scratch wavelengths of 14ju >and 12,8 x 10“/ 

cm /sec for wavelengths of 26iu Also, using vapour pressure data 

on Au(50), the evaporation condensation process can be shown to

produce an apparent value of D \ 10-7 cm /sec. Furthermore, 
s

smoothing on single and maniple scratches on Ni have,

shown that at high temperatures, D as calculated from single s
scratches should be increased by a factor of about 2. It there­

fore appears reasonable to conclude that the observed rate of 

scratch smoothing is due mainly to bulk diffusion. The differ­

ences between measured and apparent theoretical values of Dg due 

to volume diffusion may be attributed to a true surface diffusion 

contribution, but this is rather uncertain as these differences 

are of the order of the experimental errors.

That volume diffusion accounts for the observed mass transfer

is supported further by the fact that no significant dependence
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of smoothing rate on surface orientation was detected. For 

cubic metals volume diffusion should be isotropic whereas surface 

diffusion would be expected to depend on the arrangement of atoms 

on the surface, i.e. the surface orientation, as was found in the 

case of nickel. Abrupt changes in smoothing rate were observed 

here only at striated grains (fig(j^8)) for which no measurements 

were made. This is, however, believed to be a surface energy 

effect, low index facets being formed in such a way as to produce 

an energetically stable surface configuration.

Grain boundary grooves
The large apparent activation energy for surface diffusion

(/3eV) found from grain boundary groove measurements, suggests 

that the mechanism for material transport is not surface diffusion 

but may again be vo^u^me diffusion. The solution for the profile i 

of a grain boundary groove, due to volume self-diffusion in the 

solid has not yet been obtained. However from Herring's scaling k 

laws (3O)(1950), and by commpfison with equation (3)p-/ . the 

width of a grain groove produced by volume diffusion will ’

be W = const (Ct )\ ... ( 18), where 0 ( = —)is defined on

p.2/ i.e. -const (Dvt)5............................ (19)

From the measured values ofw, can be calculated to within v
a constant factor*, and so the activation energy for volume self­

diffusion evaluated.

x Assuming volume diffusion accounts for the average groove 
width, 24.28m measured after 18 hrs at 1035°/, the constant in 
equation (18) can be evaluated using the tracer volume diffusion 1 
coefficient (20) at this temperature of 1.02 x 10“° cm2/sec. 
Substituting gives,constant= 4.8 ,i.e. an empprical formula for 
grain boundary grooving by volume self-diffusion alone is

W = 4.8 (Ct)1'5................. (18)a.



Cearying out this process for the present results leads to a 

value of of about 2.2eV(-0.3). This is somewhat larger than

the value l.8leV found by a tracer technique on Au(20). In the 

initiation of a grain boundary groove, surface diffusion will be 

the dominant process. This will be the case even when surface 

mobility is low, since the linear dimensions involved are very 

smd^, If the true activation energy for surface diffusion is 

in fact very large, as may well be the case here due to impurity 

near the surface, then the contribution to the groove width will 

be greater at high temperatures. This may explain the large app­

arent value 2.2eV for volume diffusion.

The dihedral angles leading to the value of are independ­

ent of the grooving mechanism. The average value of 164° 7’ 

should be compared with previous experimental values of 164° 30T 

(Buttner, Udin and Wulff(73)(1953)) and 165° 48' (Hilliard 

Averbach and Cohen(74H196O). The agreement is reasonable in 

view of the possible bias toward selecting either high or low 

angle boundaaies, and helps to justify the assumption that the 

same value for the mean surface tension reported by Udin applies

also in this case.

Surface Energy
The appearance of striations can be taken as eriddnie of the 

presence of foreign atoms on nhe sratface. The pprrtclls oo 

impuuity visible on the surfaces in figs(37, 38) may be oxides of 

impu^Hies initially present in the bulk. The distribution of

contamination was not noticeably dependent upon orientation, as

for example was found for the case of adsiried oo Ni

surfaces. The effect of the cmpmpity a popp^ t t bb a lowe^ng
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of surface free energy (^) at those orientations where cusps in 

the ' -plot would normally be expected to occur, i.e. (1ll.) and
5

(100). In addition, the greater extent of striations along the 
[/Il] zone than along jlioj zone from the (111) pole, implies that

the j-plot is not sy]aalrical about this orientation. This is, in
s ■

fact, what might be expected for a clean f.c.c. as surfaces '

whose orientations lie along the [oil, zone will be composed of 

portions of (111) surface with linear (100) steps; along the j/Hoj 

zone they consist of (111) steps and the step density increases 

more rapidly.

The occurrence of inverted twin boundary groove profiles on 

smooth crystal surfaces, indicates that the surface free energy 

varies over a range of orientations as well as possessing minimum 

values at (111) and (10(0) which account for the observed strlatibns. i

Conclusions

1. The dominant process causing maaerial transport for the gold 

specimens used is volume diffusion. The activation energy for this

process, as calculated from masunments on grain boundary groov­

ing, is increased by the presence of imppuity in the surface layers,

probably by blocking iniiial suuface diifusion.

2. Evaporation rates are mam^dey d spender! en surface orientat-
n

ion, the effect of evaporation being to produce surface roughening . 

due to a non-uniform imppuity distribution. |

3. Sufficient impunity diffuses to the surface from the interior

to accentuate the orientation dependence of the surface free energy [ 
■ 1
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Vc. Experiments on Iron

Introduction

The surface diffusion experiments on nickel, described ear­

lier, showed that the rate of surface migration is strongly 

influenced by the presence of adsorbed impurity. 1t was thought 

that this impurity might possibly have been carbon, derived from 

the residual atmosphere of the oil diffusion pump vacuum furnace. 

Since carbon is soluble in iron, it was hoped that a small percent 

age of carbon would have little effect on the surface properties.

The data of Birchenall and Mehl(75)(195/) and other workers 

(76)(1950) oa volume diffusion by the radioactive tracer techniue 

in iron, show a marked increase in diffusion coefficient below 

the transition temperature between the t - and the (/-phase. On 

decreasing the temperature below the transition temperature, the 

volume diffusion coefficient increases sharply by a factor of 

about 660(75), while the activation energy for bulk diffusion is ' 

approximately the same in both phases,'^ 5.2eV per atom.

