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SUMMARY

1, The anatomy, in n e rv a tio n  and p h y s io lo g ica l p ro p e r tie s  o f the 

m esothoracic f le x o r  t ib ia e  muscle were in v estig a ted o  The muscle 

was found to  have th re e  fu n c tio n a lly  sep ara te  p a r ts ;  the  proxim al, 

middle and d i s t a l  f le x o r s .  Each p a r t  rece iv es  some axons which 

are  common w ith  the  o th e r p a r ts  and some which in n erv a te  ex c lu s iv e ly  

th i s  reg ion  of th e  m uscle. By reco rd in g  a t  th e  same tim e from the  

nerve branches and muscle f ib r e s  of the  th ree  p a r ts  of the f le x o r  

muscle th e  t o t a l  number o f axons was found to  be 16 and th e i r  

in n e rv a tio n  p a t te rn  on th e  muscle was e s ta b lis h e d . These axons can 

be d is tin g u ish e d  as s ix  f a s t s ,  th re e  in te rm ed ia te , th re e  slow s, two 

in h ib i to r s  and two DUM c e l l s .

2 , The te n s io n /le n g th  curve fo r  p assiv e  and a c tiv e  te n s io n  was p lo tte d  

in d ic a tin g  a peak a c tiv e  te n s io n  increm ent a t  a femur™ tibia angle o f 

90^ to  100°. The response to  prolonged high frequency s tim u la tio n  

was s tu d ied  fo r  the  proxim al p a r t  (proxim al and middle f le x o rs )  and 

th e  d i s t a l  f le x o r  dem onstrating  c le a r ly  th a t  the d i s t a l  p a r t  can 

r e s i s t  fa tig u e  b e t te r  than  the  proxim al p a r t .

3 , The anatomy o f the sensory nerve branches in  the  m esothoracic and 

p ro th o rac ic  femur of lo c u s t i s  d esc rib ed . A s in g le  m u ltip o la r  

re c ep to r  c e l l  on th e  c u t ic u la r  end o f the  d i s t a l  f le x o r  t ib ia e  muscle 

f ib r e s  i s  id e n t i f ie d  and examined. This c e l l  i s  shown to  be a 

to n ic  re c ep to r  fo r  a c tiv e  and p assiv e  te n s io n  in  the  muscle f ib r e s  

to  which i t  i s  a tta c h e d . I t  g e n e ra lly  causes r e f le x  e x c i ta t io n  of 

f le x o r  motoneurons and in h ib i t io n  of th e  slow ex tensor neuron, 

a lthough the sign of the r e f le x e s  can be rev e rsed .



II

4. In o rder to  s tudy  how the la rg e  number of f le x o r  motoneurons was" 

used , t h e i r  responses to  imposed t i b i a l  ex tension  ( re s is ta n c e  

re f le x e s )  were analysed . Most o f the f a s t  and in term ed ia te  axons 

were a c tiv a te d  by the  movement o f t i b i a l  ex tension  while the  ■ ^

slows f i r e d  con tinuously  a t  a h igher frequency during  m aintained 

ex ten sio n . The in h ib i to r s  were ex c ited  only  during  m aintained 

ex tension  but t h e i r  f i r i n g  r a te  depended a lso  on the  angular v e lo c ity  

o f the movement of t i b i a l  ex ten s io n . The DU1Î c e l l s  were not found

to  be ex c ited  by any t i b i a l  movement.

5. The f i r in g  p a t te rn  o f th e  f le x o r  motoneurons was a lso  s tu d ied  by 

reco rd in g  spontaneous a c t iv i ty  from the  f le x o r  muscle of a te th e re d  

lo c u s t w alking on a t re a d m ill .  F i r s t ,  the  s im i la r i t ie s  in  the 

f i r in g  motor p a t te rn  between a d ea ffe ren ted  and a normal w alking leg  

were e s ta b lish e d  and then  th e  a c t iv i ty  of f le x o r  motoneurons recorded 

from a d ea ffe ren ted  le g  was analyzed .

6 . The e f fe c ts  o f the fem oral sensory  in jm ts (Chordotonal Organ, CO) 

to  the c e n tr a l ly  produced walking motor p a t te rn  were s tu d ie d . I t

was found th a t  the  negative  feed back produced by the  GO in  a q u iescen t 

anim al was e f f e c t iv e ly  rev ersed  when the anim al s ta r te d  w alking. 

R esistance re f le x e s  were a lso  found to  be suppressed du ring  f l i g h t .

7 . T ho 'im p lica tion  o f the  r e s u l t s  ob tained  a re  d iscu ssed . The main 

conclusion  is, th a t  in  th e  m esothoracic f le x o r  t ib i a e  muscle 

d i f f e r e n t  p a r ts  o f the  muscle w ith  d if f e r e n t  m echanical p ro p e r tie s  

a re  used fo r  d i f f e r e n t  purposes. For example the  proxim al and 

middle f le x o r  produce f a s t  t i b i a l  f le x io n  while th e  d i s t a l  f le x o r



I l l

i s  used to  generate  p o s tu ra l fo rc e s . Therefore the  f le x o r  muscle 

req u ire s  a la rg e  number o f axons which can operate  alm ost 

independently  in  the  th re e  d i f f e r e n t  p a r ts  o f the  m uscle.
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1. INTK) DUCT ION

In o rder to  study th e  neuronal basis  o f behaviour in  arth ropods 

i t  has been found necessary  to  the  motoneuronal a c t iv i ty

generated w ith in  th e  ganglion* To o b ta in  inform ation  on the  sp ik ing

a c t iv i t y  o f the  motoneurons (u su a lly  le g  m otoneurons), electromyograms 

(EMGs ) were recorded  p e r ip h e ra lly  from the  muscle which th ey  in n e rv a te .

EMG reco rd in g  proved a very  u s e fu l technique since i t  perm itted  easy 

access to  the m uscular a c t iv i ty  which generates behaviour, th e reb y  

allow ing q u a n ti ta t iv e  a n a ly s is  o f th e  tim ing and ex ten t o f a c t iv i ty  of 

members o f the e x c i ta to ry  motoneuron popu la tion  in n e rv a tin g  d i f f e r e n t  

b eh av io u ra lly  im portant m uscles.

In  th e  f i r s t  e le c tro p h y s io lo g ic a l experim ents u s in g  EMGs 

R ijlan d  (1932a, b) showed th a t  th e  motor output to  th e  le g  muscles o f 

th e  cockroach was changed by an imposed re s is ta n c e  to  movement, one of 

the  f i r s t  examples o f re s is ta n c e  reflexes, in  in s e c ts .  P r in g le , iui an 

attem pt to  e s ta b l is h  the  in p u t-o u tp u t re la t io n s h ip  in  th e  cockroach le g , 

f i r s t  s tu d ied  the  le g  p ro p rio cep to rs  (P rin g le , 1938) and then  u sin g  

myograms he e s ta b lish e d  th e  double in n erv a tio n  o f the  coxal muscles 

(P rin g le , 1939), He dem onstrated a p o s itiv e  feed  back r e f le x  to  the  

coxal depresso r muscle (P rin g le , 1940) and a weaker r e f le x  to  the  muscle 

o f th e  opposite  le g . These re f le x e s  led  him to  suggest (P rin g le , 1961) 

th a t  the whole le g  movement cycle in  walking is  produced by a chain  of 

r e f le x e s .  The importance o f th e  re f le x e s  in  walking was a lso  in v e s tig a te d  

by Wilson (1965) who dem onstrated e le c tro p h y s io lo g ic a lly  th a t  th e  leg  

re f le x e s  o f the  cockroach were f a s t  enough to  be used in  walking and a lso  

th a t  r e l ia b le  c o n t r a la te r a l  r e f le x e s  can be d e te c ted ,

EMG's provided a convenient way o f studying  re f le x e s  since th ey  

do not re q u ire  very  f in e  m ic ro d issec tio n s  to  expose muscles and nerves.



D issec tio n s g e n e ra lly  may damage sensory organs and th e  sa lin e  used may 

a l t e r  the  p ro p e rtie s  o f the  sensory organs (C o illo t and B o is te l', 1969; 

Burns, 1974). D issec tio n  a lso  causes b leeding  in  some animals such 

as C rustacea which may k i l l  the p rep a ra tio n  q u ick ly . As a r e s u l t  

re f le x e s  in  c ru stacean  le g  muscles were s tud ied  u sin g  EMG’s (Bush, 1962, 

1963, 1965) and have been e x te n s iv e ly  analyzed u sin g  th e  same technique 

(Evoy and Cohen, 1969; S p ir i to ,  1970; S p ir ito  e t  a l . , 1972; Ayers and 

D avis, 1977, 1978; Glarac a l . , 1973).

However, b eh av io u ra lly  speaking, a ste reo typed  motor p a t te rn
a

such as es is  tance reflex-^ i s  le s s  In te re s t in g  than  the  motor c o n tro l 

o f wallcing. Walking is  not on ly  a rhythmic behavioural a c t ,  but one th a t  

e x h ib its  considerab le  p l a s t i c i t y ,  fo r  th e  animal^has to  a d ju s t i t s  leg

movements to  the  t e r r a in  over which i t  i s  wallcing. The f i r s t  attem pt

to  study walking behaviour was made by observing f re e  walking anim als 

and inform ation was ob tained  about the  tim ing and the  co o rd in a tio n  of 

d i f f e r e n t  legs during  w alking (Hughes, 1952, 1957). Wendler was able 

to  • th a t  although s t ic k  in se c ts  used feedback from coxal h a ir

p la te s  to  re g u la te  p o stu re  (Wendler, I 96I )  the tim ing  o f le g  movements 

was determ ined by an independent c e n tra l  system of coupled oscdflators 

(Wendler, 1966).

In an attem pt to  study w ith  more accuracy th e  ro le  of various 

elem ents in  the  o rg an iza tio n  o f motor output in  w alking, p a r t ic u la r ly  

th e  in fluence o f the  sensory in p u ts , electromyograms were recorded from 

f re e  walking in se c ts  (Hoyle, 1964; Giving and Manning, 1966) and w ith 

more success in  C rustacea (Barnes ^  , 1972; Evoy and F o u rtn er, 1973;

F ourtner and Evoy, 1973; Barnes, 1977).

In in se c ts  the  record ing  o f myograms has been used fu r th e r  to  

study not only  the  walking motor p a tte rn  but a lso  the  in te ra c t io n  between



sensory inpu ts  and c e n tr a l ly  produced p a tte rn s  (Pearson and l i e s ,  1970)o 

Pearson (1972) recorded myograms from th e  coXal muscles of a f re e  walking 

cockroach and compared th i s  a c t i v i t y  w ith  the re c ip ro c a l  p a tte rn  produced 

by the  same animal when i t  was f ix e d  and the gang lion ic  connectives were 

c u t .  Although he found d iffe re n c e s  in  the  motor p a tte rn s  produced in  

th e  two p re p a ra tio n s , he suggested th a t  the  s im i la r i t ie s  were s u f f ic ie n t  

to  make i t  alm ost c e r ta in  th a t  the  ou tpu t re su lte d  from a c e n tr a l  n eu ra l 

programme. The f a c t  th a t  th e re  was a d iffe ren ce  in d ic a te d  th a t  th e re  

is  norm ally some modulation o f the  motor a c t iv i ty  by inpu ts  from 

p ro p rice p to rs  and Pearson (1972) showed th a t  in  the  fre e  walking cockroach 

th e  a c t i v i t i e s  in  both le v a to r  and depressor muscles were s tro n g ly  

a f fe c te d  by changes in  load ing  o f th e  anjjnal. He concluded th a t  the  

e f f e c t  was m ediated by to n ic  and phasic  in p u ts  from th e  tro c h a n te ra l  

companiform s e n s i l i a .  The f a c t  th a t  le g  sensory in p u ts  a f f e c t  the 

c e n tr a l ly  generated w alking p a t te rn  was a lso  dem onstrated u sing  EMGs 

by ITsherwood e t  (1968) who found th a t  removal of e i th e r  o f the  

m etathoracic  chordotonal organs produced s ig n if ic a n t  changes in  walking 

and p o s tu ra l behaviour.

However the  e f f e c ts  o f the  sensory  inpu ts  on c e n tr a l ly  generated 

neuronal motor p a tte rn s  were soon found to  be c a p r ic io u s . R eflexes 

them selves were a lso  found to  be v a r ia b le . In lo c u s t fo r  example the 

s k L 4 of  the  abdomen occurs only  during  f l i g h t  (Camhi, 1970),

In  cockroaches, when th ey  were engaged in  r ig h tin g  behaviour, some o f the  

re f le x e s  were tu rned  o f f ,  o th e rs  were tu rned  on and s t i l l  o th e rs  

sw itched the  sensory inpu t to  a d i f f e r e n t  channel o f motor ou tpu t 

(Camhi, 1977). R esistance re f le x e s  were a lso  found no t to  be in  

evidence during  simple walking (Barnes e t o l . , 1972) but to  occur only  

during  unintended movements (Barnes, 1977). F in a lly ,  r e s is ta n c e
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re f le x e s  were found to  be rev ersed  in  an aroused s t ic k  in se c t (B h ssle r, 

1976) and re s is ta n c e  re f le x e s  were tu rned  in to  a p o s it iv e  feed-back 

r e f le x  during  a c t iv a t io n  of command f ib r e s  in  c ra y f is h  (Evoy, 1977).

I t  i s  no t y e t c le a r  how th e  re f le x e s  are  i^inlced to  th e  motoneurons and 

how much they  can in flu en ce  th e  c e n tr a l ly  programmed behaviour. Since 

the  re f le x e s  in  a f ix e d  p re p a ra tio n  may no t be ty p ic a l  o f those o p era tin g  

in  w alking i t  i s  apparen t th a t  th ese  questions can only  be answered by 

o b ta in in g  in form ation  about the  a c t iv i ty  o f in d iv id u a l motoneurons from 

w alking p rep a ra tio n s  in  which a l l  the  re le v a n t re f le x e s  are  l ik e ly  to  be 

o p e ra tin g .

EMG’s provide th e  e a s ie s t  way to  o b ta in  in form ation  about the  

a c t iv a t io n  o f the  le g  motoneurons during  walking and can provide valuab le  

in fo rm ation  on the  exact tim e o f the a c t iv a t io n  of the  muscles and the  

approximate frequency o f th e  motoneurons but they  are le s s  accu ra te  in  

the  study of the a c t i v i t y  o f in d iv id u a l axons. The major drawback o f 

the  technique is  th a t  sim ultaneous a c t iv i ty  o f sev e ra l motoneurons may 

make id e n t i f ic a t io n  o f in d iv id u a l axons d i f f i c u l t  i f  not im possib le .

This d i f f i c u l ty  was overcome by Runion and Usherwood (1966) who developed 

a method fo r  reco rd in g  from th e  motor nerves of free-w alk in g  lo c u s ts .

Using th is  technique th ey  were ab le  to  monitor the  a c t i v i t y  of the  th re e  

axons(2 e x c i ta to ry , 1 in h ib ito ry )  in  th e  nerve to  the  m etathoracic  ex tensor 

t ib ia e  muscle and th e y  found th a t  i t  was s tro n g ly  in fluenced  by th e  inpu t 

from the t a r s a l  sensory  re ce p to rs  during  walking and stand ing  (Runion 

and Usherwood, 1968). Using the  same tech n iq u e , Usherwood and Runion 

(1970) were a lso  the f i r s t  to  show th a t  the in h ib ito ry , axons, when a c tiv e  

in  the  p a tte rn  used in  normal w alking, produced a s ig n if ic a n t  re la x a tio n  

in  the  muscle. In the sm aller m esothoracic ex tensor t ib ia e  m uscle,

Burns (1972, 1973) reco rd in g  neurograms w ith very  f in e  w ires which did



not hamper th e  movement of the  legs a t  a l i ,  was ab le  to  analyse in  

d e t a i l  the a c t iv i ty  of th e  ex tenso r neurons during  f re e  wallcing. In

such a p rep a ra tio n  he was able to  dem onstrate th a t  the  removal of the  

m esothoracic chordotonal organ decreases the  a c t i v i t y  o f th e  ex tensor 

SETi but does not much a l t e r  i t s  f i r i n g  p a t te rn .

The d i f f i c u l ty  in  th e  Id e n t if ic a t io n  of th e  a c t iv i ty  o f 

in d iv id u a l motoneurons was a lso  overcome in  in se c ts  and o th e r arthropods 

by reco rd ing  in t r a c e l lu la r ly  from the  motoneuron c e l l  bodies (K erkut, 

Pitman and Walker, 1969; Hoyle and Burrows, 1970). This technique 

produces valuab le  in form ation  not only  on sp ik in g  a c t iv i ty  of the 

motoneurons but a lso  on th e  synap tic  inpu ts  which th ey  re c e iv e . The 

fu n c tio n a l and s t r u c tu r a l  o rg an iza tio n  of the motoneurons and some o f 

th e  in terneu rons r e la te d  w ith  them w ith in  ^ insect ganglion was in v e s tig a te d  

thoroughly  (O’Shea e t  , 1974; Pearson and F o u rtn e r, 1975; Burrows 

and S ie g le r , 1977) since  i t  was now p o ssib le  to  s ta in  neurons through 

th e  m icroelectrode (S tre tto n  and K rav itz , 1968; Rempler e t  , 1969).
Hs« tfjl

Soon maps o f the  topography o f '^ d iffe re n t le g  motoneurons were produced 

fo r  th e  lo c u s t ganglion (Burrows and Hoyle, 1973)* Attempts have been 

made to  combine th i s  e x c e lle n t technique w ith behav iou ra l s tu d ie s .

A c tiv ity  from th e  v e n t i la to ry  motoneurons was recorded (Burrows, 1974) 

and th e  in t r a c e l lu la r  reco rds were ob tained  from th e  motoneurons 

re sp o n sib le  fo r c r ic k e t  s in g in g  (Bendley, 1969a). Behavioural motor 

p a tte rn s  can be s tu d ied  as f a r  as th ey  occur in  a f ix e d  and d isse c te d  

anim al, the  necessary  co n d itio n s  fo r  m icroelectrode reco rd in g . In an 

attem pt to  study w alking motor p a tte rn s  in  such p rep a ra tio n s  Hoyle and 

Burrows (l973b) s tim u la ted  the  connectives between the gang lia  and 

produced a slow rhybkmic movement o f the  m etathoracic t ib i a e .  Although 

th ey  claim  th a t  th i s  sequence of a l te rn a t in g  f le x io n /e x te n s io n  movement



c lo se ly  resem bles those seen du ring  locomotion in  th e  freely-m oving 

anim al i t  is  obvious th a t  a f ix e d  anim al upside down i s  not -the b es t 

way to  study the w alking motor p a t te rn .  Even i f  th ey  were ab le  to  record  

from the  c e l l  bodies during  walking i t  would be im possible to  reco rd  

the  a c tio n  o f a la rg e  number o f motoneurons sim ultaneously .

I t  seems th a t  fo r  th e  s tu d ie s  o f motor p a tte rn s  in  a f re e  

anim al the  b es t technique to  use i s  neurogram reco rd in g . This has 

allowed id e n t i f ic a t io n  o f th e  two e x c ito rs  and one in h ib i to r  axon in  

the  m esothoracic and m etathoracic  ex tensor muscles of f re e  lo c u s ts .

However a l l  muscles are  not as simple as the ex tensor t i b i a e .  Although 

no arthropod muscles rece iv e  as many axons as in v e r te b ra te s ,  th e re  are  

muscles which rece iv e  f a r  more than  two e x c ito rs  and one in h ib i to r .  In  

th e  lo c u s t abdomen th e  median d o rsa l in te rn a l  muscles are  a l l  innervated  

by e ig h t axons in  the  d o rsa l nerve (T yrer, 1971a, b ) .  In the  neck o f 

the  lo c u s t where one group o f fou r m uscles, c o n s is tin g  in  t o t a l  of le s s  

than  100 muscle f ib r e s ,  rece iv es  more than 20 d i f f e r e n t  motoneurons from 

th re e  d i f f e r e n t  g an g lia  (shepheard, 1973), An extreme case is  the 

d o rsa l lo n g itu d in a l f l i g h t  muscle in  the  f le s h  f l y  (Sarcophaga b u l l a t a ) 

which has only  s ix  muscle f ib r e s  and rece iv es  f iv e  d i f f e r e n t  motor axons 

(Ikeda, 1977), A s im ila r  compexity i s  seen in  both groups of 

a n ta g o n is tic  abdominal muscles in  the  c ra y f is h , the  ex tensor^(P arnas and 

Atwood, 1966) and the  f le x o r 5(Kennedy and Takeda, 1965a, b ) . However 

no t a l l  a n ta g o n is tic  muscles in  arthropods seem to  be eq u a lly  com plicated . 

One c le a r  example i s  th e  two a n ta g o n is tic  fem oral muscles in  the lo c u s t ,  

the  ex tensor t ib ia e  w ith  two e x c ito rs  and the f le x o r  t ib ia e  w ith  s ix  

(Hoyle and Burrows, 1973a, b) and maybe more e x c i te r s .  The m etathoracic  

ex tensor t ib ia e  muscle is  one of tho most s tu d ied  muscles in  in se c ts  

(Hoyle, 1955, 1978; Hoyle and O’Shea, 1974; Bunion and Usherwood, 1966,



1968; Usherwood and Runion, 1970; Cochran© e t  , 1972; and rev iew s,

Hoyle, 1965; Usherwood, 1967, 1977). This is  not s u rp r is in g  because 

as Hoyle (1955) adm its "The Jumping m uscle, the  ex tenso r t i b i a l i s  of the 

m etathoracic le g , was chosen p rim a rily  because i t  i s  la rg e  and th e re fo re  

easy  to  study However no t a l l  the  fem oral muscles are so

la rg e . In the  sm aller m esothoracic leg  d e sp ite  i t s  s iz e ,  the  ex tensor 

muscle was a lso  s tu d ied  in  d e t a i l  by Burns (1972, 1973), Going through 

the  l i t e r a tu r e  i t  can be seen th a t ,  although th e re  is  a tremendous 

amount of in form ation  about the ex tensor t ib ia e  m uscle, th e re  i s  a lack  

of knowledge about i t s  a n ta g o n is t, the  f le x o r muscle. This i s  n o ticeab le  

not only in  the  m esothoracic le g  where the sm all s ize  make i t  d i f f i c u l t  

to  s tudy , but a lso  in  th e  m etathoracic leg  where the  f le x o r  muscle i s  

la rg e r .  I t  seems th a t  reasons o th er than  the importance o f th e  f le x o r 

muscle in  behaviour have led  to  th i s  lack  of in form ation  on the  f le x o r  

m uscle. This muscle is  innervated  by a la rg e  number of axons and th is  

makes i t s  study  p a r t ic u la r ly  d i f f i c u l t .

The purpose o f the  p re sen t work is  to  f i l l  th i s  gap and fo r  

th is  reason the  m esothoracic f le x o r  t ib ia e  muscle was chosen. Although 

th is  muscle is  sm all and i t  i s  d i f f i c u l t . t o  o b ta in  h is to lo g ic a l  and 

e le c tro p h y s io lo g ic a l d a ta  i t  was p re fe ra b le  to  the  la rg e r  m etathoracic 

f le x o r  t ib ia e  fo r  the  fo llow ing  reaso n s . The m esothoracic f le x o r  is  

la rg e r  than  the  ex tensor w hile the opposite  is  tru e  o f the  m etathoracic 

le g  where the  ex tensor is . the most p o w e r - - « This suggests 

th a t  the f le x o r  muscle may have a more im portant fu n c tio n  in  the 

m esothoracic le g . Secondly, the  m esothoracic le g  seems to  p a r t ic ip a te  

more in  walking and postu re  while the  m etathoracic leg  has been adapted 

fo r the Jump and the defensive kick (nei t 1er and Burrow^ 1977a, b;

H e i t le r ,  1977),



Since i t  is  a lread y  known th a t  the f le x o r  t ib ia e  muscle 

rece iv es  a la rg e  number o f axons a number of s ig n if ic a n t  questions can 

be asked, V/hat i s  th e  exact number o f axons which th i s  muscle rece iv es?  

How are these  axons d is t r ib u te d  on the  muscle? Why does the  f le x o r  

muscle req u ire  such a la rg e  number o f axons? What i s  the s ig n if ic a n c e  

of a l l  th ese  axons in  behaviour? In an attem pt to  answer th ese  questions 

anatom ical, h is to lo g ic a l  and e le c tro p h y s io lo g ic a l methods were used to  

e s ta b lis h  the anatomy and in n erv a tio n  o f the  muscle and some of the 

sensory recep to rs  in  the  m esothoracic leg  (Chapter 3 and 4-). 

E le c tro p h y s io lo g ic a l techniques were a lso  used to  study the way in  which 

the  motoneurons are  a c tiv a te d  in  various behaviour p a tte rn s  (Chapter 5 

and 6)*



2. MATERIALS AND GENERAL METHODS

Most of the  anim als used in  th ese  s tu d ie s  were ad u lt female 

lo c u s ts ,  S ch lstocerca  grega r la  F o rska l (S .am erioana, D irsch , 1974) 

kep t in  co lon ies a t  32°C. Females were chosen because th ey  have a 

th in n e r  exoskeleton and th ey  are  la rg e r  in  s iz e ; th ese  fe a tu re s  were 

advantageous fo r  the  d is s e c t io n s .

The s ize  o f the  lo c u s t m esothoracic femur v a r ie s  from 7 ,5  

to  11mm (Burns, 1972), The average s ize  of tho femur in  the  animals 

used was 10 -  0«2mm, To expose the f le x o r  t ib ia e  muscle and i t s  

sensory and motor nerves the  femur ( f i g , 2 .lA) was mounted v e n tra l  s ide 

down in  Tackiwax, The d o rsa l c u t ic le  of the femur, the  ex tensor 

muscle and th e  r e t r a c to r  unguis muscle were removed and th e  f in a l  view 

under the  d is s e c tin g  microscope was the one shown in  f ig .  2 . IB. The 

femur was immersed in  3ml o f oxygenated sa lin e  (Usherwood and G rundfest, 

1965) a t  room tem perature 13° to  2 0 °G,

E x tra c e llu la r  reco rds from the nerve branches were made u s in g  

sp e c ia l g lass  su c tio n  e le c tro d e s . These e le c tro d e s  were made from 

g lass  m icropipebtes p u lled  from O.Vmr-i diam eter g la s s , in  such a way as 

to  have a co n ica l stem. The o u tsid e  su rfaces of th ese  m icroelectrodes 

were coated w ith  a lay e r o f gold (lOOOA) th ic k , by vacuum d e p o s itio n . 

This e x te rn a l f ilm  was used as the  re fe ren ce  e le c tro d e . The t i p  was 

broken g iv ing  an in te rn a l  diam eter s im ila r  to  th a t  o f the  nerve to  be 

recorded from. This e le c tro d e  had th e  fo llow ing advantages.

1 ) The re fe ren ce  su rface  was very  close to  th e  reco rd ing  t i p  g iv ing  

a rnonophasic p o te n t ia l ,  good screen ing  and a minimum of c ro s s - ta lk ,

2 ) Wnen th i s  su c tio n  e le c tro d e  was used as s tim u la tio n  e lec tro d e  

i t  produced a good lo c a l  s tim u la tio n  with very  l i t t l e  spread of 

cu rren t to  d is tu rb  o th e r nerve axons.



F ig . 2 .1

A.

A diagrammatic re p re se n ta tio n  o f the  m esothoracic femur. The main 

m uscles, nerves and the  chordotonal organ are  shorn •

(Figure k in d ly  supplied  by Dr. M argaret Burns),

B.

D orsal view of branches of N5 in  the l e f t  femur. The basic  numberingr
of the nerve branches follow s Cam|Dell ( I96I ) ,  but has been extended 

as shown, (see Chapter 4 fo r  d e t a i l s ) .  A ll nerves numbered are 

branches o f nerve 5B,

F = femur T = t i b i a

HTR. =■ djtlAS K c a ^ fo r /’

\
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3) The la y e r  o f gold between the  t i p  which was in  the  sa lin e  and

the  connection w ith  th e  re fe ren ce  wire has a re s is ta n c e  of 1$-20MQ.

which improves the  balance o f the  a m p lifie r  in p u t.

/+) The t i p  of the g lass  m icrop ipette  i s  very  sm all and th i s  allow s

reco rds to  be made from very  f in e  nerves (diam eter o f 30-50|i). The

very  f in e  t i p  o f the  su c tio n  e lec tro d e  a lso  reduces the d u ra tio n  of

each recorded spike^ «4' -elochnDe^ .

Records of nerve 'kmwcUt^ were made an passan t a lso  by holding them on

a s te e l  p in  (diam eter 0.0056mm) bent in to  a hook and r a is in g  the nerve

in to  a p la s t ic  tube f i l l e d  w ith  a th ic k  mixture o f p a ra f f in  o i l  and 
k e o k  «tacW^ecUe

v a se lin e . Thivs|was m odified from the  design of Wilkens and Wolfe 

(1974). The s ig n a ls  from th ese  e lec tro d es  were am plified  by an 

Islew orth  AlOl p ream p lif ie r  w ith  capacitance inpu t iso la tio n *

Glass m icroelectrodes f i l l e d  w ith 3M KOI having re s is ta n c e s  

o f 5'"20MS1_ v/ere used fo r  in t r a c e l lu la r  reco rd in g s . The DC p o te n t ia ls  

were am plified  by a WPI Î4701 am plifier*

Tension produced by th e  co n trac tio n  of the  f le x o r  t ib ia e  

muscle was recorded under n e a rly  isom etric  cond itions w ith a 

semiconductor s t r a in  gauge (compliance 0 ,05mm/g) . The changes o f

muscle ten sio n  were d isp layed  u s u a lly  by a Watanabe pen recordev:,

A constan t v e lo c ity  movement was imposed on the t i b i a  by a 

le v e r  which had i t s  one end a ttach ed  to  a pen motor and the  o th er end 

to  the t i b i a  w ith  a sm all drop o f Ĉ’-anoacrylate adhesive (Avdel Bond 

No * 3 ) . The ax is  o f the ro ta t io n  o f the  lev er was through the  p ivo t 

o f  the fe m u r-tib ia  p o in t and the ro ta tio n  of the lev e r was monitored 

w ith  a low f r ic t io n  potentiom eter* Linear ramp functions were 

obtained  by in te g ra tin g  a square wave by means o f an in te g ra te d  c i r c u i t  

o p e ra tio n a l a m p lif ie r ,  which in  tu rn  drove the pen motor* The ramp
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generator a lso  produced a t r ig g e r  pu lse  before the  beginning of 

each ramp.

A ll the records were d isp layed  on a Tektronix 561 

osc illo sco p e  and s to red  w ith  a Racal Store 4 FM tape re co rd e r . For 

fu r th e r  an a ly s is  records were film ed w ith a camera (Nl,Sr\ion Kohden, 

P 0 2 ) ' d i r e c t ly  from the  o sc illo sco p e  screen .



3 . THE LOCUST MB80TH0RAGI0 FLEXOR TIBIAE MUSCLE 

A* Methods:

a )  P h y sio lo g ica l methods.

Physiology

When s tim u la tio n  o f the  f le x o r  motor axons was req u ired  

(through N5) a lo c u s t m esothoracic leg  was iso la te d  by c u tt in g  th e  

coxa-fomur jo in t  and d is s e c te d  ( f ig ,  2 , IB) in  a watch g lass  under 

oxygenated s a lin e .  The same d is s e c tio n  was used to  record  motoneuron 

a c t iv i ty  from the  fem oral n e rv es , but in  th is  case th e  leg  under 

in v e s tig a tio n  was not removed from the  body and was mounted (v e n tra l 

s ide  down) in  a sm all bath  made from p la s t ic in e ,  A s im ila r  p re p a ra tio n  

was a lso  used to  s tudy  th e  d is t r ib u t io n  o f the D orsal Unpaired Median 

c e l l s  (DUM c e l l s ,  as defined  by Hoyle e t  , 1974) which give branches 

to  both s id es  o f the  an im al. In th i s  case the  c o n t r a la te r a l  le g  was 

a lso  f ix ed  and d is se c te d  in  the  same way. To s tim u la te  the  somata o f 

th e  f le x o r  t i b i a  motoneurons in t r a c e l lu la r ly ,  a wax covered p la tfo rm  

was m icrom anipulated under the  ganglion in  the n e a rly  in ta c t  in s e c t ,  to  

provide a firm  support fo r  m icroe lectrode p e n e tra tio n . The 

m icroe lec trodes were d riven  w ith  a L e itz  m icrom anipulator and p ro tease  

was used to  males th e  sheath  of the  ganglion s o f te r .

To reco rd  muscle te n s io n , the  t i b i a  was cu t t ra n sv e rse ly  h a lf  

way up and the  fe m u r- tib ia  jo in t  was d is a r t ic u la te d .  The t i b i a l  stump 

th a t  remained was a ttach ed  to  a s i l ic o n  s t r a in  gauge tra n sd u ce r thus 

s tre tc h in g  the  muscle and allow ing th e  ten s io n  generated  to  be 

m onitored.

Glass m icroe lectrodes were used to  record  p o te n t ia ls  in  th e  

muscle f ib re s  (EPSP's or IPSP’s) in  response to  s tim u li  d e liv e re d  to  

the  proxim al cu t end of N5.
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Records o f spontaneous a c t iv i ty  in  the  nerve branches on 

th e  f le x o r t ib ia e  muscle were a lso  made using  hook e le c tro d e s .

M echanical P ro p e rtie s

The anim al was mounted v e n tra l  side up on a sp e c ia l curved

p iece o f perspex and the  le g  under in v e s tig a tio n  was f ix ed  w ith

p la s t ic in e  ( f ig .  3 .1)*  A sm all window was opened in  the  v e n tra l  side 

o f the mesothorax to  expose the ganglion and a hook e lec tro d e  was 

a ttach ed  to  N5 fo r  s tim u la tio n . P assive  and a c tiv e  fo rces  were recorded 

from the end o f the t i b i a  w ith  a s t r a in  gauge tran sd u ce r. The tendon 

of the  an tag o n is t ex tensor was severed and the  m esothoracic ganglion was 

destroyed to  prevent any e f fe c ts  of the  ten sio n  recorded from the  f le x o r 

muscle. Forces recorded in  such a way from the end o f the  t i b i a  were 

converted to  r e a l  muscle te n s io n  by m u ltip ly in g  th i s  value by th e  fa c to r  

of 12.1 obtained from the le v e r  equation ;

T ,a =  To,(a+b)

T i s  the  r e a l  ten sio n  developed on the f le x o r  apoderae

a  ( -  0,81mm) is  the  d is tan ce  o f the  p iv o t to  the  f le x o r

muscle tendon in s e r t io n  on the  t i b i a  

To i s  the  fo rce  recorded from the  end of the t i b i a  and 

b (= 9mm) i s  the  d is tan ce  from th e  f le x o r tendon in se r t io n  

to  the  end o f the  t i b i a .

Measurements made on th e  m esothoracic leg  by H e itle r  (197?) gave very  

s im ila r  values fo r  a and b.

To record  changes in  muscle ten sio n  during  the  passive 

ex ten sio n , the t i b i a  was extended to  d if f e r e n t  angles w ith d if f e r e n t  

angular v e lo c i t ie s .  This was accomplished by imposing a ramp movement 

on the  tra n sd u c e r . To avoid . v a r ia t io n  in  the m echanical

p ro p e rtie s  o f the muscle no sa lin e  was used during  th ese  experim ents.



The apparatus used to  record  ten s io n  from the m esothoracic f le x o r  

t ib ia e  muscle in  i t s  ovm haemolymph. The d is s e c tio n  to  expose N5

was very  sm all. No sa lin e  was used and care was talcen to  leave 

most of the  t ra c h e a l system in ta c t .  To measure ten s io n  from e i th e r  

ex tensor or f le x o r  t ib ia e  muscles the apodeme o f the an ta g o n is tic  

muscle was cu t near i t s  connection w ith  th e  t i b i a .

S, S tim ulation  of N5 through a hook e le c tro d e . The exposed p a r t  

o f the  nerve was covered by a m ixture of p a ra f f in  and v ase lin e  

over the  hook e le c tro d e ,

Tr. = Transducer a ttach ed  always a t  th e  end o f th e  t i b i a

P = M iniature p ro tra c to r

F -  Femur
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b) Anatomical methods*

1) S ta in ing ,

a )  S ta in in g  w ith reduced methylene blue ( Pantin^ I 964) .

A sm all q u a n tity  ( le s s  than  0,02ml) o f a mincture of one p a r t  

o f reduced methylene blue and te n  p a r ts  of lo cu s t s a l in e ,  was in je c te d  

in to  the m esothoracic femur. A fter 60 min, tho le g  was d is se c te d  in  

sa lin e  fo r fu r th e r  s tu d ie s ,

b) Back f i l l i n g  w ith Cobaltous Cliloride (OeClp) (Pitman _et a l ,  1972),

The cut end of the nerve was sucked firm ly  in to  the broken 

t i p  o f a g lass  m icrop ipe tte  f i l l e d  w ith  s a lin e . The sa lin e  in  the 

m icro p ip e tte  was then  re p la c e d ,’u s in g  a long f in e  syringe n eed le , w ith 

d i s t i l l e d  w ater fo r  3 min. to  open the cut end o f the  axons. F in a lly  

the  d i s t i l l e d  water was replaced w ith  id  Cbbaltous Chloride, In th i s  

case the in te r io r  o f the  m icroelectrode works o.s a pool is o la te d  from 

th e  s a lin e .  I n i t i a l l y  an e le c t r i c  cu rren t o f 10  ̂ to  10 A was 

passed out o f the e le c tro d e , but f in a l ly  i t  was concluded th a t  Cobaltous 

Chloride en tered  the  nerve e q u a lly  w ell w ithout a c u rre n t. A fter 6 to  

24 hours the  perfused  Cobalt was p re c ip i ta te d  as Cobaltous Sulphide w ith 

10% ammonium s u lp h ite . The p re p a ra tio n  was f ix ed  in  2% g lu tara ldehyde 

fo r  1 hour, dehydrated  w ith  s e r ie s  o f e th an o l (50-lCO/i), c lea red  w ith 

methyl s a lic y la te  fo r  24 hours and mounted in  Canada Balsam. The 

p re p a ra tio n  was then  photographed w ith  a l e i t s  photom icroscope.

Drawings were made u s in g  a camera lu c id a .

2 ) E lec tro n  microscopy.

The f le x o r  muscle and i t s  motor nerve were bathed in  the 

s a l in e ,f o r  a period  of 50-100 min, to  e q u il ib ra te  (dess and Isherwood, 

1972/. Th/o f ix a tiv e s  wore used and both gave s a t i s f a c to ry  r e s u l t s .
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a) The Formaldehyde -  G lutaraldehyde f ix a t iv e  o f high o sm o la iity  

(Karnovsky, 1965)

b) The g lu tara ldehyde f ix a t iv e  w ith  s im ila r  o srao la rity  as th a t  

o f lo c u s t haemolymph and sa lin e  (Rees and Usherwood, 1972),

For the  f in a l  r e s u l t s  the  second f ix a tiv e  was used .

The muscle and i t s  motor nerve were f ix e d  a t  maximum

body len g th  as in  f i g , 2 ,IB, in  2% g lu tara ldehyde f ix a t iv e  a t  4^C fo r  

2 hours. Then the  nerve branches from to  the muscle were cu t

very  c lo se  to  the muscle and th e  whole nerve was removed and placed in  

10ml b o tt le s  of bu ffered  wash s o lu tio n  and washed fo r  18 to  24 hours a t  

4°G, I t  was then  p o s t ' l l i n  1^ OsO^ so lu tio n  fo r  1 hour before 

being r in se d  ye t again  in  bu ffered  wash s o lu t io n .fo r  a  s im ila r  len g th  o f 

tim e. Both th e  f ix a t iv e s  and th e  b u ffe r  wash so lu tio n  were kept 

.isosmotic to  the  sa lin e  u s in g  a sm all q u a n tity  o f sucrose . The pH o f 

th e  so lu tio n  was m aintained a t  6 ,8  w ith  sodium phosphate b u ffe r « The 

t i s s u e  was q u ick ly  dehydrated and mounted in  Spurr's low v is c o s i ty  epoxy 

re s in  (Spurr, 1969). Thin tra n sv e rse  sec tio n s  (70nm) and th ic k  sec tio n s  

( l-5 p n ) , from the f le x o r  nerve branches and from N5B2 a t  d i f f e r e n t  le v e ls  

were cu t w ith an IRB u ltra to m e . Thick sec tio n s  fo r  l ig h t  microscopy 

were s ta in ed  in  methylene blue fo r  3 b in . on a hot p la te  a t  60^C and 

r in se d  in  cold  w a te r, l ig h t  straw  to  s i lv e r  grey sec tio n s  were mounted 

on 100 mesh g rid s  and double s ta in e d  in  lead  c i t r a t e  and u ran y l a c e ta te .  

A ll g rid s  were examined in  ASI EN801 E lec tron  Miscroscope a t  50KV,

3 ) Scanning E lec tro n  Microscopy,

The f le x o r  muscle and i t s  motor nerve were f ix ed  w ith  2$ 

g lu tara ldehyde washed w ith  d i s t i l l e d  w ater fo r 30 min, and dehydrated 

in  a s e r ie s  of ace tones. Specimens were d ried  in  a Polaron C r i t ic a l  

P o in t D rier and coated in  a Polaron S pu tter C oater,



B, R esults?

