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Some Aspects o f Gyroscope S ta b ility  and Dynam ic Response

Summary

The thesis describes the results o f some investigations in to  the 

causes o f in s ta b ility  in free g im bal-m ounted gyroscopes. Considerable use 

has been made o f analogue and d ig ita l com putation to  iso la te  the effects o f 

various types o f reaction forces w h ich  may occur in the spin axis bearings, 

and the e ffe c t o f ro tor asymmetry is also considered.

Rotor asymmetry and va r ia tio n  o f rad ia l stiffness in the spin axis 

bearings were both found to g ive  rise to lin e a r d iffe re n tia l equations w ith  

pe riod ic  co e ffic ie n ts , and an a n a ly tic a l procedure o f general a p p lic a b il ity  

has been developed fo r ob ta in ing  the w id th  o f the unstable zones and the 

degree o f in s ta b ility  a t the param etric resonances. This procedure 

gives e x c e lle n t agreement w ith  the results o f d ire c t com puter so lu tion o f 

the equations o f m otion.

Slackness in the spin axis bearings o f a gyroscope d id  not appear, per 

se, to produce in s ta b ility . It may do so, however, as a secondary e ffe c t 

since forces w h ich  otherw ise w ou ld  be n e g lig ib le  become s ig n ific a n t when 

other restraints on shaft disp lacem ent are removed.

Tangentia l forces in the spin axis bearings in e ith e r d ire c tio n  were



found  to produce in s ta b ility  but d iffe re n t modes o f  v ib ra tion  were exc ited  

accord ing to the d ire c tio n  o f the forces.

The e ffe c t o f  cage acce lera tions in the spin axis bearings has been 

considered and has been shown to be sm a ll. L ikew ise, transverse couples 

w h ich  arise due to non u n ifo rm ity  o f the motor m agnetic f ie ld  when the 

iTotor t i lts  re la tive  to the s ta to r, have been shown to be n e g lig ib le .

Shaft and bearing com pliance has also been considered, m a in ly  from 

the po in t o f  v iew  o f natura l frequency and frequency response to ex te rn a lly  

app lied  torques.

Bearing e c c e n tr ic ity  has been shown to cause a forced nu ta tion  at 

the frequency o f ro ta tion  o f  the b a ll cage, g iv in g  rise to a sim ple resonance 

i f  this frequency should co in c id e  w ith  a natural frequency o f the gyro.

Experimental w ork has been carried  ou t w ith  a v iew  to establishing 

the nature o f  the dynam ic forces and de flec tions in the spin axis bearings. 

Because these are o f such small am plitude and o f  such a com plex w aveform , 

analysis o f the experim enta l results has proved d i f f ic u l t .  Sinusoidal 

fo rc ing  o f a casing con ta in ing  a gyro ro to r in order to  ob ta in  the frequency 

response o f  the shaft and bearing de flec tions was m oderately successful 

w h ile  the ro to r was sta tionary but no readings were possible w ith  the ro tor 

running because o f  a seem ingly random va ria tio n  in the response.
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C H A P TE R ], .

IN TR O D U C TIO N .

1 .1 . D escrip tion o f  the Problem

This w ork was in it ia te d  fo llo w in g  the pu b lica tio n  o f  a paper by 

(1 )Q u a rtle y  in w h ich  is described a series o f experiments on a model 

gyroscope w ith  the e ffe c tiv e  gim bal in e rtia  a i i ' i f ic ia l ly  increased.

This model w ork was carried  ou t because o f the occurrence o f se lf 

sustained nu ta tion  in a gyro foiTning part o f  a radar d e v ice . For security  

reasons no de ta ils  o f  this gy io  could be released but the se lf sustained 

nu ta tion  a t, o r very near to , the natura l frequency is said to have appeared 

a fte r m o d ifica tio n  o f  a previously sa tis factory gyroscope. The 

m od ifica tions consisted o f  the add ition  o f  torque motors and p ic k  offs to  the 

gim bals, low ering  the natura l frequency o f  the gyro by a fa c to r o f two to 

th ree . The in s ta b ility  was also associated w ith  slackness in the spin axis 

bearings, bu t even w ith  the bearings t ig h t the damping o f  a nu ta tiona l 

o s c illa tio n  was less than w ou ld  be expected from measurements o f  fr ic t io n  

a t the gim bal bearings.

The existence o f such a problem was confirm ed during discussions 

between the w r ite r  and members o f  s ta ff a t Messrs, Ferranti L td . ,  Edinburgh 

where s im ila r troub le  had been experienced during the "A n g lic is a tio n "  o f



a K earfo tt gym  o f Am erican design.

In this case the natura l frequency o f  nu ta tion  wos considerably low er 

than expected , by some 25% . During the discussion this gyro was referred 

to several times as having an angu la r momentum o f 5 m illio n  e .g .s . units at 

400 re v /sec , bu t c a lc u la tio n  o f  the po lar moment o f in e rtia  o f  the to to r gave 

this result on ly  i f  the recess fo r the sta tor co ils  was neg lected . The reduction 

in in e rtia  due to the recess was o f  the order o f  25% . Since the nutation 

frequency is proportiona l to ro to r angular momentum i t  seems possible (but 

scarce ly c red ib le ) tha t the discrepancy in natural frequency was due to an 

erro r in c a lc u la tin g  the po la r moment o f  in e rtia  o f  the m otor.

On the basis o f  these in te res ting , but ra ther vague, descriptions o f  a 

problem i t  was decided to study the behaviour o f  the gim bal mounted gyroscope 

under a va rie ty  o f  cond itions.

1 .2 . G eneral Approach

The firs t approach to the problem was to bu ild  sim ulations o f  the 

problem , o f various degrees o f  c o m p le x ity , on an analogue com puter.

A lthough this w ork  was restricted by lack  o f  com puting equipm ent i t  gave 

inva luab le  he lp  in v isua lis ing  the behaviour o f  the system and illu s tra tin g  the 

in te ra c tio n  o f  the d iffe re n t variab les in vo lve d .

O nce an apprec ia tion  o f the behaviour o f  a g iven system had been 

obta ined more de ta iled  w ork  was usually done by d ig ita l com puta tion . This



proved rather tim e consuming but gave more re lia b le  results.

In the analysis o f the problem the equations o f motion o f the 

system could be s im p lifie d  considerably since the v ib ra tions to be studied 

were o f small am plitude -  (z degree was quoted as a bad case fo r the 

K e a rfo tt-F e rran ti M k V I g y ro ). Hence moments o f in e rtia  could be regarded 

as constants, and the equations linearised by the usual small angle 

approxim ations sin 0 = 0  and cos 0  = 1. A  fu rthe r s im p lifica tio n  was 

made by assuming the o sc illa tio n s  to take p lace about a zero position in 

w h ich the spin axis and gim bal axes were m utua lly  at r ig h t angles. The 

ro tor centre o f g ra v ity  and tha t o f the inner gim bal were assumed to  be at 

the in tersection o f the gim bal axes, and products o f in e rtia  were assumed to 

be zero.

1 ,3  D e fin it io n  o f axes and basic equations.

A llow ance  is made in the analysis fo r displacem ent o f the rotor 

axis re la tiv e  to  its e q u ilib riu m  position in the inner g im ba l. It is 

assumed, however, tha t th is displacem ent consists o f ro ta tion  on ly  w ith  

no trans la tion  o f the ro tor centre o f g ra v ity  from the in te rsection  o f the 

gim bal axes. This introduces tw o more degrees o f freedom in to  the 

usual simple equations describ ing nu ta tion  and permits the in troduction  

o f various non lin e a ritie s  and disturbances In the in te rac tio n  between 

ro tor and inner g im b a l, F ig. 1. shows the con figu ra tion
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o f the gyro and the axes O X , G Y , O Z  w hich ore fixe d  in space. A x is  O X  

is the outer gimbal axis and in the zero displacement cond ition  O Y  and O Z  

co in c id e  w ith  the inner gimbal, axis and spin axis respective ly . ©  and
X

are displacements o f the gimbals about O X  and O Y  respective ly ,

w h ile  (p ^  and Cp are displacements o f the ro tor spin axis re la tiv e  to the

gim bals. The absolute displacements o f the ro tor spin axis are therefore

©  Cp / end ©  + i p •
^ x  T X y J y

The equations o f motion in a general form a re :-

' t A   ̂ + ^y] + ®

( 1 . 1)

( f x - V  + ® x ' 4) = 0

V  V   ̂V ' V  9 = °

where 1 = transverse moment o f in e rtia  o f the ro tor

J = po lar moment o f in e rtia  o f the rotor

M  = moment o f in e rtia  o f inner and outer gim bal about O X
X

M  = moment o f ine rtia  o f inner gimbal about O Y
y

J l ,  = angular v e lo c ity  o f spin o f the ro tor (assumed constant)

T. = torques about O X , O Y  transm itted from rotor to gimbals

v ia  the spin axis bearings and magnet! c f ie ld  o f motor.



^  “  out o f balance torque on ro tor about O X , O Y

*^3x y ~ c*t gîm bal bearings and externa l fo rc ing  torques.

The symbols in round brackets in d ica te  the variab les on w hich T ^ , T2 / T^ 

may depend.

A l l  the subsequent analyses re la te  to  p a rticu la r cases o f the equations 

set down above, except fo r the cases in w hich the ro tor is unsym m etrica l.

1 .4  Review o f lite ra tu re .

There is ve ry  l i t t le  lite ra tu re  d ire c t ly  concerned w ith  the p a rticu la r 

problem o f se lf sustained osc illa tio ns  in gyroscopes.

O n ly  the papers o f Quartley^^^ and Prentis^^^ deal w ith  the in fluence

(3) .o f the spin axis bearings on s ta b il ity ,  w h ile  tha t o f Magnus deals w ith  

in s ta b ility  due to  an unsym m etrical ro tor. An in te resting  paper by 

K h a r la m o v d is c u s s e s  the e ffects  o f d iffe re n t forms o f ro tor d r ive  In an 

asta tic  three gim bal gyroscope, but the question o f s ta b ility  is not considered.

How ever, i f  the  gim bal suspension o f the gyroscope is disregarded and 

a tten tio n  is focussed on the v ib ra tio n  o f a ro ta ting  body in bearings there is a 

vast amount o f lite ra tu re  a v a ila b le , some concerned w ith  w h ir lin g  due to  shaft 

e la s t ic ity ,  and some concerned w ith  the in fluence  o f bearing reactions on 

shaft v ib ra tio n .

In th is  la tte r group the m a jo rity  o f the w ork has been done on journal



bearings, both o il and gas lu b rica te d , but a ce rta in  amount o f  lite ra tu re  

exists concerned w ith  the e ffe c t o f  b a ll bearings on shaft v ib ra tio n .

Since this thesis is concerned p rim a rily  w ith  b a ll bearing gyroscopes, 

discussion w i l l  be lim ite d  to those papers concerned w ith  ba ll bearings, 

o r the v ib ra tions o f  shafts suppori'ed by ba ll bearings.

The author who has made the largest co n tribu tion  in this f ie ld  is 

probably Yamamoto ^

(5)
In his 1954 paper he deals m a in ly  w ith  the v ib ra tio n  o f  a simple 

v e r tic a l shaft carry ing  a s ing le  large d iam eter ro tor and supported in double 

row se lf a lig n in g  bearings.

Five main topics are discussed, v iz ,

(1) Synchranous backward w h ir l .

(2) Forward w h ir l a t the b a ll cage frequency.

(3) Backward w h ir l due to rad ia l stiffness va ria tio n  in the bearings,

(4) Various small am plitude  v ib ra tions due to m anufacturing enx>rs in 
the bearings.

(5) The e ffe c t o f bearing clearance in producing jump phenomena.

Yamamoto showed tha t synchronous backward precession, o r reverse

w h ir l a t the ro ta tiona l speed o f  the shaft^occurred on ly  when the ro to r was 

o ffse t a x ia lly  from midspan and the bearing pedestals had d iffe re n t stiffnesses 

in two d irec tions a t r ig h t angles.

Forward precession at the ba ll cage frequency was caused by bearing



e c c e n tr lc îiy  due to d iffe ren ce  in b a il d iam eters, this being s im ila r to the 

case discussed in S e c .6 .6 ,  o f  this thesis.

The backward precession due to rad ia l stiffness va ria tio n  in the 

bearings occurred at the frequency where is the b a ll cage

speed and 51 the shaft speed. This d iffe rence  frequency occurred because 

o f  the presence o f  ou t o f  ba lance forces and couples, but in the absence o f 

these the system is analogous to tha t de a lt w ith  in Chapter 7 o f  this thesis. 

Whereas the previous three types o f  v ib ra tion  were o f  large 

am plitude (0 ,0 2 0  in . approx. at resonance), sm aller am plitude v ib ra tions 

were also no ted , p a rtic u la r ly  at frequencies o f  3c0.j and -  S h   ̂ and

these were shown to be due to o v a lity  o f  the ba ll races, combined w ith  

unequal b a ll d iam ete i^.

Yamamoto’s fin a l chapte r shows the effects o f  bearing slackness in 

producing jump phenomena. The "hard spring" cha rac te ris tic  o f  the s lack 

bearing produced the usual form o f resonance cu rve , having a downward jump 

w ith  increasing frequency.

In his 1957 paper Yamamoto^*^^ deals w ith  a shaft ca rry ing  a s ing le  

ro to r and suppori'ed in s ing le  row rad ia l bearings in p lace o f  the se lf a lig n in g  

bearings used in his previous (1954) w o rk . These bearings placed restra in t 

on shaft d e fle c tio n , converting  the shaft in ve iy  app ioxim ate terms from the 

sim ply supported to the fixe d  end c o n d itio n . Due to c learance and com pliance



in the bearing the restra in ing m om ent/shaft slope cha rac te ris tic  is 

approxim ate ly b i- l in e a r  as in F ig .2 . Due to m isalignm ent o f the bearing 

housing bores, the undeflected shaft centre lin e  may not lie  in the centre 

o f the c learance cone and Yamamoto lists no few er than 25 possible forms 

o f the combined stiffness characte ris tics  o f a pa ir o f bearings. Since the 

ro tor was offse t from m id-span, the system had fou r degrees o f freedom 

corresponding to  la te ra l d e fle c tio n  and t i l t  o f the ro to r, each in W o planes 

at righ t angles. There were therefore fou r natural frequencies, speed 

dependent because o f the gyroscopic couples.

Yamamoto describes subharmonic osc illa tions  o f  o rder 2  and 

"Summed and d iffe re n tia l harmonic o s c illa tio n s ". These are param etric 

resonances w h ich  occu r a t speeds sa tis fy ing  the re la tion  pi ^  pj = 51 

where pi and pj are any two o f the natura l frequencies and J l  is the 

shaft speed. The v ibra tions o f  o rder 2  occu r when i = j .

These resonances d id  not occu r in his e a r lie r  w ork  w ith  se lf 

a lig n in g  bearings and were therefore due to  the restra in t imposed on shaft 

d e fle c tio n  by the s ing le  now rad ia l bearings. It was found tha t the speeds 

at w h ich  the resonances occurred were d iffe re n t a fte r d ism antling and 

reassembly, in d ica tin g  tha t m isalignm ent was a re levan t fa c to r.

In a the o re tica l discussion o f the v ibra tions Yamamoto assumes a 

n o n -lin e a r restoring ac tion  a t the bearings to be present in the x d ire c tio n  o f
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defiecH on^ but not in the y  d ire c tio n , and la te r shows tha t the n o n -iin e a r 

ac tion  must con ta in  p e rio d ic  terms a t shaft ro ta tion  frequency in order to 

e x c ite  sub-harm onic resonance.

The jump phenomenon was also found to be present in the 

subharmonic resonances, and was again o f the "hard spring" type -  i . e .  a 

downward jump in am plitude fo r increasing frequency.

Synchronous ba.cl<ward w h ir l was also noted a t two Speeds, and the 

am plitude was found to be in fluenced  by

(a) type o f  bearing .

(b) d ire c tio n a l non un ifo rm ity  o f pedestal stiffness.

(c) bearing f i t .

W ith  t ig h t ly  f i t te d ,  se lf a lig n in g  bearings, and un ifo rm ly  s t i f f  pedestals, 

this type o f  w h ir l was almost e n tire ly  suppressed bu t was always present w ith  

s ing le  new rad ia l bearings, irrespective  o f  the tightness o f  the bearing f i t  or 

the r ig id ity  o f the pedestals.

The stiffness va ria tio n  w h ich  causes the param etric resonance may 

arise in  the bearing o r in  the pedesta l. In the be arin g , the stiffness va r ia tio n  

may be due to va r ia tio n  in c le a ra n ce , and this v a ria tio n  is reduced to zero 

i f  the f i t  o f  the ou te r ring  in  the housing is so tig h t tha t c learance is zero in ai 

d ire c tio n s . Bearing stiffness va r ia tio n  may also be due to  m isalignm ent o f  

the bearing housings, unless s e lf a lig n in g  bearings are used.



To return to the lite ra tu re  w h ich  is more s p e c if ie d ly  re lated to

(3)gyroscopes, the paper by Magnus takes account o f in c lin a tio n  o f the 

inner gim bal from the orthogonal position and in fa c t takes this 

in c lin a tio n  as the p rin c ip a l independent va riab le  in considering s ta b il i ty .

Since increasing the inne r gim bal in c lin a tio n  reduces the natural 

frequency o f n u ta tio n , and the in s ta b ility  is a param etric resonance occu rring  

when the nu ta tion  frequency is near to the spin frequency, this type o f 

in s ta b ility  can on ly  arise when the gimbals are lig h t and the ro to r is short 

a x ia lly  in comparison w ith  its d iam eter.

The papers o f Q u a rtle y  and Prentis are based on assumptions o f spin 

axis bearing reactions more appropria te  to hydrodynam ic bearings than to bo ll 

bearings and indeed p ra c tic a lly  a ll o f  the w ork described by Q u a rtle y  was 

carried  out on a model in w h ich  a small gyroscope was coupled v ia  a p la in  

bearing to a large gîmbal mounted mass representing the e ffe c t o f added 

gim bal in e rtia . W h ile  Prentis shows tha t these assumptions result in a behaviour 

resembling tha t o f the o r ig in a l troublesome ba ll bearing gyro i t  is not y e t c le a r 

how tangen tia l forces o f the requis ite  magnitude and d ire c tio n  occur in a ba ll 

bearing.

The lite ra tu re  concern ing b a ll bearings is almost e xc lu s ive ly  devoted

to questions o f fa tig u e , lu b rica tio n  and w ear. W ith  p a rtic u la r reference to

(y)
gyroscopes Stratton describes improved methods o f bearing test and se lection  

w h ich  have g rea tly  improved bearing re lia b i l i ty .  Holmes^  ̂ describes



in s ta b ility  in cage m otion w h ich  seems to be due to d e fe c tive  lu b r ic a tio n .

(9)
Kharlamov develops the o re tica l expressions fo r the forces and 

moments ac tin g  on the inner race o f  an angular con tact ba ll bearing . 1 hese 

expressions in d ica te  tha t the rad ia l forces are a ffected by the t i l t  o f the 

inner race, and tha t the moments are a ffec ted  by the rad ia l d isp lacem ent.

When the equations o f m otion o f  a ro tor supported in a preloaded pa ir o f 

bearings are o b ta ine d , tak in g  account o f  these in te rac tions , the cross-coupling 

terms are found to disappear and the e ffe c t is sim ply eq u iva le n t to  an increase 

o f stiffness.

Theore tica l approaches to the problem o f param etric resonance in 

systems described by lin e a r d if fe re n tia l equations w ith  pe rio d ic  co e ffic ien ts  

date from Floquet^^^^ but i t  is o n ly  in com para tive ly  recent years tha t M o lk in^^ 

has developed reasonably s tra igh tfo rw ard  methods o f o b ta in in g  the cha racte r

is tic  exponents w h ich  de fine  the s ta b il ity  o f a system close to a param etric 

resonance, M a lk in 's  w ork  is discussed more fu lly  in  Chapter 8 o f this thesis,
/1 c\ /I / \

but the w ork o f Low is quoted by Parks could perhaps be m entioned here. 

Low is fo llow s the classical theory more c lose ly  in tha t he obtains the constant 

m a trix  C w h ich  re la tes the state ve c to r o f the system at tim e, t ,  X (t) to the state 

vec to r one period la te r , X (t -t T). The la te n t roots o f  the m a trix  C where 

X (t 4- T) = C .X (t)  must lie  w ith in  the u n it c irc le  i f  the system is to be s tab le .

The m atrix  C is ob ta ined by using a simple f i i^ t  o rder f in ite  d iffe re n ce



approxim ation to the d iffe re n tia ! equations o f  the system and invo lves a number 

o f m a trix  m u ltip lica tio n s  approx im ate ly  equal to the chosen number o f 

subdivisions o f the pe riod , gene ra lly  about 30.

A  re finem ent, due to Parks and James, has been described in a 

p riva te  com m unication . This re finem ent involves using a Runge-Kutto method 

o f f in d in g  the trans ition  m a trix  and pennits the use o f a sm alle r number o f 

subdivisions o f the pe riod , about 10 to  20.

The advantage o f  this method seems to be tha t i t  can deal w ith  cases 

where the am plitude o f  parameter f lu c tu a tio n  is large compared w ith  the mean 

va lue o f the param eter. M a lk in 's  method is lim ite d  in  its s tra igh tfo rw ard  

a p p lica tio n  to  the region w h e r e a s  de fined  in equations (8 .1 .)  is sm a ll.
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CHAPTER 2.

THE EFFECT OF ROTOR ASYMMETRY

(3)
I his analysis stems from a paper by Magnus . in this paper

Magnus considers the e ffects .of ro tor asymmetry on the s ta b ility  o f a

gimbal mounted gyro and develops a s ta b ility  c rite rio n  in terms o f a func tion

F (^  ) where ^  is the in c lin a tio n  o f the inner gimbal from the orthogonal

position. The func tion  F also contains the various moments o f in e rtia  o f

gimbals and ro tor and i f  its va lue  should lie  between the two ratios

max. or m in. transverse ro tor in e rtia  . . . . ,
 ----------;-----:------T-— r — r------------ -— —- the sysrem is unstable.po lar inert 10 or ro tor ^

2. 1 Analogue so lu tion o f  Magnus' equations.

In the w ork described here, the fo llo w in g  equations, derived from

those numbered (24) in the above paper, were chosen as being su itab le  fo r

s im ula tion on the lim ite d  analogue com puter a va ila b le  at the tim e .

Ù -  a J l u = £  j (Û +Sl u ) sin 2 9  » (ù -  JZu ) cos 2 
x r  y r ^  y r x r  * x r  yr ‘

(2 . 1)

u 4- b^l u = c6 (Û -TZu ) sin 2 IP 4- (u 4-dTu ) cos 2 U)] 
y r x r L x r  y r ‘ y r x r

where u , u are angular v e lo c it ie s  o f the ro tor about the axes O x  , G y  . 
x r yr r r

These axes are fixe d  to the ro to r and are the axes o f maximum and minimum 

transverse moment o f in e rtia  (See F ig , 3).

S \ is the angu la r v e lo c ity  o f  spin o f the ro to r and a , b , c , E are 

certa in  functions o f the ro tor and gîmbal inertias.
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CP (S the d isp lacem ent o f the ro tor about the axis and can be 

taken as S i f ,

For the purpose o f  the com puter Investiga tion  the fo llo w in g  

assumptions were made:™

b i i Z  = 0 . 6  - ^  =  0 .5

"Tran5vei*se" Ine rtia  o f  each, gimbaf 
-------------------------- J---------------------------    = 8

"P o la r” In e rtia  o f  Inner gim bal .------------------------------------------    =  2g

This leads to the fo llo w in g  values fo r the coefficients:™  

a = (2g -  0 .5 ) /(2 g  -t 0 .6 ) 

b = (2g - 0 .4 ) / ( 2 g  + 0 .5 )

^  = g /(2 g  4 -0 .6 ) 

c a  = g /(2 g  -t 0 .5 )

In the com puter diagram  F ig .4  the ve lo c itie s  U and are

abbreviated to x  and y re sp ec tive ly . Switches are provided to a llo w  fo r 

changes In sign and scale In a and b . Servo m u ltip lie r's  M ] and M 2  are 

connected to a 3 a m p lif ie r  o s c illa to r  loop to g ive  the sin 2 d l t  and cos 2 i l  t 

terms,

2 ,2 ,  Results o f S im ula tion

A  series o f  luns was taken fo r Increasing values o f the gimbal
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înerHa parameter g and F igs,5a -  5c show three results in w h ich  u is

p lo tted  against u For g = 0 a c irc u la r  p lo t is ob ta ined as w ould

be expected since & and c E both become zero and a sim ple harm onic

nu ta tion  o f frequency \Fab" is ob ta ined .

As g is increased the p lo t becomes hypotrochoîda l in nature , 

the X and y  wave forms con ta in in g  a main low frequency component o f 

frequency CÔ  w ith  a superimposed rip p le  o f frequency 2 . In

ad d itio n  the am plitude  ra tio  x /y  o f  the main components becomes s tead ily  

sm a lle r, the p lo t becom ing more and more elongated h o r iz o n ta lly . The 

e llip se  is traversed in an antic locl<w ise d ire c tio n .

For 0,21 g <1 0 .2 8  the plots have an.unstable saddle po in t form , 

and as g increases across the unstable region the séparatrices between the 

fou r possible modes o f  m otion change from a con figu ra tion  to .