The present surface diffusion experiment on iron was carried 

out with the following aims;

(a) To mmasure surface self-diffusion coefficients, D , over as
range of temperatures both in the b.c.c. 0- and f.c.c. ( - phases.

(b) To investigate the presence of a discontinuity at the 

transition temperature of the values of Ds.

(c) To measure the activation energy, Qs, for surface migration 

in both phases.

(d) To correlate the rate of surface migration with surface 

crystallographic orientation.
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Experimental:

Experiments were carried out on pure iron sheet, 0.1 mm 

thick, AJ013, supplied by B.I.S.R.A. in the lold-rollei condition. 

Specimens, about 1 square cm, were meohasically polished down to 

alumina powder, or with Dianlast compound down to the O.25 micron 

grade. Single scratches were then made on the polished surfaces 

with a razor blade and sets of parallel grooves ruled at spacings 

between 5 and 15 microns. io difference was detected in the 

surface behaviour of specimens annealed in the alumina or fused

silica furnaces.

The rate of smoothing of single and eultiule scratches and 

growth of grain boundary grooves was measured an specimens heated 

in the d-pliese. At 880°C, for example, photographs of grain boun­

dary grooves were taken after heating intervals of 8p-, 11°, 20°,

49 and 92 hr. Specimens used for diffusion measurements in the 

Y-phase were each subjected to one long annealing period only, as 

recrystallization occurs on cooling below the transition tempera­

ture, 910°C, and again on reheating above this temp^at^e. For 

this reason no measurements on scratch smoothing were made for the 

i-phase, but only grain boundary measurei^Ss, values of Ds being 

calculated using equation (3)p.(o •

Results
0°iron : Surface Diffusion Measurements

Striations appeared on the surfaces of a large number of

grains although no visible impuuity was detected except at the 

lowest temperature used, 750°°, where a number of small particles, 

probably oxide appeared on some grains (fig 41). Only mediated 

grains were used for diffusion measurements. The average grain



size in all o^-iron specimens was small being on the average about 

100 microns in diameter.

Measurements of the rate of increase of grain boundary groow 

widths,W, for 30 boundaries between unstrlnted crystals, on a 

specimen heated at 880°C, showed that within experimental error 

W increased as t0/np to widths of about 20 microns. An example 

of a grain boundary groove developing on an ex-iron specimen at 

880°C is shown in fig(43)together with the corresponding plot 

showing the variation of the groove width with time. The range 

in the measured slopes was 0.22 to 0.27 giving a mean value of 

0.252. It was therefore assumed that for all temperatures used 

surface diffusion only need be considered in calculating values 

of Ds from measured groove widths up to 20 microns. Marked 

deviations from the t / law were found for boundaries between 

striated grains (fig( 42)). This is not surprising as Muuiins' 
theory (40) is based on a constant t .

Specimens used for runs at lower temperatures, were first 

subjected to a 5 hr anneal at 880°C to produce stable grains, 

values of the diffusion coefficient subsequently being calculated 

using equation (15).

The rate of smoothing of single and muutiple scratches was

measuued, in each case on about 30 different crystals at each

temperature. The average wavelength used in these measurements

was about 10/, ranging from 8 to I3M. In calculating diffusion

coefficients from measured values of B (- -^=-----), the surface
k I

energy 1 was taken« 2000 eiss/ca0 ( 77 ^and d the interatomic dist­

ance ~2.48 x 10cm.

Table Vila shows the mean values of Dg calculated from the



75O°c
fir.Zl: Contamination on ano<-iron surface 

for lOhr at
after annealing

m vacuum,

fig.42: Crain boundary between striated grains on <*-iron.
For such boundariesTthe rate of increase in width 
does not follow a t4 relationship.
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880®C

fip./!3: Development of a grain boundary proove on X-iron at
8800C. The slone of the pranh of log(width) against

log(time) is 0.24± 0.01, indioatinp that surface diffusiod 
is the dominant grooving mechanism.



Table VII

■Surface Diffusion Coefficients for _jx- and Y-iron

p
Method Tempe rature (°C) Dp(cme/sec)

( a)
e - iron 750 0.11 X 10

Multiple 800 0,28 11
Groove
Smoothing 850 0.89 II

865 1.7

880 2-3 tt

750

Single
Groove

800 0.22 II

Smooohing 850 1.1 II

865 -

880 2.9 M

750 0.14 II

Grain
boundary

800 0.43 II

measurement s 850 1.4 II

865 -

880 5-75 II

(b)
1 - iron

925 1.45 x 10

Grain 975 1.9 11
boundary

1060 7.7 H

1100 22.4
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different techniques. Reppesentative distribution plots of the 

individual values of D are shown in fig(44)- la fig(45a) theo
1/

mean values of Ds are plotted as log(oDs versus 'T, T being the 

temperature in degrees absolute. The straight line drawn through 
the points corresponds to the equation D_ = exp(^yUT ) with 

Do = 5.4 x lo5 cm2/sec and an activation energy, Q , for surface 

diffusion of 2. 5eV per atom.

Dependence of D/ on surface orientation

As indicated in fig(44)/the range in the measured values of 

Ds decreases with increasing temperature. Thus at 88oo0, where

the mean value of D/ from multiple scratch measurements is 2.3
"* 6 ? / 6

x lO cmc/sec, the individual values range from 1.4 x 10 to

3.1 x 10“/. This range is not very much greater than that expect 

ed from the estimated experimental error of- 20/ on the individ­
ual values of D/. At 750°C, where the mean Dc = 0.11 x 10"/ 

cm2/sec, the range in the values found was 0.04 x 10"/ to 0.21 

x 10 cm /sec.

At each temperature, however, the rate of scratch smoothing 

on a of grains was markedly slower than average, but such

grains were invariably found to be striated, with facets along 

the scratch profiles. Here, as in the case of gold, the slow 

smoothing rate was attributed to the fact that the surface config 

uration produced by facetting was energetically stable.