1, S tru c tu re  •

a )  The muscle,

The m esothoracic f le x o r  t ib ia e  muscle l i e s  in  the  v e n tra l  

h a lf  of th e  femur ( f ig .  2.1A ). In shape, i t  i s  a combination of 

fusifo rm  and p innate  form and i s  composed o f a number o f  muscle u n i ts  

(as defined  by Hoyle, 1955). The muscle u n its  w i l l  be c a lle d  muscle 

bundles in  th is  t e x t .  These muscle bundles form a row of more or le s s  

c i r c u la r  d is c re te  a n te r io r -d o rs a l  in s e r t io n s ,  a p o s te r io r  row of 

elongated  in s e r t io n s  very  c lo se  to  those o f the  ex ten so r t ib ia e  muscle and 

ten d in g  to  merge in to  one an o th er, and a s in g le  proxim al d o rsa l in s e r t io n  

c lo se  to  the tro c h a n te r .  The s tru c tu re  of th i s  muscle was p a r t ly  

d escribed  by Snodgrass (1929) who numbered th i s  muscle a t  107 and d iv ided  

i t  in to  th ree  major p a r ts  based on th e  anatom ical c h a r a c te r is t ic s  o f th e  

m uscle. The anatomy o f th i s  muscle i s  shown in  f ig ,  3 .2 ,  and th e  th re e  

p a r ts  a re  as fo llow s:

107b, d escrib ed  in  th i s  te x t  as Proxim al f le x o r  

107a, " " " " " middle f le x o r

107c, " " " ” '* d i s t a l  f le x o r

Proxim al f le x o r (107b).

This is  the  on ly  fu sifo rm  p a r t  o f th e  f le x o r  t ib ia e  muscle and 

c o n s is ts  o f a s in g le  muscle bundle ( f ig ,  3 ,2 ) ,  A tra n sv e rse  se c tio n  

through th is  bundle i s  shown in  f i g ,  3.3A, This p a r t  o f the  muscle 

rece iv es  only  one nerve branch which a r is e s  from th e  v e n tra l  s ide  o f

Middle f le x o r  (107a),

This is  the f i r s t  p a ir  o f muscle bundles in  the  p innate  p a r t  

o f th e  f le x o r  muscle ( f ig .  3 ,2 ) .  These bundles are  a ttach ed  v e n tr a l ly  

to  the  proxim al end o f the  femur and converge from e i th e r  side  o f the
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f le x o r  apodeme. The angle between th e  muscle bundles and th e  apodeme,

th e  p in n a tio n  a n g le , is  about 9^ (Table 3 .1 ) .  Transverse sec tio n s  

through th e  middle p a r t  o f th e  muscle are  shoim in  f i g ,  3.3A and an 

a n a ly s is  of the  in fo rm ation  ob ta ined  from s im ila r  se c tio n s  i s  shown in  

Table 3 .1 .

D is ta l  f le x o r  (l07c)

This forms the  r e s t  o f th e  p innate  p a r t  o f th e  f le x o r  muscle 

and is  a ttach ed  to  the w alls  o f the  d i s t a l  two th ird s  o f the  femur 

( f ig ,  3 .2 ) ,  This p a r t  con ta ins 8 to  10 p a ir s  o f muscle bundles w ith 

d i f f e r e n t  p in n a tio n  angles (Table 3 .1 ) .  A tra n sv e rse  sec tio n  from the 

d i s t a l  f le x o r  is  shov/n in  f i g .  3.3B , Due to  the p in n ate  s tru c tu re  only  

fou r p a ir s  of muscle bundles can be seen in  th is  s e c tio n  which a lso  shows 

th a t  the muscle bundles o f the  a n te r io r  p a r t  of th e  muscle co n ta in  a 

la rg e r  number o f muscle f ib r e s  than  those of the  p o s te r io r  p a r t  (Table 

3 .1 ) .

The anatom ical fe a tu re s  o f th e  f le x o r  muscle are  summarized in  

Table 3 .1  and w il l  be d iscussed  l a t e r ,

b) The f le x o r  nerve branches.

To e s ta b l is h  the  anatomy o f the  nerve branches on the  f le x o r  

muscle bundles, reduced methylene blue was in je c te d  through the  d o rsa l 

c u t ic le  o f the  m esothoracic le g  o f an in ta c t  anim al, or CoGl^ was 

perfused  in to  the  f in e  nerve branches of NSB̂  (as d escribed  in  M ethods), 

The second technique was the  most su ccessfu l and some o f the most 

densely  f i l l e d  nerve branches in  the various p a r ts  o f the  f le x o r  muscle 

are  shown in  f ig .  3 ,4 . The proxim al f le x o r  rece iv es  i t s  motor nerves 

through a branch which a r is e s  from the v e n tra l side o f N5B2 and 

im m ediately a f t e r  i t  reaches the  muscle gives r i s e  to  two o th er branches. 

The middle f le x o r  rece iv es  one p a ir  o f motor nerve branches. They



Diagrammatic re p re se n ta tio n  of th e  m esothoracic f le x o r  t ib ia e  

muscle. The muscle bundles and the  th re e  d i f f e r e n t  p a r ts  o f 

the  mueole  are dem onstrated. The exact dimension o f the  muscle 

bundles and th e i r  p in n a tio n  angles are  not shown in  t h i s  diagram. 

The nerve branches from the  main nerve (N5B2) are  the ty p ic a l  

p a tte rn s  from 25 l e f t  and 25 r ig h t  le g s , but th e re  i s  no system atic 

d iffe re n c e  between r ig h t  and l e f t  le g s ,

AA and BB shows the approximate p o s itio n s  of the tra n sv e rse  

sec tio n s  in  F ig . 3,3»
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F ig . 3 .3

Cross se c tio n s  of the  m esothoracic femur o f the  lo c u s t .

The approximate lo c a tio n s  o f th e  sec tio n s  on th e  muscle are 

shown in  F ig . 3 ,2 .

A = se c tio n  AA (F ig . 3 ,2 )  through the  proxim al and 

- middle f le x o rs

B = se c tio n  BB (F ig , 3 .2 )  through the middle of the  

d i s t a l  f le x o r ,

C.O, -  Chordotonal organ, R.IJ. muscle R e tra c to r  unguis 

muscle (only th e  apodemes a re  v is ib le  in  B),

Scale bar 0,250mm
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Table 3 .1 .
T

Dimensions and s t r u c tu r a l  c h a ra c te r is t ic s  o f the  muscle 

bundles o f the m esothoracic f le x o r  t ib ia e  muscle in  female; 

S ch istocerca  g re g a ria . Some d a ta  concerning the  ex tensor 

and r e t r a c to r  unguis muscles a re  a lso  given,

*  T o ta l : In d ic a te s  the  number o f muscle f ib r e s

which can be counted in  the  whole c ross

se c tio n  o f th i s  p a r t  o f the  muscle

m.b. = muscle bundles

m ,f. = muscle f ib re

f ig u re s  in  b rackets  are standard  d ev ia tio n s
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F ig . 3.A

Nerve branches of the  m esothoracic f le x o r  t ib ia e  imxscle f i l l e d  w ith  

CoClg.

Proximal nerve (top l e f t )  This branch a r is e s  from the  v e n tra l  side 

o f N5B2 (see arrow ) and d i r e c t ly  in n erv a tes  the  proxim al muscle 

f ib r e s .  Scale bar : 200 pn.

Middle nerve (top r ig h t )  The only  nerve which is  symmetrical and 

in n erv ates  the middle f le x o r,, which can be seen as the d iagonal 

muscle bundle. Scale bar : 200. pm.

D is ta l nerve branches (c e n tra l  and bottom) Nerve branches a r is in g  

from the s id es  of N5B2. Notice th e  nerve branch arrowed in  the  

middle r ig h t  p ic tu re .  This i s  th e  l a s t  and the  lo n g est nerve branch, 

o f the d i s t a l  f le x o r .  Most o f the  e x tr a c e l lu la r  reco rds were 

obtained from th i s  nerve branch usin g  hook e le c tro d e s . The same 

branch is  shown a t  a h igher m agn ifica tion  in  the r ig h t  bottom figure*  

The middle l e f t  f ig u re  shows o th er branches o f the  d i s t a l  f le x o r  and 

th e  bottom l e f t  f ig u re  shows one o f them a t  h igher m ag n ifica tio n . 

Scale bars : 100 jim.
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FiK. 3 .5

A, B scanning Glectronm lcrographs fro#  the  nerve branch 

te rm inals  on the m esothoracic f le x o r  muscle f ib r e s .

0 , the  support s tru c tu re  between the  nerve branch (n) and 

th e  muscle f ib re s  (m). The nerve axons can a lso  be 

seen.

This form ation was found in  some f le x o r nerve branches 

but not a l l .  Scale marks 20 pm.

\
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branch Immediately th ey  reach  the muscle f ib r e s .  The r e s t  of the  

muscle (the d i s t a l  f le x o r)  rec e iv e s  nerve branches from th e  s id es  o f N5Bp. 

There are  fou r p a ir s  o f nerve branches which u su a lly  branch again  

imm ediately a f t e r  leav in g  th e  main nerve to  in n erv ate  more than th re e  

muscle bundles.

More than  50 leg s  (25 r ig h t  and 25 l e f t )  were examined and the  

nerve o u tlin e s  were drawn w ith  a camera lu c id a . A nalysis of th ese  

drawings and photographs produced th e  diagram of th e  most common p a tte rn  

of th e  f le x o r  nerve branches and the  o rg an isa tio n  of th e  f le x o r  muscle 

bundles th a t  i s  shown in  f ig .  3.2* Although th e re  i s  some v a r ia t io n

between anim als in  th e  number o f th e  nerve branches and in  the  way in

which th ey  approach th e  d i s t a l  f le x o r ,  the  in n erv a tio n  p a t te rn  o f the  

proxim al and middle f le x o rs  i s  always id e n t ic a l .  No s u b s ta n tia l  

d iffe re n c e s  in  the  anatomy were found between the  p ro th o rac ic  and 

m esothoracic m uscles.

For fu r th e r  s tu d ie s  o f the  above f le x o r  nerve b ran ch es, the

su rface  of th e  f le x o r  muscle was examined w ith  a Scanning E lec tro n

M icroscope, The te rm in a l nerve branches on th e  muscle f ib r e s  are 

c h a r a c te r is t ic  o f the  O rthopteron d if fu s e  type (described  by Hamory,

1961) . Some of th e  nerve branches approach the  muscle w ith  a 

connective t is s u e  l in k  between them ( f ig .  3.5A, B). This may be a 

common membrane between nerve and muscle formed from th e  basement membrane 

o f the  leranoblast and the  muscle c e l l  as found in  EM sec tio n s  by Edwards 

(1959) and Rees and Usherwood (1972) in  th e  lo c u s t r e t r a c to r  unguis 

muscle. This l in k  seems to  ’’support’® th e  neuromuscular ju n c tio n s  a g a in s t 

any ten sio n  which is  developed between nerve and muscle during  passive  

movements or tw itch  co n tra c tio n s  o f th e  muscle.
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ci. The motor axons.

Transverse sec tio n s  o f th e  major f le x o r nerve branches were 

cu t fo r  tran sm iss io n  E lec tro n  Microscopy (EM) and th ey  show a la rg e  number 

o f axons in  each nerve branch ( f ig .  3 .6 , ) .  The number o f the axons which 

can be seen in  th e  f le x o r  nerve branches v a r ie s  a l i t t l e  between anim als. 

Table 3 .2 . shows the  number o f axons which wore counted in  EM sec tio n s  

from th ree  branches in  f iv e  d i f f e r e n t  anim als. In o rder to  count the  

axons to  the d i s t a l  f le x o r  the l a s t  nerve branch from th i s  p a r t  of the 

muscle was chosen. Comparison w ith  a number of sec tio n s  o f o th er 

branches of the  d i s t a l  muscle showed no system atic d iffe re n c e s  in  th e  

number o f the axons in  each branch. The e f fe c tiv e  diam eters o f the  

motor axons in  the  f le x o r  nerve branches c a lcu la te d  from the c ro ss  

s e c tio n a l a reas  are  l i s t e d  in  Table 3 .3 .  These measurements were taken  

from sec tio n s  w ith  numbers o f axons very  c lose to  the  average f ig u re s  

sho^vn in  Table 3 .2 . Some o f the  axons in  the  same nerve branch seem to  

have alm ost id e n t ic a l  e f fe c t iv e  diam eters (underlined  v a lu e s ) .

d . Nerve

The u l t r a s t ru c tu r e  o f N^B  ̂ e-nd o f the  nerve branches which 

e n te r  the  f le x o r  t ib ia e  muscle i s  s im ila r  to  th a t  o f o th e r p e r ip h e ra l 

nerves in  in se c ts  (Edwards, Ruska and de Harven^ 1958 ; H uddart, 1971; 

E lder and Morân, 1974; lane and T reh ern e , 1973).

To study the  lo c a tio n  o f the  f le x o r  motor axons in  NdB^, s e r i a l  

sec tio n s  fo r  l ig h t  m icroscopy were taken  from th i s  nerve ( f ig .  3 ,7 ) .

The group o f la rg e  axons in  th e  v e n tra l  p a r t  o f the  se c tio n  seems to  

co n ta in  most of the f le x o r  motor In the proxim al p a r t  of the

femur, N^B  ̂ (se c tio n  A) has a d iam eter of 290 20 pm while d i s t a l l y

th i s  diam eter becomes 250 -  20 pm (se c tio n  C). There are  two main



E lec tron  micrographs o f tra n sv e rse  sec tio n s  from the  proxim al 

nerve branch (sec tio n  a a ) ,  middle branch (se c tio n  bb) and d i s t a l  

branch (se c tio n  c c ) . The exact lo c a tio n s  o f th ese  sec tio n s  are  

in d ica ted  in  f ig .  3*7. The shape o f th e  nerve branches, from 

which th ese  sec tio n s  were talcen, are  shown in  f ig ,  3 .4 .

Scale bar : 10 pn.
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Table 3^2,

Numbers of axons in  th e  nerve branches of the  m esothoracic 

f le x o r  t ib ia e  muscle counted in  e le c tro n  micrographs from 

5 d if f e r e n t  lo c u s ts .

Table 3 .3.

E ffe c tiv e  diam eters o f the  axons in  the  m esothoracic 

f le x o r  nerve branches. Each diam eter was ca lc u la te d  

from the  cross s e c tio n a l a re a . Measurements were taken 

from sec tio n s  w ith  approxim ately the  mean number of 

axons shown in  Table 3 .2 .



Animals

Table 3.2* 

1 2 3 4 . .. 5 .......

Proxim al nerve 
branch (se c tio n  aa)

Middle nerve 
branch (se c tio n  bb)

D is ta l  nerve 
branch (se c tio n  cc)

ITumber o f axons 

9 10 9 11

U  15 17 16

18 19 17 20

9

15

18

Mean

9.6

15.4

18.3

Table 3 .3

E ffe c tiv e  diam eter o f axons (pm).

Proxim al nerve 25 .50 , 20 .20 , 8.80
branch (se c tio n  aa) 2 .2 0 , 1 .90 , 1 .60 , C .75,

6 .6 5 , 6 ,4 0 , 0.35

Middle nerve
branch (sec tio n  bb) 23 .50 , 19 .90, 7 .5 0 , 7 .60

6 .8 0 , 5 .20 , 4 . 90 , 4 .2 0 ,
3 .5 0 , 3 .7 0 , 3 . 30 , 2 . 90 ,
2 .3 0 , 1 .25 , 1.20

D is ta l nerve
branch (se c tio n  cc) 11.80, 10,10, 9 .3 0 , 9 .1 0 ,

8 .3 5 , 7 .9 0 , 6 , 40 , 4 . 50,
3 .5 0 , 3 ,4 0 , 3 .1 0 ,
2 .8 0 , 2 .7 0 , 1 . 60 , 1 . 60 ,

-1 .4 7 , 1 .46 ,
0 .6 5 , 0.35



Transverse sec tio n s  fo r l ig h t  microscopy taken  from d if f e r e n t  

le v e ls  o f N5B2 as in d ica ted  in  the  diagram. This diagram 

a lso  shows the f le x o r  nerve branches from which th in  sec tio n s  

fo r  Transm ission E lec tron  Microscopy were tak en .

Section  (aa) The nerve branch to  the  proxim al f le x o r 

Section  (bb) The nerve branch to  the  middle f le x o r  

Section (cc) The main nerve branch o f the  d i s t a l  f le x o r



proxim. DORSAL

distal 100 Ji
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reasons fo r  th i s  red u c tio n  in  d iam eter, l )  Some of the la rg e  axons 

(probably motor axons) in n e rv a tin g  the  proxim al p a r t  o f the  muscle leave 

before the  d i s t a l  p a r t  and 2) th e re  i s  a reduction  in  motor axon 

diam eter when these  axons reach the  d i s t a l  p a r t  o f the  nerve.

N early a l l  the  sm all axons are  sensory and l i e  c h ie f ly  in  the 

d o rsa l h a lf  o f the proxim al (se c tio n  A), At the d i s t a l  end of

NSB  ̂ immediately a f t e r  the  l a s t  f le x o r  nerve branch le a v e s , sec tio n s  of 

the nerve re v ea l th a t  sensory axons occupy most of the  nerve a rea .

Some of the la rge  axons in  th i s  sec tio n  could be the motor axons which 

innervate  the t i b i a l  m u sc les . ( f ig ,  3 .7 ,  sec tio n  C).

0 . The f le x o r t ib ia e  motoneurons (FlTiî4)

To lo ca te  the c e l l  bodies o f the  f le x o r motoneurons cobaltous 

c h lo rid e  was perfused  up N^B^, to  backfr^f , these  neurons, N5B  ̂ was 

cu t 1mm d i s t a l  to  the  middle nerve branch and the  cu t end was f irm ly  

sucked in to  the  broken t i p  o f a m icrop ipe tte  inc lud ing  the middle nerve 

branches (see Methods),

Most o f the  FlTiM ( f ig .  3 ,8 )  sornata are very  c lose  to g e th e r 

and they  l i e  on the d o rsa l a n te r io r  side o f the  m esothoracic ganglion .

I t  i s  very  d i f f i c u l t  to  d is t in g u is h  the  members o f c lu s te r s  as described  

by Burrows and Hoyle (1973) in  the  m etathoracic ganglion and Wilson (1977) 

in  the m esothoracic ganglion . The number o f motoneurons which can be 

s ta in ed  using  the above technique is  in  the range o f 15-20 (10 d i f f e r e n t  

g an g lia ) . This number includes a lso  the  t i b i a l  motoneurons. The two 

h eay ily s ta in ed  c e l l  bodies on the middle d o rsa l side o f the ganglion are 

probably  the two f le x o r  in h ib i to r s ,  as id e n tif ie d  in  the  m etathoracic 

ganglion by Burrows and Horridge (1974).

L-
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A- disa.dvantage o f th i s  technique is  th a t  cobaltous ch lo rid e  

a lso  f i l l s  the  f iv e  t i b i a l  motoneurons and may p o ss ib ly  c ro ss the  axon 

membranes to  f i l l  o th e r

2 . Innervation

The id e a l  technique fo r  studying  the in n erv a tio n  of the  f le x o r  

t ib ia e  muscle would be to  id e n t i fy  the  f le x o r  t ib ia e  motoneurons by 

passing  cu rren t from an in t r a c e l lu la r  m icroelectrode in to  th e i r  somata 

and c o r re la t in g  the  evoked somata sp ikes w ith e x t r a c e l lu la r ly  and 

in t r a c e l lu la r ly  recorded events in  th e  m uscle. Using th i s  technique 

Hoyle and Burrows (1973a, b) were ab le  to  id e n tify  s ix  e x c ita to ry  f le x o r  

t ib ia e  motoneurons (FlTiM) in  the  la rg e  m etathoracic ganglion . They 

found two f a s t  motoneurons (FFlTiM), two in term ed ia te  (iMFlTi) and two 

slows (SFlTi) in  an a n te r io r  and p o s te r io r  c lu s te r .  The two in h ib i to ry  

motoneurons were lo ca ted  by Burrows and Horridge (1974)> th e  p o s te r io r  

in h ib i to r  (PsInFlTiM) which has i t s  soma between the  m idline and th e  

ro o t o f N5, and th e  a n te r io r  in h ib i to r  w ith  i t s  soma a n te r io r  to  Common 

In h ib ito r  (C l), Wilson (1977) was ab le  to  f i l l  w ith  m icroe lectrodes 

s ix  e x c i ta to ry  f le x o r  t ib ia e  motoneuron somata in  the  lo c u s t m esothoracic 

ganglion but he d id  not in v e s tig a te  fu r th e r  the  in n e rv a tio n  of the f le x o r  

t ib ia e  muscle„

The method d escribed  above was used to  ensure th a t  the s ta in ed  

motoneurons in  f ig .  3 ,8  were f le x o r  t ib ia e  motoneurons. Using the 

arrangem ent shown in  f ig ,  3 ,9  reco rd ings were made from the  c e l l  bodies 

o f neurons which were found to  in n erv a te  the  f le x o r  t ib ia e  m uscle. 

Although th is  technique produces much inform ation  about in d iv id u a l 

motoneurons, as a method fo r  e s ta b lis h in g  the  in n erv a tio n  o f the  f le x o r



Photograph of a f ix e d , c le a re d , whole-mount p rep a ra tio n  o f the  

m esothoracic ganglion o f S bkistocerca g re ^ a ria  viewed from the  

d o rsa l s id e . Most o f the  c e l l  bodies o f the  f le x o r  t ib ia e  and 

t a r s a l  motoneurons were back f i l l e d  w ith  Co01^ through H5B2,

The p o s itio n s  o f neurons are  d is to r te d  owing to  the  p ressu res  

developed during  f ix a tio n  and mounting. This i s  e s p e c ia lly  tru e  

o f the  two in h ib ito rs  in  th e  r ig h t  side of the  ganglion . The 

p o s te r io r  p a r t  of the  ganglion is  a t  the  top  o f the  f ig u re .

F i g ,_ l ^

Id e n t if ic a t io n  o f a f le x o r  motoneuron p en e tra ted  by a m icroelectrode

and record ing  a c tio n  p o te n tia ls  (Rl) from th e  nerve branches of the

fle x o r muscle ( f l . t i . r a ) .  The motoneuron was a c tiv a te d  by passing
(52P.2)

d ep o la ris in g  cu rren t through the m icro e lec tro d e , monitored in  the  

lowest t r a c e .
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t ib ia e  muscle^ i t  su ffe rs  from th e  fo llow ing disadvantages»

1) Most o f the  c e l l  bodies l i e  very  close to g e th e r  making i t  

im possible to  id e n t i fy  d i f f e r e n t  f le x o r  neurons from th e i r  

p o s itio n  in  the  ganglion .

2) I t  is  not p o ss ib le  to  lo ca te  a l l  the  f le x o r  motoneurons by 

probing w ith  a m icroelectrode#

3) I t  is  d i f f i c u l t  to  m aintain  s ta b le  records from the  c e l l  

bodies fo r  periods of time long enough to  allow  r e l ia b le  

in v e s tig a tio n  o f the in n erv a tio n  of the  muscle and fo r  fh r th e r  

behavioural s tudies#

As a r e s u l t ,  th i s  technique was not used*

In s te a d , the  in n erv a tio n  p a tte rn  o f the f le x o r  motoneurons 

was accomplished u s in g  m ainly two techniques#

1) In an is o la te d  m uscle, by s tim u la tin g  p e r ip h e ra lly  the  axon of 

the  motoneurons and measuring the a c tiv e  ten sio n  increm ents 

generated in  the  d i s t a l  f le x o r ,  while a t  the same time recording, 

a c t iv i ty  in  the  o th e r two p a r ts  of the  muscle w ith  m icroelectrodes*

2) In an in ta c t  anim al, by record ing  spontaneously occurring  a c t iv i ty  

from th e  nerve branches which innervate  the th re e  d if f e r e n t  p a r ts  

o f  th i s  muscle#

In the f i r s t  method, i f  a very  s e n s itiv e  ten s io n  tran sd u cer i s  u sed , 

th i s  te  clinique has the a b i l i t y  to  d e te c t most o f the  e x c ita to ry  axons 

by the  ac tiv e  ten sio n  increm ent which each of them produces in  the  muscle#

One o f the problems w ith  th i s  method was the  re la x a tio n  in  the 

muscle f ib re s  caused by the  p e r ip h e ra l in h ib ito ry  axons# This 

phenomenon a f fe c ts  the  ten sio n  reco rds and makes the  in te rp r e ta t io n  of 

th ese  records d i f f ic u l t#  This problem was solved by usin g  one o f the  

p ro p e rtie s  of the sa lin e  to  d im inish  g rad u a lly  the m echanical responses 

(R elaxation) to  in h ib i to ry  s t in u la t io n  the  muscle taken  from starved



23

locusts#  A fte r 100 min in  lOK s a l in e ,  no re la x a tio n  can be recorded 

d uring  in h ib ito ry  s tim u la tio n  (Usherv/ood, 1968). This method, although 

i t  was no t always s u f f ic ie n t ,  was p re fe rab le  to  e lim in a tin g  re la x a tio n  

w ith  p ic ro to x in  p e rfu s io n , s ince p ic ro to x in  does not always perfuse  

p ro p e rly  between the  muscle f ib r e s  and may a f fe c t  the  co n d itio n  o f the  

muscle i t s e l f .

The e q u il ib ra t io n  tim e o f 100 minutes was im portant not only  

fo r  avoiding in h ib i to ry  e f fe c ts  but fo r  the study o f the  e x c ita to ry  

axons. In the  f i r s t  20 min a f t e r  the  immersion o f the  muscle in  

s a l in e ,  the  sm all axons appeared to  have higher thresholds)than the  

la rg e r  axons. Under th ese  con d itio n s  te n s io n  produced by the  la rg e r  

e x c i ta to ry  axons masked the  ten s io n  from the  sm all axons and reduced 

the number o f axons which could be id e n t i f ie d  to  two or thz'ee. However, 

a f t e r  30 min tw itch  c o n trac tio n s  caused by sm all axons could a lso  be 

recorded and a f te r  60 rain reco rd s lUce those in  f ig .  3 .11  could be 

o b ta in ed •

G enerally  th e  sa lin e  used reduced the  peak a c tiv e  ten s io n  o f 

th e  muscle by 3 to  5 tim es compared w ith  th a t  recorded under n a tu ra l  

co n d itio n  (see below ), ■ O ccasionally  when the  muscle was bathed in  

sa lin e  no co n tra c tio n s  could be recorded a t  a l l .  In  th i s  case , the 

tw itc h  co n tra c tio n  could be re s to re d  by adding more calcium  ch lo rid e  to  

th e  sa lin e  to g e th e r w ith  an ap p ro p ria te  red u c tio n  in  the co n cen tra tio n  

o f sodium ch lo rid e  in  o rder to  m ain tain  constan t o sm o la rity . The e f f e c t  

o f the  Ca ion co n cen tra tio n  on the s ize  o f the tw itch  c o n tra c tio n  o f 

the  f le x o r  t ib ia e  muscle i s  i l l u s t r a t e d  in  f ig ,  3 ,1 0 . S im ilar e f fe c ts  

were found by Aidle y  (1965) in  the m esothoracic ex tensor muscle but in  

t h i s  case the  maximum a c tiv e  te n s io n  appeared a t  2 « Co . , At h igher 

co n cen tra tio n  than 2mM although  the  muscle produced h igher peak 

c o n tra c tio n , th e  l i f e  time o f the muscle in  s a lin e  became s h o r te r .



The re la t io n s h ip  between the maximum muscle tw itch  am plitude
"H "Î*

and the  co n cen tra tio n  of Ga in  the  s a lin e .  Tension was 

monitored from the  d i s t a l  f le x o r  only .
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P ie . 3.11

Tvfitch co n tra c tio n s  separately* recorded from the Proxim al (p ), 

the Middle (m) and the  D is ta l  (D) f le x o rs .  The f le x o r  muscle 

was e q u il ib ra te d  w ith  s a lin e  and the  motor axons resp o n sib le  

were ex c ited  w ith  s in g le  shocks to  N5. To m onitor ten sio n  only  

from one o f the th re e  p a r ts  of th e  m uscle, th e  o th e r two were 

com pletely denervated w hile ten s io n  was always recorded from the  

d i s t a l  end of the  f le x o r apodeme, as I l lu s t r a te d  in  the  diagram 

(T, Tr ) .

Time and te n s io n  c a l ib ra t io n  fo r  reco rd  D are  the  same as in  

record  P.
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F ig . 3.12

Diagrammatic re p re se n ta tio n  of the  d is t r ib u t io n  o f the 

axons in n erv a tin g  the  m esothoracic f le x o r  t ib ia e  muscle,

F = F ast axons M = in term ed ia te  axons

S = Slow axons I  = in h ib i to ry  axons

D ™ DIM axons
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Table 3.^..

The number o f e x c ita to ry  axons to  each p a r t  of the  

m esothoracic f le x o r  t ib ia e  muscle id e n t i f ie d  by the  

s ize s  o f the  tw itch  co n tra c tio n s  they  produced. 

Records taken from seven d i f f e r e n t  anim als.

Table 3*5,

T ypical am plitudes of th e  p o stsy n ap tic  p o te n tia ls  

(PSP’s) produced by the  f le x o r  axons-,
» 6% — /Û IA'/,



Proxim al f le x o r  

Middle f le x o r  

D is ta l  f le x o r

Table 3*4.

Number o f E x c ita to ry  axons 'Mode

6 7 5 6 6 5 7  6

5 7 6 7 8 7 6 7

9 8 8 7 8 6 8  , 8

Table 3*5

PSP mV PSP mV

PI 40 « 50 SI 2 —4

F2 30 -  35 (5 -  10) 82 3 - 5

F3 35 ~ 40 S3 5 - 1 0

F4 20 -> 30 (10-15) 11 -  ( l  —'

F5 20 « 25 . 12 — (2 —

F6 35 -  40

Ml 15 -  20 (5 -10)

M2 10 -  15

M3 10 -  15



Having e lim inated  the e f f e c t  of the in h ib ito ry  axons on the 

f le x o r  m uscle, the number only  o f the e x c ita to ry  axons in n erv a tin g  

the  th re e  p a r ts  of the muscle was e s ta b lish e d  by graded s tim u la tio n  

of each p a r t  through N5 w ith  s in g le  shocks (0,2ms lo n g ). The peak o f 

the muscle a c tiv e  te n s io n  which was recorded through the  tendon from 

each p a r t  of the muscle ( f ig .  3 .11) increased  in  s ize  in  jumps which 

r e f l e c t  the th re sh o ld  o f the axons which innervate  the  muscle. At the 

same time e x c i ta to ry  ^ o s t sy n ap tic  p o te n t ia ls  (EPSPt) were recorded from 

the f ib re s  of the stim u la ted  p a r t  of the muscle to  e s ta b l is h  th a t  an 

a c tiv e  ten sio n  increment occurred fo r  each EPSP recorded . This was 

necessary  because o f the  p o s s ib i l i ty  th a t  some axons may cause te n s io n  

increm ents too sm all to  be d e te c te d . Using th i s  technique of 

s tim u la tio n , only the  e x c ita to ry  axons can be dem onstrated and the  

v a r ia tio n  in  the  number of th ese  axons counted in  the  th ree  p a r ts  of the  

muscle was r e la t iv e ly  sm all (Table 3 ,4 ) ,  To investigate», the  p o s s ib i l i ty  

th a t  some o f the e x c ita to ry  axons innervate  only sp e c if ic  p a r ts  o f the 

f le x o r  muscle ten s io n  was recorded only  from one p a r t  of the  muscle 

(u su a lly  the d i s t a l )  while m icroelectrodes p en e tra ted  f ib re s  in  o th er 

p a r ts  of the  m uscle, looking fo r  EPSP, which were not c o rre la te d  w ith 

the  recorded a c tiv e  ten s io n  increm ents. The id e n t i f ic a t io n  and the 

topography not only o f the e x c ita to ry  axons but a lso  o f the in h ib i to ry  

was e s ta b lish e d  by examining the  s iz e  of spontaneously occu rring  a c tio n  

p o te n tia ls  in  c o r re la tio n  w ith  sim ultaneously  recorded EPSP's or IPSP's 

( in  haemolymph). The d o rs a l  Unpaired medictn (DUM) neurons were

in v e s tig a te d  by s tim u la tin g  the c o n tr a la te ra l  nerve.

At th a t  stage i t  was found necessary, fo r  c la s s i f ic a t io n  

purposes, to  separa te  the d i f f e r e n t  axons according to  the EPSP which 

th ey  produce. Axons which innervate  the m etathoracic f le x o r  t ib ia e



muscle were c la s s i f ie d  as F a s t,  In term ediate  and Slow by Burrows and 

Hoyle (1973). A ccordingly th e  e x c ita to ry  axons which innerva te  the 

m esothoracic f le x o r  muscle were defined  as :

F ast (F);'-..-w EPSP's which are  w ith in  the range of 20 -  50 mV.

They are  u s u a lly  sup ra th resho ld  and a c tiv a te  e l e c t r i c a l l y  

e x c ita b le  muscle membrane producing a f a s t  r i s in g  

S im ilar f a s t  responses have been recorded in  many in se c t 

muscles (see reviews by Hoyle, 196$; Usherwood, 1967; 

a lso  Hoyle, 1955 | Usherwood, 1962).

In term ediate  (m)i EPSP*s a re  d e p o la r iz a tio n s  which are  in  the 

range of 10 -  20 raV,

Slow (S)î Slow r i s in g  EPSP's w ith in  the range o f 1 -  10 mV,

They are  produced by neurons which are spontaneously 

a c t iv e ,

Numbers were given to  id e n t i fy  motor axons* This c la s s i f ic a t io n  is  

not su ita b le  fo r some f le x o r  motor axons which ta p e r  (see axon F4).

A s im ila r  phenomenon was described  by Burns (1972) fo r  the  INSTi in  the 

m esothoracic ex tensor t ib ia e  muscle and by Hoyle (1955) fo r  th e  FETi 

in  the  m etathoracic ex ten so r.

Using a l l  the above techniques and combining them, the f in a l  

p a tte rn  o f the  in n erv a tio n  o f th e  f le x o r  muscle was e s ta b lish e d  ( f ig .  3 ,1 2 , 

Table 3 ,5 ) .  D eta iled  d e sc rip tio n s  o f the  in d iv id u a l axons in n erv a tin g  

each p a r t  of th e  f le x o r  muscle a re  given below. These r e s u l t s  were 

summarized from records ob tained  in  50 d i f f e r e n t  anim als and each axon 

was id e n t i f ie d  a t  le a s t  5 tim es before being f in a l ly  c la s s i f ie d .

F ast 1 (F l) ,

This i s  the la rg e s t  axon to  th e  f le x o r  muscle and jrm ervates 

on ly  the  proxim al f le x o r  ( f ig .  3 .1 2 , Table 3 .5 ) ,  This was e s ta b lish e d



Zig..-M2
a to  C, Records from the  m esothoracic f le x o r  t ib ia e  muscle o f an

iso la te d  le g  bathed in  s a l in e .  The f le x o r  axons were s tim u la ted

through th e  cu t end o f N5 in  the  coxa,

a and b, 1 s t t ra c e :  I n tr a c e l lu la r  reco rds from th e  proxim al f le x o r  

(see f  fo r  lo c a t io n ) ,

2nd tra c e :  Muscle te n s io n  recorded from only th e  middle and 

d i s t a l  f le x o rs .  To 1 v i t \  of the sm aller

axons th ese  records were obtained in  th e  f i r s t  30 min from 

the  moment which the  muscle was perfused  w ith  s a lin e .

Of d , 1 s t tra c e  : I n tr a c e l lu la r  records from th e  proxim al f le x o r ,

2nd tra c e :  Tension record  from the  proxim al f le x o r  on ly  

Records were taken  a f t e r  th e  muscle was e q u ilib ra te d  w ith 

w ith  the  s a lin e ,

e . Records from the  m esothoracic f le x o r  t ib ia e  muscle in  a

d isse c te d  femur o f an immobilized lo c u s t .  The femur was 

f i l l e d  w ith  haemolymph and a sm all amount of added s a lin e .

The f le x o r  motoneurons were r e f le x ly  ex c ited  by t i b i a l  

ex ten sio n ,

1 s t t r a c e ;  I n tr a c e l lu la r  reco rd  from th e  proxim al f le x o r  

2nd t r a c e ;  E x tra c e llu la r  record  from the  middle nerve branch 

3rd tr a c e :  E x tra c e llu la r  record  from the  main d i s t a l  nerve 

branch,

f .  Diagrammatic re p re se n ta tio n  o f th e  proxim al f le x o r  (Prox, f ) ,

middle f le x o r  (Mid, f )  and d i s t a l  f le x o r  (D is t. f ) .  Tons, T 

th e  tran sd u cer a ttach ed  to  the  end of the  apodome. Arrows 

in d ic a te  where the  apodome or N5B2 was cu t as explained  in  

the t e x t .
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by s tim u la tin g  the  axon through N5 and record ing  EPSP' s from the  

proxim al muscle f ib r e s  ( f ig ,  3 ,1 3 a , b ) . At the same time ten sio n  was 

monitored only  from the  middle and d i s t a l  f le x o rs  by c u tt in g  the f le x o r  

apoderae between the  middle and proxim al f le x o rs  (see sm all arrow in  f ig ,  

3*13f), Wlien the  stim ulus reaches the  th re sh o ld  of F l a la rg e  EPSP is  

produced in  the proxim al muscle f ib r e s  but no ten sio n  movements are 

induced in  the r e s t  o f the f le x o r  m uscle. However, when the stim ulus 

reaches the th re sh o ld  of a common axon a ten sio n  increm ent appears in  the 

middle and d i s t a l  muscle a t  the  same time as an EPSP is  produced in  the 

proxim al muscle f ib r e s .  The n atu re  of the EPSP produced by axon F l 

and the  te n s io n  which th is  axon induces in  the proxim al f le x o r  are shown 

in. f i g ,  3 ,1 3 c , d . In th i s  case th e  ten sio n  produced only  by the  

proxim al f le x o r  was monitored through the  f le x o r  apodeme by denervating  

the  r e s t  o f the m uscle. The tw itch  w ith  the lower th re sh o ld  than  F l ,  

was produced by axon F2 as w i l l  be explained below,

A s e r ie s  of p e n e tra tio n s  o f the proximal muscle f ib r e s  showed 

th a t  F l does not innerva te  more than  30^ of the proxim al f le x o r .

The fa c t  th a t  F l in n e rv a tes  only the  proxim al f le x o r  was 

confirmed by reco rd ing  from the  f le x o r  muscle in  a d isse c te d  femur of 

an immobilized lo c u s t (see M ethods), When the  anim al was m echanically  

s tim u la ted  a la rg e  EPSP appeared in  the proxim al muscle f ib r e s  which did 

no t correspond w ith  any of the  a c tio n  p o te n tia ls  recorded in  the  middle 

and d i s t a l  nerve branches ( f ig ,  3,13©),

F ast 2 (F2),

This axon in n erv a tes  only  the  proximal and middle f le x o rs  

( f ig ,  3 .1 2 , Table 3 .5 ) .  This was e s ta b lish e d  by reco rd ing  EPSP' s 

in  the  proximal f le x o r  and a c tio n  p o te n tia ls  from the



middle and d i s t a l  nerve branches o f a  fiXed animale R e la tiv e ly  la rg e  

EPSP *8 appear in  the proxim al muscle f ib re s  and correspond w ith  some o f 

the  a c tio n  p o te n tia ls  recorded in  the  middle nerve branch ( f ig .  3.14a-). 

This suggests th a t  axon F2 in n erv a tes  both middle and proxim al f le x o rs .

The absence o f th i s  axon in  the d i s t a l  f le x o r  was e s ta b lish e d  by 

sim ultaneously  record ing  a c tio n  p o te n t ia ls  from the  middle and d i s t a l  

nerve branches ( f ig .  3 .1 4 b ). No a c tio n  p o te n tia ls  were found in  the 

d i s t a l  branches corresponding w ith  the EPS?*s or a c tio n  p o te n tia ls  

produced by axon P2, EPSP^s from axon PI can a lso  be seen in  fig* 3.14n,

In tr a c e l lu la r  record ings show th a t  F l and F2 are  the  only  la rg e

axons in n erv a tin g  the proxim al f le x o r .  The fa c t  th a t  F2 has a la rg e

diam eter in  th e  proxim al nerve branches (20.50, f ig .  3 .6 aa) and the  la rg e

a c tio n  p o te n t ia l  which th i s  ax^n produces in  the middle nerve branches

( f ig .  3.14& b) suggest th a t  t h i s  axon must have a la rg e  diam eter in  the
I t

middle nerve to o . In inseciÿ^was found by Pearson, S te in  and M alhotra 

(1970) th a t  the  a c tio n  p o te n t ia l  recorded from an axon i s  r e la te d  fS* 

th e  diam eter of th i s  axon (d "  5 ,7 ^  d = diam eter of axon, =

peak to  peak ampit’jete of a t r ip h a s ic  a c tio n  p o te n tia l)  . Transverse 

sec tio n s  o f the middle nerve branches re v e a l only  two la rg e  axons w ith 

e f fe c tiv e  diam eter o f 23.50pm and 19.9Cÿm. The most obvious candidate 

fo r  F2 is  the  sm aller axon due to  the s im i la r i t ie s  in  th e  e f fe c tiv e  

diam eter w ith  the  axon in  the  proxim al nerve branch.