In the unstable region the rip p le  frequency is 2 J l .

For g 0 . 28 the plots are ep itroch o ida l in na tu re , w ith  the low  

frequency e llipse  be ing travei*sed c lockw ise . 1 he e llipse  is e longated 

v e r t ic a lly  at f i î^ t  and as g Increases from 0 .2 8  the am plitude ra tio  x / y  o f 

the main component increases from ze ro . For h igh values o f gim bal in e rtia  

the plots lose th e ir  w e ll de fined  "e llip s e  r ip p le " shape and become a 

series o f in te r la c in g , non re p e titiv e  tra je c to ries . The low frequency ^ ^
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can be regarded as negative  fo r g ^ O . 2 8  and the ripp le  frequency can 

then s t i l l  be w ritte n  as 2 f  .

2 .3 ,  Analysis o f results -  S table Region.

To ob ta in  a physical p ic tu re  o f the motion o f  the gyroscope an 

axis transform ation is required to convert from the x r ,  y r  axes^ w h ich  are 

fixe d  to the ro to r, to a fixed  set o f  axes. In e ffe c t this superimposes an 

angu la r v e lo c ity  - f - ^ o n  the radius vec to r o f the -  u^ plot's, inspection

o f plots in the stable region suggest solutions in the fo llo w in g  fo n r i:-

1 1 1  
= X cos u) t -  X  cos (2 J l  4- ^  ) t ( i 4- a cos 2 W t)u 

x r
.. . .{ (2 ,2 ) 

u^^ =  Y  sin t  + y  sin (2 3̂1 + ^  ) t  (1 -t a cos 2 W t)

X , Y  are the amplitudes o f the main o s c illa t io n , w h ile  x ,  y  are the mean 

am plitudes o f the r ip p le . The qu an tity  a is the am plitude o f  t'he m odulation 

in the rip p le  w h ich  is no ticeab le  o n ly  near the unstable reg ion .

This can be rewritten:™

= X  cos ™ X cos (2314- ™ ™  cos (2314- 3 ) t  -  ^  cos (231 - ^  ) t

u  ̂=  Y  sin 60 t  4- y sin (2Jl4- (0 ) t  -  ^  sin (2314- 3^3  ̂) t  4-■— sin (23T -  ) t

(2 .3 )

r '  *  iu = A .i U  ) t ,  „,-i(2Si,, i.’ ),  ̂ J J (2 a * 3^' ),
x r  x r



1 /

where A  f  B = X  A “ B = Y

C + D  = *"X C “ D “ y

E 4- F

A . r e -  -

r  -  -x+ y  
2

m _ - x - y  
2 .

c _ a(” X4-y)
t  2

c _ “ Ci(x4-y) 
2

G  -  E H = F

as fo llo w s .The axis transform ation can be expressed as fo i lows

u 4- i u = ( u 4- j u (2 .4 )
X y x r  y r

where u ^  and u ^  are the angu la r v e lo c ity  components o f  the ro to r re la tiv e

to fixe d  axes.

i . e .  u + i u
X y

Since the ripp le  am plitudes are about 5 -  10% o f  the main am plitudes, C , E 

and G  w i l l  be n e g lig ib le , leav ing

X y

4- Fe j(3 l4- ) t  (2 .6 )

i .e .

= (A  + D)cosO f  + (B + H )c o s (^  -  2<?> ){■ + F cos(K! + 2 ^ ^ ) i'

• , ' 1 , (2.7)
u — (A  — D)sin(3 t 4- (B — ll)s  in ( ̂  —2 ^ ) t “  F sin ( ^  4- 2 ^  ) t

y  n n n
1

where (3 ^ is the nu ta tion  frequency, 31 4-

o r , s ince H = F ■ .



1 1
u = (A  + D 4- F COS 2e3 t)cos6>i'4- B cos - 2  6)

n n (2 7 )

1 1
u = (A  -  D "  F cos 2 iîi t)cos 6) t4- B sîn ( (3 -  2 )t

y  n n

In terms o f  the nu ta tion  frequency 6) and ro tor spin frequency 31 these 

become

u — i|^ X  4- Y  "  (x+ y)(l 4-a cos 2(^ù^ ^os (Z)̂ t 4- ^(X™ Y)cos(2';l- ^*^)t

u -  & i X  4- Y  4- (x4-y)(l4-a cos 2(^3 "3 l) t ) l sin^O t  4- ^(X-Y)sin(23%™ )t
y n n n

The m ajor component o f  th is m otion is the o s c illa tio n  w ith  frequency Ô 

w ith  unequal am plitudes in x and y  d ire c tio n s , and m odulated a t a 

frequency 2(Ù ^ “ 3 1 ) .  in add ition  a component a t frequency 2 31 -  ^

is present bu t w ith  a sm a lle r am p litude  (X  -  Y ) /2 .

2 .4 ,  Analysis o f solutions o f Magnus' equations by c u rv e - f it t in g .

E a rlie r in this w o rk , before the pattern o f  the so lu tion  had become 

apparent an attem pt was made to analyse the results by a curve f it t in g  

procedure, using a d ig ita l com puter. First a Deuce A lphacode programme 

was w ritte n  to solve Magnus* equations, and ob ta in  the solutions in a form 

su itab le  fo r fu rth e r processing. Since the various frequency components are 

non-com rnensurate, normal Fourier harmonic analysis is no t possible and a 

‘ least squares* method due to Prony^^^^ was u tilis e d . The sum o f  the squares 

o f the errors bet'ween actua l and ‘ fitte d * values o f  the ordinates is m inim ised 

and the smallness o f  the minimum is a measure o f  the success o f  the procedure

(2 .9 )



The results o f this analysis were not com ple te ly  sa tis fa c to iy , 

probably due to a non-optim um  cho ice o f step length in the so lu tion  o f  the 

equations, but were s u ff ic ie n t to show good agreement between the 

frequencies obta ined by this method and those shown in equations 2 .3 .

For example the equation obta ined by curve f it t in g  fo r g = 0 .1  was 

as fo llo w s ;-

u = g-0.0066t^^ .0595 cos 3.386t -  0 .0 6 ^  sîn 3.3860 
x r

- 0  9 1 7 0 4
+ e (0 .000 7  cos 1 6 .4 6 t -  0 .0008  sin 16.46v)

+ e“ °  (0.0005 cos 23.39t + 0.0052 sin 23.39t)

“ 1 • 46111
4- e ' (-0 .0 0 0 3  cos 3 1 .4 2 t -  0 .0004  sin 3 I .4 2 t)

]
whereOT has the a rb itra ry  va lue  10. Taking cO as 3 .3 8 6 , frequencies o f

approx im ate ly  2 3 7 . 4 - c 6 ^ ^ 2 ^  -  and 231 + 3 0 ^  are seen to be

present,

2 .5 .  Analysis o f  results -  unstable reg ion .

The em p irica l solutions ob ta ined in S e c .2 ,3  are concerned w ith  the 

stab le  region o f  the problem .

The unstable region occurred where the va lue  o f  the low  frequency

1 o
in the u u wavefoirns passed through zero . This corresponds

in fixe d  axes to the con d ition  tha t the  nu ta tion  frequency is equal to the spin 

frequency o f the ro to r, i . e .  65 ^ . F ig .6 . shows the nu ta tion  frequency
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tè ^ pi o f fed VO a base o f  gîmbûl îne rfîo  g and îndicafes a step a f fhe 

unsfabie reg ion .

The saddle po in t form o f fhe u , u plots in fhe unstable region 
^ x r  y r  ‘

ind icates fhe presence o f  two exponen tia ls / one w ith  a pos itive  index and 

one w ith  a negative  index. In ad d itio n  there is a ripp le  a t frequency 2 

The solutions w ou ld  the re fore  appear to be o f  the fo rm :-

U = A  + ~  cos 2511) + B -f ^  cos 2 J i t )

u ■ =  A  e ° '(a  -  ^  sin 2 S it) + B e ^  sin 2J i t )
y r  y A y  y  By

g iv in g  u = u + i ue r x r  y r

= «°' K + i A y )  + +

+ . - I "  + i

where a. -f = a a . -  a^ = -  a
1 2 x 1 2  y

b, + b - = b b^ "  b -  = -  bi 2 X 1 2  y

R elative to fixed  axes,

, . i J l fu = u - f j u  = e  . u
X y r

U =  g(a + iA )i-  j A ^) + ^  ^

+ + i B ) + h o '
X y  I 2

(2 .T i)

(2.12)

(2 .1 3 )



i . e .  f  p"
n = e ° I A  c o s J lt + i A  s in i lv  

X L  X I X | 3 J l t  ^

- A  s in & t  + i A  c o s ^ f  I ' ■ “ 2®y  i  y  e -c i

F b cos4l f 'f  i B s in J lt

^ u .L _ i -  \Sif
B s in i l t  + I B c o sT itl ^  ^2^y S y  J

i . e .  „ [  %
u -  0 ^ (A  c o s i l f  -  A  s în J tt)  f  e \ b  cosA lf -  B s in j l t )  4- (a +b^)cos<Jif 

X X y  X y 2 2

+ (a„ b,,) cos SS lt

u = e^^(A s în ü  t -f A  cos3% f) + e ^Vb s î n ^ f  + B c o s jtv  
y X y X y

+ (a^ "t" b^) s in &  f 4- (a„ b ^  sîn 3-8 f

(2 .15 )

a -  a a -Ï- a
1 X y X ybut = — 2—- 02 ”  — 2—

b “  b b 4- b
, =  ̂ y L _ y

2 2 2

a and b are small compared w ith  A  and B and hence a., 4- b., 
x , y  X/y X/y x^y i 1

W i l l  be n e g lig ib le / i . e .  the 3rd harmonic w i l l  have a very small am plitude 

Hence

x e ^ ' ( A  c o s i l f  "  A  sin JLt) 4- e (B cos J i t  -  B sin J i t )  
x  y  X y

4- 2 ( 0  4- a 4- b 4- b )cosS lt
(2 .16 )



9 2

y =: (A  s în ^ lt  + A  c o s J lt)  4- e (B s în J ït  + B c o s J lt)
X y X y

-  ‘l(a  4-a 4- b 4- b ) s în J lt  
" X y X y

Depending on the in it ia l cond itions / i t  w i l l  be possible to have

oF
transien t oscîîla tîons w h ich  d ive rge  im m ediate ly due to the e te rn i/ o r

transients w h ich  converge a t firs t due to the e term being dom inant but

a t
w h ich  f in a lly  d ive rge  as the e term becomes la rge.

2 .6 .  Values o f  the exponents a and b

These were ob ta ined  from the analogue com puter by feeding e ith e r 

the u^^ o r the u^^ signal in to a log a rith m ic  a m p lif ie r  and record ing the o u tp u t/ 

log u  ̂ / on a s trip  chart recorder. The mean slope o f the trace gave the 

exponents a and b . The in i t ia l  co n d ition  o f the com puter run was taken near 

the ex trem ity  o f  one o f  the séparatrices o f  the 'sadd le -po in t* diagram  (F ig .5 b ) 

so tha t a long i*un was a v a ila b le  w ith  a decreasing s ig n a l/ g iv in g  the nega tive  

exponent/ fo llo w e d  a fte r an in te rm edia te  stage by a portion  where the 

positive  exponent was dom inant. A  iy p ic a l ou tpu t from the loga rith m ic  

a m p lif ie r  is shown in F ig .7 ,

The values ob ta ined fo r the exponeni's are shown in Table 1 fo r various 

values o f the gim bal in e rtia  param eter g .

Table 1 /
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Table 1

Exponents (sec ) 1
9

negative positive  |

i ■ 
0 .2 2 0 .363  0 .380  I
0 .2 4 0 .5 04  0 .475

: 0 .2 5 0 .475  0 .4 45

0 .2 6 0 .2 76  0 .3 Ï7



2 .7  Frequency Response Analysis

Consideration o f the form o f the transien t response (Eqn. 2 .9 ) suggests 

tha t the response o f the unsymmetrical gyro to sinusoidal fo rc in g  torques on 

the gimbals w i l l  e x h ib it beating corresponding to the m odu la tion  o f the 

transient and may also show a subsidiary resonance a t the frequency 2 S i ^

In order to  ob ta in  the frequency response from a sim ula tion o f the unsymmel 

tr ic a l gyro i t  is necessary to  re w rite  Magnus' equations in terms o f fixe d  axes. 

This can e ithe r be done by substitu ting the axis transfo rm ation:”

u = 0  cos 'SI t -{' Q  sin t
x r  X y

Û *
u = ™ 0  sin SÎ i  + 6  cos Si t

y r  X y

in Magnus’ equations, or by de riva tio n  from firs t p rinc ip les  as fo llow s. 

Referring to  f ig .  3 , in w h ich  the  x r ,  y r ,  z r ,  axes are fix e d  to  the ro to r, the 

angular momenta o f the ro tor about these axes a re :-

h = 1  ( 0  cos'U t 4- 6  sin t)
x r  X  X  y

a o

h = 1 ( - 8  s in J b t 4" 0  cos 1)
y r y  X y

h -  J S I
z r

where 1 and 1 are the moments o f in e rtia  o f the ro tor about the x  and y 
X y r r

axes respective ly .

A bou t the fixe d  axes O X Y Z  ( f ig .  I) the momenta a re :-

h “  h cos JZ t  -  h sin 'R t
X x r y r

h = h s in j )  t 4- h cos t
y x r  y r

h = h = J S l
z z r
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/  ?
i .e .  h -  1 { Q cos^SI t  -r Q  s in 57 t cos52 t)

X X X y

“ I ( “ 0  s in” J Î t -Î- 0  s in J l r  cos 5 2 1) 
y X y

'x  'y  ^  X  X ^y (0 ^  c o s 2 5 ( r4 -&  s in 2 51 f)

I f  we le t
2

X

X
-r 1 J , 1 I î

y  = 1 and x  y = ri

2 2 

I is the mean transverse in e rtia  o f the ro tor and r Is a measure o f the 

asymmetry o Hence

h “  i Ô  + rl ( ©  cos 2 5 1 1 4 - 0  sin 2 J 7 t)
X X  X y

s im ila r ly  h = i ©  4- rl ( G sin 252 t ™ 0  cos 2521)
y  y X y

The rates o f change o f  momentum a re :-
0> (5 0 0 0 CO

h = 1 Ô  4- rl ( ©  cos 2 5 1 1 4- Q  sin 2v52 t)
X X  X y

4- 2 rffi(- 0  sin 2 57 t 4- O cos 2 5 1 1)
X y

h ~ I Ô 4- rl ( 0  sin 2 5 1 1 -  Q  cos 2 51 t)
‘ y y X y

4- 2rl51 ( ©  cos 251 t 4- G . sin 2 51 t)
X y

h = 0
z

Hence the torques on the ro tor are

©  4- h G
y

T
X )(

h Ô  
y z

4- h G
Z

T
y

a
= h -

y
h é

Z X
4- h 9

X

I
z

“  h
z 4 6 , , 4- h ©

y
where is the z component o f the angular v e lo c ity  o f the axes -  0.



i . e , T =  h 4- JJl©
X X y

T -  h ™ JJ29
y y X

Ï
z

= 0

ï  a n d  1 a r e  p r o v id e d  b y  in e r t i a  c o u p le s  fro m  t h e  g im b a ls  a n d  d a m p in g  
X y

torques at the gim bal bearings so tha t the equations o f motion o f the system 

become:™

( l - h M ) ô  4- R ©  4- ri (  0  cos 2 5 1  t 4- Ô  sin 2 5 1 1) (2 .1 7 )
X X y  g X X y

4- 2rl 51 (™ ©  sin 251 t 4- Q cos 2511) -  0
X y

( l 4 - M ) 0  ™ J 5 1 0  4- R ©  4- r l ( 0  sin 2 5 1 1 -  Ô  cos 252f)
y y X g y X y

+ 2riv5l ( Q  cos 2 5 1 1 4 - 0  sin2-51 t) = 0
X y

For the purpose o f frequency response analysis, fo rc ing  torques and can be

included on the righ t hand sides o f these equations.

In f ig .  8 , w h ich  shows the arrangement o f the analogue computer to  sim ulate

these equations, the  three a m p lif ie r o s c illa to r loop A S , A 9 , A lO  generates the 

signals cos 2 51 t  and sin 2 51 t and these d rive  the sei*vo m u lt ip lie r  shafts M i and 

M 2. A  small amount o f feedback, (through two potentiom eters in series to g ive  

fin e  con tro l) was app lied  across a m p lif ie r  A9 to g ive  constant am plitude signals, 

although th is is not shown in the diagram .
* =*

Since J i  was taken as 10 rad /sec , sca ling  the v e lo c it ie s  8  , Ô , as
X  y

» Û
(20 0  ) vo lts  and (20 G ) vo lts  a llow ed  the pe riod ic  terms, derived from the 

m u lt ip lie r  cups !A ™ ID and 2A ™ 2D , to  be summed at u n ity  gain in the 

am p lifie rs  A l l  and A12.
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The asymmetry c o e ffic ie n t r cou ld be then set using on ly  the two 

potentiom eters PI 1 and P I2 , and the system could be ra p id ly  sw itched trom 

the symmetrical to the unsymmetrical cond ition  by the sw itch S I.

The fo rc ing  "to rqu e " I  was app lied  to the s im ula tion by a Solartron 

transfer func tion  analyser, v ia  the potentiom eter Q 12 a t the input to 

a m p lifie r 3.

Frequency response curves o f Ô  ^  to T^ are shown in figures 9 and 10, 

both responses being fo r g ==0.15.

Fig. 9 shows the e ffe c t o f  an asymmetry c o e ff ic ie n t r = 0 .0 9 0 9 , w h ile  

f ig .  10 shows the response fo r a larger va lu e , r -  0 .2 .

The fu ll lines g ive  the average response o f the unsymmetrical gy ro ,

w h ile  the dotted lines g ive  the response in the symm etrical case.

The cha in dotted lines show the exten t o f the beating ind ica ted  by the 

"in -fd iase" meter o f the transfer fun c tion  analyser, the quadrature meter being 

nu lled  at the centre  o f its swing using the reference resolver o f the T. F. A .

The reading o f the reference resolver was taken as the average phase sh ift 

between the torque T^ and v e lo c ity  G  .

As the fo rc ing  frequency recedes from the spin frequency the ind ica ted  

beat am plitude is attenuated by the meters o f the T. F. A . , so tha t the beating 

is a c tu a lly  more extensive than ind ica ted  in figs . 9 and 10.

The main e ffe c t o f ro tor asymmetry is seen to be an increase in the heighl

o f the main resonance peak, coupled w ith  a displacem ent o f the peak towards
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the spin frequency . A t  the frequency 2 JC -  ^  where is the

natural frequency o f the symm etrical gyro , the am plitude response is reduced

by asymmetry. A  "hum p" appears in the am plitude response at a frequency

just less than i l  but th is  e ffe c t is obscured by the large beat am plitudes.

In the phase response (F ig . 10) the main e ffe c t,  apart from the sh ift

towards - i l  , is the large positive  phase sh ift produced a t about ^ ^ 1  = 0. 85.

Since the resonance peak occurs a t about ^ jS l~  ] .  15, the peak positive  phase

sh ift seems to occur a t 2 51 -  (b where cù is the resonant frequency o f the
n n

unsymmetrical gyro.

2 .8  Response to  a constant torque T
‘ ‘ X

For a symm etrical g y ro , w ith o u t dam ping, a constant torque sim ply 

produces a constant angu la r v e lo c ity  ©  ^  “  C  /  -^51 and 8 ^  = 0.

As is shown la te r, in section 6 .3 . 1, the in trodu c tion  o f damping torques

R ©  and R ©  gives G x  = and 0  y =g X g y  — —— —~̂jr *——” — ——
T ( J J l )  4- R^ T ( j 5 1 ) " t R "X 9 X g

Since R^ w i l l  g e n e ra lly  be small compared w ith  J , the e ffe c t o f 

damping is to  g ive  a small v e lo c ity  in the x d ire c tio n , and a small reduction  in 

the v e lo c ity

When the e ffe c t o f  asymmetry is taken into accoun t, i t  is found tha t 

and 8 ^  have o sc illa tio n s  at frequency 2 S i superimposed on th e ir  steady values 

F ig. 11 shows transients obta ined from the computer by app ly ing  a constant



(ci)

( b )
t

(a ) Amo ( b )  -  U N S Y M M E T R IC A L  R O TO R  
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PARAMETERS I / J  = 0 -5 5 ,  r  = O -O A O '9 ; o, = 0-15, Rq /J =  0 -S
V (T
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vo ltage  a t the input to  a m p lifie r 3 , to  represent a constant torque T^.

It is possible to ca lcu la te  the am plitude o f the steady state o sc illa tio n  by

substituting the fo llo w in g  expressions in equations 2. 17 :-

Q  ~ X  + X cos 2 t /  Q  ~ -  2 J l x  sin 2 t
X  " X

Q = Y  + y sin 2 J11, Ô  = 2 J l  y cos 2 J i t
^ y  '  y

X  and Y  can be token as the response o f the symmetrical gyro to  constant I  .

The expressions obta ined fo r x  and y are rather cumbersome^ but the fo llo w in g  

expression:-

2 1 r I
X =  X

J Jb  ' \ /  J + 4 ( 1  + M )(I + M  -  J)

is obtained when i t  is assumed tha t M  = M  -  M , y = x ,  R = 0.X y 9
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2 .9  Energy Analysis

Assessment o f the re la tive  s ta b ility  o f the simulated gyro under 

various conditions is not always easy, p a rtic u la r ly  i f  the transient w ave

forms are distorted by be a tin g / as in Fig. 12. In a d d itio n , the analysis 

o f pen recordings is tim e consuming and tedious.

in order to  study the e ffe c t o f va ry ing  gimbal ine rtia  on the s ta b ility  

o f the unsymmetrical gyro , the c ircu its  shown in Fig. 13 were added to 

the s im ula tion in order to  show the tim e va ria tio n  o f the k in e tic  energy 

E o f the nu ta tlona l o s c illa t io n , and the energy dissipated by dam ping, W. 

The k in e tic  energy E Is obta ined from the expression:- 

E = i  (M  0  ^ + M  8 ^ + 1  u b  + I u \ )
X X  y y X xR y yR '

and when the v e lo c it ie s  u u are expressed in terms o f 0  , Ô
xR yR X y

th is  becomes, fo r small displacements 0 ^ ,  0 ^ ,

Tl

E = 2  i (M  + 1) 8  + (M  + I) + r 1 j  ( Q  -  ) cos 2 J i t  + 2 0  B  sin2JTt!j
i :  X  '  X  y  y  I  X  y  x  y

2
The k in e tic  energy o f spin, is assumed constant and is not inc luded in E.

The energy W dissipated by damping is g iven by

dW = R  ( 8  ^ + 0  ^ ) 
a r  9  X y

When the symm etrical gyro osc illa tes  in the presence o f damping the

energy E fa lls  e xp o n e n tia lly  to ze ro , w h ile  the energy dissipated in dam ping,

W , rises exp o ne n tia lly  to a fin a l va lue  equal to  the in it ia l k in e tic  energy, L E*
1
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When i'he gyro is unsym m eirîca i, however^ energy may be fed in to  the 

nu ta tion  or removed from i t ,  and in the real gyro^ as d is tin c t from the sim ulation^ 

th is energy would reduce or increase the spin k in e tic  energy o f the ro tor. 

U ltim a te ly  this energy would be replaced by the d r iv in g  motor, or dissipated 

by the various resistances to spin. In the s im ula tion th is would be ind ica ted  

by a va lue o f W^^/lE d iffe re n t from u n ity . I f  W ^ iE  ^  1, then more energy has 

been absorbed by damping than was o r ig in a lly  present in the o s c illa tio n  and the 

ro tor asymmetry has reduced the s ta b ility  o f the gyro by feed ing energy in to  the 

n u ta tio n .

The main advantage o f th is approach is tha t a ll the in form ation from a 

computer run is conta ined in a s ing le reading o f a t the end o f the run and no 

pen recordings are necessary. A lso , the s im ulation may be damped s u ff ic ie n tly  

to obtain stable transients throughout.

2. 9. 1 E ffect o f gimbal in e rtia

Fig. 14 shows curves o f W ^ IE  p lo tted  to  a base o f gim bal Ine rtia  g. 

i t  appears tha t the destab ilis ing  e ffe c t o f ro tor asymmetry extends beyond the 

unstable zone into the region o f h igher gim bal ine rtia  fo r the case o f zero

in it ia l cond ition  on b  • Conversely i f  there is a zero in i t ia l  cond ition  on
y

the destab ilis ing  e ffe c t extends in to  the region o f low er gim bal ine rtias , 

being balanced by a s tab ilis ing  e ffe c t at high gim bal inertias.

These curves are unaltered by changing the sign o f  the in it ia l cond itions , 

or by in terchanging gim bal ine rtias.
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2 .9 .2  Effect o f in it ia l ro tor position

The curves o f f ig .  14 are obta ined by assuming that the transient starts 

when the ro tor is ly in g  w ith  its axis o f maximum transverse in e rtia  in the 

O X  d ire c tio n . Fig. 15 shows the e ffe c t o f vary ing  this In it ia l ro tor position^ 

fo r the two cases o f in it ia l g im bal v e lo c ity ,  a t a p a rticu la r va lue  o f gimbal 

in e rtia . This shows tha t the e ffe c t o f ro tor asymmetry can be s tab ilis ing  or 

destab ilis ing  accord ing to  the in it ia l ro tor pos ition , but fo r th is va lue  o f gim bal 

in e rtia , the average e ffe c t over a large number o f transients starting at random 

ro tor positions would be des tab ilis ing .