Since annealing twins do not frequently occur in b.c.c. 

metals (see appendix B), the X-ray back reflection technique was 

used to determine the orientations of a number of the larger 

grains (100 to 250 microns diameter). For this a Hilger micro­

focus X-ray tube was used, with a 100 micron diameter focal spot
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,O9.P.

fig.z!4: Representative distribution plots, of values of Ds 
( a J from grain boundary measurements in -iron, (b) grain
boundary in cX-iron, (c) from multiple scratch
measurement sbn o( - iron.
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fig.45: Plots of log^Pg against 1/T (a) for o-iron results, 
o mutiple scratches, x single scratches, • grain boundary

groove measurements (b) for grain boundary
groove measurements in o - and -iron . This shows that at 
the transition tem^pe^^ui'e, P for o-iron is greater than that 
for (-iron by a factor of about 8.



  

T 8cm

fip.46b

1

fig.46a: Diagram of experimental arrangement used in taking 
X-ray back reflection photographs of - iron crystals. Using a 
100 micron diameter pinhole in the lead foil, a region of about 
150 o diameter was irradiated, "or smaller crystals, a 50 
ninhole was used. A 16mm objective was substituted on the Unicam 
microscope to select individual crystals for measurement. A 
more refined technique has previously been described by ?ranks(78
fig.46b: Central portion of a back reflection pattern (actual 

film'si ze )obtained from a crystal with its surface near a (211) 
plane. Larger angle spots could be identified on the actual 
film. The central shadow is due to the nut supporting the lead
foil, oor the interpretation of the back reflection natterns a 
Greninger chart, suitably reduced for a snecimen to film distarce 
of 2.8 cm, was used.
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fig. 48
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fig.47a : Distribution in the unit triangle of striated ( o ) 
and unstriated ( • ) surfaces of o-iron. The traces of the exposed 
facet planes coincide approximately at the (111) pole.

fig.47b: Correlation of smoothing rate with orientation for 
i '-iron at 975°C. • fast, o medium, a slow, ® very slow.

fig.48: Relative directions of rolling and striations on iron 
specimens (a) heated only in the K-phase, and (b) heated initial­
ly' in the V-phase followed by an anneal at BBO°C.
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in conjunction with a 'Unicam' camera. The arrangement used is 

shown in fig(46). The orientations of the crystals found in this 

way are shown in fig(47a)« It will be noted that the majority of | 

the largest crystals chosen were also striated. The traces of fl 

the exposed facet planes have also been drawn and are seen to 

coincide approximately at the (111) pole, i.e. the exposed planes | 

are of (111) orientation.

This distribution of points in the unit triangle shows strong’ 

preferred orientation in the specimen. This was checked by 

measuring the angles between the rolling direction on the material 

(as shown by the presence of rolling grooves on the reverse surface 
of the specimen ^and the traces of the exposed facets, on a large | 

number of striated grains. In the absence of preferred orientat­

ion, even if all striations correspond to the same low index 

plane, no correlation would be expected between the rolling and

In fig ( 4^., ttas, »«„. direc«i°ns ar» 

shown, and their distribution serves to confirm the presence of 

preferred orientation.

To reduce the extent of preferred orientation, one ruled and i 

polished specimen was annealed above the transition temperature, 

at 950°C, for 15 minutes, followed by a 40 hr anneal at 880°C . J 

Examination showed a much wider range of smoothing rate on 

unstriated crystal surfaces. In addition, the direction of

striations appeared to be almost random and unrelated to the 

rolling direction (fig 48b). The general surface had however 

large scale irregularities (fig 49) due to the volume change on

passing through the transition temperature and the different rate 

of growth of individual crystals on transformation. To



eliminate this effect a specimen, previously annealed at about 

1000°G for 50 hours, was mchanically polished, ruled, and ann­

ealed at 880Oc. The resulting specimen showed a wide range of 

diffusion rates on different crystal surfaces (fig 5°) and in 

addition the average grain size was considerably larger (3OO to 

400 microns in diameeer). Specimens prepared in this way would

be more suitable for X-ray measurements of orientation and for 

effect irg a correlation of surface diffusion rates with orien­

tation. It is hoped that this will be done in the near future.

iron

Diffusion Measurements

In calculating diffusion constants from measured grain bound­

ary groove widths,,it was assumed that only surface diffusion need 

be considered. This appears reasonable since even at the highest 

temperature used (llOOOc) the bulk diffusion coefficient (75) is 

less than that at 880°C by a factor of about 5. The type of 

surface irregularity produced on passing the phase change tempera­

ture (fig 49) was found on all Y-phase specimens, but the scale 

of such undulations was in general large compared to the groove 

dimensions, and should have negligible effect on the measurements. 

Also the change in shape on cooling below gioOc, (when the groove 

no longer marks the position of a grain boundary) should be 

negligible. Although some rounding off may occur at the groove 

root, no significant change in width would be expected during the

short cooling times involved (o 15 min in cooling from 1000°0 to 

6oo°c.).

Table VIlb shows the mean values of Ds calculated taking 

= 2000 ergs/cnO as for (-iron and d = 2.58 T. The



fig.49

SOp

fig.50

fig•49 * Innerferopram of the surface of an iron specimen after
annealing for 15 min. at 950°C followed by 40hr. at 880°.

fig 50 : Examnle of marked orientation dependent smoothing on
o( -iron. This snecimen was initially annealed at lOOO°O. 
oolished, ruled, and reheated at 88O°C. 1



corresponding distributions of the individual values are shown in

fig(44). In fig (45b) the values of Ds found from grain boundary

measurements ino(- and {-iron have been plotted as log Ds versusfr 
10

At the transiti on temperature there appears to be an increase in 

the value of Ds by a factor of about 8. The value of Do for 

(-iron given by the graphs 105 cm /sec, while the activation

energy Q is, within the accuracy of the results, the same as fors
iron (-2.5eV).

