https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
BACIERAEMIC SHOCK
and
THE MICROCIRCULATION.
-
(Experimental Studies and Clinical Observations)

PHES IS SUBMITYED BY ADRIAN IIYYON TO THE UNIVERS ITY
OF GIASGOW FOR THE DEGREE OF MASTER OF SURGERY

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10646014
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

BACTERATMIC SHOCK AND THE MICROC.IRCULATION

 VOIUME IPRETACE
PART I. EXPERIMENIAI SIUDIES. PART II. CLINICAL OBSERVAIIONS. BIBLIOGRAPHY.

> VOLUME II

APPENDICES.

BACTMRAEMIC SHOCK AND THE MICROC IRCULATT TON

VOLUNE I.

TABLI OF CONTENPS PAGE
PREPACE. $\overline{\mathrm{V}}$
PART I. EXPER TMENTAI STUDTES. 1
Section I.
a) Introduction. 1
b) Outline of the scope of the thesis. 7
THE MICROCIRCULATION.
Section II.
a) Introduction. 9
b) Ithe hamster cheek pouch. 13
c) The effects of anaesthesia. 14
QUANI TPATION OF THE MICROVASCULATURE
IN THE HAMSTER CHEBK POUCE.
Section III.
a) Introduction and methods of study. 16
b) Results. 17
c) Discussion. 23
d) Summary. 27

> ON THE MTCROCTRCULAATION.

Section IV.

a) Introduction. 29
b) Materials and methods. 30
c) Results. 36
d) Discussion 44
e) Summary and general conclusions. 52 ENDOITOXINS.

Section V.

a) Introduction and general review of the literature. 53
b) Experimental studies of the action of endotoxin on the micro-circulation.
i) Introduction. 71
ii) Materials and methods. 72
iii) Results. 73
iv) Discussion. 76
v) Summary and conclusions. 81

BIOASSAY OF PATTENTS' PLASMA FOR
VASOACTIVE SUBSTAANCISS.
Section VI.
iii
TABLIT OF CONTENTS (Contd.)
PAGE
Section VI.
a) Introduction. 82
b) Vasoactivity of serum and plasma of normal persons. 83
c) Vasoactivity of plasma of patients in shook associated with infection. 84
d) Vasoactivity of plasma of patients with severe dermal burns. 86
e) Discussion. 86
PART II. GITNICAL OBSIERVATIONS.
BACTERAEMTC SHOCK - CLINTCAL
OBSERVATIONS.
Section VII.
a) Introduction. 91
b) Methods of study. 93
c) Clinical Findings. 94
d) Management and Iherapy. 111
e) Discussion. 113
f) Conclusion. 138
GEBNERAL CONCLUSIONS AND SUMMARY.
Section VIII. 139

VOLUME II.

TABELE OF CONTENTS.
Appendix 1. Figures 1-25
Appendix 2. Main Tables 1-41
Appendix 3. Supporting Tables 1-106
Appendix 4. Case History
Summaries
1-31

PREPACE.

This thesis presents observations on experimental and clinical aspects of shock associated with infection caused by gram-negative micro-organisms.

The work involved in this dissertation was largely carried out in the Department of Surgery, Peter Bent Brigham Fospital and the Laboratories of Surgical Research at the Harvard Medical School, Boston, during the year 1963-1964.

It is a pleasure to acknowledge the interest and advice of Dr. Francis D. Moore, M.D., Moseley Professor of Surgery at the Harvard Medical School and Surgeon…inChief, Peter Bent Brigham Hospital.

I should also like to thank Dr. Carl W. Walter, M.D., Clinical Professor of Surgery at Harvard Medical School, Dr. Ruth Kunasin, Sc.D., Microbiologist, Department of Surgery at Peter Bent Brigham Ilospital, and Dr. Herbert J. Berman, Ph.D., Research Professor of Biology at Boston University, for their help and interest throughout this work.

Preliminary papers on which this thesis is based have already been presented at different meetings.
A) In September, 1964, at the Autumn Meeting of the American Physiological Society, I read a paper on "Ihe Quantitation of the Microvasculature of the

Hamster Cheek Pouch", the abstract of which has been published in the Physiologist, (1964).
B) At a Workshop on "Septic Shock", held in Washington, D.C. in September, 1964, at the National Academy of Science, National Research Council, I read a paper entitled "Septic Shock and Ierminal Sepsis in Critically Ill Surgical Patients". This paper was an interim report of the cases studied and presented in the clinical section of this thesis. The collected papers of the Washington meeting have been published in the proceedings of the Workshop. (Septic Shock. Edit. J.G. STRRAWITZ, and N. GROSSBTATP . National Academy of Sciences - National Research Council, Washington, D.C. (1965).
C) At the Fourth European Conference on Microciroulation held at Cambridge University (JunewJuly, 1966) I read a paper entitled "The Action of Vasoactive Substances on the Microvasculature of the Hamster Cheek Pouch". The manuscript of this paper has been accepted for publication in the proceedings of the Fourth Furopean Conference. (Bibliotheca anatomica, Publishers, Karger).

PART I.

EXPERIMENTAI STUDTES.

SECTION I.

A) Introduction.
B) Outline of the scope of the thesis.

BACTERAEMIC SHOCK AND THE MICROCIROULAMION.

(A) INTRODUCTION

Shock and infection constitute two of the major hazards that confront the surgical patient and where they co-exist the combination is frequently lethal.

Since the time of Lister and the introduction of antiseptics into surgical practice, great progress has been made in the understanding, prevention and control of infection. Even today, however, infection is still a major hazard and the danger of hospital-acquired infection is frequent.

Shock has also been a grave complication to the surgical patient. Today with the better understanding of the haemodynamic changes associated with shock many forms of shock can be either anticipated and prevented, or treated efficiently at their onset. For example, haemorrhagic shock can be rapidly overcome by replacing the volume of blood that has been lost, and the oligaemic shock of severe burns can be treated with intravenous crystalloid solutions and plasma.

Irreversible shock, a term which when applied to man can be used with certainty only in retrospect, is reserved for those forms of established shock which are
unresponsive to energetic therapeutic measures. The criteria for defining irreversibility are vague. In animal studies, in controlled experiments where haemorrhage is carried out to achieve hypotension of a known degree, and where after a calculated interval of time, in spite of re-transfusion the animals succumb, the term 'irreversibility' can be defined with statistical accuracy. Even here the pathological and physiological changes which occur are not yet clearly understood. Shock associated with infection, especially by the gram-negative micro-organisms, has a high mortality, and up to the present, therapeutic measures to counteract such shock have been very unsatisfactory. There does not appear to be any simple explanation for shock. When the cardiovascular system is upset many compensatory mechanisms try to restore nommality. Once these feed-back mechanisms fail, "vicious cycles are produced with a downhill spiral in the viability of the organism". (CROWELI and GUYTON, 1961). Many biochemical constituents of the blood can be measured and their altered concentrations may appear to be the cause of the circulatory failure, but in reality may merely reflect the disorganisation of the integrity of the cell produced by peripheral circulatory failure and
/consequent tissue hypoxia.
There have been several theories to explain irreversible shock, and those currently acceptable emphasise different aspects of this general cardiovascular failure.

FINE (1962) believed that all irreversible shock was due to endotoxaemia. In shock, the bowel becomes ischaemic due to sympathetic and catecholamine overactivity; organisms from the intestinal lumen escape through the devitalised mucosa and are absorbed by the portal vascular system. Due to the failure of the reticulo-endothelial system to clear those bacterial toxins, generalised endotoxaemia results with secondary 'septic shock'. The mode of action of endotoxin in the production of shock is still uncertain. Several neurohumeral vasoactive substances have been implicated as mediators in shock; these include catecholamines, histamine, serotonin, and the vasoactive polypeptides. GUYTON and CROWELI (1961) emphasised that all forms of irreversible shock ultimately bring about failure of the myocardial muscle which produces the irreversibility. They have measured the effects of oxygen lack with precision and found that when oxygen debt was less than 100 ml . oxygen per kilogram of tissue,
in
independent of the duration of shock, the animal recovered. However, when oxygen debt exceeded 140 ml . per kilogram of tissue, recovery was impossible. Direct measurements of oxygen lack require sophisticated methods not readily available in clinical work, and indirect measurements of hypoxia assessed on the associated metabolic acidosis have been used egg. blood pH, lactic acid, pyruvic acid pO_{2} and pCO_{2} levels and calculations of 'base excess'.

SCHAYER (1960) suggested that there was a balance between sympathetic activity and catecholamine release on the one hand and endogenous histamine production on the other. The teleological response of the animal or man to a failing blood pressure, (egg. due to haemorrhage) is to cause peripheral vasoconstriction; this in turn produces diminished blood flow to the periphery with tissue cell hypoxia. Endogenous histamine is released causing peripheral arteriolar dilatation in an attempt to increase local blood flow. When this catecholaminehistamine balance is upset signs of 'decompensated' or irreversible shock follow.

HARDAWAY (1961) has been one of the main protagonists of the theory of disseminated intravescular coagulation as the cause of the irreversible shock state.

At first he noted a hypercoagulable state of the blood and, due to this, and the slow rate of flow in the microcirculation, intravascular thrombosis then occurred in the minute vessels - especially in the minute postcapillary venules. This caused sequestration of many factor's required for blood coagulation and there then followed a hypocoagulable state with resultant haemorrhagic manifestations and evidence of increased fibrinolytic activity. Hardaway has shown in clinical observations of shock, many defects in the haemostatic mechanisms, and in post-mortem specimens of tissues and organs from patients who have died in shock, multiple thrombi in the minute vessels.

THP MICROCIRCUIAATION.

The microcirculation is the site of metabolic exchange. The heart and large vessels are regulated by the vasomotor centre in the brain, and adjustments are produced by afferent neural pathways - e.g. via the baroreceptors and chemoreceptors of the great vessels. It is significant that these receptors are situated near the entrances of the major vessels to the heart and brain areas which are relatively independent of sympathetic vasoconstriction.

Beyond the small arteries in the peripheral vascular

- 6 -
bed, the microcirculation is regulated by chemical substances usually liberated locally and often producing vasodilatation and increased capillary permeability.

In shock, especially in shock associated with infection, there appears to be marked peripheral pooling of blood in the various vascular beds. (GILBBRT, 1960).
(B) OUTLINE OF THE SCOPE OF THE THESIS.

Part I. Experimental Studies.

In the study of shock related to infection the following experimental studies were carried out.
i) The morphology of the microvasculature of the hamster cheek pouch was studied in detail and an attempt was made to quantitate the blood volume distribution in the minute vessels.
ii) The range of response of the microvasculature to neurohumoral stimulation was assessed by using several vasoactive substances considered to be active in shock.
iii) The local and systemic effects of endotoxins, the purified lipopolysaccharides of gram-negative bacteria, were observed in the microcirculation and the action of endotoxin was compared with the effects of previously assessed vasoactive substances.
iv) A preliminary series of experiments was initiated to 'bioassay' the vasoactivity of plasma in normal persons and in patients with severe gram-negative bacterial infections.

$/$

Part II. Clinical Observations.

A selected group of surgical patients who were critically ill was studied to see how the clinical manifestations of shock associated with overwhelming infection compared with the reported haemodynamic changes observed in the experimental animal given a highly purified endotoxin preparation.

SECTION II. THE MICROC IRCULAITION.

A) Introduction.
B) The Hamster Cheek Pouch.
C) The Effects of Anaesthesia.

THE MICROCIRCULATION.

(A) INTRODUCTION.

William Harvey discovered the circulation of the blood and his classical monograph "Exercitatio Anatomica de Motu Cordis et Sanguinis" was published at Frankfurt in 1628. Although Harvey deduced that the vascular bed was a closed system, the mystery of the communication between the smallest arteries and veins remained until four years after his death, when in 1661, MARCELLO MALPIGHI described the capillary vessels in the transparent tissues of the frog.

The first authoritative monograph on the capillaries was by AUGUST KROGH in 1922. Most other work on the microcirculation had been carried out by histological examination of fixed in vitro preparations (e.g. by MALJ, 1888) or by indirect inference from physiological studies of the macrocirculation - capillary exchange being deduced from the quantitative and qualitative changes in the blood from major arteries and veins to a tissue, or from tissue volume changes as recorded by plethysmography. Observations have been made on the minute vessels of living animals. Studies were originally made in the transparent tissues of the frog (MALPIGHI, 1661; IISTER, 1858). Mammalian preparations which have been
used to study the living circulation are the skin flap of the mouse (ALGIRE, 1943), the transparent chamber in the rabbit ear (SANDISON, 1924), the wing of the bat (NICOLI and WEBB, 1946), and the cheek pouch of the hamster (FULTON et al., 1947). Observations on the microvasculature in the mesentery of the dog, rabbit, guinea pig, rat and hamster have been made (e.g. CHAMBERS and ZWEIFACH, 1946), but laparotomy is required, difficulty is experienced in achieving a steady state due to the unnatural conditions, and the time available for observation is usually limited to less than one hour.

Compared with the tissue area in the window of the rabbit ear chamber, the hamster cheek pouch is relatively large. In addition, careful preparation of the ear is necessary before microscopic observation is possible and the chamber cannot be maintained indefinitely. The cheek pouch on the other hand has normal physiological activity and repair and renewal are normal processes. The cheek pouch is unique in allowing direct observations of the microvasculature without causing damage to tissues. The bat is a difficult animal to handle, breed and maintain in captivity, and the wing is not so transparent as the hamster cheek pouch. The nail bed vessels and the conjunctival vessels are the only small vessels readily

$/$

accessible to direct microscopy in man, but here the magnification achieved and the clarity of resolution are very limited.

The interchange between blood circulating in the minute blood vessels and the internal environment enables the circulatory system to maintain a relatively constant internal milieu. Because of our limited ability to measure the essential variables in the microcirculation, information regarding the characteristics of blood flow in these peripheral vessels is scanty.

Direct visual observation of the minute vessels is the only method which allows examination of the microvasculature under conditions which approximate to normal. Arteries, capillaries and veins in one tissue, can be studied simultaneously and their variations in diameters, cross-sectional areas, and volumes can be recorded and compared.

The pharmacological actions of drugs on isolated organs or tissues can be recorded, but there is a danger in their free application to the intact animal. Reliable methods for measuring simultaneously and quantitatively the reactions to drugs of all the peripheral segments of the circulation are still being exploited.

The terms vasoconstriction and vasodilatation can be misleading e.g. if a drug constricts both the arteries and the veins, the resultant haemodynamic effect could not be precisely predicted since a narrowing of the arteries would decrease, while constriction of the weins would increase, the venous return. There are difficulties in ascribing changes in the blood pressure and volume of blood flow to activity of the minute vessels on the results of indirect measurements. Direct observation of the minute vessels can offer a more precise explanation of the changes.

Flow through the vascular bed depends on the arterial pressure, the arterial and venous resistances, the viscosity of the blood and the extravascular tissue pressure. Net changes in the vascular volume will depend on location of the resistance increase on the morphology of the vascular network. In shock where it has been presumed that there is peripheral pooling in the various vascular beds measurements of vascular volume changes are important but extensive data are not yet available on such vascular changes.

In carefully controlled studies, (e.g. KNISELY, 1936; CHAMBIERS and 2WEIFACH, 1944; and NICOLI and WEBB, 1946) results from direct visualisation of the terminal vascular bed have been employed in the analyses of the peripheral vascular changes.

B) THE GOLDEN HAMSTER CHEEK POUCH.

The golden hamster cheek pouch seemed to be the most satisfactory model to study the microcirculation in vivo. The golden hamster (MESOCRICEIUS AUREIUS) has a pair of very vascular transparent cheek pouches which are cylindrical diverticula of the buccal mucosa [Figure I7. The cheek pouch is a thin transparent membrane covered with stratified epithelium but with no hair follicles or glandular structures. Although there is a rich vascular network in the cheek pouch, Iymphatic vessels have not been observed (SHIPRO ET AL., 1963). The pouch is prepared for study by first anaesthetising the hamster and then everting the cheek pouch with forceps and pinning it out flat over a transparent window on the microscope stage. This "double membrane" preparation can be used for microscopic observations, using a transmitted light source. A "single membrene" preparation which gives much clearer detail at higher magnification (up to 1200 times) can be readily prepared by cutting a semicircular opening in the upper epidermal layer, pinning it back and clearing the loose comective tissue, thus leaving a single epidermal layer with a single flat laver of attached vessels LFigure I.B.]. In all measurements it was assumed that all vessels lay in the same plane and were circular in cross-section.

C) ANAESTHESTA.

Anaesthesia was essential in studying the microvasculature of the cheek pouch of the hamster. The anaesthetic usually employed was intraperitoneal pentobarbitone. A fresh solution was made up each day by dissolving powdered pentobarbitone in sterile normel. saline solution. The minimum satisfactory amount of anaesthetic agent was employed: the dose was usually 9 mgrss. pentobarbitone per 100 G. body weight intraperitoneally. The "sleeping time" was 30-35 minutes. Anaesthesia could be prolonged indefinitely by subsequent graded smaller doses of drug (2.5 mgm . doses as 0.05 ml . of solution containing $50 \mathrm{mgm} . / \mathrm{ml}$.).

Effects of Anaesthesia.

Anaesthesia, per se, has a profound effect on the circulation through the vascular bed. (ZWEIFACH, 1948; WEIDMAN and NICOLI, 1953). In the hamster anaesthetised with intraperitoneal pentobarbitone, the blood pressure usually falls, the effect is most profound in the first 5-15 minutes and then progressively wears off in the next 45-90 minutes. This feature introduces an important but unavoidable variable which has to be taken into consideration during all experimental observations on the cheek pouch. General anaesthesia causes an upset of
'vasomotion' in the microvasculature. The small vessels show intermittent phases of dilatation and contraction (KNISELY, 1935) and it has been observed that general anaesthesia causes the vasodilator phase to be predominant (ZWEIFACH, 1948).

IISTER (1858) observed that chloroform anaesthesia in frogs had such an effect on the microvasculature. He noted, "The anaesthesia appears to impair the functions of the spinal cord as a regulator of the calibre of the vessels and its administration is generally followed by their dilatation". SAUNDERS and KNISELY (1954) also noted vasodilatation associated with intraperitoneal pentobarbitone in mammals.

In all the observations in the cheek pouch of the hamster, it was considered that pentobarbitone, by its central action on the nervous system caused a diminution of sympathetic vasoconstrictor tone. All experiments were carried out under similar control conditions.
SECTION III.
QUANTITATTON OF THE MICROVASCUIAATURE
IN THE HAMSTER CHEEK POUCH.
A) Introduction and methods ofstudy.
B) Results.
C) Discussion.
D) Summary.

Quantitation of the Microvasculature in
the Hamster Cheek Pouch.
A) Introduction.

The importance of accurate in vivo measurements of lengths, diameters, numbers of vessels, anastomoses, blood volumes and endothelial surface areas lies in assessing the haemodynamic changes associated with blood flow and volume distribution in the microcirculation, the only part of the cardiovascular system associated with metabolic exchanges with living tissue cells. Few studies have been made to measure the minute vessels in the living animal. Values reported here are the results of direct observations in living tissues where it was possible to follow blood flow in its complete peripheral path from distributing artery through the capillary network into the collecting venous system. METHODS.

The microvasculature has been quantitated in the cheek pouch of the living anaesthetised hamster. (MESOCRICDESUS AUREIUS). Camera lucida drawings were made of the general and detailed distribution of the vessels. Diameters and lengths of vessels were measured with a calibrated ocular micrometer. Calibration of the ocular micrometer was carried out using a stage-micrometer with different eyepieces and objectives. Total cross-
sectional areas, endothelial surface areas and blood volumes were calculated for the different types of blood vessels. For each size of blood vessel at least 10 different hamsters were observed and the mean of at least 25 readings was recorded. Magnifications varied from $40 x$ to $1200 x$ depending on the vessels being measured. 10x, 15x and $20 x$ eyepieces were used along with various objectives. For the higher magnifications $25 x$ and 60 x water immersion objectives were chosen.

The hamsters were anaesthetised with intraperitoneal pentobarbitone (Nembutal) - $9 \mathrm{mgm} . / 100 \mathrm{G}$. body wt. When required for the study of the smaller vessels, single membrane preparations were made by cutting a window in the upper layer of the everted cheek pouch.

The cheek pouch was perfused from time to time with Ringer's solution. The stage was not heated but the environmental temperature was maintained at $70^{\circ} \mathrm{F}$ ($\ddagger 0^{\circ} \mathrm{F}$).

B) RESULTS.

There were usually 3 or 4 main arteries entering the cheek pouch and a similar number of major veins leaving it. PRIDDY and BRODIE (1948) and POOR and LUTZ (1958) in careful dissections of the head region of the hamster have described the gross arterial and venous connections of the pouch. In the present study the
largest vessels which could be seen at the most proximal part of the everted pouch were considered to be the main vessels. More proximal junctions could not be studied by transillumination of the cheek pouch on the microscope stage.

Main Table 1 shows the mean for the number and diameter size of the main arteries and veins at the origin of the cheek pouch. The total cross-sectional area of the veins leaving the cheek pouch is over seven times as great as the total cross-sectional area of the entering arteries.

Branches from the main arteries formed the main arterial arcades in the cheek pouch and those anastomoses recurred throughout the cheek pouch and ensured an even pressure distribution to the terminal arterioles and the capillary bed. The mean diameter of the arterioles forming the arcades was 28.6 microns.

The angle of branching of main arteries was observed and the two branches usually formed an acute angle to each other; this was in marked contrast to the terminal arterioles which usually branched. from the small arteries at right angles. This morphological feature seemed to be important in regulating the flow of blood into these terminal vessels.

The areas within the anastomosing vessels varied
widely but on average were $3 \mathrm{~mm} . \mathrm{x} 1.5 \mathrm{~mm}$. Smaller arterial anastomoses occurred occasionally but their occurrence was infrequent with no regular pattern.

No arterio-venous communications were seen. The anastomosing channels on the venous side were much more numerous than on the arterial side and occurred at all levels from the second order of post-capillary venules up to the largest veins. This rich anastomosis, in addition to maintaining a uniform pressure gradient, and flow pattern, could also provide a large storage space for blood.

In the cheek pouch there were usually four orders of arteries, the capillary vessels, and five orders of veins. Main lable 2 shows the lengths and diameters of these vessels. The mean number of branches of each group of vessels was calculated and the total cross-sectional area of the various vessels was recorded in Main Table 3. The relative changes in total cross-sectional area are illustrated in Figure 3. This figure demonstrates that there is a gradual increase in cross-sectional area down to the small arteries; a threefold increase then occurs to the terminal arterioles and a further twofold increase to the capillary bed. It is in these two terminal orders of arteries that the maximum pressure gradients must occur.

In the present survey the capillary bed did not
possess the largest cross-sectional area. Further small but significant increases occurred in the first two orders of post-capillary venules and it was not until the third order of veins that the area fell below that of the capillary bed. Later venous vessels showed a gradual linear decrease in total cross-sectional area.

The capillary vessels formed a uniform network throughout the cheek pouch with arterial supply and venous drainage joining the network. A camera lucida drawing of the capillary bed is illustrated in Figure 2. The distance between adjoining capillaries had a mean value of 113 microns. In the cheek pouch under resting conditions only one third of the capillary vessels had active blood flow at any one time. No arteriovenous communications or thoroughfare vessels described by ZWEIFACH (1961) were seen in the cheek pouch.

The mean diameter size of the capillary was 4.84 (\pm S.E. 0.12) microns. This luminal diameter of the capillary was less than the equatorial diameter of the non-deformed erythrocyte ($5.6 \pm$ s.1. 0.2 microns). If "clumping" of the red cells occurred in the arterioles, cells which entered the capillaries, separated from the aggregated mass and passed in single order through the capillary. They were deformed from biconcave discs into hollow paraboloid structures or less commonly were folded
over on themselves. This incongruity of size allowed maximum apposition of red cell membrane and vascular epithelium, perhaps important in blood and tissue gaseous exchange. During the passage through the capillary the red cells became deformed and with increased velocity the deformation was greater. It was noted that the internal diameter of the capillary was greatest when the flow was sluggish or stagnant and the internal capillary diameter was smallest when the flow was most rapid.

In the post-capillary venules the lumen of the vessel was much wider than the capillary and aggregation of the red cells could occur. When the flow rate was low, red cells becane densely packed in aggregates in these small veins and even when rapid flow was resumed considerable time was necessary to overcome the venous stasis and cause disaggregation of the densely packed exythrocytes. The leucocytes were much larger and less numerous than the red cells. In the larger vessels they seemed to roll. along the margins of the vessels and to possess amoeboid movements in the capillaries.

In the minute vessels as a whole, flow appeared to be periodic with frequent temporary cessation of flow or complete reversal of flow.

Blood Volume Distribution.

The blood volume capacity on the venous side was much greater than on the arterial. The volume distribution in the different orders of arteries, capjllaries and veins is listed in Main lable 4. A correction was made for the largest order of veins as these main veins appeared more like cones than cylinders. The angle of divergence of these large vessels was calculated. The range was 24^{\prime} to $1^{\circ} 30^{\prime}$. As endothelial surface area is an important factor in the control of diffusion to and from tissues, calculation of the relative proportions of endothelium in the various vessels was made (Main Table 4). Although only 2.2 per cent of the total blood volume was in the capillaries, those vessel.s accounted for 14 per cent of the total endothelial area in the microvasculature. A comparison of the ratio of endothelium to volume (last column in Main Table 4) shows the unique advantages of the capillary vessel - being the vessels with the smallest. luminal diameter, the capillaries have the greatest surface exchange area for the volume of blood that they contain. In addition, the thinness of the capillary wall relative to all the other minute vessels, increases this unique diffusing capacity of the capillary vessels.

Main Table 5 shows the comparison of volume and endothelium in all the arteries, capillaries and veins

in the microvasculature of the cheek pouch.

C) DISCUSSION.

In the minute vessels there is only a small fraction (2.2\%) of blood in the capillary network. The capillary vessel has no elastic tissue or muscle cells in its wall and, as such, distension is limited. KROGH (1929) showed that in muscle the variations in metabolic needs were served by only a small number of capillaries being perfused with blood in the resting stage, and by near maximum capillary perfusion during exercise.

If the volume of blood in the minute vessels is compared to the total blood volume in the animal or man the relative volume of blood in true capillary vessels is minute. J.G. GIBSON, II EI AL., (1946) have shown that less than 20 per cent (approximately 17%) of the total blood volume is in the microvasculature at any one moment. The present study shows that the majority of blood in the microvasculature is on the venous side, where considerable pooling can take place.

The precise values of lengths and diameters of the various vessels differ from tissue to tissue and also from species to species. Absolute values have little direct importance but are of great physiological interest in the relative volume distribution and velocity flow
patterns that are observed in the peripheral vascular bed. As more precise information about the microvasculature becomes available experimental models, measuring, pressure gradients, viscosity and other haemodynamic factors can be analysed with variables comparable to conditions observed in vivo in the microcirculation. At present, viscosity studies of blood obtained from larger peripheral veins may have very little direct relationship to the everchanging conditions in the microvasculature. No method of study is more direct than visual microscopy of living tissues. Other techniques depend on the uptake by the tissue or deposition of foreign material in the tissue, or variation in oxygen or carbon dioxide tensions.

The cheek pouch does not possess any arterio-venous communications. This has been confirmed by FULTON (1962) and by POOR and LUTZ (1958). Similarly j.n the bat wing no A-V shunts have been observed. (NICOI and WEBB, 1946). In the fingers of man and in the ear of the rabbit, $A-V$ shunts have been described and in these sites they appear to subserve temperature requirements rather than metabolic needs. (GRANT, 1930). In the rabbit lung IRWIN玵 AL. (1954) observed infrequent $A-V$ shunts but these communications did not exceed 20 microns in diameter and appeared to be more like the A-V preferential channels
first described by ZWEIFACH (1948) in the mesentery of the dog.

IFWIN EI AI., (1954) noted by direct cannulation experiments using micromanipulative techniques that the greatest pressure gradients in the rabbit pulmonary vascular system were in the arterial vessels below 50 microns in diameter. In the present study the greatest increase in the total cross-sectional area occurred in the smallest two orders of arterioles.

Capillary Vessels.

SAUNDERS and KNISELY (1954) by direct in vivo microscopy showed that the narrowest parts of the circulatory system, the bottlenecks, were the terminal arterioles at the junction with the capillaries. Their measurements made in various living animals are shown in Main Table 6. Other published in vivo measurements of capillary size are listed in Main Table 7. Such in vivo measurements show satisfactory agreement with the observed size of the hamster cheek pouch capillaries (4.8 microns in diameter). These values of the internal diameters of capillary vessels are considerably smaller than previously reported series most of which deduced capillary size from study of the size of erythrocytes or else from measurements of histological preparations of tissues.

Direct microscopy, however, shows marked deformation of the erythrocytes during their transit of the capillary vessel. KROGH (1929) observed "the capillaries are so narrow that red corpuscles could pass through only at a slow rate with a change of form from the ordinary flat discs to elongated sausages".