2. 9 .3  V a ria tio n  o f energy o f v ib ra tio n

A nother convenient measure o f the re la tive  s ta b ility  o f a v ib ra tin g  system 

under various cond itions is the rate o f change o f v ib ra tio n  energy, w h ich  comprises 

both k in e tic  and strain energy.

The energy fun c tion  is a p a rtic u la r case o f the Lyapunov V  func tion  since 

it  is pos itive  d e fin ite  fo r a ll values o f the state variab les but has the advantage 

over an a rb itra ry  V  func tion  tha t negative  dE /d t is a su ffic ie n t and a necessary 

cond ition  o f s ta b ility  whereas negative  d V /d t is on ly  a s u ffic ie n t c o n d itio n , in 

genera l. The qua n tity  E also has the v ir tu e  o f possessing physical s ign ifica nce  

but on the other hand may not lend its e lf to  a n a ly tica l treatm ent. Indeed, it  may 

not always be possible to  express the energy quantities a n a ly t ic a lly .

The va ria tio n  o f E is used more extens ive ly  in la te r chapters o f th is

thesis.
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2. 10 C haraci'eristic exponent

The question o f cha rac te ris tic  exponents is dea lt w ith  fu l ly  in

Chapter 8 o f th is  thesis^ but as a check on the results obtained in Sec. 2. 6 and

summarised in Table 1  ̂ computer runs were token using the set up shovv̂ n in

Figs. 8 and 12b. The damping was set to ze ro , and fo r g = 0 .2 4 , r = 0 .0909

it  was found tha t the positive  exponent had the va lue  0 .5 0 6 . This was obtained

» A.
by logarithm ic  p lo ttin g  o f the peak am plitudes in the 0  , c) waveforms, and

^ y
checked by logarithm ic  p lo ttin g  o f the energy qu an tity  E. Since E is a 

quadratic fun c tion  o f the angular ve lo c it ie s  6 ^ ,  6 ^ ,  the slope o f the log E /t 

graph Is double the va lue  o f the cha rac te ris tic  exponent.

2.11 Damping required to  s tab ilise  the system

W ith  the same settings as in the previous section the damping was 

adjusted using potentiom eters P 9 and P 10 (F ig . 8) u n til the  transient was 

a constant am plitude sine wave. A t th is  l im it o f s ta b ility  R /  J was found to
g ■

be 0 .5 .
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CHAPTERS.

THE EFFECT O F SLACKNESS A N D  T A N G E N T IA L  FORCES 

IN  THE ROTOR BEARINGS

(1) . .
The paper by Q u a rtle y  ind ica tes tha t ro to r bearing slackness was 

a con tribu to ry  cause o f  the in s ta b ility  he described. A lso he suggesi^ the 

existence o f  tange n tia l forces o f  the iype  w h ich  are known to cause “ o il 

w h ip " in hydrodynam ic bearings.

3 .1 .  Assumptions and equations o f  m otion

it  was decided in the present w ork  to investiga te  the e ffe c t o f ro to r 

bearings slackness assuming a ra ther d iffe re n t set o f  bearing reaction  forces. 

In the rad ia l d ire c tio n  the bearings are assumed to be e la s tic  outside the 

c learance w ith  the result tha t the restoring couple app lied  by the bearings 

to the ro to r is as shown in F ig . 16.

In a d d ition  a ta n g e n tia l fo rce  equal to y - ' times the rad ia l fo rce  is 

inc luded in the analysis and in  the fo llo w in g  equations the signs are such 

tha t p o s it iv e c o r re s p o n d s  to the ac tio n  o f  d iy  fr ic t io n  w h ile  negative  

corresponds to the d ire c tio n  o f  an " o i l  w h ip " fo rce .

The equations o f  m otion o f  the system are then:™

. . . .  . . k P a  ;xkF f/)
1 (0  CO ) + J j l (  © -h (Û ) -h     — 0

X * X y  * y b ‘ X f  (p

. . . .  . . k f(p  jj^kF ip

(3 .1 )
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kF iÙ^ j x  kF CP
M  Ô + R 0  "  R. (p “  — 7a~  = 0

X X  g X b ' X Y  y

k?Cp / i k F i ^
M 0  + R 6  - R C P  ^  -I- -  0

y y 9 y b y  f Y

3 .2 .  Analogue Simulavlon

I n i H o l when these equations were sim ulated on an analogue 

com puter, the tangen tia l fo rc e y ii kF was not taken Into consideration and 

the com puter set up shown in F ig . 17 was used to sim ulate bearing slackness.

A t firs t the analogue resuh's Ind ica ted tha t bearing slackness gave 

rise to In s ta b ility  In the system but the In s ta b ility  was eve n tu a lly  traced to 

dynam ic errors In the servo m u ltip lie rs . W ith  the "clearance** o r dead space

k42xF
adjusted to ze ro , the vo ltage  representing the restoring couple —y r —  was

T

p lo tted  against ^  on on oscilloscope as the transient took p la ce . An 

e ll ip t ic a l trace resu lted . In d ica tin g  a phase sh ift where none should have 

occu rred , since when the dead space a Is zero f  = (p . This cou ld 

perhaps have been overcome by s low ing down the so lu tion  tim e , o r adding a 

proportion o f  (p ^  and ^  to Cp ^  and ^  respective ly  to provide phase* 

advanced signals to d r ive  the m u ltip lie rs  M  1 and M  2 . "Q u a rte r squares" 

o r tim e d iv is ion  m u ltip lie rs  w ith  a h igher frequency response were not 

a v a ila b le . A t this s ta g e , how ever. It  was decided to d iscontinue the 

analogue Investiga tion  o f  this case.
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3 .3 .  D ig ita l so lu tion  o f ‘^degd space" equaHons.

The equations were then pmgramrned fo r so lu tion  on a Sirius 

d ig ita l machine^ using Sirius autocode. The programme uses a lib ra ry  sub

rou tine  based on a 4 th  order Runge-Kutta method. As w ith  a ll s tep -by-s tep  

n u m e r ic a ! in teg ra tion  procedures^ the accuracy increases as the step length 

is reduced; and some experim ent w ith  the step length was required to ob ta in  

s u ff ic ie n t resolution o f the high frequency components in' the re la tive  

displacements 0  w ith o u t making the com putation unduly long.

In order to ascertain the e ffe c t o f  the dead space on the s ta b ility  o f  the 

system the to ta l energy at each step was ca lcu la te d . This energy is equal to 

the sum o f the k in e tic  energies o f  the moving masses and the stra in energy due 

to defo irnation o f the e las tic  bearings ; I . e . : -

Ô ^ + M  ê  ^ + i ( ô  -i- (P +(P h  + k p - (3 .2 )' " L x x  y y x ‘ x y y

Also ; a t each step the rate o f  d iss ipa tion o f  energy by damping in the 

bearings was ca lcu la ted  from the expression:-

(3 .3 )

This rate was in tegra ted along w ith  the o ther de riva tives by the 

Runge-Kutta piocess. to g ive  the qu an tity  W representing the to ta l energy 

dissipated by damping since the beg inn ing o f the trans ien t. The quan tity  

W  + E was then compared w ith  the in it ia l energy in the system at the start
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o f the trans ien t. The quantities E/IE and(W 4- E/iE  appear in the tables 

o f com puter results; o f w h ich  a sample is shown in tab le  2 . i t  can be seen 

that(yV + E^IE does not depart s ig n if ic a n tly  from u n ity ; and i t  d id  not do so 

under any o f the conditions o f dead space o r gimbal in e rtia . This Is taken 

to mean tha t a ll the energy quan tities  hove been accounted fo iy both in 

storage and d iss ipa tion ; and the q u a n tity lW  f  E/ f̂E therefore acts as a va luab le  

check on the accuracy o f  the com puta tion .

The rate o f  change o f  E /lE  is used as a measure o f  the re la tive  

s ta b ility  o f the system under va ry ing  conditions o f  gim bal in e rtia  ; dead space;

etc,

Since the Sirius was extrem ely sfoW; and was a "s e lf-d r iv e "  m achine; 

the process o f  experim enting w ith  step length to m a in ta in  accuracy became 

ve iy  tim e consuming. A  com puting service became a va ila b le  in M anchester; 

using a much la rger and faster A tlas  m achine; so the problem was re-programmed 

fo r so lu tion  on A t I as ; using the Kutto-M em on method fo r in teg ra ting  the 

equations. A t the same tim e the programme was extended to take account 

o f the tangen tia l forces in the bearings ; described in section 3,1 ,

The Kutta-M erson method autom atica l ly  adjusts the step length to 

m a in ta in  the trunca tion  error w ith in  a va lue  e chosen by the programmer.

I f  the error exceeds this va lue the machine halves the step length chosen by 

the programmer and repeats the in te g ra tio n . I f  a fte r three successive
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reductions o f  the step length the accuracy is not ach ieved ; e is replaced 

by tw ice  the smallest error in the foregoing tr ia ls . On the o the r hand; i f  

the e rro r is less than e / i 00 the step length is doubled. A  p r in t o f the 

programme and some ty p ic a l resuhrs are shown in A ppend ix 1 ,

3 .4 .  Results o f  d ig ita l so lu tion .

F ig. 18. shows a 'typ ica l p lo t o f  log E/IE against tim e fo r

2
M x M  = 1 .5  grn.cm .sec cuiwes be ing drawn fo r , i i  po s itive ; negative  

/  /

and zerO; both w ith  and w ith o u t dead space. S im ila r plots were obta ined 

fo r a range o f values o f  gim bal in e rtia .

Throughout 'this series o f  computations the damping was held constant; 

the in it ia l v e lo c iiy  o f  the gimbals was 0 .5  rad/sec in the Ô  x: d ire c tio n  

and the In it ia l re la tiv e  d isp lacem ent o r ro tor and gimbals was 10 ‘ rad Ians ; 

i . e .  h a lf  the dead space radius. The ro to r was assumed to be at resr 

in i t ia l ly  so tha t the in i t ia l  re la tiv e  v e lo c ity  was -  0 .5  rad /sec.

These plots show tha t fo r the parameters chosen the in trodu c tion  o f  

dead space makes the system more stable o r less unstab le ; irrespec dve o f 

the va lue o f  .

3 .5 .  E ffect o f  tangen tia l forces

in F ig . l? .  the va lue  o f  log (E /lE ) at 20 rn lilise c . from the start o r 

the transient is plo 'tted against g im bal in e rtia  M  fo r y 4, p o s itive ; nega tive  

and zerO; both w ith  and w ith o u t dead space. Damping is he ld cons'tant
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th roughout.

W here no dead space is present^ the In troduction  o f tangen tia l

forces In e ith e r d ire c tio n  makes the system less stable than be fore .

This Is also t'ro.. . .he case where dead space Is present provided

M > "2 .5 . For M  2 ,5  and J.X negative^ the system Is less stable than fo r

zero tangen tia l force^ but the curve fo ry t t  pos itive  crosses the curve fo r

yU zero several times In the range 0 , 2 M ‘̂ 2 , 5 ,

A l l  the curves appear to show a reduction In s ta b lln y  w ith  Increasing

hh but as Ind ica ted In thenexJ* section some reduction Is to be expected,

3 .6 .  E ffect o f glrnbgl Ine rtia

Consideration o f  a sim ple one degree o f freedom system o f mass U\,

e la s tic ity  K and viscous damping executing a transient v ib ra tion  

â t
X -  Ae cos(mt +  /  Ind icates tha t the to ta l energy (strain 4- k in e tic ) Is

g iven by the expression:-

p 9/̂  f" 9
E =  i  KA e“ “ ‘  U 4 d cos2(mt -  d s in2 (m t + f  )J  (3 .4 )

where
I K  R 

A  =  R /2M , m M  ^ ^ 2  d =

Hence, omîfH: d ie sinusoïdal terms

log (E /lE ) =  - 2 A t  (3 .5 )
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A  p lo t o f log (E /;" ;  against tim e w ould therefore be a s tra igh t lin e  o f siope 

“  2 A  w ith  a sinusoidal va ria tion  o f frequency 2m superimposed. Since 

~ R /2M , i f  R is kept constant and M  increased the log (E /lE ) plots w i l l  

become less steep.

By analogy in F ig , 19 the va lue o f log E/IE a t 20 ms. w i l l  approach 

zero os M  becomes la rge .

3 .7 . E ffect o f in it ia l conditions

Since cuI'ves 1 -  6 in F ig , |9 . are drav/n w ith  constant in i t ia l  v e lo c ity  

in the transient^ os M  increases the in it ia l k in e tic  energy in the v ib ra tion  

increases. The am plitude o f  the resulting transient is therefore increased 

and the dead space becomes sm alle r in re la tion  to the to ta l excursion o f the 

ro tor shaft across the bearing . Hence, each curve in the set fo r "s la ck " 

bearings (4 -  6) approaches the corresponding curve in the set fo r " t ig h t"  

bearings (1 -  3) cs M  is increased.

A lso shown on F ig, 19, is curve 7 w h ich  shows the va ria tio n  o f 

log (E /IE) a t 20 ms. w ith  M  f o r ^  po s itive , zero in it ia l v e lo c ity ,  but on 

in it ia l va lue o f  (Û — 3 x 1 0  * radians. I .e .  10 ' radians outside the dead
 ̂ X

7
space. A l l  the v ib ra tions therefore start w ith  the same energy x  2 x  10 x

. - 4 2 .
(10 ) -  0,1 gm .cm . This curve lies below  curve 4 fo r a ll values o f  M > 0 .3 5 ,

For curve 4 the in it ia l energy is v  M  x  (0 .5 )^  = ^  and points on curves 4 

and 7 w i l l  represent the same in it ia l energy when M  -  0 .8 .
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A  fu rthe r series o f runs was contem plated, in w h ich  the in it ia l 

impulse o r momentum M  Ô  ^  w ou ld have been held constant, but i t  was fe lt  

to be o f doubtfu l va lue .

The e ffe c t o f va iy tng  the in it ia l g im bal v e lo c ity  was also s tud ied ,

. ■ 2 
the results fo r a constant gim bal in e rtia  = 1 grn.cm .sec being shown

in F ig .20. This shows again tha t the system w ith  dead space is always more

stable than tha t w ith o u t dead space and shows also tha t os the in it ia l v e lo c ity

increases the e ffe c t o f  dead space decreases, since the dead space then becomes

small in comparison w ith  the am plitude o f the re la tive  m otion beiween shaft

and bearing ,

3 .8 .  Modes o f  v ib ra tio n

Figs, 21 ™ 25 show some sample ploi-s o f the re la tiv e  disp lacem ent 

between ro to r and g im b a l, ob ta ined by d ig ita l com puta tion . The various 

motions can be regarded as ly in g  between the fo llo w in g  lim it in g  cases.

(a) Rotor " fre e " This mode appeal's in F ig. 21, where the transient has 

decayed inside the c learance c irc le  o r dead zone. In the absence o f  damping 

the m otion w ould be a forward precession a t frequency J S l/ ]  -  284 c /s  fo r 

the parameters used.

(b) G im bals fixe d  -  no dead zone

‘ A
Putting Ô X “  G = 0 the equations o f m otion becom e:-
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4  t

1 0  4" J^(ô 4- |< (0 — 0
I X t y * X

(3 .6 )
i LÙ -  J Ü 0  + k 0  = 0

t y I X   ̂ y

By assuming ^  “  x  cos pt^ (Û ^  ~ y  sin pt i t  can be shown tha t the two 

natural frequencies are 364 c /s  and 649 c /s , the h igher frequency g iv ing  a 

forward precession and the low er frequency a backward precession. F ig .24 

shows transients fo r this case w ith  values o f  o f 0 ,1 ,  -  0.1 and zero.

For = 0.1 the low er frequency mode w ith  backward precession 

is exc ited  and the o the r mode in h ib ite d  w h ile  the reverse is the case fo r 

y6L = - 0 . 1 .  For 0 both frequencies are present in the waveform .

F ig .25 shows the e ffe c t o f in troducing  dead zone w hich  lowers the 

frequencies because o f the reduction in e ffe c tiv e  stiffness bu t the in h ib it io n  

o f  one mode and accentua tion  o f  the o ther is s t i l l  e v id e n t fo r M  = -  0 .1 .y U



CHAPTER 4 .

THE EFFECT O F "O IL -W H IP " FORCES

4 .1 .  Assumptions and equations o f motion

. (2)Fig. 26 shows the bearing reaction forces assumed by Prentis in 

his work on the problem put forward by Q uart! ey^^ ^ . These "forces are 

o f  a type appropria te to a hydrodynam ic bearing , and are known to cause 

" o i l-w h ip "  v ib ra tio n  in ce rta in  circum stances.

W ith  these assumptions regarding the forces in the spin axis bearings, 

the equations o f  m otion o f  the gyroscope becom e:-

1(6 + e ) + 29 1^6 ~ jA (è + è ) -H ^ i i0 = o
Î X  X * x  - ^ y  y  ‘ y

I (6 + 9 ) + 2 'i) + jsi((p + é )+ L^Jl 0 = 0
'  I  y  y  » y  i X  X   ̂ X

Mê  + f è - 2 ^  I  + S) i ^J l  6 = 0
X X  i X  ̂ y

M© + f é  -2-^ l^ch  -  9 l^J icp  =0
y  y   ̂ y  x

where ^  is a spin axis bearing param eter,

is h a lf the ax ia l p itch  o f  the spin axis bearings, 

f  is a damping c o e ff ic ie n t representing fr ic t io n  at the gim bal bearings. 

These are the equations g iven  by Prentis in his paper except tha t the 

signs o f the ^  terms in the 3rd and 4 th  equations have been corrected

It should also be noted tha t Prentis has used a le ft handed set o f axes, w h ich  

affects the signs o f  the gyroscopic couples.
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4 .2 ,  A nalogue sîm ula iîon

F ig . 27 shows the com puter set up used to solve the above equations, 

in add ition  to checking a few sample poini's in Prentis* s ta b ility

cha rt, the com puter was used to sim ulate a gyro w ith  para metal's s im ila r to

2
those used in o th e r sections o f  this thesis v iz ,  J = 1 .525 gm. cm .sec ;

2 2 2 
1 = 2 ,1 5  g m .c .m .s e c  ; M  = 1 .4  gm .sfh.sec ; M  = 5 .6  gm .cm ,sec ;X /  y

S ï  = 2514 rod /sec.

The s ta b ility  l im it  was ob ta ined from the com puter and the results 

are shown in F ig . 28 . This shows the amount o f g im bal damping required to 

g ive  a simple harm onic transient fo r a g iven  va lue o f the spin axis bearing 

parameter y&L where . The g im bal damping is also

non dimensional, i . e .  % =

t canSince the param eter varies inverse ly w ith  c lea rance , it

be seen tha t the gyro is least stab le when the bearings are s la ck , a t least 

fo r 0 .1 .

A lso shown in F ig .28 is a curve o f nu ta tion  frequency, showing a 

considerable reduction  in frequency as the bearings become s lacke r.

F ig .29 shows a set o f  transients fo r the conditions = 0 .1

^  = 0 . 5 .  The shaft tra fe c to iy  in the bearing , represented by the

Cj) ^  p lo t shows a high frequency o s c illa tio n  superimposed on the main 

tra je c to ry , and th is frequency was.found to be the nu ta tion  frequency o f the 

free ro to r, v iz ,  J / l / l .
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CHAPTERS.

POSSIBLE SOURCES O F T A N G E N T IA L  FORCES O N  THE ROTOR

5.1 . E ffect o f magnetic f ie ld  or the d r iv in g  motor

F ig .30 relates to a ro tor t i l te d  a t an angle to the m agnetic 

axis o f the s ta to r. A t the instant being considered it  is assumed tha t the 

displacem ent is in the plane o f  the m agnetic f ie ld  set up in the ro tor 

by the three phase sta to r. The tangen tia l force in tens ity  due to the 

m agnetic f ie ld  w i l l  va ty  along the length o f the ro to r due to the va ria tio n  

in a ir  gap g caused by the disp lacem ent . This va ria tio n  w i l l  be 

n o n -lin e a r, and may be represented as fo llo w s :-

F (g ) = F ^ +  A g ~ + A  ^  - (5 .1 )
u y ^  dg

where F(g) is the tangen tia l fo rce  per u n it length along one edge o f  the 

ro to r, Fq is the va lue o f F a t the mean gap, ĝ  ̂ and A g  = g -  g^ =

F ig ,30 shows the va ria tio n  o f these three components o f  F along the length 

o f  the ro to r, a t both upper and low er edges. The arrows ind ica te  the 

d ire c tio n  o f  the force components as they would appear in a plan v iew  o f 

the ro tor.

/ i g  d oF
It can be seen tha t w h ile  F^ and ^ s i m p l y  produce d riv in g

torque about the ro to r spin axis the A  g ^  teim  produces a torque T ^  

about a v e it ic a l transverse ax is , w h e re :- .
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4 0

Tm = 2 j .  Fxdx

= 2 / i û  g  X d x  
■' d g

^  y x '

■ T  Ï  ? <=■«
The qua n tity  dP can be re la ted to the va ria tio n  in to ta l motor torque w ith

dg
a ir  gap under conditions where the a ir  gap is uniform  along the length o f the 

m otor.

The torque about the spin axis 

Ts =  2R /  Fdx

and tak ing  F as constant,

T = 4  i R F

and ^  = 4 1 R ~  (5 .3 )
dg dg

d I 
d o

can be measured from to rq u e /a ir  gap cuives o f the motor and ty p ic a l

( 11} d T
values, taken from a paper by Te a re g ive  about 30 gm . cm /thou at

0 .025  in . a ir  gap.



Using this va lue in the expression 

gives

’= 1 Cp gm . cm , fo r 1 = R =  1 in .

5 .2 .  D ire c tio n  o f T --------------  — --------—m

For any con figu ra tion  o f gyroscope, w hether the ro tor surrounds

the sta tor o r v ice  versa the sense o f T is the same as tha t o f  the torque
m ‘

produced by " o i l  w h ip " forces in the spin axis bearings,

5 .3 .  V a ria tio n  o f  Tm w ith  ro ta tion  o f ro to r.

The above analysis holds fo r the instant when the ro ta ting  m agnetic 

f ie ld  is in the same plane as the disp lacem ent l9 . When the m agnetic 

f ie ld  is a t r ig h t angles to the plane o f  Cp , Tm w i l l  be ze ro , so tha t Tm may

L  

2
10^ cp

be represented approx im ate ly  by T ^  “  — 2 -------   ̂ cos(2»Jlt -  0( )
»|

W here 0> = tan — — is the angle between the planes o f  ( f  and
ijP  X

and t  is the angle between the plane o f the ro ta ting  f ie ld  and the

plane o f CÛ , Resolving T in to  torques about the O X , G Y  axes gives 
r  B X  m ‘

'x  2

(5.5)

-SL, i 1 4- cos 2(511 -  K ) i cosmy ^ Ll—



5 .4  Effect o f type o f motor

The above analysis w i l l  app ly  to synchronous hysteresis motors and also to 

asynchronous in d jà îo n  motors. In a D .C . motor the m agnetic f ie ld  does not 

ro tate and the transverse m agnetic torques T ^ ^  and T ^ ^  w i l l  not be pe riod ic  w ith  

tim e , depending on ly  on the o rie n ta tion  o f the displacem ent (p re la tive  to the 

magnetic f ie ld .

5 .5  K inem atic  analysis o f angu la r con tac t ba ll bearing

This investigates the po ss ib ility  o f the existence in ba ll bearings o f forces

. (2) . .
o f the type w hich  produce " o i l  w h ip " in journal bearings. Prentis in his 

analysis assumes tha t the bearing reaction  force has a rad ia l component proportiona l 

to  the rad ia l re la tiv e  v e lo c ity  and a tange n tia l component proportiona l to re la tive  

rad ia l d isp lacem ent, (see F ig . 26). The fo llo w in g  approxim ate analysis investigates 

possible effects due to angular a cce le ra tion  o f the ba ll cage about the axis o f 

shaft ro ta tion . A ngu la r v e lo c it ie s  and acce lera tions o f the cage about other axes 

are not considered.

In an angular con tact ba ll bearing , the angular v e lo c ity  o f the cage about 

the spin axis o f the sha ft, assuming pure ro ll in g , is a func tion  o f the con tact ang le .

I . e.

S I - S i  (1 ™ d cos G) (5 .6 )
c ^  -g

where is the cage speed, G /  Is the shaft speed, d is the ba il d iam eter,

D the p itch  c irc le  d iam eter o f the ba lls and Q is the angle o f con tact.



I f  the angle o f con tact Q varies due to angular displacements o f the ro tor about 

axes transverse to the spin ax is , th is w i l l  tend to produce changes in the angular- 

v e lo c ity  o f the cage, The fo llo w in g  analysis seeks to establish a re la tionsh ip

between the angular acce le ra tion  ^  and the angular v e lo c ity  o f the spin axis
a

re la tive  to the inner g im b a l, CÇ .