Dependence of Dg on orientation

The relative rate of smoothing of single scratches, of width 

TOjlj, on different crystals of the 975°c specimen was examined.

A number of crystals were oriented by the twin trace technique.

The variation of surface diffusion rate with orientation is shown 

in fig(47b). This indicates that diffusion is fast on surfaces 

whose orientations lie near the (111) pole, and slow for orien­

tations near (100).

Surface Energy
The occurrence of striated surfaces was rare. However a 

large number of twin boundaries had inverted profiles, indicat­

ing that the orientation derivatives of the surface free energy

are appreciable. We hope in the near future to compute the 

(^-plot for f.c.c. iron from measurements on twin boundaries as 

was done by Myikira (fig I40) for Ni.

Discussion of Results

o - iron
------------- '/uThe t 14 relationship regarding the variation of grain boundaiy 

groove width with time can be taken as evidence that the only 

transport mechanism contributing significantly to the grooving 

process is surface diffusion. In addition, the volume diffusion
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contribution to the smoothing of multiple grooves of wavelength 

10 microns at 880°0 would lead to an apparent value of D of
r 20.3 x 10“ ° cm /sec i.e. about 12O of the mmasured value. This was 

calculated using Dy = 5 o 10" cm ^/sec, extrapolated from the

results of Birchenall and Mehl (75), by the method indicated on 

p.35 . This volume diffusion coefficient may, in fact, be consid­

erably larger than the value applicable in cases where a nett 

transfer of material is involved; MeechaT35)(!960) has suggest­

ed that diffusion by a ring mechanism .may occur in b.c.c. iron. 

Also taking the vapour pressure of iron at 880°C as 3 x 10“5

dynes/cmO (50), it can readily be shown that the evaporation-
Con slant

condensation process would lead to an apparent surface diffusio^ 

smaaier than the experimental value by a factor of about 10O.

The relatively small spread in the values of D for differents
crystal surfaces, together with the evidence for preferred orien­

tation, suggests that the results apply for only a small range of 

orientations.

The activation energy Q (2.5eV) and frequency factor Dns ®
5 2(5.4 - 10 cm ^/sec), derived from the results, are very large.

n ]9-l
Writing Dq = J-a^f, as before and putting f = 3 x 1(ro sec shows 

that the average atomic jump distance would require to be about 

8 microns, which is quite unreasonably large. The large values 

of Q and D are thought to be due to the presence of impuuity on 

the surface, probably oxygen from the residual furnace atmosphere, 

which increases the activation energy. This explanation is 

supported by the fact that a very low value of Ds was found at 

850OC for a specimen annealed in a poor vacuum so that visible

contamination was produced on a large number of crystal surfaces 
(point C fig(45)).
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The large activation energy is again attributed to impuuity 

adsorption. The marked, dependence of smoothing rate on surface 

orientation supports the assumption that surface diffusion alone 

contributes significantly, as volume diffusion is expected to be 

isotropic for cubic materials (Herring(29)). That distinct humps 

occur at grain boundaries implies that the vapour transfer mechan­

ism also contributes negligibly.

The variation of diffusion rate with orientation (fig 47b) 

suggests that the adsorption is greatest for orientations near 

(100) and least near the (111) pole. These conclusions are simi­

lar to those reached in the case of nickel. This is not surpris­

ing in view of the similarity of the f.c.c. lattices of nickel 

and (-iron, and the fact that the same annealing conditions were 

used in both sets of experiments.

The discontinuity in the values of D from grain boundary s
measuremenns, fig(45b), is difficult to explain. The experimental 

points show no significant change in the activation energy suggest 

ing that the surfaces for both phases are equally contaminated. 

Part of the discrepancy may be due to boundary migration in the 

(-phase, which would lead to values of D smaller tann the tuueo
values. This effect would not, however, be expected to introduce 

an error greater than about 10C (- at 925°C where an 

time of 100 hrs was used, the time for boundary migration should 

be less than 10 hrs). The change in diffusion rate may be due to 

a difference in the structure of contaminated surfaces of the

b.c.c. and f.c.c. crystals.
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Vd. erimsi^^s on Platinim

Introduction

The results of the experiments on the transition metals, 

nickel and iron, showed that adsorption, probably of oxygen, had 

a large effect on the surface behaviour. In the case of gold the 

effects observed were believed to be due to impuuity initially 

present in the gold itself rather than to contamination from the 

atmosphere. Further surface diffusion experiments have been 

carried out on pla^num. These investigations have not yet been 

commleted, but sufficient results have been obtained to indicate 

the general surface behaviour.

Experimental—°----------------- nt
Esqperiments were carried on pure pla^num supplied byA

Johnson Maathey and Co. The main impurties detected in their 

spectrograph^ analysis were: Pd 6 p.p.m., Fe 4 p.p.m. , Au 

3 p.p.m., Cu 2 p.p.m., others less than 1 p.p.m. The maaerial 

was supplied in the form of sheet 0.5 mm thick. The grain size 

on specimens, annealed without deforming the maaerial further, 

was only of the order of 150u diameter, while reducing the thick­

ness by about 50° by flattening between 'mirror steel' plates, 

led to a grain size of about 500f on recrystallization. Experim­

ents were carried out at 890, 950. 102(0, II30 and 1250°C; diffus­

ion results have so far only been found from the rate of smooth­

ing of muutiple scratches. At 1250o0 the average wavelength used 

was about 11 microns while at 1250°0, to avoid excessively long 

annealing intervals, it was only about 6 microns. The heat treat­

ment of all specimens was carried out in the same vacuum furnace

in an alumina crucible with a lid of cormmrcially pure pla^num



 foil. Specimens were mechanically polished with 'Diaplast’ 

diamond compound before ruling.

Result s
The smoothing of typical multiple groove profiles at 890°0 

and 1250O0 are shown in figs (51, 52). In general surfaces were 

free from visible imppuity; the exceptions to this statement will 

be described later. At the lowest tempeest-ures, 89O and 950*0, 

no break-up of the surface into striations occurred. At 1020°C 

a few crystals showed faint striations after a total annealing 

time of 70 hrs while at the highest temperature, 1250°C, striat­

ions were present after an anneal of about 3 hrs and persistedI
after a further 76 hrs at this temperature. At 1250°C about Vvof 

the total surface broke up into striations.