The observed deformation of the erythrocytes seen in the hamster capillaries is illustrated diagramatically in a camera lucida drawing (Figure 4).

Venules.

The post-capillary venules had the same length as the capillary vessels but were twice as wide. It was in the smaller orders of veins that stasis and "sludging" appeared most marked.

FERNANDO and MOVAT (1964) in electron microscopic studies of the small venules showed those vessels to be lined with a single layer of endothelium on a basement membrane. Exterior to the endothelial layer was a discontinuous layer of pericytes and muscle cells. Occasional collagen and elastic elements were present. Iysosomes which were not comnon in the endothelium of the arterioles and capillaries, were frequent in the venules and pinocytic vesicles were large. Those electron microscopically discrete intracellular structures appear to be the site of
production of vasoactive materials and enzymes, important in the regulation of diffusion of fluids and proteolysis. COHNHEIM (1889) showed that venules were important in inflammatory reactions and that polymorphonuclear cells migrated across the venular wall. Recent electronmicroscopic studies by FIOREY and GRANT (1961) have confirmed this leucocyte migration through the walls of the venules.

Measurements of vascular volume changes are important in shock where it has been presumed that there is peripheral pooling in the various vascular beds. In the hamster cheek pouch only 2.2 per cent of the blood in the minute vessels was found in the capillaries. Majn liable 8 compares the result of microcirculatory blood volume distribution in the present study with previously published calculations.

D) SUMMARY.

Measurements of length, diameter, and number of branches of arterial, capillary and venous vessels wexe made in the cheek pouch of the living hamster. Calculations of total cross-sectional area, blood volume and endothelial surface areas were made for the different type of vessels.

The greatest increase in cross-sectional area occurred in the terminal arterioles and the capillaries.

The greatest totel cross-sectional area was in the post-capillary venules. The internal diameter of capillary vessels was less than that of the undeformed erythrocytes. Three quarters of the blood in the mjerocirculation at any one time was in the venules and only 2.2 per cent of the microvascular blood volume was in the capillary vessels.

SECI ION IV.

THE ACTION OF VASOACTIVE SUBSTANCES ON THE MICROC IRCULATION
A) Introduction
B) Materials and methods
C) Results
D) Discussion
B) Summary and general conclusions

THE ACTION OF VASOACTIVE SUBSTANCES ON THE

MICROC IRCUIATION

A) INTRODUCTION.

Seventy years ago R.H. STARLING (1896) suggested that the balance between the hydrostatic pressure in the capillary vessel and the osmotic pressure of the plasma proteins dictates whether there will be a net gain or loss of fluid from the vascular system.

IANDIS (1927) using a micromanipulative technique, measured directly the hydrostatic pressures in the arterioles, venules and capillaries of the frog.

Direct visualisation of the changes in diameters (and in cross-sectional areas) of the arteries and venules at each end of the capillary network allows the changes in cross-sectional area to be related to hydrostatic pressure changes in the capillary bed. In addition changes in the rates of blood flow in the minute veasel can be observed. In the microcirculation the controlling mechanisms are dominantly chemical in nature. Substances are liberated into the local tissue environment by metabolic activity of the cells. True capillary vessels have no muscular tissue and do not have direct neural control. A vasoactive substance may have a direct effect on the capillary endothelium altering its shapecor porosity
or by its action on the arteries and veins may bring about indirectly a change in the hydrostatic pressure gradient in the capillary bed. The following physical factors and endogenous substances have been suggested to be important in the control of the minute vessels. Physical Factors.

Injury and mechanical effects.
Temperature.
Light and radiation.
Metabolic or Humoral Substances.
Lactic acid and pH changes.
Adenylic acid derivatives.
Carbon dioxide and oxygen tensions.
Electrolytes - e.g. Calcium, potassium and sodium.

Adrenaline.
Noradrenaline.
Acetylcholine.
Histamine.
Serotonin.
Angiotensin II.
Vasopressin.
Plasma Kinins (e.g. Bradykinin).
B) METHODS.

The effects of several vasoactive substances were
studied in the microcirculation of the cheek pouch of the anaesthetised hamster. If the substance to be tested was dropped on to a double membrane preparation the effects on the vessels of the pouch were slow and often incomplete. This was considered to be due to the relative imperviousness of the upper epithelial layer and also to dilution, (the cheek pouch being moistened from time to time with Ringer's Solution).

DALE and RICHARDS in 1918 attempted to study the effect of histamine on the mesenteric vessels but their results were indecisive. ZWEIFACH and MINZ (1955 discussed criteria and limitations of using the rat mesoappendix to study the action of vasoactive substances. A quantitative procedure was developed for such a study on the minute vessels of the hamster cheek pouch.

If a single membrane hamster cheek pouch preparation was made and a vasoactive substance applied locally, a prompt effect was observed due to early diffusion and action on the vessels. (c.f. AKBRS and ZWEIFACH, 1955). Evaporation was prevented by covering the "single membrane preparation area" with a ring of filter paper covered with a glass coverslip. The remainder of the pouch was covered lightly with cotton wool moistened from time to time with Ringer's Solution.

A further satisfactory method was to inject the
substance (in 0.05 ml . sterile Ringer's solution) into the cheek pouch with a fine No. 30 gauge needJ.e and a tuberculin syringe. The injection was carefully planned. An area in the upper layer of the pouch where the artery and vein pattern seemed suitable was selected and with the aid of the dissecting microscope the needle was passed obliquely through the upper epidermal layer and gently brought to rest at the chosen site. The solution was then injected carefully. A slight "blister" formed between the upper epidermal layer and the loose areolar layer and if the chosen arteries and veins remained in sharp focus this field was selected for study. The advantage of injecting into the pouch was that subsequent dropping Ringer's solution on to the surface did not appear to effect by dilution the action of the injected substance. All substances to be tested were made up in sterile Ringer's solution so that the required dose was contained in the same volume (0.05 ml .).

The room temperature was kept stable at $70^{\circ} \mathrm{F} \pm 3^{\circ} \mathrm{F}$ and changes in air currents were avoided. The microscope stage was not heated. Control experiments were performed to establish the stability of the preparation and the environment. A camera lucida sketch was made of each preparation and sites on 3 and 4 arteries and a similar number of veins were marked. Internal diameter size of
these vessels at the marked sites was recorded, measurement being made with a calibrated eyepiece micrometer. Control readings of the internel diameters of the selected vessels were made on two occasions at ten minute intervals and if the vessel diameters were constant subsequent serial readings were made at 3,6 , 15,30 and 60 minute intervals after the control solution or test substance had been applied. By the use of various oculars and objectives 120-200 magnifications were usually selected. Occasionally higher magnifications up to 500 times were employed.

Initial control experiments were carried out as follows:

Readings were made at $0,3,6,15,30$ and 60 minutes during experiments where no injections were made, the cheek pouch being merely observed for spontaneous changes in vessel calibre. In a further group of control experiments 0.05 ml . Ringer's solution was injected without any additional drugs and the arteries and veins were measured. It was observed that if the injection was made suddenly or without due care the mechanical effect could produce immediate widespread constriction. Care was always taken to prevent this effect and to exclude any preparation where mechanical stimulation seemed to have occurred.

Initially the topical application of drugs was studied. Later the same substances were given introvenously and the local effect on the cheek pouch vessels was studied.

Methods used in calculating and comparing vessel calibre changes.

As there were usually many more veins than arteries in a microscopic field, a peripheral part of the cheek pouch was chosen for the experimental observations where 3 or 4 arteries of suitable diameters were sited. Measurements were then made at carefully selected points on 3 or 4 arteries and on 3 to 5 veins. The rate of diffusion of a vasoactive substance applied to the cheek pouch affected different vessels to varying degree. Attempts were always made to choose vessels relatively near to each other (within 1 or 2 adjoining high power fields). It appeared that the smaller the diameter of a vessel the greater its vasoactivity. (Perhaps due to rapid and complete diffusion of the vasoactive substance throughout the vessel wall.)

Most arterial and venous vessels studied had internal diameters within the range $20-60$ microns. It was not possible to select vessels of identical size on each occasion.

When an assessment of the average changes in vessels
/
was made mean diameter values appeared to give undue importance to smaller vessels. Mean square root diameters improved this imbalance but as cross-sectional area changes seemed more meaningful both as regands blood volume distribution and blood flow measurements the total cross-sectional area was calculated by surmation of the cross-sectional areas of all the arteries or veins observed in one experiment. Changes in this total crosssectional area were compared with control values before the test solutions were applied.

In order to compare one experiment with another changes in total cross-sectional area were expressed as a percentage of the original control cross-sectional area. In this manner vessels in a field of study, in the same range, but not of identical calibre were compared. Mean values and standard deviations of percentage changes in total cross-sectional areas were recorded in the tables of results. Materials Used.
Ringer's Solution - Abbott Laboratories.

Histamine diphosphate - Eli Lilly and Co. Indianapolis.

Histamine dihydrochloride -- Nutritional Biochemical Corp. Cleveland, Ohio.

Epinephrine (Adrenaline)

- 1-epinephrine hydrochloride (Adrenalin Chloride, Park Davis \& Co.)

/	
1-norepinephrine bitartrate	- Levophed Bitartrate.
	Winthrop Laboratories, N.Y.
Serotonin creatinine sulphate	- Nutritional Biochemical
	Corp. Cleveland, Ohio.
Acetylcholine chloride	- Nutritional Biochemical
	Corp. Cleveland, Ohio.
d, l-isoproterenol hydrochloride -- Isuprel, Winthrop	
	Jaboratories, $\mathbb{N} . \mathrm{Y}$.
Phenoxybenzamine hydrochloride	- Dibenzyline, Smith, Kline
	French Lab.
Phentolamine - Regitine Methanesulphonate - Ciba Lab.	
Cortisone Acetate (USP)	- Cortone Acetate. Merck
	Sharp and Dohme,
	Philadelphia Pa.
Lactic Acid	- Sigma Chemicals, St. Louis.
Angiotensin amide	- Hypertensin, Ciba,
	Summit N.J.
C) RESULIS.	

Control Experiments.

The results of observation alone of the microcirculation are recorded in Main Table 9 and in Supporting Tables 1-3. The "vasomotion" observed by ZWEIFACH (1961) was not a prominent feature in the cheek pouch of the anaesthetised hamster. Blood flow occurred in only one third of the capillary vessels at any one time and blood
flow through the vessels of the capillary bed was intermittent and occasionally reversed. In the smaller arteries and veins spontaneous change in the size of vessels did occur from time to time but such changes were slight. Temporary narrowing of one vessel was often off-set by a widening of a neighbouring vessel. Generalised constriction of a field could usually be produced by stroking a larger vessel with a fine needle. Reflex constriction of the arteries in the neighbourhood would then occur.

When normal Ringer's solution (0.05 ml .) was injected into the cheek pouch with a fine needle, care being taken to inject slowly and not to injure vessels by direct puncture, there was little change observed either in rate of flow or in vessel diameter. Main lable 10 (and Supporting Tables 4-8) shows the results of five control experiments; there was a slight decrease in the total cross-sectional areas of the arteries suggesting a small increase in arterial tone. There was little change observed in the venous vessels. The spontaneous changes observed or the degree of change which could be due to experimental error was within 10 per cent control reading, a level which seemed acceptable in the "in vivo" biological model which was employed. It was in comparison with these resul.ts that the changes produced by vasoactive substances were studied.

Action of Histamine.

Histamjne dihydrochloride and histamine diphosphate appeared to give simjlar responses. Six experiments were carried out using 10 micrograms histamine base and a further six experiments using 5 micrograms histamine base. The results are tabulated in Main Tables 11 and 12 (and in Supporting Tables 9-20). The changes in total cross-sectional areas in the arteries and veins are illustrated in Figures 5 and 6. Immediately after the histamine injection there was a transient constriction of the arteries. Because no similar initial arterial vasoconstriction was observed after acetylcholine or lactic acid it was deduced that this constriction could not be due solely to mechanical stimulation. Within 3-5 minutes after the administration of histamine arterial dilatation occurred and this dilatation persisted during the hour of observation. Unlike the arterioles, however, the veins constricted slightly and this constriction was maintained. The capillary bed became very prominent owing to the increased arterial inflow and the post-capillary venous constriction. When a double membrane preparation was used, difficulty was experienced at the end of one hour in achieving sharp definition of the vessels owing to the oedema of the extravascular tissues at the site of histamine injection.

This capillary fluid exchange was also demonstrated by injecting 0.5 ml . 1 per cent aqueous solution of Trypan blue intravenously. A blue discoloration of the tissues at the site of histamine injection was observed. This discoloration, however, was not observable by the naked eye until 2-4 hours after the injection. Action of Serotonin (5-Hydroxytryptamine).

Six experiments using 5 micrograms of serotonin were carried out on the cheek pouch. I'he results are tabulated in Main Table 13 (and in Supporting Tables 21-26). The relative changes in total cross-sectional areas produced by serotonin are illustrated in Figure 7. There was marked arterial constriction (but not as intense as with the catecholamines). The effect of a single dase was relatively long lasting. In the dose chosen there was only very slight venous constriction although with the greater arterial narrowing blood flow in the veins became very sluggish and in many places complete stasis with red-cell aggregation occurred.

Action of Acetylcholine.
Acetylcholine was applied to the cheek pouch in a single one microgram injection dose. Six experiments using this dose were carried out and the results are recorded in Main Table 14 (and in Supporting Tables 27-32).

Total cross-sectional area changes in the resistance and capacitance vessels are shown in Figure 14. Acetylcholine is a dilator of both arteries and veins and both types of vessels have comparable changes in the dose chosen. The effects persisted for the 60 minutes of observation. With the increased blood flow, the total volume of blood in the microvasculature was increased.

Action of Angiotensin.

Angiotensin II was used in two different doses, 25 micrograms in four experiments and 5 micrograms in a further four experiments. (Main Tables 15 and 16 and Supporting Tables 33-40). Angiotensin was a very potent arterial constrictor. Its effect was comparable to that of adrenaline or noradrenaline but with a single dose the marked vasoconstriction was not maintained in the same way as with the catecholamines. The effect was maximal shortly after the application of angiotensin II and gradually wore off. At the end of 60 minutes the total cross-sectional area of the arterial vessels had returned to the normal control level (Figure 8). Unlike the marked effect on the arteries angiotensin II had very little constriction action on the veins. This selective constriction of the arteries diminished blood flow to the cheek pouch and caused marked slowing of the blood in the veins. This effect would allow inflow of tissue fluids
back into the vascular system. It would seem that a tissue angiotensinase rapidly destroyed the pharmacological action of the locally applied angiotensin II. In order to maintain an increased resistance in the peripheral arteries, a continuous intravenous infusion of angiotensin II was given (into a femoral vein cannula). When the infusion was discontinued the vasoconstriction rapidly disappeared.

Action of Catecholamines.

Adrenaline caused marked constriction of the small arteries. With a pharmacologically large dose (one microgram) the arterial bed was almost completely shut off and this effect persisted for up to 60 minutes when observation was discontinued. The response of the veins was always more delayed than the arterial response and was usually not so great. Nevertheless the venoconstriction produced by adrenaline (and noradrenaline) was greater than with any other substance tested. Venous stasis was marked. In a sexies of experiments, at 30 minutes the persistent constriction caused by adrenaline was relieved by a local injection of phenoxybenzamine or phentolamine (Main Table 17 and 18 and Supporting Tables 41-4.6). The dramatic increased flow resultant to the adrenolytic effects of these latter drugs is shown in Figures 9 and 10. Noradrenaline, in a similar dose to adrenaline had
an almost identical effect on the arteries and veins of the cheek pouch and its effect was also promptly neutralised by the addition at 30 minutes of an alphareceptor blocker (phentolamine or phenoxybenzamine). (Main Tables 19 and 20 and Supporting Tables 47-52). The arbitrarily chosen doses of the alpha-receptor blockers appeared to produce a satisfactory pharmacological action neutralising the vasoconstrictor effects of one microgram of adrenaline or noradrenaline (Figures 11 and 12).

When phenoxybenzamine and phentolamine were given by themselves as a local injection into the cheek pouch, these drugs did not appear to have any direct vasoactivity. This effect was in contrast to their marked adrenolytic action when given subsequent to an injection of adrenaline or noradrenaline (Main Tables 21 and 22 and Supporting Tables 53-58).

Action of Isoproterenol.
This catecholamine is a beta-cell receptor activator and as such should cause dilatation of the vessels. In all the experiments with isoproterenol on the cheek pouch (Main Tables 23 and 24 and Supporting Tables 59-67) the veins dilated promptly but the arteries uniformly constricted. The constriction, was not maintained but gradually wore off (figure 13). It was of interest to note that most substances used caused a parallel action
on the arteries and veins. Isoproterenol however caused a dissociated action on the arteries and veins of the cheek pouch and in this respect was the mirror-image of histamjne which dilated the arteries and constricted the veins. These two substances (Histamine and Isoproterenol) were the only ones studied which produced dissociated effects on the arteries and veins.

Action of Iactic Acid.

The action of lactic acid on the microcirculation is recorded in Figure 15 and the results of three experiments using 100 micrograms lactic acid are recorded in Main Table 25 and in Supporting Tables 68-70. Jactic acid caused vasodilatation of both arteries and veins and the dilatation was proportionally equal in both the capacitance vessels and resistance vessels. Whether the dilatation of the microvasculature was due to lactic acid itself or was merely a function of the pH change was not discovered as other physiological acid substances were not used.

Action of Cortisone.
In the acute experiments lasting up to one hour, cortisone applied locally to the vascular bed did not appear to have any direct vasoactive effect. The results are recorded in Main Table 26 and in Supporting Tables 71-73. No composite experiments were carried out to see

Abstract

whether cortisone given at the same time as a vasoactive substance may alter the effect of the accompanying substance or "protect" the vascular wall from its action. Intravenous Administration of Drugs.

All the drugs employed above were also given intravenously (into a femoral vein cannula) and the same effects were observed in the cheek pouch as in the topical injection. With intravenous administration the response was not so prompt as the locally applied substance. This slight delay could be explained by the circulation time from the site of injection to the cheek pouch and the pharmacological effect would be diluted as the injected drug became mixed with the circulating blood volume.
D) DISCUSSION.

Blood flow through an organ of tissue is a function of the vasoactivity of the artery and vein. Where the arteries constricted relatively more than the veins (e.g. after angiotensin II) stasis was observed in the post-capillary venules, encouraging transcapillary exchange of fluids from tissues to capillary lumen. When venous constriction was associated with arterial dilatation (e.g. after histamine) the capillaries became distended and transcapillary exudation of fluids into
the extravascular space occurred. I'he results of vasoactivity of certain drugs are recorded in the Tables of Results as changes in the cross-sectional areas of arteries and veins. In considering the haemodynamic implications assocjated with such drug action the effects of changes in flow would be proportionately very much greater than mere changes in area infer (POISmUILIE, 1842, showed that the flow was proportional to the fourth power of the radius).

Although the drugs applied to the cheek pouch appeared to have a direct action on the blood vessels their action must always be considered in relation to the tissue or organ being studied and the species of animal employed. Anaesthesia affects the neurological control of the microvasculature by abolishing or minimising sympathetic vasoconstrictor tone of the arteries (LISTER, 1858; NICOLL and WEBB, 1948; ZWEIFACH, 1961). This complication, however, seemed to remove the difficulty of spontaneous vasomotion observed by ZWEIFACH, (1937) and KNISMIY (1935) in their studies. In the control experiments in the cheek pouch of the anaesthetised hamster, vasomotion was not a prominent feature.

Catecholamines.

ALQUISI (1948) found that catecholamine substances had a variable effect on the vasoulature and to explain
the variations in responses speculated two different receptor mechanisms, arbitrarily named alpha-receptor which constricted and beta-receptor which dilated. Adrenaline had both an alpha and a beta effect. In small doses the beta-effect would dominate and dilatation would occur (ALQUIST, 1948). With larger pharnacological doses the alpha-response dominated and vasoconstriction would be observed. TOLKOW (1955); BARCROPT and SWAN (1953) and GREENFIELD (1963) have shown that in skin and subcutaneous tissues alpha-receptors are present and that beta-receptors are present mainly in muscle tissue. Noradrenaline is mainly an alphamreceptor activator and most reports show little or no beta-effect. Isoproterenol has been shown in most reports (COBBOLD ET AL., 1960; FOLKOW, 1960: PARRAII, 1965) to be a beta-receptor activator with little action on the alpha-receptors. In the cheek pouch, a subcutaneous tissue, it would seem that alpha-receptors would dominate, few if any beta-receptors being expected in the arterial vessels.

The sympathetic tone which normally is present in the arteries is diminished with general anaesthesia. The absence of the sympathetic vasoconstriction was confirmed in the cheek pouch of the anaesthetised hamster - when the alpha-receptor blockers (phentolamine and phenoxybenzamine) were used alone there was no
appreciable dilatation of the vessels, an effect which would have been expected if the sympathetic nervous system was causing increased vasoconstrictor tone. In addition when phentolamine and phenoxybenzamine were used following the application of adrenaline a response similar to that following noradrenaline was recorded. If beta-receptors were present in the cheek pouch arterioles, the addition of an alpha-blocker would cause the adrenaline to produce dilatation above the resting control level. Such an effect was not observed.

Most pharmacological studies of isoproterenol (a catecholamine which does not occur naturally) have demonstrated its beta-receptor action (COBBOLD, 1960; FOLKOW, 1960) and many believe that it has no alpha-receptor activity. The experiments on the cheek pouch using isoproterenol confirmed the dilatational effect on the veins. There was however arterial vasoconstriction and this effect would have suggested an alpha-receptor stimulation in the relative absence of beta-receptors. A recent report (NAKANO and KUSAKARI, 1965) using a pure beta-cell blocker (propranolol) suggested that isoproterenol may have an alpha-receptor effect but that this effect is usually masked by the dominant betareceptor response. The results recorded above in the cheek pouch would confirm this suggestion that
isoproterenol is not a pure beta-receptor catecholamine but that it also possesses weak alpha-receptor action. In the subcutaneous tissues of the cheek pouch where arterial beta-receptors are scanty or absent a vasoconstrictor response was observed in the arterial vessels when isoproterenol was injected. This effect was not as great or as prolonged as that of adrenaline or noradrenaline. The marked venous dilatation produced in the cheek pouch venous vessels suggests that these subcutaneous veins have a very rich beta-receptor supply - readily responsive to the action of isoproterenol. (Subcutaneous veins must also have a rich supply of alphareceptors as constriction occurred with adrenaline or noradrenaline).

Angiotensin II.
Angiotensin is a powerful arterial vasoconstrictor and increases systemic arterial blood pressure (PEART, 1964). The effect of a single dose of angiotensin II was however relatively transitory and the arterial vessels promptly returned to their previous calibre. In order to maintain a lasting effect a continuous supply of angiotensin II is required. The rapid destruction of angiotensin by angiotensinase will allow the vasoconstriction to be withdrawn promptly as soon as the renal ischaemia motivating the activation of angiotensin II
is removed. The relative immunity of the veins to the action of angiotensin II has been shown previously by several reports (FOLKOW ET AJ., 1960; HADDY ET AL., 1962; De PASQUALE ET AI., 1963; LISTER EI AT., 1963). Serotonin and Histamine.

Serotonin and histamine are liberated from injured platelets (HUMPHREY ET AT., 1954; WAALKES ET AT., 1957), and their action in the microcirculation can motivate changes directly at the site in the peripheral vascular system where the response is required. In the hamster cheek pouch there appeared to be a relative immunity of the venous vessels to serotonin. In contrast, in man SHARPY-SCHAFER and GINSBURG (1962) found marked venoconstriction with serotonin. The venoconstriction appeared to be greater than the arterial constriction and transcapillary exudation of fluids into the tissues occurred. Histamine is produced by mast cells and pericytes which are localised very near the endothelium of the minute vessels (UVAS, 1964). The mast cells of the cheek pouch are numerous and were well displayed by the injection into the cheek pouch of a liper cent aqueous solution of methylene blue. The endothelium itself may be the site of histamine production. SCHAYER (1962) has shown a high concentration of histidine decarboxylase in the endothelial cells of minute vessels; this enzyme is
present in high concentration when histamine is being formed.

Histamine was the only substance which caused dilatation of the arteries and constriction of the small veins. This unique property of histamine increased the capillary blood volume and the hydrostatic capillary permeability with an exudation of flujd into the tissues. DALE and LAIDLAW (1919) in their early study of histamine shock demonstrated a rising haematocrit level in animals given a large dose of histamine.

Vasoactive Polypeptides.

STARLING (1896) in his orj-ginal paper, believed that the capillary wall was relatively impermeable to the plasma proteins and that the osmotic pressure of the plasma proteins was important in regulating inflow of fluids from the tissues at the venous end of the capillary. DRINKER (1937) however, showed that there was an appreciable escape of plasma proteins from the capillary vessels into the tissue spaces and that return of the large molecule proteins to the vascular system was gained indirectly by way of the lymphatic vessels.

With the increased capillary permeability produced by histamine, plasma protein escape can be more marked and in the tissue spaces other potent vasoactive substances can be activated (e.g. bradykinin).

Bradykinin wes first isolated and identified by ROCHA e SIIJA EI AI. (1949). It is a "second phase" mediator of the inflammatory response. In the first phase histamine causes increased capillary permeability. Some plasma protein enters the tissue space and kallikrein which is produced in damaged tissue cells enzymatically releases bradykinin from its inactive precursor in the alpha ${ }_{2}$ globulin of the plasma (MITCHBLI, 1964). This substance is one of the most potent vasodilators known and unlike histamine which produces a capillary filtrate relatively protein free bradykinin causes a marked increase in protein escape from the plasma in the minute vessels.

E) GENERAI CONOLUSIONS AND SUMMARY.

A method for directly assessing the response of arterial and venous vessels to vasoactive drugs and indirectly of capillary filtration was developed for the hamster cheek pouch.

There was a continuous variation in the calibre of the minute vessels in the hamster cheek pouch, but under anaesthesia with standard control conditions those changes were negligible. Vasoactive substances, by their relative action on the arteries and veins brought about changes in the hydrostatic pressure gradient in the capillary bed. Blood flow and overall fluid movement in a tissue or organ is therefore a function of the vasoactivity of the artery and vein. In the hamster cheek pouch the responses to histamine, acetylcholine, lactic acid, serotonin, angiotensin II, cortisone, and the catecholamines were observed. A differential effect of histamine, serotonin, angiotensin II and isoproterenol on arterial and venous vessels was noted.

SECTION V.

ENDOTOXINS.
A) Introduction and general review of the literature.
B) Experimental studies of the action of endotoxin on the microcirculation.
i. Introduction
ii. Materials and Methods.
iii. Results.
iv. Discussion.
v. Summary and Conclusion.

ENDOTR OXTNS

A) INTRODUCTION AND GENERAL RBVIIWW OF THE LITEPRATURE.

Endotoxins were first isolated from the capsules of gram-negative bacteria by BOIVIN EI AI., (1933). Bxotoxins, produced from gram-positive organisms are heat labile and produce a highly specific antigen antibody response and usually have a very specific action. The diphtheria exotoxins, for example, act on nervous tissue and myocardial muscle. The symptoms of tetanus are highly characteristic and are produced by the exotoxin, the tetanus bacillus usually remaining localised in the wound. In sharp contrast endotoxins, which are relatively heat stable, produce non specific symptoms, (pyrexia, rigor, malaise, vomiting).

Endotoxins are complex lipopolysaccharides with a molecular weight - greater than one million - (RAVIN, 1963). WEIDEL EP AL., (1960) demonstrated that the capsule or cell wall of Escherichia coli consisted mainly of three layers - an outer shell of lipoprotein, a middle layer of lipopolysaccharide, (the endotoxin), and an inner layer of mucopeptide. Destruction of the cell wall was necessary for the release of endotoxin. Extracts were originally made by BOIVIN (1938) using a trichloracetic acid extract and later WESTPHAL EP AI.,
(1952) used a phenol method of obtaining endotoxin. In normal saline, endotoxin is insoluble and forms an opalescent suspension. In a non-electrolyte solution (Dextrose 5% or distilled water), BRAUDE (1964) found that endotoxin was more soluble. A highly purified lyophilised lipopolysaccharide extract (Difco Laboratories, Detroit, U.S.A.) is available for experimental use and in recent years many properties and actions of endotoxins have been reported.

Distribution and Degradation of Indotoxin.

In the study of the action, distribution and degradation of endotoxin, the lipopolysaccharide has been labelled by different means. CRIMMER and WATSON (1957) and RUBENSTATN FI AI., (1962) used fluorescein; BRAUDE玉I AL. (1955) used radioactive iodine, and SCHRADER EI AL., (1964) used tritium as a marker for endotoxin.