F ig. 31 (a) shows a cross section o f a ba il in con tact w ith  the races, the 

d iffe rence  between b a ll and race curvatures being exaggerated. C. and are 

the centres o f curvature o f inner and ou ter races respective ly . i f  ro tor spin is 

ignored one possible k inem atic  model o f the ro to r- in n e r gimbal assembly is shown 

in f ig .  31 (b ). As shown, no re la tiv e  angu la r displacem ent CO transverse to  the 

spin axis is possible, but i t  can take p lace  i f  the outer races are free to move a x ia lly ,  

due fo r instance to  e las tic  d e fle c tio n  o f preload springs or the inner gim bal itse lf. 

F ig. 32 shows one quarter o f f ig .  31 (b ), in its o r ig in a l and de flec ted  positions.

O  is a po in t on the spin ax is , m idway between the bearings, and the displacem ent ^

1 ] 
moves the po in t C. to  C .. As a result the po in t C moves a x ia lly  to  C and the 

' I I ‘ o o
•j

d istance C represents the a x ia l d e fle c tio n  o f the bearing o u te r race away from

O . A t the opposite side o f the same bearing , c learance w i l l  appear, and the

cage speed w il l  be m a in ly determ ined by cond itions at the loaded side. The

angular acce le ra tion  o f the cage is obta ined by d iffe re n tia tin g  eqn. 5 .6 ,  g iv in g

J l  = d sin 0 ,  Ô r \
c 2 D ( )

where ©  is the angle o f con tac t a t the loaded side o f the bearing. Referring to
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1  ̂
f ig .  32 aga in ,C . C, ^  I  (0  ̂ and i*he p ro jec tion  o f C. C. pe rpend icu la r,to  the

spin axis is approxim ate ly C. C. cos c4 .

A lso ,

C. C.^ cos = Q (cos 9  "  cos 0  )
t 1 o

where (9^ is the angle o f con tact in the unloaded cond ition ,

i .e .  1 (p cos p\ — a (cos ^  -» cos 0 ^ )

and L (p cos = - a  sin 0  , ©

Taking the a x ia l p itch  o f the  bearings as L = 2 % cos oL ^

-  -  2a sin 0   ̂ ©
T

and substitu ting in eqn. 5 .7  gives

^ C =  - 5 2  . d . L ®  (5 .8 )
T  D" ‘

fo r Barden 34 ~ 5B bearings, a x ia lly  p itched at 2 .2 5  ins, and a shaft speed

o f 400 re v /se c .
® o

= "  2514 . 0 .1 2 5  . 2 .2 5  CO
2 0 ,3 88  2 X 0.01

= "  4 5 ,700^ad /sec

It w i l l  be seen tha t th is e ffe c t depends strongly on the con form ity  o f the race

curvatures w ith  the ba ll cu rva tu re , i .e .  the distance a = C .  C . C on fo rm ity  is
1 o

spec ififed  by g iv in g  the radius o f cus*vature o f the race as a percentage o f the bo ll 

radius so tha t a change o f radius o f  race curvature from 52% to 54% ba ll radius 

makes 100% change in the va lue  o f a. The va lue  o f a used in the num erical 

w ork above assumes tha t the con fo rm ity  is 54%.



5 .6  E ffect o f cage acce le ra tion

Fig. 33 shows the d irections o f the forces and couples acting  on the cage

and b a lls , and Fig : 33 shows a line a r system equ iva lent to shaft, cage and gimba;

and are the masses o f cage and balls respective ly and 1̂  ̂ is the

to ta l moment o f in e rtia  o f those bails considered to be subject to the angular

acce le ra tion  i • r is the p itch  c irc le  radius o f the balls and r, is the 
b p b

ro llin g  radius - b a l l  radius r. cos 0  .

and are the reactions exerted on the balls by the shaft and gimbal 

respective ly . Taking moments about the unknown reactions,

R = 1 F (M + M, ) SX r r, + i, 1
s K—  L  c b c p b b b-^

R = 1  fCM + M n  52 r r, -  1, <X ,
g U c b ' ^c p b b b

b

and since OC . = 0  2 . r
b C D

(5 .9 )

'b

\  -A .C  '■p T a  \  . . m  (5 .10 )
 2   -

Assuming tha t 3 ba ils out o f the to ta l o f 6 are in con tact and subject

2
to the angular acce le ra tion  G4 and pu tting  = M|^k^ where

k,  ̂ = 2

^ " r  1
» . - ü ç j p  L “ c » “ b (=■” >
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Subsi-îïui'îng values appropria te to the Barden-34  5B bearing gives

R = — '2.9.9- . } ] L  0 .002 + 0.00063 (1 +  J  ) .
 ̂ 2 X 386 .4  2^_o J

5 COS 2ù
i.e .  R = 0. 032 Cp |b. and R -  0 .0285  0  lb. 

s * g

The sense o f the corresponding force ac ting  on the shaft is the same as tha t due to 

the wedge action  in a hydrodynam ic bearing.

On the other hand the fo rce  ac ting  on the gim bal due to cage acce le ra tion  

is in the same sense as tha t on the ro tor whereas in the case o f the hydrodynam ic 

bearing the forces on shaft and bearing are in opposite senses.

The resultant o f reactions S .,  S , a t the three bails in con tact can be

3
shown to  be 2S.j ac ting  at a radius o f, r . ,  where r. Is the radius o f the path o f

con tact on the inner race, and s im ila r ly  the resultant o f 2 3 '^

3 ]
the radius w- ** • S ince S. = R the to ta l torque on the ro tor about the spin axis 

2 o I 3 s ^

is 2S^ X l^ r .  = 3 S ĵt , as would be expected. More im portant, however is the

2
torque about the transverse axis w h ich  w i l l  be 2 5 x L = g- R L where L is the a x ia l

distance between the bearings. It can be shown tha t i f  2 ba lls are assumed in

con tac t the above moment w i l l  be 3 R L and fo r 1 ba il in con tact w i l l  be R L,

ignoring  the m inor va ria tio n  in 1  ̂ due to  the d iffe re n t number o f ba lls subject to

angular a cce le ra tio n .

A  check on the d ire c tio n  o f the moment R L shows tha t it acts on the
s

ro tor in the same d ire c tio n  as the gyroscopic couple produced by the angular 

v e lo c ity  (0  ̂ so tha t in the case o f a fixed  casing or g im bals, the e ffe c t o f cage 

acce le ra tion  is the same as an increase in po lar moment o f ine rtia  o f the ro tor.



For an a x ia l p itch  L = 2 .2 5  in , po lar moment o f in e rtia  J -  1 .525 gm.

2
cm. sec and ro tor speed 400 rev /sec ,

R L = 0.0721 cp lb . in .
5

and the gyroscopic couple J 0 1 vp = 3 .3 3  (p lb. in .

The e ffe c t o f cage acce le ra tion  is therefore o f the order o f 2% o f the 

gyroscopic couple . When the gimbals are fre e , the gyroscopic couple is 

proportiona l to 8  f  (p w h ile  the e ffe c t o f cage acce le ra tion  remains 

proportiona l to (j) .

5 .7  Effect o f bearing slackness

A nother possible cause o f cage acce le ra tion  is the reduction in rad ia l 

load and fr ic t io n  as the shaft passes across the clearance in a s lack bearing, 

i t  w i l l  be p a rtic u la r ly  s ig n ifica n t in the upper bearing o f a v e rtic a l shaft gyro 

where the rad ia l load w i l l  reduce to  zero when the shaft is in the centre o f the 

c learance and the thrust load w i l l  be sm all, or zero.

Two opposite e ffects are possible depending on the construction o f the 

bearing.

If  the bearing is made w ith  the inner race separable, the cage and balls 

w i l l  be re ta ined by the outer race and w i l l  slow down as the shaft and inner race 

pass across the c learance.

However, i f  the bearing is made w ith  the outer race separable the cage 

w il l  tend to speed up during the passage o f the shaft across the c learance. On 

subsequent con tact the cage w i l l  im part impulses to  shaft and gimbals as it  regains



its "e p ic y c lîc "  speed.

The e ffe c t Is not re a d liy  analysed since the magnitude o f the e ffe c t depends 

on the tim e o f passage across the c learance and the fr ic t io n  torques acting  on the 

cage w hich w i l l  vary w ith  the position o f the shaft. The e ffe c t w i l l  be genera lly  

s im ila r to tha t described in section 3. 1 and form ulated in equations 3. 1.

The bearing w ith  inner race separable w i l l  g ive  an e ffe c t s im ila r to 

positive in equations 3 .1 . and w ith  the ou ter race separable w i l l  be negative .



3 4

CHAPTER 6.

THE EFFECT OF SHAFT A N D  BEARING COM PLIANCE 

in this analysis I t  Is assumed tha t the ro tor bearings an d /o r shaft are 

e la s tic . O n ly  those modes o f  v ib ra tio n  are considered In w h ich the ro to r 

centre o f g ra v ity  remains at the Intersection o f the gimbal bearing axes.

The ro tor spin axis Is assumed to rotate through angles (p ^  and (|) ^

^  (12) 
re la tiv e  to the Inner g im ba l. I his Is the case d e a lt w ith  by Maunder

from the po in t o f v iew  o f natura l frequency,

6.1 . Frequency response analysis

In this section the frequency response o f the gyro to app lied  fo rc ing

torques on the gimbals w i l l  be considered.

The equations o f  m otion a re :-

I (G  ) + j & ( 6  + cp ) + + k = 0
X  ̂ X y ‘ y b x  ̂ x

“  ) -  J J t ( é  + 6  ) + R, 0  + k #  = 0
y ' y  X '  X b î y  I y

M l )  + R ©  ~ R, 3  -  i< Cp = ï
X X  g x  b x I X X

M 8  4 - R 0  " R ,  0  - k ( P = Ty y Q y  b ' - y   ̂ y y

where i l  -  angular v e lo c ity  o f sp in .

T^ = app lied  fo rc ing  torque about the ou ter gimbal axis.

T^ = app lied  fo rc ing  torque about the inner gim bal axis.

(6 . 1)



I f  and T are s inuso ida l, o f frequency &) rod Ians/sec, the custornoiy

substitu tion o f d /d t  ^  j can be made.- The equations can then be

w ritte n  in m atrix  form as:- 
1“  o
Ik  f  Rui - O  I 
I

-  J*SL j cb 

I — k — R|̂  j i i  

0

j j l j  Ù jE) 1 J j].
h ' i  1» I

k 4- R|^jd) “ -  j J l . i ^ i i f y l j o  I

0 Rg 4- \ c i 0 I N  I ' J

— k — R; j ^ 0 R 4- j ü) M
9 ' y K l  N

(6.2)

For T = 0 , the fourth equation gives

(0 = ip liiW y  6 y
' y k + R|̂ i a  /

and the th ird .

tp  =
I X

X
R

g X

R^i Ù  ‘ k -t Rj î

Substitu ting these in the firs t and second equations and m u ltip ly in g  throughout 

by k + R ^jù  gives

r '  9 -  -  n
I I a I (k+Rg^ { ( k f  R^ jO -  ü ) l )  ( R - t j ô M J

X

tR , k^+je3(R ) l  
b ‘ g y "

j*)i(k-tR^[<^)-t(k‘tR|̂ {ii) -  zj^l)(R H-pUM p|

U
&

X

y

FT
T

X

I k+Rj^ I 

— J jib

g

(6 .3 )

y \
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Using the abbrev ia tions:-  

a b
X y

o a
X y

the transfer functions are:

^ ' x

X

^ y
_ l i

é x i: *’>'1
a

' y i
1 X

h x ° y |

and
3r

•>xl

X
1 a
1 X 
1

b
y

t x
a

y

c .a  -  d,b
 X

a a “  b b 
X y X  y

d .a  “  c .b
>V X

a a -  b b 
X y X y

S im ila rly  i t  con be shown tha t:

0 X
“d .a  -  c .b

y y

and

T a a - b b
y X y X y

& d . b + c .aJ y _  X X

y
a a ”  b b 

X  y X y

(6 .4 )

I f  the damping is assumed to be zero these transfer functions can be non- 

d irnensionalised" as fo !lo w s . First the requisite power o f  J is extracted so 

tha t a ll o the r îne iiia s  appear d iv ide d  by J and the foslow ing in e rtia  ratios



are defined i = x -  y -   ̂ Y /J

Then die requisite power o f is extracted so tha t a ll frequencies are

referred to I .e .  L = f  and k / J ^ l “  = p^.

The transfer functions then reduce to:~

r  2 9 2 _ 2
J ia  i f/x i ! T  -  r ' f  (£ -  d) -FÜ - Î

X _ ■ U U ly 1 y
P r2 3

X
r  2 „ 2 f 2,., . ô n '2 , . ^  . '}~\
| ( £  -  f “ )(£  -  p ) _ ;  Y )  ,P. -  r ' f  ■

P  2 „  2 ^ o f '  2 /. , \
M  i/y \ {£ - d)(£ - f )̂ + _ Y f I

y _   ̂ u  x  i ^  ix  J

\ ( £  -  d ) ( £  -  ;
L  x V  -  IX J p  ly -

4
P

Ü x  L I X  J L  i y  ‘ j  j

4
P

1(12'̂  _ f2)(j2̂ _ f2)_;2f2 .  f?! |
L X y L IX J  i  iy  ,-J

y    ‘- ‘-J *j-=' ' ' I  j  y \  j i i - i

T r--" 2 ^ 2 g 0 9^ 2 ,. \ 2 ,„, V
y  | / P  _  A / P  .... (i+x) r 2 u p ( r r y )  _  k

l ) x   ̂ L fx ' j  L  iy  j . 4

(6 .5 )

57



6 . 2 . G enera l form o f frequency response curves

6 .2 .1 .  A m p litude :

The equation ( £  -  d )  A  -  -  A A i i l d  -f^>=  0
X y L IX J l  ly J

gives d ie  poles o f the transfer functions^ I .e .  the natura l frequencies o f  the

gyro . S ince ( £ -  r ) ( £  -  ^ ) ~ r r j p  -  d h ^ d liz )  _ y ) ; ;  „  cub ic
X y  C IX J  iy

9
func tion  o f  r there w i l l  be three natura l frequencies. The bracketed parts

A A  ^

r  r Î # r  V  ; , *  * î * ,Of the nurneraroî-s or and are quadratics in r and g ive  rv/o zeros.
I X y

Because o f  the fa c to r j f  outside the brackets there is another zero at

zero frequency. ,

A t zero frequency -—ÿ——  and —^  q ^ 0  both u n ity  as w ou ld  be
X y

exp ected .

A t  very  h igh frequency^ o n ly  the highest powem o f f  need be considered.

J-S®' I
Under these conditions — and the high frequency asymptote on a Bode

k  jU
p lo t has a slope o f  -  1. S im ila rly   -j- - - - , In the case o f

‘y
JilQ  JJZA 4

„ y _    y both tend to the va lue ------- 7-  bu t w ith  opposite signs
T i U , .r \6  * ‘ ^

X y  I x y ( j f )

in d ica tin g  tha t the asymptote slope is -  6 .

6 .2 .2 .  Phase:

For —Y—~ and -   ̂ the phase s h ift tends to zero a t low

 ̂ y
frequency and on passing through each natura l frequency there Is a phase sh ift 

o f  “  180°y so tha t a t ve iy  high frequency the to ta l phase lag is 540 degrees.



in the C Q s e  o f —ÿ   and the p h a s e  sh irt diagram  Is more
X 'y  ^

com plex. A t zero frequency the phase sh ift Is + 90 and at each naturel

frequency the phase sh ift changes by -  180^. A t each zero o f the transfer

fun c tion  the phase changes by -r 180^ so tha t the form o f the phase sh ift

curve depends on the re la tiv e  d isposition o f  the poles and zeros. A t high

frequency the phase s h ift tends to -  90^.

6 .3 .  The e ffe c t o f damping

6 .3 .1 .  A t zero Irequency .

In the absence o f  damping^ os shown in the preceding section^ the 

gim bal to w h ich  torque Is app lied  does not move In the d ire c tio n  o f tha t torque 

and the o th e r gim bal moves at a rate proportiona l to the to rque . 1 he steady 

state behaviour in the presence o f  damping can be ob ta ined by pu tting  

Up “  6) = Q and = 0 in equations 6.1 .

ience

j j l t )  + k (p = 0
y ' X

j 6l U  -r k  0  = 0
X   ̂ y

Rg 0% “  k (p -  T
4 X  X

Rg@ "  k 0  = T
y  !  y  y

(6 .6 .)



w

I .e .  Rg J d l ü
X y X

J
j j l S  4- Rg (9 = T

X y y

giving

X 1 .".AdZ . _ 2
\  =  %9 Tx "  Ty

+ Rg

and

0  =  X I  Tx + RgTy

(J '^ i)  + Rg"

c V -  %  U y  _ J j ;
,o r ly  -  0 ,  / 1  • ^ p 'T - ^ 2 -

X X

(6 .7 )
I ,' -,- _  n ky'x _  j J 2  0 y  _  Rg

a n d - r o r q - 0 ,  ^  “  g j , ) 2  + Rg? / y ( ja i ) 2  + Rg-^

6 .3 .2 .  A t o th e r f requencies

The e ffe c t o f  damping w i l l  be to l im it  am plitudes a t the three natura l 

frequencies and also prevent the am plitude  responses o f  '"x  and

— — A dropping to ze ro , I he phase sh irt graphs v /Id  become continuous

y 0
Instead o f having step changes o f  -  180 ,

6 .4 .  Frequency response curves from analogue s im u la tion

F ig .34. shows an analogue com puter s im u la tion  o f  a gyro w ith  

com pliance between ro to r and g im b a l. The frequency response curves shown
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in Fig. 35 were obtained by fo rc ing  the s im ulation w ith  a transfer function  

analyser in a manner s im ila r to  tha t described in sec. 2, 7.

The three resonances .can be c le a rly  seen in the response o f both 

gimbal v e lo c it ie s  to  app lied  torque at the outer gimbal^ and the lower 

frequency zero is also apparent in the curves o f . The e ffe c t o f the
!

X

upper zero is masked by its p rox im ity  to  the th ird  natural frequency.
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6 .4 . 1 A lte rn a tiv e  method o f ob ta in ing  the frequency response

The frequency response can also be obtained num erica lly  by inve rtin g

the m atrix  on the le ft hand side o f equation 6 .2 . The resu lting  4 x 4  complex

m atrix  contains the response o f each o f the displacements ^  y ’ ^ y

to  each o f the torques T , T , T , T where T , T are fo rc ing  torques 
^ rx ry x  y rx ry ^ ^

app lied  to the ro tor -  assumed zero in equation 6 .2 .

Since the m atrix  to be inverted is com plex, i t  is necessary to  convert 

it  in to  a real m atrix  o f double the size before inversion and select the 

appropria te quarters o f the  inverted m atrix  to  g ive  the real and im aginary parts 

o f the result.

i .e .  i f  A  -I- jB is the o r ig in a l m atrix  and C + jD its inverse then

(A  +  }B) (C f}D )  = 1 + jO  

i .e .  AC -  BD = 1; BC + AD «  O

It can easily  be shown tha t i f  the m atrix

A  -  B

B

is inve rted , the result is the m atrix

A

D

A ppend ix  4 shows an A lg o l programme w hich carries out th is process 

fo r the case o f the sym m etrical gyro w ith  com pliant shaft or bearings. A



ty p ic a l set o f results is also shown. Use o f the "tim e  now" procedure has 

ind ica ted  tha t the inversion process takes approxim ate ly 2 to  3 seconds fo r 

th is  size o f m a trix . S ince the ICT 1905 computer used fo r th is problem is 

a tim e sharing m achine, the ac tua l com puting tim e may be even less.

Bearing in mind tha t the process gives the am plitude and phase 

re la tions between the torques and displacements plus a hard copy o f the 

results it  can be seen to compare very favourab ly  w ith  the analogue com pu te r/ 

transfer func tion  analyser approach, in w hich a s ing le  response o f one 

displacem ent to  one torque may take 30 seconds or more to  ob ta in . Agreem ent 

between the d ig ita l results and the analogue results p lo tted  in f ig .  35 is 

e xce lle n t.

6 .4 .2  Extension to  the unsymmetrical case

By inc lud ing  the e ffe c t o f  sha ft/bea ring  com pliance in equations 

2 .1 7  and m anipu la ting  the resu lting equations in a fashion s im ila r to  section

8 .2 ,  the equations fo r the forced unsymmetrical gyro w ith  a f le x ib le  shaft 

can be expressed in the form

dy = ay 4- yU f  y + T
ÏÏT

where a is a com plex frequency dependent m atrix -  and f  is a m atrix 

con ta in ing  pe riod ic  terms a t the frequency 2 J l . T is a column vec to r o f 

sinusoidal fo rc ing  torques frequency (3 and yU is a small constant, here



0 4

proportiona l to the asymmetry o f the ro tor. Expressing y  in a series fo rm :"

2 2
y = + /*y i  y + --------

and pu tting  = 0 gives yo as the solu tion o f 

= a y + Tj y
dt

i.e. dŷ

dt
a y  + T 

'o

"1and hence ^  fa -  j ci l]

2
N ow  i f  y/U and h igher powers are neg lected , 

y = y^  + / i y ^

but ^  ~ Cl (y + y u y p  + y i i f  (y + y u y ^ ) + T 
dt

= a y^  + T + / I ( a  y^ + f  y ^  + ^ f  y.j)

Equating the tw o expressions fo r d y /d t ,  neg lecting  the last term , and

ca n ce llin g j u  gives 

dy-j

IT
= a y , + f  y 

1 o

-  1

i . e .  fy ^  becomes the fo rc in g  fo r the second approxim ation y .j. In b lo ck  

diagram fo rm :"

T L :.m T 1 C tVô r  AÏÎ' y.[a - jc i / j f fy .



The m atrix  product contains terms w ith  frequencies o) + 2 3 2  and 

<0 231  and so a t each step in the successive approxim ation process the

waveform y becomes more com p lica ted . By re s tr ic tin g  a tte n tio n  to the 

case o f a s ing le fo rc ing  torque T^ or T^ the problem is much s im p lifie d  and 

repeated use o f the inversion procedure w ith  appropria te frequencies inserted 

in to  the m atrix  (a -  1 I )  g ives a reasonable method o f ob ta in ing  the solu tion



uu

6 .5  N a tu ra l frequencies o f the system

The in troduction  o f bearing e la s tic ity  gives rise to  natura l frequencies 

o ther than the normal nu ta tion  frequency o f the gyro. The normal nu ta tion  

frequency is reduced due to  bearing e la s tic ity  and two other frequencies 

appear w h ich  a re , fo r the parameters chosen, h igher than the spin frequency 

o f the ro tor.

The natural frequencies can be easily  found by substitu tion o f 

appropria te sinusoidal functions in the equations o f m otion , and é lim ina it on 

o f the am plitudes, or from the poles o f the transfer functions in equations 6 . 5 ,  

Shortly a fte r th is w ork was carried  ou t, a paper by M aunder (12) 

appeared describ ing th is case in considerable d e ta il.

F ig. 36 shows fo r the case M  = M  = M , the va ria tio n  o f the three
X  y

ca lcu la ted  natural frequencies w ith  gim bal in e rtia  fo r tw o values o f the

bearing stiffness k. The va lue  o f k a ffects the two upper frequerc ies,

m a in ly , the lowest nu ta tion  frequency being on ly  s lig h tly  a lte red  by va ry ing  

7
k between 10 gm .cm /ra d ian  and in f in ity .

6 .6  The e ffe c t o f bearing e c c e n tr ic ity

In th is analysis the ro to r bearings are assumed to be e cc e n tr ic , in 

such a way tha t the ro tor C, G . is not d isp laced but the e q u ilib riu m  

position o f the shaft centre lin e  generates a con ica l surface at an angular 

v e lo c ity  o f ^  y  the angular v e lo c ity  o f the ba ll cage, the semi angle o f
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the cone being e (F ig . 37). For the angular con tact bearings used in the

experim enta l work the ra tio  CÎ) ^ /S l  was about 0 ,3 7 .

The bearings are also assumed to  be e la s tic , g iv in g  an equ iva len t

angular stiffness k.

The equations o f motion o f th is sytem a re :-

1 (0  + ÿ  ) + J ( 0  + Cp ) + R| (./? + k Cp -  ke cos^ , t = 0
 ̂ X * X  y y b f X ' X  1

1( 0  4 - 0  ) - j 3 % ( G  + 4- k 0  -  ke si n^ 3  = 0
y y x ' x  b ' y ' y 1

(6 . 8)

M  ©  4- Rg ô  -  R, Cp -  k cp 4- ke cos <3 t  = 0
X X  X b » x  ‘ X I

M 0  + R g Ô  -  R, cp k (p 4- ke sîn O t  = 0
y y y b ^  y * y  1

it  can be seen tha t the moments ke c o s o i. t  and ke s in (ù _t act on ro tor and
1 1

gim bals and i f  the frequency should co inc ide  w ith  a natura l frequency o f

the system, large am plitudes o f o s c illa tio n  could be expected.

This system was sim ulated on an analogue com puter, the com puter 

diagram being shown in F ig . 38.

Fig, 39 shows the bu ild  up o f a resonant o s c illa t io n , ob ta ined by 

p lo ttin g  Ô ^ against Ô  on an X -Y  p lo tte r. A lso shown is the ro tor 

m otion , generated by tw o ad d itio n a l summing a m p lifie rs , connected to sum 

the X and Y  components o f Q  and .
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CHAPTER?.