The mean surface self-diffusion coefficients calculated from 

measurements on unstriated surfaces are shown in table VIIlO'. A 

value of 2000 ergs/omO was assumed for the specific surface enery

no reference to a measurement of 1 for solid plat^um has been 

found in the literature. The temperature variation of D is

plotted in fig(55); the corresponding frequency factor Dq =

9.8(17) - 10

energy, Q = 1.2(10.2 )eV per atom. s
Diffusion rates on smooth crystal surfaces were again found 

to be mmrkelly dependent on crystal orientation. The photomicro­

graphs in fig( 54) illustrate this. Annealing twins were suffic­

iently frequent to allow a number of crystal surface orientations 

to be determined by the twin boundary trace method. This was 

carried out on the 1020°C specimen. The result is shown in the 

unit triangle of fig(55). The range of orientations covered by



Table Vlll

Surface Diffusion Results on "latinum

Temp. 
(°C)

Mean 
( cm2/

Ds 
sec)

Range in 
values of

Factor between
Ds largest & smallest

Average
initial

orientation
range

890° 0.75 X 10“7 0.19 - 1.6 X 10-7 ~ 8.4 ~ 33°

950 1.03 1 1 0.39 - 2.4 it ~ 6.2 ~ 26°

1020 1.7 1 1 0.74 - 4.2 n ~ 5 "7 - 20°

1130 4-8 I! 1.2 - 9.8 „ -8.1 - 26°

1250 12.2 1 2.5 -27.0 ii ~10.8 - 19°



-Pig.Sl- Smoothing of a set of multiple grooves of wavelength 6.6 
microns at 89O°C (a) after | hr at ll8O°C, (b) 3hr at 89O°C,
(c) 13 hr at 89O°C, (d)53 hr at 890°C.

fig.52: Examples of the grooves used for 125O°O measurements.
(a(after Ihr at 125O°C (higher harmonics are still present),
(b) after 5 hr at 125O°C, (c)26 hr, (d) 76 hr at 125CUC.
This illustrates the slow smoothing of the extreme grooves, due 
to the lateral shift of the extreme maxima.
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J^r * id"

fif>54

50z» '
pig .55: Plot of lc)g10Ds apainst 1 /T for pure platinum.No
corrections have been applied for the effect'* of volume diffusion 
fig. 54: Orientation dependent smoothing on platinum,( a) , (b) at
1° 5^°C, (c) 95°°C, (d)890°C. In (d) the diffusion rates are 
different for all three crystals shown.
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f % "55’• Variation of diffusion rate with orientation for 
platinum at 10200C. • fast, x slow, ® very slow. The
initial orientation range for each measurement (20°) is also 
shown.' This range could- be reduced considerably by allowing 
smoothing to proceed until it was only about 5° say, but this 
would lead to some loss in accuracy.
fig.56: Distribution plots of values of Ds for Ft. The great­
est range of values occurs at the highest temperature, 1250°C.
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the initial sinusoidal profiles at this temperature was about 100 

on either side of the general surface. The orientations covered 

in each measurement are also shown. Although further points are 

required to give more detailed information on the dependence of 

Ds on orientation^it can be seen that whenever the curved profile 

includes orientations near (100) the resulting rate of smoothing 

is slow. This probably also applies to surfaces near (110). For 

general orientations and those near (111) large values of D_ apply.

The variation with temperature, of the spread in the indiv­

idual measured values of Dc, was somewhat different from that 

found in the case of nickel or iron. In the previous experiments 

the range of values of Ds decreased with increasing temperature.

In the present results the factor between largest and smallest 

individual value was greatest at the highest temperature (« 10.8) 

and no consistent variation with temperature was found. This can 

be seen from table VIII$. The distributions of the individual 

values of D° at each temperature are plotted in fig(°6)•

As stated on p.%1 section III, the theory of the sine wave 

smoothing technique assumes that l( , the surface free energy, does 

not vary over the orientation range of the profile. For striated 

surfaces, the profile will contain an orientation of minimum 

energy so that the assumption is not valid. The rate of smoothing 

of multiple grooves was measured on a number of striated surfaces 

at 1250°0. In fig(57) the resulting values of B, calculated by 

assuming that the theory is valid, are plotted against the angle 

between the striation and groove directions. Fast smoothing 

occurs for striations at large angles to the grooves while for 

small angles the smoothing is very slow (fig(°8)). The nett
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decrease in surface energy is greater for striations at large 

angles than it would be for a general range of orientations^where- 

as for small angles it is smaaier. For small angles, flattening 

might in fact cause an increase in surface energy.

Discussion

it has been assumed that surface diffusion only, contributes

significantly to the observed topographic changes. From the
vapour pressure of pla^num at 12 SO °C of 5-2 x 10"$ dynes/cmS ( 50),.

calculations show that the vapour transfer mechanism would lead

to an apparent Ds of about 1.3 x 10"$$ cm2/sec$which is comppetely

negligible. Volume self-diffusion in pure platnnum has been

measured by the tracer technique by Kidson and Ross (79H 195*7)»

in the temperature range 1325 to l600°C. Using an extrapolated

value of 5*2 x 10”SS ci^/sec at 125O°C, it can be shown, by the

method outlined on p. 53 , that the apparent D due to volume s
diffusion would be 2.93 $ 10“" dn^sec., i.e. about 25$ of the 

experimental value. At 1130$0, volume diffusion would account 

for 10$ of the experimental value, while at lower temperatures 

the contribution is negligible. These corrections would have 

little effect on the general conclusions to be drawn from the 

results. Over the range of wavelengths used at 1250°C (9-5 to 

13.5js \ no dependence of the measured value of B on wavelength 

was detected (fig 59). T^^se caPcuPations indicate however, that 

it would be of interest to carry out a further experiment at 

13000c using sets of grooves of wavelength 5* 10, 15» 25$ say, 

and investigate the variation of the measured decay constant on

wavelength. Such an experiment has been started.