When endotoxin is injected intravenously into an experimental animal and after blood is withdrawn and centrifuged, the plasma and erythrocyte layers were found to be free from endotoxin which was localised in the buffy layer (CAREY EI AL., 1958). Further studies showed that the endotoxin was present almost exclusively in the platelet fraction and not in the leucocytes (HEFRING INR AL., 1963). The endotoxin is removed finally from the blood and is taken up by the reticulo-endothelial system, most of the

1 endotoxin becoming localised in the Kupfer cells of the liver, the spleen, and the small vessels of the lung (SCHRADER ER AL., 1964; BRAUDE ET AL., 1955). RUBMNSTEIN EI AL., (1962) showed by a fluorescein label that an appreciable amount of endotoxin was taken up by the endothelium of the smaller peripheral vessels. The Action of Indotoxin on Experimental Animals.

In all species of experimental animals which have been studied, endotoxin caused hypotension. The action of endotoxin in the dog has been studied in greatest detail. (frembberg er AI., 1944; LIJJJHEI and Mactiman, 1958; WETL EI AL., 1956). In the dog the intravenous administration of endotoxin produces a rapid fall in systemic arterial pressure; the pulse becomes rapid; rigors, pyrexia, vomiting and blood stained diarrhoea occur. Pooling of blood in the hepatic circulation is most characteristic. There is a prompt sharp rise in portal venous pressure unaccompanied by any increase in hepatic or central venous pressure. In addition to the pooling of the blood in the liver there is relative stasis of the circulation and pooling of blood in the mesenteric circulation. The haematocrit reading rises and the plasma volume falls, LILLimel and MacLEAN, 1958). The venous return is poor and cardiac output is lowered. Generalised vasoconstriction occurs in response to maintain central.
arterial blood pressure. This recovery from hypotension is only temporary as in the later stages, the small arterial vessels lose their vasoconstriction and dilate. The constriction of the venules, however is maintained and stasis in the capillaries and small venules is marked.

In the cat the arterial hypotension is associated with hyperpnoea and pulmonary oedema (HINSHAW FI AL., 1958). In the rabbit dyspnoea and prostration follow the administration of the intravenous endotoxin (BOQUET ET AL., 1947; BRAUDE ET AI., 1955). In sheep (HALMAGYI ET AI., 1963), and in calves (TIKOPF WI AL., 1966), the lung appears to be the main target organ for endotoxin. Pulmonary arterial pressure becomes very high. Recent studies in the primate (HINSHAW BI AI., 1965; VICK, 1964) show hypotension and a generalised peripheral vascular pooling not limited to any particular organ site. The guinea-pig, rat, mouse and hamster - anjmals which are too small to monitor the haemodynamic changes in detail in separate organs, all show signs of shock after endotoxin administration. Dyspnoea, dia rrhoea, respiratory failure and occasional convulsions occur (ROBERTS, 1949; ROSS, 1957; GILBERT, 1960). Pyrogenic Reaction to Endotoxin.

In doses considerably smaller than those required to produce haemodynamic changes, endotoxin can elicit a
marked temperature response. In some animals (e.g. rabbit, dog, cat) which respond to endotoxin by an elevation of temperature, the relative lethal dose of endotoxin is much smaller than in species (e.g. rat and mouse) which respond by hypothermia (ATWOOD and KASS, 1964). In the rabbit which is particularly sensitive to the pyrogenic action of endotoxin, the lethality of endotoxin can be diminished by shaving the animal's fur to increase heat loss and lower the temperature (ATWOOD) and KASS, 1964). Previously it was believed that elevation of temperature had a protective action in zymotic disease. BANNISTER (1960) showed that when environmental and body temperatures were increased in man, the toxic action of endotoxin was much greater than the same dose of endotoxin administered at normal temperatures. Today varying degrees of hypothermia are being employed in clinical practice. BIAIR EX AI., (1964) used hypothermia as an adjuvant to therapy in bacteraemic shock in man. ATKINS (1960) in a comprehensive review of the action of pyrogens emphasised the importance of endotoxin. Although endotoxin itself may have a direct effect on the hypothalamus (KASS EI AL., 1964) most recent work suggests that the main pyrogenic action of endotoxin is indirect and is brought about by releasing an endogenous pyrogen from polymorphonuclear leucocytes (BEESON, 1948;

> KING and WOOD, 1958; HERTON IRT AI., 1961; KAISBR and WOOD, 1962).

Action of Endotoxin on the Nervous System.

DELAUNAY, EP AL., (1948) believed that endotoxin produced its toxic effects by a direct action on the central nervous system.

PTNNNER and KLEIN (1952) in cross-circulation experiments in dogs, using Shigella endotoxin found that endotoxin had a direct effect on neural cells. WEII ET A.I., (1956) attempted to repeat this work and were unable to find any direct neural effect of the endotoxin. Indeed WEIT carried out cordotomy and vagotomy and found no direct action of endotoxin on the central. nervous system. TARDIEU (1942) on the other hand, demonstrated that endotoxin was more potent when injected directly into the third ventricle.

FINE (1961) supported the view that endotoxin acts centrally and suggested that the toxic action of endotoxin was due to the relentless vasoconstriction caused by the action of endotoxin on the sympathetic nervous system. Blocking the coeliac ganglia with local anaesthetic had a protective effect on animals given endotoxin. REILLY ET AL., (1934) were among the first to suggest that the site of action of endotoxin was the autonomic nervous system and recently KASS ET AI., (1964) demonstrated that endo--
toxin may act by a direct action on the hypothalamus. Vasoactive Substances.

Several neurohumoral vasoactive substances have been implicated as mediators in the early stages of endotoxic shock.

SPINK ET AI., (1964) showed that histamine is released early in endotoxaemia. HINSHAW (1961) and SCHAYER (1960) also showed a high blood level of histamine after endotoxin. GRBISMAN EP AI., (1964) studied the course of typhoid fever in man and found that endotoxin induced an increased vascular reactivity to catecholamines. ZWEIFACH EI AJ., (1956) had previously demonstrated in the rat mesentery a similar marked hypersensitivity to catecholamines after intravenously ad.ministered endotoxin, and THOMAS (1956) used this hypersensitivity to adrenalineas a bioassay skin test for endotoxaemia. In addition to the increased sensitivity of catecholamines there was also an increased production of catecholamines from the adrenal glands (NYKIEL and GLAVIANO, 1961), which was suppressed by spinal cord section (EGDAFL, 1959). Serotonin release with increased concentration in the blood has been found after endotoxin administration (ARMIN and GRANI, 1957; WAALKES ITN AL., 1957; DAVIS IT AI., 1959). Bradykinin, a vasodilator polypeptide is released by proteolytic enzymes and

THIA and SARIESAI (1965) corifirmed that such proteolytic activity is produced by endotoxin. SHERRY (1961) demonstrated that shock in general promotes proteolytje enzyme action.

Direct Action of Endotoxin on Vessel.s.

ZWETFACH ET AL., (1956) suggested that endotoxin may act directly on the vessel wall. FROHIICH IXT A.J., (1962) administered endotoxin directly into the coronary circulation and did not demonstrate any dimirution in blood flow. They concluded that endotoxin did not have a direct effect on the vasculature of the coronary vessels. VICK (1965) using isolated strips of vessels found that endotoxin did not have any in vitro effect on the smooth muscle of the vessel wall unless associated with blood as a perfusing fluid.

Changes in the Blood.

Blood Volume. In the early stages of hypotension secondary to endotoxin administration there was no change in the blood volume (GILBERT, 1960). In the later stages however, in some species, the total blood volume decreases. LILIEHEI and MacLIEAN (1958) and PENNER and BERNHETM (1942) showed a reduction in the plasma volume and a progressive rise in haematocrit in dogs. Recently in man, HOPKINS II AL., (1965) have monitored the haemodynamic changes in shock. In human haemorrhagic shock there was a considerable
reduction in blood volume. In septic shock, on the other hand, there was no definite pattern, the blood volume did not bear a direct correlation with the degree of shock and in the majority of cases there was no appreciable change in blood volume.

Haematological Effects. Several reports (e.g. DONALD EI AI., 1958) show that endotoxin produces a temporary leucopenia shortly after the endotoxin has been administered. This is subsequently followed by a polymorphonuclear leucocytosis which may be marked. In addition to its effects on the leucocytes, endotoxin causes a marked thrombocytopenia (STETSON, 1951; DAVIS EI AL., 1960; GREISMAN ET AL., 1964). Endotoxaemia produces a general upset in the clotting mechanism (MacKAY EI AL., 1958; THOMAS and WBSSLER, 1964). Within minutes after intravenous endotoxin, the blood is hypercoagulable and later this is followed by a prolonged hypocoagulable state. HOROWITZ EI AL., (1962) showed an increase in platelet factor 3 after endotoxin. The vascular effects of endotoxin may be brought about by obstruction of the minute vessels with plugs of platelets, leucocytes or fibrin aggregates, the circulating level of these being acutely depressed in endotoxaemia (WEII and SPINK, 1957; HARDAWAY ET AJ.., 1961).

Metabolic, Enzyme and Hormone Changes.

Endotoxin has a marked effect on carbohydrate metabolism. WOODS ET AL., (1961) observed that endotoxins exert a stimulating effect on cell glycolysis remarkably similar to that of insulin. At first there is a marked increase in glycolysis. The liver glycogen is decreased (FUKUDA, 1963), and the blood glucose level rises. In the later stages there is a marked hyporlycaemia. It was previously believed that endotoxin had a direct effect on carbohydrate metabolism, but more recently SANFORD ET AL., (1960) have shown that the glycolysis is mediated by catecholamines released during endotoxaemia.

SCHAYER (1960) has demonstrated an increase in histidine decarboxylase, and BBRARY and SMYTHE (1963) found a decrease in plasma tryptophan pyrrolase concentration. KONTPINEN ET AL., (1964) found an increase in the serum enzyme activity of glutamic oxaloacetic transamjase, lactic acid dehydrogenase and alpha-hydroxybutyric dehydrogenase and suggested that liver damage produced by endotoxinwas the most likely source of the enzyme release.

In endotoxin shock in animals there is disruption of liver cell lysosomes with release of their contained enzymes (e.g. acid phosphatase, and B-glucuronidase). This leakage of enzymes from lysosomes can be prevented
by pretreatment with cortisone. The permeability of liver cell lysosomes in endotoxaemia allows the activation of proteolytic enzymes with their dissemination causing tissue injury and contributing to the irreversibility of bacterial shock (JANOFF EI AL., 1962; 1963).

Lactic and pyruvic acid concentrations are both increased in endotoxaemia where there is tissue hypoxia and anaerobic metabolism. This metabolic acidosis appears cormon to many forms of shock (HUCKABEE, 1958).

EGDAHL (1959) and NYKIEI EI AJ., (1959) demonstrated an increase in catecholamines in the adrenal vein after endotoxin and most previous reports have shown an increased output of adrenocortical hormones during endotoxaemia (e.g. MELBY EI AI., 1957). Rapidly fatal meningococcal septicaemia was believed to be associated with acute adrenal failure produced by adrenal haemorrhage (Waterhouse Friderichsen syndrome). Recently however LEVIN and CLUFFF (1965) demonstrated that the adrenal haemorrhage was the result of shock associated with endotoxaemia and was not the cause of the shock. The adrenal cortex was found to be very sensitive to damage when actively engaged in the manufacture of steroids. Haemorrhage when present, was mainly in the zona fasciculata of the adrenal cortex. Immunolorical Aspects.

Although endotoxin has many pharmacological
properties associated with the release of several vasoactive substances it is still difficult to assess whether endotoxin possesses an intrinsic toxicity or whether the initiating mechanism of ehdotoxic shock is an immunological response of the classical antigen-antibody type. The early rise in histamine concentration in the blood, noted by several workers after the experimental injection of endotoxin is also frequently observed during an antibody-antigen reaction (WEIL and SPINK, 1957).

LAWFORD and WHIME (1964) have demonstrated abnormal serum components in endotoxin treated rats. GIIBERP and BRAUDE (1962), using E. coli endotoxin in rabbits noted a decrease in complement. They believed that the initial stage of endotoxic shock in dogs, involved an immune mechanism with decrease in complement and histamine release. An initial depression of serum properdin level was followed by increased values which in mice persisted for a few days (Landy and PILimMAR, 1956). Properdins are macroglobulins and ROWLEY (1964) suggested that properdins and natural antibodies may be identical. The Role of the Reticulo-Indothelial System.

The reticulo-endothelial cells are specialised vascular endothelial cells adapted to remove colloidal, foreign or noxious particles from the blood. Endotoxin is cleared from the blood by the reticulo-endothelial
system (BRAUDE ET AI., 1955). Tolerance to endotoxin results from the more rapid clearance of endotoxin by the R.E.S. (BEESON, 1947). ROWLAY (1960) noted an increased phagocytic activity of the peritoneal macrophages of mice after intraperitoneal endotoxin and JEE (1962) observed an inhibition of the R.W.S. clearance of fibrin caused by endotoxin.

The majority of the reticulo-endothelial cells are in the liver (KUPFFRR cells), the red pulp of the spleen and in the lungs. At times the ordinary endothelial cells can take over the specialised R.E.S. activity. (This property was noted by ASCHOFw who fixst described the phagocytic principles of the reticulo-endothelial system). The R.E.S. can be blocked with thorotrast, colloidal carbon, ór trypan blue. FINE ET AI., (1959) noted a diminution in the competence of the R.E.S. in haemorrhagic shock. An assay of the functional capacity of the R.T.S. was measured by the clearance of injected particles of carbon (BIOZZI EI AL., 1953) and p^{32}-Iabelled endotoxin (HOWARD FI AI., 1958).

The Shwartzman Phenomenon.

Shwartzman (1928) first described a reaction which consisted of an area of local necrosis of the skin at the site of injection of certain bacterial filtrates, when a similar filtrate was injected intravenously about
twenty -four hours later. This reaction was known as the local Shwartzman Reaction. If both injections, similarly timed were given intravenously, a general reaction resulted with bilateral cortical necrosis of the kidneys as the most characteristic feature. LIE (1964) postulated a hypothesis of intravascular coagulation to explain the generalised Shwartzman Phenomenon. An initial intravenous injection of endotoxin activated the blood coagulation mechanism and resulted in a continuous formation of fibrin. The R.E.S. appeared competent to remove the fibrin no matter how large the primary dose of endotoxin. However, after a second intravenous injection 12-24 hours later, the phagocytic ability of the R.J.S. was impaired and generalised intravascular fibrin aggregates occurred, especially in the renal glomeruli, with subsequent ischaemia causing bilateral cortical necrosis.

The local Shwartzman reaction, described mainly in the skin of the rabbit has also been described in the hamster cheek pouch (GUSTAFSON and CRONBERG, 1963).

Although two correctly spaced injections are required to produce a Shwartzman reaction, in certain species, pregnancy can produce susceptibility to a single dose of endotoxin (WONG, 1962; GALTON, 1964).

GAJION (1964) also showed a Shwartman reaction in pregnant hamsters after a single injection of Colchicine
and concluded that colchicine may involve endotoxin derived from the intestinal flora.

Fadotoxin and Allergic Reactions.
The effects of endotoxin resemble anaphylaxis not only at the shock stage but also in the milder forms of reaction. Stetson (1951) studied the effects of intradermal injection of endotoxin as an antibody-mediated reaction and compared the effects with those of the tuberculin reaction in rabbits. The response to tuberculin is an allergic reaction and its hallmark is the delay in the onset of the local inflammatory reaction at the cutaneous injection site. The local effect becomes marked at twentyfour hours. In contrast, endotoxin causes a reaction to take place much faster and to disappear sooner. WBII and SPINK (1957) considered that endotoxin produced an "anaphylactoid" reaction with the early production of histamine associated with a decrease in complement. In order to account for the differences of tolerance and hypersensitivity to endotoxin, SKARNBS and CHENDID (1964) postulated that if the amount of antibody exceeded the dose of antigen, protection was evident, and if the dose of antigen exceeded the antibody, an increased sensitivity occurred. Endotoxin can produce similar phamacological effects whether or not the animal has been previously infected by the bacteria. This has been considered by
some, to be due to antibody production, produced by the gram-negative bacteria, endogenous to the lower alimentary tract. KOSNIKA and STERZI (1962) noted that the serum of pigs removed from their mothers at birth, contained complement but no E . coli antibody, and that the addition of endotoxin to the serum of those pigs did not cause any inactivation of the complement. WHITBY ET AL., (1961) found that after endotoxin administration there was a general release of substance against the enterobacteria, which showed the specific activity of antibody.

The antibodies to endotoxin appear to be 19S natural antibodies and are located mainly in the macroglobulin fraction of the plasma proteins (LO SPALLUTO ET AI., 1962). WOLF EI AL., (1964) by immuno-electrophoretic studies, showed that endotoxin produced a macro-globulin precipitation line that included several antibody specificities of which the antibody to the homologous endotoxin was merely one. The enhanced resistance to infection with other bacteria after administration of endotoxin may be due to the cell destructive action of endotoxin with the liberation of D.N.A. breakdown products whi.ch act as a general stimulus for antibody production (BRAUN and KESSEL, 1964).

There has been controversy about the intrinsic toxicity of endotoxin for experimental animals reaxed in
a sterile environment. Recently KIM and WATSON (1965) reported that endotoxin had intrinsic toxicity independent of an antibody-antigen reaction. In experiments in colostrum-deprived pigs, kept in a sterile environment they were unable to detect immunoglobulins by serological and immuno-electrophoretic methods. Those pigs however were susceptible to the lethal action of endotoxin. In contrast, colostrum fed pigs, showed a significant level of immunoglobulins in their serum and had an increased resistance to the toxic effects of endotoxin.

SUMMARY.

The precise chemical structure of endotoxin is not known. The endotoxin of gram-negative bacteria is a complex lipopolysaccharide with a high molecular weight. It is antigenic; in the experimental animal it evokes an antibody response. The antibodies produced, however, appear to be mainly in the 195 macroglobulin fraction of the plasma proteins. Although endotoxin is highly toxic, resistance and tolerance can be acquired. The reticuloendothelial system plays an important part during endotoxaemia. The Shwartzman reaction, first described in rabbits given gram-negative bacterial filtrates, appears to be mediated by an antigen-antibody reaction with fibrin deposition.

Minute doses of endotoxin produce a marked pyrogenic response in many species of animal. Carbohydrate metabolism and serum enzyme changes occur, and there are marked haemodynamic changes in experimental animals given endotoxin. Many vasoactive substances are released. In the blood an early leucopenia is followed later by a polymorphonuclear leucocytosis. Thrombocytopenia occurs and multiple blood coagulation defects are observed.
B) EXPPRTMENTAI STUDIES OF YHE ACTION OF ENDOTOXIN

ON THE MITCROC IRCULATION.

i. Introduction.

Endotoxins, the lipopolysaccharides, produced in the capsules of gram-negative bacteria, have been used extensively in recent years in experiments to understand the pathogenesis of bacteraemic shock in animals and man. Intravenously administered endotoxin brings about a rapid fall of blood pressure in animals and man. The effect of the endotoxin appears to be dominantly in the peripheral vascular bed. GILBERT (1960) suggested that the peripheral pooling produced by endotoxin could be caused by either constriction of the outflow vessels or dilatation of the inflow vessels. Although several observers had studied the microcirculatory changes there had been no direct evidence for either of these mechanisms.

The immediate effect of endotoxin on the microvasculature may not be a direct effect on the vessel walls but may be mediated by means of an antibody-antigen reaction (SIEISON, 1955) or vasoactive substances may be liberated through interaction with factors in the blood (VICK, 1963), in the tissue cells, or in mast cells near the endothelium of the vessel wall. Histamine, catecholamines, serotonin, acetylcholine, bradykinin, and neural factors have been suggested as important in the
early stages of endotoxic shock (HINSHAW ITR AT., 1960; DAVIS EI AT., 1961; JACOBSON EI AL., 1964; KOBOLD EI AI., 1964; VICK, 1964).

Direct visualisation of minute vessels, studied in vivo in animals given endotoxin may help to indicate the initial humoral mechanisms involved.
ii. Materials and Methods used in Experimental Studies.

Animals: Male Golden Hamsters (Mesocricetus auratus) weighing $90-110 G$. were used in the experiments. They were housed individually in plastic cages and were given unlimited food (commercial pellets - Purina Laboratory) and free access to water. For the endotoxin studies only animals without previous experience of endotoxin were used. This precaution was necessary to prevent the complications of a Shwartzman reaction or of "adaptation" to endotoxin.

Endotoxin: Dessicated lipopolysaccharide endotoxin extracted from \mathbb{E}. coli $026: B 6$ by the modified Boivin trichloracetic acid method was obtained from Difco Laboratories, Detroit, Michigan. The L.D. 50 for the Webster Strain of white mice was less than 500 micrograms. The endotoxin was made up in sterile, pyrogen free Ringer's Solution (Abbot Laboratories). A crude extract of E. coli 026:B6 antigen and a further solution of a sterile filtrate of a week old pure culture of an E . coli

$/$

obtained from the skin of a burned patient were also employed. The endotoxin preparations were injected in 0.05 ml . volumes into the cheek pouch and the local effects on the minute vessels observed. In additional experiments, a larger dose of E . coli endotoxin was given systemically (into the femoral vein) and the local effects in the Cheek Pouch were observed.

iii. Results.

Topical Action of Endotoxin. The results of the local applications of 100 micrograms 026:B6 lipopolysaccharide, 500 micrograms of the same endotoxin, 0.05 ml . of a crude antigen preparation, and 0.05 ml . of a sterile filtrate of an old culture of \mathbb{E}. coli are given in Main Tables 27 to 30 and Supporting Tables 74-88. The changes in cross sectional areas of the arteries and veins caused by the injection of 100 micrograms of lipopolysaccharide are illustrated in Figure 16.

Endotoxin injected locally caused a dilatation of the arteries and constriction of the veins. Of the vasoactive substances which had been applied to the cheek pouch in previous experiments to assay their effects on the microcirculation, only histamine produced the same dissociated action on the minute vessels. Indotoxins used in different doses and as different types of preparation all gave
similar effects when applied locally. There did, however, appear to be a quantitative response to the dose of endotoxin which was injected.

Action of Intravenous Endotoxin. When endotoxin (2 mgm . lipopolysaccharide F. coli 026:B6) was injected intravenously (into a connula in the femoral vein) there was uniform constriction of the arterioles with a decrease in the blood flow to the capillary bed (Main Table 31, Supporting Tables 89-92, and Figure 17). Stasis of blood occurred in the capillary and post-capillary venous vessels. The veins constricted only slightly. This vasom constrictive effect of intravenously administered endotoxin was in marked contrast to the topically administered toxin where the primary response wes a vasodilation of the small arteries.

Action on Platelets of Intravenous lindotoxin. 2.0 mgm . E. coli lipopolysaccharide were injected intravenously in 0.5 ml . Ringer's solution. The injection was made after cannulation of the femoral vein. The hamster was anaesthetised and with the help of the dissecting microscope the femoral vein was cannulated just below the inguinal ligament. A polyethylene tube - "Intramedic" gauge P.I. 10 - was introduced and the intravenous injection made. Direct microscopy of the cheek pouch was carried out before and after the injection of the endotoxin.

White aggregates were noticed in several of the postcapillary venules. These "platelet" aggregations increased in size and either completely blocked the vein or else more frequently - parts of the mass broke off and were carried away as platelet emboli. In the larger vessels the broken fragments gathered speed. It was considered that owing to their size the emboli would be carried round the circulation and become impacted in the vascular capillaries of the pulmonary circulation. Marked dyspnoea was a uniform finding in all the hamsters after intravenous injection of endotoxin (2.0 mgm . was greater than the L.D. 100 for the hamsters.). Only one hamster died wi.thin one hour of injection. Death usually occurred between 12-36 hours after the injection. Showers of platelet emboli were observed in the cheelr pouch on the venous side 5-20 minutes after the intravenous injection of endotoxin. By 30 minutes only a rare white embolus could be observed. Great effort was taken to try to observe white aggregates on the arterial side. No large aggregates were seen. Very occasional small masses were observed on the arterial side but these masses were observed as minute granules less than 5 microns in diameter. Endotoxin caused platelet aggregation and, in the post--capillary venules where the flow rate was slow, white clumps of adhesive platelets occurred. In addition, the marked vasocon-
striction of the pre-capillary wesistance vessels (described above) caused considerable reduction in the flow rate in the microvasculature. The sequestration of platelets which was observed in the cheek pouch was confirmed by carrying out platelet counts before and 30 minutes after the administration of intravenous endotoxin. Blood wes collected by direct cardiac puncture and transferred immediately to an "unopette B.I)." the platelet count being carried out on a Phase microscope using a double counting chamber, two counts being made on each specimen examined. The results (shown in Main lable 32) show a rapid re.. duction in the platelet count after the intravenous administration of endotoxin. The normal platelet count in hamsters was found to be 750,000 per c.mm. iv. Discussion.

The action of endotoxin in animals or man is complex and has been the subject of considerable investigation in recent years. The numexous conflicting views about the mode of action are no doubt due to the multiple late chain reactions which occur when shock is well established. The initiating mechanisms which bring about the early changes which occur on the administration of endotoxin are difficult to assess as compensatory systemic reactions, are promptly produced masking the initial trigger mechanism. If the endotoxin is given locally into the cheek pouch,

1
the initial changes observed are unlikely to be due to changes caused by vasoactive substances produced at distant sites (egg. in the adrenal gland). The molecular weight of endotoxin is large (mol. wt. 10 ${ }^{6}$) (RAVIN, 1963), and as there are no lymphatics in the cheek pouch (SHEPRO EI AL., 1963) the endotoxin must stay locally for a considerable time (SCHRADER III AL., 1964) and not be carried away to produce secondary effects in distant organs or tissues. The endotoxin may act itself on the endothelium of the vessel walls, (ZWEIFACH ET AI., 1956; RUBENSTEIN ET AI., 1962) or, more likely in view of its large molecular size, may act indirectly by releasing vasoactive substances from the tissue cells, tissue fluid, endothelium or blood (GILBERT, 1960). From the visually recorded changes in the microcirculation, histamine, or a histamine-like substance appeared to be active in the very early stages after locally applied endotoxin. In 1919 DAJE and LAIDIAN described the effects of the administration of a large dose of histamine. Phis histamine shock had many of the haemodynamic characteristics of endotoxic shock. After intravenously administered endotoxin there is both an increased production of catecholamines and also an increased sensitivity to the actions of catecholamines (KWEIFACH EI AL., 1956; ROSENBERG EI AT., 1959). This increased sensitivity has been used as a "bioassay" test for
the presence of endotoxin (1HOMAS, 1956; FRITZ $E T A L .$, 1962). Vasoconstriction caused by increased sympathetic tone or by release of catecholamines from the adrenal gland must be reactions, secondary to peripheral pooling of blood. If the catecholamines had a primary role, hypertension should be produced and not hypotension which is a very early observed sign in all species of animals given endotoxin.

Microcirculatory Changes.
DELAUNAY IT AL., (1948) observed the effect of intraperitoneal endotoxin on the mesenteric and omental vessels of the rabbit and guinea pig. At first there was arterial constriction and later arterial dilatation and stasis in the capillaries and veins. ALGIRE ET AL., (1952) also observed the vascular effects of endotoxin in the microcirculation. In the skin flap of the mouse, arterial dilatation associated with stasis of blood in the microvasculature occurred after endotoxin. More recently ZWEIFACH (1964) observed that when endotoxin was injected into the wall of the small intestine of the rabbit, venous stasis and petachiae formation were produced. In the present study endotoxin, injected locally into the hamster cheek pouch produced a histamine-like reaction on the minute vessels - the arterioles dilated, the small veins
became constricted and the capillaries and post-capillary venules appeared congested. After intravenous endotoxin, in response to the hypotension subsequent to peripheral pooling, vasoconstrictor substances were produced. SCHAYER (1962) suggested that homeostasis in the peripheral vascular bed is achieved by a balance between endogenous histamine formed in the peripheral vascular bed and systemic catecholamines. Histidine decarboxylase is present in the vascular endothelial cells and after endotoxin administration its concentration is increased. In the terminal stages of endotoxic shock, when the small vessels no longer respond too catecholamines the plasma concentration of histamine becomes high. Endotoxin and Blood Coagulation.

With the administration of endotoxin there is a marked increase in the coagulability of the blood (McKAY and SHAPIRO, 1958). This hypercoagulable state of the blood is rapidly followed by a hypocoagulable state (TURPINI and STEFANINI, 1959; HARDAWAY and JOHNSTON, 1963). Ihrombocytopenia, a lowered concentration of fibrinogen, and an increase in endogenous fibrinolysins can be detected.

BRAUDE ET AI., 1955 and HFRRING ET AI., (1963), in experiments using labelled endotoxin showed that the platelets rapidly took up the endotoxin. Later the endo-
toxin was removed from the bloodstream by the reticuloendothelial system and most was found in the liver, spleen, and lungs (BRAUDE ET AL., 1955; CREMER and WATSON, 1957).