THE EFFECT OF V A R IA T IO N  O F RADIAL STIFFNESS 

IN  THE SPIN AXIS BEARINGS

7 .1 .  Assumptions and Equations o f M o tion

VariaHon o f rad ia l stiffness could arise due to  the presence o f  on 

oversize b a ll,  causing the rad ia l stiffness o f  the bearing to be greater in 

the d ire c tio n  o f  the oversize b a ll and less in the d ire c tio n  a t righ t angles 

to i t .  The e ffe c t is represented d iagram m atica l ly  in F ig .40 and i t  w i l l  be 

seen tha t the axes o f  maximum and minimum stiffness ro ta te  a t the speed o f 

the b a ll cage ^ ^ . The equations o f  motion are as fo llo w s :-  

!( ^  H- + y  ) f  k + A k (^û ^c o s 2  Û ^ t + ( ^ ^ s in 2<0^t) = 0

I ( è ^  + j J l (  0 ^  + + 1<(^^ + ù k (  (p^sin  2 u).jt -  ^ c o s 2 t) = 0

(7 .1 )
-  k -  à k( ^ c o s  2 t + ^ ^ s in  2 t) = 0

hAy è  ̂  -  k Ij^y -  à  k( i^ ^s in  2 t -  (ĵ y cos 2 t) = 0

7 .2 .  Analogue S im ulation

Fig.41 shows the part o f the computer set up concerned w ith  the 

effects, o f  stiffness v a r ia tio n , the rem ainder o f  the s im u la tion  being the same 

as tha t shown in F ig .34 . A  three a m p lif ie r  loop osc illa tes  the iw o  m u lt ip lie r  

shafts M  1 and M  2 in quadrature a t the frequency 225^.
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Traces ob ia ined from the computer ind ica ted in s ta b ility  when the 

gyro parameters were adjusted to make the nutation frequency equal to the 

b a ll cage frequency ^  ^ . A lthough the gimbal inertias were varied ove r 

a w ide  range this was the on ly  cond ition  where in s ta b iliiy  was no tice d ,

7 .3 .  D ig ita l s im ula tion

The previously ex is ting  A tlas  pragramme (Append ix 1) was m odified  

to inc lude the e ffe c t o f bearing stiffness v a r ia tio n , g iv in g  the version shown 

in A ppend ix  2 ,

As p rev ious ly , the tim e v a ria tio n  o f the to ta l energy, (strain + 

k in e tic ) ,  in the m otion was used as a measure o f the re la tiv e  s ta b ility  o f the . 

system under various cond itions . This is tabula ted in the com puter results 

as log (E/1E) , where E is the to ta l energy and IE is the in i t ia l  energy. As 

a rough measure o f s ta b ility  the average va lue o f log (E /IE ) was also 

computed.

Three sets o f com puter runs were taken , one w ith  equal gim bal îneri'ias, 

one w ith  the to ta l moment o f  in e rtia  o f the gimbals about the ou te r gim bal 

ax is , M  = 4 M  about the inner ax is , and the th ird  set w ith  M  = 4M  .
X  y y X

The average log (E /IE^over the fii-st 40 m illiseconds o f  the v ib ra tio n  is shown

p lo tted  in F ig .42 to a base o f  equ iva le n t gimbal in e rtia . In the case o f

unequal gim bal in e rtia s , the e q u iva le n t in e rtia  is taken as tha t va lue  o f  M

w h ich  w ould g ive  the same nu ta tion  frequency.
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These results were s u ffic ie n t to  confirm  tha t something s ig n ifica n t 

occurs when the firs t natural frequency o f nutation Is the same as the ba ll 

cage frequency.

7 .4  Effect o f unequal gim bal inertias

F ig .42 ind ica tes considerable d ifferences in the behaviour o f the

system w ith  va ria tio n  in the ra tio  M T h i s  is fu rthe r illus tra ted  by

Fig. 43 w hich shows the v a ria tio n  o f log (E/1 E) w ith  tim e fo r = 1 .57 ;

M  “ 2. 63, M  = 0 . 6 6 ; and M  = 0 .  6 6 , M  = 2 .6 3 ,  al 1 un its being 
X y X y

gm. cm .sec . These are values w h ich  g ive  n^ = y

The reason fo r the d iffe ren ce  in average log (E /IE ) is seen to  be

m ain ly  the d iffe ren ce  in phase o f the low  frequency v a ria tio n  in log (E /IE)

the va ria tions fo r M = 4 and M = 4  being 180° out o f phase.

For M ~  ̂ I'he frequency o f the v a ria tio n  is h ighe r, being three times 

tha t o f the va ria tions  in the other tw o cases.

In each case, how ever, the trend is upwards, ind ica tin g  in s ta b ility .

7 .5  E ffect o f in it ia l conditions

The results presented up t i l l  now were a ll obtained using fixed

H. 4
in it ia l cond itions , v iz .  LO — 10 radians, ©  ” 0 . 5  rad /sec,

* xo xo

xo ~ " 0 . 5  rad/sec.

F ig .44 shows the e ffe c t o f va ry ing  the in it ia l v e lo c it ie s  in the  case

where M  -  2 .6 3 , M  -  0 .6 6 . The three curves show tha t the m ain, low  
X y
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frequency varia tions remain in  phase and tha t the am plitude o f the va ria tio n  

is largest fo r zero in it ia l v e lo c ity .

M ore im portant however is the d iffe rence  in average slope o f  the

cui’ves. For &  xq ~  the trend is m arkedly upwards ind ica tin g  a 

pronounced in s ta b ility  whereas w ith  the in it ia l v e lo c ity  in the opposite 

d ire c tio n  the trend is downwards at f irs t.

Presumably this is due to the fa c t th a t, o f  the several modes o f
Ù

v ib ra tio n  possible not a ll are unstable and in the case o f  ”  0 .5

the unstable mode is in h ib ite d , a t least at f irs t.

7 .6 .  Parametric resonance

The theory o u tlin e d  in Chapter 8  ind icates tha t param etric resonances 

o r zones o f in s ta b ility  occu r when the sum o f,  o r d iffe rence  betw een, any 

two natura l frequencies is an in tege r m u ltip le  o f  the frequency o f  va ria tio n  

o f the parameters.

Taking the natura l frequency data fïom F ig .36, figures 45  and 46 

were constructed, showing these sums and d ifferences p lo tted  to a base o f 

gim bal in e rtia  M  fo r two d iffe re n t values o f  bearing stiffness. A lso p lo tted  

are ho rizon ta l lines a t 2 4  %) y  e tc . be ing the fundamental and hanrionics 

o f  the parameter va ria tio n  frequency.

The intei*sections are shown by c irc les  and these in d ica te  the locations 

o f  the param etric resonances.
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O f p a rtic u la r interest is the curve fo r ~ n^ w h ich  is almost 

ho rizon ta l over a w ide  range o f  g im bal in e rt ia . I f  the unstable zone were 

s u ff ic ie n tly  w id e , i t  is possible tha t the gyro represented by P ig .45 

m ight be unstable over the en tire  range from M  = 2 .5  to 10, o r g rea te r.

7 .7 .  E ffect o f bearing slackness

It is possible also th a t the gyroscope described by Q uartley^^^ had 

its e ffe c tiv e  bearing stiffness reduced by slackness to the ex ten t tha t a 

param etric resonance o f  this type  occurred over a w ide  range o f  h igh gim bal 

in e rtia .

Yamamoto^^^ describes in Chapter V I o f his 1957 paper, the e ffe c t o f  

bearing f i t  on the synchronous backward precession o f  a w h ir lin g  sha ft. He 

concludes tha t a medium f i t  is worse than e ith e r a t ig h t o r a s lack f i t  since 

the v a ria tio n  o f rad ia l stiffness is g rea te r. This is in lin e  w ith  the theory o f 

Chapter 8  since the w id th  o f  the unstable zone o r the m agnitude o f the positive  

■characteristic exponent are both proportiona l to the q u a n tity  j j .  , w h ic h , as 

ind ica ted  in S e c ,8 .9 ,  is equal to the ra tio  o f the stiffness v a ria tio n  k 

to the mean stiffness k .
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CHAPTER 8 ,

CHARACTERISTIC EXPONENTS A N D  ZONES OF INSTABILITY 

IN  LINEAR DIFFERENTIAL EQ UATIO NS WITH PERIODIC

COEFFICIENTS

8 .1 .  First Method

V ide Chapter I I I .  Sec. 11 o f R e f.(14)

The foiTn o f  the equations d e a lt w ith  is 

dxs
dt (°sl + /  ''si) ^1 + +(a -!-/& f  ) X

sn /  sn n

(s = 1, / n)

where the n x n matrices
?11 . ^ In
I :
1 I
a , ---------a

n I n n

and
f l l ----------f in
I i
i i
f  »---------f
n I nn

respective ly  constant and pe riod ic  w ith  period I -  2 71̂  . (There w i l l

be m inor departures from M g lk in 's  n o ta tio n ), y t i  is a small qua n tity  

representing the am plitude o f  the pe riod ic  va ria tio n  in the system parameters 

For 0 the system reduces t o : -

are

(8 . 1)

dx n o
s = ^  a  . X

W  . F l  ' I  :
(8 .2)

he cha rac te ris tic  exponents o f the system are o f  the form

oi X. (8.3)
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where a j reduces to zero w h e n = 0 , leaving 0(. = X w hich  ore the 

values o f the cha rac te ris tic  exponents o f the system i . e .  the eigen values 

o f the m atrix  a.

The equations (8 ,1 ) w i l l  have a t least one so lu tion o f the form

= =>>’ (? ^ ( 0  (8 .4 )

where is p e rio d ic , period T. Hence i f  the change o f variables 

Xg = ^  niade in equations (8 , 1 ) the transformed system

(°si "F s  (G'S)

must have a pe riod ic  s o lu tio n , period T, The ze ro -th  approxim ation to 

y^ is g iven by pu tting  yU. -  0 in eqns .(8 .5 ) i . e .

.y.° - X;Y° (8.6)dt i = l  s^ j ''K s

The roots of the characteristic equation of this syltem are:

A, - Xi, X2 - "Xjr................ r Xn - X|

so tha t one root a t least must be zero g iv in g  a so lu tion  o f  the form — const, 

w h ich  can be regarded as pe riod ic  o f a rb itra ry  period . Also i f  any o f  the

2 l>
Die o t i W = ' 

o

w i l l  be another pe riod ic  so lu tio n , period T.

\  \  2  iT ;
d iffe rences ( A . -  A .) is an in teger m u ltip le  o f i UX ^  = —ÿ—  then there
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Assuming there are m such so lu tions,

y  °  = M ,n O  , +  + M  *(p  (8 .7 )
1 I si m T sm

where M .*  are a rb itra ry  constants.
{

The recurrence form ula describ ing successive approxim ations to the

true so lu tion  y is 
'  s

F -  i  s  ( 8 . 8 )ar I _  ̂ s| I IS  j _ 1 sj j I s

where (k) denotes the k - th  approx im ation ,

(!)
Putting k = 1 gives a system o f equations fo r y^ and in order tha t 

they may have a pe riod ic  so lu tion  the fo llo w in g  conditions a p p ly :-

( B , J M  *  + ................. + ( B -  )M  * = . 0  (8 .9 )
r l I r l  1 rm I rm m

(r = 1 / ................ .. m)

where

B ,= 2 . fciR d t

(8 , 10)

and A^. T, ^  

c<= 1

g-j  ..................  are pe riod ic  solutions o f the equations conjugate

to the system (8 . 6 )

viz. ÿ .  + . â  = °
d î  1 =  I I I
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(To obta in  the con jugate system the c o e ffic ie n t m atrix is transposed and 

changed in sign. The resu lting eigen values are opposite in sign to those o f 

the o rig ina l system).

Since a. is required to vanish fo r = 0 , i t  may conven ien tly  be 

replaced b y a / ^ \

The above cond itions fo r p e r io d ic ity  may then be w ritte n  in m atrix 

no ta tion  as:-

(B -  a ( ' )  A ) M *  = 0 (8 .12 )

where A  and B are mx n m atrices and M * an m x  1 column vec to r. Hence

( 1 )  Î .fo r a n o n - tr iv ia l so lu tion , the determ inant B -  a. A )  is ze ro , w hich

gives the va lue  o f a.

F irst, pu tting  -  0 g ives an in term ediate approxim ation to 

a /   ̂ -  say a*.. The va lue  o f a* can be re fined to  a / ^ ^  by pu tting  ^  

in the m atrix  B.

ProvidedyO. is sm a ll, fu rthe r approxim ation gives l i t t le  improvement in

the va lue  o f a. and the functions y ^  are close to  the true solutions.
I s

8 .2  A p p lic a tio n  to  gyro w ith  unsymmetrical rotor

The equations used are those from section 2 .7  v iz : -

(I 4- M  ) G 4- 0  4-R Ô 4- r l ( 0  cos2 J lA - Ô sin 2 Jc t) (8 .13 )
x" X y  9  X X y

4- 2 r l'lï ( -9  sin 2^11 4- 0  cos 2 A  t) = 0 
X y

( I 4 - M ) 0  “ J J I Ô  + R  ©  4- r l ( 0  sin2'51 t -  G cos 2 ^  t)
y y X g y X y

4- 2rIX  ô cos2JÎ t  4- © sin 2 t) = 0 
X y
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To put these equations in the form o f eqns. 8 .1 it  is necessary to  obta in

‘A A
e x p lic it  expressions fo r 0  and 0  . Rearranging 8 . 13 g ive s :-

X y .

0  (i+ M  +ri cos2 t) 4- 0  . rl s in 2  A  t = 0  (2 rlJ ls in 2 J l t~R ) -  Ô (J J l 4-2rl JZ cos2 A  t) 
x" X y x '  g y

6  . r i  sin2JTt+ ô  (i4*M -  rlcos2J% t) -  @ (JjZ -  2 rld l cos25Z t) -  Q (2rl5lsin23Tv4-R )X y y X y g
These have the form

and -------------------------

The common denom inator ■ e < S  — i s: -

9 9
r  rl (M  “  M  ) cos 2^1 t r 1

1 -  ^  y » _____
(l+M^) (1+My) (I + (1 + My) (1+M^)(!+My)

2
I f  r is assumed sm a ll, the term is r may be neglected in this expression and 

also in subsequent w o rk in g . The (1 -  r A M  cos 2 t) In the denom inator 

is replaced by a fa c to r (1 4- r 4 M  cos 2J%t) in the num erator, w hich is then 

m u ltip lie d  in to  the c o e ffic ie n t m a trix , A M  being an abbrev ia tion  fo r:



1 (M  -  M  )
X y

(i + M  ) (I + M  )
x  y

When this has been carried ou t, the co e ffic ie n t matrices reduce toy

78

a

0

J (1 + M  )
X

J (1 + M  )
y

0 (8 .15)

SI
( i+ M  )(I4-M )

X y

[2(1 + M J  -  J j sin 2 A t  I - { j a m  (1 + M^)
y

-  R (l-fM  ) 
g y

+

à M  (I 4" M  ) i f j  -  2 (i 4- M  i  s in23l;
^  x i

X
4- i |Y “ 2 (I+ M ^^ç  c o s 2 ^ t i -R ^  (I 4- M ^)
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where R is replaced by rSlR  to  assist fac to risa tion . The damping terms
g g

have been grouped w ith  the pe riod ic  terms in the m atrix  f  to  fa c il i ta te  

ca lcu la tio n  o f the damping in a la te r section. The q u a n tity  r is taken as the 

parameter ^  .

The eigen values o f the m atrix  a are + in , where n = J JZ

/(k M ^ )(i+ M  )

is the natura l frequency o f nu ta tion  o f the symmetrical gyro. The m atrix a 

can be fu rthe r condensed using the su b s titu tio n :-

and hence

a

4- M
X

4- M
y

n /
R

nR 0

The equations 8 . 6  then become:-

dy.

dt

= -  in y^ y^

R

dy!

dt

= nRy^ -  in y^

(8 .16 )

(8 .17 )

having roots zero and -  2 in . The solutions are therefore

y
2  in t

(8 .18 )

• 2  in t
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i t  can be easily  shown that P —  iR, Q  -  ÎR

- 2  in t

so that (8 .19)

“ 2  in t
■iR ■ i Re

. 2  in t I
I 0 I

(8 .20)

L P  Q  9  J

P and Q must be chosen to sa tis fy  the conjugate equations to 8 .1 7 , v iz

dz

pu tting  ^

1

dt

dz,

dt

inz^ -  nRz^

+ I n Z2

2  in t

(8 .21)

hence

-  i 2  in t 
“  e

(8 .22)

Using the expressions ( 8  .10),

A ]  ^ = T (1 +1) = 2T

A i 2 = = 0

V l
= . = 0

^ 2
= T ( l  + 1) = 2T

0

so that A  = 2T (8 . 23)

0
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1̂1 "  L  (''n 119 n  + ̂ 2 ^ 2 1 Y  11

' ' 2 1  i i 9 ^ 2 i  ■̂ - ' 2 2  21 '^‘̂ 2 1 )

f  ( ' ' i l  “  ' ' ^ ' ' 1 2  ■*' “  ' ' 2 1  ‘‘‘ ''2 2 )
O R

O n ly  the constant terms w i l l  con tribu te  to  th is in te g ra l, so tha t

B — — TR (21 + M  + M  )11 g X y (8 .24 )

(I 4- M  ) (I 4“ M  )
X y

'^12 ^ io ^11 9  12*9 11 ''12 ‘■f 22'̂ ''̂  11

+ ''2 9 / ’ 1 2 ^ 2 1  ^22 ^  22 " S '2 ]^

( ^ i i + ' R f i 2 4  ' 2 1 - ' ' 2 2 ) ] ^ 'o

If we assume tha t the gyro is tuned so tha t n = , o n ly  the pe riod ic

terms in f  con tribu te  to  th is  in tegra l and since J"*e ^ cos 2611 = T /2
o

( 8 . 25)

and P a - 2  a t  = -  iT /2

B 2 = J J J U ______________  r  2J -  2 (1 + M  ) -  2 (1 + M  )

2 ( l+ M J ( l+ M y ) [_  +

(8 .26 )

In a similar fashion it can be shown that

B2 J = - B i 2 4  andB22 = B i i



I (1) I
A pp ly in g  the p e rio d ic ity  c o n d itio n , | B -  a, A  | = 0

gives the quadratic equation :-

4T^ -  4 T B ^ ^ a . F  + = 0 (8 .27 )

For zero dam ping,  ̂ = 0  

( 1)
and a. = +

I Iz

2 iT

The cha rac te ris tic  exponent a / ^ ^  -  a / ^ ^

i . e .  a / ^ ^  = + rB.̂  _ (8 .28 )
I -  I z

2iT

Strictly , according to Malkin 's notation the quantity a,  ̂ above should be
I

* 2 3
w ritte n  a. since the m a trix  f  is derived by neg lecting  terms in r and r .

However provided r is small the  d iffe rence  is not s ig n ific a n t.

For the gyroscope con figu ra tion  used in chapter 2 , = 0 .5 5 ,

r = 0 .0 9 0 9 , = 3gJ, = g j .  S i  -  10 The param etric resonance occurs

when g = 0 .2 3 9 3 , and thus 1 +  ̂ 2679

J ’

* ^ y  = 0 .7893

2 
R = 1.606, R= 1.2679, 1/R= 0.7893

Substitu ting these values in eqn, 8 . 26 gives

f"
^12 "  I X 0.55 X 10. T

2 X 1.2679 x  0 .7893

2 -  2 (1.2679) -  2 (0 .7 8 9 ^  

-  4 + 1.2679 + 0.7893 j
4



bel

= -  2 .7 5  ! T (4 .0572)

S . F  = + 0 .0909  x 2 .7 5  x  4 .057 2

+ 0 .5072 sec

2 

1

This va lue  îs in good agreement w ith  the results obtained in sec . 2. 6 , 

and sec. 2 . 1 0 .

8 .3  A lte rn a tiv e  Method

Reference -  M a lk in , Chapter V , Sec. 7.

In th is method the o r ig in a l equations are firs t transformed by a change 

o f tim e scale.

If the o r ig in a l equations in terms o f real tim e a re :-

h .  Y ' . . I
d T  = 1

(s = 1  ..............  n)

where the functions f  are pe riod ic  w ith  period T in terms o f , (T = 2  f/^),

the non dimensional tim e t is chosen so tha t t = 2  d) = I T T * ,

T

The equations then become

dx _ 1 \ W  (8 .30 )
 ̂ “  s — A Sc: ' Sçi

o

where \  = 2 and the coe ffic ien ts  f  now have period IT '

o



To fin d  the lim its  o f s ta b ility  the cha racte ris tic  exponents are

ca lcu la ted  fo r d iffe re n t values o f the quan tity  <S where \  \  -t-yll CT

and A ^ 's taken as one o f the values producing param etric resonance.

i, e. I f  (Ô T .................... / ^  where rn = n /2
1 z o m

are the natura l frequencies o f the o r ig in a l system fo r = 0 the eigen values

o f the m atrix  a are 4- i d)  4 - i^ , . . ^ , .......................  4- I (D The cond ition  fo r
— I — Z — m

param etric resonance is tha t the d iffe rence  between any two eigen values shall

be an in teger m u ltip le  o f i .

i. e. i (c5 „ 4- 5̂ k) = N  i ^  (N  = 4- 1, 4- 2 , ......... ) ( j /  k , = 1 m)  (8. 31)

o r, d iv id in g  by i

X (  (Ù = 2 N  (8 .32 )

For simple param etric resonance k -  j and 2 (6 . = For k ^  j com bination

resonance occurs i f  the above .cond ition  is satisfied.

The cha rac te ris tic  exponent o f equations (8 .30) is expressed in the form

oC = \  i dx j 4- M a where A satisfies re la tion  (8 .32 ) above. M aking
Q O

as before the change o f va ria b le  x^ = e ^  ' y^, the fo llo w in g  system o f equations

is obta ined w hich  must adm it 2 pe riod ic  solutions.

y  ) ^  y# "  ( o ' ^ i Y " )

(8 .33 )

dt -  1

Proceeding as before p u t t i n g = 0 gives

= X ^  \  i

d t S = i  (8 .3 4 )



o u

and y °  “  M  (0 . + M C9 (8 .35 )
s o f si o * sz

where the cire constants and the ^  pe riod ic  period 2 1 P.

A g a i n and ^ are the pe riod ic  solutions o f the system conjugate

to  equations (8 .3 3 ).

The next approxim ation is defined by a recurrence re la tion  s im ila r

to  equations ( 8 . 8 ) and the cond ition  fo r p e rio d ic ity  is :-

0 " A  + ( 1  4- _ 0 )  „ j m = 0 (8 .36)
B - o  . I j , .

where m is the 2 x  1 column ve c to r M  , N
o o

I is a 2 X 2 un it m atrix  and A  and B are 2 x 2  matrices defined by

M a lk in  as fo llo w s :-

n n  2 Ï Ï

^  i I “ c^T /  _ . rn .rn//'.-

1
/ a^cvd^ c ^ iy )s j di

/
o

(8 .37)
2 -?

B i i =

The m atrix  equation (8 .36 ) is also subject to the cond ition  tha t the 

sj are chosen so tha t the product . gives a un it 2 x 2  m a trix .

The m atrix  equation (8 .36 ) can be fu rther s im p lifie d  by pu tting  = 0 ,

g iv in g

( G - A °  + B ° - a * I ) m *  = , 0  (8 .38 )

and pu tting  the determ inant | <rA° + B° “ a*I j = 0  gives the quadrat 

equation

ic
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+ -^2 2  ) ■*■^22 3  ° '  29)

4- (o ' 4- B .j.j^ )(c r A ^ 2 °  + B^2 ^) » ( C T A ^^ ^  + B2^^)(«2T A^.^^ ^

Putting <^ = 0 gives a firs t approxim ation to the values o f the cha rac te ris tic  

exponents a* at the centre o f the resonance zone, and pu tting  a* = 0  gives the 

w id th  o f the resonance zone in terms o f . This leads easily  to  an expression 

fo r the unstable zone in terms o f frequency.

This second method w ou ld  therefore appear to be superior to  the f irs t,  

g iv in g  inform ation both on the lim its  o f the unstable zone and the degree o f 

instab ii ity .