The in n erv a tio n  p a tte rn  o f F2 on the f le x o r  muscle can a lso  be 

stud ied  by record ing  EPSP's and a c tiv e  ten sio n  from various p a r ts  of an 

iso la te d  f le x o r  muscle in  s a l in e .  The motor axons were e l e c t r i c a l l y  

s tim u la ted  through N5. Three EPSP's were recorded in  two d if f e r e n t  

proxim al muscle f ib re s  ( f ig .  3.14©). The la rg e r  EPSP (40 mV) vviih the  

h igher th re sh o ld  i s  due to  F l and the  o th er la rg e  EPSP (35 mV) due to  F2,



a and b. Records from th e  m esothoracic f le x o r  t ib ia e  muscle in  the  

d isse c te d  femur o f an immobilized lo c u s t .  The femur was f i l l e d  w ith  

haomolymph and a sm all amount o f added s a lin e .  The f le x o r  motoneurons 

were r e f le x ly  ex c ited  by t i b i a l  ex ten sio n .

1 s t t r a c e :  I n tr a c e l lu la r  record  from the proxim al f le x o r  

(see g fo r  lo c a tio n )

2nd tra c e ;  E x tra c e llu la r  record  from the  middle nerve branch 

3rd tra c e  : E x tra c e llu la r  record  from the  main d i s t a l  nerve 

branch, 0^

c to  f .  ■ Records from the m esothoracic f le x o r  t ib ia e  muscle bathed in  

s a lin e .  The f le x o r  axons were s tim u la ted  through the  cut 

end o f N5 in  the  coxa.

c , 1 s t  and 2nd t r a c e :  I n tr a c e l lu la r  records from two f ib r e s  of

the proxim al f le x o r .

3rd t r a c e :  Muscle ten s io n  recorded from only  the d i s t a l  

f le x o r  (see g fo r  lo c a tio n )

d , 1 s t and 3rd t r a c e :  as ,in  c ,

2nd t ra c e :  I n tr a c e l lu la r  record  from the middle f le x o r  

The nruscle was l e f t  to  e q u il ib ra te  w ith  the  s a lin e .

e ,  ‘f .  1 s t and 2nd t ra c e :  I n tr a c e l lu la r  records from two f ib r e s  of

the proxim al f le x o r .

3rd t r a c e :  Muscle ten s io n  from th e  d i s t a l  f le x o r .  This 

experim ent was undertaken im mediately a f te r  the muscle was 

immersed in  s a lin e  to  e lim in a te  a c t iv i ty  from th e  sm aller 

axons,

g. Diagi’ammatic re p re se n ta tio n  o f the m esothoracic f le x o r  t ib ia e

muscle. Arrow in d ic a te s  th e  p o in t were th e  f le x o r  tendon 

was cu t to  allow  ten s io n  records to  be made from only  the 

d i s t a l  f le x o r .
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This id e n t i f ic a t io n  is  based on the  f a c t  th a t  F l and F2 do not innervate  

th e  d i s t a l  flexor*  No in crease  in  a c tiv e  ten sio n  appears in  the  d i s t a l  

p a r t  of the  muscle when e i th e r  o f th ese  ax:ons are  stim ulated* Tension 

from the  d i s t a l  muscle was monitored by c u ttin g  the  apodeme between 

middle and d i s t a l  f le x o rs  (fig* 3 ,1 4 g ). ' To show th a t  F2 a lso  in n erv a tes

the  middle f le x o r EPSP's were recorded from th is  p a r t  ( f ig .  3,14d)* I t

i s  c le a r  th a t  two EPSP's w ith  th e  same th re sh o ld  (see d o tted  l in e )

appeared in  f ib re s  of the  proxim al and middle muscles but the  axon 

resp o n sib le  fo r  them does not produce any a c tiv e  ten s io n  in  the d i s t a l  

flexor*

Axon F2 u s u a lly  produces a la rg e  EPS? and does not innervate  

more than  70^ of the  proxim al and middle f le x o rs ,  as random p e n e tra tio n  

of th ese  muscle f ib r e s  showed* O côasionally  axon F2 in n erv a tes  muscle 

f ib r e s  which a lso  rece iv e  nerye endings from axon F l .  In th i s  case F2

behaves more l ik e  a slow axon producing a sm all EPSP. Figure S .l^ e

shows an extreme case where in  two d if f e re n t  muscle f ib r e s  axon F2 

produces a f a s t  and a slow EPSP a t  th e  same tim e. The f a c t  th a t  the  

muscle f ib re  in  the f i r s t  t ra c e  i s  a lso  innervated  by axon F l i s  sho;m 

in  f i g .  3 ,1 4 f . This phenomenon i s  a lso  dem onstrated in  f ig .  3.13c d 

where F2 produces a sm all EPSP (10 mV) but induces a la rg e  a c tiv e  te n s io n  

increm ent. In t h i s  record  splices from F l appear a t  a h igher stim ulus 

in te n s i ty .

F ast 3 (F3).

This is  a la rg e  axon which in n erv ates  on ly  the middle f le x o r  

( f ig .  3 «12, Table 3 ,5 ) .  This p a r t  o f the f le x o r  muscle u s u a lly  rec e iv e s  

i t s  motor axons bhiough a s in g le  p a ir  o7 nerve branches. Transverse 

sec tio n s  of th ese  branches ( f ig .  3 .6 ,  s e c t .  bb) show th a t  in  each nerve



th e re  are  two la rg e  axons and a few o th e r axons o f s ig n i f ic a n t ly  sm aller 

d iam eter. One of the la rg e  axons in  the middle nerve branch has a lread y  

been id e n tif ie d  a t  F2. The o th er la rg e  axon i s  F3. To e s ta b l is h  i t s  

in n erv a tio n  p a t te rn ,  a c tio n  p o te n t ia ls  from the  middle and d i s t a l  nerve 

branches and EPSP’s from the  f ib r e s  o f the middle muscle wore recorded .

In the middle nerve ( f ig .  3.15A) two la rg e  a c tio n  p o te n tia ls  can be seen 

a f te r  s trong  m echanical s tim u la tio n  o f d if f e r e n t  p a r ts  of the  anim al.

The a c tio n  p o te n tia l  produced by the most ac tiv e  axon are  from F2. The 

o th er a c tio n  p o te n t ia l  which u s u a lly  appears once or tw ice is  th a t  of 

axon F3» This does not inn erv a te  the  d i s t a l  f le x o r  because i t  does not 

produce any a c tio n  p o te n tia ls  in  the nerve to  th is  p a r t  of the  muscle 

( f ig .  3.15A th i rd  t r a c e ) .  Random p en e tra tio n s  o f the proxim al muscle 

f ib re s  a lso  f a i le d  to  show any EPSP's c o rre la te d  w ith  th e  a c tio n  p o te n tia ls  

o f F3 recorded from the  middle nerve branches.

I t  was found th a t  the  EPSP's of axon F2 are  very  sm all when 

th ey  appear in  the  same muscle f ib re s  as the la rg e  EPSP's from F3. This 

is  s im ila r  to  the  s i tu a t io n  in  the  proxim al f le x o r when F2 in n erv a tes  the  

same f ib re s  as the la rg e  axon F l.

The f a c t  th a t  F3 in n erv a tes  only the  middle f le x o r  can a lso  be 

dem onstrated by reco rd ing  a c tiv e  ten sio n  only from the d i s t a l  f le x o r  and 

EPSP's from the  proxim al and middle p a r ts  of an is o la te d  f le x o r  muscle. 

Although when a l l  the  f le x o r  motor axons are  stim u la ted  through N5 ac tiv e  

ten s io n  increm ents can be seen in  the  d i s t a l  f le x o r  ( f ig .  3.15B th i rd  

t r a c e ) ,  when axons F2 and F3 are re c ru ite d  no in crease  in  ten sio n  occurs 

in  the d i s t a l  f le x o r . This shows, th a t  axons F2 and F3 do not 

innervate  th is  p a r t  o f the f le x o r  muscle. Records tab  en sim ultaneously  

from the proxim al muscle f ib re s  ( f i r s t  tra c e  f ig ,  3.15B) re v e a l th a t  

one o f the  two EPSP is  common w ith  one in  the proxim al f le x o r  and th is



A, Records from the m esothoracic f le x o r  t ib ia e  muscle in  the  

d isse c te d  femur o f an immobilized locust*  The femur was f i l l e d  w ith 

haemolymph and a sm all amount o f added s a l in e .  The f le x o r  motoneurons 

were r e f le x ly  ex c ited  by t i b i a l  ex ten sio n .

1 s t t r a c e Î I n tr a c e l lu la r  record  from the middle f le x o r  (see E 

fo r  lo ca tio n s)

2nd t ra c e :  E x tra c e llu la r  record  , from the middle nerve branche

3rd t ra c e :  E x tra c e llu la r  record  from the  main d i s t a l  nerve branch

B to  D Records from an is o la te d  m esothoracic f le x o r  t ib ia e  muscle

bathed in  s a l in e .  The f le x o r  axons were s tim u la ted  through 

the  cu t end o f N5 in  the coxa.

B 1 st t r a c e :  I n tr a c e l lu la r  record  from proxim al f le x o r

2nd t ra c e :  I n tr a c e l lu la r  record  from th e  middle f le x o r

3rd t ra c e :  Muscle ten sio n  from only  the  d i s t a l  f le x o r  (see E ).

The muscle was l e f t  to  e q u il ib ra te  in  s a lin e  before any 

experim ents were undertaken

C, D 1 st and 2nd t ra c e :  I n tr a c e l lu la r  reco rds from middle f le x o r .

3rd tra c e :  ^fuscle ten s io n  from the  d i s t a l  f le x o r .

The records were taken before the  muscle e q u il ib ra te d  w ith  the  

sa lin e  to  avoid tw itches from sm aller axons as described  in  the  

t e x t .

E. Diagrammatic re p re se n ta tio n  of the  d i f f e r e n t  p a r ts  o f the  f le x o r  

muscle and i t s  nerve branches. Arrow shows the  p o in t where the  

f le x o r  tendon was cu t to  allow  the  muscle ten sio n  reco rds to  be 

taken  from th e  d i s t a l  f le x o r  a lone .
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Fie. 3.16

Records from the  m esothoracic f le x o r  t ib ia e  muscle in  the  d issec te d  

femur o f an immobilzed lo c u s t .  The femur was f i l l e d  w ith haemolymph 

and a sm all amount o f added s a lin e .  The f le x o r  motoneurons were 

r e f le x ly  a c tiv a te d .

A. 1 s t t ra c e :  I n tr a c e l lu la r  records from a proxim al muscle

f ib r e .

2nd tra c e :  E x tra c e llu la r  record  from the middle nerve branch

3rd tra c e :  S s^ ra c e llu la r  record  from the d i s t a l  nerve

branches,

B. 1 s t t ra c e :  I n tr a c e l lu la r  record  from the  d i s t a l  f le x o r

2nd and 3rd tr a c e :  as in  A.
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axon has been id e n t i f ie d  as F2. The EPSP w ith the h igher th re sh o ld  is  

produced by axon F3, s ince no EPSP’s could be found in  the proxim al 

f le x o r  occu rring  sim ultaneously  w ith  the  middle muscle p o te n t ia ls .

The n atu re  o f the EPSP's F2 and F3 produce in  the  middle f le x o r 

f ib re s  can be seen in  f ig .  3 .150, D, The f i r s t  EPSP is  due to  axon F2 

and the o th e r w ith the h igher th re sh o ld  is  produced by F3. These axons 

were id e n t i f ie d  by the f a c t  th a t  th ey  do not produce any in c rease  in  

a c tiv e  ten sio n  a t  the d i s t a l  f le x o r .

Fast 4 (F4).

This axon in n erv a tes  on ly  the  middle and d i s t a l  f le x o rs  ( f ig .

3 .1 2 , Table 3 .5 ) .  This was found by reco rd in g  spontaneously  occurring  

ac tio n  p o te n tia ls  from the  middle and d i s t a l  nerve branches and EPSP’s 

from the  proxim al muscle f ib r e s .  In the middle nerve branch ( f ig .  3 .16a ) 

axon F4- produces a r e la t iv e ly  la rg e  a c tio n  p o te n t ia l  which can e a s i ly  be 

d is tin g u ish ed  from th a t  o f axon F2, (Axon F2 produces the  f a s t  EPSP’s in  

the proxim al muscle f ib r e s ) .  Axon F4 a lso  produces a sm aller a c tio n  

p o te n t ia l  in  the  d i s t a l  nerve branches suggesting  th a t  th i s  axon ta p e rs  

towards the d i s t a l  p a r t  o f the m uscle. This has a lso  been found in  the 

FETi o f th e  m esothoracic ex tensor muscle (Burns, 1972), EPSP's from 

axon F4 in  the d i s t a l  muscle f ib re s  are  shown in  f ig .  3.16B. This 

motoneuron is  not very  a c tiv e  and can be re c ru ite d  only by strong  

s tim u la tio n  o f the body.

F ast 5 and 6 (F3, F6), In term ediate  3 (M3).

The id e n t i f ic a t io n  of these  th ree  axons was based on the fa c t  

th a t  they  innervate  only  the  d i s t a l  f le x o r ( f ig .  3 .1 2 , Table 3 .5 ) .

Records dem onstrating th is  are  shovm in  f ig ,  3.17A where no la rg e  a c tio n  

p o te n tia ls  common to  middle and d i s t a l  f le x o r  nerve branches can be seen.



Three a c tio n  p o te n tia ls  can be d is tin g u ish ed  in  the d i s t a l  nerve branches. 

The la rg e s t  a c tio n  p o te n t ia l  is  produced by the axon c a lle d  F6 (see 

arrows in  f ig .  3.17A) while the im m ediately sm aller a c tio n  p o te n tia ls  are 

from F5 and the th i rd  sm aller a c tio n  p o te n tia ls  are produced by axon M3. 

EPSP's recorded from th ese  axons in  the d i s t a l  muscle f ib re s  are  shown 

in  f ig .  3.17B, Although th e re  are  s im i la r i t ie s  in  s iz e  between the 

a c tio n  p o te n tia ls  produced by F5 and M3, the  M3 was c la s s i f ie d  as 

in term ed iate  due to  the f a c t  th a t  i t  produces a sm aller EPSP,

I n t r a c e l lu la r  records taken  by random p e n e tra tio n  of the d i s t a l  

muscle f ib re s  shows th a t  axon F6 in n erv a tes  approxim ately 30^ o f the 

d i s t a l  f le x o r ,  axon F5 40-50% and axon M3 60-70%,

The f a c t  th a t  the d i s t a l  f le x o r rece iv es  th ree  axons which do 

not supply the middle muscle was a lso  dem onstrated by s tim u la tin g  the 

f le x o r  motor axons through N5 in  an iso la te d  le g . A c tiv ity  o f the 

e x c i ta to ry  motor axons to  the middle f le x o r  was d isp layed  by record ing  

EPSP's from two d if f e r e n t  middle muscle f ib r e s .  A c tiv ity  of th e  d i s t a l  

e x c ita to ry  motor axons was sim ultaneously  dem onstrated by reco rd in g  the
ciji (/JO 5

a c tiv e  ten sio n  increment produced when^each e x c ita to ry  axon(reached

. during  g rad ien t s tim u la tio n  ( f ig .  3 .17C ), The two la rg e  EPSP's 

in  the middle muscle f ib re s  are caused probably  by axons F2 and F3. I t  

has been shown th a t  these  axons do not in n erv a te  the d i s t a l  f le x o r  and 

th is  is  obvious in  the record  because no EPSP's produced by F2 and F3 can 

be c o rre la te d  w ith any d i s ta l ,a c t iv e  ten sio n  increm ents. The common 

axons between middle and d i s t a l  f le x o r  may be F4 and M2 but th e re  is  not 

enough inform ation  to  id e n t i fy  th ese  two common axons p re c is e ly . F in a lly  

in  the same record  i t  is  c le a r  th a t  th e re  are th re e  la rg e  a c tiv e  ten sio n  

increm ents in  the d i s t a l  f le x o r which do not correspond w ith any EPSP's 

recorded in  the middle muscle. These r e s u l ts  in  combination w ith  the



F ie . 3.17

A and B. Records from the  m esothoracic t ib ia e  muscle in  a d issec ted  

femur o f an immobilized lo c u s t .  The femur was f i l l e d  w ith  haemolymph 

and a sm all amount of added s a lin e .  The f le x o r  motoneurons were 

r e f le x ly  ex c ited  by t i b i a l  ex ten sio n .

A. 1 s t t r a c e ;  I n tr a c e l lu la r  record  from the proxim al muscle 

f ib re  (see E fo r lo c a t io n s ) .

2nd tra c e ;  E x tra c e llu la r  record  from the middle nerve branch® . 

3rd tra c e :  E x tra c e llu la r  record  from the main d i s t a l  nerve 

branch.

The dashed l in e  in d ic a te s  th e  t i b i a l  ex tension  movement 

(angular v e lo c ity  o f 150°/g ).

B. 1 s t t r a c e :  I n tr a c e l lu la r  record  from the  d i s t a l  f le x o r .

2nd t ra c e :  E x tra c e llu la r  record  from the d i s t a l  nerve branch.

In most case records from the middle nerve branch, which are 

not shown h e re , were obtained  to  ensure th a t  the recorded a c tio n  

p o te n tia ls  and EPSP's were not c o rre la te d  w ith  any a c t iv i ty  in  

the middle muscle.

C and D. Records from an iso la te d  m esothoracic f le x o r t ib ia e  muscle

e q u ilib ra te d  w ith  the  s a lin e .  The f le x o r  axons were s tim ulated  

through the cu t end o f N5 in  the  coxa.

1 s t and 2nd t ra c e :  I n t r a c e l lu la r  records from two d if f e r e n t

muscle f ib re s  in  the middle f le x o r

3rd t ra c e :  Changes in  muscle ten sio n  recorded from only  the

d i s t a l  f lex o r by c u tt in g  the  tendon between middle and d i s t a l  

f lex o r (see arrow in  E).

E. Diagrammatic re p re se n ta tio n  of the f lex o r muscle and i t s  motor 

nerve.
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records in  f ig ,  3.17A confirm  th a t  the  d i s t a l  f le x o r  i s  e x c lu s iv e ly  

innervated  by th re e  r e l a t iv e ly  la rg e  axons, F5, F6 and M3,

The a b i l i t y  o f th i s  technique to  dem onstrate the one to  one 

r e la t io n s h ip  between a s e r ie s  o f EPSP's and ac tiv e  te n s io n  increm ents 

i s  shown in  f ig ,  3.17D, Active te n s io n  increm ents from the whole d i s t a l  

f le x o r  are  c o r re la te d  w ith  EPSP's produced by s ix  d i f f e r e n t  e x c ita to ry  

axons in  one s in g le  d i s t a l  muscle f ib r e .  The unusual phenomenon in  t h i s  

case i s  th a t  a l l  s ix  axons in n erv a te  the  same muscle f ib r e ,  in  c o n tra s t 

w ith  the  proxim al and middle muscle f ib r e s  which were found to  rece ive  

endings from a maximum o f th re e  e x c i ta to ry  axons.

In term ediate  1 (Ml),

This i s  an axon which in n erv a tes  m ainly th e  proxim al f le x o r  

but a lso  gives sm aller branches to  th e  middle and d i s t a l  f le x o rs  

( f ig .  3 .1 2 , Table 3 .5 ) .

In tra n sv e rse  sec tio n s  o f th e  proxim al nerve branch th e re  can 

be seen two la rg e  axons, FI and F2 w ith  diam eters o f 25 ,50pi and 20,20pm 

( f ig ,  3 .6 , and Table 3 .3 ) ,  There are  a lso  th re e  very  sm all axons, the  

la rg e s t  having a diam eter of 2,20jira and th e re  i s  an axon which has an 

e f fe c t iv e  diam eter 8,30|nn which i s  in term ed ia te  between these two extrem es. 

Tension recorded only  from the  proxim al f le x o r  showed s ix  a c tiv e  te n s io n  

increm ents when th i s  p a r t  of the  muscle was s tim u la ted  through ÎT5, The 

two la rg e s t  increm ents are  due to  axons FI and F2, the sm all increm ents 

a re  probably produced by the  th re e  sm all axons. The tw itch  c o n tra c tio n  

in te rm ed ia te  between the  la rg e  and the  sm all a c tiv e  ten s io n  increm ents 

was caused by àn axon c a lle d  In te rm ed iate  1 which is  probably  th e  3,8pm 

diam eter axon. Random p e n e tra tio n  of the proximal muscle f ib r e s  shows 

th a t  th is  in te rm ed ia te  tw itch  c o n tra c tio n  is  preceded by an BPS? w ith 

a maximum heigh t of 15mV,
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To e s ta b lis h  the in n erv a tio n  p a tte rn  of th is  axon EPSP's and 

a c tiv e  ten sio n  were recorded in  an Iso la te d  le g , A r e la t iv e ly  sm all 

EPSP o f 15 mV ( f ig ,  3 ,14c) appears in  the  proxim al muscle f ib r e s ,  having 

the  same th re sh o ld  as a wealc tw itch  co n trac tio n  induced by the same axon 

in  the  d i s t a l  f le x o r .  The two la rg e  EPSP's in  th i s  f ig u re  have been 

a lread y  id e n tif ie d  as from FI and F2, S im ilar records are shown in  

f ig ,  3,15B where axon Ml produces a sm all EPSP in  the proxim al muscle 

f ib r e s ,  an EPSP o f 15 mV in  the  middle f le x o r and a sm all c h a ra c te r is t ic  

a c tiv e  te n s io n  increment in  the  d i s t a l  f le x o r . This shows th a t  Ml 

in n erv ates  most o f the  p a r ts  o f the f le x o r  muscle. The f a c t  th a t  axon 

Ml produces a sm all a c tiv e  te n s io n  increment in  the  d i s t a l  f le x o r 

suggests th a t  l )  Ml produces a very  sm all EPSP in  the  d i s t a l  f le x o r  or 

2) th a t  Ml in n erv a tes  very  few o f the  muscle f ib re s  in  the d i s t a l  f le x o r , 

or both . Due to  the sm all s ize  o f th is  axon and th e  la rg e  number o f 

axons in  the d i s t a l  branches i t  was very  d i f f i c u l t  to  o b ta in  evidence 

which could give a d ir e c t  answer.

Due to  the  v a r ia t io n  in  the s ize  of the EPSP's produced by Ml, 

i t  was found necessary  to  confirm  th ese  r e s u l ts  w ith records taken  from 

the  f le x o r nerve branches o f a f ix ed  lo cu s t during  g eneral s tim u la tio n  

o f the anim al. For th is  purpose a m icrcelectrode was in se rte d  in  the 

proxim al f le x o r while a c tio n  p o te n tia ls  were recorded as u su a l from the 

middle and d i s t a l  f le x o r nerve branches, EPSP's in  the proxim al muscle 

f ib re s  ( f ig ,  3 ,18a) can be c o rre la te d  w ith sm all ac tio n  p o te n tia ls  

recorded in  the d i s t a l  nerve branches. Although Ml a lso  in n erv a tes  the 

middle f le x o r ,  no a c tio n  p o te n tia ls  can be seen in  the nerve branches to  

th i s  p a r t  of the muscle (second t r a c e ) .  Often the branch o f axon Ml 

which innervates  the middle f le x o r  ioes not run through the m idile nervs 

branch but through o th er branches so th a t  ac tio n  p o te n tia ls  produced by



F ie . 3.18

Records from the m esothoracic f le x o r  t ib ia e  muscle in  the d issec te d  

femur of an immobilized lo c u s t .  The femur was f i l l e d  w ith haemolymph

and a sm all amount o f added s a lin e .  The f le x o r motoneurons were

re f le x ly  ex c ited  by t i b i a l  ex ten sio n ,

a , b. 1 s t t r a c e :  I n tr a c e l lu la r  record  from the  proxim al f le x o r

(see d fo r  lo c a tio n s ) ,

2nd tra c e :  E x tra c e llu la r  record  from the middle nerve b ran ch ,

3rd tra c e : E x tra c e llu la r  record  from the d i s t a l  nervs branch ,

c , 1 s t t ra c e :  I n tr a c e l lu la r  record  from the  d i s t a l  f le x o r .

2nd and 3rd tra c e :  as in  a and b,

d . Diagrammatic re p re se n ta tio n  o f the  m esothoracic f le x o r  t ib ia e  

muscle.
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t h i s  axon cannot bo recorded in  the middle nerve branches, EPSP’s from 

Ml have however been id e n t i f ie d  in  th e  middle f le x o r .  In some cases 

th i s  unusual in n e rv a tio n  p a tte rn  can be used to  id e n tify  th is  axon.

In term ediate 2 (M2),

This axon in n erv a tes  only  th e  middle and d i s t a l  f le x o rs  ( f ig ,

3 ,1 2 , Table 3 ,5 ) .  Ti-ro s im ila r  a c tio n  p o te n tia ls  were recorded in  the 

d i s t a l  nerve branches (see arrows in  f ig .  3 .13b), One of them is  from 

axon Ml since i t  corresponds in  time w ith the sm all EPSP's recorded in 

the proxim al f le x o r .  The o th e r a c tio n  p o te n tia l  is  from axon M2 and 

does not correspond w ith any EPSP's in  the proxim al f le x o r  but can be 

c o rre la te d  w ith an a c tio n  p o te n t ia l  which can be seen in  the middle f le x o r  

nerve branch. Random p e n e tra tio n s  o f more than  t h i r t y  muscle f ib re s  

in  th re e  d if f e r e n t  anim als f a i le d  to  show any EPSP's in  the proxim al 

f le x o r  when M2 was a c tiv a te d . An EPSP (15 mV) produced by axon M2 in  

the  d i s t a l  f le x o r  is  shoim in  f ig ,  3 ,1 3 c , Axon M2 in  th i s  case is  

id e n t i f ie d  by the f a c t  th a t  i t  a lso  produces ac tio n  p o te n tia ls  in  the 

middle and d i s t a l  nerve branches. There is  not enough evidence to  

id e n t i fy  the  axon which produces the o ther small EPSP in  th i s  f ig u re  but 

i t  may be M l.( i t  does not innerva te  the  middle nerve branch and i t  

produces a sm all EPSP in  the  d i s t a l  f le x o r ) ,  -

A c tiv ity  of axon M2 can a lso  be seen in  f ig ,  3,16B in  comparison 

w ith  F4. Axon M2 was found not to  be very  a c tiv e  when the animal was 

s tim u la ted .

Slow 1 and 2 (S l and S2),

These axons innervate  the  whole f le x o r t ib ia e  muscle. Their 

e f fe c tiv e  diam eters are very  s im ila r  (1 ,0  -  l,2^m)^measured in  the 

proxim al nerve branch ( f ig ,  3 ,6  sec tio n  a a ) . The a c tio n  p o te n tia ls
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which those axons produce are very  sm all and are  o fte n  masked by the 

noise o f the  reco rd ing  e le c tro d e s . In some cases the  noise le v e l was 

low enough to  allow  record ings o f sp ikes from these  axons to  be made.

One o f the c h a r a c te r is t ic s  o f th ese  slow motoneurons Is  th a t  th ey  f i r e  

spontaneously a t  a combined frequency of 5 to  10 Hz, EPSP's o f 2 to  5 mV 

were recorded in  the middle muscle f ib re s  c o rre la te d  w ith  ac tio n  

p o te n tia ls  in  the  d i s t a l  nerve branch ( f ig ,  3.19A), In these  records 

th e re  is  a v a r ia tio n  in  the  s ize  o f the EPSP's which could be due to  more 

than one axon in  ad d itio n  to  the  e f fe c ts  of noise and f a c i l i t a t i o n .

V isual in sp ec tio n  of the records suggest th a t  two d i f f e r e n t  EPSP's are 

p re se n t. To confirm  s t a t i s t i c a l l y  the  number o f the neurons re sp o n sib le  

fo r  the a c t iv i ty  the  h e ig h ts  of the EPSP's were p lo tte d  in  a histogram  

( f ig .  3,19C). Two peaks appeared o f 3 and 4 .1  mV and th i s  suggests 

th a t  the recorded EPSP's were produced by two d if f e r e n t  neurons, S l and 

S2, The mean s ize s  of the two EPSPs se lec ted  v is u a l ly  were shown to  be 

s ig n if ic a n t ly  d i f f e r e n t  w ith  a t  t e s t  (P = 0 ,0 1 ),

The p o te n tia ls  o f 81 and 82 are about f iv e  tim es sm aller than  

Ml in  the  d i s t a l  nerve branches. S im ilar EPSP's recorded in  the 

proxim al f le x o r corresponded w ith  the  ac tio n  p o te n tia ls  c la s s i f ie d  as 81 

and 82 in  the  middle and d i s t a l  nerve branches. Repeated p e n e tra tio n s  

o f the f le x o r muscle f ib re s  showed th a t  these  axons innervate  

approxim ately 60^ o f the d i s t a l  and middle f le x o r but have fewer endings 

(30 to  4C^) in  the proxim al f le x o r .

Slow 3 (S3).

This is  an a>:on w ith  a s im ila r  diam eter to  the o ther two slow 

axons but which was found only  the proxim al f le x o r . This axon a lso  

f i r e s  spontaneously a t  a lower froquoncy and produces la rg e r  EPSP's



Fir.. 3.19

Records from the  m esothoracic f le x o r  t ib ia e  muscle in  the d isse c te d  

femur of an immobilized lo c u s t .  The femur was f i l l e d  w ith haemolymph

and a sm all amount of added s a lin e .  The f le x o r motoneurons were

r e f le x ly  ex c ited  by t i b i a l  ex ten sio n ,

A, 1 s t t r a c e ;  I n tr a c e l lu la r  record  from the  middle f le x o r ,

2nd tra c e :  E x tra c e llu la r  record  from a d i s t a l  nerve branch.

The la rg e r  EPSP could be due to  Ml or M2,

B, 1 s t t ra c e :  I n tr a c e l lu la r  record  from the proxim al muscle

f ib r e s ,

2nd tra c e :  E x tra c e llu la r  record  from the  main d i s t a l  nerve

branch.

The EPSP's sm aller than th a t  from S3 are probably due to  S l 

and 52 since they  correspond w ith  very  sm all a c tio n  p o te n tia ls  

in  the d i s t a l  nerve branch,

C, Histogram of frequency a g a in s t am plitude fo r  slow EPSP's 

measured from the reco rds shown in  A, The two peaks in d ic a te  

the presence of two axons la b e lle d  S l and S2,
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F ie . 3.20

Records from the  m esothoracic f lex o r t ib ia e  muscle in  the  d isse c ted  

femur of an immobilized lo c u s t .  The femur was f i l l e d  w ith haemolymph 

and a sm all amount o f added s a lin e .

A, 1 s t t r a c e :  I n tr a c e l lu la r  record  from the  proxim al f le x o r

2nd tra c e :  E x tra c e llu la r  record  from the middle nerve branch 

3rd tra c e :  E x tra c e llu la r  record  from d i s t a l  nerve branch 

I I  = In h ib ito r  1, 12 = In h ib ito r  2 .

B. Tension records from only the d i s t a l  p a r t  of the  f le x o r  muscle. 

To s tim u la te  the muscle a hook e lec tro d e  was placed on the 

proxim al p a r t  o f N5B2 while the  nerve branches to  the  proxim al 

and middle f le x o r were cu t to  e lim in a te  ten s io n  from th ese  

p a r ts  of the f le x o r m uscle. The N5 was cu t a t  the  m esothoracic 

ganglion to  e lim in a te  spontaneous a c t iv i ty  to  the  f le x o r .
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(7 -  10 mV) than  the o th e r two slows ( f ig .  3 .19B). EPSP's from S3 

cannot be c o rre la te d  w ith  any a c tio n  p o te n tia ls  recorded in  the  middle 

or d i s t a l  nerve branches even when the noise le v e l is  low.

In h ib ito ry  axons ( I I ;  12),

These are two a^ons producing in h ib ito ry  p o s t synap tic  

p o te n t ia ls  (iP S P 's) in  the f ib r e s  o f the  whole f le x o r  t ib ia e  imascle 

( f ig .  3 .1 2 , Table 3 .5 ) .

S tim ulation  of various p a r ts  of the  animal e x c ite s  th ese  

neurons which soens to  have a low th re sh o ld . IPSP's were recorded from 

an in ta c t  anim al where the  f le x o r  muscle was immersed in  a m ixture o f 

haemolymph and s a lin e .  Under th ese  cond itions h y p erp o la riz in g  IPSP's 

could be seen fo r  more than  30 min.. A c tiv ity  of th ese  neurons recorded 

from proxim al, middle and d i s t a l  f le x o rs  is  shown in  f ig .  3.20A, The 

a c tio n  p o te n tia ls  recorded sim ultaneously  in  the  middle and d i s t a l  f lex o r 

can be id e n t i f ie d  as in h ib i to ry  s ince IPSP’s were recorded a t  the same 

time from the  proxim al muscle f ib r e s .  In h ib ito ry  axon number 2 (12) was 

id e n t i f ie d  as the axon which produces the la rg e r  (3 -  4 mV) h y p e rp o Ja riz a tic ’ 

and a c tio n  p o te n t ia l .  Axon I I  produces sm aller IPSP's ( l  to  2 mV).

To e s ta b l is h  the d is t r ib u t io n  of the in h ib i to ry  nerve endings 

tw enty d i s t a l ,  tw enty middle and tw enty proxim al muscle f ib r e s  were 

poVictrated in  f iv e  d i f f e r e n t  an im als. The conclusion  was th a t  the  two 

IPSP's always appeared to g e th e r  in  the sarrie muscle f ib re  and th a t  the  

in h ib ito ry  axons in n erv ate  approxim ately 60-65% o f the  d i s t a l ,  AO-45^ of 

the  middle and le s s  than  30̂  ̂ o f th e  proxim al f le x o r . Since the  d i s t a l  

f le x o r  rece iv es  a la rg e r  number o f in h ib ito ry  end ings, re la x a tio n  is  very 

obvious in  th i s  p a r t  c f  the  muscle ( f ig .  3.20B). Active te n s io n  

increm ents produced by the slow axons were reduced' in  s ize  when axon I I



JJY

was s tim u la ted . When the th re sh o ld  o f 12 was reached the tw itch  

co n tra c tio n  o f the f le x o r  muscle decreased by about 50^ i f  the f a s t  axons 

were not s tim u la ted  (see arrow s).

Cobalt su lphide f i l l s  o f the two in h ib ito ry  c e l l  bodies are 

shown in  f ig .  3 .8 ,

D orsal Unpaired Medium neurons (DUM).

Two of the  DUM neurons, w ith c e l l  bodies on the d o rsa l side of 

the  m esothoracic ganglion have axons which b ifu rc a te  and send branches 

in to  both r ig h t  (R) and l e f t  ( l ) leg s  ( f ig .  3.21A). To study these  c e l l s ,  

nerve impulses wore in i t i a t e d  in  the  DUM axons in n e rv a tin g  the f le x o r  

t ib ia e  muscle by s tim u la tin g  the  c o n tr a la te ra l  f le x o r  nerve branches.

Since o th er neurons supp^-ying the f le x o r muscle are U npaired, e l e c t r i c  

s tim u la tio n  o f the c o n tr a la te ra l  nerve does not lead to  th e i r  e x c ita tio n  

in  the i p s i l a t e r a l  le g . This technique was used by Grossman e t  a l .  (1972) 

and Hoyle e t  a l .  (1974.) to  study the  DUT'I neurons in  the m etathoracic leg  

of the cockroach and the lo c u s t .

In the m esothoracic leg  when the l e f t  f le x o r  nerve branches 

(LF, f ig .  3.21A) were s tim u la ted  nerve impulses o f about"the same s iz e  

were recorded in  the r ig h t  f le x o r  (RF) and the r ig h t  ex tensor (RE) as 

f ig .  3.21B shows. These a c tio n  p o te n tia ls  were alm ost c e r ta in ly  recorded 

from the branches o f the  sam^axon since they  drop out a t  a s in g le  th re sh o ld  

stim ulus am plitude. When the  in te n s i ty  of the stim ulus was increased  

another a c tio n  p o te n t ia l ,  sm aller than the f i r s t  one, was recorded in  the 

c o n tr a la te ra l  f le x o r nerve branch (RF) but not in  those o f the ex ten so r.

The d iffe re n c e  in  abso lu te  la te n c y  between ac tio n  p o te n tia ls  recorded from 

the p o in ts  RE (proxim al to  the femur) and RF d i s t a l ,  is  caused m ostly by 

the  d iffe ren ce  in  d is tan ce  (approxim ately 1 cm) between the  reco rd in g  

e le c tro d e s , although th e re  may be a lso  d iffe re n c e s  in  conduction v e lo c ity .



The records in  fig#  3.21B suggest th a t  the f le x o r muscle 

rece iv es  axons from two DUM neurons, c a lle d  D1 and D2, The axon coming 

from D1 a lso  gives a branch to  the an tag o n is t ex tensor m uscle, in  

c o n tra s t  w ith the m etathoracic leg  where i t  was found th a t  the homologous 

DUM neuron gives a branch only  in to  the ex tensor muscle (Hoyle e t  a l ,  1974 

named DUMETi),

In the  experim ents described  above, when the  froquoncy o f the 

s tim u la tio n  was increased  (4 -  20 Hz) the  a c tio n  p o te n tia ls  recoraed  

c o n t r a la tc r a l ly  were unable to  fo llow  the  stim ulus p u lses 1 :1 .

Prolonged s tim u la tio n  of th e  axons can cause f a i lu r e  due to  a fa tig u e  

phenomenon. To e lim in a te  fa tig u e  e f f e c ts  in  these  experim ents, the 

records were taken in  the f i r s t  0 .5  sec , o f s tim u la tio n  and the  f a i lu r e  

frequency was considered to  be the  frequency a t  which the f i r s t  a c tio n  

p o te n t ia l  f a i le d  to  show a 1:1  response to  s tim u li. S tim u la tion  of the 

ex tensor nerve on one side of the  anim al (IE , f ig .  3.21A) and record ings 

from the c o n tr a la te ra l  ex tenso r (RE) show th a t  the nervo impulses follow  

the s tim u la tio n  1:1 up to  4 to  8 Hz. When the frequency was in creased  

the sp ikes began to  f a i l  ( f ig .  3.22A ). Some of the  impulses p e r s i s t  

a t  h igher frequencies  o f s tim u la tio n  but th e i r  number f a l l s  d ram a tic a lly . 

When the  same experim ent was repeated  fo r  conduction from the f le x o r 

nerve branch IF to  RE , nerve impulses do not f a i l  u n t i l  the frequency 

exceeds about 16 Hz ( f ig ,  3.22A l a s t  t r a c e ) .  The f a c t  th a t  nerve 

impulses f a i le d  a t  a h igher frequency when th ey  were propagated from 

IF to  RE than when th ey  run from IE to  RE is  a lso  shown in  f ig .  3.22B 

which dem onstrates the percentage o f spike fa ilu i 'e s  in  the f i r s t  5s of 

the stim u lus. To in v e s tig a te  t h i s  f a i lu r e  phenomenon fu r th e r  nerve 

impulses in i t i a t e d  a t  p o in t IF’ were recorded in  branch IF2 and RE.

Figure 3.220 shows th a t  nervo impulses in  both ex tensor nerve branches 

follow  s tim u la tio n  freq u en c ies  h igher than  14 Hz. IVhen the  frequency



Fig. 3.2 1 .

A, The experim ental arrangem ents fo r  the  study o f the  f le x o r  DUM 
c e l l s .  Both m esothoracic femurs o f an immobilized lo cu s t 
were d issec ted  to  expose the  nerve branches o f th e  r ig h t  (R) 
and l e f t  (L) f le x o r  ( f l . t .m )  and ex tenso r (ex, t.m ) m uscles.

IF = l e f t  f le x o r .  IE = Left ex ten so r,
RF = R ight f le x o r  RE = R ight ex ten so r.

B. Top tra c e  sim ultaneous record  from RF while a stim ulus was 
app lied  to  IF . This s tim u la tio n  and reco rd ing  s i tu a t io n
is  in d ica ted  by the  la b e l  IF_n_RB. A ll tra c e s  are id e n t i f ie d  
by the  same convection (in c lu d in g  F ig . 3 .2  2 . ) .  A comparison
can be made in  RF of the  a c tio n  p o te n tia ls  produced by axons
Dl and D2 w ith those o f Cl and SETi.

F ig . 3.2 2.
A. 1 s t ,  2nd and 3rd tra c e s  show the  f a i lu r e  of a c tio n  p o te n tia ls  

in  the  branches o f Dl in  IE during  s tim u la tio n  o f in c reasin g  
frequency. In the  same anim al no f a i lu r e  occurred a t  the  
frequency o f 16 Hz when th e  stim ulus was app lied  to  IF
(4th t r a c e ) .

B. The r e la t io n s h ip  between the percentage of spike f a i lu r e  in  
the  f i r s t  5s o f ap p lied  s tim u la tio n  and the  frequency o f 
s tim u lu s , p lo tte d  fo r  two d if f e r e n t  ro u te s  LE_rURE and 
LF_n_RE in  the same lo c u s t .  The standard  d ev ia tio n s  are  
from 15 r e p e t i t io n s ,

C. Simultaneous records from RE and IE while the stim ulus was 
app lied  to  IF a t  two d i f f e r e n t  freq u en c ie s . Notice in  lower 
p a ir  of records th a t  the  a c tio n  p o te n tia ls  o f  Dl in  IE have 
d isappeared .
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r i s e s  to  l6  Hz nerve impulses f a i l  in  the ip s i l a t e r a l  ex tensor (IE) but 

p e r s i s t  in  the c o n tr a la te ra l  ex tensor nerve (RS). This suggests th a t  

the  low frequency f a i lu r e  p o in t is  in  the ex tensor nerve branches o f 

axon Dl and the high frequency f a i lu r e  p o in t i s  proxim al to  the f le x o r  

nerve branches of the  same neuron.