In vivo studies, using systemically administered endotoxin reveal a marked sequestration of platelets, and thrombocytopenia. In 1949, YOUNGBR and ALGIRE observed large whitish masses in the circulating venous blood of the transparent skin flap chamber of the mouse after injecting polysaccharide from S. marcescens.

SILVER and STEHBENS (1965) noted platelet aggregation in the ear chambers of rabbits after typhoid lipopolysaccharide and ROBB (1965) noted platelet micro-emboli in the mesentery of rabbits given endotoxin.

In the hamster cheek pouch platelet aggregations were observed in the post-capillary venous vessels and microemboli were frequent $5-20$ minutes after the injection of intravenous E. coli lipopolysaccharide. Platelet counts showed marked thrombocytopenia when the pexipheral blood was examined 30 minutes after the intravenous endotoxin injection. Aggregations of platelets have been observed when endotoxin is added to plasma in vitro (DES PREZ, 1964; REAM ET AI., 1965).

v. Summary and Conclusions.

When endotoxin was applied locally to the microvasculature of the hamster cheek pouch a histamine-like response was observed with arterial dilatation and venous constriction. Intravenous administration of endotoxin produced a vasoconstrictor response in the minute vessels. Platelet aggregations were observed in the minute vessels and venous emboli were frequent. Thrombocytopenia was noted.
SECTION VI.
BIOASSAY OF PATIENTS' PLASMA FOR VASOACTIVE
SUBSTANCES.
a) Introduction.
b) Vasoactivity of serum and plasma of
normal persons.
c) Vasoactivity of plasma of patients in
shock associated with infection.
d) Vasoactivity of plasma of patients
with severe dermal burns.
e) Discussion.

A) Introduction.

Blood which has been allowed to clot, or serum from normal animals or healthy human beings has long been known to have vasoconstrictor properties (STEVENS and LEE, 1884; RAPPORT EI AI., 1948). Plasma, however, shows a considerable variation in range of vasoactivity. Vasoactive substances appear in the blood to maintain the stability of the cardiovascular system.

Bacteraemic shock produces a grave upset in the cardiovascular system with marked peripheral pooling of blood (GILBERT, 1960). Several experiments were carried out to test the vasoactivity of plasma, especially in patients where shock was associated with overwhelming infection. In animal experiments endotoxins have been shown to produce a marked catecholamine response (GREISMAN ERI AI., 1964). In patients in shock, vasopressor substances have been used frequently to restore nornal systemic arterial blood pressure. If endogenously produced vasoconstrictor substances were already acting on the peripheral vessels, the addition of further vasopressors may be of doubtful value. The hanster cheek pouch was used as a model to assay the effect of plasma on the minute vessels.

Methods.

Human serum was collected and tested. (Whole blood from healthy persons was allowed to clot spontaneously and then centrifuged.) Specimens of plasma used in the experiments were obtained by collecting blood from a large peripheral vein into a heparinised plastic syringe. The blood was spun immediately. Only the top layer of plasma was used, care being taken not to include any of the buffy layer. 0.05 ml . undiluted plasma was injected locally into the hamster cheek pouch and changes in the cross-sectional area of the minute vessels observed over a 60 minute period.

Results.

B) Normal Human Serum.

Normal human serum caused vasoconstriction (Main Table 33 and Supporting Tables 93-95). The initial vasoconstriction of the small arteries was prompt, and the vessels did not return to their control size during the 60 minutes of observation. There was, however, very little venous vasoconstriction. This vasoconstrictor activity has been shown to be due mainly to serotonin released from disintegrating platelets. (RAPPORT EI AL., 1948; HUMPHREY and JAQUES, 1954).

Normal Human Heparinised Plasma.

In several experiments using heparinised plesma from healthy human volunteers, only slight arterial vasoconstriction was observed. Main Table 34 and Supporting Tables $96-98$ record the activity of plasma from three persons. The sera from two of these healthy persons was also tested and was found to have much greater vasoconstrictor activity than the heparinised plasma: Hospital Inpatients.

Heparinised plasma was obtained from patients in hospital. Some patients were post-operative and some were receiving medical investigation or treatment. None of these patients was in shock and no hypertensive patient: was included. Only slight vasoconstriction was observed. The vasoactivity of plasma from these patients did not appear to differ from the vasoactivity of plasma from the healthy volunteers. c) Patients in Septic Shock.

Heparinised plasma samples, taken from patients who were in shock, and who at the same time had positive blood cultures for gram-negative organisms were markedly vasoconstrictor (Main Table 35 and Supporting Tables 99-101). In the experimental bioassay of the plasma of one of these patients, phenoxybenzamine was added to the cheek pouch
at 30 minutes after the injection of the plasma. There was a prompt improvement in the circulation of the cheek pouch vessels but the arteries did not return completely to their control size.

Petient in Bacteraemic shock and receiving intravenous
vasopressor.
The patient, a female aged 79 years, was admitted to hospital acutely ill with an empyema of gall bladder and acute pancreatitis. Cholecystostomy was performed. Post-operatively the patient was hypotensive. Blood cultures were positive for Klebsiella-aerobacter species. With an intravenous noradrenaline infusion the patient's systolic arterial blood pressure was maintained at 80 mmHg . There was profound coldness and cyanosis of the extremities. The vasoactivity of the plasma is shown in Figure 18, and in Supporting Table 106. The plasma (0.05 ml .) caused marked constriction of the arterioles of the hamster cheek pouch - the arterial blood flow almost ceased. There was little change in the venous diameters. With the arterial inflow considerably reduced and the venous capacity almost unchanged, there was marked stasis and aggregation of the erythrocytes in the minute vessels. Phentolamine (10 micrograms) was injected into the cheek pouch 30 minutes after the plasma injection. The arterial spasm showed
immediate signs of being overcome and the venous flow commenced to speed up even although there was no change in venous calibre. The blood flow in the microciroulation, which was almost completely stagnant improved considerably after the adrenolytic drug. The calibre of the arterioles did not however return completely to control level. D) Heparinised Plasma from Burned Patients:

Plasma samples from four persons who had received severe burns ($30-55 \%$ body surface) were assessed for vasoactivity. The plasma was withdrawn from the patients 3-5 weeks after the burns. At the time of sampling all the patients had normal blood pressures and had adequate renal function. Although infection was a major problem at this time, the patients did not have any appreciable pyrexia. Blood cultures were negative and shock was absent. The plasma specimens of three out of four of these patients had most pronounced vasoconstrictor properties (Main Table 36 and Supporting Tables 102-105).

E) Discussion.

The identification of gram-negative bacterial endotoxins in blood and tissues cannot be achieved readily in clinical practice. Endotoxin is identified usually by its biological properties - e.g. by its ability to produce fever (KIBNE EI AL., 1961), or dermal necrosis (THOMAS, 1956;

JARSON III AL., 1960; FRITZ EM AI., 1962), or death of the injected animal (FINKELSMATN, 1964). Under experimental conditions endotoxin can be identified with greater precision by its radioactive or fluorescein label. (BRAUDE ET AL., 1955; RUBENSIEIN ET AL., 1962). That endotoxin is the cause of the cardiovascular collapse in patients with severe gram-negative infection has not been universally accepted. Nevertheless in man the action of endotoxin has been observed:
(a) after the administration of typhoid vaccine (ALISCHULE EI AL., 1950).
(b) after administration of endotoxin for therapeutic purposes (BRUES and SHEAR, 1944).
(c) after experimental administration (BANNISTER, 1960; GREISMAN EI AL., 1964).

Profound cardiovascular effects have been observed after accidental transfusion of infected blood (BRAUDE IT AL., 1953). In the assay of the effects of endotoxin in patients' blood, the plasma may show varying types of vasoactivity during different phases of the endotoxaemia and shock. Several endogenous vasoconstrictor substances have been identified in plasma - catecholamines, serotonin, angiotensin. The precise nature and quantity of vasoconstrictor substances in plasma is sometimes difficult to determine.

ZWETPACH and METZ (1955) in studying the vasoactivity of the plasma of 90 hospital patients found that in some the plasma was vasoconstrictor and in others, non reactive or vasodilator.

PAGS (1943) demonstrated that the vasoconstrictor substance (adrenaline) present in the plasma of burned dogs, and in dogs subjected to haemorrhage, was different from the vasoconstrictor substance (angiotensin II) present in the plasma of hypertensive patients or dogs, and that each of these vasoconstrictors was different from the vasoconstrictor property or normal serum (serotonin). In experiments reported previously (see above) when endotoxin was given intravenously there was aggregation of platelets in the small venules, and platelet emboli. Thrombocytopenia occurred. DAVIS EI AI., (1960) showed that in dogs after the intravenous administration of endotoxin, the serum serotonin level fell and the plasma serotonin level rose slightly. The low serum serotonin level could be explained by the associated thrombocytopenia which was also observed.

ARMIN and GRANP (1955) used the denervated rabbit ear to assay the vasoactivity of blood from donor rabbits which had either been subjected to haemorrhage or had been stimulated by struggling. After haemorrhage the vasoconstrictor properties appeared to be due mainly to cate-
cholamines as adrenalectomy diminished the vasoactivity. In the rabbits that had been struggling adrenalectomy was without effect, the vasoconstrictor appeared to be due mainly to serotonin release. In a later paper (1957) ARMIN and GRANT considered that the vasoconstriction of rabbit blood following endotoxin, resembled serotonin.

In the patients who were studied in the present report overwhelming sepsis associated with shock was accompanied by marked vasoconstrictor properties of the plasma. The vasoconstriction was relieved in greater part by the use of an alpha receptor blocker. Some vasoconstrictor activity, however, appeared to be due to noncatecholamine substances.

Use of Vasoconstrictor Drugs.

The use of the noradrenaline infusion in the ill patient in septic shock increased the systolic arterial pressure at the expense of tissue perfusion.

The almost complete cessation of blood flow observed in the hamster cheek pouch after the injection of the patient's plasma, was overcome by the use of phentolamine. It would appear that except for very urgent temporary use to maintain central arterial blood pressure, the use of vasoconstrictor drugs should be reserved for those cases where endogenous vasoconstrictor substances are inadequate. A bioassay of the vasoactivity of the plasma of all the
/shocked patients in this study did not suggest, however, that there was any inherent defect in the production of vasopressor substances.

Burns. In three out of the four patients with severe burns marked vasoconstriction was associated with the plasma even although the patients' vital signs appeared stable. Similar constrictor properties, found by PAGE (1943) in the plasma of dogs that had been subjected to experimental burns, were considered to be due to an increased concentration of catecholamines. Endotoxins.

In patients where severe gram-negative infections were associated with shock, the vasoconstrictor properties which were demonstrated in the plasma did not appear to be specific for endotoxin but rather to be the result of endogenous vasoconstrictor substances released in response to hypotension. The assay of these haemodynamic:substances produced during the different stages of endotoxaemia may nevertheless allow a more rational approach to the use of vasoactive drugs in therapy.

BACTERAEMIC SHOCK AND THE MICROCIRCUIAIIION.

PART II.

CLINTCAI OBSERVATIONS.

SECTION VII.

BACYPRAEMIC SHOCK - CIINICAI OBSIRRVATIONS

A) Introduction.
B) Methods of Study.
C) Clinical Findings.
D) Management and Iherapy.
E) Discussion.
F) Conclusion.

BACTIBRAEMIC SHOCK - CLINICAL OBSEPRVATTONS

A) Introduction.

Since the introduction and widespread use of antibiotic therapy in hospital practice, certain bacterial species, previously considered to have little pathogenicity for man are now being recognised as causative agents of severe and sometimes fatal disease. At present among the more important "opportunist" pathogens are the gramnegative bacilli of the Escherichia, Klebsiella-Aerobacter, Proteus and Pseudomonas genera, many of which comprise a part of the normal bacterial flora of man. Recent reports (FINLAND EI AL., 1959; MAIZTEGUI mI AL., 1965) have confirmed the marked increase of gram-negative bacterial infections in hospital. Although hypotension has been described from time to time in association with bacterial infection (e.g. IAENNEC, 1838) it was WAISBREN, who in 1951 first indicated that a precise shock-like state could be seen in some patients with gram-negative bacteraemia. The mortality from gram-negative bacteraemia becomes very high when shock supervenes.

BORDBN and HALI (1951) and BRAUDE (1953) were the first to suggest that gram-negative bacteraemic shock was caused by endotoxin. That the shock-like state associated with bacteraemia is due to endotoxin cannot, however, be confirmed with certainty as there is at present no precise
chemical method of assaying the endotoxin in the blood.
When purified endotoxins from gram-negative bacteria are injected intravenously into the experimental animal, several reactions take place, including fever, shock, peripheral vasoconstriction, leucopenia and then leucocytosis. Patients suffering from bacteraemia due to gramnegative infections similarly exhibit rigors, chills, pyrexia and leucocytosis.

Bacteraemic shock is more commonly seen in the elderly rather than the young, and in those who have intercurrent diseases, e.g. cirrhosis, diabetes or underlying malignant disease. This would suggest a predisposing immunological defect which makes the normal defence mechanisms more vulnerable to the bacterial toxins.

Manipulation, instrumentation (e.g. urethral catheterisation) or surgical treatment are frequently precipitating factors in the production of bacteraemic shock, caused no doubt by release into the blood stream of a sudden large quantity of bacteria or their toxins from a localised infective site. If bacteriological specjimens or blood cultures are not obtained routinely in cases of hypotension where the cause is not obvious, bacteriological factors contributing to the hypotension may readily be overlooked.

Clinical Observations on Bacteraemic Shock.

B) Methods of Study.

In the surgical intensive care unit of the Peter Bent Brigham Hospital, of the Harvard Medical School, Boston, many seriously ill patients were treated under the direction of the Surgeon-in-chief, Dr. Francis D. Moore.

Several selected studies were carried out on these patients by the clinical and research surgical staff. While parallel respiratory, metabolic, renal and haemodynamic studies were being carried out, I studied in detail the significance of bacterial infections in these ill surgical patients.

Bacteriological specimens from the patients were investigated in the surgical bacteriological laboratory under the direction of Dr. Carl W. Walter, M.D., Clinical Professor of Surgery and Dr. Ruth Kundsin, Sc. D., Microbiologist to the department of surgery. .The nomenclature of the enterobacteriaceae isolated corresponded to the classification of EDWARDS and EWING (1962).

During the year, October 1963 - September 1964, among the patients treated and studied in the intensive care unit, there were 31 patients who had prolonged hypotension associated with bacterial infection. Twelve of these patients had been transferred from other hospitals.

(c) Clinical Findings.

Twenty-three (74%) of the thirty-one patients died. Main Table 37 gives the major site of disease in the patients. Unlike most previous series where bacteraemic shock was most common in elderly male patients with urinary infections, or in young women with septic abortions, in the present series, due to the selection associated with the admission of patients to the surgical intensive care unit, a wider variety of conditions was found with related bacteraemic shock.

The largest group of patients, (twelve cases) had abdominal injuries, peritonitis, or abdominal complications as sequelae to surgical procedures. Tight patients had sepsis associated with extensive burns. Urinary tract disease (two cases), biliary disease (three cases), and conditions affecting the female reproductive tract (two cases) were included. In a final group of four patients who were on maintenance immunosuppressive drug therapy following renal or hepatic homotransplantation, overwhelming bacterial infections played a major part in the final stages of the patients' illnesses. In this complicated group it was not possible to separate the important contributing effects of chemotherapy and "host-versus-graft" immunological rejection phenomena, from the obvious toxic action of severe intercurrent infection.

Bacteraemia.

The thirty-one patients were selected for study as episodes of hypotension appeared to be associated with severe infection as the evident clinical cause. Blood cultures revealed a bacteraemia in twenty of the thirtyone patients. Main Table 38 lists the positive blood culture findings. The one gram-positive organism was a staphylococcus aureus. (Phage type U.C. 18). KUNDSTN II AJ., (1964) have shown that U.C. 18, a newly identified phage lyses many hospital-acquired staphylococoi which were untypeable by the usual phages in routine use.

Nineteen of the positive blood cultures (96%) were gram-negative organisms. Escherichia coli was the commonest organism. In only one case were two organisms identified in the blood cultures (Pseudomonas aeruginosa and Klebsiella-Aerobacter species).

Bacteriological Data.

In all the patients included in the clinical study cultures from respiratory and urinary tracts, skin, wounds and blood, were obtained routinely. Additional bacteriological specimens were taken during operative procedures or as indicated by the patient's progress.

At post-mortem examination, bacterial cultures of lung, heart blood and other organs and tissues were taken and compared with the bacteriological cultures obtained
during life. Main Table 39 lists in detail the bacteriological data of all the patients. Several organisms were frequently isolated from multiple sites in one patient. Although it was sometimes difficult to assess quantitatively, the importance of the different genera of bacteria isolated, one species was frequently found to be dominant and if blood cultures were positive it was commonly the dominant organism which was isolated. Clinical Features.

Iwenty-nine of the thirty-one patients in the present series developed shock in hospital. Symptons were usually preceded by manipulation or surgical operation. The "initiating" event preceded clinical signs by 12-48 hours. At the onset chills and rigors were characteristic and later pyrexia occurred. The skin was cold and clammy; cyanosis and mottling were present in the later stages. Vomiting and diarrhoea, although frequent, were not always present. In four cases deep jaundice occurred and the mechanism of its production was not easily explained on clinical observations. Most of the patients remained conscious and alert. Iater however, mental confusion or stupor was noted. Death usually supervened within two to three days of the onset.

Sex and Age.

In the selected group of patients with bacteraemic
shock there were nine females (six of whom died) and twenty-two males (seventeen of whom died). Ages ranged from twenty-four years to eighty-three years, and the median age was fifty-eight years.

Renal Function.
In bacteraemic shock, renal insufficiency was a cardinal problem. Of the thirty-one patients, twenty-one had renal impairment, manifest as oliguria or anuria associated with a blood urea nitrogen (BUN) level. above 50 mgm . per 100 ml . (A blood urea nitrogen level of 50 mgm . per 100 ml . is equivalent to a total blood urea concentration of 103.5 mgm . per 100 ml .) Figure 20 shows the BUN concentration in the patients at the time of shock. In one case of renal failure peritoneal dialysis was carried out and in other five cases haemodialysis was performed, sometimes on two or three occasions. There was however only one survivor in the group where dialysis had been employed.

A careful watch on renal function was maintained and where the hourly output of urine fell below 30 ml . energetic measures were taken to attempt to overcome the renal failure. A trial dose of mannitol was sometimes effective in improving renal function but where shock proved resistant to therapy, urinary output decreased progressively and at post-mortem examination acute tubular necrosis was a prominent feature.

Respiratory Complications.

In the shocked state respiratory problems were common and in most cases were the major immediate cause of death. Hypoxia was frequent. It was necessary to carry out tracheostomy in eleven patients and endotracheal intubation in an additional four patients, to assist or control respiration because of progressive hypoxia. Immediate, though temporary, improvement in the blood gas status was usually achieved by tracheostomy associated with controlled respiration. In four patients tracheostomy had been carried out in the terminal stage of the illness; in the other seven cases serial tracheal cultures were carried out. Gram-negative bacterial infection of the trachea was common and in five patients, the same gram-negative organisms which were isolated from endotracheal swabs were later isolated in blood cultures. Although tracheostomy appeared to be immediately lifesaving in cases of severe oxygen lack, when the tracheostomy was maintained for several days in association with artificial mechanical respiration, severe tracheitis and infection frequently supervened, pulmonary compliance progressively decreased with hypoxia and hypercarbia, and death occurred finally from respiratory and circulatoryy failure.

In shock associated with bacterial infections in the
early stages where a metabolic acidosis was found, there was compensatory respiratory alkalosis (hypocarbia). In the later stages however when respiratory function became impaired there was a final mixed respiratory and metabolic acidosis.

At post-mortem examination the pulmonary lesion was usually a combination of tracheobronchitis, bronchopneumonia and atelectasis. Multiple small peripheral emboli were frequently found and there was sometimes evidence of aspiration. Pulmonary oedema appeared to be a common terminal phenomenon.

Haematological Findings in Bacteraemic Shock.
Blood Volume Measurements.
Blood volume estimations were carried out frequently in the patients during hypotensive episodes. The plasma volume was estimated either by using Evan's Blue ($\mathbb{T} 1824$) or 1^{131} albumen. The large vessel (venous) haematocrit was measured and on the assumption that the total body haematocrit was 0.90 of the large vessel haematocrit (MOORA, 1959), the total blood volume was calculated. Occasionally the red cell mass was estimated independently by labelling the patient's own red cells with Cr^{51} and retransfusing the autogenous isotope-labelled cells. A semi-automatic machine (the 'Volemetron') was used at the bedside on some occasions to give an immediate direct
reading of blood volume using 1^{125}-labelled albumen.
The results of blood volume measurements taken in fifteen patients at the time of shock is illustrated in Figure 21. The observed results were plotted against the expected blood. volumes which were obtained from a nomogram giving the blood volume as a function of the patient's age and weight (DAGHER ET AI., 1965). In septic shock the observed blood volume did not appear to be lower than the expected volume. On the contrary there appeared to be an expansion of the vascular space and the effective blood volume to maintain an adequate arterial blood pressure was sometimes considerably in excess of the expected normal value. Main Table 41 shows the changes in the blood volume of a patient in shock associated with generalised peritonitis. Intravenous fluids were given in an attempt to restore systemic arterial blood pressure without causing undue elevation of the central venous pressure. On the second post-operative day when the blood pressure became stable the blood volume had expanded to $6,720 \mathrm{ml}$. In the course of the following five days, as clinical improvement progressed, the blood volume fell to $4,700 \mathrm{ml}$. being about the expected normal blood volume for the patient. The central venous pressure had been monitored throughout the period of hypotension and had never exceeded 15 cm . water. Ieucocytosis.

Leucocytosis.

Eighty-two per cent of the patients in bacteraemic shock had a leucocytosis over 10,000 cells per c.mm. (43% having a white cell count over 20,000 per c.mm. and 18% over 30,000 per c.mm.). The leucocytosis was due to an increase in the polymorphonuclear leucocytes. The median white blood count was 18,000 per c.mm. and the highest recorded leucocyte count was 43,000 per c.mm. In only one patient was leucopenia noted at the time of hypotension - the patient was on immuno-suppressive drug therapy following renal homotransplantation. In this patient the leucocyte count remained under 2,000 per c.mm. for the five days preceding death from overwhelming sepsis. Congulation Mechanisms.

Prothrombin estimations:- Prothrombin content of the blood was estimated by (modified) Quick's method and the concentration present was expressed as a percentage of the normal control. In the twenty-one patients where the prothrombin content was estimated, values varied from 10-84 per cent of normal. The median value was 40.5 per cent.

Fibrinogen:- Fibrinogen levels were assessed only in those patients with haemorrhagic manifestations. In two patients the fibrinogen concentration was less than 100 mgm . per cent.

Thrombocytopenia.

Platelet counts were carried out in eighteen cases. Eleven patients were considered to have thrombocytopenia (platelets being less than 150,000 per comm.). In five cases the thrombocytopenia was severe (platelets less than 25,000 per comm.). Two of the cases of severe thrombo.. cytopenia were cases on immunosuppressive therapy following organ homotransplantation. They had, despite chemotherapy, maintained high platelet counts until severe gram-negative bacterial sepsis supervened.

Biochemical Changes in Bacteraemic Shock.
In the patients with bacteraemic shock, renal failure was common and the blood urea nitrogen levels were high (Figure 20). Associated with an elevated blood urea nitrogen the serum potassium level was usually raised. Serum sodjura and chloride levels were low except where there was evidence of dehydration and haemoconcentration (as seen in some of the burns cases).

Like most other forms of shock where poor tissue perfusion and cell hypoxia were common features, in the cases with sepsis, when shock was present, there was a metabolic acidosis, the degree of which was proportional to the duration and severity of the shock.

Blood lactate and pyruvate levels, $\mathrm{pH}, \mathrm{pCO}_{2}$ and 'base excess' data were obtained from patients in shock associated

/

with sepsis. Main Table 40 tabulates the biochemical data and in Figure 22 the relationship of excess lactate to base excess in patients in shock is illustrated. The high degree of correlation between the base deficit and the excess lactate ($\mathrm{P}<0.001$) demonstrated that the base deficit could be accounted for almost exclusively by increased concentration of lactate (accumulated during anaerobic tissue metabolism).

Enzyme Changes.

In shock, anaerobic glycolysis and anowic damage to body cells was reflected in the elevation of total serum lactic dehydrogenase (I.D.H.). The concentration of this enzyme in the serum was usually raised, the range being 90-1400 units per ml. A similar though not always parallel elevation was noted in the serum glutamic oxaloacetic transaminase (S.G.O.T.).

Serum Bilirubin.

The serum bilirubin level was found to be elevated in ten patients and in four patients exceeded 10 mgm . per 100 ml . If the patient with the homotransplanted liver was excluded, the biochemical findings in the other cases suggested an obstructive type of jaundice. In the patients who had marked jaundice clinically and who subsequently died, no obvious obstruction to the larger bile ducts was found. Inspissated bile causing biliary stasis in the
smaller bile canaliculi appeared to be the cause of the obstructive jaundice. Similar cholestatic type of jaundice has been described by EIEZ ET AT. (1965) in the course of severe bacterial infections. Serum Amylase.

The serum amylase was occasionally raised. In only two cases, however, was it considered that pencreatitis was sufficiently well established to contribute to the shock. In most cases the poor renal function, preventing the excretion of amylase could be reflected in the abovenormal serum amylase levels.

Gastro-intestinal Findings.

In most of the cases in the group, gastro-intestinal symptoms were common. Several patients had blood-stained vomiting which frequently progressed some hours later to massive gastro-intestinal bleeding. Abdominal pain was associated with abdominal distension. Diarrhoea occurred and the stools were sometimes blood-stained.

One patient (Case 7) had an infarction of the small bowel due to occlusion of the superior mesenteric artery. For some weeks prior to admission to hospital he had symptoms suggestive of "abdominal angina". At laparotomy endarterectomy was carried out and the resultant blood flow in the superior mesenteric artery appeared to be adequate.

A large part of the small bowel was already necrotic and had to be resected. Hypotension and renal failure were irreversible and at post-mortem examination further ischaemic changes in the remainder of the small bowel were found associated with general peritonitis.

MARSTON (1964) has reviewed the literature of cases of acute occlusion of the superior mesenteric artery and found that the condition was usually irreversible when discovered. In Case 5 (Appendix 4) the patient had a mitral valve replacement and in the post-operative period was hypotensive. Operation did not involve the abdominal cavity. The patient developed abdominal pain. The abdomen became silent and distended and in the later stages there was a dusky discoloration in the flanks. At post-mortem examination a patchy necrosis involved the whole of the gastro-intestinal tract. The ischaemia appeared to be due to the failure to perfuse the peripheral vascular bed in the bowel wall. The major arteries of supply were all patent. The appearances in this case were similar to the gastro-intestinal findings in the dog subjected to irreversible haemorrhagic shock (FINT, 1958; LILLTHEI and MacLman, 1958).

In three patients who had mild gastro-intestinal haemorrhage, complicating bacteraemic shock, and who subsequently died, post-mortem examination revealed
congestion and mucosal haemorrhages of the oesophagus, stomach and duodenum. In a further five cases (including three patients with major burns) necropsy demonstrated multiple ulcers of the oesophagus, stomach and duodenum. Four patients had acute fulminating enterocolitis. At post-mortem examination the mucosa of the small and large intestines was dark red with patchy or confluent areas of haemorrhage and necrosis. Thrombi were present in the vessels of the intestinal wall.

Burns.

In the clinical management of the eight burned patients the immediate initial problems were concerned with hypotension, blood volume stabilisation and the associated problems of oliguria and kidney damage: In only two cases were early respiratory difficulties important. The burns were usually sterile in the early stages.

All the burned patients were nursed in separate isolation rooms and strict "barrier" precautions were followed by all the patients' attendants. Frequent bacteriological sampling from the patient, blankets, furniture surfaces and the room air demonstrated that the burned surfaces soon became colonised with bacteria. At first, in most of the cases studied, gram-positive sporeformers, (B. cereus) colonised the burned surfaces. This
organism was found to be present in the earironment. When B. cereus was widespread on the burned surfaces, it appeared to inhibit early colonisation of the burned areas by pathogenic bacteria especially by staphylococeus aureus.

If early skin cover was achieved by excision and grafting this proved to be the best way of reducing or abolishing superficial skin sepsis.

Gradually the burned areas became colonised with pathogenic organisms and as the bacteriological flora changed Staphylococcus aureus (coagulase positive) and Pseudomonas aeruginosa became the dominant organisms. Other gram-negative organisms often present were Escherichia coli, Klebsiella-Aerobacter species and Proteus organisms. Figure 23 tabulates the details of the bacteriological data in one of the seriously burned patients (Case 16). Operative intervention for excision and grafting was followed in four cases by shivering, spiking temperature and hypotension. In three cases postoperative blood cultures were positive and three out of the four patients with post-operative complications died within 48 hours of the onset of symptoms. Carbohydrate Upsets in Burns.