The values for the constants Qs, 1.2(±0.2)eV, and DQ,



fig .57

O I o' 2 o' 30* 40* so* 60 70* 80* 90*

fig.57• Variation of smoothing rate (expressed by the constant 
0] for striated surfaces, with the angle between striation and 
scratch direction.

fig.58: (a),(b) Example of slow smoothing when striations are 
nearly parallel to the scratches. (c),(d) Fast smoothing for 
striations near 90°. In (d) the original set of 4 grooves.Xi 10u 
have smoothed off to produce a profile which is almost sinusoidal 
of wavelength near 50^ .
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fig.59:Plot of the values of B found at 1250 C against the wave­
length’, X , used. There is no general increase in B with increasing
\ •

fig.60: (a) Impuuity alonp prain boundaries in platinum, after 3p 
hr. at"’~l020°C. (b) same region after a further 24hr. at 1020 C.
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9-8 (17) x 10 J cm /sec are of the expected order of magnitude.

The value of BQ predicted by equation (4) is 8 x 10“ cm2/sec.; 

in view of the sensitivity of the measured Lo to small changes in 

Qs the agreement is tolerable. The activation energy for volume 

self-diffusion in Pt found by Kidson and Ross(79) was 2.96eV. The 

value of Qs obtained here is in agreement with the original 

postulate, Qs <

The similarity of the orientation dependence of Ds with that 

found for nickel and face-centred cubic iron is immediately obv­

ious. It therefore appears that impurities are most strongly 

bonded to surfaces whose orientations are near (100). Since plat­

inum is also a transition element, the adsorption of impurities 

from the residual furnace atmosphere, probably occurs as on nickel 

and iron. However evidence has been found that the bulk metal 

itself is a source for surface impurity. On the specimen used for 

diffusion measurements at 1020°C, impurity was visible on the 

surface after heating for hrs. This was completely confined to

regions along grain boundary grooves as can be seen in fig(6o). It 

is believed that this impurity arrived on the surface by diffusion 

from the interior along the grain boundaries. The distribution is 

sufficient to justify this explanation but further support comes 

from the fact that the amount of impurity was independent of sur­

face orientation and, therefore, was probably not derived from the 

atmosphere. Also twin boundaries were free from contamination; 

the coherent nature of twin boundaries suggests that they would 

not provide easy diffusion paths. The distance that•the visible 

contamination extended from the boundary was dependent on orien­

tation. This can be explained by different diffusion rates on



 

different crystal surfaces. On annealing the specimen for another 

23-p hrs at 1020°C this impurity commUltely disappeared and did not: 

reappear on further heat treatment, showing that the platnnum 

surfaces were self cleaning (at least as regards visible impuuity) 

under the vacuum conditions used.

The effect of temperature on the orientation dependence of 

Ds, and the appearance of striations only at high temppratures, 

may be explained as a result of bulk impuuity. If it is assumed 

that the energy for removal of the ^pp^^y, by evapor ration from 

the surface, is less than that for its diffusion to the surface, 

then it is possible that only at the highest temperatures is 

there any appreciable impuuity concentration on the surface. The 

evidence on striations supports this suggestion. It was also 

found that striations, present after a high temperature anneal, 

disappeared on heating at a low temperature and re-appeared after 

further heating at the high temperature (fig(6D). The occurr­

ence of inverted twin boundaries was less frequent at the lower 

temperatures indicating that is in general smaller. That the

spread in measured values of P_ does not decrease at high tempera-o
tures is also consistent with a greater concentration of surface 

impuuity as the temperature is increased.

It is hoped that further investigations will be made on 

pl^nnum from a different source.

The future progranme of experiments on pla^num includes

(a) an investigation of the dependence on wavelength of the mea­

sured values o^ Ds at-pl300°C; by using values of X of about 5» 

10, 15 and 2on the same specimen it should be possible to 

identify the dominant transport process,
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(b) measurement of D at 800°Co
(c) measurement of the rate of development of grain boundary 

profiles (i.e.W as a function of time) to provide a direct 

compeaison of the multiple scratch and grain boundary groove 

methods for surface diffusion measurments.

(d) further studies of the dependence of D on orientation.3
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VI. General Discussion

The muutiple scratch technique appears to be a successful 

method for the measurement of surface self-diffusion coefficients, 

and is particularly well suited to an investigation of the depend­

ence of diffusion rate on surface orientation. Its main disadvan­

tage with respect to a carefully performed tracer experiment would 

be that a range of orientations must necessarily be involved, 

Howevvr, with suitable refinements this range could be reduced to 

less than 5° on either side of the general surface.

The basic assumptions of the theory are that D_ and )( are
s s

constant over the profile and no large slopes are involved. When 

Ds varies with orientation—the masured rate of surface flattenng 

will correspond to a mean value for the orientation range consid­

ered. In certain cases (fig 27) the variation of Ds can cause 

assymetrical smoothing but this was rarely observed. The varia­

tion of Y with orientation makes the technique inapplicable for 

surfaces very close to planes of low index where minimum values 

of Y occur. In general such cases are easily recognized due to 

the formation of flats or striations. It will be noticed that in 

the experiments on platnnum, orientation ranges of up to 33 — were 

involved in some profiles i.e. 16-r° on either side of the general 

surface. As pointed out by MuHins ( (#0) ( 196o0the small slope 

approximation used in the theory is valid up to angles of about

17°. The actual approximation involved is that the curvature,
______ ^2Vz 1 + (al

bx' For
1 */ 0

angles of 16—— ( = TanHA )

the error is about 10% and so within the experimental accuracy.

The values for the constants Qs and D— obtained for nickel 

and platinum, where contamination was least serious, are in



general agreement with the simple surface diffusion model discuss­

ed in section lie. The collected values for the constants DQ and

Q_ are shown in table IX.