S im ilar p ro p e rtie s  were described  by Parnas (1972) fo r  a 

d i f f e r e n t i a l  block of high frequency in  the  branches o f a s in g le  axon 

in n erv a tin g  two crustacean  m uscles. Although th e re  are  s ig n if ic a n t  

fu n c tio n a l and anatom ical d iffe re n c e s  between the in se c t Dll-j neurons 

and the e x c ita to ry  motoneurons in  c ru s ta c e a  i t  seems th a t  the p ro p e rtie s  

o f the b ifu rc a tio n  p o in ts  o f th ese  axons are s im ila r .

Cobalt ch lo rid e  perfused  through f a i le d  to  s ta in  the c e l l

bodies of Dl and D2. S im ilar d i f f i c u l t i e s  were found by Grossman e_t a l . 

(1972) who fa i le d  to  back f i l l  the  DUÎ-I neurons in  cockroach. One of 

the  c o n tr ib u ta ry  f a c to rs  could have been the  sm all diam eter o f the 

p e r ip h e ra l axons of these  neurons. However Hoyle c t  a l . (1974 ) derived  the 

complete morphology o f DUMETi by combining p ic tu re s  o f sev e ra l neurons 

which were p a r t i a l l y  s ta in ed  by in t r a c e l lu la r  in je c t io n  o f c o b a lt.

3 . Mechanical p ro n e rtie s

Most o f the  previous work on the  mechanical p ro p e rtie s  of 

lo cu s t muscles has been done on muscles bathed in  various p h y s io lo g ica l 

s a lin e s .  However sa lin e s  may a f fe c t  the m echanical p ro p e rtie s  o f the 

muscle f ib r e s .  For example. Burns and Usherwood (1973) found th a t  

te ta n ic  ten sio n  o f the m esothoracic ex tensor t ib ia e  muscle is  about 

5.5gi' while th is  ten sio n  can r is e  up to  15 to  20gr under in  vivo 

cond itions as described  below (and a lso  see A idley, 1975). Hoyle (1973) 

shows in  h is  records th a t  the  isom etric  fo rce developed by the fan of
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th e  m etathoracic ex ten so r muscle when the  SETi i s  s tim u la ted  in  lo c u s t 

s a lin e  changes d ra m a tic a lly  a f t e r  e q u i l ib ra t io n .  Changes in  co n cen tra tio n  

o f Ca** ions can a lso  a f f e c t  th e  te n s io n  produced by th e  f le x o r  t ib ia e  

muscle (see previous pages) or the  ex tension  t ib ia e  muscle (A idley, 1965). 

In th i s  work the  m echanical responses of the m esothoracic f le x o r  t ib ia e  

muscle were in v e s tig a te d  under " in  vivo" cond itions to  avoid any such 

m isleading  e f f e c t s .  To achieve th ese  cond itions the  m esothoracic leg  

was mounted (as in  f ig .  3 .1 ) and th e  f le x o r  muscle was stim u la ted  

e l e c t r i c a l l y  or m echanically  s tre tc h e d  as described  in  Methods, No 

s a lin e  was used du ring  c u tt in g  o f th e  nerves or the tendon, which were 

done by lo c a l  m icroopera tions. The animal was l e f t  long enough to  recover 

before any experim ents were undertaken . The blood c ir c u la t io n  was not 

d is tu rb e d  and none o f th e  tr a c h a e l  systems were damaged. The f a c t  th a t  

th e re  were no a l te r a t io n s  in  the recorded tw itch  co n tra c tio n s  a f t e r  4-Sh 

shows th a t  the muscle was kep t in  good co n d itio n .

In behav ioural term s, p assiv e  ex tension  or te ta n ic  c o n tra c tio n  

o f the  f le x o r  t ib ia e  muscle occurs very  o f te n , fo r  in stan ce  in  walking 

during  r e t r a c t io n  o f the  leg  a te ta n ic  co n tra c tio n  o f the ex tenso r muscle 

produces a fo rce  which p a ss iv e ly  s tre tc h e s  the a n ta g o n is tic  f le x o r  m uscle. 

During p ro tr a c t io n , the  opposite  occurs and the f le x o r  muscle f le x e s  the  

t i b i a  by producing a te ta n ic  c o n tra c tio n .

Passive s t r e tc h  of the  f le x o r muscle

In the m esothoracic le g , an imposed ex tension  o f the  t i b i a  

causes an in crease  in  th e  len g th  o f the f le x o r m uscle. The in crease  

o f muscle len g th  in  r e la t io n  to  the  femur t i b i a  ang le  (FTA) I s  alm ost 

l in e a r  ( f ig .  3.23A), To o b ta in  th i s  d a ta  the t i b i a  was extended slow ly 

to  d if f e r e n t  angles and the  in crease  in  muscle len g th  was measured w ith  

a p o in te r mounted on a m icrom anipulator.



FiK. 3.23

A, The re la t io n s h ip  between f le x o r  muscle leng th  and 

i^amiir ^ ib ia  opgle (FTA). 6 ft/salih.wt ik

3<KrS 5 Low ± /

B. Changes in  flexoH muscle ten s io n  during  passive  t i b i a l  

movement a t  d if f e r e n t  angular v e lo c i t ie s ,  as in d ica ted  

a t  the  top l e f t  o f each reco rd .
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A, Tension from the  m esothoracic f le x o r  t ib ia e  muscle recorded a t

the  d i s t a l  end o f the  t i b i a  (see Methods and F ig , 3 .1 ) .

Scale bars = 2g muscle tens io n . 16 \î\
“S a r a  r  i  i c U ./,

P assive te n s io n : Changes in  muscle ten s io n  caused by passive

t i b i a l  ex tension  from 90° to  175° in  s tep s  w ith  an angular 

v e lo c ity  of 150 ° / s .

Active to n s io n ! Twitch c o n tra c tio n  of the f le x o r muscle induced 

20 or 30s a f te r  the passive ex ten sio n . The s e n s i t iv i ty  o f the 

pen-recordor was reduced while tw itch  co n trac tio n s  were recorded ,

B, The ten sio n  recorded in  A p lo tte d  ag a in s t f le x o r  muscle len g th , 

b- peak passive  te n s io n , & -  p la tea u  te n s io n ,

c -  amplitude a f  tw itc h . The d a ta  were obtained  from 15 

experim ents on each o f th re e  d i f f e r e n t  lo c u s ts .  The muscle 

leng th  in  mm was ca lc u la te d  from F ig , 3.23A since the FTA was 

known.
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In a fre e  walking anim al the  t i b i a  i s  extended ra p id ly  from 

70° to  130° ,  w ith  an average angular v e lo c ity  of 150°/S in  an animal 

walking a t  a speed of 2 s teps/second  ( s t . / s ) ,  w ith  an average angular 

v e lo c ity  of 2l^P /s  when i t  walks a t  a speed o f 3 s t / s  and 430°/% when 

i t  walks a t  4- s t / s  (Burns, 1973). To sim ulate th ese  movements, a 

consteint v e lo c ity  was imposed on the  t i b i a  of an immobilized animal by 

a le v e r . Muscle ten s io n  was m onitored by the  probe o f a ten sio n  

tran sd u cer a ttach ed  between the  lev e r  and the end of the  t i b i a  as 

described  in  Methods, F ig . 3.23B shows the changes in  muscle ten sio n  

when the  t i b i a  was extended a t  d i f f e r e n t  angular v e lo c i t ie s .  The 

overshooting  during  leng then ing  or shorten ing  of the f le x o r  muscle depends 

on the v e lo c ity  of the s tr e tc h  or r e le a s e .  S im ilar p ro p e r tie s  were 

described  by G aisser and H il l  (1924) in  a frog  sa r to r io u s  m uscle, who 

found th a t  these  responses a lso  p e r s i s t  in  a te ta n iz e d  muscle. In th e i r  

simple viscous e la s t i c  model th ey  a t t r ib u te d  the overshooting  to  the  

viscous components. During ex tension  o f the f le x o r muscle in  normal 

w alking, the muscle cannot be considered com pletely re la x e d , although 

most of the f le x o r  motoneurons are  s i l e n t ,  because th e re  i s  probably  a 

r e s id u a l ten sio n  in  the  to n ic  f ib re s  o f the muscle. S im ilar e f fe c ts  

in  th e  m esothoracic ex tenso r muscle were described  by Burns (1972),

To in v e s tig a te  changes in  muscle ten sio n  during  the s t r e tc h  of 

the  m uscle, the  isom etric  len g th  ten sio n  curve was plotted", by extending  

the t i b i a  from 90° to  175°, in  s tep s  w ith a constan t v e lo c ity  of 150°/S. 

Although the m esothoracic t i b i a  opera tes  from 30° to  130°, the angle 

o f 180° was avoided because a t  th a t  angle (maximum FTA) fo rces  developed 

by c u tic u la r  form ations may a f fe c t  the  estim ates  of the  rmiscle te n s io n , 

s ince th ese  were measured from the  t i b i a .  Typical records from the  above
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procedure are  shown in  f ig ,  3 . 24A and the r e s u l ts  o f an an a ly s is  of 

f i f t e e n  experim ents on th re e  d i f f e r e n t  animals are  shown in  f ig ,  3,243 

(curves a b ).

Active ten sio n  produced by the  f le x o r  muscle

Active te n s io n  increm ents were induced in  th e  f le x o r  muscle 

by s tim u la tin g  N5 (see methods) w hile the  leng th  of th e  muscle was 

increased  by extending th e  t i b i a  w ith  an angular v e lo c ity  o f 150°/S 

( f ig .  3,24A). The tw itch  co n tra c tio n  reduced in  s tre n g th  when the 

muscle was s tre tc h e d . The peaJc of the  ac tiv e  ten sio n  ( f ig .  3 ,243, 

curve c) occurred a t  the  normal len g th  of the muscle fo r  an FTA of 90° 

to  100°, S im ilar curve was p lo tte d  by Aidley (1975) fo r  the lo c u s t 

m esothoracic ex tenso r t ib ia e  muscle.

In w alking, te ta n ic  fo rces  due to  high frequency a c t iv i ty  in  

the  f le x o r  m uscle, cause a f a s t  f le x io n  of the t i b i a  in  p ro tra c t io n .

Strong f le x io n  of the  t i b i a  i s  v i t a l  a lso  in  o th er behaviour p a tte rn s  

such as clim bing or g rasp ing . To sim ulate these  cond itions the  f le x o r  

muscle was s tim u la ted  through N5 (see Methods) a t  d i f f e r e n t  frequencies  

fo r  20 sec , and te ta n ic  fo rces  were measured a t  the  end o f the t i b i a  

which was kept a t  a FTA o f 90°. The stim ulus vo ltage  used was high 

(15 -  20 V) to  ensure th a t  a l l  th e  f le x o r  motor axons were e x c ite d .

This meant th a t  the in h ib i to ry  axons were a lso  e x c ite d , but re la x a tio n  

o f the f le x o r  muscle i s  not s ig n i f ic a n t .  U sually  the  in h ib i to rs  have 

l i t t l e  in h ib ito ry  e f fe c ts  when muscles are  co n tra c tin g  under the in fluence  

o f a c t iv i ty  in  the  f a s t  f ib re s  (Usherwood and G rundfest, 1965),

The te ta n ic  ten sio n  produced by the f le x o r  t ib ia e  muscle r is e s  

qu ick ly  (see Table 3 ,6 ) and produces a p la teau  fo r  5 -  8s fo r  frequencies  

o f s tim u la tio n  h igher than 30 Hz and then slow ly fa tig u e s  to  about 50^
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o f the  peak ten sio n  in  a fu r th e r  12 -  15s. To in v e s tig a te  the components 

o f th i s  te ta n ic  ten sio n  the  proxim al p a r t  o f the  muscle (proximal and 

middle f le x o rs )  were s tim u la ted  se p a ra te ly  from the d i s t a l  p a r t  ( d is ta l  

f le x o r ) .  These two p a r ts  were chosen because they  rece iv e  many d if f e r e n t  

axons ( f ig .  3 .1 2 ), Tension froiiii the proximal p a r t  ( f ig .  3.25B) was 

recorded by c u tt in g  N5B2 im m ediately d i s t a l  to  the middle nerve branch 

(denervation  o f the d i s t a l  f le x o r ) .  During high frequency s tim u la tio n  

(50 Hz) hho te ta n ic  ten sio n  r is e s  very  ra p id ly  and in 20 sec. fa tig u e s  

by about 60^ o f the  peak to n s io n . To record ac tiv e  tonsion  only from 

the  d i s t a l  p a r t  of the muscle the  apodeme between middle and d i s ta l  

f le x o rs  was severed to  e lim in a te  ten sio n  produced by the r e s t  o f th i s  

muscle. During s tim u la tio n  a t  a high frequency ( f ig .  3.25C), the d i s t a l  

f le x o r  produces a lso  a f a s t  r is in g  peak which fa tig u e s  about 35 -  0̂ % 

o f the  peak te n s io n  in  20 sec .

The h a l f  r i s e  t i r e s ,  h a lf  decay tim es and the tw itc h /te ta n u s  

r a t io s  a t  a frequency o f s tim u la tio n  o f 50 Hz fo r the d i s t a l  p a r t ,  the 

r e s t  and the whole f le x o r  t ib ia e  muscle are shown in  Table 3 .6 . The 

te ta n ic  ten sio n  in  the proxim al and middle f le x o rs  r is e s  and decays f a s te r  

than  th a t  in  the  d i s t a l  f le x o r .  This suggests th a t  the  proxim al muscle 

f ib re s  are more phasic than the  d i s t a l  f ib re s  and th i s  is  a lso  supported 

by the f a c t  th a t  the  proxim al f le x o r  has la rg e r  diam eter muscle f ib re s  

(Table 3 .1 ) and a lso  rece iv es  la rg e r  motor axons than the r e s t  o f the 

muscle (Table 3 .3 ) .  S im ilar anatom ical and p h y s io lo g ica l c h a ra c te r is t ic s  

can be seen in  the an tag o n is t ex tensor t ib ia e  muscle (Burns and 

Usherwood, 1979) where the  d i s t a l  p a r t  of the muscle i s  le s s  phasic than 

the proxim al p a r t .

The study of the c o n tra c tio n  which each in d iv id u a l motor axon 

causes in the f ib re s  o f the f le x o r muscle would req u ire  e x c i ta t io n  of



fkiscle tonsion  recorded from d if f e r e n t  p a r ts  of the m esothoracic 

f le x o r  t ib ia e  muscle while they  were s tim u lated  fo r  20s (fo r the 

d u ra tio n  of the h o r iz o n ta l l in e )  a t  frequencies  o f 20, 30 and 

50 Hz. The muscle was bathed in  i t s  own haemolymph (F ig . 3 .1 ) .

A, From the whole f le x o r  muscle. The te n s io n  tran sd u cer was 

a ttach ed  to  the d i s t a l  end o f the t i b i a ,

E, From the  middle and proxim al f lo x o r . The d i s t a l  p a r t  was 

denervated by c u tt in g  N5B2 im m ediately d i s t a l  to  the  middle 

nerve branch,

C, From the d i s t a l  f le x o r .  The f le x o r  apodeme was cu t between 

middle and d i s t a l  f le x o rs  to  e lim in a te  ten sio n  developed in  

the two proximal p a r ts .

V e rtic a l c a l ib ra t io n  = 1 2 ,Ig  muscle te n s io n .
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Table 3 .6 .

Mechanical c h a ra c te r is t ic s  o f a c tiv e  co n trac tio n s  o f the 

m esothoracic f le x o r  t ib ia e  m uscle. The muscle was in  i t s  

o\m haemolymph and ex c ited  through N5. Recording 

cond itions were alm ost isom etric  (transducer compliance =

0.05 mm/g). No s ig n if ic a n t  changes o f the  r is e  and 

decay tim es were observed a t  h igher stim ulus frequencies  

(120 Hz).



Table 3 .6 .

'/Thole
Flexor
Muscle

Prox, &
middle
f le x o r

D is ta l
f le x o r

Twite h/Tetanus 
r a t io

0.225 0.172 0.L42

H alf r i s e  time(50Hz) 
(ms) 30 60 325

Half decay time(50Hz) 
(ms) 100 50 90

The above numbers are the  average values o f records 

taken from th re e  d i f f e r e n t  anim als.
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th ese  axons from th e i r  motoneuron c e l l  bodies. This technique which 

has been described  above ( f ig .  3 .9 )  is  su ita b le  i f  th e re  is  only  sm all 

number of motoneurons, but in  th i s  case the t o t a l  number o f e x c ita to ry  

and in h ib ito ry  axons d e tec ted  is  I 4., a f a c t  which makes the use of th is  

technique almost im possib le.
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1. In tro d u c tio n

In v e r te b ra te  limbs the  Golgi tendon organs are  w ell known 

as recep to rs  fo r  a c tiv e  muscle te n s io n  (e .g . Houle & Henneman, 1967). 

Tension recep to rs  have a lso  been found on the  apodemes o f le g  muscles 

in  Cancer (MacMillan & Dando, 1972) and Limulus (E agles, 1978). However, 

no recep to rs  d i r e c t ly  s e n s itiv e  to  muscle ten sio n  .have so f a r  been 

id e n tif ie d  in  the  legs of in s e c ts ,  although th e re  i s  p h y s io lo g ica l 

evidence fo r th e i r  ex is ten ce  in  the  lo cu s t (Burrows & H orrldge, 1974) 

and in  the s t ic k  in se c t (B âss ls r , 1977). In a d d itio n  to  recep to rs  fo r

jo in t  p o s it io n  and movement (Burns, 1974; C o illo t & B o is te l, 1963) the 

in se c t leg  is  w ell supplied  w ith  campaniform s e n s i l ia  which d e te c t 

c u t ic u la r  s tr e s s  (P rin g le , 1938) and i t  has been suggested th a t  the l a t t e r  

recep to rs  a lso  fu n c tio n  in d i r e c t ly  as muscle ten s io n  re c e p to rs .

In th is  paper we d escrib e  the  anatomy o f sensory nerve branches 

in  the femur and re p o rt a s in g le  recep to r c e l l  a ttach ed  to  the f le x o r  

t ib ia e  muscle o f the p ro th o rac ic  and m esothoracic leg s  o f the lo c u s t ,  

which responds to  passive and a c tiv e  ten sio n  in  the m uscle, and which i s  

capable o f m ediating re f le x e s  in  the  fem oral m uscles.

2 . M ateria ls  and Methods

The p resen t work was performed on the  m esothoracic leg  of the  

a d u lt female lo c u s t ,  S ch isto cerca  americ an a  g re g a ria . The le g  was 

removed from the animal and mounted v e n tra l side down on Tackiwax, In 

order to  measure isom etric  ten s io n  in  the f le x o r t ib ia e  muscle the t ib ia e  

was d is a r t ic u la te d ,  cu t to  a 1mm stump and a ttach ed  to  a s i l ic o n  s t r a in  

gauge tran sd u cer (compliance 0.05mm/g) which could bo moved to  s tr e tc h  

th e  muscle. In some experim ents the t i b i a  was l e f t  in ta c t  to  ensure
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th a t  the  muscle leng th  remained w ith in  i t s  n a tu ra l range and the  femur» 

t i b i a  angle was measured v is u a l ly  ag a in s t a p ro tra c to r  s c a le . The 

d o rsa l c u t ic le  o f the  feimur and the  ex tensor t ib ia e  muscle were removed 

and the  whole leg  was immersed in  c irc u la te d ,  oxygenated sa lin e  

(Usherwood & G rundfest, 1965) a t  room tem perature . Records of a c t iv i ty  

from the  sensory nerves in  the  femur were made w ith a g lass  su c tio n  

e le c tro d e , gold p la te d  to  in crease  the  s ig n a l to  no ise  r a t i o .  Passive  

ten sio n  was produced in  the  f le x o r t ib ia e  muscle by extending the t i b i a  

or by s tre tc h in g  the  muscle d i r e c t ly  w ith a lev e r on i t s  apodeme which 

was a ttach ed  to  the arm ature of a sm all re la y . Active ten sio n  in  the  

f le x o r muscle was induced by s tim u la tin g  the motor nerve ( (V 5B2) ^

Neural a c t iv i ty  was recorded in  magnetic tape and e i th e r  photogz'aphed 

from the o sc illo sco p e  screen or photographed from an in stan taneous 

frequency d isp la y .

In order to  study re f le x e s  mediated by the  te n s io n  recep to r 

the leg  was fixed  and d isse c te d  in  the same way, but was l e f t  a ttach ed  

to  the  lo c u s t. Nerve 5B2 was cu t a t  the proxim al end of the  femur (see 

F ig .^ .lA ) and motoneuron a c t iv i ty  was recorded from the proxim al side of 

the  cu t and from the ex tensor t ib ia e  motor nerve. Tension was developed 

in  the f le x o r t ib ia e  muscle by s tim u la tin g  iV5B2 d i s t a l  to  the c u t. A ll 

branches o f n5 were cu t except the  one from the ten s io n  recep to r which 

was monitored to  check re cep to r fu n c tio n . In some experim ents the femur- 

t i b i a  jo in t  and nerves 5Blb and 5Blc were l e f t  i n t a c t .  The t i b i a  was 

then  moved w ith a galvanometer motor driven by an e le c tro n ic  ramp 

generator so th a t  the f le x o r  muscle was both p a ss iv e ly  s tre tc h e d  and 

r e f le x ly  ex c ited  v ia  the  chordotonal organ.

The anatomy of the  sensory  nerve branches in  the le g  was 

determined by p e rfu s in g  co b a lt ch lo rid e  p e r ip h e ra lly  down the nerves



F ig . 4*3-

Anatomy of the  sensory nerve branches o f the  m esothoracic 

leg  of the lo c u s t .  A •=* d o rsa l view of branches of nerve 

5B in  the l e f t  femur, B -  a n te r io r  view o f branches of 

nerve 5Bl in  th e  r ig h t  proxim al t i b i a ,  C -  p o s te r io r  view 

o f branches o f nerve 5B2 in  th e  r ig h t  proxim al t i b i a .

A ll nerves numbered are  branches o f nerve 5B, MTR = muscle 

ten s io n  re c e p to r , GS' = campaniform s e n s i l l a ,

S = subgenual organ, 0 = coxa, F = femur, T = t i b i a .
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Morphology of the f le x o r  m isele ten sio n  recep to r (MTR).

A « branches o f nerve 5Bla f i l l e d  w ith  co b a lt su lph ide ,

B -  diagram o f the  same p re p a ra tio n . Scale bar ~ lOOpn,



CD

ID

< '  ‘ -  4̂



k 8

and p re c ip i ta t in g  i t  as co b a lt sulphide* This was done by sucking 

th e  cu t end o f the  nerve in to  a g lass  suction  e lec tro d e  f i l l e d  with 

0 ,5  M co b a lt c h lo rid e .

3 , R esu lts  

Anatomy.

In the  femur of the p ro th o rac ic  and m esothoracic leg s  of the  

lo c u s t the ex tensor t ib ia e  muscle l i e s  under the d o rsa l c u t ic le  while 

the la rg e r  f le x o r  t ib ia e  muscle l i e s  in  the lower h a lf  of the  femur.

In s tru c tu re  both muscles are  a combination of p innate  and fusifo rm  type 

and th ey  are composed of a number o f d is c re te  muscle bundles or u n its  

(defined by Hoyle, 1955) a ttach ed  to  a common apodeme. The f le x o r  

t ib ia e  muscle c o n s is ts  of 10-Ü2 a n te r io r  muscle bundles a ttach ed  to  the 

c u t ic le  :in a row of approxim ately c i r c u la r  d is c re te  in s e r t io n s ,  the same 

number of poster:!or bundles w ith  elongated in se r t io n s  tend ing  to  merge 

in to  one an o th e r, and a s in g le  proxim al bundle w ith  a v e n tra l in s e r t io n  

very c lose  to  the tro c h a n te r .  There is  no accessory  f le x o r corresponding 

to  th a t  in  the m etathoracic le g ,

A s in g le  la rg e  nerve trunk  en te rs  the femur from the  coxa. I t  

i s  formed by the  fu s io n  in  the coxa o f nerves 3B2 and 5B1 (Campbell, 1961) 

and d iv ides in to  two manor branches in  the femur, n ,5B l and n.5E2 as shown 

in  F ig . 4.1A.

Nerve 5B1: This nerve in n erv a tes  the  chordotonal organ (Burns, 1974 ) and

then  gives o ff  two more branches in  the  femur before p assing  in to  the  

t i b i a  where i t  in n erv a tes  sensory h a irs  necr the jo in t ,  the  subgenual 

organ and c u tic u la r  recep to rs  a l i t t l e  fu rth e r  down the t i b i a  (F ig , IB), 

The f i r s t  o f the  two major branches (n,5E ld) c a r r ie s  the only motor axons
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in  the  nerve and supp lies  the  ex tensor muscle, The second branch 

(n,5B le) sep ara tes  from the  main nerve h a lf  way along the  femur and runs 

along the  a n te r io r  d o rsa l surface of the  t ib ia e  muscle fo r  a sh o rt 

d is tan ce  before d iv id in g  in to  two sm aller nerves* The f i r s t  o f th ese  

(n ,5 B le l) continues along  the  su rface  of the muscle and then d ives down 

between two f le x o r  muscle bundles to  innervate  h a irs  on the  a n te r io r  

face o f the  d i s t a l  femur. The c lo se  a sso c ia tio n  between the  nerve and 

the  muscle a t  th i s  p o in t suggested th a t  th e re  might be sensory rec ep to rs  

involved , but none could be id e n t i f ie d .  The second h a lf  of the  nerve 

(no5Ble2) gives r i s e  to  a sm all branch connected to  the flex o r tension  

recep to r (F ig . 2) and one in n e rv a tin g  a sm all f ie ld  to  c u tic u la r  h a ir s  

before passing  along the  a n te r io r  c u t ic le  to  innervate  d o rsa l 

mechanosensory h a irs  in c lu d in g  the  very  la rg e  ones im m ediately d o rsa l to  

th e  fem u r-tib ia  jo in t*

Nerve 5B2s This nerve con ta ins the  motor axons of the  f le x o r  t i b i a e ,  

the  r e t r a c to r  unguis and the  t i b i a l  m uscles. I t  gives r i s e  to  one 

sensory branch in  the  femur, the l a t e r a l  nerve (n.5B2a) which in n erv a tes  

the  m u ltip o la r jo in t  re ce p to rs  (Williamson & Burns, 1973) and sensory 

h a ir s  in  the p o s te r io r  face of the femur. A ll the rem aining sensory 

f ib r e s  in  the  nerve o r ig in a te  in  t i b i a l  or t a r s a l  re c e p to rs . Upon 

e n te r in g  the t i b i a  n,5B2 d iv id es  in to  th re e  branches (F ig, 4-.1C) the 

f i r s t  o f which su p p lies  th re e  groups of f iv e  campaniform s e n s i l la  and 

some sensory h a ir s .  The rem aining branches continue to  the ta r s u s ,  forming 

th e  d o rsa l and v e n tra l nerves (K endall, 1970).

F lexor ten sio n  rec e p to r: This recep to r i s  a s in g le  la rg e  m u ltip o la r c e l l

lo ca ted  a t  the base of the second or th i rd  most d i s t a l  a n te r io r  bundle of 

the  f le x o r  t ib ia e  muscle. I t  i s  about 6Cjim long and 2Gym in  diam eter 

(F ig , 4 .2 ) and has four major d e n d rite s  which branch p ro fu se ly  to  connect
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w ith  more than  seven muscle f ib re s  over a d is tan ce  of about 600|im,

Some o f the f in e  p rocesses of the  d en d rite s  a tta c h  to  the  surface  of 

the  outerm ost f le x o r muscle f ib r e s  w ith in  20p.m of th e i r  attachm ent to  

the  c u t ic le ,  while most o f them pass between the  f ib r e s  a t  the  same 

le v e l  so th a t  th e i r  s i t e s  o f attachm ent are w ith in  the m uscle. No

d ire c t  connections between th e  c e l l  and the  c u t ic le  were found. From

i t s  shape the recep to r c e l l  can be c la s s i f ie d  as a type I I  mechanosensory 

neuron (Zarwarzin, 1912) or a m u ltite rm in a l c e l l  (F in layson, 1963). I t  

i s  s im ila r  in  shape to  those found in  the  abdomen of O rthoptera ( S li f e r  

& F in layson, 1956) but u n lik e  them i t  i s  not a ttach ed  to  a s in g le  

s p e c ia lis e d  muscle f ib r e .

The anatom ical fe a tu re s  described  above are  almost id e n t ic a l  

in  the  p ro th o rac ic  and m esothoracic legs of the lo c u s t ,  but are d i f f e r e n t  

from those of the m etathoracic  le g . In the l a t t e r ,  the  chordotonal 

organ i s  d i s t a l  in  p o s it io n , B runner's organ is  p re se n t, the  proxim al 

t i b i a  has a sp e c ia lis e d  buckling reg ion  and fewer campaniform s e n s i l la  

(H e itle r  & Burrows, 1977) and nerve branch 5Ble is  ab sen t. No s tru c tu re  

corresponding to  the m esothoracic f le x o r  ten sio n  re c ep to r  could be found,

Ebzsioiogz
In order to  evalua te  the  sensory c o n tr ib u tio n s  of nerve branches 

described  above, th e i r  a c t iv i ty  was monitored in  the  femur o f an is o la te d  

leg  while the t i b i a  was p a s s iv e ly  flexed  and.extended over the  90^-120° 

range used in  walking (Burns, 1973). Recordings from the  d i s t a l  p a r ts  

of nerve 5B1 (F ig , 4 .3 .F )  and 5B2 (F ig , 4.3D) show a c t iv i ty  from t i b i a l  

recep to rs  which may be responding to  v ib ra tio n  (subgenual organ) and 

c u tic u la r  s tr e s s  (campaniform s e n s i l l a ) .  A c tiv ity  in  n,5B2a, the  only 

sensory branch of n,5E2, comes from the  m u ltip o la r jo in t  re c e p to rs



Records made from sensory nerve branches in  the  iso la te d  

m esothoracic femur o f the  lo c u s t while the t i b i a  was 

moved p a ss iv e ly . Records are from; A -  n*5Bl proxim al 

(chordotonal o rg an ), B -  n.5B2a (M ultipolar jo in t  

r e c e p to rs ) ,  C -  n .5B le (flex o r ten sio n  r e c e p to r ) ,  j

D « nerve 532 d i s t a l  ( t i b i a l  r e c e p to rs ) ,  E -  nerve 5B1 

d i s t a l  ( t i b i a l  re c e p to rs ) .  F shows the  movements of the  

t i b i a  between a fe m u r-tib ia  angle .qf 90° ( trace  up) and 

120° ( trace  down). The gain was d if f e r e n t  fo r  each trace ,.
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A -  passive ten s io n  in  the  f le x o r  t ib ia e  muscle when the  

muscle was s tre tc h e d  from 10,5 to  10,8 min leng th  fo r  the 

d u ra tio n  o f the b a r , B -  peak (a)" and p la te a u  (b) passive  

ten sio n  in  the  muscle when s tre tc h e d  to  d if f e r e n t  leng ths 

a t  1 ,4  cm /s, C -  the  re la t io n s h ip  between muscle len g th  

and fem u r-tib ia  angle (FTA), D -  in stan taneous frequency 

d isp la y  of the  ten s io n  recep to r response when the  muscle was 

s tre tc h e d  from 10 to  11,5 mm len g th  fo r  the d u ra tio n  of the 

b a r, E -  spike frequency in  the  rec ep to r  axon in  th e  f i r s t  

108 a f t e r  extending the t i b i a  to  the angle shoivn (a) and in  

the  subsequent 100s, A ll experim ents were done on logs o f 

th e  same s iz e , sLow t  1 ,

:  2 >  e d - o .  i  0 Ç r o v u . ;  ^  ,
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F ie .

Responses of the  te n s io n  recep to r to  tw itch  co n trac tio n s  

o f the f le x o r  t ib ia e  m uscle, A -  maximal isom etric  

tw itch  of the whole m uscle, B -  iso m etric  re la x a tio n  

due to  s in g le  stim ulus to  the  in h ib i to ry  axons, C « near 

iso to n ic  tw itch  o f the muscle w ith  the fe m u r- tib ia  angle 

recorded , D and S -  in stan taneous frequency p lo ts  o f 

responses to  isom etric  tw itch es  of two d if f e r e n t  s tren g th s  

in  the  p a r t  of the muscle to  which the recep to r i s  

a ttach ed . The c a lib ra tio n s  are the  same fo r  a l l  reco rd s .
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responding d i r e c t ly  to  t i b i a l  p o s it io n  (W illiamson & Barns, 1973),

Nerve 5B1 shows the  h ig h est le v e l  of a c t iv i ty  (Fig,4„3Â), most o f which 

comes from the  chordotonal organ in  response to  t i b i a l  p o s it io n  (Barns, 

1974)* However, a f t e r  c u tt in g  nerves 5Blb, 5Blc and 5B1 to  th e  t i b i a ,  

some sensory  a c t iv i t y  can be seen coming from n,5Ble (F ig , 4*3C)*

This a c t iv i ty  conies from a s in g le  sm all axon w ith  .a spike am plitude only

3-5 tim es the noise le v e l  and some 30 tim es sm aller than  the  spilce from 

th e  la rg e  sensory h a ir  a f fe re n ts  running in  n,5Ble* I t  p e r s i s ts  when 

a l l  the  branches of n .5B le are  cu t d i s t a l  to  th e  m u ltip o la r c e l l  but 

ceases when the  nerve is  cu t proxim al to  the  c e l l .  I t  i s  a lso  g re a tly  

increased  by any m echanical d is tu rb an ce  to  the f le x o r  muscle near to  the 

c e l l .  Thus th e  axon alm ost c e r ta in ly  o r ig in a te s  in  the  m u ltip o la r  c e l l ,

The re ce p to r  axon i s  con tinuously  a c tiv e  a t  5-10 sp ikes per 

second when th e  f le x o r  t ib i a e  muscle i s  f u l ly  re lax ed , but when the  

muscle is  s tre tc h e d  by ra p id ly  ex tending  the  t i b i a  the  f i r i n g  frequency 

in c reases  in  a response which has both phasic and to n ic  components 

(F ig , 4 , 40) , The phasic  response i s  confined to  th e  f i r s t  0 ,5 s  a f t e r  

the  muscle i s  s tre tc h e d  and a lso  appears as a t r a n s ie n t  red u c tio n  in  

f i r i n g  frequency below the  r e s t  le v e l  when the muscle i s  re lax ed . I f  

th e  muscle i s  s tre tc h e d  to  d i f f e r e n t  leng ths w ith in  i t s  p h y s io lo g ic a l 

range by in c re a s in g  the fe m u r- tib ia  angle (FTA), both the  to n ic  a c t iv i ty  

in  the  re ce p to r  axon and the a c t iv i ty  in  the f i r s t  10 seconds a f t e r  th e  

movement Increase n o n lin e a r ly  (F ig , 4 . 4s ) .  The re la t io n s h ip  between 

muscle len g th  and FTA i s  alm ost l in e a r  (F ig, 4 .40) showing th a t  the 

n o n - lin e a r i ty  in  the response must re s id e  in  th e  muscle f ib re s  o r the  

re c e p to r . I t  a lso  suggests th a t  the  apodeme 6f the  f le x o r  muscle is  

f a i r l y  s t i f f  where i t  a tta c h e s  to  the  t i b i a  since a com pletely f le x ib le  

apodeme would r e s u l t  in  a s in u so id a l r e la tio n s h ip  between leng'bh and 

FTA, From the responses to  passive  ex tension  o f the  muscle i t  is  not
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p o ss ib le  to  show th a t  th e  e f f e c t iv e  stim ulus i s  muscle te n s io n  r a th e r  

th an  le n g th , a lthough  th e  f i r i n g  frequency  in  th e  re c e p to r  axon 

(F ig . appears to  be very  c lo s e ly  r e la te d  to  th e  p ass iv e  te n s io n

in  th e  muscle (F ig , 4*4%). The c lo se  s im i la r i ty  between th e

in s tan tan eo u s  frequency  in  th e  re c e p to r  axon (F ig . 4*40) and th e  p ass iv e  

muscle te n s io n  d u rin g  a quick s t r e tc h  (F ig , 4*4A) a lso  suggests  th a t  the  

p h asic  component o f th e  response may be e n t i r e ly  due to  th e  m echanical 

p ro p e r t ie s  o f th e  m uscle.

The responses o f th e  re c e p to r  to  a c tiv e  c o n tra c tio n s  o f th e  

f le x o r  muscle do show th a t  i t  i s  p r im a r ily  s e n s i t iv e  to  muscle te n s io n .

I f  th e  muscle i s  made to  tw itc h  iso m o tr ic a lly  by s tim u la tin g  th e  

e x c i ta to ry  axons in  n,5B2 a f t e r  c u t t in g  th e  nerve branches to  th e  r e s t  

o f  th e  m uscle, th e  re c e p to r  a c t i v i t y  in c re a se s  (F ig , 4«5A), but i f  th e  

t i b i a  i s  f re e  to  move so th a t  co n d itio n s  are  i s o to n ic ,  th e  re c e p to r  

does no t respond (F ig , 4 .5G ), When th e  reg io n  o f th e  muscle c o n ta in in g  

th e  re c e p to r  tw itch es  under iso m e tr ic  co n d itio n s  th e  frequency  in  th e  

re c e p to r  nerve a c c u ra te ly  fo llow s th e  te n s io n , w ith  a la g  of about 

40 ms (F ig , 4 . 5D, B ), The response frequency in c re a se s  w ith  in c re a s in g  

r e s t  te n s io n  in  th e  muscle (F ig , 4*6) when th e  muscle i s  p a s s iv e ly

s tr e tc h e d , a lthough  t h i s  reduces th e  am plitude o f th e  muscle f ib r e

movement. The re c e p to r  a lso  responds to  th e  re d u c tio n  in  te n s io n  

induced by s tim u la tin g  th e  in h ib i to ry  f ib r e s  in  th e  f le x o r  motor nerve 

(P ig . 4 .5B ).

Like th e  ch o rdo tonal organ (Burns, 1974) th e  resp o n siv en ess

o f the  te n s io n  re c e p to r  depends on i t s  environment d u rin g  th e  experim ent. 

I t  i s  most responsive  in  haemolymph w ith  the  t r a c h e a l  system fu n c tio n in g  

and i t s  s e n s i t i v i t y  i s  s im ila r  in  c i r c u la te d ,  oxygenated s a l in e .

However, i f  th e  s a lin e  i s  s t i l l ,  o r i s  no t oxygenated th e  responses of
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th e  re ce p to r  to  iso m etric  tw itch es  disappes-r, leav in g  only the  responses 

to  p assiv e  te n s io n . This may be th e  r e s u l t  o f a  lo s s  o f phasic  

re  sponsivene s s •

R eflexes m ediated by th e  te n s io n  re c e p to r .

I f  th e  te n s io n  re c e p to r  norm ally p a r t ic ip a te s  in  the  

co o rd in a tio n  o f leg  muscles i t  should be p o ss ib le  to  dem onstrate th a t  

i t s  a c t iv i ty  has an in flu en ce  on motoneuron f i r i n g  p a t te rn s .  This was 

attem pted by developing te n s io n  in  th e  p a r t  of the  muscle connected to  

the  rec e p to r  and looking  fo r  r e f le x  responses in  the  f le x o r  and ex tenso r 

motoneurons. T ypical r e s u l t s  are shown in  F ig , 4*7. This dem onstrates 

f i r s t l y  th a t  th e  re c e p to r  responds w ell to  m aintained co n trac tio n  of the  

muscle (F ig , 4»7A), which i s  more l ik e  the  n a tu ra l  behaviour o f the  

muscle in  the  in ta c t  lo c u s t ,  and secondly , th a t  t h i s  p a t te rn  o f recep to r 

a c t i v i t y  causes a r e f le x  a c t iv a t io n  o f a number o f slow f le x o r  

motoneurons (F ig . 4*7B) and a t r a n s ie n t  in h ib i t io n  o f the  slow ex tenso r 

motoneuron (SETi) (F ig . 4*7C), These p o s it iv e  feedback re f le x e s  onto 

the  f le x o r  neurons were found in  IB out of 20 c a se s , while th e  in h ib i t io n  

o f the  SETi occurred in  6 out o f 7 ca ses . In  the  rem aining anim als the  

signs were re v e rse d , so th a t  th e  f le x o r  re f le x  became negative  and the 

SETi was ex c ite d  by th e  re c e p to r .