In two of the eight seriously burned patients, upsets in carbohydrate metabolism were encountered. Both patients had episodes of hyperglycaemia and hypo-
hypoglycaemia. The hyperglycaemia occurred when both patients were suffering from pyrexia and toxaemia and in both cases operative excision and grafting of the burned areas had been a preceding event. In both cases positive blood cultures of gram-negative organisms were present at the time of the carbohydrate upset. Immunosupnression (In Homotransplantation).

The occurrence of sepsis in the cases of immunosuppression following homotransplantation of organs presented special problems. Once established, infection proved to be very difficult to eradicate. With immunosuppression with chemotherapeutic substances and cortisone sepsis often appears quiescent. It was frequently difficult to decide whether the symptoms and signs observed were due to sepsis or from acute rejection of immunological tolerance.

In the cases studied, however, pyrexia was not prevented. In two patients marked elevation of temperature persisted relentlessly for 2-3 weeks. Only one patient had a leucopenia which could be attributable to drug therapy. Two had marked coagulation defects with profound thrombocytopenia.

Gastro-intestinal ulceration, haemorrhagic necrosis and adynamic ileus were salient features and in three cases marked bacterial proliferation occurred in the liver. At necropsy widespread foci of infection wexe found.

Staphylococcus aureus and several gram-negative organisms were the pathogenic bacteria producing the overwhelming toxaemia.

General Post-mortem Findings in the Patients who died
in Bacteraemic Shock.
At post-mortem examination of those patients who died in shock associated with severe sepsis, the dominant pathological findings were in the gastro-intestinal tract, in the kidneys, and in the lungs. Thirteen patients had acute generalised peritonitis or extensive intramabdominal abscess formation. Acute congestion of the spleen, or acute splenitis and congestion of the liver, were common. Associated with congestive hepatomegaly, biliary stasis in the small biliary canaliculi was found. In some cases histological examination of liver tissue showed centrilobular necrosis due to congestive hypoxia. In the case of the liver homotransplantation, complete hepatic necrosis with bacterial overgrowth was found and in two cases of renal homotransplantation clumps of gram-negative bacteria were easily demonstrated in liver sections. There was intense vascular congestion of the gastro-intestinal mucosa. The mucosa was dark red with patchy or confluent areas of haemorrhage or necrosis.

Mucosal haemorrhages or erosions were frequent in the stomach and duodenum. Similar changes occurred less
frequently in the small and large intestine. Four patients had died with acute enterocolitis. Microscopy revealed that superficial erosions did not usually spread deep to the submucosa. There appeared to have been spasm in the arteries with multiple scattered small thrombi in the dilated venules of the bowel wall. Renal Changes. The kidneys were frequently pale and swollen and on section pooling of blood in the corticomedullary junction of the kidney resulted in a visible red zone and congestion of the vasa recta. Bight patients had well established acute tubular necrosis. A further three cases had bilateral suppurative pyelonephritis and there was one case of pyoureter.

There were no cases of adrenal insufficiency. Two patients were found to have diffuse hypertrophy of the adrenal glands.

Respiratory Findings. Pulmonary changes were extensive and it was usually difficult to assess the initial changes which would have occurred.

There were nineteen cases of severe bronchopneumonia with patchy atelectasis, associated in eleven patients with extensive tracheobronchitis. Multiple small peripheral emboli were frequently found, large emboli being present in five patients.

Intrapulmonary abscesses, haemorrhages and pleural effusions were found. Pulmonary oedema was frequent.

D) Management and Therapy.

The main purpose of the present work was to assess the importance of the bacteriological factors in shock in critically-ill surgical patients, and to study the pathological and haemodynamic changes associated with bacteraemic shock.

No attempt was made to study the relative efficacy of different therapeutic regimes or drug combinations. Each patient was treated according to individuel needs without reference to any strict regime or drug trial. In such a small group and with the wide variety of drugs employed it was not possible to make an accurate assessment of the relative importance of the different therapeutic measures.

Detailed records of systemic arterial blood pressure, central venous pressure, blood volume and serum electrolytes were used to correct hypotension and fluid imbalance. In some patients the blood volume was expanded until an effective circulating volume was achieved. Blood, plasma, low molecular-weight dextran, and crystalloid solutions were used. In one patient (Main Iable 41) the effective blood volume was shown to be considerably in excess of the predicted volume.

Where the central venous pressure became dangerously high, digitalis, isoproterenol or diuretic therapy were employed and in very acute rises of central venous pressure phlebotomy of $300-500 \mathrm{ml}$. blood was sometimes carried out. Vasopressor drugs were frequently used, mainly for short periods. Noradrenaline (Levophed) was the main vasoconstrictor used. Angiotensin II and metaraminol were sometimes employed.

Vasodilator therapy was not used on any trial basis. Phenoxybenzamine was used only where fluid replacement appeared adequate. The peripheral flow as judged by the disappearance of the peripheral cyanosis and coldness, appeared to improve dramatically after phenoxybenzamine was given. Intravenous isoproterenol also seemed to produce improvement in respiratory symptoms, systemic arterial blood pressure and in peripheral perfusion, al though care had to be taken to prevent excessive tachycardia. The blood gas status was frequently re-assessed and where necessary oxygen therapy with controlled mechanical ventilation was instituted. Sodium bicarbonate and THAM (Iris-buffer) were used to correct severe acidosis.

Antibiotic and steroid therapy were chosen according to the needs of the individual patient.

Hypothermia, using a cooling blanket was used in several cases to control pyrexia.

E) Discussion.

Shock has been recognised as a complication of gramnegative infection only in the last fifteen years". (WA ISBREN, 1951).

The principal sign is the acute onset of hypotension in a patient with overwhelming sepsis. The syndrome is observed mainly in elderly patients and in pregnant women, after the invasion of the blood-stream by gram-negative bacteria.

In the cases reported by WEIL II AI. (1964) the median age of the patients was 60 years. MoHENRY ET AJ. (1962) noted that except for septic abortion bacteraemic shock was unusual in the young. The present series however shows that where the natural immunological mechanisms are suppressed, as in cases of organ transplantation, bacteraemic shock can occur in young persons.

Precipitating Events.

The majority of the cases of bacteraemic shock occur during the patient's hospital stay (WEIT IT AL., 1964). EBERRT and ABERNETHY (1961) found that trauma or manipulation of the genito-urinary tract was responsible for most of the cases of bacteraemic shock. Abdominal operations, infection at the site of a "cut down" infusion, dressing or manipulating the skin, and septic abortions were also precipitating events in cases of bacteraemic

shock.

Time Sequence.

Septic shock occurred usually within 16 hours of the manipulative event and the duration of shock until the time of death was less than two days.
"portals of Entry" in Bacteraemic Shock.
MAIZTISGUI ET AT. (1965) showed that in 65 per cent of cases the urinary tract was the site from which the bacteria invaded the blood stream. In 10 pen cent of cases the gastro-intestinal tract was involved (especially in cases of peritonitis or biliary infections). The skin (14\%) and the respiratory tract (3\%) were sometimes involved. A similar distribution in the portals of entry of bacteria was given by WAISBREN (1951) in his original paper.

BRAUDE EI AI. (1953) described an infected blood transfusion as the source of septic shock and similarly GILAT EI AL. (1958) reported infected, improperly sterilised, crystalloid solutions as the source of infection. Mortality.

In all reported series the mortality has been high (up to 91%) e.g. HALI and GOLD, 1955; EZZO and KNIGHT, 1957; WBIL and SPINK, 1958 and HARRIS and WILSON, 1965. WEII ET AL. (1964) reported that with gram-negative bacteraemia alone, the mortality was 28 per cent. In
cases where there was associated hypotension the mortality rose to 91 per cent.

McCABE (1963) noted that gram-negative bacteraemia was associated with a lower mortality rate in patients with long-standing urinary infections than in patients with gram-negative sepsis arising from extra-urinary tract foci. In addition it was noted that patients with chronic bacteraemia had less fever following a challenging dose of endotoxin than in patients with sterile urine. Reduced Resistance to Infection.

Patients with diabetes mellitus, hepato-biliary disease, leukaemia and other blood dyscrasias, and malignant disease have been shown to be prone to bacteraemic disease. Therapeutic regimes, e.g. the use of steroids, antibiotios or cytotoxic drugs, can also peduce the patient's resistance to infection (HALI and GOID, 1955; SPIMTELL 1 II AL., 1956; McHENRY MI AL., 1962).

Qlinical Features.

The onset of bacteraemic shock is usually heralded by a chill or rigor and then fever (temperature $99^{\circ} \mathrm{F}$ $106^{\circ} \mathrm{F}$). In the early stages the skin is dry and warm. Later the skin becomes cold and moist and the pallor is replaced by a violaceous mottling (WAISBREN, 1951; ALTEMEIER and COLE, 1956; WEIJ and SPINK, 1958).

Vomiting and abdominal pain and distension occur and
if diarrhoea is present the fluid stools may be green or blood stained. Jaundice is an ominous sign. Oliguria is frequent. There is respiratory distress. Mental confusion may be noted early by the patient's nurses. Bacteriological Findings.

WAISBREN (1951) found that Escherichia coli was the commonest organism isolated from the blood in bacteraemic shock. Klebsiella/Aerobacter, Pseudomonas, Proteus and Bacteroides species were the other common gram-negative organisms isolated from patients with septic shock. The Cardio-vascular System in Bacteraemic Shock.

There is still doubt whether or not the heart is primarily affected in bacteraemic shock. FROLICH ER AL. (1962) in animal experiments, perfused the coronary vessels with endotoxin and found no direct eardiac action. GUYTON and CROWELI (1964) postulate that the importance of the heart in shock has been neglected as cardiac deterioration is not discovered early because of the considerable cardiac reserve. E.C.G. recordings in patients in bacteraemic shock show ST and T wave abnormalities due to ischaenic myocardial changes from decreased coronary flow.

In septic shock there is a metabolic acidosis. WEIL BI AL. (1957) showed that myocardial contractility is affected by acidosis. At acid pH, blood vessels and the
heart are refractory to endogenous catecholamines (LANCING, 1963).

UDHOJI ET AI. (1963) made a detailed haernodynamic study of patients in bacteraemic shock and concluded that hypotension was associated with a marked reduction in cardiac output. Peripheral venous pooling with a decreased venous return appeared to be the primary defect producing the shock. WILSON EI AL. (1965) made similar heemodynamic observations.

LILHEHEI ET AI. (1962) believed that early in shock associated with infection there is vasospasm which affects both the arterioles and venules with ischaemia of the capillary bed. With prolongation of the shock the continued ischaemia produces relaxation of the precapillary sphincters. The post-capillary sphincters which are more resistant to anoxia and acidosis maintain their tone. (DEWIS and NEIJJANDER, 1962). Consequently with increased inflow and a relative block to outflow there is stasis of blood in the capillary bed with a loss of fluid into the tissues. SCHAYMR (1962) made the same observations but suggested that with ischaemia, endogenous histamine is produced in the capillary bed, and he demonstrated that early in shock there is a high blood level of catecholamines and later as the catecholamine level falls the histamine concentration rises. Previous
experiments (page 38) show that the typical effect of histamine on the hamster cheek pouch microvasculature was to cause arteriolar vasodilatation and post-capillary venous constriction.

Blood Volume.
GIMBERT ET AI. (1954) found that in patients with bacteraemic shock both the blood volume and the cardiac jndex were normal.

HOBKINS ET AL. (1965) found a marked depletion of the blood volume in patients with haemorrhagic shock. In contrast their patients in septic shock had a normal or increased blood volume. The cardiac output was normal and the mean blood lactate level was high. In the present series blood volume studies showed no defect in blood volume during bacteraemic shock.

Blood Coagulation Defects in Bacteraemic Shock.

Severe upsets in the blood coagulation mechanism have been described in shock in man and in experimental animals. HARDAWAY (1962) has shown a diphasic response in shock. At first there is hypercoagulability followed by a phase of thypocoagulability and fibrinolysis.

Intravascular clotting has been demonstrated in the microcirculation in shock (McKAY and SHAPIRO, 1958; SPINK and VICK, 1961). In vitro and in vivo experiments have demonstrated platelet aggregation in endotoxin shock
(REAM JIT AI., 1965; ROBB, 1965). In earlier experiments in the present work (page 74) white emboli were seen in the hamster cheek pouch vessels after Dscherichia coli endotoxin had been administered intravenously, and there was a marked fall in the platelet counts.

In several patients in the present review, where hypotension was associated with severe infections, thrombocytopenia was observed. In three cases where bone marrow studies were made to investigate the thrombocytopenia, megakaryocytes were plentiful and in the case where an isologous isotope-tagged platelet infusion was given (Appendix 4, case 8) sequestration or destruction of platelets appeared to be the main cause of the platelet depletion.

In shock there is a fall in the blood levels of fibrinogen, prothrombin and platelets (WEST ET AL., 1966). In addition there is activation of endogenous heparin and fibrinolysin. HARDAWAY and JOHNSON (1963), believed that the endogenous release of heparin and fibrinolysin may be an attempt to halt and reverse the intravascular clotting processes. SHERRY (1961) reviewed the increased proteolytic mechanisms which are activated in shock, and THAL and SARDESAI (1965) demonstrated increased bradykinin activity in shock.

Several patients in the present study demonstrated a divergence of the platelet and leucocyte counts.

Thrombocytopenia associated with leucocytosis may be a good index of continuing gram-negative sepsis.

Respiratory System in Septic Shock.

SIMMONS ITI AL. (1960) found respiratory alkalosis in patients with septic shock. Darly in the course of the hypotension patients had hyperpnoea which appeared to compensate the metabolic acidosis. The oxygen consumption in shock decreased (BOURNOUS IT AL., 1963; RUSH EP AT., 1965).

FOBB (1965) examined the mesenteric vessels of animals given endotoxin and photographed multiple microemboli. He concluded that the micro-emboli would be carried to the lungs and could account for the pulmonary arter ial hypertension, the right heart failure and the systemic arterial hypotension. Multiple micro-emboli in the portal system would also account for portal hypertension and pooling of blood in the splanchnic circulation. The hypocoagulability of blood corresponded to platelet depletion.

HALMAGYI ET AI. (1961, 1963) demonstrated that pulmonary hypertension was the most marked finding in endotoxin shock in sheep and that intravenous isoproterenol improved the respiratory function in shock. Similar cor pulmonale findings have been demonstrated in calves (TIKOFF ITP AL., 1966) and in primates (BROCKMAN and VASKO, 1965). In the pulmonary capillary bed local aggregation
of platelets, in addition to the mechanical effect and perhaps reflex neural mechanism, would also cause local release of serotonin, which would increase the pulmonary hypertension.

The onset of septic shock in man has often been difficult to differentiate from massive pulmonary embolism or myocardial infarction (McGOWANS and WALIERS, 1963).

All the patients in the present study had serious pulmonary problems and at post-mortem examination complex pathological findings were present in the lungs.

At present there have been few pulmonary haemodynamic studies carried out in patients in bacteraemic shock and it is not yet possible to say whether or not man exhibits the same pulmonary hypertension which has been noted in sheep, calves and primates.

Gestro-intestinal Failure in Septic Shock.
The association of gastro-intestinal ulceration and haemorrhage with various types of stress has been recorded. The occurrence of acute erosions and ulceration of the stomach and duodenum was noted following severe cutaneous burns (CURIING, 1841-42) and more recently CUSHING (1932) observed alimentary ulceration after intracranial injuries.

The gastro-intestinal tract differs from other organs and tissues as it is populated in the normal state by bacteria. When gram-negative bacteria disintegrate endo-
/endotoxins are liberated and the vasoactivity of those toxins have been considered by some to be the main factor in shock in man (FINE, 1954).

Haemorrhage and gastro-intestinal mucosal ulceration progressing to necrosis are frequent post-mortem findings in severe shock (PENNER and BERNHRIM, 1939). The mesenteric circulation has a large blood volume. The splanchnic vessels have a rich sympathetic vasoconstrictor supply (FOLKOW, 1955) and the mesenteric circulation is highly sensitive to the action of circulating catecholamines (AKBRS and ZWEIFACH, 1955). Intense vasoconstriction of the mesenteric bed causes hypoxia and damage to the intestinal mucosa with increased capillary permeability. The release of serotonin and histamine, vasoactive substances formed in the gastro-intestinal tract may also be important contributing factors producing gastrointestinal changes in shock.

In irreversible shock in the dog, IJIJHEHEI and Macmian (1958) have stressed the dominant role of the intestine. Haemoconcentration and hypovolaemia are marked terminal phenomena in the dog, the duodenum and upper jejunum being blue, congested and necrotic. FINE (1964) demonstrated in experimental studies that when the intestinal splanchnic vasoconstriction was overcome by coeliac blockade, (by infiltration with a local anaesthetic)

Survival rates were increased. In addition $\mathbb{P I N E}$ and his colleagues (JACOB ET AJ., 1954) had previously shown that in germ-free animals the survival rates were higher than in control animals under similar conditions of shock. ZWEIFACH ET AL. (1958) however were unable to confirm FINE's results in germ-free animals, subjected to haemorrhagic shock.

Intestinal necrosis associated with profound hypotension has been described several times (e.g. KAY WI AL., 1958; MARSION, 1962; DRUKER EI AL., 1964; McGOVERN and GOULSTON, 1965).

Necrotising jejunitis, acute haemorrhegic necrosis and pseudomembranous enterocolitis, all appear to be manifestations of intestinal ischaemia and necrosis: The patients are usually elderly men and the syndrome usually follows an episode of hypotension and peripheral vasoconstriction. Coincidental cardiac and respiratory diseases have been prominent features in many cases (BOURGEOIS ET AI., 1964; MING, 1965). The mortality is high. The ischaemic intestinal necrosis is very similar to the endotoxin shook described by FINE (1964) in dogs. FINE believed that shock from any cause will activate bacterial toxins in the gut and become septic shock if it lasts long enough. The intense vasoconstriction of the splanchnic vessels produces anoxic damage to the
intestinal wall allowing absorption of the endotoxin from the bowel.

PENNER and BERNHEIM (1939) in a post-mortem survey of 47 cases at the New York Mount Sinai Hospital demonstrated distension of small vessels in the submucosa and mucosa with focal haemorrhages and necrosis of mucosa with ulceration. Hyaline thrombi were present in the small vessels. The changes were in the mucosa of the stomach but in the submucosa of the intestine.

In dogs the intestinal mucosa is characteristically involved in shock (ITLIEHEI and MacLIBAN, 1958) but in contrast, in man the submucosa is the main site of the ischaemic change. SPANNER (1934) showed numerous arteriovenous shunts in the intestine of the dog. With low arterial perfusion pressure, blood passed through the arterio-venous anastomosis leaving the mucosa relatively ischaemic and accounting for the numerous mucosal lesions. Arterio-venous communications have also been observed in the human intestine (BOULTER and PARKS, 1960), but in the human intestine during ischaemia it is the submucosa which is affected. The formation of a pseudomembrane in the human intestine corresponds to the mucosal changes observed in the dog's intestine.

The metabolic activity of the gastro-intestinal mucosal cells is greater than almost any other tissue.

CREAMER EI AI. (1961) have shown by radio-active tagging in histological studies that the mucosa of the stomach, duodenum and intestine can be replaced in 24-48 hours. This normally intense metabolic activity would be acutely depressed by the hypoxia and ischaemia associated with the poor splanchnic blood flow which is observed in shock. Antibiotic therapy and bacterial infections have been suggested as the aetiological agents at the onset of the intestinal symptoms. The association of enterocolitis with profound hypotension has frequently been interpreted as shock resulting from bowel disease. However it would seem more probable that the hypotension occurred first (as in the case of the mitral valve replacement - Case 5). Cardiac output is inadequate and the peripheral vasoconstriction causes intestinal ischaemia initiating the gastro-intestinal symptoms. Endogenous intestinel bacteria - especially the anaerobic bacteroides and clostridia - are stimulated to proliferate and are absorbed causing bacteraemia and septic shock. Burns.

The most outstanding achievements in recent years in the treatment of burns include the prompt administration of intravenous fluids in the early stages to correct hypotension and hypovolaemia, and the prevention or treatment of the associated renal failuxe. The prevention of toxaemia
and sepsis has improved but the problems of bacterial infection in the later stages of the management of the severely burned patient still presents the major challenge in combating the mortality from extensive burns.

Staphylococcus aureus and Pseudomonas aeruginosa are the bacteria most commonly responsible for severe infection complicating the later stages of the management of the patient with burns. FRLITER and HENDRIX (1964) in a clinical-pathological study of sixty fatally-burned patients showed that the majority died from severe staphylococcal or pseudomonas infection and that the average survival time was three weeks.

Pseudomonas aexuginosa bacteraemia causes a distinctive necrotising bluish skin lesion (mORKNER ET AL*, 1958; McCABE and JACKSON, 1962). Recently MULIL and CALILAHAN (1965) have suggested that elastase, produced by the pseudomonas destroyed the elastic lamina of vessels producing the characteristic bluish skin lesions. The green pigment in the urine of patients with widespread pseudomonas infection is due to verdoglobin, an intermediate product in haemoglobin metabolism (STONE, 1966):

FHLLAR and KAMEI (1964) used pseudomonas vaccine and hyperimmune plasma in the treatment of burned patients and reduced the mortality in their severely burned patients from 44 per cent to 30 per cent.

The topical use of "sulphamylon" (p-aminomethylphenyl sulphonamide) has been reported by LINDBERG ET AI. (1965) to be efficacious in eradicating pseudomonas aeruginosa from burn surfaces.

In four out of eight patients with severe burns surgical intervention - debridement and grafting appeared to be the precipitating event in causing bacteraemic shock. Where there are extensive necrotic infected areas, manipulation of the skin exposes the patient to sudden blood stream invasion of bacteria or their toxins. The onset of bacteraemic shock should be suspected in all cases of hypotension following operative procedures for burns.

Abnomal Carbohydrate Metabolism in Severe Burns.

The syndrome of hyperglycaemia without ketosis complicating severe burns was first described by JFANs and BUTYERFIELD in 1951. The blood glucose levels were in the range $800-1$, 600 mgm . per 100 ml . The syndrome has been called pseudodiabetes. It usually is noted after the second or third week following extensive burns and is serious and can be fatal. Dehydration and uraemia can be marked and are usually the cause of mental symptoms and coma. The osmolarity of the blood is considerably increased. In one of the present patients (Appendix 4, Case 21) the blood sugar rose to $1,660 \mathrm{mgm}$. per 100 ml . and the serum
osmolarity was 459 milliosmoles per litre.
BUTMERFIELD (1955) believed that a high calorie, high carbohydrate diet was the precipitating cause. As most of the carbohydrate appeared to be metabolised without ketosis, BUTTERFIEID considered that there was defective insulin production due to partial failure of the pancreas from excessive carbohydrate intake. BAIJEY (1960) suggested that a main cause of the glycosuria was hyperadrenalinaemia from increased admenal medulla action following the stress aftex burning. BAILEY also considered important the increased corticosteroid production:

In the cases in the present series showing abnormal carbohydrate metabolism and also in the patients studied by BVANS and BUTTERPIEID (1951), and by BAIIBY (1960), severe sepsis and pyrexia were present at the time of the hyperglycaemia. Most of the patients did have a high carbohydrate intake, with partial failure of the pancreas as a possible contributing cause. Toxic absorption however would produce "burns stress" with a high blood catecholamine concentration. Glycogen would be mobilised from the liver and hyperglycaemia result. Later when carbohydrate intake was restricted and the liver glycogen was depleted hypoglycaemia was noted. In experimental animals WOODS EP AL. (1961) showed that endotoxin caused severe upsets in carbohydrate metabolism. SANFORD NI AL. (1960) observed that
/
hyperglycaemia and depletion of liver glycogen were the most constant biochemical changes associated with endotoxaemia. The hyperglycaemia was not due to the direct action of endotoxin but was an indirect response mediated by catecholamines. In severely burned patients a similar mechanism could be the main factor in producing the "pseudodiabetes" observed.

In a bioassay of the plasma of three out of four patients with burns a pronounced vasoconstrictor activity was observed in the microvasculature of the hamster cheek pouch (page 86). PAGE (1943) found a similar vasoconstrictor effect in the plasma of experimentally burned dogs and concluded that the vasoconstrictor substance was adrenaline. A high blood catecholamine level would also stimulate ACTH production with increased adrenal cortical activity. A raised blood corticosteroid level would also play a role in the glucose metabolic upset. In case 21 (Appendix 4) urinary corticosteroid levels were highest at the time of the hyperglycaemia.

The carbohydrate upset and the "Curling's" ulcers observed in severe burns may be complications resultant to the high concentrations of circulating catecholamines. Management and Therapy.

$/$ Management and Therapy.

Antibiotics.

Successful treatment of bacteraemic shock depends on prompt diagnosis and early treatment with the appropriate antibiotic. In their early investigation of the use of aureomycin in brucellosis, SPINK FI AL. (1948) found that where there was overwhelming bacteraemia the use of antibiotics increased the mortality. Ihis apparently detrimental finding appeared to be due to the rapid release of endotoxin during bacterial destruction and lysis.

The choice of antibiotic used in bacteraemic shock will usually be empirical. Blood cultures must be taken to confirm the diagnosis subsequently. Bacteriological cultures of urine, sputum, wound discharges and from other sites will allow a later appraisal of antibiotic therapy. SHUBTN and WEIL (1963) in their paper suggested that streptomycin and chloramphenicol should be used. Today, where gram-negative bacteraemia is suspected cephaloridine with its broad-spectrum action against most gram-negative organisms except pseudomonas - appears to be the drug of choice (MURDOCH IYP AL., 1964). Kanamycin has also been advocated by MURDOCH $\mathbb{E T}$ AL. (1962) and TALBOT (1962).

Colistin or polymixin B are the drugs of choice if the infection is caused by Pseudomonas aeruginosa. In the treatment of severe burns where extensive pseudomonas
linfection may be anticipated, the use of pseudomonas vaccine may prove beneficial (FBLHAR and KAMGI, 1964). In addition to the use of antibiotic drugs, early surgical drainage of abscesses, debridement of sloughs or removal of infected cannulae, catheters and foreign bodies, will reduce the infection at localised foci.

Use of Corticosteroids.

MELBY and SPINK (1958) demonstrated that corticosteroids act as drugs rather than replacement hormones, since neither in the experimental animal nor in man has adrenal cortical insufficiency been found. Survival is significantly higher in persons receiving more than 300 mgm. hydrocortisone or its equivalent in 24 hours. SPINK (1962) has shown that corticosteroids suppress the systemic effects of endotoxin and control the pyrexia. SPIMK and VICK (1961b), LILLIHEI FTP AL. (1962) and WEIT EI AI. (1964) all advocate massive doses of hydrocortisone (up to 3 G . in 24 hours) as the most effective therapy in combatting septic shock. This dose of steroid is considerably in excess of the dose advocated as physiological replacement in cases of possible adrenal--cortical insufficiency.

BETN and JAQUES (1960) noted the beneficial effects of aldosterone in the treatment of endotoxin shock in cats. Although similar protective action of aldosterone in endotoxin shock in animals has been reported by HAYASAKA
and HOWARD (1963), there have been no reports of the action of aldosterone in clinical use in the treatment of bacteraemic shock in man.

Fluid Replacement.
By recording the sexial measurements of haemodynamic data, the central venous pressure should be maintained at levels not exceeding 15 cm . water. Blood volume studies are helpful and deficits in blood volume should be corrected or the blood volume expanded to compensate the increased vascular capacity. Plasma, electrolyte solutions and whole blood should be used. In bacteraemic shock if blood transfusion is necessary fresh unhaemolysed blood should be used. IITWIN 1 II AI. (1963) have demonstrated the synergistic toxicity of gram-negative bacteria and free colloidal haemoglobin. The indications and efficacy of low molecular weight dextran in bacteraemic shock are still being evaluated (GELTN, 1962; COUCH, 1965). Vasoactive Substances.

Vasopressor agents have been in widespread use in
 the value of noradrenaline in shock. Although the clinjcal state of the patient appears to improve temporarily with vasopressor drugs no improvement in the mortality has been demonstrated in control trials. WALIERS and McGOWAN (1964) were unable to demonstrate any improvement in mortality

/

when noradrenaline was used in hypotensive states complidating bacterial infection. Nevertheless, catecholamines have a direct stimulant action on the myocardium. They have both an inotropic and chronotropic effect. Although the peripheral vasoconstrictor effect of the catecholamines play an important part in raising the central arterial blood pressure the direct stimulant effect on the heart is also valuable. As shown earlier (page 116) the apparent increasing refractoriness to noradrenaline in a continuous infusion in the treatment of shock may be due to the increasing metabolic acidosis. If the acidosis is corrected the action of the catecholamines is enhanced (IANCING, 1963). Angiotensin II in the shocked patient raises the blood pressure but markedly reduces the cardiac output. Angiotensin constricts the coronary vessels and unlike the catecholamines has no direct stimulant effect on the heart (NICKERSON and SUTPER, 1964). It does not appear to have any advantages over the catecholamines in the treatment of shock.