8 .4  Modes o f v ib ra tio n  assoc ia ted  w ith  cha rac te ris tic  exponents

I f  i t  is assumed tha t the system is tuned to a com bination resonance so

th a t;-

0 ;  _ 6 > k  = N  c5

as in the re la tion  (8 .3 1 ) , the firs t approxim ation y ^ to  the so lu tion o f

o “ 2 iN t
equations (8 .34 ) is o f the form y^ = where and are

com plex constants. Returning to x  ^  v ia  the transform ation
s

X = (A  i ^  j 4- o )t
s e o ' /  V

'^s

and re ca llin g  tha t a has two values a.̂  and ( i . e .  the roots o f the quadra tic  

equation (8 .39 ) the solu tion x  ^  is seen to  be o f the form

• AQ.jt A i cc).t üoA ,(A i é . - 2 î N ) t
= ' e °  I + '  a °  '

'  '  2 (8.40)
1 /(C1 4  X i j, 1 A ’̂ 9 '' ( A  i £s) I -  2  i N ) f

+ K] a °  k ' + K.^ e °



d /

M aking  the tim e scale change to  real tim e by.the substitutions t = ^  

and A ^  “  2, the solu tion becomes

y lA ^ 1 ùD 0 A g -j d) o 1̂

w  .  . a + K, a

/ . a  ù}^ 1\ (8 .41 )

' 2 ' ' ^  1 2 ( ! ^ k  -  i N cD«) T'
4- e . e 4- « 2  e . e

Hence there appear to be fou r frequencies a ffec ted  by the cha rac te ris tic  exponents

1v iz .  d) ,,  , -  N  u3q associated w ith  a

and ù  -  N associated w ith  Ü2

In fa c t the frequency d)  ̂ ^  = d )R  because o f the resonance cond ition

so tha t we have the h igher o f the tw o natura l frequencies associated w ith  a.^, 

the low er associated w ith  both a-j and 0 2  ̂ and a th ird  frequency d) -  i\| 

associated w ith  0 2 *

A lthough  in the simple case o f the gyro w ith  an unsymmetrical ro tor 

a^ and 0 2  are equal in magnitude and opposite in s ign , it  is not certa in  tha t th is 

w i l l  be true in genera l. However, assuming tha t a.j and 0 2  are a t least o f 

opposite sign, i t  is not ce rta in  tha t the unstable positive  exponent w i l l  be 

associated w ith  the two natura l frequencies d) . and dX ^ ra ther than the 

low er natura l frequency oXj^ and the d iffe rence  frequency d) ^ « N  , 

a lthough in tu it iv e ly  it  may seem more l ik e ly .



8 .5  A p p lic a tio n  to gyro w ith  unsymmetrical ro tor

in the o rig in a l equations (2. 17) the frequency o f the pe riod ic  v a ria tio n  

is 2  and i f  a tim e scale change is made as in section 8 . 3 ,  the q u a n tity

X =  1/6T . The m atrix  a (eqn. 8 .15) is unchanged, as is the m atrix

f  except tha t the pe riod ic  terms conta in  sin 2 t  o r cos 2 t  instead o f sin 2 Tl t or 

cos 2 SI t .

The matrices ÿ  and are s im ila r to  those given in equations 8 . 19 

and 8 . 2 0 , except tha t the ind ices o f the exponen tia l terms do not conta in  n. 

A lso , the m atrix  has a m u lt ip ly in g  fac to r o f 2  in order to satisfy the 

cond ition  ~ u n it 2 x 2  m a trix .

1I . e .
■2 i t

ÎR iRe

2 it

■2 Î t

(8 .42 )

i 2  i t 
e

R

Evaluating the in tegra ls in the expressions 8 .3 7 , the m atrix  A  becomes:-

1—
i & 0

(8 .43 )

0 1 0a
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The m atrix  B is s im ila r to  tha t developed fo r the firs t method in sec. 8 ,2 ,  

except tha t there is a m u ltip ly in g  fa c to r o f Xo / 2  because o f the scale 

change and because o f the fa c to r 2  outside the m a t r i x ( e q n .  8 .4 2 ). 

A lso , the period T has become 2 1 f  . M aking these a lte ra tions to eqns. 

8 .2 4  and 8 .2 6 , and noting again tha t X o  = '\/S l ,

B _  = -  21?R (2Î1 + M  4 -M  ) 
g X y

2 ( ! + M  ) (14- M  )
X y

B.J2  ^  2 t l '  i 1 I 2 J " 2 ( 1 4 - M J  - 2 ( | 4 - M  ) -  4,J%Ü-M^)(|4-M )

4 (1 4- M  ) (1 4- M  )
y + J R  4. J /Rl

In app ly ing  the equation 8 ,3 9  w h ich îs derived from the p e rio d ic ity  cond itions , 

it  is convenient to  take p a rticu la r cases rather than obta in  a general 

so lu tion in terms o f the system parameters.

For comparison w ith  the results obtained in sec. 8 ,2  using the firs t 

method we put R^ = 0 , <5 = 0  to  g ive  the cha rac te ris tic  exponents at the 

centre o f the region o f in s ta b ility . S ince A ^y  “ "^21 ”  ^  ^11 ~ ^22 ~ ^

fo r zero dam ping, equation 8 .39  reduces t o : -

^ 2 1  =  0 (8 .45 )

since 8 ^ 2  8 2  ̂ are con jugate im aginary th is reduces to ; -

B.
a* = 12 = 2 *7]'̂  I I \ (8 .46 )

4(14-MJ ( l+ M  )



the contents o f the square bracket being the same as in eqns; 8.^-4- and 

8 .2 6 .

Because o f the change in tim e scale, a* must be m u ltip lie d  by St 

before comparison w ith  the o f section 8 ,2 .  When this is done, it
‘ I

is seen tha t the results o f M a lk in ’s two methods disagree by the fa c to r

o f 2 n .

The lim its  o f s ta b ility  fo r zero damping are obta ined by so lv ing 

equations 8 .3 9  fo r a * = 0 and = 8 ^ 2  -  0. Equation 8 .3 9  then reads:

w h ich  reduces to

o- ■

2 I T  i SI

= a*

The s ta b ility  boundaries are given by

X =: X dz CT

= 1 (1 4- ra* )

(8 .47 )

01

This is equ iva len t to  the  statement tha t the lim its  o f the unstable zone 

occur when the nu ta tion  frequency

n = A# g 1 4- ra* % ^K,

I  i T S i

since r is small.

(8 .48 )

X I  f
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Using the parameters o f chapter 2 ,

( I )ra* = ra. = 0 .5 0 7 2 /jT

2 * ir

so tha t the region o f in s ta b ility  lies between the values o f g w hich g ive  

n = 9 .4928  and 10.5072 ra d /se c .

These values o f g are g iven by the equations:-

1 = 0 .94928 or 1.05072

Y  (0 .5 5+ 3g )(0 .5 5  + g)

i . e .  9 ~ 0 .2125 or 0 .269

This is in agreement w ith  the analogue computer results obta ined both by 

solu tion o f Magnus’ equations and the equations 2 .1 7 .

8 .6  C ha rac te ris tic  exponents

In the previous section i t  has been shown tha t M a lk in ’s two methods 

disagree by a fa c to r o f 2 1? in the va lue  o f the ch a rac te ris tic  exponent, the 

firs t method g iv in g  a result w h ich agrees w ith  the analogue computations 

o f chapter 2.

A lso  the second method gives the lim its  o f s ta b il ity ,  w h ich  agree 

w ith  the analogue com puter results, apparently  because the fac to r 279 

cancels.

Further exam ination o f M a lk in ’s w ork ind ica tes tha t the p e r io d ic ity  

conditions, used to  de rive  the equations 8 .9  and 8 .3 9  are based on M a lk in ’s 

chapter jT , equation 4 . 13, p. 118.
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This gives the cond ition  tha t the set o f equations:-

dx = a T x  -f a ^ x ^  4- + a x  4- fs (t)
s SI  1 s2 2 sn n

dt

3 = 1 , 2 , — , n

has a pe riod ic  soL/tion o f the same period as the functions fs ( t) . 

The cond ition  is :-
fT
I è  fL « j  ! = 0
Ô oitt Î

( i = 1, — , rn)

where T is the period o f the functions fs ( t ) ,  i are the pe riod ic  so lu tions,

period T, o f the con juga te equa tions :-

dy 4- Q y ,  4- y^  4- —  a y  = 0
s Is M  2s ^2 ns

dt

and m is the number o f such p e riod ic  solutions. When th is is app lied  in 

section 6 o f  M a lk in ’ s chapter V , the tim e scale has been changed to g ive  

a period o f 2 i f *  . In M a lk in 's  equations 6.21 on p .411, he applies the 

conditions 6 .22  w ith  a v ie w  to  g iv in g  a u n ity  c o e ffic ie n t fo r the cha rac te ris tic

exponent a^ . In doing so M a lk in  has overlooked the in teg ra tion  from zero to  21? 

and th is error Is repeated in section 7 o f his chapter V ,  on w hich section 8 .3  

o f th is  thesis is based.

The most convenient way o f co rrecting  th is error is to  app ly a fa c to r 

to  the matrices A  and B spec ified  by equations 8 .3 7 , and th is w i l l

be done in subsequent parts o f th is thesis.
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The derivaHon o f the p e r io d ic ity  conditions 8 .9  and 8 .36  Is g iven in

more d e ta il in A ppend ix  3.

8 .7  E ffect o f In e q u a lity  o f girnbal ine rtia

I f  the gim bal ine rtias M  and M  are equal, the cond ition  o f param etric
X y

resonance occurs a t M  = M  = 0 .4 5 J , i f  1 = 0 .55  J. In th is case the
X y

cha rac te ris tic  exponent as computed in sec. 8 .2  becomes:-

“ (1) + r  1
a. = -  0 .0909  x  2 .7 5  | 2 - 2 - 2 - 4 + 1  +  l f

2

-  4- ^ i~ “ 10 . 5  sec

in ge nera l, i f  J  (! 4- M  )Ai 4- M  ) = R 
 ̂ X f y

a = 4 -  r I S I  (2 4- R 4- 1/R)

2J

w h ich  is a minimum a t R = 1 and Is 12^% greater at R = 2 or R =

8. 8 E ffect o f damping

The amount o f damping required just to  assure s ta b ility  a t the centre 

o f  the  resonance zone can be ca lcu la te d  by inc lud ing  the terms and 

in equation 8 .39  and pu tting  ^  = 0. Equation 8 .39  then becomes:-

-  + 8 ^ 2 ) a* 4- B2 2  -  B^ 2  ^ 2 1  = 0 (8 .49 )a*

Since B.̂  = B ^^, (and both are negative  fo r pos itive  R^), a w i l l  have

one zero and one nega tive  root when B^^ ~

Using the expressions 8 .4 4  fo r B.̂  and B^^,  app ly ing  the cond ition  tha t 

n = X i , and inc lud ing  the fa c to r 1 discussed in sec. 8 .6 ,



Y 4

I

“ i l  -  -  “ 2 2  ( 8 . 0 Q

2J

”  ^2 ] "  - i l  (2 + R + 1/R)

4J
î

and hence R = i (2 4- R 4- 1/R)

2 (R -f 1/R)

but since R = R r v&
g g

R = rl J l  (2 + R + 1/R) (8 .51 )

2 (R + 1/R)

For the parameters used in Chapter 2 , i .e .

r = 0 .0 9 0 9 , 1/J = 0 .5 5 , 1 1 = 1 0 ,  R = 1 .2679 ,

R = 0 .0 9 0 9 x  0 .5 5 x 1 0  . 4 .0 57 2

J ~  2 2 .0572

-1
= 0 .4 9 4  sec

A lso fo r R = 1, R = 0 .5  secl"^

J

w hich is again in good agreement w ith  the results o f sec. 2 .1 1 .

It is in te resting  to note th a t, because o f the fa c to r R 4- 1/R in the

denom inator o f the expression fo r R / the damping required just to  stab ilise
9

the gyro is a maximum at R = 1. Hence as the in e q u a lity  in g im ba l in e rtia  

increases/ a lthough the undamped gyro becomes more unstab le / the damping 

required to  stab ilise  i t  decreases.
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8 .9 .  A p p lic a tio n  to gyro w ith  bearing stiffness va ria tio n

i f  the equations (7 .1 ) w h ich  describe the e ffe c t o f  bearing stiffness 

va r ia tio n  are put in to  the form o f equations (8 .1 ) the c o e ff ic ie n t m atrices an 

as fo llo w s :-

0

M
X

a =

0

0

k
M

0
M x

y

1 0 0 0 0

0 0
J 5 l
1

0
J J I
!

0 0 1 0 0

J S l fk  , k \
0

J J l
0

1 i M y "  ! / 1

0 0 0 0 0

0
k

■ M
0 0 0

(8 .52 )

0 0

0

0

X

0

0

0

0

0

0

0

M
X

M
sin 2 2).

y

0

‘ W sin 2(0 t  0

y

0

0

0

1^ . k \
I
y

j y c o s 2 â , t

M
sinn 2 A, t

X

, T
y

0

0

0

0 0 I

0 0 0

0 0

0 0

(8 .53 )



where the variables x ,    . x ,  correspond to ' (f) , CO , 0  / ( O r
! o \ X Ï X I y  f  y

Ù / A I ,
0 ^ /  respective ly  and ^

Fo llow ing the method o f S ec .8 .3 .  fo r the simple param etric resonance

where the firs t natura l frequency n.̂ , Is equal to the bo ll cage frequency 2) ..

the solutions o f  the equations corresponding to (8 .34) a re :-

y °  = M P + N Q  (8 .54 )
S O S O S

fhe  vectoi*3 P and Q  are easily  shown to be as fo llow s

r  9 / k _  + h n  2 f  ■? / L  ^  h \ linJnA“ i M .  i j  n /  n,- -Cm
/ . .  = \ , i n  — ------------------ — :----- —  /  —

2 k \  J 'S Z /  2 k

" A y ' b " A

ik
n,

* M  L i  M  y X (8 .55 )

w h ile    Q  . are the conjugates o f  P. /   P. re sp e c tive ly .
S o  I o

The vectoi's R and S o f the negative  transpose o f  a make up the func tion  

m a trix  and lik e  P and Q  they are com plex conjugates. They are s im ila r

In form to those shown above fo r P and I t  w i l l  be apparent tha t I t  w ou ld  be 

ra ther unw ie ldy  to form the products ^  ^  and ‘̂ j j  a n a ly t ic a lly ,
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8. 10 N um erica l so lu tion -  simple resonance

Using t he parameters o f  C hapter 7 w ith  M  = M  = 1 .57  the firs t

natura l frequency Is found to  be “  984. 1016 rod/sec.

Taking the case o f simple param etric resonance where the ba ll cage 

frequency Is equal to  the  firs t natura l frequency/ n ^  the vectors P and Q 

were found by pu tting  P = 1 and so lv ing 5 o f the equations:

(a -  In^) P -  0 (8 .56)

using a standard Sirius lib ra ry  programme/ S 1510.

Since ^ 3  ^nd P^ are Im aginary/ they are replaced by IP ^ // IP^'
i I t

and IP r' g iv in g  a set o f 5 real line a r equations fo r P_ / P^ / P P and
0 y o 4 O

P^. The vec to r Q / corresponding to  the eigen va lue  -  In , Is the solu tion

o f (a 4- In ^) Q  -  0. and Is thus the  conjugate o f P.

The vectors R and S were s im ila r ly  found from (a * -  In) R = 0 and

S = R. The vectors P and R were found to jbe  as follows'^

=  1 • =  1 

P„ = 984-. 1016Î R = 0.00125144!

P3  = -  ! R3  = Î

P . = 984.1016 R. = -  0.00125144-

Pc = -  9774.8! R_ = 0.00226760!
5 o •

P. = ^ 9774.8 R, = -  0.00226760
o 0



jh e  m atrix CO is then

L_

Q ^e
-2it

2 it

and

R

S- e 
3 i 
Î 
Ï 
i

S
o

2 it

First the m atrix   ̂{p vas  computed:

gPR i^QRe
■2it

I^PSe
2 itc ^Q S

It IS found tha t : ^ P S  ~  Z^Q R  -  0

and tha t ^ P R  -  â Q S  = const = 43 .8673

and i f  the m atrix  is d iv id e d  by th is  constant

0

L . 0

(8 .57)

The m atrix A  -  a '/p 'w a s  then com puted/ (using the new va lue  o f*]^)/

r—
0

and was found to  be
in

correct to  6 decim al places.

L° "'" i ‘
That th is is a general result and not p a rticu la r to  th is case is shown below 

in Sec. 8. 14.



7 7

The m atrix B was then computed and found to  be

“  Ï . ^A, 8660

.4 4 .8 6 6 0

Substituting In the qucara tlc  equation (8. 39) gives

a*  “  + 44^ 866 X fo r cs* -  0
-  o

—  \  * 
and O = -f 4 4 .8 6 6  A  / n  fo r a = 0

The cha rac te ris tic  exponent referred to real tim e i s a *

since \ ^  ~ 2 . As a percentage o f c r it ic a l damping th is Is

= 4 4 .8 6 6 II

4 4 .866  X 100 = 4 .5 5 7 7  %  

984.1016

0 .4 56%  fo r A k = 0 . 1  

k

The w id th  o f the unstable zone is g iven by the values o f (T fo r a* = 0.

Let these lim itin g  values o f Cf be 4- and reca ll tha t in equations (8 .3 0 )

%  ̂ _
1 he lim its  o f s ta b ility  therefore correspond to</\ ~  A O '*

or 2 2 t

where (A is the ‘Frequency o f v a ria tio n  o f  the coe ffic ien ts  f  and 6  is the va lu
o

at- the centre o f the param etric resonance.

This gives I
I  y lL€ ]  Ù q

(8 .58 )
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and hence for the p a rticu la r case considered 

= /  1 + 4 4 .8 6 6 \ “ ‘

o
CÔ I n -,

1 ™ 4 4 .8oo
4- ■

" i

fo r iLi sm a ll.
/

This means tha t the system is unstable when the natura l frequency matches 

the ba ll cage frequency to  w ith in  0 .5 %  approx. fo r A  k = 0. 1. It can
I T

be seen therefore tha t th is is a small and 'h ig h ly  tuned' e ffe c t.

8.11 Com bination resonance

A  study o f Figs. 45 and 46 shows tha t there is on ly  one param etric 

resonance at the fundamental parameter va ria tio n  frequency/ v iz .  the simple 

resonance just dea lt w ith  in the previous section.

I f ,  how ever/ a resonance is being considered where d). » = N  4)^ ,

fo r N  &  1/ the functions (p (t) = P 4- Q  e

'  \ i N t
and A ,/ (t) = R 4- S e 

‘ s s s

i f  the terms o f the c o e ffic ie n t m atrix . conta in ne ithe r constants nor 

harmonics o f order N /  then the m a trix  B w i l l  be zero and no in s ta b ility  w i l l  arise.

This Is the case in the equations (7 .1 ) so tha t t n  - simple resonance computed 

in Sec. 8. 10 is the on ly  unstable one.

In an actua l system/ however^ harmonics o f the ba ll cage frequency are 

lik e ly  to  be present/ p a rtic u la r ly  tha t corresponding to the number o f ba lls .



8 .12  Comparison W i t h  d ig ita l s im ula tion

The A tia s  programme described in 7 .3  was used w ith  in it ia i conditions 

defined by the vectors P preceding eqn. 8 .5 7 .

i .e .  X °  = P e ' " 7 +  Q  e " ' " 7  (8 .60)
s s s

and fo r

= O - X ^  “  P 4 -Q  = 2 P  fo r P rea^
 ̂ s s s s s

= 0 fo r P̂  im aginary

since P and Q  are conjugate . 
s s

in fa c t/ 0 x  was token as 10 ' radians, (P y was taken as 0.09841 
 ̂ o * 'o

rad/sec. and Ô  y^  as -  0. 9775 rod/sec. This cho ice  o f in it ia l conditions

excites motion in the mode o f the firs t natura l frequency.

F ig. 47  shows lo g ^^  (E /lE ) p lo tted  to  a base o f tim e . The curve is

smooth and the slope tends to  a va lue  about 5% below tha t ca lcu la ted  from the

characte ris tic  exponent obta ined in Sec. 8, 10.

To check i f  th is d iscrepancy depended o n =  A k /k /  computer transients

were also obta ined fo r = 0. 1 and = 0 .0 5  fo r the case = 1 .57  gm.

2
cm .sec . V e ry  long transients were required before the term w ith  the negative  

exponent d ied away s u ff ic ie n tly  to  in d ica te  the slope due to  the positive  exponent 

Since graph ica l estim ation o f slope is never very sa tis fac to ry / the exponents were 

ca lcu la ted  as fo llo w s :-

Assuming the v a ria tio n  o f E to  be o f the form 

E = iE (e^“ '' + (8 .61 )
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where a and are Hie cha rac te ris tic  exponents (E is a quadra tic  func tion  or the

variab les x  ) 
s

2; -r 1 = 2E where z -
z IE

Using the computer values fo r E/IE at 120 m. . . values o f z could be

found and hence a. The v a lid ity  o f the assumed expression fo r E was checked 

by back substitution at other values o f t.

F ig. 48 shows the values o f a thus obtained from the com puter transients, 

p lo tted  against ^  ~ A k / k  and fo r comparison the th e o re tica l va lues, proportional 

to j t i  f obta ined by the method o f Section 8 ,3 . The percentage d iffe ren ce  between 

the two values o f the cha ra c te ris tic  exponent is found to  increase w ith  yu. and i t  

seems l ik e ly  the. the d iffe rence  Is due to  the approxim ation invo lved  in the 

method o f Sec. 8 .3 .
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8. |3 , Exrension o f the method to more complex coses.

The method !s^ m p rin c ip le ^  ap p licab le  to systems w ith  any number o f  

simultaneous equations o f the type shown in equation 8.1 . Hov^ever/ even 

w ith  the system o f six equations (equations (7 .1 )) v/h ich describe the e ffe c t 

o f bearing stiffness variation^, a n a ly tic a l expression o f the functions 0  and 

becomes too u n w ie ld y .
/

The method w ou ld  lend Its e lf w e ll to num erical so lu tion , using w e ll 

established m a trix  procedures on a d ig ita l computer.

The firs t stage w ou ld  be to fin d  the la ten t roots and vectors o f the

m atrix  a over th.. desired range o f system parameter's. The loca tion  o f any

resonances could then be found using the re la tion  (8 .3 2 ).

The two vectors form ing the m a trix  are the la te n t vectors o f  the 

m a trix  a corresponding to the tw o la te n t roots w h ich  satisfy the re la tio n  (8 .32 ) 

The two vectors form ing the m a trix  are the la ten t vectors o f the transpose 

o' fo r the same two la te n t roots. A  sca la r ad justm ent requires to be made to

to satisfy the con d ition  tha t = 1.

8 . V- . Formation o f  m a trix  A .

The m a trix  A  ~ | ( ^ ^  a ' )d t (8 .62 )

o

but because o f  various properties o f the matrices i f  , a , and the

2 ^ ^  j  can be discarded since the on ly  non zero terms In the product 

o



î

are constants.
n

Using the expression A  i j = Cp (X î j (8 .63 )

= 1

A i}) O ^  rs ” 2 iN rand w rin n g  ip  = P + Q  e
 ̂ s s s

' 4 J  = r  + s (8.6/1)
a S S S

A.| .g R-j (a.j  ̂ 2^2  °'in

+ '^2 (°21 h  ^ .....................° 2 n ^ 3

nr (8 .65 )

-t R (a F,, + ................ *f a P )
n n i I nn n

b u t, since P is the la te n t vec to r corresponding to the eigen va lue i g, Q  th 

la te n t vec tor fo r -  I R corresponds to Î ^3 and S to -  i ^

(a ”  Î . f)P = 0 

(a “  Î - !)Q  — 0

(a ‘ + iO  !)R  = 0 

(a* T- i I) S = 0

. ' .  A _ , = R ,. iü .P _  4- R _.i 6) . P ^ - t ..............4- R ik ) .p
i l  1 I ! 2 i 2 n i n

= i ^ .  ^  PR i .



Similarly ît can be shown that

* 2 2  = : ' ^ k - Z - Q s  = ; ( J , ^

^ 2 ~  A t

I . e .  the matrix A =

provided y j ' =

Î O .  0 
I

0 Î0,
(8 .66)

8 .15  Formation o f matrix B.

B is defined by relation (8 ,37 ) v iz ,
2TT1

h i  = 2 T f X o Id t
oL,p -  1 o

where may contain constants, terms in cos 2 N t , or terms in sin 2 N t  

(for N  = 1 ,2  . . . )

i . e .  let 2 N t + 2 N t

X o 2Tr
/  L .  p_ R . d t2 T r J  '^o<, 'o t  ''|d

= 1 o

n

X ,
=  1 Pcx. R g  dt

22

X n r  21T

0(,|g = 1 o



iUô

n

X
21 >

n

X

2 in

f r o c  2 iN t  
P*f ^  ® d t

2 °  V

n .2lP

21 2 Th
« ^ p  = l

J fp k  Q «  Y  dt

If Y ' -  F

if 2̂ * T  ^

>’ f^ 'A ^  = H

then

B A

11 i ( G ^ 2 + î ' ^ l 2

M G g , "  'H g ,)  ^22

(8 ,67 )



Having computed B as above it would then only remain to solve the 

quadratic equation (8 .39 ) for 6" or a*

Damping could best be taken into account by including it in the 

constant matrix f  ̂ as illustrated in S ec .8 .8  for the case of the gyro w ith an 

unsymmetrical rotor.
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CHAPTER 9 .

EXPERIMENTAL WORK 

The ob jec t o f the experim enta l work was to investiga te  the 

re la tionsh ip  between the bearing reaction  forces and moments and the 

re la tiv e  displacements of inner and ou ter races of the bearings, under 

various conditions o f speed and p re load .

9.1 Descrip tion o f firs t experim enta l rig .

Since the de flec tions  were very small rig id : mountings fo r the probes 

were required . A lso , because a w ide speed range was desired the apparatus 

took the form shown in F ig , 4 9 . This shows the ro tor and stator co ils  from.an 

existing gyroscope mounted in a heavy casing w ith  an end cove r. Holes are 

provided w ith  insulated bushes fo r inserting capacitance probes. These are 

placed to permît measurement o f rad ia l and transverse angular disp lacem ent o f 

the rotor in two d irec tions and also a x ia l d isp lacem ent.

The mean o f the ax ia l displacements measured a t two d ia m e tr ic a lly  

opposite probes gave the ax ia l movement o f the ro tor w h ile  the d iffe ren ce  was 

proportional to the t i l t  o f the ro to r. The preload was provided by a spring 

and was not varied .