The r e f le x  onto the  SETi is  le s s  c le a r  th an  the  f le x o r  r e f le x  

and can be dem onstrated more conv incing ly  b y  looking  a t  i t s  e f f e c t  on 

th e  normal re s is ta n c e  r e f le x  o f the  in ta c t  le g . With a l l  the  sensory  

systems in  the le g  in t a c t  th e  SETi i s  u s u a lly  a c tiv a te d  when th e  t i b i a  

is  p a s s iv e ly  flex ed  and i t s  f i r i n g  frequency depends on the v e lo c i ty  of 

the  movement (F ig . 4,3A ), When the  f le x o r  te n s io n  rece p to r  axon i s  cu t 

th e  re s is ta n c e  r e f le x  i s  co n s id e rab ly  enhanced (F ig , 4*BB), suggesting
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Responses of the  te n s io n  recep to r to  isom etric  tw itch  

co n trac tio n s  o f the f le x o r  t ib ia e  muscle a t  d if f e r e n t  

r e s t  le n g th s . A -  ty p ic a l  reco rds a t  the  r e s t  leng ths 

marked, B -  in c rease  in  recep to r f i r i n g  frequency 

above r e s t in g  r a t e .  The d o tted  l in e  shows th e  maximum 

n a tu ra l  len g th  o f the m uscle. ZEa-rs «iewoifion.
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A “ a c t iv i ty  in  the te n s io n  recep to r ajcon during  a 

m aintained f le x o r  muscle c o n tra c tio n , B and C -  re f le x e s  

evoked by the  re ce p to r  in  th e  f le x o r  motor nerve (b ) and 

the  slow ex tensor t ib ia e  (SETi) motoneuron (C) in  response 

to  a c tiv e  te n s io n  in  the d i s t a l  p a r t  of the  f le x o r m uscle, 

as sho\m in  the  lower t r a c e s .  The f le x o r  motor nerve was 

cu t h a lf  way along the  femur and s tim u lated  d i s t a l  to  the 

cu t to  induce a c o n trac tio n  in  the  p a r t  o f the muscle 

co n ta in in g  the  recep tor*  The cu t prevented the f le x o r  

r e f le x  from a f fe c t in g  th e  recep tor*  C a lib ra tio n s  are the  

same fo r  a l l  records*

Influence of the f le x o r  te n s io n  recep to r on the  re s is ta n c e  

r e f le x  in  the slow ex tensor t ib ia e  (SSTi) motoneuron.

A -  re s is ta n c e  r e f le x  in  in ta c t  le g ,  B -  re s is ta n c e  re f le x  

w ith  the ten s io n  recep to r axon c u t.  Lower tra c e s  show 

imposed movement of the  t i b i a .
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th e  removal o f an in h ib i to ry  input* When the  chordotonal organ is  

a lso  removed, th e  re s is ta n c e  r e f le x  d isappears a l to g e th e r .

4« D iscussion

The r e s u l t s  show co n c lu s iv e ly  th a t  th e  p ro th o rac ic  and 

m esothoracic femurs o f the  lo c u s t con ta in  a s in g le  neuron whose axon 

runs in  nerve 5Ble2 and which is  a to n ic  rece p to r  fo r  ten s io n  in  one 

o f the d i s t a l  bundles o f the  f le x o r  t ib ia e  muscle. There seems l i t t l e  

doubt th a t  t h i s  muscle te n s io n  re c ep to r  (KTR) i s  the  la rg e  m u ltip o la r  

neuron lo ca ted  a t  the  base o f one o f th ese  bundles. The p ro p e r tie s  of 

th e  recep to r are  very  s im ila r  to  those  of the s in g le  u n i t  in v e s tig a te d  

by B âssler (1977) in  th e  s tic k  in s e c t ,  B âssler was unable to  id e n t i fy  

th e  neuron re sp o n s ib le , but comparison w ith  the  lo c u s t leg  suggests th a t  

th e  la rg e  nucleus he found on s t ic k  in se c t nerve F121 i s  the  c o r re c t  

cho ice . The lo c u s t MTR may be analogous to  th e  la rg e  m u ltip o la r  neurons 

found a t  both end's of the  t i b i a l  f le x o r  muscle o f Limulus Pplyphemus 

(E agles, 1978; Eagles & Gregg, 1978), However, in  t h i s  anim al the 

c e l l s  a t  the in s e r t io n  o f the muscle are rep o rted  to  be re c e p to rs  fo r  

muscle leng-bh ra th e r  than  te n s io n .

The MTR is  m orpholog ically  very s im ila r  to  the  m u ltite rm in a l 

s t r e tc h  re c e p to rs  a ttach ed  to  abdominal muscle f ib r e s  in  many sp ec ies  of 

in s e c t ,  in  cen tipedes and in  scorp ions (E inlayson, 1976). In Rhodnius- 

(Hemiptera) the abdominal re c e p to rs  resemble the  lo c u s t MTR in  th a t  

th e i r  d e n d rite s  a re  a ttach ed  to  a number of muscle f ib r e s  (Anv/yl, 1972) 

but in  most in se c ts  so f a r  examined each recep to r i s  connected to  only 

one muscTe f ib r e , I f  the muscle f ib re s  concerned are n ^ r t o f the  main 

segmental muscle the r e c e p to rs  could fu n c tio n  s im ila r ly  to  th e  fem oral 

MTR and m onitor te n s io n , but i f  they  a re  innervated  s e p a ra te ly  the
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re c e p to rs  may fu n c tio n  as segment len g th  d e te c to rs .

The lo c u s t MTR d i f f e r s  from te n s io n  re c e p to rs  on th e  le g  

muscles of c ru stacean s  and v e r te b ra te s  in  th a t  i t  i s  a s in g le  c e l l  

lo c a te d  in  a c o n tr a c t i le  reg ion  near the f ix ed  end of the muscle ra th e r  

th an  a m u lt ic e l lu la r  organ lo ca ted  in  the  tendon. Although th i s  means 

th a t  i t  can only  m onitor te n s io n  in  a sm all reg ion  of the  muscle t h i s  

i s  a lso  tru e  o f a s in g le  neuron in  th e  v e r te b ra te  Golgi tendon organ 

which u s u a lly  m onitors the  te n s io n  in  a r e s t r i c te d  number of muscle 

f ib r e s  (B arker, 196?) a l l  o f which may be s e p a ra te ly  innervated  

(Reinking e t  , 1975), In both recep to rs  th e  s e n s i t iv i ty  to  a c tiv e  

te n s io n  i s  g re a te r  than  to  p assiv e  fo rce  app lied  to  th e  tendon because 

much of the  passive  te n s io n  i s  developed in  connective t i s s u e  or muscle 

f ib re s ' not connected to  the  re c e p to rs  (Houk, 1967), There i s  c u r re n tly  

no evidence th a t  th e  neurons on the  c ru stacean  tendon organ are 

d i f f e r e n t i a l l y  s e n s it iv e  to  d i f f e r e n t  p a r ts  o f the muscle a lthough  the  

f a c t  th a t  the neurons are d is t r ib u te d  along th e  len g th  of th e  apodeme 

in  a p innate  muscle (MacMillan & Dando, 1972) would seem to  p lace  them 

in  a good p o s it io n  to  do so .

Since the lo c u s t f le x o r  t ib ia e  muscle i s  a lso  p innate  in  form 

i t  is  not c le a r  why the MTR is  lo ca ted  on the muscle f ib r e s  ra th e r  than 

the  tendon. I t  may be th a t  th i s  p o s it io n  confers a sp e c ia l s e n s i t iv i ty  

to  lo c a l  co n tra c tio n  of the a s so c ia te d  f ib r e s ,  although th e re  was no 

in d ic a tio n  th a t  th ese  f ib r e s  are innervated  d i f f e r e n t ly  from o th e rs  in  

th e  same reg io n . This reg ion  o f th e  muscle i s  more to n ic  th an  th e  more 

proxim al p a r ts  so th a t  sensory  feedback o f f le x o r  muscle a c t i v i t y  may 

be d iv ided  between the MTR responding to  ten s io n  in  the to n ic  d i s t a l  

f ib r e s ,  the c u t ic u la r  campaniforra s e n s i l la  responding to  s t r e s s  from 

the more powerful phasic  f ib r e s  and th e  chordotonal organ m onitoring
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movements of the  phasic  proxim al p a r t  of the  f le x o r  (Burns, 1974).

In s p ite  o f th e  f a c t  th a t  the  MTR is  on ly  a s in g le  c e l l  i t  

m ediates a s tro n g  p o s it iv e  e x c i ta to ry  r e f le x  onto the  f le x o r  motoneurons 

and an in h ib i t io n  of the  slow ex tensor motoneuron pow erful enough to  

in te r f e r e  w ith  the  r e f le x  from the  much la rg e r  chordotonal organ.

S im ilar p o s it iv e  re f le x e s  have a lso  been found in  the  abdomen of the  

c a te r p i l l a r  (Weevers, 1955) where the s in g le  c e lle d  MRO rec ep to r  e x c ite s  

p a r a l le l  m uscles. The lo c u s t MTR re f le x e s  are opposite  in  sign, to  the 

eq u iv a len t re f le x e s  in  the  s t ic k  in se c t  (B âssle r, 1977), the crab 

(C larac & Dando, 1973) and in  mammals (G ranit & StrBm, 1951). However, 

the  sig n  of such re f le x e s  may change w ith  the behav ioural s ta te  o f the  

anim al. Thus Macmillan (1976) re p o r ts  th a t  the crab  te n s io n  recep to r 

r e f le x  is  sometimes reversed  when the  anim al is  a c tiv e  and chordotonal 

re f le x e s  in  the s t ic k  in s e c t  femur change sign  w ith  chan^^es in  the s ta t e  

o f a ro u sa l on the  in se c t (B âss le r , 1976), In  a few lo c u s ts  negative  

feedback re f le x e s  from the MTR were found.

The p o s itiv e  feedback may be p a r t  o f a load compensation r e f le x  

s im ila r  to  th a t  m ediated by carapaniform s e n s i l la  in  the  cockroach 

(Pearson, 1972), A s im ila r  load s e n s itiv e  re f le x  has been rep o rted  in  

the m etathoracic leg  o f the  lo c u s t (Burrows & H orridge, 1974) and was 

a sc rib ed  to  muscle te n s io n  re c e p to rs  which were not id e n t i f ie d .  In  the  

m esothoracic leg  i t  i s  p o ss ib le  th a t  the  MTR e x c ita t io n  of the  f le x o r 

motoneurons is  a lso  a mechanism fo r  d is t r ib u t in g  loads over the whole 

muscle. Unlike th e  ex ten so r motoneurons, most of the f le x o r  neurons 

innervate  only  r e s t r i c t e d  areas o f the  muscle (T heoph ilid is  & Burns, in  

p re p a ra tio n ) . The muscle bundle co n ta in in g  the MTR does not appear to  

have i t s  own unique motor suoply , but i t  l i e s  in  the  d i s t a l  p a r t  o f the  

muscle which shares few of i t s  motor axons w ith  the more phasic proxim al
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p a r ts .  Thus te n s io n  developed in  the  d i s t a l  muscle f ib r e s  may cause 

the MTR to  re flex lÿ - e x c ite  motoneurons supplying o th er p a r ts  o f the 

m uscle, producing a c o n trac tio n  which w il l  reduce th e  load on th e  d i s t a l  

f ib r e s .  In th is  connection i t  is  in te re s t in g  th a t  i t  is  the  d i s t a l  p a r t  

o f the f le x o r muscle which is  most used in  posture and in  walking 

(T heophilid is & Burns, in  p re p a ra tio n ) , so the MTR re f le x  may be ab le  to  

provide a d d itio n a l ten sio n  when i t  i s  needed.
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5. RESISTANCE REFLEXES 

A, Methods

The lo c u s t was f ix e d  v e n tra l  side down, in  the  middle o f a 

p la tfo rm  made from p la s t ic in e  (4 x 4 % 2cm)* The femur o f the 

m esothoracic le g  was mounted h o r iz o n ta lly  on the  same p la tfo rm  in  such 

a way as to  allow  fre e  movement of the  t i b i a  in  a v e r t ic a l  plane 

( f ig ,  5 .1 . ) .  The r e s t  o f th e  leg s  were a lso  mounted on the  p la tfo rm .

The anim al was l e f t  in  th i s  p o s it io n  fo r  f iv e  or s ix  hours to  s e t t l e  

before any experim ents were undertaken . Then the  femur of th e  leg  

under in v e s tig a tio n  was d is s e c te d , as described  in  f ig .  2,1B„ Care was 

taken not to  d es tro y  any o f the  sensory nerves from the  main fem oral 

m echanoreceptors. A co n s tan t v e lo c i ty  movement, between 90° and 120° 

was imposed by a lev e r-o n  the  t i b i a  a t  th re e  d i f f e r e n t  angular v e lo c i t ie s  

(see Chapter 2 ) .  The movement o f th e  t i b i a  produced re s is ta n c e  re f le x e s  

in  the  fem oral muscles which were recorded from the  nerve branches o f the 

f le x o r  and ex tensor muscles u s in g  hook or su c tio n  e le c tro d e s . Gross 

re f le x e s  and r e f le x  a c t iv i t y  from th e  DUM c e l ls  were recorded from the 

c o n tr a la te r a l  le g .

B, Résui t s

R eflex e x c ita t io n  o f the  f le x o r  t ib ia e  motoneurons (FlTiM 's) 

i s  a v a ria b le  phenomenon which depends on the s tre n g th  of th e  sensory 

inpu ts  and the e x c i t a b i l i ty  o f th e  anim al. Most o f th e  re f le x e s  s tud ied  

in  th i s  s e c tio n  are re s is ta n c e  re f le x e s  which tend to  r e s i s t  p a s s iv e ly  

imposed fem u r-tib ia  jo in t  movements by e x c ita t io n  o f th e  motoneurons 

in n erv a tin g  the fem oral m uscles. Sensory a c t iv i ty  resp o n sib le  fo r 

th ese  re f le x e s  i s  shown in  f ig .  4*3. where i t  can be seen th a t  most o f 

the  p ro p rio recep to rs  d e te c tin g  fe m u r-tib ia  movement and p o s it io n  are



The arrangement used to  record  fem oral re f le x e s  produced by 

t i b i a l  movement,

T = t i b i a

F = femur

P = p ro tra c to r

M ~ sh a ft o f the  pen motor connected to  the t i b i a  v ia

the  lev e r (L), The ax is  of the  ro ta tio n  o f the  

sh a ft and lev e r were in  l in e  w ith  the  t i b i a l  

a r t ic u la t io n .  To record  a c t iv i ty  from th e  DUM 

c e l l s ,  o r c ross  re f le x e s  the c o n tr a la te ra l  le g  was 

. a lso  d is s e c te d .
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F ig , 5 ,2

Records from the  m esothoracic f le x o r  t i b i a  muscle in  the d isse c te d  

femur o f an immobilized lo c u s t .  The femur was f i l l e d  w ith  haemolymph 

and a sm all amount o f s a lin e  was added and rep laced  w ith  f re sh  

oxygenated sa lin e  every 3 to  5 min. A ll le g  sensory inpu ts  were 

removed except from the  chordotonal organ. T ib ia l movement was 

imposed w ith  the  arrangement described  in  Methods,

Top trq c e :  I n tr a c e l lu la r  record  from the  proxim al f le x o r  muscle

f ib re  •

Middle t r a c e :  E x tra c e llu la r  record  from the  middle f le x o r nerve

branch.

Bottom tra c e :  T ib ia l p o s it io n .

Angular v e lo c i t ie s  were; 1: 3 8 ° /s ,  2; 75*^/s,

3î 150% .

At the  h igher v e lo c ity  (3 ), the  th re e  la rg e  EPSP’s ’can be id e n t i f ie d  

as from FI since they  are not c o rre la te d  w ith  any o f the  a c tio n  

p o te n tia ls  in  the  middle f le x o r  nerve branch. Small EPSP’s in  the 

proxim al f le x o r  could be due to  Ml,
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a c tiv e  during imposed ex tension  of the  t i b i a  and, except fo r the 

chordotonal organ (CO), th ey  are not very  ac tiv e  during  f le x io n . The 

CO is  the  most im portant sensory inpu t in  the genera tion  o f re s is ta n c e  

re f le x e s  involv ing  fem oral motoneurons. This i s  dem onstrated by the  

f a c t  th a t  removal o f th i s  mechanoreceptor abo lishes most of the 

re s is ta n c e  re f le x e s .

Reflexes are not only  dependent on the s tre n g th  o f the  sensory 

inpu ts to  the c e n tra l  nervous system but a lso  on the  e x c i ta b i l i ty  of 

the anim al. To avoid v a r ia t io n  in  the responses caused by d iffe re n c e s  

in  the behavioural s ta te  o f d if f e r e n t  animals the lo c u s ts  were f ix ed  (as 

in  f ig ,  5*1) and experim ents undertaken a f te r  s ix  hours. This was an 

attem pt to  b ring  the e x c ita to ry  s ta te  o f each anim al to  about the  same 

le v e l .

Motoneuronal a c t iv i ty  was recorded from the th re e  p a r ts  o f the 

f le x o r  t ib ia e  muscle to  allow  id e n t i f ic a t io n  o f the d i f f e r e n t  f le x o r  

motoneurons. The t i b i a  was extended from 90 to  120^ a t  co n stan t angular 

v e lo c i t ie s  o f 3 8 ^ /s , 7 5 ° /s  and 150°/s which correspond to  the  average 

v e lo c i t ie s  a t  which a lo c u s t extend i t s  t i b i a  when walking a t  speed of 

0 .5 , 1 and 2 s te p s /s  (c a lcu la ted  from Burns, 1973).

E x c ita to ry  f le x o r  motoneurons.

The f le x o r  motoneurons are excited  during passive ex tension  o f 

the  t i b i a  in d ic a tin g  a negative feed back from the leg  sensory recep to rs*  

The f a s t  f le x o r  motoneurons f i r e d  con tinuously  only  when the t i b i a  was 

extending a t  frequencies  which depended on the v e lo c ity  of the ex tension . 

The in term ediate  motoneurons responded to  the ex tension  o f the  t i b i a  in  

the same way as the f a s t  axons but o fte n  th e i r  a c t iv i ty  was prolonged 

a f te r  the end o f the  ex ten sio n . The slow motoneurons were spontaneously
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a c tiv e  and increased  th e i r  f i r i n g  frequency when the  t i b i a  was extended*

Typical records dem onstrating re s is ta n c e  re f le x e s  are shorn in  

f ig ,  5,2 where a f u l l  cycle o f the imposed t i b i a  movement can be seen.

This f ig u re  a lso  dem onstrates r e f le x  e x c ita tio n  of motoneuron F I , which 

has a la rg e  axon in n erv a tin g  on ly  the 30^ of the  proxim al f le x o r  ( f ig ,

3 . ) .  FI i s  a high th re sh o ld  motoneuron which is  ex c ite d  only by f a s t  

t i b i a l  movement and produces a maximum of th ree  spikes* The r e la t io n  

between f i r in g  r a te  of FI and the angular v e lo c ity  of t i b i a l  ex tension  

is  given in  f ig ,  5,3A,

The la rg e  a c tio n  p o te n t ia l s ,  in  f ig .  5,2 (second tra c e ) , are  

responses of motoneuron F2 to  the  Imposed ex tension  of th e  t i b i a .

Responses of motoneuron F2 a lso  can be id e n t i f ie d ,  in  f i g ,  5,4A which 

shows in t r a c e l lu la r  reco rds from the  proxim al muscle f ib r e s  and nerve 

records from the  middle and d i s t a l  nerve branches. Axon F2 has been 

id e n t i f ie d  as the motoneuron whose branches innervate  only  the  proxim al 

and middle f le x o rs  ( f ig ,  3 ,1 2 ) , This motoneuron seems to  reach  th re sh o ld  

when the  t i b i a  i s  extended a t  v e lo c i t ie s  g rea te r  than  3S'^/s ( f ig ,  5,3A), 

Below th is  value F2 is  u s u a lly  s i l e n t  but in  some animals the  th re sh o ld  

was low er,

A s im ila r  p a tte rn  o f re f le x e s  as th a t  of F2 is  shown by 

motoneuron FA ( f ig .  5,AB), Axonal branches from th is  motoneuron have 

been id e n t i f ie d  on ly  in  the  middle and d i s t a l  f le x o r  ( f ig .  3,-12). This 

motoneuron was sometimes com pletely in a c tiv e  but when i t  was a c tiv e  i t  

responded to  t i b i a l  ex tension  of a l l  the  v e lo c it ie s  as can be seen in  

f ig ,  5.3B.

Figures 5.4A. and B dem onstrates the two most common p a tte rn s  

o f re s is ta n c e  re f le x e s  recorded from the  f le x o r  t i b i a  motoneurons. The 

main d iffe ren ce  between th ese  tv.ro p a tte rn s  is  th a t  in  the  f i r s t  case .
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Typical responses of the  m esothoracic f le x o r  t ib ia e  axons in  

r e la t io n  to  the angular v e lo c i ty  of t i b i a l  ex ten sio n . The axons 

are  u su a lly  a c tiv a te d  in  groups where some o f them are f u l ly  

a c tiv e  and o th ers  suppressed . These grcxpKs were p lo tte d  from 

animals in  which each p a r t ic u la r  axon was f u l ly  a c tiv e . For each 

axon the above curves rep re sen t records taken  from a t  le a s t  two 

d if f e r e n t  an in a ls  from 10 d i f f e r e n t  imposed ex tension  movements.
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Typical records used to  id e n t i fy  most of th e  m esothoracic f le x o r  

t ib ia e  motoneurons in  re s is ta n c e  re f le x e s  produced by extending 

the  t i b i a  of th ree  d if f e r e n t  v e lo c i t ie s ,  1: 3 S ^ /s , 2: 7 5 ° /s ,

3 : 150°/s.

A, The most common f le x o r  motor p a tte rn  produced by t i b i a l  ex ten sio n .

1 s t t r a c e Î I n tr a c e l lu la r  record  from a proxim al muscle f ib r e ,

2nd tra c e  ; E x tra c e llu la r  record  from the  middle f le x o r  nerve

branch.

3rd t r a c e :  E x tra c e llu la r  record  from th e  main d i s t a l  f le x o r  nerve

branch.

4-th t r a c e ;  T lb ia l p o s it io n , downward movement = ex tension  from 

90*̂  to  120°. A ction p o te n tia ls  o f  the  in h ib i to rs  

cannot be confused here since th ey  u s u a lly  a c tiv a te d  

im mediately a f t e r  the end o f the  ex tension  movement 

(F ig , ^.5B ). The id e n t i f ic a t io n  c r i t e r i a  fo r  the  f le x o r  

motoneurons as described  in  Chapter 3 .

B. An extreme case where although most o f the  f le x o r  axons were

s i l e n t  F4-, F3 and F2 were a c tiv e ,

1 st t r a c e :  E x tra c e llu la r  record from the middle f le x o r  nerve branch

2nd t ra c e :  E x tra c e llu la r  record  from th e  main d i s t a l  f le x o r  nerve 

branch

3rd tra c e :  T ib ia l p o s it io n .
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F2 is  th e  dominant a c tiv e  motoneuron while F4- i s  s i l e n t  (8 lo c u s ts )  

and in  the second case (fig* 5.4B) th e i r  ro le s  are  reversed  (3 lo c u s ts ) .  

In both cases motoneuron F3 i s  a c tiv a te d  by f a s t  t i b i a l  movements, 

producing one or two sp ikes ( f ig .  5.4A, B and f ig .  5 .3B ),

Among th e  motor axons which innervate  th e  d i s t a l  f le x o r  only  

M3 is  a c tiv a te d  during  slow t i b i a l  movements ( f ig .  5.4A ), F5 and F6 

are  a c tiv a te d  by the f a s t e r  movements. The frequency-angular v e lo c ity  

curves from th ese  motoneurons are  sho^ni in  f ig ,  5 .30 , D. Motoneuron 

Ml i s  a c tiv a te d  u s u a lly  by the f a s t  t i b i a  movement and when the

angular v e lo c ity  in c re a se s , p a ra d o x ica lly  the a c t i v i t y  o f th i s

motoneuron decreases ( f ig .  5.4A and f ig .  5.3D).

Motoneurons SI and 32 which innervate  th e  whole f le x o r  muscle 

( f ig .  3 .12) f i r e  con tinuously  w ith  frequencies of 5 to  Hzo When the  

t i b i a  is  p a s s iv e ly  extended to  120° the  f i r i n g  frequency of th ese  

motoneurons becomes 15 -  20 Ha and remains a t  t h i s  value w ithout any 

a d a p ta tio n , as long as the ex ten sio n  is  m aintained ( f ig ,  5.5A), This 

f i r i n g  frequency i s  alm ost independent o f the  v e lo c i ty  a t  which th e

t i b i a  i s  moved. Motoneuron S3 in  the  proxim al f le x o r  responds in  a

s im ila r  way.

R eflexes in  the  f a s t  f le x o r  t ib ia e  motoneurons o fte n  h ab itu a te  

i f  the m echanical s tim u la tio n  o f th e  femur t i b i a  p ro p rio recep to rs  i s  

app lied  fo r prolonged p e rio d s . This phenomenon i s  dem onstrated in  

f ig .  5 .6 . H ab ituation  could cause v a r ia t io n  in  the r e s u l t s  described  

above and fo r  th i s  reason  most o f the  records were taken  in  the f i r s t  

f iv e  cycles o f s tim u la tio n .
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Flexor in h ib i to ry  neurons.

The I I  and 12 motoneurons innervate  the whole f le x o r  muscle 

( f ig .  3 . 12)0 These neurons have a very  low th re sh o ld  and can be e a s i ly  

a c tiv a te d  by touching d if f e r e n t  p a r ts  o f the  anim al. They are  s i l e n t  

in  â q u iescen t animal a t  a fe m u r- tib ia  angle of 90°, however th ey  are  

ex c ited  by imposed t i b i a l  ex ten sio n  ( f ig .  5.5B). Neuron I I  and 12 

remain s i l e n t  during  the ex tension  of the  t i b i a  from 90° to  120° but th ey  

are  a c tiv a te d  im mediately a f te r  the  end of th is  movement. Their f i r in g  

frequency depends on the  v e lo c i ty  o f the ex tension  and i t  d ec lin es  

ra p id ly  from a peak frequency imm ediately a f te r  the  t i b i a  stops moving. 

VJhen the t i b i a  is  f lexed  th ese  neurons are s i l e n t .  In the  s ix  anim als 

examined, two f a i le d  to  show any responses o f th e  in h ib ito ry  neurons to  

th e  ex tension  of the  t i b i a ,

D'.TJ.M. neurons.

I t  is  a d i f f i c u l t  ta sk  to  monitor a c t iv i ty  from the f le x o r  

DUM c e l l s  (D1 and D2) during  movement o f the  t i b i a ,  because most o f  the 

Q.U.M. a c tio n  p o te n tia ls  a re  masked by the a c t iv i ty  from the la rg e r  f le x o r

t ib ia e  motor axons. I t  has been shown (sec tio n  3) th a t  the Dl neuron

toUîiETi) in n erv a tes  the  f le x o r  and extenson t ib ia e  muscles on both s id es  

o f the animal* Using th i s  p ro p erty  the  above d i f f i c u l t i e s  were 

e lim inated  by reco rd in g  a c t iv i ty  from Dl in  the ex tenso r nerve from the 

c o n tr a la te ra l  side to  th e  r e f le x iv e ly  ex c ited  f le x o r  motoneurons. The 

Dl spike was id e n t i f ie d  from an a c tio n  p o te n t ia l  produced every second 

by s tim u la tin g  the ex tensor nerve from the side on which the t i b i a l

movement was imposed ( f ig .  5.7A). The Dl neuron is  not ex c ited  by

f le x io n  or by ex tension  of the  t i b i a  a t  any o f the angular v e lo c i t ie s .  

O ccasionally  i t  f i r e s  a t  about one spike every two or th re e  seconds.

Dl can f i r e  w ith  a b u rs t o f increased  frequency up to  5 or 8 Hz whenever



Records from the  rnesothoracic f le x o r  t ib ia e  muscle in  the  d isse c te d  

femur o f an immobilized lo c u s t (cond itions as in  F ig . 5 .2 ) ,

A. 1 s t tra c e :  I n tr a c e l lu la r  reco rd  from a d i s t a l  muscle f ib r e .

2nd t ra c e :  E x tra c e llu la r  record  from .the middle f le x o r  nerve

branch.

3rd t ra c e :  T ib ia l p o s it io n .

Notice the s ize  o f the a c tio n  p o te n tia ls  produced by axons SI and 

82 (2nd t r a c e ) .  They are very  sm all and very  d i f f i c u l t  to  

d is t in g u is h  from the  no ise le v e l  of th e  re co rd , e s p e c ia lly  when 

o th er la rg e r  axons are a c tiv a te d .

B, 1 s t t r a c e :  I n tr a c e l lu la r  record  from the  d i s t a l  muscle f ib r e ,

2nd tra c e :  T ib ia l movement.

Angular v e lo c ity :  1: 1 8 ° /s ; 2; 3 S ^ /s | 3 : 7 8 ^ /s .

I I  = in h ib i to r  1, 12 = in h ib i to r  2 ,

Axons I I  and 12 were id e n t i f ie d  a lso  in  the  o th er p a r ts  of the

muscle u s in g  s im ila r  method to  th a t  described  in  F ig . 3 .2 0 .

In th is  p rep ara tio n  the th re sh o ld s  o f the  in h ib i to ry  axons were very  

low and the a c t iv i ty  o f the  e x c ita to ry  motoneurons was corresponding ly  

low (see sm all group o f EPSP*s).
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Records from the  rnesothoracic f le x o r  t ib i a e  muscle in  a 

d isse c te d  femur of an immobilized lo c u s t (cond itions as in  

P ig . 5 .2 ) .

1 s t t r a c e Î I n tr a c e l lu la r  record  from th e  proxim al f le x o r ,

2nd t ra c e :  E x tra c e llu la r  reco rd  from th e  middle nerve branch,

3rd t r a c e :  E x tra c e llu la r  record  from the d i s t a l  nerve branch

4th tra c e s  T ib ia l p o s it io n , Do\^nvfard movement o f the tra c e  =

t i b i a l  ex ten sio n . Angular v e lo c ity  o f movement 

7 8 % .

Each record  was taken  a f t e r  the  number of cy c les  o f t i b i a l  

movement shov/n a t  the  l e f t  s ide  of the f ig u re .
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Fig .  5,7

A and B, Records from the  ex tensor nerves in  both d isse c te d  

rnesothoracic femurs o f an immobilized lo c u s t (cond itions as in  5 .2 ) .

A, Responses of the  DUM c e l l  (Dl) and the  ex tensor SSTi from one 

side of the  anim al (1 st t r a c e ) ,  to  the  movement o f the opposite 

rnesothoracic t i b i a  (2nd tra c e )  imposed a t  two d if f e r e n t  angular 

v e lo c i t ie s  (3S^/s f i r s t  re c o rd , 300°/e second re c o rd ) . The
M H

la rg e  a c tio n  p o te n tia l;  repeated  every second is  an a r te f a c t  

due to  a stim ulus ap p lied  to  the i p s i l a t e r a l  ex tensor nerve in  

o rder to  id e n t i fy  axon Dl which runs in  both rnesothoracic 

ex tensor n erves.

B, R eflexes produced in  th e  ex tenso r t ib ia e  neurons (CI, SSTi,

1 s t t r a c e )  by ex tension  or f le x io n  o f the  t i b i a  o f the  same 

leg  as in d ica ted  in  th e  2nd t r a c e ,

C, P eris tim u lu s  tim e histogram  p lo tte d  fo r  the  SETl from s im ila r  

records to  those in  A, T ib ia l movement of the opposite  leg  

as in d ica ted  below the h istogram .

D uration of p lo t  = 3 s .
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th e  in se c t is  aroused ( f ig ,  5<>7Ay see arrow ). S im ilar behaviour i s  

shown by the DUMETi neuron in  the  m etathoracic leg  (Hoyle e t  a l ,o  1974)* 

A c tiv ity  from neuron D2 was not recorded due to  th e  f a c t  th a t  i t s  a c tio n  

p o te n t ia l  i s  very  sm all and is  hidden by the a c t iv i ty  o f the o th e r axons.

Extensor motoneurons.

R esistance re f le x e s  in  the  rnesothoracic ex tensor t i b i a  

motoneurons were rep o rted  by Burns (1974) and in  th e  m etathoracic  by 

Usherwood e t  (1968) who found th a t  ex tension  o f the  chordotonal 

apodeme in v a r ia b ly  a c tiv a te d  the  SETi and the r e s u l t in g  frequency of 

f i r i n g  and d u ra tio n  o f a c t iv i ty  increased  w ith the r a te  o f s t r e tc h  o f the 

chordotonal organ. This i s  a lso  shown in  f ig ,  5*7B where i t  can be seen 

th a t  ex tension  o f the t i b i a  a lso  ex c ite s  the common in h ib i to ry  neuron (C l), 

The Cly which in n erv a tes  th e  ex tensor but not the  f le x o r  t ib ia e  m uscle, 

responds only when the  t i b i a  is  ex tend ing , in  c o n tra s t w ith  the  f le x o r  

in h ib i to rs  ( f ig ,  5*5B) which are  in a c tiv e  during th i s  t i b i a l  movement. 

R eflexes from the SETi and CI motoneurons are very  r e l ia b le  and th ey  

p e r s i s t  fo r  more than  50 cy c les .

Cross r e f le x e s .

The slow and in te rm ed ia te  axons to  the  rnesothoracic f le x o r  

t ib ia e  muscle o f th e  i p s i l a t e r a l  le g  are  ex c ited  during  co n stan t v e lo c ity  

movement of the  c o n tr a la te r a l  rnesothoracic t i b i a .  However, th ese  c ro ss  

re f le x e s  only  occur in  anim als w ith a r e l a t iv e ly  high c e n tr a l  e x c ita to ry  

s ta te  and the  phase re la t io n s h ip s  between motor ou tpu t and c o n tr a la te r a l  

inpu t are not very  p re c is e ly  d efin ed .

Studies o f the ex tensor motoneurons show th a t  the SETi is  a lso  

ex c ited  during  the  movement o f the  c o n tr a la te ra l  m esothoracic t i b i a  

producing more r e l ia b le  c ross  re f le x e s  ( f ig .  5,7A), a f a c t  which makes
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th i s  motoneuron a b e tte r  sub jec t than the f lex o r motoneurons fo r 

studying c o n tra la te ra l  reflexes*  Fast movements of the c o n tra la te ra l  

t i b i a  (3 0 0 ° /s )  produce a weak re f le x  ac tiv a tio n  of the SSTi. This 

neuron responds to  both extension and flex io n  of the c o n tra la te ra l  t ib ia e  

but i t  seems from f ig .  5.70 th a t  i t s  response is  stronger during 

extension  which is  opposite in  signe to  the ip s i l a te r  re f le x .
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6 . MOTOîTBimOMAL ACTIVITY DURING WALKING ON A TmADMILL

A. Methods

The thorax  of th e  lo c u s t was fixed  v e n tra lly  on a sm all 

p la tfo rm  (2 x 12 x 2mm) made from b a lsa  wood. This p latfo rm  was f irm ly

a ttach ed  to  the end o f h o r iz o n ta l mounting rod which was held

h o r iz o n ta lly  in  a magnetic stand ( f ig .  6 .1 ) .  A tre a d m ill  was put under 

the  animal so th a t  the lo c u s t was ab le  to  waMi on i t .  The tre a d m ill  

was made from l ig h t  foam perspex (R ohacell), was free  to  ro ta te  under 

the animal and was 20cm in  diam eter and 8cm wide. The weight of the  

wheel was counterbalanced w ith  a lev e r so th a t  the u p th ru s t on the legs 

o f the lo cu s t was approxim ately equal to  the an im al's  w eight. Light 

card  was glued to  the o u ter rim of the tre a d m ill  to  provide a n o n -s lip  

surface fo r  the  t a r s i  of the  lo c u s t .  The legs were fre e  to  move except 

fo r  one rnesothoracic le g , the  femur of which was mounted on the b a lsa  

p latfo rm  ( f ig .  6 .1 ) and d isse c te d  as in  f ig ,  2 . IB, This le g  was

d eaffe ren ted  by c u tt in g  the sensory  nerves always a t  the  same p o in t,

i/hen they  were re q u ire d , care was taken to  leave a l l  the main 

sensory inputs in ta c t ,  while a constan t v e lo c ity  movement (see chap ter 5) 

was imposed on the rnesothoracic t i b i a  to  ex c ite  fem oral r e f le x e s .  In 

t h i s  case the ramp generator produced a t r ig g e r  pu lse before the 

beginning of each ramp to  s t a r t  a n a ly s is  by a microcomputer (Burns, 197?) 

which generated a p e ris tim u lu s  histogram . Neuronal a c t iv i ty  was 

recorded e x t r a c e l lu la r ly  w ith hook e lec tro d es  and po stsy n ap tic  p o te n tia ls  

in  the  muscle were recorded w ith g lass  m icrop ipe ttes  f i l l e d  w ith 3MKC1.

As an in d ic a tio n  of the  walking a c t iv i t i e s  of the anim al, the  movement 

o f the  c o n tr a la te ra l  femur (p ro tra c tio n , r e t ra c t io n )  were monitored w ith 

a cap ac itiv e  movement d e te c to r  (Sandeman, 196?).

The tre a d m ill  was a lso  used to  study an in ta c t  u n re s tra in ed



Fig .  6 ,1

The arrangement used to  record  from th e  m esothoracic ex tenso r and 

f le x o r  t ib ia e  muscles and nerves in  the  d isse c te d  femur of a 

te th e re d  lo c u s t walking on a t re a d m ill .  The tra n sm ittin g  w ire

(O) of the  Sandeman Transducer (S .T .) was f ix ed  to  th e  

c o n tr a la te r a l  femur to  m onitor p ro tra c tio n  and r e t r a c t io n  o f th i s  

leg , (H orizon tal movement o f the femu,r).
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le g  during  w alking. In t h i s  ca se , th e  animal was f ix e d  w ith  i t s  

pronotum glued d o rsa lly  to  a m etal saddle a t  th e  end of a v e r t ic a l  

ho ld ing  rod . A ll the leg s  were fre e  to  wallc on the tre a d m ill  p laced  

under the anim al. P a irs  of /+0|im copper w ires were im planted in to  the 

main fem oral muscles to  record  muscle a c t iv i ty  du ring  w alking. The 

movements of the femur of th e  le g  under in v e s tig a tio n  or of the 

c o n tr a la te r a l  leg  were a lso  m onitored, E le c tro p h y s io lo g ic a l d a ta  was 

s to red  on tape  and was analysed from film  using  a sem i-autom atic 

an a ly ser (Burns and Delcomyn, 1976) in  con junction  w ith  a general 

purpose d i g i t a l  computer. Histograms were p lo t te d  on a g rap h ica l 

ou tpu t dev ice .

Be Result s

In the  s tu d y  of the  use o f the  f le x o r  t ib ia e  motoneurons during  

w alking, i t  i s  im portant to  id e n t i fy  the  a c t iv i ty  o f each in d iv id u a l 

motoneuron. This re q u ire s  sep a ra te  records from the  th re e  d i f f e r e n t  

p a r ts  of the  f le x o r  m uscle. In  o rder to  o b ta in  such reco rds from a 

walking anim al, i t  was found necessary  to  immobilize the m esothoracic 

leg  and to  allow  the  lo c u s t to  walk w ith  the  rem aining leg s  on a 

tre a d m ill  ( f ig .  6 ,1 ) .  The femur of the  f ix e d  le g  could then  be 

d isse c te d  to  expose the  sensory and motor nerves (see Methods), Under 

th ese  con d itio n s  "walking" was defined  as the  occurrence of re g u la r  

s tepp ing  movements in  the  fre e  leg s  of a l te rn a t in g  b u rs ts  of a c t iv i ty  

in  the  a n ta g o n is tic  muscles o f the  clamped femur. Walking on the 

tre a d m ill  was stim u la ted  by touching  the abdomen of the animal w ith  a 

f in e  brush. In a clamped le g  i t  i s  p o ss ib le  fo r  abnormal fo rces  to  be 

developed which may cause high frequency f i r i n g  from the fem oral and 

t i b i a l  p ro p rio ce p to rs . For th i s ' reason the main sensor-'^ nerves were
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c u t ,  so e lim in a tin g  r e f le x  e f f e c ts  on the  motoneuron a c t iv i ty .  Since 

the  d ea ffe ren ted  f le x o r  motoneurons o f a lo c u s t walking on the  tre a d m ill  

are  a c tiv a te d  w ith  the  ex tensor motoneurons i t  w i l l  be

in te r e s t in g  to  know i f  th i s  p a t te rn  is  re la te d  w ith  the a l te rn a t in g  

burs‘b$produced by the  a n ta g o n is tic  fem oral muscles in  a fre e  walking 

le g , _ I f  th e re  are any s im i la r i t ie s  between the  a c t i v i t y  of a d ea ffe ren ted  

and a normal le g  th ese  s tu d ie s  w i l l  a lso  provide valuab le  in form ation  

about the  a c t iv i ty  of the  f le x o r  motoneurons in  a normal walking anim al.

In order to  e s ta b lis h  t h i s ,  th e  a c t i v i t y  of the  f e m o r a l i n  a 

d ea ffe ren ted  and a normal le g  were compared.

A c tiv ity  in  a d ea ffe ren ted  le g .

T ypical records taken from th e  nerves of fem oral muscles in  

a d ea ffe ren ted  leg  ( f ig ,  6,2A) show th a t  the ex tenso r and f le x o r  

raotoneuu’ons f i r e d  in  a l te r n a t in g  b u rs ts .  In order to  determ ine the  

tim e re la t io n s h ip  between the  a c t i v i t y  of these motoneurons phase 

histogram s were p lo t te d  fo r  13 s tep s  from an animal walking a t  speed of 

1 s te p /s .  In the  case o f th e  ex tensor muscle the  compound a c t iv i ty  of 

the  SETi and FETi was p lo t te d ,  while fo r the f le x o r  muscle the  combined 

a c t iv i t y  of a l l  the axons which innervate  the d i s t a l  f le x o r  was p lo t te d  

( f ig ,  6,3A ). These histogram s show th a t  in  a d ea ffe ren ted  fem ur, 

although the ex tensor and f le x o r  motoneurons produce a re c ip ro c a l  f i r i n g  

p a t te rn  th e re  i s  an overlap  between th e i r  a c t i v i t i e s .  U sually  the end 

o f the f le x o r b u rs t overlaps w ith  the beginning of the slow ex tensor 

b u rs t .  F ig , 6,2A shows a lso  th a t  th e re  i s  a v a r ia t io n  in  th i s  overlap  

and sometimes the  a c t iv i ty  o f the sm all d i s t a l  f le x o r  motor axons can be 

prolonged even in  the  b u rs t o f the  an ta g o n is tic  FETi, In an animal 

walking slow ly ( f ig ,  6,2C) the in te rv a l  frequency of the f le x o r  b u rs t 

was lov; enough to  allow  id e n t i f ic a t io n  of axons in  the d i s t a l  nerve



F ie . 6 ,2 .