Vasodilator Drugs.

Recently the normal vasoconstriction produced in response to the hypotension associated with shock has been considered to be detrimental to peripheral tissue perfusion and adrenergic-blocking agents have been suggested in the treatment of shock. The alpha receptor m
b
blocking agents, phenoxybenzamine and phentolamine have been the drugs most widely used in overcoming deleterious vasoconstriction and improving vital organ perfusion. IICKERSON (1963), one of the earliest advocates of the use of pharmacological adrenolytic drugs reviewed the use of dibenzyline (phenoxybenzamine) in the treatment of shock. He was careful to indicate that alpha-receptorblocking agents should not be employed if oligaemia is present. By lowering the peripheral resistance and increasing the vascular capacity, vasodilator therapy should usuajly be accompanied by an expansion of the blood volume, haemodynamic changes in systemic arterial and central venous pressures being monitored closely during therapy. IIIEHEI IT AI. (1963) have also reported the value of vasodilator therapy in bacteraemic shock. MacLAEAN EI AI. (1965) have used a different approach to vasodilator therapy. Rather than using an alpha-blocking agent they have used "Isuprel" (isoproterenol) a synthetic catecholamine with marked beta-receptor activity. This drug in addition to improving peripheral flow especially through muscle tissue is the catecholaminer: with the greatest inotropic and chronotropic action on the heart. It also produces dilatation of the bronchi and lowers pulmonary arterial pressure, which in animal experiments at least, can be dangerously high in bacteraemje shock
(HAMAGYI EI AL., 1963). KARDOS (1966) used isoproterenol in the treatment of patients in shock due to bacteraemia with gram-negative pathogens. There was a profound change jn the peripheral vascular resistance, venous tone, renal blood flow, cardiac output and redistribution of circulating blood flow. In a recent therapeutic trial of different pharmacological regimes to overcome endotoxin shock in dogs, VICK DI AJ. (1965) found that the most satisfactory therapy was combination of isoproterenol and phenoxybenzamine. Phenoxybenzamine decreased the peripheral vasoconstriction while isoproterenol, with its beta-adrenergic action increased the cardiac output and augmented the perfusion of the tissues. Oxygen Administration.

In bacteraemic shock hypoxia is common and oxygen therapy is frequently required.

Tracheostomy, often in association with mechanical respiration, can allow control of the patient's breathing and ease of access for tracheal aspiration. Iracheostomy also diminishes the energy requirements for breathing.

The use of hyperbaric oxygen in the treatment of septic shock has been reported by RVANS ER AI. (1964) and in a later paper, EVANS and DARIN (1965) reported the additive effects of low molecular weight dextran and

/

hyperbaric oxygen.

Hypothernia.

BANNISTER (1960) and ATWOOD and KASS (1964) have demonstrated that elevation of temperature increased the morbidity of septic shock. Prolonged moderate hypothermia has been suggested as an important adjuvant to therapy ($B L A I R E P A L ., ~ 1964$). In the present clinical group of patients, a cooling blanket was employed frequently to overcome persistent elevation of temperature. Correction of Acidosis.

Regulation of the acid--base status is often required in bacteraemic shock to overcome the metabolic acidosis resultant to poor tissue perfusion. The acidosis is usually treated with intravenous sodium bicarbonate or THAM (Tris-buffer). Peritoneal dialysis or haemodialysis may be required to correct renal failure and electrolyte imbalance.

Alteration of the Blood Coarulation Mechanism.

In man in shock associated with infection, upsets in the blood coagulation mechanism have been observed. To date however, clinical indications for the therapeutic use of heparin, fibrinolysins or epsilon-aminocaproic acid in patients have not been reported. In animal experiments however SPINK and VICK (1961a) reported that EACA, a potent inhibitor of plasminogen activators, administered prior
to and up to 30 minutes before the injection of a lethal. dose of endotoxin in dogs resulted in 70-100 per cent survival.

HARDAWAY and associates (1961) have emphasised the value of heparin administration in counteracting intravascular coagulation in septic shock. Where a generalised Shwartzman phenomenon is suspected, as in certain bacterial complications during pregnancy heparin should inhibit the deposition of fibrin. Alteration of intravascular clotting has also been achieved by the administration of fibrinolysins with a reduction in the mortality in the experimental animal (HARDAWAY and DRAKT, 1963).

The liberation of various vasoactive substances in septic shock increases capillary permeability. The proteolytic processes which are activated can be influenced by the use of trypsin-kallikrein inhibitors (e.g. Trasylol, a. high molecular weight polypeptide extracted from the parotid glands and lungs of cattle is a polyvalent inm hibitor of proteases as well as inhibiting the Kallikreine trypsin enzyme (THAL and SARITSAI, 1965).

Hypercoagulability and hypocoagulability both occur in bacteraemic shock and if potent drugs are used in clinical practice to influence the blood coagulation mechanism, careful and frequent monitoring of the blood factors involved will be required.
(1) Bacterial colonisation of the critically ill surgical patients was the rule rather than the exception.
(2) Gram-negative organisms accounted for the majority of cases of bacteraemia with refractory hypotension.
(3) Sputum, tracheal aspirate, skin, wound and urine cultures often grew the same organism.
(4) After 24-48 hours of colonisation, one type of organism became dominant, often with blood stream spread.
(5) Irauma, instrumentation or surgical treatment usually preceded the bacteraemja and hypotension.
(6) Oliguria, from acute tubular necrosis, coagulation defects, alimentary tract ulceration and haemorrhages, bronchopneumonia, hypoxia and metabolic acidosis were usually associated complications.
(7) Mortality was high 65-70 per cent.

SECTION VIII

> BACYISRABMIC SHOOK AND THE MICROC IRCUIATTON

GENERAI CONCLUS IONS AND SUMMARY

PART I. Experimental Studies.

In a specialised tissue, (the hamster cheek pouch), a quantitative assessment was made of the blood volume distribution in the microvasculature. Three quarters of the blood in the microcirculation was in the venules and only 2.2 per cent of the microvascular blood volume was in the capillary vessels.

A pharmacological approach was employed in an attempt to understand the role of the microcirculation in shock. A method for directly assessing the response of arterial and venous vessels to vasoactive drugs, and indirectly of capillary filtration was developed for the hamster cheek pouch. The responses to histamine, acetylcholine, lactic acid, serotonin, angiotensin II, and the catecholamines were observed.

The action of a purified lipopolysaccharide extract of Dscherichia coli endotoxin was studied in the hamster cheek pouch preparation and a preliminary survey was made of the vasoactivity of plasma from patients in bacteraemic shock.

PART II. Clinical Observations.

With the introduction of the antibiotics into general clinical practice, many gram-positive infections have become less common and gram-negative organisms which previously did not show such invasiveness have become major bacteriological hazards in surgical patients.

In man, hypotension associated with severe infections has not been adequately studied. In order to determine the mechanism by which bacterial toxins initiate the shock state, studies must be made in the early stages of shock before secondary reactions occur. In all types of shock nearing the stage of irreversibility there is a common pathological state produced by tissue hypoxia, resultant to poor tissue perfusion. The initiating "trigger" mechanisms may be dissimilar and difficult to assess.

In animal experiments during the production of endotoxin shock there is marked peripheral pooling especially in the hepatic, splanchnic and pulmonary beds. Early in the course of the shock there is increased peripheral resistance and later there is a marked fall in the vascular resistance. In septic shock both in man and in animals there does not appear to be primary cardiac failure and in man blood volume deficit is not a major factor.

The haemodynamic changes found in man during bacteraemic shock produce pathological effects mainly in the microvasculature of the kidneys, the gastrointestinal tract, and the lungs, and upsets in the blood coagulation mechanism occur.

BIBIIOGRAPHY

AHIQUIST, R.P. A study of adrenotropic receptors. Amer. J. Physiol. 153: 586-600 (1948).

AKERS, R.P. and ZWEIFACH, B.W.
Effect of vasomotor materials on the peripheral blood vessels of the hamster. Amer. J. Physiol. 183: 529-534 (1955).

AIGIRTE, G.H. An adaptation of the transparent chamber technique to the mouse.
J. nat. Cancer Inst. 4: 1-11 (1943).

ALGIRE, G.H., LEGALLAIS, F.Y. and ANDERSON, B.F.
Vascular reactions of normal and malignant tissues in vivo. V. The role of hypotension in the action of a bacterial polysaccharide on tumours.
J. nat. Cancer Inst. 12: 1279-1291 (1952).

ALIMMETER, W.A. and COLI, W. Septic Shock. Ann. Surg. 143: 600-607 (1956).

ALISCHULIF, M.D. and PARKHURSI, B. H.
Effects of intravenous injection of typhoid
vaccine on blood leucocytes and adrenal cortex.
Arch. intern. Med. 86: 505-518 (1950).
ARMIN, J. and GRANT, R.T.
Vasoconstrictor activity in the rabbit's blood and plasma.
J. Physiol., Iond. 128: 511-540 (1955).

ARMIN, J. and GRANT, R.T.
The vasoconstriction caused by a pyrogen. J. Physiol., Lond. 138: 4.17-433 (1957).

ATKINS, E. Pathogenesis of fever. Physiol. Rev. 40: 580-646 (1960).

ATWOOD, R.P. and KASS, E.H.
Relationship of body temperatures to the lethal action of endotoxin.
J. clin. Invest. 43: 151-159 (1964).

References

BAILEY, B.N. Hyperglycaemia in burns. Brit. med. J. ii: 1783-1785 (1960).

BANNISTER, RAG.
Anhydrosis following intravenous bacterial pyrogen. Lancet, ii: 118 -122 (1960).

BARCROFT, H. and SWAN, H.J.C. Sympathetic control of human blood vessels. Edward Arnold. London. (1953).

BIEELER, H.S., O'BRIEN, D.P. and KNISELY, W.H.
In viva measurement of capillaries of frogs, mice and puppies.
Anat. Rec. 150: 141-145 (1964).
BEISSON, P.B. Tolerance to bacterial pyrogen. SI. The role of the reticulo-endothelial system. J. exp. Med. 86: 39-44 (1947).

BEISON, P.B. Temperature-elevating effect of a substance obtained from polymorphonuclear leucocytes. J. cline. Invest. 27: 524. (1948).

BEIN, H.J. and JAQUES, R.
The antitoxic effect of aldosterone. Experientia, 16: 24-26 (1960).

BERPRY, L.J', and SMYTHE, D.S.
The effects of bacterial endotoxins on metabolism. VI. The role of tryptophan pyrrolase in response of mice to endotoxin. J. exp. Med. 118: 587-603 (1963).

BIOZZI, G., BENACERRAF, B. and HATPPRN, B.N. Quantitative study of the granulopectic activity of the reticulomendothelial system. II. A study of the kinetics of the granulepectic activity of the R.E.S. in relation to the dose of carbon injected: relationship between the weight of the organs and their activity. Brit. J. exp. Path. 34: 441-457 (1953).

BLAIR, F., HENNING, G., HORNICK, R. and COWLIEY, R.A. Hypothermia in bacteraemic shock. Arch. Surg., Chicago. 89: 619-629 (1964).

References

BOIVIN, A., MESROBTANN, I. and MISSROBEANU, I.:
Technique pour la preparation des polysaccharides microbiens specific. C.R. Soc. Biol. 113: 490-492 (1933).

BOIVIN, A. and MESROBEANU, J.
Recherches sur les antigenes somatique du bacille typhique sur la nature chimique des antigenes (0) et (Vi). C.R. Soc. Biol. 128: 5-8 (1938).

BOQUEP, P., DETAUNAY, A., LHEOULT, Y. and IBBBRUN, J. Action diun extrait du bacille typhique sur la pression arterielle du lapin. C.R. Soc. Biol. 141: 269-271 (1947).

BORDON, C.W. and HALI, W.H.
Fatal transfusion reactions from massive bacteriel contamination of blood. New Engl. J. Med. 245: 760-765 (1951).

BOUITER, P.S. and PARKS, A.G.
Submucosal vascular patterns of the alimentary tract and their significance. Brit. J. Surg. 47: 546-550 (1960).

BOUNOUS, G., HAMPSON, L.G. and GURD, T. I. Regional blood flow and oxygen consumption in experimental shock. Arch. Surg., Chicago. 87: 340. (1963).

BOURGEOIS, P., ROGE, J., GARAIX, J.P., MARTIN, E. and de ROISSAND, F .

Les hemorragies digestive au cours de la reanimation respiratoire. Sem. Hop., Paris. 40: 2931-2942 (1964).

BRAUDE, A.I. In Bacterial endotoxins. Edit. IANDY, M. and BRAUN, W. p. 140. Rutgers University Press, New Jersey. (1964).

BRAUDE, A.I., CAREY, F.J. and ZAJIESKY, M.
Studies with radjoactive endotoxin. II. Correlation of physiological effects with distribution of radioactivity in rabbits injected with a lethal dose of E. coli endotoxin labelled with radioactive sodium chromate.
J. clin. Invest. 34: 858-866 (1955).

References

BRAUDI, A.I., WIIIITAMS, D., SIEMTENSKI, J. and MURPHY, R. Shock like state due to transfusion of blood contaminated with gram-negative bacilli. Arch. intern. Med. 92: 75-84 (1953).

BRAUN, W. and KESSEI, R.W.I.
Cytotoxicity of endotoxins in relation to their effects on host resistance: in Bacterial endotoxins. Bdit. IAMDY, M. and BRAUN, W. pp. 397-409. Rutgers University Press. New Jersey. (1964).

BROCKMAN, S.K. and VASKO, J.S.
Haemodynamies in endotoxin shock. Surg. Forum. 16: 9-10 (1965).

BRUES, A.M. and SHEAR, M.J.
Chemical treatment of tumours. X. Reactions of four patients with advanced malignant tumours to injection of a polysaccharide from serratia marcescens culture filtrate. J. nat. Cancer Inst. 5: 195-208 (1944).

BUTSERFIELD, W.J.H.
Hypoglycaemic effect of dimercaprol (BAL)
in burned patients and in diabetes with
insulin--resistant hyperglycaemia.
Iancet, i: 489-490 (1955).
CAREY, F.J., BRAUDI, A.I. and ZALBNSKY, M.
Studies with radioactive endotoxins. III. The effect of tolerence on the distribution of radioactivity after intravenous injection of Mscherichia coli endotoxin labelled with Cr51. J. clin. Invest. 37: 441-457 (1958).

CHAMBERS, R. and ZWETFACH, B.W. Thopography and function of mesenteric capillary circulation. Amer. J. Anat. 75: 173-205 (1944).

CHAMBERS, R. and ZWITFACH, B.W.
Functional activity of the blood capillary bed with special reference to visceral tissue. Ann. N.Y. Acad. Sci. 46: 683-694 (1946).

References

COBBALD, A.T., GINSBURG, Jean, and PAION, A.
Circulatory, respiratory and metabolic responses to isopropyl-noradrenaline in man. J. Physiol., Iond. 151: 539-550 (1960).

COHNHEIM, J. Lectures on general pathology. Setc. 1. p. 242. The New Sydenham Society, London. (1889).

COUCH, N.P. The clinical status of low moleculax weight dextran. A critical review.
Clin. Pharmocol. Ther. 6: 654-665 (1965).
CREAMER, B., SHORTER, R.G. and BAMFORTH, J. The turnover and shedding of epithelial cells. Gut, 2: 110-118 (1961).

CRBMER, Natalie, and WATSON, D.W.
Influence of stress on distribution of endotoxin in R.T.S. determined by fluorescein antibody technique. Proc. Soc. \exp. Biol. Med. 95: 510-513 (1957).

CROWELL, J.W. and GUYTON, A.C.
Evidence favoring a cardiac mechanism in
irreversible haemorrhagic shock.
Amer. J. Physiol. 201: 893-896 (1961).
CURLTNG, T.B. On acute ulceration of the duodenum in cases of burn.
Med. chir. Trans. 25: 260. (1841-42).
CUSHING, H. Peptic Uleers and Interbrain.
Surg. Gynec. Obstet. 55: 1-34 (1932).
DAGHER, F.J., LYONS, J.H., FINLAYSON, D.C., SHAMSAIs J. and MOORE, F.D.

Blood Volume Measurement: a critical study. in Advances in Surgery, Vol. 1. Edit. WELCH, C.E. pp. 69-109.

Year Book Medical Publishers Inc., Chicago. (1965).

DALT, H.H. and LAIDIAW, P.P.
Histamine shock.
J. Physiol., Lond. 52: 355-390 (1919).

DAIT, H.H. and RICHARDS, A.N.
The vasodilator action of histamine and of some other substances.
J. Physiol., Lond. 52: 110-166 (1918).

References

DAVIS, R.B., MCQUARRTE, D.G. and MBEKER, W.R.
Immediate effects of Bscherichia coli endotoxin administration on platelets and sexotonin concentration. Fed. Proc. 18: 211. (1959).

DAVIS, R.B., MEEKER, W.R. and BAILEY, W.I.
Serotonin release after injection of E.coli endotoxin in the rabbit. Fed. Proc. 20: 261. (1961).

DAVIS, R.B., MIETER, W.R. and McQUARRTE, D.G.
Immediate effects of intravenous endotoxin on serotonin concentrations and blood platelets.
Circulat. Res. 8: 234-239 (1960).
DELAUNAY, A., BOQUEP, P., LEBBRUN, J., LEHOULT, Y. and Delaunay, N°

Le mode d'action des endotoxines bacteriennes.
IV. Ies troubles vaso-moteurs chez les animaux, intoxiques et leur consequences. J. Physiol., Paris. 40: 89-110 (1948).

DePASQUALIE, N.P. and BURCH, G.E. Angiotensin II. Digital blood flow and the precapillary and post-capillary blood vessels of man. Ann. intern. Med. 58: 278-292 (1963).

DePrez, R.M. Effects of bacterial endotoxin on rabbit platelets. III. Comparison of platelet injury induced by thrombin and by endotoxin. J. exp. Med. 120: 305-313 (1964).

DONAID, W.D., WINKIER, C.H. and HARE, K. Investigations on the mechanism of the leucopenic response to Shigella endotoxin. J. clin. Invest. 37: 1100-1105 (1958).

DRTNKER;; C.K. The functional significance of the lymphatic system. Harvey Lectures. 38: 89-111 (1937).

DRUKIFR, W.R., DAVIS, J.N., HOLDEN, W.D. and REAGEN, J.R. Haemorrhagic necrosis of the intestine. Arch. Surg., Chicago. 89: 42-53 (1964).

References

EBERT, R.V. and ABERNATHY, R.S.
Septic Shock.
Fed. Proc. 20 (Suppl.9): 179-184 (1961).
EDWARDS, P.R. and EVING, W.H.
Identification of Tnterobacteriaceae. 2nd Edit. Burgess Publishing Co. Minneapolis. (1962).

EGDAHI, R.H. The differential response of the adrenal cortex and medulla to bacterial endotoxin. J. clin. Invest. 38: 1120-1125 (1959).

mhey, a., HARGREAVES, T., IAMBEPT, H.P. Jaundice in severe infections. Brit. med. J. ii: $75-77$ (1965).

Von EUHIBR, U.S.
Noradrenaline in hypotensive states and shock. Lancet, ii: 151-154 (1955).

EVANS, W.E., DARIN, J.C., END, E. and EIIITSON, E.F. The use of hyperbaric oxygen in the treatment of endotoxic shock. Surgery. 56: 184-190 (1964).

EVANS, W.T. and DARTN, J.C.
The additive effects of low molecular weight dextran in the treatment of endotoxin shock with hyperbaric oxygen. J. Trauma. 5: 213-221 (1965).

EVANS, E.I. and BUTTERFTELD, W.J.H.
The stress response in the severely burned: an interim report. Ann. Surg. 134: 588-613 (1951).

EZZO, J.A. and KNIGHT, W.A. Jr.
Bacterial shock. A clinical analysis of thirty-ejght cases.
Arch. intern. Med. 99: 701-707 (1957).
FPTLER, I. and HFNDRIX, R.C.
Clinical Pathologic Study of Sixty fatally burned Patients.
Surg. Gynec. Obstet. 119: 1-5 (1964).

References

Hemicer, I. and KAMEI, I.
Pseudomonas vaccine and hyperimmune plasma in the treatment of burned patients.
Surg. Forum. 15: 46-47 (1964).
TERNANDO, N.V.P. and MOVAT, H.Z.
The fine structure of the terminal vascular bed. III and IV. The capilleries and the veins.
Exp. molec. Path. 3: 87-114 (1964).
FINT, J. The bacterial factor in Iraumatic Shock.
Thomas, Springfield, II1. (1954).
FINE, J. The role of the intestine in traumatic shock. Amer. J. Gastroent. 29: 596m603 (1958).

FINE, J. Endotoxins in traumatic shock.
Fed. Proc. 20 (Suppl.9): 166-170 (1961).
FINE, J. Comparison of various forms of experimental shock; in Shock. Pathogenesis and Therapy. IRait. BOCK, K.D. pp, 25-39. Springer-
Verlag, Berlin. (1962).
FINE, J. Septic Shock.
J. amer. med. Ass. 188: 427-432 (1964).

FINE, J., RUTENBURGH, S.H. and SCHWLINBURG, T.B.
The role of the reticulo-endothelial system in haemorrhagic shock.
J. exp. Med. 110: 547-569 (1959).

FINKELSTEIN, R.A.
Observations on mode of action of endotoxin in the chick embryos.
Proc. Soc. exp. Biol. Med. 115: 702-707 (1964).
FINJAID, M., JONES, W.F. and BARNES, M.W.
Occurrence of serious bacterial infections since the intorduction of antibacterial agents. J. amer. med. Ass. 170: 2188-2197 (1959).

FLORIEY, H.W. and GRANT, L.H. Leucocyte migration from small blood vessels stimulated with ultra-violet light: an electron-microscopic study. J. Path. Bact. 82: 13-17 (1961).

References

FOLKOW, B. Nervous control of the blood vessels. Physiol. Rev. 35: 629-663 (1955).

FOLKOW, B. Effects of catecholamines on consecutive vascular sections: in Ciba foundation symposium, jointly with committee for symposia on drug action, on adrenergic mechanisms. Hdit. VANE, J.R., WOLSTENHOLME, G.E.W. and O'CONNER, M. pp. 190-198. Churchill, London. (1960).

FOLKOW, B., JOHANSON, B. and MELTANDER, S. A comparison of the effects of noradrenaline and angiotensin on the resistence and capacitance vessels in cats. Acta physiol. scand. (suppl.) 175: 50-51 (1960).

FORKNER, C.E., FREI, E., EDGCOMB, J.H. and UTZ, J.P. Pseudomonas septicaemia. Observations on 23 cases. Amer. J. Med. 25: 877-889 (1958).

FREEDBBRG, A.S., HAIMOVICI, H. and BIUMGART, H.I. The cardiovascular dynamics in shock due to infection. J. clin. Invest. 23: 930. (1944).

FRITZ, H., HAGSTAM, K.E. and LINDQVIST, B. Jocal reaction to epinephrine injected intradermally in man - a local endotoxaemia. Acta med. scand. 172: 463-472 (1962).

PROLICH, E.D., SCOIT, J.B. and DOOLEY, E.S. Haemodynamic alterations due to salmonella typhosa endotoxin with special reference to the coronary vascular bed. J. clin. Invest. 41: 147-152 (1962).

FULTON, G.P. In Blood vessels and lymphatics. Edit. ABRAMSON, D.I. p. 140. Academic Press, New York. (1962).

FULION, G.P., JACKSON, R.G. and JUTYZ, B.R. Cinephotomicroscopy of normal blood circulation in the cheek pouch of the hamster. Science, 105: 361-362 (1947).

References

FUKUDA, T. Mechanisms of endotoxin tolerance in relation to carbohydrate metabolism. Jap. J. Physiol. 13: 486-491 (1963).
GAITON, M. Studies of the generalised Shwartzman reaction in the pregnant golden hamster. Amer. J. Path. 44: 613-625 (1964).

GELIN, L. 1.
Fluid substitution in shock; in Shock. Pathogenesis and Iherapy. Edit. BOCK, K.D. pp. 332-347. Springer-Verlag, Berlin. (1962).

GIBSON, J.G. 2nd, SELIGMAN, A.M., PBACOCK, W.C., AUB, J.C., FINE, J. and PVANS, R.D.

The distribution of red cells and plasma in large and minute vessels of the normal dog determined by radioactive isotopes of iron and iodine.
J. clin. Invest. 25: 848-857 (1946).

GILAT, T., HERTZ, M. and ALIMMANN, G.
Severe shock syndrome due to contominated infusions.
Brit. med. J. i: 1104-1106 (1958).
GILBERT, R.P. Mechanisms of the haemodynamic effects of endotoxin.
Physiol. Rev. 40: 245-279 (1960).
GILBERI, R.P., HONIG, K.P., ADELSON, B.H., GRITFTN, J.A. and BECKER, R.

Haemodynamics of shock due to infection. J. lab. clin. Med. 44: 801. (1954).

GILBERT, V.E. and BRAUDE, A.I.
Reduction of serum complement in rabbits after injection of endotoxin. J. exp. Med. 116: 477-490 (1962).

GRANT, R.I. Observations on direct communications between arteries and veins in rabbits' ears. Heart, 15: 281-301 (1930).

GREENPIEID, A.D.M.
The circulation through the skin; in Handbook of physiology, Sect. 2. Vol. II. Circulation Hdit. HAMILTON, W.F. and DOW, P. Chap. 39 pp. 1325-1351. American Physio.logical Society, Washington D.C. (1963).

References

GREISMAN, S.E., HORNTCK, R.B., CAROZZA, F.A.Jr., and WOODWARD, T.E.

The role of endotoxin during typhoid fever and tularaemia in man. II. Altered cardiovascular responses to catecholamines. J. clin. Invest. 43: 986-999 (1964).

GUSTAFSON, G.T. and CRONBERG, S.
Effect of endotoxin on mast cells and the
extension of the local Shwartzman reaction to the hamster.
Acta path. microbiol. scand. 59: 21-31 (1963).
GUYTON, A.C. and CROWBLI, J.W.
Dynamics of the heart in shock.
Fed. Proc. 20: (suppl. 9) 51-60 (1961).
GUYYON, A.C. and CROWEII, J.W.
Cardiac deterioration in shock. I. Its
progressive nature; in Shock. Bdit. HERSHEY, S.G. pp. 1-12. Littie, Brown and Coy. Boston. (1964).

HADDY, F.J., GORDON, P. and EMANUWL, D.A.
The influence of tone upon responses of small and large vessels to serotonin. Circulat. Res. 7: 123-130 (1959).

HADIY, F.J., MOLNAR, J.I., BORDEN, C.W. and TEXPER, E.C. Jr. Comparison of direct effects of angiotensin and other vaso-active agents on small and large vessels in several vascular beds. Circulation, 25: 239-246 (1962).

HAL工, W.H. and GOID, D.
Shock associated with bacteraemia. Arch. intern. Med. 96: 403-4.12 (1955).

HALMAGYI, D.T.J. and COLBBATCH, H.J.H.
Cardio-respiratory effects of experimental
lung embolism.
J. clin. Invest. 40: 1785-1796 (1961).

HALMAGYI, D.T.J., STARZECKI, B. and HORNER, G.J.
Mechanism and pharmacology of endotoxin
shock in sheep.
J. appl. Physiol. 18: 544-552 (1963).

References

HARDAWAY, R.M. The role of intravascular clotting in the aetiology of shock.
Ann. Surg. 155: 325-338 (1962).
HARDAWAY, R.M. and BURNS, J.W.
Mechanism of action of fibrinolysin in the prevention of irreversible haemorrhagic shock. Ann. Surg. 157: 305-309 (1963).

HARDAWAY, R.M. and DRAKE, D.C.
Prevention of itreversible" haemorrhagic shock with fibrinolysin. Ann. Surg. 157: 39-47 (1963).

HARDAWAY, R.M., HUSNI, E.A., GEEVER, E.F., NOYES, H.E. and BURNS, J.W. Endotoxin shock. A manifestation of intravascular coagulation. Ann. Surg. 154: 791-802 (1961).

HARDAWAY, R.M. and JOHNSON, D.
Clotting mechanism in endotoxin shock. Arch. intern. Med. 112: 775-782 (1963).

HARTAWAY, R.M. and WEISS, F.H.
Intracapillary clotting as the aetiology of shock. Arch. Surg., Chicago, 83: 851-863 (1961).

HARRIS, J.D. and WILSON, I.
Gram-negative septicaemia: A report of 30 cases. Med. J. Austr. 1: 13-16 (1965).

HARVEY, W. Exercitatio anatomica de motu cordis et sanguinis in animalibus. Guilielmi Harvei Angli-Francofurti. 1628 (in The works of William Harvey, translated by Robert Willis. The Sydenham Society. London, 1847).