The com plete assembly was mounted on a v ib ra to r instead o f gim bals 

and re c tilin e a r v ib ra tions  of d iffe re n t am plitudes and frequencies were 

imposed on the case, transverse to the spin axis'. A  b lock diagram 

o f the fo rc ing  and measuring system is shown in Fig 50 (a ). This



LEAO eUPB AND 
EAQTWIN@ POINTS. WING PAOGË.

m o  WVEP.

WINDINGS,

LEADS.

AEAQ

BALL a '■ôüü'ü'oüX̂ R-̂

CASING.'

COOLING AlP
SUPPLY.

HOLE,

F H iq g rr  E5<F% :Rlh4E}^T7kL /4S»!5E&48L)K -



R O W ^ R
A E^PU SR îSR

V IB R A T O R

O— Q

RESOLVER

ACC ELEF5 OÏV^BTE.R
A E ^ P U - I^ IB R

(a )  ORt <51N AL

TO POWER
-to- a m p l if ie r

I F R O M  P R O X iM B TV

R E S O L V E R M U jR H B A D  
A C S& A U VS E R

( Ô )  L A T E R  

EXPERIMENTAL SET ÜP

FROiVS a c c e l e r o m e t e r  AtwIPLSPîe

FI& . 5C



lu y

comprised the oscillator of o Solartron transfer function analyser feeding the 

power am plifier of the vibrator, this in turn producing the vibration of the 

gyro casing. The casing vibration was measured by an accelerometer with 

its associated am plifier and the "gain" and phase shift between the oscillator 

and the relative displacements of motor and casing could be obtained. By 

dividing the gains and subtracting the phase shifts the response of relative  

displacement to casing acceleration could be obtained. Because of the 

non-linearity of the system, the response was amplitude dependent and series 

of tests were run at different constant acceleration amplitudes.

It was found possible to obtain reasonably repeatable results as long 

as the rotor was stationary but when the rotor was running the meter pointers 

of the transfer function analyser wandered all over the scales and gave no 

useful results whatsoever.

The waveforms emanating from the relative displacement pick ups were 

extremely complex when the rotor was rotating and although the rejection of 

unwanted frequencies by the TFA is good (better than 4 0 db) it would appear that 

in this case the analyser was swamped by the unwanted signals. In an attempt 

to overcome this d ifficu lty  a Muirhead type D -489 DM frequency analyser was 

included in the set up to act as a tunable filte r  at the input to the resolver, as 

shown in Fig.50b. On setting the oscillator to each new frequency the analyser 

was switched to the oscillator output and tuned so that the resolver showed no
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phase s h ift.  The analyser was then switched to read the outputs from the 

p ro x im ity  meter and accelerom eter a m p lifie r in tu rn .

Even w ith  this refinem ent however, the readings were subject to random 

va ria tion  when the rotor was runn ing .

The sens itiv ity  o f the p ro x im ity  meter was such that the slightest 

movement of the leads between the probes and the meter was s u ff ic ie n t to a ffe c t 

the readings and acco rd ing ly  th is  rig  was abandoned in favour of an apparatus 

w ith  0  fixed  casing .

9 .2  D escrip tion o f second rig  .

The second apparatus is shown in Fig, 51 and comprised q rather larger 

(4 in .  diam) ro tor mounted w ith  axis v e rtic a l in a casing about i  in ,  th ic k , 

clamped to a heavy baseplate. C apac ity  probes were mounted as before and a 

pneumatic method was chosen to app ly an easily  con tro lled  preload to the bearings 

An add itiona l probe mounted opposite a ba lancing hole in  the ro to r provided a 

pulse to operate a Racal d ig ita l frequency meter, g iv in g  a conven ien t speed 

measurement. Recordings o f two displacements and the speed were made on a • 

magnetic tape recorder fo r subsequent analysis, and the displacements were also 

displayed on an osc illoscope .

The method adopted was to  run the gyro up to speed and then sw itch o ff 

the pow er. Keeping the preload constant, the gyro was a llow ed  to run down, 

two channels o f disp lacem ent being recorded along w ith  a spoken record o f the 

speed readings and comments on any in teresting events appearing on the
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oscilloscope. The recordings could then be played back as often as desired 

for re-examlnatlon of the traces and for frequency analysis.

Normally In work of this kind one would attempt to keep the speed 

constant but the low torque/lnertia ratio o f the gyro motor and the 

characteristics of the alternator supplying the motor did not lend themselves 

to close control over a wide speed range. Because of the high rotor Inertia 

and low bearings friction the rotor deceleration was small -  o f the order of 

2 rev/s^ at 250 rev/s.

Two pairs of angular contact bearings were used In these tests -  first 

a pair of high quality Barden 34 -  5B bearings, 5 mm bore x 5 mm wide x 

16 mm o /d  to rather better than ABEC 5 tolerances. Each bearing had six 

1 /8  In d ia . balls In a phenolic retainer.

The other bearings used were Hoffmann A5 bearings of commercial 

quality having 5 bolls In a brass cage.

Tests were run w ith the preload a ir pressure varied between 0 and 

30 ib /ln  f  corresponding to axial loads of 0 -  9 .3 3  lb. The axial load on the 

lower bearings would be greater than this due to the rotor w eight, which was 

3 .9 3  lb.

9 . 3 .  Analysis of recordings

Various methods o f analysis were tried using a Bruel and K[aer type 

2107 analyser w ith a type 2305 level recorder. The analyser can be coupled 

by a flex ib le  drive to the recorder and made to sweep automatically through 

the frequency range, recording the spectrum o f the signal on paper which may
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be p la in  o r graduated lo g a rith m ic a lly  in  terms o f frequency, A  va rie ty  o f  chart 

speeds, sweep speeds and w r it in g  speeds are a va ila b le  and some tr ia l and error 

is necessaiy to ach ieve an optimum com bina tion . (W riting  speed is a measure 

o f  the speed o f  response o f the recorder pen to changes in signal leve l)

A t firs t short, continuous loops o f tape on a second recorder were 

recorded from the main tape in order to p inpo in t the signals a t a ce rta in  speed. 

These were then played back con tinuously to get the normal fo im  o f spectrum at 

tha t one speed. Some d if f ic u lty  was experienced in tensioning the tape properly 

and there were also transients due to the tape jo in  and the gap le ft  in the signal 

when recording on to the loop was stopped. This gap was due to the distance 

between the erase and record heads.

For a q u ick  survey o f  the signals the analyser was set to a fast sweep 

speed and the com plete signal tape played back. Notes were made on the chart 

o f  the speed from the speech channel on the tape. The disadvantages o f this 

method were the lag o f the resonance peak behind the true va lu e , and the 

a ttenuation  o f the peak, both o f w h ich  increased w ith  the sweep speed. The 

peaks on the recorder cha rt d id  not therefore e xa c tly  match the speed w ith  

w h ich  they were associated.

A  more accurate m ethod, but much more tim e consuming, was to leave 

the analyser a t a fixe d  frequency and run through the tape , o r the part o f  in te rest, 

as o ften  as required a t d iffe re n t frequencies. This was more suited to the de ta iled
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analysis o f parts o f the tape , e .g .  in the region o f a jump phenomenon.

9 .4 . Results o f frequency analysis

Typ ica l results o f such an analysis are shown in F ig. 52 w h ich  shows 

contours o f constant v ib ra tio n  leve l p lo tted  on a f ie ld  o f  log frequency v . log 

speed. On this p lo t,  ridges running a t 4 5 ° across the p lo t represent 

v ibra tions o f  the same order i . e .  the same ra tio  v ib ra tion  freq ue ncy /ro ta tio n a l 

speed. Ridges, o r lines o f peaks running across these,lines represent the 

va ria tio n  o f natura l frequency w ith  speed. A  disadvantage o f  this form o f p lo t, 

however, is th a t the analyser cannot d istinguish between forward and backward 

precession, since in fo rm ation regarding the re la tive  phase o f two displacements 

a t r ig h t angles is required to  establish th is .

9 .5 .  Jump phenomenon

This occurred predom inantly in the a x ia l motion a t low  preload w ith  the 

Hoffmann A5 bearings. A t zero preload and a speed o f 71 re v /s , the am plitude 

o f the signal a t 20 3 .5  c /s , (order 2 .8 6 ) suddenly dropped by about 10 db w h ile  

a sudden upward jump o f approx im ate ly  the same magnitude occurred at a 

frequency o f 221 .5  c /s  (order 3 ,1 3 ). An ove ra ll reading o f the v ib ra tio n  signal 

i . e .  w ith  the analyser in the w ide  band, non -se lec tive  co n d itio n , showed.a drop 

o f 7 db a t this p o in t. F ig .53 shows de ta ils  o f  the spectra during the run down 

through 71 rev/s., w h ile  F ig .54 shows, in contour map form , the run down through 

a s im ila r jump w h ich  occurred w ith  a preload pressure o f 5 lb / in  . The ro to r 

speed at w h ich  the jump took p lace was s lig h tly  h igher than w ith  no pre load.
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Î KS^

SPEED OEC2 EABINQ WITH TIME.

CONSTANT AMPLITUDE CONTOURS
NEAE vJUMP RESONANCE. (S lb /iN ®  PI2 ELDAO

PIQ . 5 4 ,



114

but- the two Vibration frequencies involved In the change were virtually the 

same as those with no preload.

in a s ing le degree o f  freedom system w ith  n o n -lin e a r restoring force a 

jump o f this nature I .e .  downwards In am plitude w ith  decreasing speed, suggests 

springing o f the soft type I .e .  stiffness reducing w ith  d e fle c tio n . This case Is 

not so s im ple , how ever, since the system has several degrees o f freedom and 

since there may be coup ling  between the motions due to the bearing characte ris tics 

and gyroscopic e ffec ts . Comparison between the ax ia l and rad ia l displacements 

In the region o f  the jum p, how ever, shows much less b u ild  up o f  the signals o f 

order 2 ,8 6  In the rad ia l d isp lacem ent.

O th e r prom inent signals apart from the fundamental are 6th and 11th 

order v ib ra tions a t around 250 c /s .

9 .6 .  Suggested Improvements to experim enta l apparatus

The c h ie f d i f f ic u lty  w ith  the present apparatus lies In the measurement 

o f small h igh frequency v ib ra tions o f  a f le x ib le  ro ta ting  body. N o d ire c t 

measurement o f  the forces In the bearings Is possible and the nature o f these 

forces requires to be Inferred fmm the com plex motions o f the ro to r.

An Ideal apparatus w ou ld  be a ro to r, capable o f running over a w ide  

range o f  eas ily  con tro lled  speeds, mounted In bearings o f In f in ite  stiffness, and 

com ple te ly  free o f  v ib ra tio n . The bearing to  be tested w ould be mounted on 

this shaft and the non ro ta ting  ou te r race could then be subjected to a va rie ty  

o f forms o f  load ing In order to  determ ine the re la tionsh ip  between forces, moments



I I o

and displacements in the b a il bearing .

F ig . ^  s hows a b lo ck  diagram o f  the ba ll bearing In w h ich  x ,  y and 

z represent displacements o f the inner race re la tive  to the ou te r, z being the

ax ia l d ire c tio n . 0  f t /  and 0  are the corresponding ro ta tions,
X y z -

and superimposed on a ll these displacements there may be fluc tua tions due to

im perfections in the bearing . F are the forces and M  are the
^ x , y , z  x , y , z

moments impressed on the bearing . To specify  the bearing com ple te ly  transfer 

functions o r frequency responses re la tin g  each o f the displacements to each o f 

the forces and moments are requ ired , along w ith  the nature o f  the dîstui"bances 

due to m anufacturing errors.

The responses w i l l  be non lin e a r w ith  am plitude and w i l l  be affected 

by ro ta tiona l speed and conditions o f  lu b r ic a tio n .

This obviously is not an easy task and the experim enta l w ork  described 

in the forego ing sections represents o n ly  the beg inn ing . A  s t i f f  ro tor supported 

in gas bearings seems to  o ffe r  the on ly  feasib le approach to the ideal apparatus 

o u tlined  above, and indeed, were i t  not fo r th e ir  high cost, gas bearings w ou ld  

possibly have replaced b a il bearings fo r many gyro app lica tions .
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CHAPTER 10.

C O N C LU S IO N S

The effect of rotor asymmetry has been s tu d ie d th e  most significant 

effect being a parametric resonance which occurs when the natural frequency 

of nutation of the gyro is close to the spin frequency of the rotor. This 

implies a "flat*' rotor with small length/diameter ratio and light gimbals.

Empirical solutions have been developed for the equations of motion 

in both stable and unstable zones.

The frequency response curves of an unsymmetrical gyro are shown to be 

distorted in comparison with those of a symmetrical gyro and beating of the 

forcing frequency and the spin frequency occurs when these frequencies are 

close together.

The response of the unsymmetrical gyro to a constant torque applied at 

the gimbals is shown to contain an oscillatory component at double spin frequency 

and an expression for the amplitude of this oscillation is given.

By studying the transient behaviour of the total vibratory energy in the 

system, and the energy dissipated by damping the destabilising effect of rctor 

asymmetry is shown to extend beyond the region of parametric resonance. The 

effects of unequal gimbal inertia , in itia l gimbal velocities and in itia l rotor 

position on the stability of the system have also been shown.

Slackness in the spin axis bearings has a stabilising effect, but tangential 

forces in either direction tend to produce instability.
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The "oil whip" forces assumed by Prentis do produce instability with

increasing gimbal inertia , and increase of bearing clearance Increases the

degree of instability up to a point where the nutation frequency has been very

markedly reduced.

Possible sources of tangential forces on the rotor have been considered,

namely the magnetic fie ld  of the driving motor, and cage accelerations in the

bearings* The tangential forces produced by the magnetic fie ld  of the

motor are shown to correspond to a mean torque about a transverse axis of the 

4
order of 2 x 10 ^  gm. cm* where i p  is the angular deflection of the rotor 

relative to the bearing axis.

This is equivalent to a value of ^  (as defined In eqns. 3 .1 ) of about

4 '
5 x 10 and is thus a small effect. The sense of the torque corresponds to ^

negative, thus giving effects similar to "oil whip" forces in the spin axis

bearings.

The effect of cage accelerations is to produce a torque similar in nature 

and direction to the gyroscopic couple produced by rotor spin except that the

0

couple is proportional to the relative transverse angular velocity ip  of rotor 

and inner gimbal instead of the absolute angular velocity of the rotor.

In magnitude the couple produced by cage acceleration is of the 

order of 2% of the gyroscopic couple.

The effect of shaft and bearing compliance on frequency response has 

been considered analy tica lly  and found to be in good agreement with the 

results obtained by forcing an analogue simulation of the system. Both are in
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( 12)
agreement with the work of Maunder in respect of the natural frequencies 

obtained. A method of obtaining frequency response data by digital 

computation is also described and its extension to take account of rotor asymmetry 

suggested.

The variation of the three natural frequencies of the system with 

variation of gimbal inertia has been obtained by digital computation.

Bearing eccentricity has been shown to produce a forced nutation at 

the frequency of rotation of the bearing cages.

Variation of radial stiffness in the bearings has been shown to produce a

parametric resonance when the nutation frequency of the gyro approaches the

bearing cage rotation frequency. O ther resonances are possible if harmonics

of the ball cage frequency are present in the stiffness variation, and if in

addition the gyro has a non-uniform shaft, the likelihood of parametric resonance

is increased due to the increase in the number of natural frequencies from three

(17)
to five (vide W ippell and Maunder ).

Parametric resonance has been considered analytica lly  and a method due 

to Malkin^^^^ of obtaining characteristic exponents and the width of zones of 

instability has been developed into a practical computational procedure. This 

has been applied to the case of the gyro with an unsymmetrical rotor and also to 

the case of bearing stiffness variation. The results of these computations have 

been found to be in excellent agreement with direct computer solution of the 

equations, provided a factor of 2 tT , omitted by M a lk in , is introduced.
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Experimental work has been carried out, mainly on the vibration of a 

gyro rotor in a fixed casing. The results are similar to those described by 

Yamamoto in his 1957 paper, with the addition of an interesting jump resonance 

phenomenon at low values of preload. A predominantly axial motion at a 

frequency of 2 .8 6  times the rotor speed suddenly dropped in amplitude as the 

speed decreased, a corresponding sudden increase in amplitude appearing at a 

frequency of 3 .1 3  times rotor speed. This phenomenon is as yet unexplained 

but is possibly connected with the non-linearity in axial stiffness. The 

stiffness in the downward direction is large but for small preloads the stiffness 

in the upward direction w ill be small.

The experimental method of tape recording and subsequent analysis 

is convenient but a  recorder with at least 6 signal channels would assist 

m aterially in identifying the many and varied modes of vibration. A new 

design of apparatus is suggested which might simplify the problem of establishing 

the relationships between forces, moments and displacements in an angular 

contact ball bearing.
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APPENDIX Xo

ATLAS AUTOCODE PROGRAM® FOR GYRO WITH SLACK ROTOR BEARINGS,

bOr^in
goM tiae opee auss ( ar.vay name f  p goal^ t )
D.rrr\y y ( is9 >
r e a l  tp Op Jp Ipomogap My g kg HbpBgpagEaUpEg lE pph i pFpiSpdtpNpM

i

Ia&»15
o  5lAa3

ks^ay
OE3icy«*E
->3
0 2mow l in o
1 0 6 3 ,0 ,0 ,5 ,1 2 5
SS ’̂oadC yU ) py(2) ,d t,M )  * y (6)^ :-y (2) 
y (3 )= 0
y (4)1 '^
yC5)^ ^
y(7)z:0
y (8 )= 0
y ( g ) s s O

now l in o  g mow l in o  g t=0 gH=Q §3r0ad(B!%) g a top  jgg M2c<0;y(6)=0 
roadCMy, Rb, Rg, a , m i )
£B£ti£|rffe^t= ; p r i a t (  Fas ,2 ,1 )  
o a p tio n  0)iy0ægp%'i2%t(My,2 ,1 )  
eaptioB^Rb^ïsoprint f l (E b ,2 )  
oap t io n ^R g ^-gp rim t f l ( R g ,2 )
Gaptiom0a0^gp ^ in t  f l ( a , l )
Gaptiom#m u0^gpgint < îm â,l,2) '

Gap t io n ^ i n i  t  i  a lpve  lo o  i  t i  © g p s fin t ( y (2  ) ,2 ,1 )  ;8 p a o o B (l) g p r in t ( y ( 6 )  ,2 ,1 )
now iinogmow l in o  
c a p t io n  e

losp ’S/SEp/pTAj-E/XEp î l̂^^/^^fifdo ; mow lim© 
is  mow lim©
p r in t  f I ( t ,2 ) ;c p a C G G ( l)
o%olo i ^  1 ,2 ,y
p r in t  f l  ( y ( i ) , 2 ) ;  spacosC l)
re p e a t



1 2 2

p r in t  apaaao ( l ) g p r im t  f X(y(R>-î-yC7>,2 )   ̂ epasos (1 )
ph i™ o q rt{y< l) 't2 'î-y (^ )* t2 ) ph i>a

( 6) (8 ) t2  C C y (2  ) ' l - j ( 6 ) ) ï2 ^ ( y ( ^ ) ^ y ( 8 ) ) ^ 2 )  -̂ k-* F̂ 1̂2 ) /2
IE = E if  t<la«10g3=.A3A3*%oG(2/%B)
p r in t  flC s3 ,3 )^spaG 0G < l)^p rin t ^l<<y<Q)-i*E>/ISg3)^spaQ©S3 ( D ^ p r ln t  ± 1 (0 ,2 )  

-> 2  ifM>M o r g<™3or s>3
*n-C=v» ™ =om  *-^»aiMna.ta  '  '

k u t ta  mercon (y ,t,t-^d tp © ,9 ,1 0 g a in £ ) 
t= t^ d t  
—>1

r o u t in e  augs(arrp.y name f ,  r e a l  t )  
g e g j  u , v
p h ia ^ q r t ( y ( l ) & 2^ y (3) 42);F =0gFæphi-a ^  ph i>a

(1 /I& )(R b * ‘''y(2 )'“Eg’̂ 'y {6 )^ k o y (l)F /p h i^ m a # k *y (3 )F /p h i)
V " (1 /My ) ( Hb^^y (4  > ̂ %:^y (8 )  -^k':^y( ̂  ) F /p k i -2-5a*i'lw:*y ( 1 ) F /p h i )
f ( 2 ) =  J#om 0ga /I# (y (4 ) t y ( 8 ) ) - k % y ( l ) F / ( I * p h i)  « R b / I* y (2 )^  m n *a y (3 )F /(p h i# I)
± ( 1 ) -  y (2 )
±(4 ) -  “ V J 1 ( y (2 ) ( 6 } } -k<'y( g ) ? / ( Io p h i) -R b / I^ y ( 4 ) m ^ *k A y ( l)P /(p h i^ I)
± (3 )=y(4 )
f ( 6 ) =u 
f ( 8 ) s v

f ( y } = y (8 )
£ (9 )=  R g *(y (6 )  ̂ ‘â-c-y (8 )  <y < 2 ) <4> f Z  ) F & (y ( l) # y (4 ) - y (2 )# y (3 ) )  /p h i

e n d
end o f  program
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APPENDIX a.

ATLAS AUTOCODE PROGRAMME K)R GYRO WITH ECCENTRICITY AND
■ I .^ . n — ■■■- I—  —  I I I  I ■ f i .  I ..................................... ... ...................................................... I . I I I , .  III , .

STIFFNESS VARIATION IN  THE SPIN AXIS BEARINGS.

begin
ro u tin e  *p@a mux i mrrmr mmme f , r e a l  t )  
arra y  7 ( 1 1 9 )
r e a l  t ,  e# J ,  I,om ega, Mx, My, k , E k ,E g ,a ,m * ,E ,IE ,p k i,F ,* ,d t ,N ,M ,e  
o a l,d k ,e e e ,T ,*u m *
in te g e r  i

J«l,5253
1=3 . 1 5
omega=3 .  5 1 4 *3  
k " 1 . 51a7  
0=10£-8 
6UB»=0
-> 3
2 :  BOW lim e
ea p tio n  meamÿiflOCyiŒ/IEa; p r im t fl((aum»/M),5);emMm «0;m ew lim e
1 0 5 5 ,0 , 0 , 3 ,1 3 5
5s eyo le  1 = 1 ,1 .Q ;y ( i)e O ;re p e a t  
re a d (o m l,y < l) ,y < A ) ,y<8 ) ,d t , l l )
new limefmow lim e:t=0 ;N =0;read (M % >;atop i f  M x<0;y(6)sO ^  Mx>20 
road(M y, Rb, Rg, a , m i, d k ,e e e IT )  
oaption!&c#=;prim t(M % ,3,2) 
ea p tio n  # y  #= ;p rim t(M y ,3 ,  3>
G aption#R b f= ;p rim t f l ( R k ,3 )  
eaptiom #R%#=;primt f l ( R g ,3 )  
oaptiompa f= ;p r im t f l < a , l )  
oaption#B u f= ;p rim t (m u,1 ,3 )
0 a p tio n 0d k /k # = ;p rim t ( d k / k , l , 3 )
e ap tio n #eoe#=;prim t f l ( e e e , l )
captionyÿQBl/omW={primt (oml/omega, 1 ,5 )  fmew lim e
ea p tio n ^ I .V . f = ; p r im t ( y ( 3 )  ,3 , l ) ; * p a e e * ( l ) ; p r im t ( y ( 6 )  ,3 ,1 )
e&ption0T * = ; p r im t (T ,4 , l )
mew lime;mew lim e
e a p tio n  e
fp F fp t; f# f f# fp h i# E # f# # fp h i# y # # tk e ta f% ff# th e ta fy # # # ro to r# K *# ro to r# y e
# f f lo E fB /IE  #fGy+E/IE##;f#;f#;f#e ; mew lim e  
1; mow lim e
p r in t  f l ( t , 3 ) ; e p a e e e ( l )

i- 1,3,7
p r in t  f l  ( y ( i ) , 3 ) |  epaeem (l)
repeat



prim t f l ( y ( l ) + y ( 3 ) , 3 ) ;  apaoos ( l ) ; p r i * t  f l ( y ( 5 ) t y ( 7 ) , 3 ) ;  apaeea ( 1 )
p h i= g q rt(y (l)+ 3 + y < 5 )+ 2 ) jF=0;F=:phi"a pHi>a
EeîCîilît^y ( 6 ) t3+My * y ( 8 ) 13+1 *  ( ( y ( 2  ) +y < 6 ) )+3+< y <4 ) +y ( 8 ) ) t3  ) +k^Ft3^
+ d k * ( ( y ( l ) t 3 -y ( 3 ) t 3 ) * e o # (3 * o m l* t ) + 3 * y ( l ) * y ( 3 ) * a ia ( 3 * o m l* t ) ) e
-  ( k+dk) *0 0 0  >♦* < y < 1 ) * 0 0  •  <o»l ♦ t  >+y <3 ) aiiiC oidL ♦ t  > ) ) /3
lE = F if  t < la - 1 0  ;a = ,4 3 4 3 *  log ( £/XS> ;auBa=auiix+K
p r in t  f l ( z , 3 ) ; a p a * e a ( l ) ; p r i * t  f l< < y ( 9 > + X )/IX ,3 >;apaaea ( 1 )
p r in t  f l (@ ,3 )
N»N+i
- > 3  ifN>M o r K<-3 o r * > 3  
k u tta  meraoa < y , t , t + d t , 0 , 9 , 2 O ,aux) 
t= t+ d t  
—>1

à
ro u tin e  aux<a rra y  aame f , r e a l  t )
r e a l  u ,v

p h i= a q r t (y ( l ) t3 + y (3 )+ 3 )  ;F = 0 ;F = p h i-a  ph i>a
u=Rb*y(3 ) + k * y ( l ) P /p h i - * u * k * y ( 3 )F /p h i- (k + d k ) * e # a * # o a (o * l* t )4#
+ d k * ( y ( l ) * e o a (3 * o m l* t )+ y (3 ) * a i* (3 * o * l* t )>
v=Rb*y <4 ) +k*y <3 ) F /ph i+m u*k*y( 1 ) P /p h i-< k + d k )*e # # *a im (o * l* t ) 2
+ d k * ( y ( l ) * a in ( 3 * o m l* t ) - y ( 3 ) * * o a ( 3 * o * l * t ) )
f  ( 6 ) « (u -ils *y  ( 6 )  ) /Mx j f  <8 > «(v-Rg^y <8 )  ) /My
f  ( l ) = y ( 3 )  j f  < 3 )« " f  <6>“u / I-J * o » o g a /I* (y < 4 )+ y < 8 ) )  + T *# o a (o *e g a *t)  
f ( 3 ) = y ( 4 )  ;£<4 > = -f  <8)<nr/I+J>»'omoga/I*<y<3>+y<6)) + T *# i* (o *e g a *  t  )
f ( 5 )= y (6 )
f ( 7 )= y (8 )
f ( g )=  R g * (y (6 )+ 3 + y (8 ) t3 )+ R k * (y (3 ) t3 + y (4 )+ 3 )+ m M * k * P * (y ( l) * y (4 ) -y (3 ) * y (3 ) ) /p k i

end
end o f program
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Appendix 3

DeriygHon of the periodicity conditions 8 .9  and 8 .3 6  

A . 3 .1  -  General form of periodicity conditions

Chapter I I ,  section 4 of Malkin 's book, reference (14) derives the conditions 

under which the set of equations:

= a . X. + — -  + a X + fs (t) A . 3.1
g p -  si 1 sn n

s == (1,  — — , n)

have real periodic solutions of the same period as the periodic functions fs (t). 