Records from the m esothoracic ex tensor and f le x o r  t ib ia e  muscles and
nerves o f a te th e re d  lo c u s t walking on the tre a d m ill .

A. Records from a d ea ffe ren ted  d isse c te d  femur.
1 s t t r a c e :  E x tra c e llu la r  reco rd  from th e  ex tensor nerve
2nd t ra c e :  E x tra c e llu la r  record  from th e  main d i s t a l  f le x o r

nerve branch.
The d i s t a l  axons cannot be in d iv id u a lly  id e n t i f ie d  since they  f i r e
a t  a high frequency.
3rd t r a c e :  H orizon ta l movement of th e  c o n tr a la te ra l  femur.

Upward movement of the tra c e  = p ro tra c tio n ; 
downward movement = r e t r a c t io n .

B. Electromyograms (EMG's) recorded from th e  femur o f a f re e  le g
(see Methods).
1 s t t r a c e :  EMG’s from the  d i s t a l  f le x o r
2nd trq c e :  EMG's from th e  proxim al p a r t  o f the ex tensor muscle.

.In th i s  case the  w ires were very  c lose  to  the
proxim al f le x o r  and the a c t iv i ty  from the  f le x o r  FI
was recorded as cross t a lk .

3rd tr a c e :  The movement of th e  c o n tr a la te r a l  femur,

C. As in  A,
1 s t t r a c e :  E x tra c e llu la r  record  from the  middle f le x o r nerve

branch.
2nd tra c e :  E x tra c e llu la r  record  from th e  main d i s t a l  f le x o r

nerve branch,
3rd tr a c e :  movement o f the  c o n tr a la te ra l  le g .

In both A and C sm all a c tio n  p o te n tia ls  in  the 2nd tra c e  o ccu rrin g  
between the f le x o r b u rs ts  could be due to  the  f le x o r  in h ib i to r s .
From A and B i t  i s  obvious th a t  th e  SETi always f i r e s  a t  the  
beginning of; the r e t r a c t io n  of the  c o n tr a la te ra l  leg  in  both 
d eaffe ren ted  and normal le g s .
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F ig . 6.3

Phase histogram s p lo t te d  fo r  12 d i f f e r e n t  s tep s  in  a 

d ea ffe ren ted  leg  (A) and a normal le g  (b ) o f a  te th e re d  

lo c u s t walking on the tre a d m ill .

A phase o f zero was defined  as the  f i r s t  spilce o f the  b u rs t of 

a c t i v i t y  in  the d i s t a l  f le x o r  motoneurons. Each histogram  

includes a l l  the  a c tiv e  e x c ita to ry  motor axons.
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branch. In th i s  case the  f le x o r  b u rs t s ta r te d  w ith  a spike from P6 

which im m ediately a f t e r  was follow ed by F5 and M3. The a c t iv i t y  o f 

M3 is  u s u a lly  prolonged a f t e r  F5 stopped. Notice a lso  in  f i g .  6.2A and 

6 ,20  ( th ird  t r a c e )  th a t  a lthough no movement could occur in  the  clamped 

m esothoracic le g ,  th e  a l te r n a t in g  b u rs ts  recorded in  th e  d ea ffe ren ted  

femur correspond in  time w ith  th e  s tepp ing  movement o f th e  c o n tr a la te r a l  

fe m u r,( in  a n tip h a se ) .

To check th a t  th e  recorded  a c t iv i ty  in  th e  ex tenso r nerve i s  

r e a l ly  a walking p a t te rn  r a th e r  than  u n re la ted  f i r i n g  o f the  fem oral 

motoneurons, the  reco rd s ob ta ined  from the  m esothoracic ex tenso r 

motoneurons o f d ea ffe re n ted  p re p a ra tio n  ( f ig ,  6.2A) were compared w ith  

th e  neurograms d escrib ed  by Burns (1972) fo r  the  ex tenso r nerve of a 

normal f re e  w alking locust*  He rep o rted  th a t  the  SETi f i r e s  

con tinuously  du ring  e a r ly  r e t r a c t io n  and the FETi i s  a c tiv a te d  a t  the  

end of th i s  period  as a lso  can be seen in  f ig ,  6.2B (second t r a c e ) .

This f i r i n g  p a t te rn  i s  very  s im ila r  to  the  a c t i v i t y  recorded  from the 

ex tenso r nerve in  a  d e a ffe ren te d  le g  o f a lo c u s t w alking on a t r e a d m il l .  

However in  the d ea ffe re n te d  ex ten so r motoneurons th e re  are  d iffe re n c e s  

ik  b  i; i ' r ;o and a v a r ia t io n  in  b u rs t len g th

which probably  are  caused by th e  f a c t  th a t  not only  fem oral and t i b i a l  

p ro p rio cep to rs  a re  absen t but a lso  the coxal re c e p to r  can no longer

d e te c t  movement s ince th e  femur i s  im m obilised.

A c tiv ity  from an in ta c t  m esothoracic le g  w alking on th e  tre a d m ill .

In o rder to  o b ta in  an in d ic a tio n  of hoŵ  much the  p a t te rn  

produced by the  f le x o r  and ex tenso r motoneurons in  a d ea ffe ren ted  anim al 

walking on the tre a d m ill  d i f f e r s  from the pa tnern  in an alm ost fre e

anim al, a comparison was made w ith  th e  a c t i v i t y  from an in ta c t  f re e  leg .
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For th i s  purpose myograms and neurograms were recorded from the  

fem oral muscles o f a te th e re d  lo c u s t wahcing on th e  same tre a d m ill  

(see M ethods). Recordings were made w ith  copper w ires im planted in  

th e  d i s t a l  f le x o r  and the  proxim al p a r t  o f th e  ex tenso r muscle ( f ig .  6 .2 B) 

This teclm ique fo r  reco rd in g  muscle p o te n tia ls  i s  not accui’a te  as f a r  

as id e n t i f ic a t io n  of in d iv id u a l motor axons is  concerned. However th i s  

d isadvantage of myograms was reduced since the  number of the  motoneurons 

which inn erv a te  the d i s t a l  f le x o r  i s  a lread y  known (Chapter 3 ) .

A c tiv ity  such as th a t  in  f ig .  6*2B was recorded from si): d i f f e r e n t  

anim als and film ed a t  h igh  speed. These reco rds show th a t  the  f le x o r 

b u rs t in  the  d i s t a l  p a r t  of t h i s  muscle c o n s is ts  of a la rg e  ac tio n  

p o te n t ia l  which appears a t  th e  beginning of the  b u rs t and i s  follow ed by 

another two a c tio n  p o te n t ia ls  o f d i f f e r e n t  s iz e s .  The s im i la r i t ie s  

between t h i s  f i r i n g  p a t te rn  and th e  p a t te rn  produced in  the  d i s t a l  nerve 

o f a d ea ffe ren ted  anim al w alking a t  th e  same speed on a tre a d m ill  

( f ig .  6.2C) suggest th a t  th e re  i s  a c lo se  re la t io n s h ip  between the  

b u rs tin g  p a t te rn  of th e  d i s t a l  f le x o r  motoneurons in  a d e a ffe ren ted  and 

a  normal w alking le g .

A c tiv ity  histogram s fo r  the  E intagonistic fem oral muscles 

p lo t te d  by a computer a re  sho\m in  f i g .  6.3B, These show th a t  in  a 

normal w alking le g , im raediately a f t e r  the  end o f th e  ex tensor b u rs t ,  a 

sh o rt f le x o r  b u rs t ap p ears. The b u rs ts  o f th e  d i s t a l  f le x o r  and 

ex ten so r muscle form a p e r fe c t  r e c ip ro c a l  p a t te rn .  The b u rs ts  o f th e  

ex tenso r motoneurons in  a normal le g  are  longer than  in  a d e a ffe re n te d , 

w ith  s ig n if ic a n t ly  la rg e r  number of spilces. The b u rst of the  d i s t a l  

f le x o r  motoneurons are  sh o rte r  w ith  fewer sp ikes in  a normal le g  than  

ÎU1 a d e a ffe re n te d . The conclusion  here is  th a t  the  d iffe re n c e  in  f irz n g  

p a tte rn  between a d ea ffe re n te d  and a normal leg  concerns m ainly changes
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in  len g th  and in te rn a l  frequency o f th e  a l te rn a t in g  b u rs ts  of the  

ex ten so r and f le x o r  muscles w hile the  sequence jji which th e  motoneurons 

are  a c tiv a te d  in  both muscles seems to  be independent o f the  p e r ip h e ra l  

sensory  in p u ts . Therefore th e  a c t iv i ty  from th e  f le x o r  motoneurons in  

a d e a ffe ren ted  p re p a ra tio n  can reaso n ab ly  be considered  as normal fo r  

fu r th e r  in v e s tig a tio n  b ea rin g  in  mind th a t  th i s  a c t i v i t y  i s  s l ig h t ly  

h igher and more prolonged than  th e  normal.

A ll the  above evidence suggests the ex is ten ce  of an in te rn a l  

programme which d riv e s  the  fem oral motoneurons during  w alking on the  

t re a d m ill .  One could argue here th a t  the  sensory  in p u ts  from th e  o th e r  

leg s  could cause in te rseg m en ta l r e f le x e s  which may generate th ese  

a l te r n a t in g  b u rs ts  in  the d ea ffe re n te d  femur. In o rd er to  e lim in a te  t h i s  

p o s s ib i l i t y  the  same experim ents were repeated  on anim als where the 

p ro th o rac ic  and m etathoracic  leg s  were amputated a t  th e  coxal j o in t .

Under th ese  con d itio n s  the  rem aining c o n tr a la te r a l  m esothoracic le g  was 

ab le  to  s tep  on th e  tre a d m ill  w hile the  f le x o r  and ex tensor t ib ia e  

motoneurons o f the  f ix e d  d ea ffe re n te d  le g  produced a re c ip ro c a l  p a t te rn  

s im ila r  to  th a t  shown in  f i g .  6.2A.

A c tiv ity  o f in d iv id u a l f le x o r  motoneurons during  w alking on the  tr e a d m il l .

The com position of th e  f le x o r  b u rs t in  a d ea ffe ren ted  le g  can 

now be analyzed in  more d e t a i l .  The id e n t i f ic a t io n  o f the  in d iv id u a l 

f le x o r  motoneurons was based on reco rds taken from the  th re e  d i f f e r e n t  

p a r ts  of th e  f le x o r  muscle in  a lo c u s t walking on th e  tre a d m ill .  Neuron 

F2 f i r e s  con tinuously  throughout th e  f le x o r  b u rs t as can be seen in  

f ig .  6 ,20  which shows a c tio n  p o te n t ia ls  recorded from th e  middle and 

d i s t a l  nerve branches in  an anim al walking on the tre a d m ill .  The spike 

frequency w ith  the  F2 b u rs t i s  approxim ately  20 -  25 Hz. The
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re la t io n s h ip  between the a c t i v i t y  o f F2 and th a t  of the  axons which 

innervate  the  d i s t a l  f le x o r  i s  a lso  sho\-m in  t h i s  f ig u re .  I t  i s  worth 

n o tice  th a t  the  h i r s t  o f P2 in  the  middle f le x o r  corresponds in  time 

and leng th  w ith  the  compound b u rs t o f F6, P5 and M3 in  the  d i s t a l  p a r t  

o f the m uscle. The a c t iv i ty  of axon P3 was recorded in  the  middle 

nerve branches ( f ig ,  6 ,2 0 ) . This neuron which in n erv a tes  only  the 

middle f le x o r  i s  In ac tiv e  du ring  w alking on the  tre a d m ill  and f i r e s  two 

or th re e  spikes when th e  anim al i s  aroused. During walking neuron FI 

which in n erv a tes  only th e  proxim al f le x o r  produces two or th re e  sp ikes 

in  the  f i r s t  h a lf  of the  period  in  which the o th er f le x o r  motoneurons 

a re  a c tiv e  ( f ig .  6,4-A), Muscle a c t iv i ty  recorded from th i s  axon in  a 

f re e  walking leg  ( f ig .  6,2B) shows th a t  neuron FI produces a s im ila r  

f i r i n g  p a t te rn  in  a normal w alking le g .

Motoneurons F5, F6 and M3 which innerva te  on ly  th e  d i s t a l  f le x o r 

a re  a lso  a c tiv e  during  walking on the  tre a d m ill ,  as f ig ,  6 ,20 shows.

Here axon F6 f i r e s  a s in g le  spike a t  the beginning o f the f le x o r  b u rs t 

and i t  i s  follow ed by a compound b u rs t from F5 and M3. Muscle a c t iv i ty  

produced by th ese  motoneurons in  the  d i s t a l  f le x o r  o f a normal fre e  

walking leg  is  shoiai in  f i g ,  6,2B, In th is  case i t  is  c le a r  th a t  the

d u ra tio n  o f th e i r  b u rs t i s  s h o r te r .  Axon Ml is  not a c tiv e  in  a

s ta t io n a ry  animal but f i r e s  w ith  a s im ila r  p a t te rn  to  th a t  o f P2 when 

the  animal i s  walking (F ig , 6,4-B), The slow f le x o rs  are the only  

motoneurons which are a c tiv e  when th e  animal i s  no t w alking, 31 and 

32 f i r e  con tinuously  a t  a frequenxy o f 5 -'10 Hz and during  walking th i s  

frequency r i s e s  approxim ately by two or th ree  tim es. Motoneuron S3 

shows a s im ila r  p a tte rn  but f i r e s  a t  lower freq u en c ies . F ig , 6,/d3 

dem onstrates a c t iv i ty  from neuron 33 which produces a r e la t iv e ly  la rg e  

EPSP in  the proxim al f le x o r  and most of the  tim e masks the  a c t iv i ty  of 

SI and 82 in  th ese  reco rd s .



F ig . 6 .4

Records from the m esothoracic f le x o r  and ex tensor muscle and 

nerves of a d issec ted  and d eaffe ren ted  femur of a te th e re d  lo c u s t ,

A and B, the lo c u s t was walking on the  tre a d m ill ,

1 s t t ra c e :  I n tr a c e l lu la r  record  from a proxim al f le x o r

muscle f ib r e .

2nd trace's E x tra c e llu la r  record  from the  main d i s t a l  nerve branch 

3rd t r a c e :  H orizon tal movement o f the c o n tr a la te ra l  femur as

in d ica ted  in  B,

V e rtic a l sca le  bars = A : 50 mV, B : 25 mV,

The f le x o r  motor axons were id e n t i f ie d  as described  in  Chapter 3 .

C and D, the  lo c u s t was b ea tin g  i t s  wings con tinuously  as a r e s u l t  

o f wind s tim u la tio n  of the head h a i r s .

C, ( l )  E x tra c e llu la r  record  from the  ex tensor nerve

(2) E x tra c e llu la r  reco rd  from th e  m a^  d i s t a l  nerve branch.

D, A c tiv ity  from the ex tensor nerve.

( l )  Immediately a f t e r  the  beginning of f l i g h t  

(2) 8 -  IDs l a t e r .
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ûuÊÈKum I

iMïMUÜI

1 s e r .

B M 1

R e tra c t io n
P r o t r a c t i o n 1 sec .

1 sec,

FETiS E T i

100 m sec.



72

During w alk ing , i t  was d i f f i c u l t  to  record  from the  in h ib i to r s  

I I  and 12 due to  th e  h igh le v e l  o f  a c t i v i t y  from th e  f le x o r  e x c i te r s .  

However IPSP 's were recorded  im m ediately a f t e r  th e  anim al stopped 

w alking and most o f th e  f le x o r  e x c i te r s  became in a c t iv e .  The DUM c e l l s  

seem not to  be a c tiv e  du rin g  w alking. A c tiv ity  l ik e  th a t  in  f ig ,  6.2Â 

from the  ex ten so r nerve rep layed  a t  high a m p lif ic a tio n  to  re v e a l any 

sm aller a c tio n  p o te n t ia l s ,b u t  none were p re se n t.  Of course th ese  

o b serva tions concern on ly  th e  p e rio d  when the  FETi was not a c t iv e .

During FETi b u rs t i t  was no t p o ss ib le  to  d is t in g u is h  any o th e r a c t i v i t y .  

I t  w i l l  be in te r e s t in g  to  in v e s t ig a te  the  a c t iv i tv  o f Dl during  th e  FETi 

b u rs ts  s ince t h i s  la rg e  axon i s  ana tom ically  r e la te d  w ith  DUMETi in  th e  

m etathoracic  le g  (Hoyle, 1978 ).

The a c t iv i t y  o f I I  and 12 and a lso  Dl and D2 re q u ire s  fu i'th e r  

in v e s t ig a t io n . Improvement o f th e  reco rd in g  methods could a lso  supply 

more d e ta ile d  in form ation  on axons FA and M2 which have not been 

id e n t i f ie d  in  a w alking p re p a ra tio n . ________

In te ra c t io n  between motor p a t te rn s  and re s is ta n c e  r e f le x e s .

The above in fo rm ation  suggests th a t  the  p a t te rn  o f a c t i v i t y  

produced by th e  motoneurons o f th e  fem oral muscles du ring  w alking i s  a 

product o f  an in te rn a l  programme which fu n c tio n s  from the moment th a t  

th e  animal s t a r t s  to  walk. Removal of the  le g  p ro p rio cep to rs  does 

a f f e c t  th i s  p a t te rn  but has been shown th a t  i t  'does' not a l te F l ih e  ' sequenee 

in  which ex tension  and f le x o r  motoneurons f ire *  To in v e s tig a te  the  

e f f e c ts  o f th e  sensory  in p u ts  on th i s  in te rn a l  programme th e  lo c u s t was 

f ix e d  (as in  f ig .  6 .1 )  and th e  immobilized le g  was d is s e c te d , leav in g  

the  chordotonal organ (the main fe m u r- tib ia  m echanoreceptor) i n t a c t .

The t i b i a  was cu t tra n s v e r s e ly  h a lf  way up and a co n stan t v e lo c i ty  

movement was imposed on the  rem aining p a r t  of the  t i b i a  to  e x c ite  fem oral
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re f le x e s  (see Methods). The a c t iv i ty  o f the  SETi was recorded . This 

motoneuron was chosen fo r  th ese  experim ents because id e n t i f ic a t io n  of 

i t s  a c t iv i ty  i s  very  easy . This makes i t  p o ssib le  to  p lo t  a c t iv i ty  

histogram s w ith  an on l in e  microcomputer which req u ired  input impulses 

from a window d isc r im in a to r .

F ig . shows an an a ly s is  of re f le x e s  produced in  th e  SETi

dui'ing imposed movement of the  t i b i a  in  a s ta tio n a ry  animal on the 

tre a d m ill .  The f le x io n  of the  t i b i a  produces a s tro n g  response in  

th i s  motoneuron, i t s  a c t iv i ty  adapts to  a prolonged fle x io n  and is  

in h ib ite d  when the  t i b i a  i s  extended (see a lso  f ig .  5*7B). V/hen the 

animal was l e f t  to  walk on the tre a d m ill  while a t  the  same time a ramp 

movement was imposed on th e  t i b i a  to  s tim u la te  r e f le x e s ,  the SETi neureon 

produced the b u rs tin g  p a t te rn  ty p ic a l  o f w alking, but during  imposed 

f le x io n  of the t i b i a  th e re  was a decrease in  i t s  f i r in g  ra te  ( f ig ,  6 ,50), 

This suggests th a t  the  SETi motoneuron i s  in h ib ite d  during  f le x io n  of 

the  t i b i a ,  which is  the  rev erse  of a re s is ta n c e  r e f le x ,  A c o n tro l 

histofpram of the  SETi a c t iv i ty  during  walking on the tre a d m ill  was 

p lo tte d  while the  t ib ia e  was immobilized a t  a fe rn u r-tib ia  angle o f 

90*̂  ( f ig .  6.5B ), These experim ents were done on four animals and the 

most obvious r e f le x  was th a t  which is  dem onstrated in  f ig .  5.5D. In 

two anim als, when the lo c u s t was s ta t io n a ry  a f te r  a long run on the 

tre a d m ill ,  the SETi o f the d ea ffe ren ted  leg  f a i le d  to  show any re f le x  

a c t iv i ty  during  imposed movement o f the  t i b i a .  Sometimes in  the same 

p rep ara tio n s  SETi motoneuron f i r e s  ry th m ica lly  every 400 -  500 ms in  

b u rs ts  of f iv e  or s ix  sp ikes ( f ig .  6.6A ). This a c t iv i ty  can be 

prolonged fo r 3 to  5 min and th i s  i s  very s im ila r  to  the p a tte rn  w ith  

which the  SETi f i r e s  when the lo c u s t walks on a tre a d m ill  a t  a speed 

o f 2 s te p s /s  ( f ig ,  6,2A ). In t h i s  case imposed f le x io n  o f the  t i b i a  

s l ig h t ly  reduces the  number of spEces in  each bui’s t  o f the SETi



P erio tim u lus histogram s p lo tte d  from reco rds obtained  from the 

m esothoracic ex tensor t ib ia e  nerve in  th e  d isse c te d  femur o f a 

te th e re d  lo cu s t on the tre a d m ill .  The femur was f i l l e d  w ith  

haemolymph and a sm all amount o f s a lin e  was added and rep laced  

w ith  f re s h  oxygenated sa lin e  every 3 to  5 m ln. A ll sensory  inpu t 

was removed except from th e  chordotonal organ.

A, A c tiv ity  o f the ex tensor SETi during  th e  t i b i a l  movement 

in d ica ted  below the histogram  (upward movement of the  tra c e  -  

t i b i a l  f le x io n )  in  a qu iescen t anim al. This shows ty p ic a l  

re s is ta n c e  re f le x e s  (negative feedback).

B, A c tiv ity  of the ex tenso r SETi from a walking animal in  the  

tre a d m ill  w ith  the t i b i a  f ix e d  a t  an FTA of 90°#

G and D, Repeats of A in  two d i f f e r e n t  lo c u s ts  walking on the  

tread m ill*  The sign  and phase of the  feedback are d i f f e r e n t  

from those in  A,

The r ig h t  top number in  each histogram  in d ic a te s  the  number o f 

sweeps making up the  p lo ts .

V e rtic a l ax is  = number o f splices.
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Records from the m esothoracic ex tensor nerve in  the  d isse c te d  

femur of a te th e re d  lo c u s t on the tre a d m ill .  The chordotonal 

organ was in ta c t .

A. A s e l f  generated b u rs tin g  p a t te rn  which continued fo r  more 

than 5 min, (1 st t r a c e ) .

Imposed f le x io n  o f th e  t i b i a  (2nd t ra c e )  reduced the  number 

o f sp ikes in  the  ex tensor b u rs t (SETi) but a lso  produced 

e x c ita t io n  of the  Gonmion In h ib i to r  (Cl) (p o s itiv e  feedback). 

This record  rep re sen ts  a fu .ll cycle' and th is  phenomenon 

occurred in  more than  20 c y c le s .

B, A re p e a t o f A, w ith  the  s e lf  generated  a c t iv i ty  d ism issed 

by s tro n g  m echanical s tim u la tio n  of th e  anim al. F lex ion  

o f the  t i b i a  produced normal re s is ta n c e  re f le x e s  (negative 

feedback, see a lso  F ig . 5.7B).
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( f ig .  6 ,6 a) ,  but f le x io n  seems to  have s tro n g er e f f e c ts  on the  Common 

In h ib i to r  which f i r e s  in  b u rs ts  when th e  SETi i s  s i l e n t ,  fo r  as long as 

the  f le x io n  l a s t s ,  iVhen th i s  rhythmic f i r in g  of the  SETi s to p s , u s u a lly  

as a r e s u l t  o f a s tro n g  s tim u lu s , the  responses of th e  motoneuron to  the 

t i b i a l  movement were reversed  ( f ig .  6 ,6 b) ,

The above experim ents show th e  e f fe c ts  of th e  fem oral 

p ro p rio cep to rs  on the  re c ip ro c a l walking p a tte rn  produced by the 

ex tensor motoneurons. To f in d  out whether motor p a tte rn s  of 

behaviour o th e r than walking can a f f e c t  the re s is ta n c e  r e f le x e s ,  experim ents 

were undertaken on a 'f ly in g ' anim al, 'F ly in g ', in  th is  case i s  defined  

as the  behaviour o f an animal which, although i t  was f irm ly  f ix e d , was 

con tinuously  b ea tin g  i t s  wings. F ly ing  a c t iv i ty  was s tim u la ted  by a 

stream  of a i r  on the  f ro n t o f th e  anim al. The leg s  were f re e  except fo r  

one m esothoracic leg  which was f ix e d  ( f ig .  6 .1 ) and d is s e c te d . The 

tre a d m ill  under the  animal was removed. Movement o f the  t i b i a  was 

imposed as described  before and r e f le x  a c t iv i ty  from the  ex tensor 

motoneurons was analyzed w ith  an a c t iv i ty  p e ris tim u lu s  histogram  which was 

i n i t i a t e d  in  the  middle of th e  imposed t i b i a l  f le x io n . Reflex a c tiv a t io n  

o f the  SETi neuron, produced by f le x io n  o f the t i b i a  in  a n o n -fly in g  

animal is  shown in  f ig .  6,?A. The FETi neuron i s  s i l e n t  during  th is  

f le x io n . When the  lo c u s t was s tim u la ted  to  f ly ,  w ith  the  le g  f ix ed  a t  

a fe m u r-tib ia  angle o f 90^, the  FETi and the  SETi f i r e d  con tinuously  a t  

a  high frequency. Some of th i s  a c t iv i ty  was a lso  film ed a t  a d if f e r e n t  

f ilm  speed to  allow  measurements o f f i r in g  frequency to  be made ( f ig .  6 .AD). 

At th e  beginning o f f l i g h t  the  FETi is  a c tiv a te d  a t  a very  high frequency 

( f ig ,  6.AD1) which can reach  the  le v e l  o f 300 -  350 Hz,. A c tiv ity  of 

the SETi is  u su a lly  masked by the high f i r in g  frequency of the FETi so 

th e re  are not any in d ic a tio n s  about the  a c t iv i ty  of th i s  motoneuron.



p eris tim u lu s  time histogram s o f the ex tensor t ib ia e  motoneurons 

3J1 a te th e re d  lo c u s t. Conditions as fo r  F ig . 6 ,5  but the lo c u s t 

was stim u la ted  to produce f l i g h t  a c t iv i ty ,

A, R eflex responses of th e  SETi, in  a qu iescen t anim al, the

imposed t i b i a l  movement in d ica ted  below the  histogram .

B, Summed a c t iv i ty  of the SETi and FETi during  f l i g h t  of a

te th e re d  lo c u s t .  The t i b i a  was f ix ed  a t  a FTA of 90Î

C and D. Repeats o f A in  two d if f e r e n t  animals during  f l i g h t  

a c t iv i ty .

The top r ig h t  number on each p lo t  In d ic a te s  the number o f sweeps 

making up the histogram . . The v e r t ic a l  ax is  re p re sen ts  the  number 

of sp ik es .
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This high f i r i n g  frequency drops g rad u a lly  in  8 to  10 sec to  a r e l a t iv e ly  

low frequency of 50 to  80 Hz and th e  animal f l i e s  norm ally ( f ig .  6.AD2). 

S im ilar f i r i n g  p a t te rn  was found fo r  the  v e n t i la to ry  motoneuron during  

f l i g h t  by Hinkle and Camhi (1972). Continuous f i r i n g  of th e  FETi a t

such a high frequency is  unusual and s im ila r  a c t iv i ty  has not been 

observed in  o th e r behav ioural p a t te r n s .  The a c t iv i t y  of th e  ex tensor 

motoneurons seems to  be m odulated, during  f ly in g , w ith sm all re g u la r  

changes in  f i r in g  frequency in  cycles  of 0.3 to  0 ,5  sec p e rio d . This 

modulation is  a lso  v is ib le  in  p e ris tim u lu s  histogram s p lo tte d  every 

A.8 sec ( f ig .  6,7B) fo r  th e  a c t i v i t y  of FETi. Records taken  from the 

d i s t a l  f le x o r  nerve branches ( f ig .  6 ,AG second t ra c e )  show th a t  most of 

th e  d i s t a l  f le x o r  motoneurons are  s i l e n t  during  f l i g h t .

In f l i g h t ,  movements o f th e  t i b i a  from 90 to  120^ seem to  have 

on ly  a sm all e f f e c t  on th e  f i r i n g  p a t te rn  of the ex tensor motoneurons 

( f ig .  6.7C, D). E xtension o f th e  t i b i a  produces a s l ig h t  in h ib i t io n  

o f the  f i r in g  ra te  of FETi and when th e  t i b i a  was flex ed  th i s  in h ib i t io n  

was can ce lled . These e f f e c ts  can be seen b e t te r  in  comparison w ith 

a c t iv i ty  p lo tte d  from a lo c u s t w ith  the  t i b i a  f ix e d  a t  fe m u r-tib ia  

angle of 90^ ( f ig .  6 .7B ), There is  no s trong  e x c ita t io n  of th e  ex tensor 

motoneurons during  f le x io n  as i t  appears in  a n o n -fly in g  anim al ( f ig .  

6.7A ). Three of the  f iv e  anim als examined showed th ese  e f f e c ts  while in  

the  o th e r two cases no r e f le x  responses occurred during  the  f l i g h t ,  

although strong  re f le x e s  were v is ib le  when f l i g h t  ceased . This in d ic a te s  

th a t  although sensory in p u ts  from th e  leg  p ro p rio cep to rs  can a f fe c t  the 

a c t i v i t y  of th e  ex tensor motoneurons during  f l i g h t ,  th ese  e f f e c ts  are 

sometimes com pletely suppressed . S im ilar records were obtained  from the 

p ro th o rac ic  ex tensor motoneurons.
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One or two seconds before the  animal stops f ly in g  o r ,  in  

cases where the  animal i s  not f ly in g  p ro p erly , th e  f le x o r  motoneurons, 

were a c t iv a te d , f i r in g  in  prolonged b u rs t a l te rn a t in g  w ith those of 

the ex tensor motoneurons. In one anim al i t  was found th a t  fo r  a few 

seconds the ex tensor and f le x o r  b u rs ts  were a l te rn a t in g  a t  the  wing beat 

frequency.



7 7

7 . DISCUSSION'

I t  is  w ell known from p h y s io lo g ica l evidence th a t  many in se c t 

muscles rece ive  a f a s t ,  a slow and, in  some ca se s , an in h ib i to ry  motor 

axon (see reviews by Hoyle, 1$65| Bullock and H orridge, 1965; A idlay, 

1967; Usherwood, I 967) . The lo c u s t extensor t ib ia e  muscle is  a ty p ic a l  

example which shows c h a r a c te r is t i c a l ly  th i s  p a tte rn  (Hoyle, 1955, 1978; 

Burns and Usherwood, 1979). However, not a l l  in se c t muscles are  as 

simple as th is*  Some cockroach muscles have been described  w ith  as 

many as seven or e ig h t axons (Dresden and H ijenhu is, 1958), Many of 

th e  neck muscles of the  lo cu s t rece iv e  Innervation  from s ix  or more 

d if f e r e n t  axons and some from as many as 13 -  15 (Shepheard, 1973)*

Tyrer (1971a, b) dem onstrated a lso  th a t  some lo cu s t abdominal muscles 

which might be presumed to  be sim ple, are  innervated  by e ig h t axons. In 

th e  femur of the  lo c u s t the  f le x o r  t ib ia e  muscle, th e  an tag o n is t of the  

ex tensor described  above, had been rep o rted  to  be innervated  by a 

considerab ly  la rg e r  number of axons (Hoyle, 1955). Hoyle and Darrows 

(1973a, b) and Wilson (1977) were ab le  to  id e n tify  six' e x c ita to ry  

motoneurons to  the  m etathoracic f le x o r  muscle but th ey  l e f t  open the 

p o s s ib i l i ty  th a t  th e re  could be more. P re lim inary  anatom ical and 

e le c tro p h y s io lo g ic a l s tu d ie s  showed th a t  the number of axons in  the 

f le x o r  nerve branches is  much la rg e r  than  the number o f f le x o r  motoneurons 

p rev io u sly  re p o rte d . This makes the  f le x o r  muscle very  in te re s t in g  fo r  

fu r th e r  s tu d ie s  s ince i t  i s  so much more complex than  the  an ta g o n is tic  

ex ten so r. I t  a lso  produces problems concerning the  study of the  

d is t r ib u t io n  of th ese  axons on the  m uscle. There are th re e  p o ss ib le  

in n erv a tio n  p a tte rn s  which might be expected; a ) the  f le x o r  axons 

innervate  a l l  the  p a r ts  of the  muscle as happens in  the ex tensor t ib ia e  

m uscle, b) each f le x o r  axon in n erv a tes  only a sp e c if ic  muscle bundle 

or c) a compromise between (a) and (b ), Hoyle (1955) suggested th a t
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(b) was the  c o r re c t  p a t te rn  fo r  th e  m etathoracic f le x o r  t ib ia e  muscle.

The purpose o f th i s  work was to  in v e s tig a te s

1) The exact number o f axons which in n erv ate  the m esothoracic f le x o r  

t ib ia e  m uscle.

2 ) To produce as f a r  as p o ssib le  an accu ra te  d e sc r ip tio n  o f the  

in n erv a tio n  p a t te rn  fo r  th e  f le x o r  motor axons, and

3 ) To attem pt to  ex p la in  why th e  f le x o r  muscle rece iv es  such a la rg e  

number of motor axons and how th e  lo c u s t uses th ese  axons to  c o n tro l 

th e  p o s itio n  o f the  t i b i a  during  various behavioural p a t te rn s .

In o rder to  understand  th e  fu n c tio n  of th e  f le x o r  muscle i t  i s  

necessary  f i r s t  to  study i t s  s tru c tu re  and m echanical p ro p e r tie s  and then  

to  in v e s tig a te  the  neuronal c o n tro l o f the  muscle.

The f le x o r  muscle

The two a n ta g o n is tic  fem oral muscles of the  m esothoracic leg  

have very s im ila r  m orphological f e a tu re s .  However, Snodgrass (1929) gave 

th e  ex tensor t ib ia e  muscle a s in g le  number (106) w hile he subdivided the 

f le x o r  in to  th re e  p a r t s ,  107 a , b, c ,  based on the  m orphological 

d iffe re n c e s  between th ese  p a r t s .  Muscle 107a is  a long p innate  muscle 

a r i s in g  v e n tra l ly  in  the  proxim al p a r t  o f the femur, 107b a r is in g  in  the  

base of tro c h a n te r ,  lC7c a r is e s  a n te r io r ly  and p o s te r io r ly  in  th e  d i s t a l  

two th ird s  o f the femur ( f ig .  3 .2 ) .  I n i t i a l l y  when the  in n erv a tio n  of 

th e  muscle was s tu d ied  e le c tro p h y s io lo g ic a lly  no su b d iv is io n  of th e  f le x o r  

was made but i t  was soon found th a t  th e  in n erv a tio n  p a t te rn  suggested a 

d iv is io n  o f the muscle in to  th re e  p a r ts  id e n tic a l to  those  o f Snodgrass 

and which are here named proxim al f le x o r ,  middle f le x o r  and d i s t a l  f le x o r .  

The d i s t a l  f le x o r  which is  the la .rgest p a r t  might p o ss ib ly  be d iv ided  

fu r th e r  but no p h y s io lo g ic a l evidence was found to  suggest a fu r th e r
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su b d iv is io n . This d iv is io n  o f the  muscle solved many problems e s p e c ia l ly  

th ese  r e la te d  w ith  th e  id e n t i f ic a t io n  o f in d iv id u a l f le x o r  motor axons.

Such problems do not e x is t  in  the ex tensor muscle which rece iv es  fewer 

axons w ith  a homogeneous in n e rv a tio n . The m esothoracic ex tensor was 

s tu d ied  as a s in g le  muscle by Burns (1972).

A la rg e  p a r t  o f both fem oral muscles h a s 'a  p innate  bundle 

arrangem ent. This means th a t  th e  f ib r e s  are sh o rte r  than  they  would be 

in  a simple fusiform  m uscle. I t  a lso  means th a t  th ey  have a g re a te r  

f ib r e  cross  s e c tio n a l a rea  per u n i t  volume and hence a p innate  muscle is  

able to  produce more fo rce  per u n i t  volume than a fusifo rm  m uscle. When 

i t  c o n tra c ts  i t s  tendon moves through a sh o rte r  d is tan ce  tu t  e x e r ts  more 

fo rc e . Making a long muscle such as a fem oral muscle p innate  i s  

eq u iv a len t to  in c reas in g  th e  m echanical advantage o f i t s  f ib re s  and i t  is  

not s u rp r is in g  th a t  the f le x o r  and ex tensor t ib ia e  mpscles are  th e  on ly  

p innate  muscles in  the  lo c u s t .  As the  d ire c tio n  o f p u l l  o f the muscle 

f ib r e s  is  not d i r e c t ly  in  l in e  w ith  the tendon, th ey  do in  f a c t  e x e rt 

s l ig h t ly  le s s  fo rce  per u n i t  o f f ib r e s  cross s e c tio n a l area  than the 

fusifo rm  f ib r e s .  In a re lax ed  f le x o r  muscle (FTA of 90°) th e  p in n a tio n  

angle is  not uniform  and in c reases  from the  proxim al to  the  d i s t a l  end of 

the m uscle. The a n te r io r  p a r t  has a la rg e r  p in n a tio n  angle than  the  

p o s te r io r  (Table 3 ,1 ) ,  How th i s  v a r ia t io n  in  p in n a tio n  angle a f fe c ts  

the  mechanical p ro p e r tie s  of the  muscle is  a question  which req u ire s  

fu r th e r  in v e s tig a tio n .

The t o t a l  c ro ss  s e c tio n a l a rea  per f le x o r  muscle bundle is  2 ,5  

to  3 tim es la rg e r  than  in  the  eq u iv a len t p a r t  of the  ex tensor m uscle(F ig ,3 ,3 ), 

In the  d i s t a l  f le x o r  and ex tensor muscle bundles t h i s  is  m ainly a r e s u l t  

o f the  g rea te r  number of muscle f ib r e s ,  although th e re  is  a lso  a very  

sm all d iffe re n ce  between the  d iam eters of the f le x o r  and ex tensor muscle
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f ib r e s .  In the  proxim al f le x o r  and ex tensor the  d iffe re n c e  in  c ro ss  

s e c tio n a l a rea  is  m ainly due to  the diam eter o f the  muscle f ib r e s  since 

both muscles have alm ost th e  same number of muscle f ib r e s  in  t h i s  reg io n .

W ithin the  f le x o r  muscle th e re  i s  a s ig n if ic a n t  d iffe re n ce  

between muscle f ib r e s  in  d i f f e r e n t  p a r ts  of the muscle. The r a t io  of 

the e f fe c tiv e  diam eter o f the  proxim al muscle f ib r e s  to  the d i s t a l  f le x o r  

muscle f ib re s  i s  1,40  w hile th e  same r a t io  fo r  the ex tensor t ib ia e  i s  1.08 

in d ic a tin g  only a sm all d iffe re n c e  between the d i s t a l  and proxim al (Table 3 ,1 )  

ex tensor muscle f ib r e s .  The a n te r io r  h a lf  of the  f le x o r  muscle has a 

g re a te r  c ross  s e c tio n a l a rea  than  the  p o s te r io r  p a r t  (almost double,

Table 3 .1 ) .  This suggests th a t  th e re  could be a s ig n if ic a n t  assjm ietry 

in  the  d is t r ib u t io n  o f the fo rces  developed by the  c o n trac tio n  o f the  

m uscle. This assym etry i s  a lso  due to  the  d iffe ren ce  in  p in n a tio n  an g le .

The p o s te r io r  muscle bundles have sm aller p in n a tio n  angles producing more 

fo rce  p a r a l le l  to  the tendon than  the  a n te r io r  bundles but the  fo rce  

p erp en d icu lar to  the  tendon i s  sm aller than  the eq u iv a len t and opposite  

fo rce  developed by the. a n te r io r  p a r t .  This d iffe re n c e  in  fo rces  developed 

on the  tendon by the  a n te r io r  and p o s te r io r  p a r t  o f the  f le x o r  muscle can 

be seen during  te ta n ic  co n tra c tio n  o f the  muscle since the  apodeme not only  

moves in  the d ire c t io n  of th e  co n trac tio n  but a lso  towards the a n te r io r  

p a r t  o f the m uscle. This i s  a very  odd s t r u c tu r a l  o rg an iza tio n  which 

needs fu r th e r  in v e s tig a tio n , A p o ssib le  purpose fo r  th i s  powerful 

movement of the  whole f le x o r  in s id e  the  femur i s  th a t  i t  would help the 

flow of the  haemolymph as Usherwood (1974) suggested fo r  the in t r in s ic  

rhythm o f the m etathoracic ex tensor muscle.