HAYASAKA, H. and HOWARD, J.M.
Mechanism of action of D-aldosterone in endotoxic shock. Surgery, 54: 761-763 (1963).

HERTON, J.C., WAJKER, R.I. and PAJMER, J.G. Endotoxin fever in granulocytopenic animals. J. \exp. Med. 113: 1115-1125 (1961).

References

HERRING, W.B., HERION, J.C., WALKER, R.I. and PAJMER, J.G. Distribution and clearance of circulating endotoxin.
J. clin. Invest. 42: 79-87 (1963).

HINSHAW, L.B., EMERSON, T.E. Jr., and REINS, D.A.
Cardio-vascular responses of the primate in endotoxin shock. Fed. Proc. 24: 340. (1965).

HINSHAW, L.B., JORDAN, M.M. and VICK, S.A.
Histamine release and endotoxin shock in the primate. J. clin. Invest. 40: 1631m1637 (1961).

HINSHAW, I.B., KUIDA, H., GITBIRRT, R.P. and VISSCHER, M.B. Role of hepato-splenic pooling following lethal injection of endotoxin in the cat, rabbit and monkey. Fed. Proc. 17: 71. (1958).

HINSHLAW, L.B., VICK, J.A., CARLSON, C.H. and PAN, Y. I. Role of histamine in endotoxin shock. Proc. Soc. exp. Biol. Med. 104: 379-381 (1960)

HOPKINS, R.W., SABGA, G., PENN, I. and SIMEONE, F.A. Haemodynamic aspects of haemorrhagic and septic shock.
J. amex. med. Ass. 191: 731-735 (1965).

HOROWITZ, H.I., DES PREZ, R.M. and HOOK, E.W. Effects of bacterial endotoxin on rabbit platelets. I.I. Enhancement of platelet factor 3 activity in vitro and in vivo. J. exp. Med. 116: 619-633 (1962).

HOWARD, J.G., ROWLEY, D. and WARDLAW, A.C. Investigations on the mechanism of stimulation of non-specific immunity by bacterial lipopolysaccharides. Immunology, Liond. 1: 181-203 (1958).

HUCKABEE, W.E. Relationships of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of O_{2} debt. J. clin. Invest. 37: 255-263 (1958).

References

HUMPHREY, J.H. and JAQUES, R.
The histamine and serotonin content of the platelets and polymorphonuclear leucocytes of various species.
J. Physiol., Iond. 124: 305-310 (1954).

IRWIN, J.W. and BURRAGE, W.S.
Regulations of the microcirculation in the rabbit's lung: in Factors regulating blood flow. Edit. FUIION, G.P. and ZWETFACH, H.W. pp. 55-63. American Physiological Society, Washington D.C. (1958)

IRWIN, J.W., BURRAGE, W.S., AIMAR, C.E. and CHESTMTUT, R.N. Microspopic observations on the pulmonary arterioles, capillaries and venules of living guinea-pigs and rabbits. Anat. Rec. 119: 391-408 (1954).

JACOB, S., WHTZEL, H., GORDON, E., KORMAN, H., SCHWEINBURG, F.B., FRANK, H. and FINE, J' Bacterial action in development of irreversibility to transfusion in haemorrhagic shock in the dog. Amer. J. Physiol. 179: 523-531 (1954).

JACOBSON, E.D., MEHLMAN, B. and KALAS, J.P. Vasoactive mediators as the trigger mechanism of endotoxin shock. J. clin. Invest. 43: 1000-1013 (1964).

JANOFF, A., WEISSMAN, G., ZWBIPACH, B.W. and THOMAS, I. Pathogenesis of experimental shock. IV. Studies on Jysosomes in normal and tolerant animals subjected to lethal trauma and endotoxaemia.
J. exp. Med. 116: 451-466 (1962).

JANOFT, A. and ZWETFACH, B.W.
Effect of endotoxin tolerance, cortisone, and thorotrast on release of enzymes from subcellular particles of mouse liver. Proc. Soc. \exp. Biol. Med. 114: 695-698 (1963).

References

KAISER, H.K. and WOOD, W.B. Jr.
Studies on the pathogenesis of fever. IX. The production of endogenous pyrogen by polymorphonuclear leucocytes.
J. exp. Med. 115: 27-36 (1962).

KARDOS, G.G. Isoproterenoz in the treatment of shock due to bacteraemia with gram-negative pathogens. New Engi. J. Med. 274: 868-873 (1966).

KASS, E.H., ATWOOD, R.P. and PORPIRR, P.J. Observations on the locus of lethal action of bacterial endotoxin; in Bacterial endotoxins. Edit. LANDY, M. and BRAUN, W. pp. 596-601. Rutgers University Press. New Jersey. (1964).

KAY, A.W., RICHARDS, R.I. and WATSON, W.J.
Acute necrotising (pseudo-membranous) enterocolitis.
Brit. J. Surg. 46: 45-57 (1958).
KEENE, W.R., SIIBERMAN, H.R. and LANDY, M.
Observations on the pyrogenic response and its application to the bioassay of endotoxin. J. clin. Invest. 40: 295-301 (1961).

KIM, Y.B. and WATSON, D.W.
Role of antibody in reactions to gramnegative bacterial endotoxin. Fed. Proc. 24: 457. (1965).

KING, M.K. and WOOD, W.B. Jr. Studies on the pathogenesis of fever. III. The leucocyte origins of endogenous pyrogen in acute inflammatory exudates. J. exp. Med. 107: 279-289 (1958).

KOBOID, D.E., LOVEII, R., KATZ, W. and THAL, A.P. Chemical mediators released by endotoxin. Surg. Gynec. Obstet. 118: 807-813 (1964).

KONTPITNEN, A., RAJASALNI, M. and PALOHPIMO, J. Serum enzyme activities in endotoxin shock. Amer. J. Physiol. 207: 385-388 (1964).

KOSTKA, J. and STERRZI, J.
The action of endotoxin on complement. Folia Microbiol. Praha, 7: 191-192 (1962).

References

KNISELY, M.H. A method for illuminating structures for microscopic study.
Anat. Rec. 64: 499-524 (1936).
KROGH, A. Anatomy and Physiology of Copillaries. 2nd Edit. Yale University Press. New Haven. (1929).

KUNDSIN, Ruth B. SAATMER, C.W. and MORTN, P. ${ }^{\text {Staphylococcus aureus U.C. 18. Agent of }}$ nosocomial infections.
Science, 145: 1322-1323 (1964).
LAENNEC, R.T.H. Traite de l'auscultation mediate et des maladies des poumons et du coeur. 3rd Edit. Vol. 1. p. 138. J.s. Chaude, Paris. (1831).

LANCING, A.M. Septic Shock. Canad. med. Ass. J. 89: 583-588 (1963).

TANDAU, J. and DAVIS, T.
Capillary thinning and high capillary blood pressure in hypertension. Lancet, i: 1327-1330 (1957).

IANIIS, R.M. Micro-injection studies of capillary permeability. I. Factors in the production of capillary stasis. Arer. J. Physiol. 81: 124-14.2 (1927).

LANDY, M. and PIILIMMAR, I.
Increased resistance to infection and accompanying alteration in properdin levels, following administration of bacterial lipopolysaccharides.
J. \exp. Med. 104: 383-409 (1956).

LARSON, C., RIBI, E. MTINER, K.C. and LIBBERMAN, J. $\mathrm{H}_{\text {. }}$ A. method for titrating endotoxic activity in the skin of rabbitss. J. \exp. Med. 111: 1-20 (1960).

JAWFORD, D.J. and WHTTE, R.G.
Abnormal serum components after Escherichia coli endotoxin admiristration to male and
female rats.
Nature, Lond. 201: 705-706 (1964).

References

JIEE, I.

IEE, I.

Reticulo-endothelial clearance of circulating fibrin in the pathogenesis of the generalised Shwartzman reaction. J. exp. Med. 115: 1065-1082 (1962).

Mechanisms involved in the production of the generalised Shwartzman reaction: in Bacterial endotoxins. Edit. JANDY, M. and BRAUN, W. pp. 648-657.
Rutgers Universjty Press, New Jersey. (1964).
LIEVIN, J. and GLUTFT, L.E.
Fndotoxaemia and Adrenal Haemorrhage. J. exp. Med. 121: 247-260 (1965).

LIEWIS, 1.H. and MEITANDER, S.
Competitive effects of sympathetic control and tissue metabolites on resjistance and capacitance vessels and capillary filtration in skeletal muscle.
Acta physiol. scand. 56: 162-188 (1962).
IILLHEEI, R.C., LONGERBEAM, J.K. and BLOCK, J.H. Physiology and therapy of bacteraemic shock. Experimental and clinical observations. Amer. J. Cardiol. 12: 599-613 (1963).

LILIMEHI, R.O., LONGERBEAM, J.K. and POSENBERG, J.C. The nature of irreversible shock: its relationship to intestinal changes: in Shock. Pathogenesis and therapy. Tdit. BOCK, K.D. pp. 106-129.
Springer-Verlag, Berlin. (1962).
IIILIMEI, R.C. and MacteAN, J.D.
The intestinal factor in irreversible shock. Ann. Surg. 148: 513-524 (1958).

ITNDBERG, R.B., MONCRIEF, J.A., SWITZER, W.E., ORDER, S.E. and MILIS, W.

The successful control of bucn wound sepsis. J. Trauma, 5: 601-612 (1965).

IISTER, J. On the early stages of inflammation. Philos. Trans. 148: 645-702 (1858).

References

IISTER, J., McNEILI, I.F., MARSHALI, V.C., PLZAKK, I., DAGHER, F. and MOORE, T.D.

Transcapillary refilling after
haemorrhage in normal man.
Ann. Surg. 158: 698-709 (1963).
IIITION, A., BERMAN, H.J. and MCCORMICK, G.
The vascular pattern in the hamster cheek pouch: a quantitative approach. The Physiologist, 7: 194. (1964).

IITTON, A., WALTER, C.W. and BBRMAN, H.J.
The action of vasoactive substances on the microvasculature of the hamster cheek pouch: in 4 th Buropean Conference on Microcirculatior Bibl. anat. (Karger) - in press.

LITTON, A., WAITER, C.W. and KUNDSIN, Ruth B. Septic Shock and terminal sepsis in critically ill surgical patients: in Septic Shock. Edit. STRAWITZ, J.G. and GROSS BLATT, N. pp. 82-94. National Academy of Sciences - National Research Council, Washington D.C. (1965).

LITWIN, M.S., WAITER, C.W., EJARQUE, P. and REYNOLDS, E.S. Synergistic toxicity of grammegative bacteria and free colloidal haemoglobin. Ann. Surg. 157: 485-493 (1963).

LO SPAIJJUTO, J., MILLER, W. Jr., DORWARD, D.B. and FINK, C.W. The formetion of macroglobulin antibodies. I. Studies on adult humans. J. clin. Invest. 41: 1415-1421 (1962)

LUTZ, B.R. and FULTON, G.P.
Smooth muscle and blood flow in the small vessels: in Pactors regulating blood flow. Edit. WUITON, G.P. and ZWEIFACH, B.W. pp. 13 24. American Physiological Society, Washington I.C. (1958).

McCABE, W.R. Endotoxin tolerance. II. Its occurrence in patients with pyelonephritis. J. clin. Invest. 42: 618-625 (1963).

McCABE, W.R. and JACKSON, G.C.
Gram-negative bacteraemia. I. Ttiology and Ecology. II. Clinical, laboratory and therapeutic observations. Arch. intern. Med. 110: 847-864 (1962).

References

McGOVERN, V.J. and GOULSTON, S.J.M.
Ischaemic enterocolitis. Gut, 6: 213-220 (1965).

McGOWAN, G.K. and WAITERS, G.
The value of measuring central venous pressure in shock.
Brit. J. Surg. 50: 821-826 (1963).
MoHENFY, M.C., MARTIN, W.J. and WDILMAN, W.E.
Bacteraemia due to gram-negative bacilli. Ann. intern. Med. 56: 207-219 (1962).

MCKAY, D.G. and SHAPIRO, S.S.
Alterations in the blood coagulation system induced by bacterisl endotoxins. I. In vivo. Generalised Shwartzman reaction.
J. exp. Med. 107: 353-367 (1958).

MoKAY, D.G., SHAPIRO, S.S. and SHANBERGEE, J.N.
Alterations in the blood coagulation system induced by bacterial endotoxins. II. In vitro. J. exp. Med. 107: 369-376 (1958).

MacLeAN, L.D., DUFF, J.H., SCOTY, H.M. and PEREIZ, D.I. Treatment of shock in man based on haemodynamic diagnosis. Surg. Gynee. Obstet. 120: 1-16 (1965).

MAIZTEGUI, J.I., BIEGELEISEN, J.Z. Jr., CHERRY, W.B. and KASS, $\mathrm{H} . \mathrm{H}$. Bacteraemia due to gram negative rods. A clinical, bacteriologic, serologic and immunofluorescent study. New Lagl. J. Med. 272: 222-229 (1965).
MALL, J.P. Die Blut und Lymphwege im Dunnderm des Hundes. Abh. d. sachs. Ges. d. Wiss. 14:153-189 (1888)

MALPIGHI, M. De pulmonibus. Observationes anatomicae. - Letter to Borelli, Bologna 1661: cited in J.F. Pulton's selected readings in the history of physiology. pp. 61-67. Thomas, Springfield, Ill. (1930).

MARSTON, A. The bowel in shock. Lancet, it: 365-370 (1962).

References

MARSTON, A. Patterns of intestinal ischaemia. Ann. roy. Coll. Surg. Eng1. 35: 151-181 (1964)

MEIBY, J.C., EGDAHL, R.F., and SPINK, W.W.
Effect of brucella endotoxin on adrenocortical function in the dog. Fed. Proc. 16: 425-426 (1957).

MEIBY, J.C. and SPTNK, W.W.
Comparative studies on adrenal cortical function and cortisol metabolism in healthy adults and in patients with shock due to endotoxin.
J. clin. Invest. 37: 1791-1798 (1958).

MING, S. Haemorrhagic necrosis of the gastrom intestinal tract and its relation to cardiovascular status. Cixculation, 32: 332-341 (1965).

MIMCHELI, J.C. Bradykinin.
New Engl. J. Med. 271: 1057-1059 (1964).
MOORE, F.D. Metabolic care of the surgical patient p. 143. W.B. Saunders Coy. Philadelphia and London. (1959).

MUIL, J.J. and CALLAHAN, W.S.
The role of the elastase of Pseudomonas aeruginosa in experimental infection. Exp. mol. Path. 4: 567-575 (1965).

MURDOCH, J. McC., GEDDES, A.M. and SYME, J. Studies with Kanamycin Sulphate. Lancet, i: 457-460 (1962).

MURDOCH, J. MCC., SPEIRS, C.F., GMDIDES, A.M. and WALIACE, E.T. Clinical trial of cephaloridine (Ceporin) a new broad-spectrum antibiotic derived from Cephalosporin C.
Brit. med. J. ij: 1238-1240 (1964).
NAKANO, J. and KUSAKARI, T.
Competitive antagonism between isoproterenol and a new beta-receptor adrenergic blocking agent, propranolol.
Proc. Soc. exp. Biol. Med. 119: 350-352 (1965)

References

NICKERSON, M. and GOURZIS, J.T.
Blockade of sympathetic vasoconstriction in the treatment of shock.
J. Trauma, 2: 399-411 (1962).

NICKERSON, M. and SUTMER, M.C.
Angiotensin in Shock.
Canad. med. Ass. J. 90: 325-327 (1964).
NICOLI, P.A. and WEBB, R.I.
Blood circulation in the subcutaneous tissue of the living bat's wing.
Ann. N.Y. Acad. Sci. 46: 697-709 (1946).
NYKIEL, \mathfrak{F}. and GLAVIANO, V.V.
Adrenal catecholamines in E. coli endotoxin shock.
J. appl. Physiol. 16: 348-350 (1961).

PAGE, I.H. The occurrence of a vasoconstrictor substance in blood during shock induced by trauma, haemorrhage and burns. Amer. J. Physiol. 139: 386-398 (1943).

PARRATT, J.R. Blockade of sympathetic beta-receptors in the myocardial circulation. Brit. J. Pharmacol. Chemother. 24:601-611 (1965).

PEART, W.S. The renin-angiotensin system. Pharmacol. Rev. 17: 143-182. (1965).

PENNBR, A. and BFRNHETM, A.I. Acute post-operative oesophageal. Gastric and duodenal ulcerations. Arch. Path. 28: 129-140 (1939).

PENNER, A. and BERNHETM, A.I.
Studies on the pathogenesis of expeximental dysentery intoxication.
J. exp. Med. 76: 271-282 (1942).

PENNER, A. and KLEIN, S.H.
Pathogenesis of experimental dysentery intoxication. Production of the lesions by cerebral circulation of the toxin. J. \exp. Med. 96: 59-69 (1952).

References

POISEUIITA, J.L.M.
Recherches experimentales sur le mouvement des liquides dans les tube de tres-petits diametres. C.R. Acad. Sci., Paris. 15: 1167-1186 (1842).

POOR, Eleanor and LUTZ, B.R.
Punctional anastomotic vessels of the cheek pouch of the hamster. Anat. Rec. 132: 121-126 (1958).

PRIDDY, R.B. and BRODIE, A.F.
Facial musculature, nerves and blood vessels of the hamster in relation to the cheek pouch. J. Morph. 83: 149-180 (1948).

RAPPORT, M.M., GREEN, A.A. and PAGE, I.M. Crystalline serotonin. Science, 108: 329--330 (1948).

RAVIN, H.A. Intestinal endotoxin and the host. Gastroenterology, 44: 73-76 (1963).

RIEAM, V. Jane, DEYKIN, D., GURBWICH, V.G. and WESSLER, S. The aggregation of human platelets by bacterial endotoxin. J. lab. clin. Med. 66: 245-252 (1965).

REILIY, J., RIVALIER, E., COMPAGNON, A., LAPLAANE, R. and deBuit, H. Sur la pathogenie de la dothienenterie. Le role du systeme neurovegatif dans la genese des lesions intestinales. Ann. Med. 37: 321-358 (1935).

REIJIY, J., RIVAJIBR, E., COMPAGNON, A. and LAPLANE, R. Hemorragies, lesions vasculaires et lymphatiques du tube digestif determinees par l'injection peri-splanchnique de substances toxique diverses. C.R. Soc. Biol. 116: 24-29 (1934).

RFYNOLDS, S.R.M., KIRSCH, M., and BING, R.J. Functional capillary beds in the beating KCI-arrested and KCl-arrested-perfused myocardium of the dog. Circulat. Res. 6: 600-611 (1958).

References

ROBB, H.J. The role of micro-embolism in the production of irreversible shock. Ann. Surg. 158: 685-697 (1963).

ROBB, H.J. Micro-embolism in the pathophysiology of shock.
Angiology, Baltimore. 16: 405-411 (1965).
ROBERIS, R.S. The endotoxin of Bact. coli. J. comp. Path. 59: 284-304 (1949).

ROCHA E SILVA, M., BERALDO, W.T. and ROSENFETD, D.G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by suake venoms and by trypsin. Amer. J. Physiol. 156: 261-273 (1949).

ROSENBERG, J.C., LILLEHEI, R.C., MORAN, W.H. and Z.IMMERMAN, B.

Effect of endotoxin on plasma catecholamines and serum serotonin.
Proc. Soc. exp. Biol. Med. 102: 335-337 (1959)
ROSS, C.A. Cardiovascular responses of unanaesthetised rats during traumatic and endotoxin shock. Proc. Soc. exp. Biol. Med. 96: 582-587 (1957)

ROWLEY, D. The role of opsonins in non-specific immunity. J. exp. Med. 111: 137-144 (1960).

ROWIEY, D. Endotoxin-induced changes in susceptibility to infections. in Bacterial endotoxins. Edit. LANDY, M. and BRAUN, W. pp. 359-372. Rutgers University Press. New Jersey. (1964).

RUBGNSTEIN, H.S., FTNE, J. and COONS, A.H.
Localisation of endotoxin in the walls of
the peripheral vascular system during
lethal endotoxaemia.
Proc. Soc. exp. Biol. Med. 111: 458-467 (1962)
RUSH, B. F., ROSENBERG, J.C. and SPENCER, T.C.
Changes in oxygen consumption in shock. J. surg. Res. 5: 252-255 (1965).

References

SANDISON, J.C.A.
A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit's ear. Anat. Rec. 28: 281--287 (1924).

SANDFORD, J.P., BARNETT, J.A. and GOMT, C.
A mechanism of the glycogenolytic action
of bacterial endotoxin.
TJ. exp. Med. 112: 97-105 (1960).
SAUNDBRS, II.A. and KNISELY, M.H.
Living mesenteric terminal arterioles before and immediately after embolisation.
Arch. Path. 58: 309-344 (1954).
SCHAYER, R.W. Relationship of induced histidine decarboxylase activity and histamine synthesis to shock from stress and from endotoxin.
Amer. J. Physiol. 198: 1187-1192 (1960).
SCHAYER, R.W. Evidence that induced histamine is an intrinsic regulator of the microcirculation. Amer. J. Physiol. 202: 65-72 (1962).

SCHRADER, W.H., WOOL PREY, B.F. and BRUNNING, R.D.
Studies with tritiated endotoxin. III. The local Shwartzman reaction. Amer. J. Path. 44: 597-607 (1964).

SEARPEY-SCHAFBR, R.P. and GINSBURG, Jean.
Humoral agents and venous tone. Effects of catecholamines, 5-hydroxytryptamine, histamine and nitrites. Lancet, ii: $1337-1340$ (1962).
SHEPRO, D., KULA, N. and HALKIPIT, J.A.E. The role of the cheek pouch in effecting transplantation immunity in the hamster. J. exp. Med. 117: 749-754 (1963).

SHERRY, S. Haemostatic mechanisms and proteolysis in shock. Fed. Proc. 20 (suppl.9): 209 4218 (1961).

References

SHUBIN, H. and WEIL, M. H. Bacterial Shock - a serious complication in urological practice. J. amer. med. Ass. 185: 850-853 (1963).

SHWARTZMAN, G. Studies on bacillus typhosus toxic substances. I. Phenomena of local skin reactivity to B . typhosus culture filtrate. J. exp. Med. 48: 247--267 (1928).

SILVER, M.D. and STEHBENS, W.D. The behaviour of platelets in vivo. Quart. J. exp. Physiol. 50: 241-247 (1965).

SIMMONS, D.H., NICOLOFF, J. and GUZE, L.B. Hyperventilation and respiratory alkalosis as signs of gram-negative bacteraemia. J. amer. med. Ass. 174: 2196-2199 (1960).

SKARNBS, R.C. and CHEDID, I.C.
Biological degradation and inactivation of endotoxin (chromate labelled): in Bacterial Endotoxins. Edit. LAMDY, M. and BRAUN, W. pp. 575-587. Rutgers University Press. New Jersey. (1964).

SPANNER, R.J. Neue Befunde uber die Blutwege der Darmwand und ihre funktionelle Bedeutung. Morph. Jb. 69: 394-456 (1932).

SPINK, W.W. Endotoxin Shock. Ann. intern. Med. 57: 538-552 (1962).

SPINK, W.W., BRAUDE, A.I., CASIANEIDA, M.R. and SIIVA-GOYTIA,R Aureomycin therapy in human brucellosis due to Brucella melitensis. J. amer. med. Ass. 138: 1145-1148 (1948).

SPINK, W.W., DAVIS, R.B., POTYPRR, R. and CHARTRAND, S. The initial stage of canine endotoxic shock as an expression of anaphylactic shock. Studies on complement titres and plasma histamine concentrations. J. clin. Invest. 43: 696-704 (1964).

SPINK, W.W. and VICK, J.A.
Endotoxin shock and the coagulation mechanism modification of shock with epsilonaminocaproic acid.
Proc. Soc. exp. Biol. Med. 106: 242-247 (196,10

References

SPINK, W.W. and
Evaluation of plasma, metaraminol and hydrocortisone in experimentel endotoxin shock.
Circulat. Res. 9: 184-188 (1961b).
SPITYEL, J.A. Jr., MARTIN, W.J. and NICHOLS, D.R.
Bacteraemia owing to gram-negative bacilli; experiences in the treatment of 137 patients in a 15 year period.
Ann. intern. Med. 44: 302-315 (1956).
STARLING, E.H. On the absorption of fluids from the connective tissue spaces.
J. Physiol. Lond. 19: 312-326 (1896).

STETSON, C.A. Jr.
Studies on the mechanism of the Shwartzman phenomenon. Certain factors involved in the production of local haemorrhagic necrosis J. exp. Med. 93: 489-504 (1951).

STEISON, C.A. Jr.
Studies on the mechanism of the Shwartzman phenomenon. Similarities between reactions to endotoxins and certain reactions of bacterial allergy.
J. exp. Med. 101: 421-436 (1955).

STEVENS, L.T. and LEEE, T.S.
The action of intermittent pressure and of defibrinated blood upon the blood vessels of the frog and the terrapjn. Johns Hopk. University biol. lab. Stud. 3: 99-119 (1884).

STONE, H.H. Review of pseudomonas sepsis in thermal burns. Verdoglobin determination and Gentamycin Iherapy. Ann. Surg. 163: 297-305 (1966).

IAIBOT, C.H. Septicaemia due to gram-negative bacilli. Jancet i: 668-670 (1962).

TARDIEU, G. Ie tuphos-Etude physio--pathologique de l'atteinte du diencephale au cours de la fievre typhoide.
Presse med. 50: 75-78 (1942).

References

THAI, A.P. and SARDESAI, V.M.
Shock and the circulating polypeptides. Amer. J. Surg. 110: 308-312 (1965).

THOMAS, D.P. and WESSLER, S.
Stasis thrombi induced by bacterial endotorin.
Circulat. Res. 14: 486-493 (1964).
THOMAS, I. The role of epinephrine in the reactions produced by the endotoxins of gram-negative bacteria. I. Haemorrhagic necrosis produced by epinephrine in the skin of endotoxin treated rabbits.
J. exp. Med. 104: 865-880 (1956).

TIKOFF, G., KUIDA, H. and CHIGA, M.
Haemodynamic effects of endotoxin in calves. Amer. J. Physiol. 210: 847-853 (1966).

TURPINI, R. and STEPANINI, M.
The nature and mechanism of the haemostatic breakdown in the course of experimental haemorrhagic shock.
J. clin. Invest. 38: 53-65 (1959).

UDHOUI, V.N., WEIL, M.H., SAMBHI, M.P. and ROSOFF, T. Haemodynamic Studies on clinical shock associated with infection. Amer. J. Med. 34: 461-469 (1963).

UVNAS, B. Release processes in mast cells and their activation by injury. Ann. N.Y. Acad. Sci. 116: 880-890 (1964).

VICK, J.A. Endotoxic shock in the primate. Treatment with phenoxybenzamine. J. clin. Invest. 43: 279-284 (1964a).

Trigger mechanism of endotoxin shock. Amer. J. Physiol. 206: 944-946 (1964b).

VICK, J.A.
Bioassay of the prominent humoral agents involved in endotoxin shock. Amer. J. Physiol. 209: 75-78 (1965).

References

VICK, J.A., CIUCHPA, H.P. and MANMHEI, J.H. Use of isoproterenol and phenoxybenzamine in treatment of endotoxin shock.
J. Pharmacol. exp. Ther. 150: 382-388 (1965).

WAALKES, T.P., WEISSBACH, H., BOZICHVICH, J. and UDENPRIEND,S. Serotonin and histamine release during anaphylaxis in the rabbit.
J. clin. Invest. 36: 1115-1120 (1957).

WAISBREN, B.A. Bacteraemia due to gram-negative bacilli other than the salmonella.
Arch. intern. Med. 88: 467-488 (1951).
WALTIERS, G. and McGowan, G.K.
Use of noradrenaline in hypotensive states complicating bacterial infection. Lancet ii: 225-227 (1964).

WEIDEL, W., FRRANK, H. and MAFRTIN, H.H.
The rigid layer of the cell wall of E.coli strain B.
J. gen. Microbiol. 22: 158-166 (1960).

WWIL, M.H., HOULE, D.B., BROWN, B.B. Jr., CAMPBELIE, G.S. and HIBATH,C. Influence of acidosis on the effectiveness of vasopressor agents. Circulation 16: 949. (1957).

WEII, M.H., MacLEAN, L.D., SPINK, W.W. and VISSCHER, M.B. Investigations on the role of the central nervous system in shock produced by endotoxin from gram-negative organisms. J. lab. clin. Med. 48: 661-672 (1956).

WEIL, M.H., SHUBIN, H. and BIDDLE, M. Shock caused by gram-negative micro-organisms Ann. intern. Med. 60: 384-400 (1964).

WEIT, M.H. and SPINK, W.W.
A comparison of shock due to endotoxin
with anaphylactic shock.
J. lab. clin. Med. 50: 501-515 (1957).

WEII, M.H. and SPINK, W.W.
The shock syndrome associated with bacteraemia due to gram-negative bacilli. Arch. intern. Med. 101: 184-193 (1958).