The coefficients a . are constants.
S|

Following through M alkin 's analysis, he first defines the fundamental 

system of linearly Independent solutions x, .(0  of the homogenous equations:
s|

s = a  ̂ X +    + a X A . 3 .2
H r  si 1 sn n

these solutions being determined by the assumed In itia l conditions

^ c î ~ ^  CÎ i = = l / — — , n). A .  3 .3
S| S|

is the Kronecker delta îe = 1 for s = j, and = 0 for s “  j.

The set of convolution integrals

rt "
x \  (0  = à r  A . 3 . 4

is a particular solution of the original set of equations A . 3 .1  and if  it is added 

to the general solution of equations A . 3. 2 we obtain a general solution of 

equations A . 3. 1 ds follows:
- t  n

Xg = (0  +  + x^^ (0  +J .^X ^  (t -7') (r) dT\

A .3.5



C y  — are arbitrary constants equal to the in itia l values (0 ), and

must be chosen In such a way that the solution is periodic, of period T equal

to the period of the functions f  ̂ (t). This implies that

x ^ ( T ) - x ^ ( 0 ) - 0

Substituting this condition in A . 3. 5 gives

Cn X . (T) + — “ “ H- C X (T) -  C 1 si ' ' n sn s

J n
+

o

and for the case f^ (T ) = 0 ,
*  *

C , X , (T) +  + C * X (T) -  C = 0  A . 3 . 7
1 SI n sn s

M alkin now concentrates attention on the resonance case; that Is, the case

where the matrix fa || a ^ ^  has either zero eigen values or pairs of

imaginary eigen values of the form -  2T Tp  i (p any Integer). He defines
T

m periodic solutions (0  ,  — (t) (period T) of the equations A . 3. 2,

The number of solutions m w ill be equal to the number of zero or imaginary eigen

values of the form -  2 ÎT p i.
T

The equations

^^s + Qi Xi + *-— *"" + a y = 0 A , 3 .8g p l Is '1  ns 'n

, ■ I
are described as conjugate to equations A . 3 , 2  and have eigen values opposite 

in sign to those of equations A . 3 .2 .  Hence they w ill also have m periodic
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solutions (t) , --------------------- (t) of period T.

Using a previously developed result, (eqn. 3 .3  p. 110 of his book), 

M alkin wrîtes:- 

n

^  X (t -  h) ix . \ (t) = A  j i = constant A . 3 . 9

1

this being a general results for conjugate systems of equations, true for any h. 

Putting t = h and using the assumed In itia l conditions A . 3 . 3 ,  the constants

A  I i = ^  x ^ i  (0) 4 ^ x i  (h)
0<= 1 '

n
i . e .  ^  ( t - h )  ' s j r c i y  (t) = Î (h) A . 3 .10

9<=  1

M alkin now multiplies the sth equation of the set A . 3 . 6  by (T) and sums 

over the index s from 1 to n. This gives:-

X;, (T) < )k s i (T) + ---------+ ^  x^^ ( T ) Ÿ * * î  (T)

s=l s=l

“  ^  C / ) b s i ( T )  +  r  j g .  X ( T - T ' ) V ' s i ( T )  d T  = Q
s=l - ' o  s ,« = l *

A .3.11

Putting t = T , h = 0 in 4 . 11 gives the identity

i  4  ( T ) ' f ' s i ( T )  = Y ' i i ( 0 )  
s=l *'
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and for t *» T, h = T

^  X (T s î (t ) = '/^« * î (T )
s=l

Substituting these in equations A . 3 . 1 1 gives:-

i (°) ■*■-----------+ n Î “X  n ; (^3

-T n
+/ ^  (T) dT = 0

O X =1 Î

Since the functions Y'* ore periodic the terms in square brackets vanish, leaving 

as the condition of existence of periodic solutions of equations 4 ,1  : -

rT n
j  <  f Ot (T') (T) d >

o 1

(i = 1, — A . 3 .12  

A.  3. 2 Application to calculation of characteristic exponents 

Turning to section 7, chapter V  of M alkin 's book we find the periodicity condition 

A . 3.1  2 being applied to the equations

= Aq ^  a s« yot ^  i <11 i y^(P)

< U = ]

.  ^ A . 3.1:3

which equations represent the relationship between the pth and (p -  l)th  approximation 

to the solution o f:-
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n

dt

-  ( î c i i + ^  a)

Comparing equation A . 3 .13  with equations A . 3 .1  and 3 .2  the first two terms on 

the right hand side of A . 3 . 13 correspond to the right hand side of A . 3 . 2 ,  while  

the remainder of the right hand side of A . 3 .13  corresponds to the term f^(t) in 

A . 3, 1.

Putting p = 1 in equation A . 3 .13  gives 

dt

+  A . 3 . 1 5

(k:= 1

/ \ '  's
where is the solution of A . 3 . 1 4  for ^  = o.

ÿ ° ’ -  K i ,  \  i y

The equations having been normalised by change of the time variable and the

introduction of the factor X  , the functions y can be writteno s

^  t A  ( p  +
's  o 7 si o ' s2

where ^  and respectively constant and periodic, period 277' .

Applying the condition A . 3 .1 2  to A .  3 .1 5  and putting y3 for s, we obtain
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2 i r n
/ <  / ^  (c ra ^ « +

-'o  ot,j/a =1 A

for Î = 1, 2.

hence

o.px ( &  i 'V >  «• +  ( K  %  I Y / 3 ‘ ^

°  ‘' ‘^ “  _  o ! « r ' â  . i t ]  M .

+  r<s- O - s x  'ŸJst è .  j - p x  (P*rg Y ®  ‘ ^
L '*0 ® Y°'

V " '
again for i = 1,2.

Defining the matrices A  and B by the expressions following Malkin's equation 7 .6 ,  ' 

p. 414 , reduces these two equations to :-

W A i i  B „ + ^  -  « (*) ^ x l ' Y V i  df) M,

+ (<3 -A2 i + B ji -  7 ’  ̂ f  j  <^.<2 V a I °
A o  ^ ^ 3 = 1

A . 3 . 1 7

and 27̂

(<TA ,2 + » ,2  *  y ! ^  B ,2 -  i  * > ' * 0

A  o =1

21 i^

+ (<r Agg + Bgg + ®22"“̂  % 2   ̂ '



If  M alkin's conditions 6 .22  p .411 are now applied v iz .

ori ^ < X i  = 1 ,  ^ < K k  ^ c K , \  ~  0 ,  i \  k

<X =1 x = l

then equations A . 3 . 1 7  reduce to M alkin 's 7 .6  p 414 except that a factor 2 TP 

must be applied to the exponent a  ̂ \
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APPENDIX 4 .

ALGOL PROGRAMME FOR FREQUENCY RESPONSE OF GYRO 
WITH FLEXIBLE BEARINGS,

' b e g i n ' ' r e a l ' k , R b , R g ^ I , J , M x , M y , o m , O M , f r , d f r ;  
' i n t e g e r ' i , j , N , r u n ;
' a r r a y  'A^Bf* 1 ; 4 , 1 : 4 ]  ,FRRf 1:1 ] ;

' p r o c e d u r e ' c a r p e l ( x , y ) ; ' r e a l  ' x , y ;
' b e g i n ' ' c o m m e n t 'x  a n d  y  become r  and t h e t a ,  

w here  t h e  t a  i s  i n  d e g re e s  i n  t h e  c o r r e c t  q u a d r a n t ;  
' r e a l ' z ;
z ; = s q r  t  ( ) ;
y ;= 1 8 0 . 0 ^ a r c t a n ( y / x ) / 3 # 14 l 59 26 5 ;
' i f ' X < 0 ' t h e n ' y : - y + 1oO. 0 ;  

x : - z ;
' e n d ' c a r p o l ;

' p r o c e d u r e ' i n v e r t  c o m p l e x ( n , A , B , e r r o r ) ;
' v a l u e ' n ;  ' a r r a y ' A , B ; ' l a b e l  * e r r o r ;
' i n t e g e r ' n ;

' b e g i n ' ' com m e n t ' i n v e r t s  t h e  c o m p le x  m a t r i x  A + i B , [ n - m ]  
w h ic h  s h o u l d  be a v a i l a b l e  as tw o  r e a l  [ n * n ]  a r r a y s  A , B .
On e x i t  A c o n t a i n s  t h e  r e a l  p a r t  and B t h e  i m a g i n a r y  p a r t  
o f  t h e  i n v e r t e d  m a t r i x . e r r o r  i s  a n o n - l o c a l  l a b e l  
i n d i c a t i n g  a f a i l u r e . ;

' a r r a y  'C[ 1 :n4-n, 1 : n + n ]  ; ' i n t e g e r ' i / j  ;
' f o r ' i ; = 1 ' s t e p ' 1 ' u n t i l ' n ' d o '
' f o r ' j : = 1 ' s t e p ' 1 ' u n t i l ' n ' d o '
• b e g l n ' C i ,  j ] : = A [ l ,  j ] ; C [ i + n ,  j ] î = B [ l , j ] ;  

C [ i , J + n ] :  = - B [ l , j ] ; G ’ l + n , J + n ] : = A [ i , j ] ;
' e n d ' l , j ;
i n v e r t ( C , n + n , e r r o r ) ;

' f o r * i : = 1 ' s t e p ' 1 ' u n t i l ' n ' d o '
' f o r ' j : = 1 ' s t e p ' 1 ' u n t i l ' n ' d o '
'beg ln 'A '" ! ,  j ]  : = C i ,  j  J] j  ]; 'end'  ;
' e n d ' i n v e r t  c o m p le x ;
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A

' b e g i n '

' p r o c e d u r e '  I n v e r t ( A , e r r o r ) ;  ' v a l u e '  n ;  ' a r r a y '
' I n t e g e r '  n ;  ' l a b e l '  e r r o r ;

' b e g i n '  'comment*  i n v e r t s  t h e  m a t r i x  A i n  s i t u ;
' i n t e g e r *  i , j i ;  ' a r r a y *  XT 1 : n ,  1 :n - tn ]  ;
' f o r *  i<- 1 ' s t e p '  1 ' u n t i l  ' n  *do*

' f o r *  j  1 ' s t e p  ' 1 ' u n t i l *  n  * do *
' b e g i n *  X [ i ^  J ]<“  A [ i ,  J ]  ;

' e n d ' ;
X f i ^ l + n 3 ^ 1 . 0

' e n d ' ;
G a u s s ( X j A ^ n ^ n , e r r o r )

'e n d  * i n v e r t ;

' p r o c e d u r e ' G a u s s ( a , Y , n , r , L ) ; ' v a l u e *  n ^ r ;  ' a r r a y '  a , Y ;
' i n t e g e r *  r ^ n ;  ' l a b e l '  L ;

' b e g i n *  ' c o m m e n t ' S o lv e s  t h e  m a t r i x  s e t  o f  l i n e a r  e q u a t i o n s  AY-H
w h e re  A i s  an  ( n ^ n )  m a t r i x  o f  c o e f f i c i e n t s ^

H i s  an  (n-x-r) m a t r i x  o f  r i g h t  h a n d  s i d e s
Y i s  t h e  (n>^r) s o l u t i o n  m a t r i x .

I S
Ï  IS  r n e  ^n^^r; s o l u t i o n  m a t r i x .

. __ t h e  ( n ^ ( n i - r ) )  p a r t i t i o n e d  m a t r i x  (A /H )  .
I f  t h e  s y s te m  has many s o l u t i o n s  t h e n  a iumr 
L  i s  p e r f o r m e d  w h e re  L

s o l u t i o n s  t h e n  a jum p  t o  
i s  a  l a b e l  o u t s i d e  t h e

* i n t e g e r ' 
' f o r i  1(-1 
' b e g i n '

i j  IS  pei'jLOiTfiea wnwru u  i s  a  l a o e i  o u i  
p r o c e d u r e *  The m a t r i x  a i s  d e s t r o y e d ;  

i j J , k j l ;  ' r e a l ' tem p;
' s t e p ' 1 ' u n t i l ' n -1  ' d o '

j < - l ;  t e m p ^ . b s ( a [ l ^ l ]  ) ;
' f o r * k ^ l+ 1  ' s t e p '  1 ' u n t i l *  n  'd o *  
' i f '  a b s ( a [ k , l ] ) > t e m p  ' t h e n *
' b e g i n '  t e m p < - a b s ( a [ k , l ] ) ;  
i f *  te m p = 0 . 0  ' t h e n *  ' g o t o '

' t h e n  ' 
' s t e p '

j<-k
L ;

end

1 ' u n t i l *  n f r  ' d o *

a [  j , k ]< - ' te m p ;

i f  J#1 
' f o r  ' lc-1 
' b e g i n  *

te m p « -a [ l  j k ]  ; a [ l , k ] < - a  [ j  , k ]  ;
' e n d ' ;
' f o r ' j< -n + r  ' s t e p *  -1 ' u n t i l *  1 ' d o ' 
a [ 1 ,  J ] ^“a [ 1 ,  J ] / a  [ 1 , 1  ] ;
' f o r  ' i<- 1+.1 ' s t e p  ' 1 ' u n t i l *  n  ' d o  '
' b e g i n ' t e m p ^ a [ l ^ l ] ;

' f o r ' j« - l+1 ' s t e p *  1 ' u n t i l *  n + r  'd o *  
a [ i , j ] ^ a [ i , J ] - t e m p * a [ l , J ]

* end '

end

'e n d * ;
' f o r  ' j<-n+1 ' s t e p  ' 1 ' u n t i l *  n + r  'd o *  
' f o r ' i ^ n  ' s t e p ' -1 ' u n t i l ' 2 ' d o '  
' b e g i n *  ' i f  a [ i , i ] = = 0 . 0  ' t h e n *  ' g o t o *  

Y [ i  j  J - n ] ^ * a [ i 5 j  ] / a [ i , i ]  ;■
' f o r *  ' s t e p '  -1 ' u n t i l  '
a [ k ^  j  ]<“ a [ k ,  j ]  - a [ k , i  ] ^ Y [ i j  j - n ]

■<-1 ' s t e p *  1

L ;

1 do '

'e n d  * 
' f o r  ' 

Gauss;
u n t i l *  r  ' d o  ' Y [  1 j i ] e - ^  [ T , n + i ] / a  [ 1  ̂1 ]
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* p r o c e d u r e ' c x ’ e a t e ( c h a n n e l  num ber  ̂  f i l e  nam e) ; ' v a l u e ' c h a n n e l  num ber ;  
' i n t e g e r '  c h a n n e l  n u m b e r ; ' s t r i n g *  f i l e  n a m e e x t e r n a l ' ;

' p r o c e d u r e *  use ( c h a n n e l  num ber  _,f i l e  name ) ; ' v a l u e  ' c h a n n e l  num ber ;
' i n t e g e r ' c h a n n e l  n u m b e r ; ' s t r i n g '  f i l e  name ; ' e x t e r n a l ' ;

' p r o c e d u r e ' d a t a  s k i p ( c h a n n e l  n u m b e r ) ; ' v a l u e ' c h a n n e l  num ber ;
' i n t e g e i ’ ' c h a n n e l  num ber  ; ' e x t e r n a l  * ;

' p r o c e d u r e ' w r i t e  b i n a r y ( c h a n n e l  n u m b e r ^ a r r a y , e r r a y  nam e) ;
' v a l u e ' c h a n n e l  nu m b e r ;  ' i n t e g e r *  c h a n n e l  nu m be r ;
' a r r a y ' a r r a y ;  ' s t r i n g ' a r r a y  name; ' e x t e r n a l ' ;

' p r o c e d u r e ' t im e  n o w ; * e x t e r n a l  * ; 

u s e ( 4 0 , ' ( ' L I N F R ' ) * ) ;
I ; - 0 . 8 3 8 7 5 ; J :  = 1 .5 2 5 ;M x : ==0.70912 5 ;M y :  = 0 . 2 3 6 3 7 5 ; R b : - 8 0 0 * 0 ;
R g : = 2 0 0 . 0 ; k : = & 8 ; 0 M : = 2 5 1 4 . 0 ;  
a g a i n : r u n : =0;
f r : = r e a d ;  ' i f * f r < 0 ' t h e n  * ' g o t o ' f i n i s h ;  
d f r : = r e a d ; N : = r e a d ; 
s t a r t :  om: OM ;
w r i t e  t e x t ( * ( ' t i m e ^ n o w ' ) ' ) ;  t im e  now ;new  l i n e ( l ) ;  
w r i t e  t e x t  ( * ( ' f r e q u e n c y ^  r a t i o * ( *c * ) ' * ) * ) ;  
p r i n t ( f r , 2 , 2 ) ;
P R R f1] : = f r ;
w r i t e  b i n a r y  ( 4 0 , P R R , * ( 'PRR* ) * ) ;

A [  1,1 ] ;= ± (k ~ o m *o m -^ ' I ) /& 4 ;A [2 ,1 ] : = 0 ; A F 3 , 1 ] : = - k / & 4 ; A [ 4 , 1 ] : = 0 ;
A [ 1 , 2 ]  : = 0 ; A [ 2 , 2 ] : = A [ 1 , l i ; A [ 3 , 2 ] : = 0 ; A [ 4 , 2 ]  : = A [ 3 , 1  ] ;  
A [ 1 , 3 ] : - 0 ; A [ 2 , 3 1 : - - J ^ 0 M ; A [ 3 , 3 ]  : - R g ; A [ 4 , 3 ] : - 0 ;
A"1 , 4 ]  : = J - > ^ 0 M ; A [2 , 4 ] : = 0 ; A [ 3 , 4 ]  : = 0 ; A [ 4 , 4 ]  :=Rg;

B [ 1 ,1 ] := R b '^ o m /& 4 ;B [2 ,1  ] : = J * O M * o m /& 4 ; B ' ' 3 , 1 ] ;= -B . [1 ,1  ] ; B f 4 , 1  ] : = 0 ;
BTl , 2 ] :  = - B [ 2 , 1 ] ; B [ ? , 2 ] : = B [ 1 , 1  ] ; B r 3 , 2 l : = 0 ; B r 4 , 2 ] : = - ^ B [ l , 1  ] ;
B M  , 3 ]  : = o m ^ ! a ; B [ 2 , 3 l : - 0 ; B [ 3 , 3 ]  : - o m « x ; B [ 4 , 3 ] : =0 ;
B [ 1 , 4 ]  : = 0 ; B ' 2 , 4 l : = B [ 1 , 3 ] ; B ^ 3 , 4 ] ; = 0 ; B [ 4 , 4 ] : = = o m ^ M y ;

w r i t e  t e x t ( * ( ' ' ( ' c ' ) ' o r i g # ^ r e a l ^ m a t r i x ' ( ' 4 5 s ' ) '  
o r ig ,^ im a g * ^ m a tr ix ^ |^ -b o th ^ d iv ld e d ^ b y ^ J * O M E G A . ' ) ' ) ; 

' f o r ' i :  = 1 ' s t e p ' 1 ' u n t i l ' 4 ' d o * ' b e g i n *  
new l i n e ( 1 ) ;
' f o r ' j :=  * s t e p '1 ' u n t i l ' 4 'd o  * ' b e g i n '

A [ i , . j ] : = A r i , j ] / ( j - ) f O M ) ;  
p r i n t f A ^ i , j ] , 0 , 4 ) ;  ' e n d * ;
s p a c e ( 1 0 ) ;  2
' f o r ' j : = 1 ' s t e p '1 ' u n t i l ' 4 'd o  * ' b e g i n *

B [ i , j ] : = B [ i ,  j ] / ( J -> fO M ) ;
p r l n t ( B [ i , J ] , 0 , 4 ) ; ' e n d ' ;
' end * i ;
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w r i t e  b i n a r y ( 4 o , A , ' ( 'GRREAL*) '  
w r i t e  b i n a r y ( 4 0 , B , * ( 'GRIMAG ' ) »

i n v e r t  c o m p le x ( 4 , A , B , e r r o r ) ) ;
w r i t e  t e x t  ( * ( ' * ( '  c ' r e a l ^ â n a t r i x  ' ( * 50s ' ) * i m a g i n a r ^ r  ^ m a t r i x  ' ) ' ) ; 
' f o r ' i : = l ' s t e p ' 1 ' u n t i l ' 4 ' d o '
' b e g i n *  new l i n e ( 1 ) ;

' f o r ' j : = 1 * s t e p ' 1 ' u n t i l * 4 ' d o ' 
p r i n t ( A [ i , j ] , 0 ^ 4 ) ;  s p a c e ( 1 0 ) ;
' f o r ' J : = 1 ' s t e p ' 1 ' u n t i l ' 4 ' d o *  
p r i n t ( B [ i , j ] , 0 , 4 )  ;

'e n d  * i ;

w r i t e  b i n a r y ( 4 0 j A , ' ( 'R E A L ' ) '  
w r i t e  b i n a r y ( 4 0 , B , ' ( ' IM A G ' ) '

' f  o r ' i : = 1 ' s t e p ' 1 ' u n t i l * 4 'd o *
* f o r ' j ; - 1 ' s t e p ' 1 ' u n t i 1 ' 4 ' d o '

c a r p o l ( A [ l . j l  , B r i , , l ]  ) ;  , , .
w r i t e  t e x t ( ' ( ' ' ( ' c ' ) ' a m p l i t u d e ^ m a t r i x * ( * 4 5 s ' ) ' p h a s e ^ m a t r i x ' ) ' )  
' f o r ' i : = 1 ' s t e p ' 1 ' u n t i l * 4 ' d o '
' b e g i n ' n e w  l i n e ( 1 ) ;

' f o r ' j : =  *s t e p ' 1 ' u n t i l * 4 ' do * 
p r i n t ( A [ i , J ] , 0 , 4 ) ;  s p a c e ( 1 0 ) ;

' f o r ' j : = 1 ' s t e p ' 1 ' u n t i l ' 4 ' d o ' 
p r i n t t B f i ^ j ] ^ 3 ^ 1 ) ;

' e n d ' ;

w r i t e  b i n a r y ( 4 0 ^ A , ' ( 'A M P ' ) ' ) ; w r i t e  b i n a r y ( 4 o , B , ' ( 'PHASE' ) ' ) ;

w r i t e  t e x t ( ' ( * ' ( ' c ' ) ' d e c i b e l ^ m a t r i x ' ) ' ) ;
' f o r ' i : = 1 ' s t e p ' 1 ' u n t i l * 4 ' d o '
' b e g i n ' n e w w l i n e ( 1 ) ;

* f o r ' j : = 1 ' s t e p ' 1 ' u n t i l ' 4 ' d o *  
p r i n t  (8 .6 8 6 -5 ^ - ln (A [ i ,  J ]  ) , 3 , 1  ) ;

' e n d ' ;

w r i t e  b i n a r y ( 4 0 , A , * ( 'D B * ) ' ) ;

e r r o r  ! r u n :  =run-Hi ; f r : = f r H - d f r ;
' i f  * r u n > N ' t h e n ' ' g o t o ' a g a i n ;  ■
p a p e r  t h r o w ;  ' g o t o ' s t a r t ;  -
f i n i s h : ' e n d ' o f  p ro g ra m ;
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