Tetanic co n trac tio n  o f the  m esothoracic f le x o r  t i b i a  muscle 

can develop a fo rce  o f about 35g and c lo su re  of the t ib ia e  from 180° to  

30° producing a sudden red u c tio n  of muscle len g th  o f about 1.2mm (1 2 % of
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the  whole muscle le n g th ) . T h is, in  combination w ith  the  f a c t  th a t  the 

sh o rt nerve branches which in n erv a te  the  muscle a r is e  along the s t i f f  

N5B2 suggest th a t  h igh  te n s io n  could be developed on the  neuromuscular 

junctions*  O v erstre tch in g  o f the  neuroimiscular ju n c tio n s  may be prevented 

by a p ro te c tiv e  lin k  between th e  nerve branches and the  surface  o f the 

muscle f ib re s  ( f ig .  3 .5 ) .  This connecting t is s u e  i s  sh o rte r  than  the 

a ttach ed  axons and may absorb any ten s io n  between muscle and nerve, 

p ro te c tin g  the  neuromuscular ju n c tio n s . On the  su rface  of the  f le x o r  

muscle such "support mechanism" appeared in  a few o f the  v is ib le  nerve 

branches while axons could be seen a ttach ed  to  the muscle f ib r e s  w ithout 

any support. This suggests th a t  only  a few nerve branches have th is  

"support mechanism" which produce enough re s is ta n c e  to  equalize  the 

developed ten sio n  by the  co n tra c tio n  o f the whole m uscle. Another 

suggestion  could be th a t  only  phasic mu,sole f ib re s  have t h i s  l in k  since 

th ey  produce f a s t  and pow erful c o n tra c tio n , but t h i s  hypothesis re q u ire s  

fu r th e r  in v e s tig a tio n . S im ilar form ations were rep o rted  by Rees and 

Usherwood (1972) from e le c tro n  m icrographs of the r e t r a c to r  unguis muscle 

which has s im ila r  s tru c tu re  as the  proxim al f le x o r  and rece iv es  a very  

sh o rt nerve branch from N5B2, A comparison with ex tenso r nerve is  

in e v ita b le  s ince th i s  muscle rece iv es  a s in g le  long nerve which r is e s  

from the  proxim al p a r t  o f N5B2 and b ifu rc a te s  fu r th e r  along the muscle.

Such a p a tte rn  provides the  neuromuscular ju n c tio n  w ith  a very good 

suspending system which absorbas b e t te r  the imposed te n s io n . This 

te n s io n  developed during  c o n tra c tio n  or s tr e tc h  o f the  ex tensor muscle 

i s  lower than in  the  f le x o r ,  s ince th e  ex tensor muscle has a mechanical 

disadvantage 2 :1  in  comparison w ith  the f le x o r  (H e it le r ,  1977). Although 

the ex tensor muscle has been thoroughly  stud ied  such p ro te c tiv e  mechanisms 

have not been rep o rted  and i t  would be in te re s t in g  to  look f 'u rth er fo r  

them •
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The s t r u c tu r a l  and anatom ical d iffe re n c e s  between the f le x o r  

and ex tensor t ib ia e  muscles a lso  a f fe c t  the  m echanical p ro p e rtie s  o f 

th ese  m uscles. For in stan ce  the  peak ac tiv e  ten s io n  o f the m esothoracic 

ex tenso r t ib ia e  muscle appears when the  muscle i s  alm ost f u l ly  extended 

(FTA o f 150° -  180°) ( ty p ic a l  o f a p innate  muscle; A id ley , 1975), while 

the  peak ac tiv e  te n s io n  increm ent fo r  the  f le x o r  appears in  the middle 

o f the normal muscle len g th  range (FTA of 90°-100°,f i g .  3 .2 4 ) . This fe a tu re  

o f the  f le x o r  muscle i s  ty p ic a l  of fusifo rm  muscle (Weis-Fogh, 1956).

The conclusion  here is  th a t  th e  f le x o r  muscle behaves more l ik e  a fusifo rm  

than  a p innate  aiuscle. This is  m ainly caused ty  the  la rg e  fusifo rm  

proxim al f le x o r ; the  e f fe c t iv e  diam eter of the  proxim al muscle f ib re s  

being about 4-0  ̂ la rg e r  than  those  o f the  d i s t a l  muscle f ib re s  in  the  

f le x o r  muscle while the  d iffe re n c e  i s  only  8% in  the  ex ten so r. This 

a lso  r e s u l t s  from th e  presence o f the  middle f le x o r  bundles which, 

although they  have p in n a tio n  arrangem ent, they  have a very  sm all p in n a tio n  

angle (9°, Table 3 .1 ) ,  so th ey  can be considered as fusifo rm  muscle 

bundles.

The marked s t r u c tu r a l  d iffe re n c e s  between th e  proxim al p a r t  

(proximal and d i s t a l  f le x o rs )  and the  d i s t a l  p a r t  o f th e  f le x o r  muscle 

a lso  r e s u l t s  in  a d iffe re n c e  in  the  ten s io n  developed by th ese  p a r t s .

During prolonged high frequency s tim u la tio n  (30-50 Hz, f ig .  3 .25) the 

proxim al p a r t  not only  has a f a s te r  ten sio n  r i s e  tim e but a lso  fa tig u e s  

f a s te r  than the d i s t a l  p a r t  which a t  s tim u la tio n  o f 30 Hz can m aintain  

t e to n ic  ten sio n  fo r  prolonged p e r io d s . This i s  a very  good in d ic a tio n  

th a t  the  proximal p a r t  o f  the  f le x o r  i s  more phasic than  the  d i s t a l  p a r t  

although the  d iffe re n c e  is  not so marked as the d iffe re n c e  between the  

r e t r a c to r  unguis muscle and the to n ic  f ib re s  o f the  ex tensor t ib ia e  

muscle (Cochrane a t  a l . ,  1972),
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The proxim al and d i s t a l  reg ions of the  f le x o r  muscle are not 

only  h is to lo g ic a l ly  d i f f e r e n t  but a lso  rece ive  d i f f e r e n t  sized  motor 

axons. For example, the  muscle f ib re s  o f the proxim al f le x o r  in  

a d d itio n  to  having diam eters about 40^ g re a te r  than  th e  r e s t  of the  

muscle a lso  rece iv e  the  la rg est motor axon (F I, f ig .  3 .1 2 ) . Although the  

d i s t a l  f le x o r  rece iv es  f a s t  axons (F5, F6, f ig ,  3 ,12) th e  diam eter of 

th ese  axons is  s ig n i f ic a n t ly  sm aller (about 50%) than  the  proxjjnal motor 

axons. This "matching" between the  s ize  of the muscle f ib re s  and the  

s ize  o f the  motor axons which in n erv ate  them may be im portant fo r  the 

fu n c tio n  o f the  rau.scles. In some arthropods muscles th is  matching can 

be achieved by se p a ra tin g  th e  large muscle f ib re s  from th e  sm aller as 

happens in  the  lo c u s t m esothoracic f le x o r  t ib ia e  muscle (Table 3 .1 )  or in  

th e  abdominal adductor muscle in  c ra y f ish  (Susukl , 1977) and in  some 

o th e r ca se s . While in  o th e r arthropods muscles both muscle f ib r e s  and 

axons develop a g rad ien t o f p ro p e r tie s  along the  muscle (tap e rin g ) as was 

found fo r  the  lo c u s t ex ten so r t ib ia e  muscle (Hoyle, 1955, 1978; W ilson, 

1977; Burns, 1972) and in  th e  s u p e r f ic ia l  abdominal muscle in  c ra y f ish  

(the to n ic  p a r t  of th e  abdominal f le x o r)  as was dem onstrated by Velez and 

Wyman (1978). Matching of motor axons and muscle f ib r e s  was a lso  

dem onstrated in  the  d o rsa l s u p e r f ic ia l  ex tensor muscle (to n ic  p a r t  o f the  

abdominal ex ten so r) by Parnas and Atwood (1966). They showed th a t  th i s  

p a r t  o f the muscle no t on ly  rec e iv e s  the  sm aller axons but th a t  th e re  i s  

a homogeneous popu la tion  o f slow f ib r e s  w ith  no in d ic a tio n  o f m edial or 

l a t e r a l  reg ions w ith  d i f f e r e n t  c o n tr a c t i le  p ro p e r t ie s .  Of course th e re  

are  some exceptions where although s tro n g ly  d i f f e r e n t ia te d  slow and f a s t  

muscle f ib re s  are known, as in  the  accessory  f le x o r  muscle of th e  crab  

(Cohen, 196.3), th i s  muscle rece iv es  only  a s in g le  motor axon (Doray-Raj,

1964).



The f le x o r  muscle i s  a ty p ic a l  example in  which the  d i f f e r e n t  

s ized  muscle f ib re s  are  not randomly mixed, in  the d i f f e r e n t  reg ions o f 

the muscle* This d i f f e r s  from the  v e r te b ra te  muscles where m ixture o f 

d i f f e r e n t  s ized  muscle f ib re s  occurs (Honueman and Olson, 1965). This 

matching between s iz e  o f muscle f ib r e s  and axons has two p o ssib le  

ex p lan a tio n s ,

a) The motoneurons s e le c t iv e ly  innerva te  only  those muscle f ib re s  which 

are  o f the proper ty p e , Franlc (1973) a sc rib e s  matching to  the p o stsy n ap tic  

elem ents; synapses are m odified according to  in s tru c tio n s  from the  muscle 

f ib r e ,  or b) the motoneurons in n erv ate  muscle f ib r e s  before th e i r  type 

i s  determ ined and th ey  cause th e  f ib re s  to  d i f f e r e n t ia te  in to  the proper 

type by th e i r  a c t i v i t y  or some s o r t  o f  tro p h ic  e f fe c ts  (Atwood, 1973;

Barony and C lose, 1971; C lose, 1972).

Velez and Wyman (1978) working on the  c ra y f ish  slow abdominal 

f le x o r  muscle suggested th a t  axons a c t t ro p h ic a lly ,  not through a s p e c if ic  

tro p h ic  substance, but by imposing a p a tte rn  o f a c t iv i ty  and m etabolic 

demands on the  muscle f ib r e s .  The m esothoracic f le x o r  t ib ia e  muscle 

o f fe r s  a lso  a good system on which th i s  theo ry  can be te s te d  by c u tt in g  

N5 in  e a r ly  embryonic stage ( l  o r 2 i n s t a r ) .  I f  the  d iffe ren ce  in  th e  

diam eter between proxim al and d i s t a l  f le x o r remains (40%) when the  animal 

becomes a d u l t , th e  tro p h ic  ro le  of motor axons is  not im portant in  the 

development and growth of the muscle or v ice v e rsa .

To study  e le c tro p h y s io lo g ic a lly  the in n erv a tio n  o f the 

m esothoracic f le x o r  t i b i a  muscle the axons were separa ted  in to  ty p e s , 

f a s t ,  in term ediate  and slow, according to  the a p l i tu te ' o f  the  EPSP which 

th ey  produce. Since the r e la t io n s h ip  o f the axon diam eter and s ize  o f 

EPS? has been w ell e s ta b lish e d  by reco rd ing  from s in g le  muscle f ib r e s  

(Atwood, 1963,  1967; Doray R aj, I 964) and ta p e r in g  o f the f le x o r  axons
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occurs only  in  one or two cases because th ey  innervate  sp e c if ic  reg ions 

o f the  m uscle, th i s  c l a s s i f ic a t io n  was u s e fu l.

The m esothoracic f le x o r  t ib ia e  motor axons can a lso  be d iv ided  

in to  th re e  ca teg o rie s  according to  the way th e i r  endings are  d is t r ib u te d  

on the muscle,

1) Axons which in n erv a te  only  s p e c if ic  areas of th e  m uscle. In the  

proxim al f le x o r ,  axons S3 and F I , in  th e  middle f le x o r  axon F3 and in  

the  d i s t a l  f le x o r  axons F6, F5 and M3.

2) Axons which innervate  th e  whole f le x o r  m uscle. Such axons are the 

spontaneously a c tiv e  SI and S2 which m ainly innervate  the d i s t a l  f le x o r  

w ith  a p rog ressive  red u c tio n  o f the  number o f th e i r  nerve endings to  th e  

È iddle and proximal f le x o rs .  Since the  proximal f le x o r  has the la rg e s t  

muscle f ib re s  and is  innervated  by the  la rg e s t  motor axons, i t  was not 

su rp r is in g  th a t  th ey  do not rece iv e  many endings from th e  two sm alle r 

axons. I t  does however rece iv e  an e x tra  to n ic  inpu t from S3. Axon Ml 

a lso  in n erv ates  most of the  f le x o r  muscle but gives very  few endings in  

th e  d i s t a l  f le x o r and can be considered  th a t  in n erv a tes  mainly the  

proxim al and middle f le x o r .

Other axons in n e rv a tin g  the  whole f le x o r  muscle are  the  

in h ib i to rs  I I  and 12, They in n erv a te  most of the  d i s t a l  f le x o r w ith 

fewer endings in  the  middle and proxim al f le x o rs . The in h ib i to rs  u s u a lly  

occur w ith  slow axons (Usherwood and Gz'undfest, 1965; Usherwood, 1967; 

Atwood, 1967) , Both f le x o r  in h ib i to r s  were found to  innervate  the same 

muscle f ib r e .  Double in h ib i t io n  o f  muscle f ib r e s  may provide a more 

powerful re la x a tio n  o f the  m uscle. T rip le  in h ib i to ry  in n erv a tio n  was 

found in  the coxal depressor muscles of cockroaches by î le s  and Pearson 

(1969) , An in te re s t in g  p o in t here is  th a t  the  th re e  coxal in h ib i to rs  

o f the cockroach were found to  be common with o th er m uscles, in  c o n tra s t
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w ith  the  f le x o r  t ib i a e  iraxscle in  the  lo c u s t which i s  innervated  by two 

s p e c if ic  in h ib i to r s .  The f le x o r  muscle does not rece iv e  endings from 

th e  Common In h ib ito r  (Cl) a lthough Burrows (1973) found th a t  a branch of 

th i s  neuron runs in  N5.

Other axons found to  in n erv a te  most o f the  f le x o r  muscle are  

th e  axons from the  DUM c e l l ,  Dl and D2, Since axons o f DUl'I c e l l  in  the  

mesothorax were found to  run in  the p e r ip h e ra l nerves in  p a r a l l e l  w ith  

the  Common In h ib ito r  (Crossman e t  1972) i t  i s  not su rp r is in g  th e '

f a c t  th a t  Dl and D2 run in  most of the f le x o r nerve branches fo llow ing  

probably  the  in h ib i to ry  branches o f the  two f le x o r  in h ib i to r s .  The 

in te re s t in g  p o in ts  here are  th a t  th e  DUI4 neuron which in n erv a tes  both 

th e  m esothoracic f le x o r  and ex ten so r t ib ia e  muscle was found to  in n erv ate  

on ly  the  ex tensor t ib ia e  in  th e  m etathoracic le g  (DIB4ETi, Hoyle e t  a l .  

1974).

3) Axons w ith  an in n e rv a tio n  p a t te rn  which overlaps two p a r ts  o f th e  

f le x o r  muscle* For example, axon F2 which in n erv a tes  th e  proxim al and 

middle f le x o r  and axon F4 and M2 which can be found on ly  in  the  middle 

and d i s t a l  f le x o rs .

The way which the  motoneurons innervate  the  f le x o r  muscle a lso  

match the way in  which th ey  are  a c tiv a te d . The slow axons w ith  low 

th re sh o ld s  inn erv a te  the  whole m uscle. The in te rm ed ia te  axons w ith  

h igher th re sh o ld s  innervate  on ly  com binations o f the  th re e  p a r ts  and 

most o f the  f a s t  axons in n erv ate  e x c lu s iv e ly  sp e c if ic  reg ions o f the 

m uscle. The f a s t  axons w ith  h igher th re sh o ld s  a re  probably  used 

s e p a ra te ly . This kind o f in n e rv a tio n  o f th e  f le x o r  muscle in c reases  

i t s  fu n c tio n a l a b i l i t i e s .  There a re  behavioural p a tte rn s  which req u ire  

a c tiv a t io n  of the d i f f e r e n t  p a r ts  of the  f le x o r  se p a ra te ly  as w i l l  be 

d iscussed  below. However in  some cases i t  i s  im portant to  use th e  whole 

power o f the  f le x o r  m uscle.
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I t  i s  a lso  r a th e r  in te r e s t in g  th a t  a lthough each proxim al 

muscle f ib re  rece iv es  th e  maximum o f two o r th re e  axons, th e  muscle 

f ib r e s  in  the  d i s t a l  reg io n  rece iv e  a maximum o f s ix  e x c ita to ry  axons 

( f ig ,  3,17D ), This suggests th a t  th e  d i s t a l  f le x o r  may be able to  

develop a f in e ly  c o n tro lle d  te n s io n . Thus i t  i s  no t su rp r is in g  th a t  the  

te n s io n  rec ep to r  (T heoph ilid is  and Burns, 1979) Is  a ttach ed  alm ost a t  th e  

end o f th e  d i s t a l  f le x o r .  The c lo se  r e la t io n s h ip  between the  muscle 

p ro p e r tie s  and the  type o f p ro p rio cep to rs  a ttach ed  to  the  muscle i s  a lso  

shown by the  chordotonal organ* This recep to r m onitors muscle movement 

(Burns, 1974) w ith i t s  d i s t a l  ecolopidium  a ttach ed  to  the  middle f le x o r .  

The advantage of t h i s  p a r t  o f th e  f le x o r  i s  th a t  i t  a c ts  very  lil{8 a 

fu sifo rm  muscle s ince  i t  has a p in n a tio n  angle o f on ly  9° and th e re fo re  

produces la rg e r  tendon movement when i t  c o n tra c ts .  P re lim in ary  s tu d ie s  

w ith  reduced methylene b lu e , a d d it io n a l to  those o f Burns (1974) showed 

th a t  th e  GO i s  a lso  connected d i s t a l l y  w ith  th e  f le x o r  muscle by a f in e  

ten d o n -lik e  branch a r is in g  from the  d i s t a l  scolopidium . A ll the  above 

evidence suggests th a t  th e  f le x o r  muscle i s  w ell coupled w ith  some o f the 

main fem oral p ro p rio c e p to rs . In c o n tra s t  th e re  a re  no recep to rs  

e x c lu s iv e ly  r e la te d  w ith  the ex tenso r muscle. Since th e  f le x o r  muscle 

i s  th e  la rg e s t  muscle in  th e  m esothoracic femur and innervated  a lso  by a 

la rg e  number o f axons p rov id ing  a f in e  c o n tro l,  i t  may be expected to  have 

a la rg e  number o f p ro p rio cep to rs  a sso c ia ted  w ith  i t s  a c t iv i ty .  The 

importance of the  le g  p ro p rio cep to r in  the  c o n tro l o f  the  f le x o r  muscle 

w i l l  be d iscussed  in  th e  fo llow ing  pages.

The c o n tro l o f the  f le x o r  muscle

In o rder to  understand  the co n tro l o f a muscle i t  i s  necessary  

to  study how the  animal a c t iv a te s  the  motoneurons in n e rv a tin g  th e  muscle 

in  various behavioural p a tte rn s  such as p o s tu re , w alking, f ly in g ,  e tc .

The c o n tro l o f th e  m esothoracic ex tenso r t ib ia e  muscle du rin g  w alking
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has been stud ied  thoroughly  (Burns, 1972, 1973)g but no inform ation  has 

been published  about the  c o n tro l o f i t s  an tag o n ist f le x o r .  This i s  not 

su rp r is in g  since th i s  muscle i s  innervated  by a la rg e r  number of axons 

(12 e x c ito rs )  and i t  i s  d i f f i c u l t  to  study the c o n tro l o f the muscle 

w ithout knowing i t s  in n e rv a tio n  p a t te rn .  Having e s ta b lish e d  the  

In n erv atio n  p a t te rn  o f the f le x o r  muscle and developed a technique which 

i s  able to  id e n t i fy  the  f le x o r  motoneurons in  a te th e re d  anim al, the  

fu r th e r  in v e s tig a tio n  o f the c o n tro l of the  f le x o r  motoneurons was possib le*  

Motoneuronal a c t iv i ty  was m onitored from the f le x o r  nerve branches and 

muscle f ib re s  in  such a manner as to  allow  id e n t i f ic a t io n  of the in d iv id u a l 

motor axons. For th i s  kind o f reco rd ing  i t  was necessary  to  use a 

d isse c te d  femur which may have a l te re d  the  a c t iv i ty  of the f le x o r  

motoneurons. This was a compromise which was made in  o rder to  achieve 

accu ra te  e le c tro p h y s io lo g ic a l re c o rd s . In most cases i t  was found th a t  

d is tu rb an ces  due to  d is s e c tio n  d id  not very  much a l t e r  the  re f le x  

responses of the  f le x o r  motoneurons. This c o n tra s ts  w ith  d istu rb an ces  

produced c e n tra l ly ,b y  c u tt in g  th e  co nnectives, which u s u a lly  produce a 

d i^ in h ib itio n  o f re f le x e s  (Rowell, 1969) and g en e ra lly  in c rease  th e  

e f fe re n t  a c t iv i ty  (W eiant, 1958), The problems due to  the  d is s e c tio n  

could have been avoided by reco rd in g  electromyograms (EMG's), but 

a n a ly s is  has proved in accu ra te  in  th e  study of in d iv id u a l motoneurons 

(Runion and Usherwood, 1966), Bowerman (1977) d esc rib es  as the  major 

disadvantage o f t h i s  technique the  f a c t  th a t  sim ultaneous a c t iv i ty  o f 

se v e ra l motoneurons may make id e n t i f ic a t io n  of the a c t iv i ty  of in d iv id u a l 

axons d i f f i c u l t ,  i f  not im possible and a d d it io n a lly , a c t iv i ty  o f in h ib i to ry  

f ib r e s  may be com pletely overlooked as a r e s u l t  of th é  sm all s iz e  or 

absence of in h ib i to ry  p o st synap tic  p o te n t ia ls .
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R eflex a c t iv ia t lo n  of motoneurons

The s im p lest way to  a c t iv a te  the  f le x o r  motoneurons was 

through re f le x e s .  Strong m echanical s tim u la tio n  o f almiost every  p a r t  

o f th e  lo c u s t 's  body produced r e f le x  e x c i ta t io n  o f the  f le x o r  

motoneurons but the  most pow erful and rep roducib le  responses were 

re s is ta n c e  re f le x e s  produced by extending  the t i b i a .  To achieve 

system atic  a c t iv a t io n  o f th e  m esothoracic f le x o r  t ib ia e  motoneurons 

w ith in  the normal p h y s io lo g ica l range , the  t i b i a  was extended a t  a speed 

matching the  mean angular v e lo c i ty  o f t i b i a l  f le x io n  during  w alking.

I t  is  im portant to  emphasize here th a t  care was taken  to  a c tiv a te  only  

the  p ro p rio cep to rs  which were norm ally ex c ited  by the  t i b i a l  movement. 

C areless im position  o f t i b i a l  movement in  the  sm all m esothoracic le g  can 

c r e a te 'e x t r a  s t r a in  in  the  coxal o r t i b i a l  re c e p to rs  which may a l t e r  the 

o r ig in a l  p a tte rn  o f the fem oral re s is ta n c e  r e f le x e s .  The most r e l ia b le  

re f le x e s  were produced by sensory  in p u ts  such as the  chordotonal organ 

(go) ,  the  f le x o r  muscle te n s io n  rec e p to r  (MTR) and th e  m u ltip o la r  fem oral 

t i b i a l  jo in t  re c e p to rs  ( f ig .  4 .2 ) .  The MTR re f le x iv e ly  in h ib i ts  the  

ex tenso r t ib ia e  motoneurons and produces a re f le x  a c t iv a t io n  o f th e  f le x o r  

t ib i a e  motoneuron. The o th e r p ro p e r tie s  of t h i s  recep to r have been 

d iscussed  in  Chapter 4 (T heoph ilid is  and Burns, 1979). The fem u r-tib ia e  

m u ltite rm in a l jo in t  re c e p to rs  a lso  a f f e c t  the  a c t iv i ty  o f the  fem oral 

motoneurons (W illiamson and Burns, 1978). The Chordotonal organ o f the 

m esothoracic leg  seems to  produce the  la rg e s t  sensory  a c t iv i ty  and th i s  

i s  not s u rp r is in g  since  th i s  p ro p rio cep to r c o n s is ts  o f about 200 sm all 

and 50 la rg e r  c e l ls  (Burns, 1974). Sensory a c t iv i ty ,  m ainly from the  

CO, during  ex ten sio n  o f the  t i b i a  produces an e x c i ta t io h  o f the  f le x o r  

motoneurons producing c o n tra c tio n  o f the f le x o r  muscle opposing th e  

movement. These are  ty p ic a l  re s is ta n c e  re f le x e s  as named by Bush (1965) 

and removal o f th i s  re c ep to r  in a c tiv a te s  most o f those r e f le x e s .  The 

CO m ediates s tro n g  re f le x e s  in  th e  m etathoracic ex tensor t ib ia e  muscle
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(Usherwood e t  a l . ,  1968) and in  the  m esothoracic ex tensor (Burns, 1974).

Strong re f le x e s  from s im ila r  re c e p to rs  were described  in  the  s t ic k  

In se c t by B dssler (197?) and Wilson (1965) a lso  s tud ied  leg  re f le x e s  in  

cockroaches but th e re  is  no re p o rt on the  a c tiv a tio n  o f the f le x o r  t ib ia e  

motoneurons.

The a c t iv i ty  o f the  m esothoracic f le x o r  t ib ia e  motoneurons 

during  passive  ex tension  o f the  t i b i a  is  summarised in  f ig .  7*1A. In 

th e  proxim al f le x o r  axon F2 i s  very  a c tiv e  and produces a d ischarge 

which l a s t s  as long as the  imposed t i b i a l  ex ten sio n . The b u rs t in  F2 

sometimes can be prolonged fu r th e r  in  animals w ith  a high e x c i ta b i l i ty .

The b u rs t produced by F2 produces a pow erful co -co n trac tio n  of the 

proxim al and middle f le x o r  and as a  consequence a la rg e  movement o f both 

p a r ts  which is  d e tec ted  by the  d i s t a l  scolopidium o f GO. Axon F2 seems 

to  be an unorthodox axon because although the d iffe re n c e  in  diam eter(Table 3 .3  

between F2 and FI or F3 is  not more than  about 10%, th e re  i s  a s ig n if ic a n t  

d iffe re n c e  in  th e i r  th re sh o ld s . Axons FI and F3 a re  a c tiv a te d  only  by 

a very  f a s t  t i b i a l  ex tension  producing a sm all number o f spikes but 

sometimes th ey  are s i l e n t .  Axon Ml has a lower th re sh o ld  and is  a lso  

a c tiv a te d  by t i b i a l  ex ten s io n , producing a s im ila r  f i r i n g  p a tte rn  to  

th a t  o f axon F2. A c tiv ity  from M2 does not appeal* very  o ften  in  

re s is ta n c e  r e f le x e s .  This axon seems to  have a high th re sh o ld  and i s  

ex c ited  to g e th e r w ith  the  la rg e  motor axons which probably mask i t s  

a c t i v i t y  in  the  e x tr a c e l lu la r  reco rds req u ired  fo r  the id e n t i f ic a t io n  of 

t h i s  axon. Axons 81, 82 and S3 f i r e  spontaneously a t  a low frequency 

in  a qu iescen t anim al and t i b i a l  ex tension  produces a strong  in crease  in  

th e i r  a c t iv i ty .

Other low th re sh o ld  f le x o r  motoneurons are the  in h ib i to rs  I I  

and 12’, which respond to  any mechanical s tim u la tio n  of the lo c u s t ’s body.



a j
Summarized a c t iv i ty  of the  m esothoracic flexorjj^extensor t ib ia e  

motoneurons.

A, R esistance re f le x e s  produced by t i b i a l  imposed ex tension  

and f le x io n  a t  a co n stan t angular v e lo c i ty  o f 150°/s .

The d u ra tio n  of the cycle  i s  2 ,4 s ,

B, Motor p a t te rn  of the f le x o r  and ex tensor motoneurons 

recorded from a d ea ffe ren ted  leg  of a te th e re d  lo cu s t 

walking on the  tre a d m ill  w ith  a speed o f 1 s t / s ,
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Since the  in h ib i to r s  a c t  on th e  f le x o r  muscle th ey  should be ex c ited  by 

th e  movement o f t i b i a l  f le x io n , as th e  ex tensor 01 is  ex c ited  by t i b i a l  

ex ten sio n  ( f ig .  5 .7 ) .  However th e y  remain s i l e n t  during  e i th e r  t i b i a l  

f le x io n  or ex ten sio n  and are  e x c ited  only  during  m aintained ex tension  

( f ig ,  5.5B). They u s u a lly  f i r e  in  b u rs ts  in  which the  len g th  and the 

in te rn a l  frequency depends on th e  angular v e lô c ity  o f th e  previous 

ex ten s io n . This in d ic a te s  th a t  although the in h ib i to r s  seem to  be 

e x c ite d  by the p o s it io n  d e te c to rs  o f th e  GO th e re  i s  an e f f e c t  from the 

v e lo c ity  d e te c to rs  o f the same p ro p rio cep to r which occurs w ith a c e r ta in  

d e lay . Other workers have a lso  found th a t  the in h ib i to ry  neurons always 

f i r e  in  a l te rn a t io n  w ith  motoneurons th a t  innervate  the  same muscle 

(Kennedy and Takeda, 1965a, b; Hoyle and Burrows, 1973a), A c tiv a tio n  

o f the  f le x o r  in h ib i to r s  im m ediately a f te r  the b u rs t o f  the f le x o r  

e x c ito rs  may a c c e le ra te  re la x a tio n  o f the f le x o r  m uscle, as suggested fo r  

the  m etathoracic ex tenso r t ib i a e  muscle by Bunion and Usherwood (I960),

I t  i s  worth n o tice  here th a t  the  ex tensor in h ib i to r  i s  a lso  a c tiv a te d  

during  f le x o r  b u rs t produced r e f le x ly  by t i b i a l  ex ten s io n , A s im ila r  

f i r i n g  p a tte rn  was found in  c ra y f is h  where motor axons of the  claw c lo se r  

muscle f i r e  a t  th e  same tijne as the  opener in h ib i to r  and a c t iv i ty  in  

th e  c lo se r  in h ib i to r  (Weins and G e r s te in ,  1975).

Although th e re  are  d iffe re n c e s  in  the  way which the  re s is ta n c e  

re f le x e s  are  o rgan ised  in. th e  f le x o r  and ex tensor t ib i a e  muscles the 

in te n s i ty  o f re f le x e s  d ischarge  in  both mûsoles is  in  most cases d i r e c t ly  

r e la te d  to  the  angu lar v e lo c i ty  ( f ig ,  5 .3 ) ,  suggesting  th a t  the evoked 

re f le x e s  were d riven  from th e  v e lo c ity  se n s itiv e  c e l l s  o f the  CO, which 

has been id e n t i f ie d  as th e  main cause o f th ese  r e f le x e s .  I t  appears 

th a t  angular v e lo c ity  is  th e  most im portant inpu t v a r ia b le  fo r  re s is ta n c e  

re f le x e s  as was found by Ayers and Davis (1977) and Bush (1965). The 

re la t io n s h ip  between angular v e lo c ity  of the movement and the  in stan taneous



frequency of motoneurons a c t i v i t y  i s  l in e a r  (Evoy, 1977)• The slope

of the  l in e  can be taken  to  re p re se n t the  gain o f th e  sensory  to  

motoneuron pathway (Average d ischarge r a te  /  u n i t  change in  v e lo c i ty ) .

N either ex ten sio n  nor f le x io n  of any angular v e lo c i ty  were 

ab le  to  a c t iv a te  socon D1 (the homologous of th e  m etathoracic  DUfiETi),

I t  i s  not known y e t what synap tic  in p u t e x c ite s  th ese  neurons. Hoyle 

and Dagan (197&) found sensory  in p u ts  to  the DUÎ-I c e l l s ,  but claimed 

th a t  a l l  n a tu ra l pathways th a t  e x c ite s  these  c e l ls  are  extrem ely la b ile *

I t  appears th a t  the  synap tic  in p u ts  which d riv e  DUîiETi are  se v e ra l 

le v e ls  o f in te rn eu ro n s removed from prim ary sensory in p u ts  (H eit1er and 

Goodman, 1978). However, th e  DHM c e l l s  are  a c tiv e  a t  low freq u en c ies  

which sometimes r i s e  to  5 -  7 Hz ( f ig .  5.7A and Hoyle e t  a d . ,  1974-)*

In th e  case of D1 which b ifu rc a te s  to  innervate  both ex tensor and f le x o r  

t ib i a e  m uscles, i t  seems s trange  th a t  one neuron in n erv a tes  two 

'a n ta g o n is tic  m uscles. However i t  was found th a t  nerve impulses 

tra n sm itte d  in  the ex tensor branch o f Dl f a i le d  a t  a lower frequency than  

those in  the f le x o r  branch. Thus i t  is  p o ssib le  th a t  th i s  i s  a mechanism 

which a t  le a s t  p reven ts  h e ig h t frequency d ischarge o f axon Dl ending 

in  both  a n ta g o n is tic  m uscles.

The re f le x e s  d escribed  above do not always appear w ith  the 

same s tre n g th . In  some p rep a ra tio n s  although the  responses o f the 

f le x o r  motoneurons always remain phasic  to  the  imposed t i b i a l  e x ten s io n , 

the  number of sp ikes in  th e  f le x o r  d ischarges decrease during  prolonged 

s tim u la tio n . This phenomenon, c a lle d  here h a b itu a tio n , may be due to  

th e  fa tig u e  o f th e  synap tic  in te rco n n ec tio n s  between in tern eu ro n s and the
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f le x o r  motoneurons since th e  sensory  in p u ts , the d ischarge from th e  CO, 

i s  u n a lte re d . The same ex p lan a tio n  was given by Usherwood ^  ^1 ,

(1968) fo r  a s im ila r  phenomenon in  th e  SETi, They suggested th a t  th i s  

waning rep resen ted  c e n tra l a d a p ta tio n . Another in te r e s t in g  p o in t i s  

th a t  re f le x e s  from th e  f le x o r  motoneurons sometimes alm ost d isappeared  

and reappeared w ith in  seconds leav in g  th e  same s tre n g th  as b e fo re .

Extensive m o d ifica tio n s o f re f le x e s  were a lso  found during  behavioural 

motor p a tte rn s  such as p o s tu re , walking or f l i g h t .

Spontaneous a c t i v i t y  of motoneurons

Another way o f studying  how the  lo c u s t uses the la rg e  number o f 

f le x o r  motoneurons was to  record  raotoneuronal a c t iv i ty  from the  nervous 

system o f a te th e re d  lo c u s t on a t re a d m ill  ( f ig .  6 ,1 ) ,  From th e  d e ta i l s  

o f  t h i s  method which have been d esc rib ed , i t  i s  obvious th a t  the  animal 

was under r a th e r  abnormal co n d itio n s  and i t  would be u n r e a l i s t i c  to  claim  

th a t  a n a tu ra l  walking p a t te rn  was recorded . However, the  lo cu s t in  

t h i s  s i tu a t io n  was ab le  to  walk on th e  tre a d m ill .  There are  o f course 

d iffe re n c e s  from f re e  w alking and t h i s  can be seen in  the  len g th  and the  

in te rv a l  frequency o f the  a l te r n a t in g  b u rs ts  o f the  m esothoracic ex tenso r 

and f le x o r  muscles th e  sequence in  which th e  fem oral

motoneurons were a c tiv a te d  w ith  the  stepp ing  p a tte rn  in  both cases was 

very  s im ila r .  The a c t iv i t y  o f th e  in d iv id u a l f le x o r  t ib ia e  motoneurons 

o f an anim al w alking on the tre a d m ill  i s  dem onstrated in  f i g ,  7 , IB, A 

comparison in  f ig .  7 .1  between A and B shows th a t  th e  r e f le x  b u rs t of 

a c t i v i t y  in  the  f le x o r  axons, produced by fo rc ib ly  ex tending  the t i b i a e ,  

i s  s im ila r  to  the  b u rs t produced by some axons in  a d ea ffe ren ted  anim al 

walking on a t re a d m ill .  However, th e re  a re  d if fe re n c e s , fo r  example 

axon F3 which i s  r e g u la r ly  a c tiv a te d  in  re f le x e s  was not very  a c tiv e  during  

th e  f le x o r  b u rs t in  w alking and was ex c ited  on ly  when the lo cu s t was
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aroused® Axons Ml and F2 f i r e d  a t  a  s l ig h t ly  h igher frequency during  

wallcing than  in  th e  r e f le x .  Axon F4 which was id e n t i f ie d  in  re f le x e s  

in  a few p rep a ra tio n s  was no t recorded  in  w alking. What caused t h i s  

d iffe re n c e  is  no t known and re q u ire s  fu r th e r  in v e s t ig a t io n . The th re e

d i s t a l  axons were a c tiv a te d  in  the same way in  both c a se s . Their b u rs t

o f a c t iv i ty  u s u a lly  s ta r te d  w ith  some delay  and u s u a lly  the  la rg e  F6 

f i r e s  f i r s t .  Spikes from axon M2 appeared very  r a r e ly  and did not 

produce any re g u la r  f i r i n g  p a t te rn .  The slow axons which were 

con tinuously  a c t iv e ,  in creased  th e i r  frequency from th e  moment the anim al 

s ta r te d  to  walk. However i t  was no t p o ssib le  to  see i f  th e  frequency 

of the slows was modulated during  the  f le x o r  b u rs t s ince the  sm all BPSP's 

from the  slows were masked by th e  a c t iv i ty  o f the  la rg e r  axons.

Although sensory in p u ts  are c u t o f f ,  i t  i s  in te re s t in g  th a t  th e  tim ing  o f

th e  b u rs ts  o f th e  d i f f e r e n t  f le x o r  axons i s  very  ac c u ra te . Most o f  them

end a t  the  same tim e , except M3 whose a c t iv i ty  is  sometimes prolonged. 

Although th e  in h ib i to r s  were no t p o s i t iv e ly  id e n t i f ie d ,  sm all a c tio n  

p o te n t ia ls  occurred re g u la r ly  between the  f le x o r  b u rs ts  where u s u a lly  

the  a n ta g o n is tic  FETi was expected to  f i r e . ( f i g ,  6.2A, C),

In  both re f le x e s  and w alking the  la rg e  axons seem to  have a 

high th re sh o ld  and produce a sm all number o f sp ik es . Axons Ml, M3 and 

fS  which have a sm aller diam eter are  more e x c ita b le  w hile the  sm all slow 

axons have a very  low th re sh o ld  and are con tinuously  a c t iv e .  This 

re la t io n s h ip  between axon d iam eter and motoneuron e x c i t a b i l i ty  seems to  

be common in  muscles which are  innervated  by a la rg e  number of motor 

axons. In the  lo c u s t 's  abdominal muscles which rece iv e  s ix  la rg e  and 

s ix  sm all axons, Hinkle and Gamhi (1972) dem onstrated th a t  the f i r i n g  

sequence o f th ese  motoneurons was c o rre la te d  w ith  axon d iam eter. In 

o th e r in v e r te b ra te s  such as the  c ra b , the  re la t io n s h ip  o f axon diam eter 

and motoneuron th re sh o ld  was a lso  d escribed  (D avis, 1971; Wiens, 1976),
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In v e r te b ra te  m uscle, Somjen, C arpenter and Henneman ( I 964) show th a t  

th e  r e la t iv e  e x c i t a b i l i ty  o f the  motoneuron i s  determ ined by t h e i r  s iz e  

o r by the  d iam eter of the axons and f in a l ly ,  Henneman, Somjen and 

C arpenter ( I 965) and Henneman and Olson (1965) dem onstrated th a t  in  th e  

median gastrocnem ius and so leus muscle the  s ize  o f the  motoneuron 

d ic ta te s  i t s  e x c i t a b i l i t y ,  i t s  e x c i t a b i l i ty  determ ines th e  degree o f 

th e  use o f th e  motor u n i t  and i t s  "usage" in  tu rn  s p e c if ie s  or in flu en ces  

the  type o f muscle f ib r e  re q u ire d .

However, in  lo c u s t not a l l  the  f le x o r motoneurons fo llow  th i s  

" s iz e  p r in c ip le " .  For example F2, which is  only 10% sm aller than  the 

high th re sh o ld  axons FI and F3, has the same low th re sh o ld  as axon Ml 

which i s  about th re e  tim es sm alle r. Axon F6, although i t  i s  im possible 

to  measure i t s  exac t d iam eter, belongs to  the  group o f d i s t a l  axons 

where the  maximum diam eter i s  no more than  llym (fig*  3*6, Table 3*3) 

and seems to  have a s im ila r  th re sh o ld  to  F I (25*50 jim). Thus th e  

e x c i t a b i l i ty  of th e  f le x o r  motoneurons depends on a p r io r i t y  f a c to r  and 

t h i s  seems to  be independent o f th e  axon d iam eter, and may depend on 

th e  s ig n if ic a n c e  o f the motoneurons in  behaviour such as p o stu re  and 

waHcing, Therefore an exam ination is  req u ired  f i r s t l y  o f th e  fu n c tio n  

o f the  f le x o r  neurons in  p ostu re  and secondly of the  a c t i v i t y  o f th ese  

neurons in  g en era tin g  the  t i b i a l  movements o f w alking,

a )  P osture

In a s tand ing  lo c u s t ,  most o f the  time the  fe ra u r- tib ia  angle 

i s  about 90° to  100°, w hile the  angle between the t i b i a  and the 

h o r iz o n ta l plane i s  u s u a lly  110 -  120°, ' The c o n tr ib u tio n  o f the  

fom cral muscles to  p o s tu ra l  fo rces  re q u ire s  fu r th e r  in v e s tig a tio n  u s in g  

te n s io n  reco rd ing  techniques s im ila r  to  those used in  s t ic k  in se c ts  by 

Cruse (1976) , However in  a s tand ing  lo c u s t on a h o r iz o n ta l plane the



9b

m esothoracic ex ten so r SETi f i r e s  a t  a low frequency (Burns, 1972), but 

no in form ation  has been published  fo r  th e  slow f le x o r  motoneurons*

The study of th ese  neurons in  a d ea ffe ren ted  p re p a ra tio n , and in  a 

p rep a ra tio n  w ith  most le g  p ro p rio cep to rs  in ta c t  (see re f le x e s )  shows 

th a t  th e  slow f le x o rs  are  con tinuously  a c tiv e  w hile th e  ex tensor SETi 

has a reduced f i r i n g  r a t e .  The qu estio n  then  a r is e s  how is  th i s  

spontaneous slow a c t iv i t y  used?