It has been found that impurity plays a major part in deter­

mining the surface behaviour of the metals investigated. For the 

face-centred cubic transition Fe, Ni and Pt, the effects

of adsorption are very similar and indicate that the properties of 

crystal surfaces near the (100) orientation are particularly 

liable to be affected by impunty. The volume of the maaerial can 

also act as a source of surface impunty as was found with Au and 

Pt. These experiments thus illustrate that in order to obtain 

diffusion data for clean surfaces considerable care must be taken

in eliminating contamination both from the metal itself and its 

environment. That such clean conditions are in fact attained 

could perhaps be checked by carrying out electron diffraction 

studies, such as performed by Germer and Hartman (72) during the 

diffusion anneals.

Further applications of the technique are possible such as 

the measurement of volume diffusion coefficients or of surface 

free energies. In the case of gold, for exam^^^e, where the vapour 

pressure is smaai, volume diffusion could be measured by using 

large values of the wavelength. Surface energies could also be 

derived from the rate of surface smoothing if reliable values

for surface diffusion coefficients were available from tracer

measurements. Either of the quantities D or V can be derived

 5from the measured value of B ( =

S " s

); in the present exper­
kT

iments Dg was treated as the unknown and previously determined

values of substituted.



 

 

 
 

 

Table IX

Summary of Surface Diffusion Results

Me t al Method Orientation

Ni Single Scratches near (111)

(pure) near (100)

all orientations

Ni Single Scratches all orientations

( im^ru^^)
MuHiple Scratches all orientations

c( - Fe Single & muutiple 
' scratches & grain

boundary grooves

all orientations

( -Fe Grain boundary 
grooves

all orientations

Pt MuHiple Scratches all orientations

r-



Table IX (contd.)

Expected Dq
Dn ( cm^ zsec ) ( = } a^f )

1.9(+1.5) * 1O“3
10-3

2.1(11.2)

3.0(12 ) x 10'-
10" 4

6.8(14 ) x 10"-

2.1(1 1.2) x 10"2

5.4 X io5

~ io5

Qs(eV) Qy(eV)

0.62(1 0.08) 2.75

1.7 ( r 0.2 ) 11

0.78(1 0.1 ) 11

0.92(t 0.1 ) IT

1.2 (1 0.2 ) 11

2.5 (+ 0.3 ) 3.2

2.5 (1 0.3 ) II

9.8(17) x 10"3 1.2 (-0.2 ) 2.96
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APPENDICES: Incidental Observations

A. Some observations on gold deposited from 
the vapour on a hot nickel substrate.

During the annealing of gold specimens in vacuo a large 

variety of gold deposits appeared on the nickel radiation shield 

Sg (fig 10). For an evaporating Au surface temperature of 1040°C 

the Ni substrate was at about 95000. The nature of the gold 

deposits was markedly dependent on the substrate condition.

When a pure Ni substrate , on which there was no visible con­

tamination, was used, the form of the deposit was as shown in 

fig( 62b). This shows a sort of mooaic pattern very similar in 

appearance to a system of grain boundary 'ghosts' i.e. grooves 

which mark the position of grain bou^c^p.i'ies before grain growth 

occurred. However, all such grooves were complltely smoothed off 

outside the region of deposition, (fig 62a), and in addition, the 

same type of pattern was found on a Ni substrate, previously ann­

ealed for 6 hrs at 1250O0 in vacuum to produce smooth crystal 

surfaces. The discontinuity of the pattern at twin boundaries 

(fig 62c) suggests that it is related to the structure of the 

nickel surfaces.

The exact origin of the pattern is not known. It appears 

however that the gold atoms are prevented from diffusing into the 

nickel perhaps due to adsorbed oxygen on the surface. Gold layers 

may then nucleate at particular points on the surface and extend

until they meet neighbouring layers with the junctions involving 

some degree of miszfdt, i.e. grain boundaries are formed. Such 

grooves can in fact be observed with the interference microscope.

Very different results were obtained with a contaminated Ni



substrate. The contamination had been produced during a run 

with the substrate at 800°C in a poor vacuum, so that many 

crystal surfaces had marked striations and visible impui'ity.

After 17 hrs, (Au temperature 1040°C, Ni temperaturr950o0) a 

variety of discrete deposits were observed. The maaority of these 

were small apparently round particles distributed randomly over 

the surface, except for clear regions in the vicinity of larger 

deposits. These clear regions were also than other parts

of the surface.

In addition other highly regular deposits occurred such as 

pyramids on (100) bases and (111) sides. Platelets were also 

frequent being of (111) orientation bounded by (100) or (111) 

planes. These deposits had very sharp corners the angles being 

60 or 120°. One large equilateral triangular platelet was acc­

identally deformed, after being detached from the surface, and 

showed distinct slip along a plane parallel to one edge of the 

triangle illustrating that it was bounded by (111) planes (fig 

63). Platelets attached at only one vertex, such as were first 

observed by Sears (80)( 1950) for Hg, were also fairly common.

That the observed platelets etc. were actually of gold was 

confirmed by taking several X-ray rotation photographs of a 

'stalk' of Duuafix with a number of deposits embedded in it.

A large number of gold crystal whiskers were also found 

(Nabarzro and Jackson (ll)( 1958)). Fig (64 abc) shows a large 

whisker , - 200/0 in length, of width o 1O0 and inclined at an angle 

off 10® to the surface, growing from the end of a surface deposit 

The interferograms of base and tip illustrate the of

the whisker surface.



 

The theory of whisker growth is well known (Burton, prank 

and Cabrera (10)(1951)), and depends on the presence of an axial 

screw dislocation. Eshelby(8l)(1955) bas predicted that the effet

of the screw dislocation should be to cause an axial twist and
kz * <£•

derives the formula o( - /irr (l- 7^) .................... (20)

where < is the angle of twist per unit length, r is the radius 

(assuming the whisker to be cylindrical), b is the Bwrgers vector 

(b.v.) of the screw, and € is the displacement of the dislocation | 

from the axis.