Since SI and 82 were found to  innervate  m ainly th e  d i s t a l  

f le x o r ,  which is  the  la rg e s t  p a r t  o f th e  f le x o r  m uscle, i t  seems th a t  

th i s  p a r t is  more used in  the  m aintainance of postu re  than  i s  the 

proxim al p a r t  although th e  proxim al f le x o r  does rece iv e  a  to n ic  in p u t. 

For th is  purpose th e  d i s t a l  f le x o r  has the  fo llow ing  advantages:

1) The d i s t a l  f le x o r  has sm aller diam eter muscle f ib r e s  than the 

proxim al f le x o r .  This means th a t  th ey  can co n tra c t fo r  prolonged 

p eriods w ithout fa tig u e  (see f i g ,  3 .250) since i t  has been shown th a t  

sm all diam eter muscle f ib r e s  co n ta in  la rg e r  numbers o f m itochondria 

and th e re fo re  are  more r e s i s ta n t  to  fa tig u e  (Henneman and Olson, 1965) 

In the  r e t r a c to r  unguis muscle and the  m etathoracic ex ten so r, i t  was 

found th a t  f a s t  muscle f ib r e s  (w hite) con ta in  fewer and sm aller 

m itochondria than  th e  slow (red ) and fa tig u e  more qu ick ly  under 

su sta in ed  n eu ra l s tim u la tio n  (Usherwood, 1967; Hoyle, 1978), This 

p ro p e rty  is  very  im portant in  m ain ta in ing  a t  FTA o f 90° by producing 

a  co n stan t isom etric  to n ic  fo rc e .

This is  a lso  helped by the  f a c t  th a t  an FTA o f 90° to  100° 

th e  f le x o r  muscle produces i t s  peak a c tiv e  ten s io n  increm ent. Since 

t h i s  isom etric  te n s io n  may be im portant fo r  the  balance of the  anim al 

i t  i s  not su rp r is in g  th a t  th e  te n s io n  recep to r (Chapter 4) i s  lo ca ted  

a t  the  end o f the  d i s t a l  f le x o r .
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2) The d i s t a l  f le x o r . i s  a p in n a te  muscle w ith  graded p in n a tio n  angles 

( T a b le ! . l ) .  Such a muscle can e x e r t  pow erful fo rce  w ith  sm all tendon 

movement which is  im portant fo r  f in e ly  c o n tro lle d  movements such as 

p o s tu ra l  read ju stm en ts . This f in e  c o n tro l depends a lso  on the f a c t  

th a t  changes in  body p o s it io n  are  d e tec ted  by the C.O. which in  a 

q u iescen t a n im l  r e f le x ly  a f f e c ts  th e  to n ic  a c t iv i ty  o f the  th re e  slow 

f le x o r  motoneurons and th e  slow ex tenso r SETi.

The fu n c tio n a l importance o f the  f le x o r  t i b i a  muscle in  

postu re  depends a lso  on the  to n ic  a c t iv i ty  and fu n c tio n  of the a n ta g o n is tic  

e x ten so r. However the f le x o r  muscle seems to  dominate because i t  is  

la rg e r  than  the  ex te n so r, no t only  having la rg e r  d iam eter muscle f ib r e s  

but a lso  having about th re e  tim es more muscle f ib r e s  (Table 3 .1 ) .  The 

f le x o r  muscle a lso  has a m echanical advantage of 2 :1  (H e it le r ,  1977) 

over the  ex ten so r. I t  seems to  be g en e ra lly  tru e  o f the  c o n s tru c tio n  

o f arthropods le g  th a t  th e  t i b i a l  f le x o r  muscles have more to n ic  axons.

This can be seen in  the  rock lo b s te r  where the  f le x o r  muscle (eq u iv a len t 

to  th e  f le x o r  t ib i a e  muscle) re c e iv e s  th re e  to n ic  axons w hile i t s  

a n ta g o n is tic  rece iv es  on ly  one ( iy e rs  and C larac , 1978),

b )  Walking

In w alking the  main fu n c tio n  o f the m esothoracic f le x o r  muscle 

i s  to  f le x  the  t i b i a  du rin g  p ro tra c t io n  from an FTA o f 130° to  70°.

The p ro tra c tio n  (f le x o r  b u rs t)  v a r ie s  from 50 to  110 ms in  d u ra tio n  

w hile th e  r e t r a c t io n  (ex tenso r b u rs t)  is .fro m  120 to  400 ms long in  an 

anim al walking a t  a speed o f 2 to  5 s tep s  per second (Burns, 1973).

This shows th a t  the  dm 'ation  o f the f le x o r  b u rs t must be much sh o rte r  

and more constan t than  th a t  o f the  ex tensor b u rs t .  This rap id  f le x io n  

o f the t i b i a  may c re a te  problems in  the  accurate  f i r in g  time o f the 

f le x o r  motoneurons and the  speed o f muscle c o n tra c tio n .
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The f le x o r  motoneuron a c t iv i t y  during  attem pted t i b i a l  f le x io n  

in  a  d ea ffe ren ted  le g  o f an anim al w alking on a t re a d m ill  is  shown in  

f i g .  7 . IB. The main components o f the  f le x o r  a c t iv i ty  c o n s is t o f axons 

F2 and Ml which are  f i r i n g  con tinuously  during  f le x io n , F6 u s u a lly  

f i r e s  im m ediately a f te r  the f i r s t  a c tio n  p o te n t ia l  o f the  b u rs t of F2 

and i t  i s  follow ed by F5 and M3. Thus the la rg e  motoneuron in n e rv a tin g  

o f th e  proxim al and middle f le x o r  are  used as much as th e  sm aller neurons 

in n e rv a tin g  th e  d i s t a l  p a r t .  This is  odd since according  to  th e  " s iz e  

p r in c ip le " ,  as hasbeen d iscussed  b e fo re , one might expect th a t  the  sm all 

axons having lower th re sh o ld  would be used more than  the la rg e r  motor 

axons in n e rv a tin g  the  proxim al and middle f le x o rs . V/liat is  the fu n c tio n  

o f th e  two f i r s t  p a r ts  o f th e  f le x o r  muscle when such la rg e  motoneurons 

as P I , F2 and Ml are a c tiv e  a t  an alm ost constan t frequency during  the 

f le x io n  b u rs t?

During p ro tra c t io n  the  f le x o r  b u rs t causes a sh o rten in g  in  

muscle len g th  of about 7 -  9^ in  a time of approxim ately 50 ms in  a 

lo c u s t w alking a t  a speed o f 5 s t / s .  This f a s t  muscle c o n tra c tio n  can 

on ly  be produced by the proxjjnal p a r t  (middle and proxim al f le x o rs )  fo r  

th e  fo llow ing  reasons:

a ) The proxim al f le x o r  co n ta in s  e x c lu s iv e ly  the la rg e s t  muscle f ib r e s  

o f the  f le x o r  muscle (Table 3 .1 )  arranged in  p a r a l l e l  w ith  the f le x o r  

tendon so th ey  can produce maximum movement o f the tendon during  f a s t  

muscle c o n tra c tio n  and d riven  m ainly by FI and F2 can produce a 

considerab le  a c c e le ra tio n  of the  t i b i a .  The middle f le x o r has a s im ila r  

fu n c tio n  since  i t s  p in n a tio n  angle is  only  9° and i t  i s  thus n e a r ly  

p a r a l le l  to  the tendon. In c o n tr a s t ,  the  d i s t a l  f le x o r  w ith  i t s  g re a te r  

p in n a tio n  angle is  ab le  to  produce le s s  movement and more fo rc e .

b) The proxim al and middle f le x o rs  have f a s te r  r i s e  and re la x a tio n



9 9

tim es and the  tw ite h /te ta n u s  r a t io  i s  la rg e r  than in  th e  d i s t a l  f le x o r  

(Table 3 .6 ) .  F ast r e la x a tio n  is  a lso  im portant in  the  sh o rt f le x o r  

b u rs t to  e lim in a te  the  re s id u a l  ten s io n  which could cause s tro n g  

o p p o sitio n  to  the fo llow ing  ex tenso r c o n tra c tio n . A ll the  above evidence 

suggests th a t  the  proxim al f le x o r  a c tiv a te d  by F I , F2 §.nd Ml i s  id e a l  

to  produce the  f a s t  f le x io n  o f th e  t i b i a  during  w alking.

However f ig .  7 . B shows th a t  the d i s t a l  f le x o rs  are a lso  

a c t iv e .  The f a c t  th a t  th e re  i s  a de lay  before th e i r  a c t iv a t io n  suggests 

th a t  the d i s t a l  f le x o r  may be used to  re in fo rc e  the proxim al p a r t  of the 

muscle during  f le x io n . Reinforcem ent of the  proxim al f le x o r  a t  the  end 

of the f le x o r  b u rs t may be im portant because ; l )  The high f i r i n g  

frequency in  F2 may produce fa tig u e  e f f e c ts  in  the  la rg e ,  f a s t  c o n tra c tin g  

muscle f ib r e s  o f the  proxim al f le x o r ,  e s p e c ia lly  in  slow walking lo c u s ts  

where the b u rs t o f F2 is  prolonged and 2) A high le v e l  of te n s io n  in  

the  f le x o r  muscle a t  the  end o f the r e t r a c t io n  may be req u ired  when th e  

le g  touches the  ground and r i g i d i t y  may be im portant as w i l l  be d iscussed  

below. I t  must a lso  be borne in  mind th a t  the  f le x o r  t ib ia e  muscle i s  

used in  e n t i r e ly  d i f f e r e n t  ways in  p ro th o rac ic  le g . Here the f le x o r  

muscle is  a c tiv e  du ring  r e t r a c t io n  and f le x io n  of the  t i b i a  produces 

p ropu lsive  fo rc e . The requirem ent fo r  ten sio n  from the  d i s t a l  f le x o r  i s

thus much g re a te r .  Of co u rse , lo c u s ts  do not spend th e i r  l iv e s  walking

on f l a t ,  h o r iz o n ta l su rfa c e s . They u s u a lly  walk on uneven su rfaces  and 

th ey  clim b. Under th ese  v a r ia b le  con d itio n s  an in c rease  in  t i b i a l  

f le x o r  fo rce  is  e s s e n t ia l  and maybe caused by extending  the a c t iv i ty  o f 

the  motoneurons in n e rv a tin g  the  d i s t a l  f le x o r .

There i s  no in form ation  in  the  lo cu s t about th e  motoneuronal 

p a tte rn s  during  o th e r w alking s i tu a t io n s ,  Pearson (1972) dem onstrated 

in  th e  cockroach th a t  an e f f e c t  o f in c reas in g  th e  r e s is ta n c e  to
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r e t r a c t io n ,  malcing the  anim al drag  a w eight, was an in crease  in  the  

average d ischarge r a te  o f th e  slow axon in n e rv a tin g  the  coxal depressor 

m uscle. Cruse (1976) found in  th e  s tic k  in se c t th a t  th e  fu n c tio n  of 

the d i f f e r e n t  groups o f muscles and the  fu n c tio n  o f the  whole le g  can 

vary  consid e rab ly  depending on th e  type of walking s i tu a t io n .  His 

conclusion  was th a t  th e  neuronal programme i t s e l f  is  changed, when the 

w alking s i tu a t io n  changes. The f a c t  th a t  the lo c u s t m esothoracic t ib ia e  

muscle has such a la rg e  number of motoneurons and is  subdivided in to  

p a r ts  w ith  sp e c ia liz e d  m echanical and p h y s io lo g ica l p ro p e r tie s  in c reases  

th e  p o s s ib i l i t i e s  fo r  changes in  th e  neuronal px’ogramme req u ired  by 

various behavioural p a t te rn s .

Fig* 7 . IB shows th a t  a l l  th e  f le x o r motoneurons except the  slow 

f le x o rs  are s i l e n t  during  attem pted r e t r a c t io n .  The a c t iv i ty  o f these  

motoneurons in c reases  when th e  anim al s ta r t s  to  walk and continues r ig h t  

through the periods between the  f le x o r  b u rs ts . In c o n tr a s t ,  in  the  

ex tensor nerve the  SETi is  a c tiv a te d  only  fo r  a sh o rt period  before the 

FETi is  a c tiv e . Thus the  to n ic  te n s io n  o f the  f le x o r  muscle opposes 

te n s io n  produced by the SETi in  the  ex ten so r. The f a c t  th a t  in  a normal 

w alking animal the  m esothoracic t i b i a  keeps ex tending  from the  beginning 

o f th e  r e t r a c t io n  means th a t  th e  ex tenso r muscle must dom inate. At the 

moment where both ex tenso r and f le x o r  t ib ia e  slow neurons f i r e  to g e th e r

in  the f i r s t  h a lf  o f r e t r a c t io n  the  f le x o r  muscle a c ts  a g a in s t the

ex tenso r and must produce a very  r ig id  fe m u r-tib ia  jo in t .  R ig id ity  o f 

the  fe m u r-tib ia  p iv o t i s  probably  very  im portant a t  th a t  p a r t ic u la r  

moment to  support the body weight and ensure s t a b i l i t y .  One r e s u l t  o f 

th e  approxim ately a l te r n a t in g  tr ip o d  g a i t  used by the  lo c u s t is  th a t  

fo r  a t  le a s t  h a lf  of the r e t r a c t io n  the  animal i s  supported by on ly  th re e

leg s  and as a r e s u l t  th e  m esothoracic member of the  th re e  must c a r ry  more

than o n e -th ird  o f the body weight (Burns, 1973).
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A ll the above evidence suggests th a t  the  f le x o r  motoneurons 

have more com plicated fu n c tio n s  th an  those o f the a n ta g o n is tic  ex ten so r. 

I t  can be seen th a t  d i f f e r e n t  motoneurons are  used in  a s tan d in g  anim al 

from those which cause the  f a s t  t i b i a l  f le x io n  which occurs during  

w alking. However the most in te r e s t in g  p o in t is  th a t  some o f the  f le x o r  

motoneurons a c tiv e  a t  the  same tim e have d if f e r e n t  fu n c tio n s . This 

k ind  o f neuronal c o n tro l where sy n e rg is tic  motoneurons have independent 

fu n c tio n s  can a lso  be seen in  the lo c u s t neck muscles nos, 57, 53, 59 

and 60 (Shepheard, 1973). Wlien th ey  a c t as a s in g le  muscle u n i t  in  

response to  the a c t i v i t y  of the  common e x c ito rs  during  the  f a s t  phase 

o f head movement, t h e i r  fu n c tio n  c le a r ly  d i f f e r s  to  th e  fu n c tio n s  c a r r ie d  

under c o n tro l o f motoneurons p rov id ing  s p e c if ic  in n e rv a tio n  to  d i f f e r e n t  

muscles w ith in  the  group (Shepheard, 1974). S im ilar fu n c tio n a l 

se p a ra tio n  a lso  occurs in  crabs where the  eye muscles produce th re e  

types of movement; o p to k in e tic , compensatory and p ro te c tiv e  w ithdraw al 

(Burrows and H orridge, 1968a, b ) .  The f i r s t  two involve the same 

motoneurons which are ex c ite d  in  d i f f e r e n t  p ro p o rtio n s  fo r th e  d i f f e r e n t  

d ire c tio n s  of movement w hile th e  th i rd  involves a d d itio n a l motoneurons 

although th e  same muscle p a r t ic ip a te s  in  a l l  movements.

Muscles w ith  com plicated in n e rv a tio n  rec e iv in g  a la rg e  number 

o f motor axons and subdivided in to  s y n e rg is tic  p a r ts  are  not common in  

arth ro p o d s. Homologous muscles in  o th e r in se c ts  a r e ,  o f co u rse , 

s im ila r .  For in s ta n c e , the f le x o r  t ib ia e  muscle in  th e  cockroach was 

a lso  found to  be d iv ided  in to  th re e  p a r ts  (143 a ,  b , c) by C arbonell 

(1947) ,  Dresden and N ijehhuis (1953) showed th a t  t h i s  muscle i s

innervated  by 11 axons. Muscle 143a rece iv es  only  two axons. Muscle

143b and 143c rece iv e  9 axons and they  have some 4 or 5 axons in  common

whereas two axons are  confined to  143b and two or th re e  to  143c, A few

o th e r arth ropods muscles w ith  s im ila r ly  com plicated in n erv a tio n  have
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(Pearson and l i e s ,  1971), th e  group o f p ro te rg a l muscles of the  c e rv ic a l  

s c le r i t e s  in  th e  neck o f the  lo c u s t (Shepheard, 1973) and some o f th e  

aM orainal muscles which innervated  by e ig h t axons (T yrer, 1971a, b ) .  In 

the  C rustacea the  com plexity o f the  abdominal f le x o r  and ex tenso r muscles 

i s  a lso  high (Kennedy and Takeda, 1965a, b; Parnas and Atwood, 1966)* 

M u ltifu n c tio n a l muscles a lso  e x is t  in  v e r te b ra te s ,  Henneman and Olson 

(1965) claimed th a t  s ince both the  M.G. and the  soleous muscle cause 

ex tension  th e i r  c o n tr ib u tio n  might be expected to  d i f f e r  w ith  re sp e c t to  

maximum te n s io n , speed of c o n tra c tio n , amount of sh o rten in g , economy of 

a c tio n  and degree of u sage. The same authors f in a l ly  specu la te  th a t  

"na tu re  d iscovered  long ago th a t  two heads are  b e t te r  than  one",

In te ra c tio n  between p ro p rio cep tiv e  re f le x e s  and motor p a tte rn s

Most of the  d isc u ss io n  above was based on r e s u l t s  taken from 

d ea ffe ren ted  p re p a ra tio n s . However the sensory in form ation  from th e  

le g  p ro p rio cep to rs  during  t i b i a l  movements was found to  be rep ea tab le  over 

prolonged p e rio d s . The main e f f e c t  of these  sensory  inpu ts ' on the 

fem oral motoneurons o f an immobilized anim al was in  the  form o f negative  

feedback ( re s is ta n c e )  r e f le x e s .  R esistance r e f le x e s ,  a p a r t from the  

f a c t  th a t  th ey  sometimes h ab itu a te  ( f i g ,  5 .6 ) appear to  be very  re g u la r  

in  the  f le x o r  and ex tenso r t ib ia e  motoneurons (see a lso  W ilson, I 965). 

However i t  appears th a t  during  c e n tr a l ly  d riven  movement, the  whole r e f le x  

o rg an iza tio n  is  arranged to  f a c i l i t a t e  i t ,  and no opposing neuronal 

a c t iv i ty  is  generated (Barnes e t  ^ , , 1972; Barnes, 1977; Ayers and 

D avis, 1977) , This does not mean th a t  sensory inpu ts  are  not im portant 

in  th e  c o n tro l of movement. In some cases the  c e n tr a l ly  produced 

rhythms can be modulated by sensory  feedback (Burrows, 1975; Wendler, 1974.»

Wong and Pearson , 1976) and by o r ie n tin g  cues (Gamhi, 1970), The
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forms of modulation o f the  w alking rhythm found in  cockroaches include 

v a r ia t io n s  in  the frequency o f cy c lin g  and in  the  p roportion  of the 

cycle occupied by the  p ropu lsive  and re tu rn s tro k e  movement o f an 

appendage (Pearson and l i e s ,  1970; Pearson, 1972; Dolcomyn, 1973.)»

The way in  which the  re s is ta n c e  re f le x e s  were modulated in  a c e n tr a l ly  

d riven  motoneuron was s tu d ie s  here in  a te th e re d  lo c u s t ( f ig .  6 .1 ) w ith  

on ly  the  G«0. in ta c t  in  an otherw ise d e a ffe re n ted , fix ed  le g . A 

c e n tr a l ly  programmed motor a c t i v i t y  o f the SETi was produced during  

walking on the  tre a d m ill  and i t  in te ra c te d  w ith sensory inform ation  

produced by t i b i a l  movement ( s t r e tc h  or re le a se  of the G .O ,). P ig , 6 .5  

shows th a t  re s is ta n c e  re f le x e s  of the SETi were not only  cancelled  but 

th a t  the sensory inpu t produced a p o s itiv e  feedback during  t i b i a l  f le x io n  

In h ib it in g  the  SETi, fu n c tio n in g  to  enhance t i b i a l  f le x io n  during  walking* 

Such re v e rs a l  of re f le x e s  were a lso  described  byBRssler (1976) in  a 

decereb ra ted  s tic k  in se c t f ix e d  on cork p la te .  He dem onstrated th a t  

ramp-wise s tre tc h in g  o f th e  fem oral chordotonal organ e x c ite s  the  slow 

ex tensor t i b i a  in  an " in a c tiv e "  anim al (an animal which only moves the  

s tim u la ted  leg ) w hile in  "ac tiv e"  anim als (animals which move a lso  the  

o th e r leg s)  the  same stim ulus decreased the  f i r in g  r a te  of th i s  motoneuron. 

I t  i s  worth n o tic in g  the  s im i la r i t ie s  o f B ü ss le r 's  "ac tiv e"  s t ic k  in se c t 

and the te th e re d  lo c u s t where f iv e  o f the leg s  were f re e  to  move, 

w alking on the tre a d m ill .

In an in v erted  d isse c te d  anim al Hoyle and Burrows (1973b) were 

ab le  to  produce a sequence o f a l te rn a t in g  f le x io n  and ex tension  movements 

o f the  t i b i a  c lo se ly  resem bling those seen during locom otion, by 

s tim u la tin g  the connectives between the  g an g lia . During th is  p a r t ic u la r  

a c tio n  they  found th a t  although th e  f a s t  ex tensor to  the  t i b i a  i s  not 

used in  w alking, i t s  membrane p o te n t ia l  is  d riven  more negative by IPSP's 

during  the  f le x io n  p a r t  of the c y c le . However Burrows (1973)



-UJ4

dem onstrated th a t  during  t i b i a l  f le x io n  in  a q u iescen t lo c u s t the  FETi 

rece ived  EPSP's, This shows th a t  fo r  the  m etathoracic ex tensor FETi 

a t  l e a s t ,  the  re f le x e s  reversed  during  th i s  s e l f  generated t i b i a l  

movement. S im ilar rhybhmic a c t iv i ty  can a lso  be recorded from the nerve 

o f the m esothoracic SETi o f a te th e re d  lo c u s t im m ediately a f te r  a long 

run on the  tre a d m ill .  The rhythm ic b u rs ts  which occur l a s t  fo r  a 

prolonged period  and can be stopped on ly  by a s tro n g  s tim u la tio n  of the 

anim al. Is  th i s  s e l f  generated  p a tte rn  r e la te d  to  the  walking c e n tra l  

programme or is  i t  a rhythm ic a c t iv i t y  of the motoneurons caused by the 

e x c ited  s ta te  of the anim al? Imposed t i b i a l  f le x io n  during  th i s  period  

no t only  reduces the  number o f sp ikes in  the  SETi but a lso  e x c ite s  the 

Common In h ib ito r  ( f ig .  6 .6A ). When the  b u rs tin g  p a t te rn  ceases 

re s is ta n c e  re f le x e s  reap p ear. This re v e rs a l  o f re f le x e s  supports th e  

idea  th a t  the  spontaneous rhybhmic b u rs tin g  i s  caused by a meclianism 

r e la te d  to  the  walking programme although i t  i s  not known i f  th e  f le x o rs  

were a c t iv a te d . F ig . 6A and B a lso  confirm  the -fact th a t  re s is ta n c e  

re f le x e s  were reversed  during  the c e n tr a l ly  generated walking motor 

p a t te rn .  Of course in  th e  ex tensor b u rs ts  the  FETi i s  not a c tiv e  but 

i t  may be th a t  the  th re sh o ld  o f t h i s  neuron is  h igher than  in  walking or 

th e  s tre n g th  o f the  c e n tr a l  inpu t i s  not enough to  a c tiv a te  t h i s  neuron 

when th e  anim al i s  stopped. Pearson (1972) a lso  found th a t  th e  la rg e  

motor axons to  the le v a to r  muscle o f cockroach are  a c tiv e  during  walking 

but when a l te rn a t in g  b u rs ts  between le v a to r  and depressor occurs in  an 

immobilized animal the  la rg e  axons were in a c tiv e .

The in te ra c t io n  between the  fem oral sensory  inpu t and another 

c e n tr a l ly  generated f i r in g  p a t te r n ,  f l i g h t  was a lso  s tu d ied  in  th e  

ex tenso r motoneurons. At the  beginning o f f l i g h t  th e  e x c ita to ry  

ex tenso r motoneurons f i r e  a t  an u n u su a lly  high frequency which g rad u a lly  

drops to  a le v e l o f about 50 -  80 Hz ( f ig .  6.4D ). This i s  an un u su a lly
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high f i r in g  frequency fo r  th e  m esothoracic ex tensor motoneurons, 

e s p e c ia l ly  the FETi which g e n e ra lly  a c ts  as a high th re sh o ld  motoneuron 

in  o ther behavioural motor p a tte rn s  (walking ™ Burns, 1972), Why and 

how the  lo c u s t can achieve th i s  prolonged high f i r i n g  a c t iv i ty  of 

ex tenso r e x c ito rs  i s  not known but i t  seems th a t  in  f l i g h t  th i s  f i r i n g  

p a tte rn  would ensure th a t  the  m esothoracic leg  i s  kep t extended. The 

f le x o r  motoneurons are  p r a c t ic a l ly  s i l e n t .  A s im ila r ly  high a c t iv i t y  

le v e l  a lso  appears in  the  abdominal rrruscles and f a l l s  a f te r  10 sec .

(Hinkel and Gamhi, 1972). I t  seems th a t  the  c e n tr a l ly  produced f l ig h t  

p a t te rn  modulates the a c t iv i ty  of fem oral and abdominal motoneurons and 

probably  many o th e rs  e s s e n t ia l  fo r  the  balance and o r ie n ta tio n  o f the  

anim al. An u n u su a lly  high e x c ita t io n  of ex tensor t ib ia e  motoneurons and 

an in h ib i t io n  of the  a n ta g o n is tic  f le x o r s ,  c o n tro lle d  by a c e n tr a l  

programme was a lso  found by .Godden (1972) in  a com pletely d i f f e r e n t  

behaviour in  the  s t i c k  in s e c t ,  T hanatosis.

During f l i g h t ,  imposed t i b i a l  f le x io n  or ex tension  ( s t r e tc h  or 

re le a se  of the G.O.) g en e ra lly  has no e f fe c t  on th e  e x c ite d  ex tensor 

motoneurons. However, in  some cases t i b i a l  ex ten sio n  causes an in h ib i t io n  

and f le x io n  a  sm all e x c i ta t io n  of the  ex tensor motoneurons ( f ig .  6 .7 ) .

This shows th a t  sensory in p u ts  produce weak re s is ta n c e  re f le x e s  in d ic a tin g  

th a t  during  f l i g h t ,  re f le x e s  on the  ex tensor motoneurons were d ra m a tic a lly  

reduced but not rev e rsed . During f l i g h t ,  re s is ta n c e  re f le x e s  have no 

fu n c tio n a l meaning s ince the  leg  i s  kept con tinuously  extended and 

imposed t i b i a l  f le x io n  i s  u n lik e ly .  What causes t h i s  suppression  or 

c a n c e lla tio n  o f re f le x e s  re q u ire s  fu r th e r  in v e s t ig a t io n . Kennedy e t  a l .  

(1974) found in  c ra y f is h  th a t  sensory inpu ts  to  in tra g a n g lio n ic  

in terneurons were suppressed when th e  in terneurons were ex c ited  by 

s tim u la tin g  command f ib r e s . They suggested th a t  th i s  was due to  a 

p resynap tic  in h ib i t io n .  P resynap tic  in h ib i t io n  vras a lso  suggested fo r
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lo c u s t motoneurons by Burrows and Horridge (1974)o They found th a t  

when motoneurons have in p u ts  in  common, in d ic a tin g  d riv in g  from a common 

in te rn eu ro n , th e  p o st sjnaaptic p o te n tia ls  to  one but to  o th e rs  can be 

dropped o u t, as i f  gated p re sy n a p tic a lly .

The study of th e  fu jic tio n  and the in n erv a tio n  of th e  

m esothoracic f le x o r  motoneurons was achieved by reco rd ing  raotoneuronal 

events p e r ip h e ra lly  from the  f le x o r  nerve branches and muscle f ib r e s .  

Although valuab le  in fo rm ation  was o b ta in ed , i t  i s  no t p o ss ib le  w ith  th i s  

technique to  study  th e  in tra g a n g lio n ic  connections of the f le x o r  

motoneurons them selves. For th i s  purpose fu r th e r  in v e s tig a tio n  i s  

re q u ire d , p r im a rily  by in t r a c e l lu la r  record ings from the  c e l l  bodies 

o f the  f le x o r  t ib ia e  motoneurons and th e i r  a sso c ia ted  premotor 

in te rneu rons (Hoyle and Burrow, 1973a, b; Burrows and Hoyle, 1973; 

Burrows 1973; Burrows and H orridge, 1974)#

In the  in v e s tig a tio n  o f th e  neuronal c o n tro l of th e  movement, 

m odelling of the  neuronal connections resp o n sib le  fo r  the  s p e c if ic  

behaviour p a tte rn s  i s  very  popular (Pearson, 1972; Pearson and l i e s ,  

1973; Burns, 1972; Burrows and H orridge, 1974 e t c . ) .  I t  was not 

thought th a t  the  in form ation  on the  d riv e  to  the  f le x o r  motoneurons was 

s u f f ic ie n t  to  j u s t i f y  th e  construction  of a model. However, any attem pt 

a t  m odelling the  inpu t connections o f th e  fem oral motoneurons must be 

based on the fo llow ing  in fo rm ation ,

l )  There is  not enough evidence about the n atu re  o f the  synaptic  

coupling between the  fem oral and t i b i a l  sensory in p u ts  and the  f le x o r  

motoneurons. The minimum la te n c y  fo r  p rop riocep tive^ -resistance  re flex e : 

in  the  m esothoracic le g  was found to  be 20 to  25 ms fo r  the f le x o r  axon 

F2. This suggests th a t  a t  le a s t  one in terneu ron  was in te rp o sed  as was 

a lso  found by Burrows and Horridge. (1974) who showed in  the  m etathoracic 

leg  th a t  r e f le x  pathways and p a tte rn e d  c e n tra l  commands a c t on
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in te rn eu ro n s and not d i r e c t ly  on the  motoneurons. I t  i s  not y e t 

known c e r ta in ly  i f  th e re  are  monosynaptic connections between fem oral 

motoneurons and le g  sensory  in p u ts . Wilson (1965) found a la te n c y  of 

lo ss  than 10 ms in  th e  p ro p rio cep tiv e  le g  re f le x e s  of the  cockroach 

and he suspected monosynaptic connection w ith  many p a r a l l e l  inpu t f ib r e s  

converging on a few motoneurons* Such monosynaptic coupling w ith  a 

ganglion ic  de lay  o f approxim ately 10 msec, has been rep o rted  in  lo c u s t 

on ly  between wing s t r e tc h  re ce p to rs  and f l ig h t  motoneurons (Bui'rows,

1975). In the  cockroach, Wong and Pearson (1976) have a lso  d iscovered 

a monosynaptic r e f le x  between the  tro c h a n te ra l  p a i r -p la te  a f fe re n t and 

th e  slow depressor neuron.

2) There i s  no d i r e c t  synap tic  coupling between m esothoracic f le x o r  

motoneurons ( W ilson, 1977). No evidence was found by Hoyle and 

Burrows (1973a) fo r  e i th e r  d i r e c t ly  or in d ir e c t ly  m ediated c ross  e x c i ta t io n  

or in h ib i t io n  between any o f the  d i f f e r e n t  types o f f le x o r  neurons in  th e  

m etathoracic  ganglion in  s p ite  of t h e i r  s trong  s y n e rg is tic  behavioural 

a c tio n . They suggested th a t  the  sy n e rg is tic  a c tio n  o f many f le x o r  

motoneurons is  not achieved by c lo se  coupling of the  motoneuronal le v e l  

but by inpu ts  from higher in te rn eu ro n s which are  e i th e r  common or are  

them selves c lo se ly  coupled. This i s  in  c o n tra s t to  the  motoneurons o f 

o th e r m u ltip le  innervated  in se c t  m uscles, fo r  example those involved in  

f l i g h t ,  in  which e le c tro to n ic  coupling between the motoneurons them selves 

i s  im plicated  (Kendig, 1968; B entley , 1969b). Monosynaptic 

in te rco n n ec tio n s  were found between motoneurons of th e  c ra y fish  claw 

m uscles. Three neurons whose a c t iv i ty  c o n tr ib u te s  to  c lo sin g  the  claw -  

th e  F ast (FCE) and the  Slow (SCE) C loser E x c ito rs  and th e  Opener 

In h ib ito r s  (Ol) -  are  linked  by m utual e x c ita to ry  synapses (Wiens and 

Atwood, 1978),
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3) There i s  no in form ation  about th e  synaptic in te rco n n ec tio n s  between 

motoneurons o f a n ta g o n is tic  fem oral muscles in  the  m esothoracic ganglion . 

However the  a s so c ia tio n s  between th e  ex tensor and d i f f e r e n t  c la s se s  o f 

f le x o r  motoneurons were described  by Hoyle and Burrows (1973a, b) in  the  

m etathoracic  ganglion . They found a  p o s itiv e  feedback between th ese  

neurons w ith  a la te n c y  o f 20 -  25 ms which suggests th a t  th e re  are  one 

o r more in tern eu ro n s in te rp o sed  between the ex tensor and f le x o r  

motoneurons,

4) The e x c ita to ry  f le x o r  motoneurons can be sep ara ted  in to  four groups 

according to  the  way in  which th ey  fu n c tio n  in  re f le x e s  and walking 

( f ig .  7.1A, B).

A) Axons F I , F2 and Ml which a c tiv a te  m ainly the  proxim al and 

middle f le x o rs .  Ml and F2 are  a c tiv e  in  long la s t in g  bursts*,

B) Axons F6, F5 and M3 which a c t iv a te  e x c lu s iv e ly  the  d i s t a l  f le x o r  

u s u a lly  do so w ith  sh o rt b u rs ts .

C) Axons S I, S2 and S3 are  resp o n sib le  fo r  the  to n ic  a c t iv i ty  o f 

th e  whole f le x o r ,

D) Axons F3, F4 and M2 have high th re sh o ld s  and a re  probably  used 

only  in  extreme ca se s .

The fu n c tio n a l se p a ra tio n  between f le x o r  motoneurons would 

suggest th a t  th e re  a re  fo u r d i f f e r e n t  in terneui'ons (or groups o f 

in te rn e u ro n s) which d riv e  the  motoneurons in  each group. The only  way 

to  o b ta in  more accu ra te  in form ation  about th is  kind of o rg an iza tio n  i s  

to  record  in t r a c e l lu la r ly  from th e  c e l l  bodies w ith in  th ese  groups.

This grouping of inpu ts  w i l l  be co n fii’med i f  common in p u ts  are  found 

e x c lu s iv e ly  between the  motoneurons in  eadi group. In the  m etathoracic 

le g  Burrows and Horridge (1974) found by record ing  sirau ltaneously  from 

the  slow ex tensor (SETi) and th e  P o s te r io r  In term ediate  (P IF lT i), the  

P o s te r io r  F ast (PFFlTi) o r L a te ra l F ast ( ll 'F lT i)  f le x o r  motoneurons
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th a t  a l l  th re e  motoneurons, but c e r ta in ly  not a l l  f le x o r s ,  rece iv e  

IPSP's when th e re  are EPSP's to  th e  SETi, and v ice v e rsa , so th a t  one 

record  resem bles a m irro r image o f the  o th e r* The th re e  motoneurons 

described  above (two F ast and one In te rm ed ia te) could be homologous to  

e i th e r  group A or group B, Hoyle and Burrows (1973b) d escribed  four 

d i f f e r e n t  fu n c tio n a l in tern eu ro n s connected w ith  th e  m etathoracic  f le x o rs .  

However fu r th e r  in v e s tig a tio n  is  req u ired  to  re v e a l more about the 

in terneu rons which d riv e  the  m esothoracic f le x o r  t ib ia e  neurons.

The conclusion  th a t  the  slow motoneurons are  d riven  s e p a ra te ly , 

which was obtained  by reco rd in g  p e r ip h e ra lly , was confirmed by Burrows 

and Horridge (1974) in  the  m etathoracic  ganglion reco rd in g  in t r a c e l lu la r ly  

from th e  c e l l  bodies o f th e  slow motoneurons. They found th a t  the f a s t  

and slow motoneurons must always be ex c ited  by sep ara te  In terneurons 

which derive  th e i r  e x c i ta t io n  from phasic  and to n ic  re c e p to rs ,

5) The f le x o r  motoneurons are a c tiv e  in  re s is ta n c e  re f le x e s  when the 

i p s i l a t e r a l  leg  is  s tim u la ted  but th e  c o n tr a la te ra l  re f le x e s  o f th ese  

neurons seem to  be very  weak. Therefore i t  seems th a t  the  reg u la r  

a l te rn a t io n  o f th e  two s id es  in  walking i s  c e n t r a l ly  coo rd in a ted .

However s ince i t  has been shown th a t  i p s i l a t e r a l  r e f le x e s  are  can ce lled  

o r reversed  during  some c e n tr a l ly  produced behavioural motor p a tte rn s  

and sw itch ing  o f re f le x e s  has a lso  been found, i t  is  prem ature to  claim  

th a t  cross re f le x e s  are  no t im portant in  w alking, VHiether the cross  

re f le x e s  are  as weak in  a w alking anim al as th ey  are  in  a qu iescen t one 

i s  a su b jec t fo r  f u r th e r  in v e s t ig a t io n . A lo c u s t w alking on a 

tre a d m ill  is  a good p re p a ra tio n  in  which to  study  fu r th e r  the  fu n c tio n  

o f re f le x e s  during  w alking. For in stan ce  cross re f le x e s  can be 

in v e s tig a te d  by imposing a movement on the  immobilized c o n tr a la te r a l  

t i b i a  and record ing  the  e f f e c ts  o f th is  movement on the  motor p a tte rn  

produced in  the  i p s i l a t e r a l  le g  w hile the rem aining four leg s  can walk 

on th e  tre a d m ill .
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R esistance re f le x e s  and the  motor p a tte rn  produced by a 

te th e re d  lo cu s t w alking on th e  tre a d m ill  were m ainly used to  a c t iv a te  

the  f le x o r  neurons in  o rder to  s tudy  the  way which th i s  la rg e  number 

o f axons is  used ( f ig .  7.1A and B). However since th e re  i s  a la rg e  

number o f neurons th e re  i s  s t i l l  the  p o s s ib i l i ty  th a t  some of them may 

operate  in  a d i f f e r e n t  manner during  o th er behavioural motor p a t te rn s .

To complete th i s  s tudy i t  would be necessary  to  in v e s tig a te  th ese  

p o s s ib i l i t i e s  f u r th e r .  For example, how do leg  sensory  inpu ts  o th er 

than  the  CO, such as the  coxal p ro p rio c ep to rs , in flu en ce  the a c t iv i ty  

o f f le x o r motoneurons. This would be answered by imposing a le v â t io n -  

dep ression  or p ro trac tio n ™ re trac tio n  movement on the  femur of a f ix ed  

lo c u s t ,  or by im m obilizing the  femur and moving the  r e s t  of the  body 

through the  ap p ro p ria te  an g les , s ince  th e  method used here fo r  

id e n tify in g  the  f le x o r  motoneurons re q u ire s  a f ix ed  femur. The a c t iv i t y  

o f th e  f le x o r motoneurons could be fu r th e r  in v e s tig a te d  on the  tre a d m ill  

and i t  would be in te r e s t in g  to  f in d  out which f le x o r  motoneurons are 

m ainly used fo r  p o s tu ra l  read ju stm en ts . This could be achieved in  a 

te th e re d  lo cu s t by t i l t i n g  the tre a d m ill  or moving i t  sideways o r up and

down. Since the lo c a tio n s  of th e  axons on the  f le x o r  muscle are  known

i t  would a lso  be p o ss ib le  to  study , u s in g  myograms or neurograms, the

way which the  f le x o r  axons are  a c tiv a te d  in  a f re e  lo c u s t walking o t

c lim bing, th i s  is  not only  fo r th e  m esothoracic but a lso  fo r  the 

p ro th o rac ic  f le x o r  m uscle. Since th e re  are s tro n g  s im i la r i t ie s  between 

the  way in  which the  f le x o r  motoneurons respond in  re f le x e s  and the way 

in  which th ey  are  a c tiv a te d  during  w alking, i t  would be in te re s t in g  to  

f in d  out i f  the. in te rn eu ro n s which a c tiv a te  the  sep ara te  groups of 

f le x o r  motoneurons are  always a c tiv e  in  the  same manner, whether th ey  

are  ex c ited  by the  c e n tr a l  programme or by the p e r ip h e ra l sensory  in p u ts .
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