An interferometric method has been used by Hanmiton 82 ) (i960) 

to detect and measure an axial twist in SiGA The method consists 

in measuring the change, along the length of the whisker, in the 

angle between interference fringes and the whisker edge. This has 

been applied to a num^t^ir of the gold whiskers observed here. To . 

evaluate b. from equation (20) from the measured value of cK (assum-i 

ing 8= o ), the cross-sectional area must be known. In general, 

only one face was visible for the whiskers on which measurements 

were made; those whose cross-section could be found by observing 

the tip were not suitable for interferometrio measurements due to 

their large inclination to the substrate. Also in f.c.c. metals 

there are a number of possible growth directions leading to uni­

form cross-sections and low index faces (f ig 65). It was assumed ■ 

for the purpose of calculation that the croos seccion WSS an 

equilateral triangle, since this was the most common form of tip

observed. The results obtained for the b.v.Ts of different whis­

kers then were 17, 0, I5, 5 and 8 i.

These values are probably reliable only to within a factor 

of about 5, but it will be noticed that they are greater than the
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interplanar distance in the growth direction. Fairly extensive 

studies of whiskers to detect axial twists have been made by 

Webb et al (83H 196^) by an X-ray technique. Of the meeals exam­

ined only palladium exhibited a definite twist. It may be concl­

uded that the Au whiskers observed here do in general show an 

axial twist, though little can be said regarding the strength of 

the corresponding axial dislocation in view of the inaccuracies 

of mmasurement and the fact that small twists were probably below

the limit of detection.

The whisker and platelet shapes observed are not equilibrium 

shapes on the basis of minimization of surface free energy, but 

occur as a result of an easy growth direction. Thus the large 

platelets for example, should, if annealed in a non-supeesaturat- 

ed atmosphere, be expected to round off at the corners and thick­

en to reduce surface area. Eventually according to the Wuuff 

theorem on equid^^um shapes of crystals (see Heering( 29)) an 

almost spherical form should be reached with facets corresponding 

to planes of low index. Fig(66a) shows a large platelet with 

rounded corners observed after reheating for 20 hrs at 950°C 

in the absence of gold.

In most cases, however, the further heating period caused 

cleaning of the Ni surface allowing the Au deposits to spread, so 

losing their regularity (fig 66b).



(a)

(b)

“•* tig .63

fig.62: (a) Ni surface outside the region of deposition. Crystal
surfaces are smooth. (b) Ni surface within the region of 
deposition showing mosaic pattern. (c) Discontinuity of mosaic 
oattern across twin boundaaies. .

fig.63: Equnateral gold triangular platelet on a glass slide.
(b! After deformation. Slip has occurred parallel to the edges.



(a) lb) (c)

64 d.

<io<<cixis <"o> axis

<i»(> axis <?»> axis

fig. 65

fig.64: (a) Large Au whisker, about 200 microns long, growing
from a gold deposit on a Ni surface. (b),(c) Interferograms of 
base and tip illustrating the surface smooohness.
(d) Interference fringes along a gold whisker exhibiting a twist

fig.65: Some possible growth directions for whiskers of f.c.c. 
crystalswhich would lead to low index faces.



non-supersaturated atmosphere, for 20 hr. at 25O°C. (b)
snreadin/? of a rold deposit presumably due to cleaning of the 
substrate.
^ig.67: Examples of twinning in -iron. In (a) sets of narallel

Contd.Over #/<



 
 

 

 
 

boundaries can be seen. The twin A has boundaries which are 
not parallel; it has been shown (Gahn & Coll (84 )) that when 
the twinning plane is { 211^ non-paaaaiel coherent inter­
faces are possible, (b) is the corresponding interferogram 
and shows that inverted grooves occur.

(c),(d) Example of a twin showing inverted grooving and very 
slow rate of smoothing of a scratch as compared to the 
surrounding crystal.



B.
Twwn-Hke Crystals Inoc^iron

The occurrence of annealing twins in body-centred cubic 

metals is generally considered to be infrequent. Recently Cahn 

and Coll (84)(196l) have made a study of twinning in a b.c.c.

Fe - Al alloy. Both annealing and deformation twins were obser­

ved, and the indices of the twinning plane determined as the[21l| 

By measurement of the angles at twin-grain boundary intersections,

these workers find the ratio y “ C.23 to C.3C, where I is the 
\ T

specific free energy of a twin boundary, and that of a normal
II

high angle grain boundary. Ainealing twins in pure iron have 

also been observed (McKeehan(85)(1928), Lehr(86)(1968), Hutton 

et al( 87)(1959) » Sim^i^j^(^n(88)(1960)), but no measurements have 

been reported of V in this case.

During the course of surface diffusion experiments on iron 

a number of t wiwinike crystals wewe oosewed (fig 67)- The 

evidence suggesesng thah these wewe in fact twwns waw (i) Veey 

frequently straight boundaries occurred. ( ii) Sets of parallel 

boundaries were often found on the same crystal. (iii) The 

surface orientations of the crystal and its seielvCed twwn ofem 

appeared to be quiu^ difffrent, (as jiiuLdrecL by the rata eo diffus 

ion or smoo^ing, and marked differences as regards striations) , 

and suggested that they were not low angle boundaries. (iv) The 

boundary free energy was small. This was deduced from the small 

displacement of normal grain boundaries at points of intersection 

with 'twin' boundaries. Also in many cases the surface profile, 

which developed at these boundaries was of the inverted type 

(My^Tum (60)), previously only observed at twins in f.c.c. metals
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A value of Y can be derived from measurement of the
T

dihedral angles at a pair of parallel twin boundary grooves 

(60), if it is assumed that the boundaries are normal to the 

surface. For the example of fig 67(0, d) the ratio of twin to
tr .

surface free energy V" is 0.11- O.O5. A large number of such 
’s

measurements are of course necessary before a reliable value of 

\r can be obtained. However, since Y is generally about 0.3 to
u

0.4 of Ys , the above result for pure iron is in fairly good 

agreement with that of Cahn and Coll on the Fe-Al alloy.



 
 

fig.68

Occurrence of an inverted profile along an apparently curved 
boundary. This boundary may in fact consist of coherent and 
incoherent portions.
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