References

WIST, R.L., ELOVITZ, M.J. and HARDAWAY, R.M. Blood coagulation factor activity in experimental endotoxaemia. Ann. Surg. 163: 567-572 (1966).

WESTPHAL, V.O., LUDERITZ, O. and BISTER, F. Uber die Extraktion von Bakterien mit Phenol/Wasser. Z. Naturforsch 753: 148-155 (1952).

WIEUEMAN, Mary P.
Lengths and diameters of peripheral arterial vessels in the living animal. Circulat. Res. 10: 686-690 (1962).

WIBDEMAN, Mary P.
Dimensions of blood vessels from distributing artery to collecting vein. Circulat. Res. 12: 375-378 (1963).

WIEDEMAN, Mary P. and NICOLL, P.A.
Variations in response of minute vessels in the caecal mesentery of the rat to topically applied epinephrine. Amer. J. Physiol. 172: 187-194 (1953).

WILSON, R.P., THAL, A.P., KINDIING, P.H., GRTFKA, T. and ACKERMAN, E. Haemodynamic measurements in septic shock. Anob.Surg., Chicago. 91: 121-127 (1965).

WHITBY, J.I., MICHAEL, J.G., WOODS, M.W. and IANDY, M. Symposium on bacterial endotoxins. II. Possible mechanisms whereby endotoxins evoke increased non specific resistance to infection. Bact. Rev. 25: 437-446 (1961).

WOLFF, S.M., MULHOLTAND, J.H. and RUBENGTEETN, M. Suppression of the immune response to bacterial endotoxins: in Bacterial. endotoxins. Bdit. IANDY, M. and BRAUN, W. pp. 319-325. Rutgers University Press. New Jersey. 1964.

WONG, T.C.
A study on the generalised Shwartzman reaction in pregnant rats induced by bacterial endotoxin. Amer. J. Obstet. Gynec. 84: 786-797 (1962).

References

WOODS, M.W., JANDY, M., WHIMBY, J.I. and BURK, D.
Symposium on bacterial endotoxins. III.
Metabolic effects of endotoxins on mammalian cells. Bact. Rev. 25: 447-456 (1961).

YOUNGER, J.S. and ALGIRE, G.H.
Intravascular agglutination phenomena associated with intravascular injection of a polysaccharide from Serratia marcescent. Cancer Res. 2: 559-560 (1949).

ZWEIFACH, B.W. Microscopic observations of circulation in rat mesoappendix and dog émentum. Use in study of vasotropic substances: in Methods in medical research. Edit. POTTER, V.R. Vol. 1. pp. 131-139. The Year Book Publishers Inc., Chicago. (1948).

ZWEIFACH, B.W. Functional Behaviour of the Microcirculation Thomas. Springfield, Ill. (1961).

ZWEIFACH, B.W. Vascular effects of bacterial endotoxins: in Bacterial endotoxins. Edit. LANDY, M. and BRAUN, W. pp. 110-117. Rutgers University Press. New Jersey. (1964)

ZWEIFACH, B.W., GORDON, H.A., WAGNER, M. and REYNTIERS, J.A. Irreversible hemorrhagic shock in germ free rats. J. exp. Med. 107: 437-450 (1958).

ZWEIFACH, B.W. and KOSSMAN, C.E.
Mic romanipulation of small blood vessels in the mouse. Amer. J. Physiol. 120: 23-35 (1937).

ZWEIFACH, B.W. and METZ, D.B.
Relation of blood-borne agents acting on mesenteric vascular bed to general
circulatory reactions.
J. cline. Invest. 34: 653-665 (1955a).

References

ZWETFACH, B.W. and METZ, D.B.
Validity and limitations of rat mesoappendix: bioassay studies. Circulat. Res. 3: 121-132 (1955).

ZWETPACH, B.W., NAGLER, A.I. and THOMAS, I. The role of epinephrine in the reactions produced by the endotoxins of gramnegative bacteria. II. The changes produced by endotoxin in the vascular reactivity to epinephrine in the rat mesoappendix and the isolated perfused rabbit ear.
J. exp. Med. 104: 881-896 (1956).

BACTERAEMIC SHOCK

AND

THE MICROCIRCULA?ION.

Experimental studies and
clinical observations.
by
ADRIAN ITITON.

VOLUME 2.
(Appendices)
BACIIBRAEMIC SHOCK AND THE MICROC IRCUTATION
VOSUME
2.
APPENDIX 1. FIGURES 1-25.
APPENDIX 2. MATN TABLIS 1-41.
APPENDIX 3. SUPPORT ING ITABLES 1-106.
APPENDIX 4. CASE HISTORY SUMMARTES 1-31.

APPENDIX 1.

FIGURES 1-25.

FIGURE I.
THE HAMSTER CHEEK POUCH.
A: The pouch has been everted, cleaned, and pinned out for observation of the vessel

B: A single membrane preparation. A 'windo has been removed from the upper epiderma layer.

Relative total cross-sectional areas in the microvasculature Comparison of the Relative Total Cross-
sectional Areas of Arteries, Capillaries
and Veins in the Hamster Cheek Pouch.
FIGURE 3.

FIGURE 5. The Action of Histamine on the Microvasculature of the Hamster Cheek Pouch.

$3 H \perp$ NO NINOLO\&GS $\ddagger 0$ NOILDV $7 \forall J I D O L$

TOPICAL ACTION OF ANGIOTENSIN II ON THE
MICROCIRCULATION

FIGURE 9. The Action of Adrenaline, followed by Phenoxybenzamine on the Microvasculature Deviations of 3
TOACAL ACTION OF NORADRENALINE AND PHENOXYBENZAMINE
ON THE MICR OCIRCULATION.

－（squəutax
The Action of Noradrenaline followed by Phentolamine on the Microvasculature
（Mean Values and Standard Deviations of 3
of the Hamster Cheek Pouch．
FNITNEMOYON
WHYOZyIN

［OSF］$\forall \exists \forall \forall$ NOILDヨs－SSOBD TVILINI LNヨJせヨd
The Action of Isoproterenol on the Microvasculature of the Hamster Cheek Pouch.
The Iocal Injection of 10 Micrograms Isoproterenol into the Cheek Pouch.
(Mean Values and Standard Deviations of 6 Experiments).
TOPCAL ACTION OF ACEMMCHOLINE ON THE

TME \mathbb{N} MANUTES AFTER INNECTION OF ACETYLCHOLINE.
MICROCIRCULATION.
IOPICAL ACTION OF ENDOTOXN ON THE
TIGURE 16. The Action on the Microvasculature of the Hanster Cheek Pouch of Locally Injected
SYSTEMK ACTION OF ENDOTOXIN ON

The Action on the Microvasculature of the Hamster Cheek Pouch of an Intravenous
injected
$\stackrel{+}{\infty}$

FIGURE 18. The Vasoconstriction of the Plasma of a Patient
Infusion of Moradrenaline.
LOCAL action on the microcirculation of plasma

FIGURE 19. The Vasoactivity of Plasma from a Burned Patient.

FIGURE 20 Blood urea nitrogen concentrations in patients in bacteraemic shock.

with Correlation of excess lactate and base excess in patients
hypotension associated with sepsis. BASE EXCESS:(Astrup)
Bacterial colonisation of burns - Bacteriological data of a patient
with extensive deep burns.

FIGURE 24. Patient B.W. (F. 26 yrs) Septic Abortion. X-ray of Abdomen shows concentric gas shadows in the uterus.
B.W.(F. 26 YRS.).

TEMPERATURE
(OF.)
(OF.)
BLOOD UREA
NTROGEN
(MGMS/100ML.)
PLATELETS
$\times 10^{3}$
(per CMM.)

URINE
24 hr VOLUME.
$(1000 \mathrm{ML})$.

(Case 24 in Appendix 4).
COURSE IN A CASE
ABORTION
OF SEPTIC
INACASE

CLINICAL

APPENDIX 2.

MAIN TABLESS 1-41.
MAIN TABLE 1
MAJOR VESSELS AT ORIGIN OF HAMSTER CKEEK POUCH

	ARTERIES	VEITSS
Mean No. of vessels	3.4	3.8
Mean square root diameter (Microns)	72.3	184.5
Total Cross-section area $\left(\times 10^{-3} \mathrm{~mm}^{2}\right)$	1.40	10.15
Ratio area vein/artery		

MAIN TABIE 2
LENGTHS AND DIAMETBRS OF MINUTE VESSELS OT THE HAMSTER CHEEK POUCH
(Mean Values - Standard Error)

Vessel	$\begin{gathered} \text { Length (mm) } \\ \text { S.E. } \end{gathered}$	```Diame\ddaggerer (Microns) -S.E.```
Main Artery	9.1 ± 1.2	74.6 ± 3.6
Artery	4.6 ± 0.33	28.6 ± 1.2
Small Artery	5.1 ± 0.31	19.0 ± 1.3
Terminal Arteriole	1.55 ± 0.14	11.72 ± 0.47
Capillary	0.29 ± 0.009	4.84 ± 0.12
Post Capillary Venule	0.309 ± 0.04	9.13 ± 0.49
Venule	1.64 ± 0.22	24.3 ± 1.5
Small Vein	2.5 ± 0.31	35.5 ± 1.9
Vein	4.17 ± 0.71	75.7 ± 5.3
Main Vein	11.94 ± 1.5	184.0 ± 5.0

MAIN TABLP 3
MEAN DIMENS IONS OF MINUTE VESSELS OF HAMSTPR CHEEK POUCH

$$
\begin{aligned}
& \text { * Mean number of main arteries at origin of Cheek Pouch. }
\end{aligned}
$$

MAIN TABIE 4
DISTRIBURION OF VASCUIAR ENDOTHELIUM AND BLOOD VOLUME

	$\%$ Endothelium (1)	\% Volume (2)	$\begin{aligned} & \text { Ratio } \\ & 1 / 2 \end{aligned}$
Main Artery	2.4	5.8	0.4
Artery	3.9	3.8	1.0
Small Artery	9.8	6.3	1.6
Terminal Arteriole	14.5	5.6	2.6
Capillary	14.0	2.2	6.4
Post Cap. Venule	8.8	2.7	3.3
Venule	18.0	14.6	1.2
Small Vein	14.8	17.5	0.8
Vein	9.4	23.5	0.4
Main Vein	4.4	17.9	0.2

MATN TABIE 5

THE MICROVASCULATURE IN THE HAMSTER CHEEK POUCH		
Volume	Endothelium	
Capteries	21.5%	30.6%
Veins	2.2%	14.0%
	76.3%	55.4%

MAIN TABLE 6

PRE-CAPILLARY BOTTLENECKS IN NWSENTERIC ARTERIOLES IN VIVO NEASUREMENTS - SAUNDERS AND KHISEIY (1954)	
Animal	Internal Diameter (Microns)
Frog	16.2
Hamster	6.2
Ifouse	5.7
Rat	5.95
Rabbit	5.5
Cat	7.99
Dog	6.64

MAIN TABLE 7

CAPIITARY DIANETERS IN VARIOUS MAMAASS
 (in vivo measurements)

Author	Animal	Site	Capillary Diameter (Microns)
Wiedeman (1962)	Bat	Wing	3.7
Zweifach, et al., (1937)	Mouse	Mesentery	3-10
Landau, et al., (1957)	Man	Nail bed	$5-12$
Reynolds, et al., (1958)	Dog:	Heart	4.0
Irwin, et al., (1954)	Rabbit	Lung	5.0
Beeler, et al., (1964)	House	Muscle and mesentery	4.6
Beeler, et al., (1964)	Pup	Muscle and mesentery	7.4
Present Study	Hamster	Cheek Pouch	4.8

MATN TABLE 8
BIOOD VOLUNE DISTRIBUTION IN THE MTCROVASCUIATURE

| Author | Animal and Pissue | Arteries | Capillaries | Veins |
| :--- | :--- | :--- | :---: | :--- | :--- |
| Lutz and Fulton (1958) | Hamster Cheek Pouch | a) 22% | 4% | 74% |
| | | b) 21% | 18% | 61% |
| Wiedeman (1963) | Bat Wing | 15.1% | 0.4% | 84.4% |
| Present Study | Hamster Cheek Pouch | 21.5% | 2.2% | 76.3% |

MAIN TABLE 9

			ERVATION	$\begin{aligned} & \text { NPROI EX } \\ & H E \text { CHEEK } \end{aligned}$	$\begin{aligned} & \text { ENTS. } \\ & \text { I AND NO I } \end{aligned}$	TION.	
				Minute	R Contr	ERVATIONS	
		ea.	3 mins.	6 mins.	15 mins.	30 mins.	60 mins.
Exp.	1	Arteries	98.5	107.1	102.0	101.6	91.5
		Veins	97.1	100.3	101.1	91.8	97.6
Exp.	2	Arteries	99.2	97.9	104.2	105.2	108.1
		Veins	100.7	100.8	95.9	95.8	104.2
Exp.	3	Arteries	101.6	96.4	101.2	99.8	97.7
		Veins	98.7	96.3	93.9	93.9	98.7
Mean		Arteries	99.8	100.5	102.5	102.2	99.1
		\pm S.D.	± 1.6	± 5.8	± 1.6	± 2.7	± 8.4
Mean		Veins	98.8	99.1	97.0	93.8	100.2
		\pm S.D.	± 1.8	± 2.5	± 3.7	± 2.0	± 3.5

MAITH TABIE 10

MAIN TABIE 11
ACTION OF HISTAMINE ON MICROCIFCULATION
(1) Local injection of 10 micrograms histamine base in

MAIN TABLE 12
ACIION OF HISTAMINE ON MICROC TROUTATIION

\% Control Cross-section			TIME IN IINUTES AFMER INJECTION OF HISTAMINE.				
Area.			3 mins	6 mins	15 min	30 mins.	60 mins
Exp.	1	Arteries	87.4	121.2	121.2	136.5	147.2
		Veins	89.8	79.1	82.9	85.0	89.0
Exp.	2	Arteries	80.4	107.5	117.6	120.3	125.3
		Veins	82.9	74.7	67.1	75.3	74.6
sxp.	3	Arteries	80.0	120.0	131.4	146.8	138.1
		Veins	84.8	73.9	73.1	67.2	76.4
Exp.	4	Arteries	86.6	-	96.4	126.8	123:7
		Veins	62.4	-	74.3	88.5	91.8
Exp.	5	Arteries	30.1	88.6	123.6	133.7	147.7
		Veins	69.1	67.2	90.3	93.4	97.3
Exp.	6	Arteries	51.1	80.2	145.4	145.0	-
		Veins	79.4	74.2	82.0	86.0	-
Mean		Arteries	77.6	103.5	122.6	134.9	136.4
		\pm S.D.	± 13.3	± 18.5	± 16.2	± 10.3	± 11.4
Mean		Veins	78.1	73.8	78.3	82.6	85.8
		\pm S.D.	± 10.3	± 4.3	± 8.3	± 10.3	$\pm{ }_{-11.5}$

MAIN TAPLE 13
ACTION OF SEROMONIN ON MICROCIRCULATTION

MAIN TABLE 14

ACTION OF ACETYLCHOLINE ON THE MICROCIRCULATION
Local injection of imicrogram Acetylcholine in 0.05 ml.
Ringer's Solution into Hamster Cheek Pouch.

\% Control Cross-section Area.			TIME IN MINUTES AFTER INJECTION OF ACETYLCHOIINE.				
Exp.	1	Arteries	118.8	128.0	107.7	109.7	108.5
		Veins	98.2	92.3	91.6	93.0	96.5
Exp.	2	Arteries	112.7	127.1	132.7	142.8	114.8
		Veins	135.6	159.2	148.2	156.3	134.6
Exp.	3	Arteries	110.7	118.1	123.8	97.5	94.9
		Veins	102.6	147.6	153.2	147.6	146.4
Exp.	4	Arteries	93.5	115.5	111.8	105.8	91.0
		Veins	103.8	105.7	114.2	109.8	98.2
Exp.	5	Arteries	112.0	140.3	128.8	142.4	129.1
		Veins	108.3	117.7	110.9	126.1	117.7
Exp.	6	Arteries	132.7	138.9	128.4	128.1	116.9
		Veins	129.6	131.0	114.8	109.8	111.6
Mean		Arteries	113.4	128.0	122.2	121.1	109.2
		\pm S.D.	± 12.7	± 10.2	± 10.1	± 19.5	± 14.3
Mean		Veins	113.0	125.6	122.2	123.8	117.3
		\pm S.D.	± 15.6	± 25.3	± 23.7	± 24.3	± 19.9

MAIN TABIE 15

\% Control Cross-section Area.			TIME IN MTNUTES AFPER INJECTION OF ANGIOTENSIN II.				
Exp.	1	Arteries Veins	$\begin{array}{r} 4.8 \\ 68.6 \end{array}$	$\begin{array}{r} 3.3 \\ 69.4 \end{array}$	$\begin{aligned} & 11.3 \\ & 90.3 \end{aligned}$	$\begin{aligned} & 93.7 \\ & 91.6 \end{aligned}$	$\begin{aligned} & 93.6 \\ & 90.2 \end{aligned}$
Exp.	2	Arteries Veins	$\begin{array}{r} 4.2 \\ 96.0 \end{array}$	$\begin{aligned} & 16.9 \\ & 86.6 \end{aligned}$	$\begin{aligned} & 20.7 \\ & 82.5 \end{aligned}$	$\begin{aligned} & 92.9 \\ & 87.8 \end{aligned}$	105.4 92.7
Exp.	3	Arteries Veins	$\begin{aligned} & 12.8 \\ & 96.0 \end{aligned}$	$\begin{aligned} & 62.3 \\ & 94.2 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 95.3 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 95.5 \end{aligned}$	$\begin{aligned} & 80.1 \\ & 99.5 \end{aligned}$
Exp.	4	Arteries Veins	$\begin{array}{r} 4.6 \\ 90.0 \end{array}$	$\begin{aligned} & 11.8 \\ & 89.5 \end{aligned}$	$\begin{aligned} & 61.6 \\ & 90.5 \end{aligned}$	$\begin{aligned} & 86.4 \\ & 95.4 \end{aligned}$	$\begin{aligned} & 91.7 \\ & 97.1 \end{aligned}$
Hean		Arteries	6.6	23.6	41.9	90.3	92.7
		\pm S.D.	± 4.1	± 19.1	± 24.5	± 3.6	± 10.3
Mean		Veins	87.7	84.9	89.7	92.6	94.9
		\pm S.D.	± 13.0	± 10.8	± 5.3	± 3.7	± 4.2

MAIN TABLE 16

MATN TABIE 17									
ACTION OF CATECHOLAMINES ON MICROCIRCULATION									
(A)			$f 1$ mi 5 micr	gram Adrenaline followed in 30 mins. by injection rams Phenoxybenzamine (Dibenzyline).					
\% Control Crosssection Area.		TIME IN MINUTES ATYER INJPCTION							
		3 mins	6 mins	15 min	30 min	3 min	6 min	15 min	30 mins
Exp. 1	Arteries Veins	$\begin{array}{r} 6.4 \\ 61.0 \end{array}$	$\begin{array}{r} 5.4 \\ 52.7 \end{array}$	$\begin{array}{r} 2.7 \\ 41.9 \end{array}$	2.7	$\begin{aligned} & 22.3 \\ & 40.9 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 45.8 \end{aligned}$	$\begin{aligned} & 34.2 \\ & 49.3 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 47.9 \end{aligned}$
					33.0				
\#xp. 2	Arteries Veins	$\begin{array}{r} 4.9 \\ 75.9 \end{array}$	$\begin{array}{r} 4.7 \\ 69.2 \end{array}$	$\begin{array}{r} 5.4 \\ 65.2 \end{array}$	$\begin{array}{r} 6.2 \\ 62.7 \end{array}$	$\begin{aligned} & 17.6 \\ & 79.1 \end{aligned}$	$\begin{aligned} & 21.4 \\ & 81.5 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 66.3 \end{aligned}$	$\begin{aligned} & 34.6 \\ & 63.9 \end{aligned}$
Exp. 3	Arteries Veins	$\begin{array}{r} 9.1 \\ 25.0 \end{array}$	$\begin{array}{r} 8.0 \\ 25.0 \end{array}$	$\begin{array}{r} 5.9 \\ 21.4 \end{array}$	$\begin{array}{r} 5.1 \\ 17.3 \end{array}$	$\begin{aligned} & 24.5 \\ & 30.4 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 45.3 \end{aligned}$	$\begin{aligned} & 95.3 \\ & 58.2 \end{aligned}$	$\begin{aligned} & 95.4 \\ & 82.0 \end{aligned}$
Mean	Anteries	6.8$+\quad 0.1$	6.0 $+\quad 1.7$	4.7	4.7	21.5	35.7	50.2	55.3
	$\pm S . D$.		± 1.7	± 2.2	± 2.2	± 3.5	± 16.7	± 39.6	± 34.7
Mean	Arteries \pm S.D.	$\begin{array}{r} 54.0 \\ \pm 26.2 \end{array}$	$\begin{array}{r} 49.0 \\ \pm 22.3 \end{array}$	$\begin{array}{r} 42.8 \\ \pm 21.9 \end{array}$	37.7	$\begin{array}{r} 50.1 \\ \pm 25.6 \end{array}$	57.6	57.9	64.6
					± 23.1		± 20.7	± 8.1	± 34.7

MAIN TABLE 18

ACTION OF CATECHOLAMINES ON MICROCIRCUIAAIION

मot?
ol
(4) Tr.soction

\% Control Crosssection Area.		TIME IN MINUTES AFTER INJECTIONS.							
Exp. 1	Arteries Veins	$\begin{array}{r} 5.5 \\ 72.2 \end{array}$	$\begin{array}{r} 4.2 \\ 49.4 \end{array}$	$\begin{aligned} & 15.7 \\ & 64.0 \end{aligned}$	$\begin{aligned} & 15.7 \\ & 57.8 \end{aligned}$	$\begin{aligned} & 82.1 \\ & 80.1 \end{aligned}$	$\begin{array}{r} 109.1 \\ 92.6 \end{array}$	$\begin{array}{r} 109.4 \\ 92.8 \end{array}$	$\begin{array}{r} 102.1 \\ 99.4 \end{array}$
Fxp. 2	Arteries Veins	$\begin{array}{r} 1.3 \\ 83.6 \end{array}$	$\begin{array}{r} 1.6 \\ 77.4 \end{array}$	$\begin{array}{r} 2.6 \\ 53.3 \end{array}$	$\begin{array}{r} 2.9 \\ 47.7 \end{array}$	$\begin{aligned} & 42.0 \\ & 69.6 \end{aligned}$	$\begin{aligned} & 94.1 \\ & 86.4 \end{aligned}$	$\begin{array}{r} 103.1 \\ 95.5 \end{array}$	$\begin{array}{r} 101.8 \\ 97.0 \end{array}$
Exp. 3	Arteries Veins	$\begin{array}{r} 2.4 \\ 34.6 \end{array}$	$\begin{array}{r} 1.3 \\ 24.7 \end{array}$	$\begin{aligned} & 1.5 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 54.6 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 79.1 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 96.0 \\ & 61.9 \end{aligned}$	$\begin{array}{r} 101.6 \\ 74.2 \end{array}$
Mean	Arteries	3.1	2.4	6.6	7.9	59.6	94.1	102.8	101.8
	\pm S.D.	± 2.2	± 1.6	± 7.9	± 6.9	± 20.5	± 15.0	± 6.7	± 0.4
Mean	Veins	63.5	50.5	42.1	37.3	54.2	66.5	83.4	90.2
	\pm S.D.	± 25.6	± 25.4	± 29.2	± 27.2	± 36.1	± 39.9	± 18.2	± 13.9

MAII TABIT 21

\% Control Cross-section Area.			TIME IN MINUTES AFTER INJECTION.				
			3 mins.	6 mins.	15 mins.	30 mins.	60 mins .
Exp.	1	Arteries	96.2	101.0	98.6	88.0	-
		Veins	97.0	95.0	90.6	93.9	-
Exp.	2	Arteries	92.5	101.7	113.9	113.9	105.8
		Veins	99.0	101.0	93.1	96.6	94.9
Exp.	3	Arteries	97.4	105.7	105.5	107.7	105.7
		Veins	100.2	98.8	99.3	97.3	100.1
Mean		Arteries	95.4	102.8	106.0	103.2	105.8
		\pm S.D.	± 2.6	± 2.5	± 7.6	± 11.5	± 0
Mean		Veins	98.7	98.3	94.3	96.6	97.0
		\pm S.D.	± 1.1	± 3.0	± 4.5	± 1.5	± 3.7

MATN TABLE 22

Injection of 10 micrograms Phentolamine (Regitine) in 0.05 ml . Ringer's Solution into the Haraster Cheek Pouch.							
$\% \text { Control Cross-section }$Area.			3 mins.	$6 \frac{\text { PIME IN MINUTES ARTER }}{\text { mins. }} \frac{15 \mathrm{mins} \text {. }}{30 \mathrm{mins}}$.			60 mins.
Exp.	1	Arteries	86.3	98.5	101.9	100.2	99.0
		Veins	91.6	100.6	98.2	106.6	101.1
Exp.	2	Arteries	95.0	95.7	92.3	97.7	102.8
		Veins	100.4	99.9	100.1	102,9	98.7
Exp.	3	Arteries	95.7	98.0	101.6	99.5	99.0
		Yeins	98.8	98.0	96.8	102.0	102.5
Hean	Arteries$\pm \mathrm{S.D.}$		92.3	97.4	101.9	99.1	100.3
			± 5.1	± 1.5	± 5.5	± 1.3	± 3.1
Mean	$\begin{aligned} & \text { Veins } \\ & \pm \text { s.D. } \end{aligned}$		96.9	99.5	98.4	104.1	100.8
			± 4.7	± 1.6	± 1.7	± 2.4	± 2.7

MAIN TABIE 23
ACTION OF ISOPROTEREXOL ON THE MICROCIRCULATION Ringer's Solution into the Hamster Cheek Pouch.
(1)

\% Control Cross-section Area.			THEE IN WTNUTES APTSR TNJECTION.				
Bxp.	1	Arteries Veins	$\begin{array}{r} 20.5 \\ 108.9 \end{array}$	$\begin{array}{r} 12.4 \\ 124.8 \end{array}$	$\begin{array}{r} 8.2 \\ 102.6 \end{array}$	$\begin{array}{r} 37.1 \\ 109.6 \end{array}$	$\begin{aligned} & 46.9 \\ & 99.0 \end{aligned}$
Exp.	2	Arteries Veins	$\begin{array}{r} 25.0 \\ 150.0 \end{array}$	$\begin{array}{r} 82.7 \\ 127.7 \end{array}$	$\begin{array}{r} 96.2 \\ 123.4 \end{array}$	$\begin{aligned} & 104.2 \\ & 112.1 \end{aligned}$	
Exp.	3	Arteries Veins	$\begin{array}{r} 19.0 \\ 140.2 \end{array}$	$\begin{array}{r} 59.7 \\ 124.5 \end{array}$	$\begin{array}{r} 70.4 \\ 108.1 \end{array}$	$\begin{array}{r} 65.1 \\ 116.5 \end{array}$	$\begin{array}{r} 56.8 \\ 117.6 \end{array}$
Exp.	4	Arteries Veins	$\begin{array}{r} 62.3 \\ 120.0 \end{array}$	$\begin{array}{r} 77.9 \\ 171.7 \end{array}$	$\begin{array}{r} 83.4 \\ 174.2 \end{array}$	$\begin{array}{r} 91.4 \\ 124.0 \end{array}$	$\begin{array}{r} 96.1 \\ 104.7 \end{array}$
Exp.	5	Arteries Veins	$\begin{array}{r} 44.1 \\ 137.8 \end{array}$	$\begin{array}{r} 73.5 \\ 131.5 \end{array}$	$\begin{array}{r} 82.2 \\ 126.3 \end{array}$	$\begin{array}{r} 88.6 \\ 123.6 \end{array}$	$\begin{array}{r} 87.0 \\ 115.5 \end{array}$
Exp.	6	Arteries Veins	$\begin{array}{r} 17.6 \\ 109.1 \end{array}$	$\begin{array}{r} 19.7 \\ 112.5 \end{array}$	$\begin{array}{r} 44.1 \\ 115.2 \end{array}$	$\begin{array}{r} 84.7 \\ 112.7 \end{array}$	$\begin{array}{r} 95.8 \\ 107.4 \end{array}$
Mean		Arteries \pm S.D.	$\begin{array}{r} 31.4 \\ \pm 18.0 \end{array}$	$\begin{array}{r} 54.3 \\ \pm 30.7 \end{array}$	$\begin{array}{r} 64.1 \\ \pm 32.6 \end{array}$	$\begin{array}{r} 78.5 \\ \pm 23.9 \end{array}$	$\begin{array}{r} 76.5 \\ \pm 23.0 \end{array}$
Mean		$\begin{aligned} & \text { Veins } \\ & \pm S . D . \end{aligned}$	$\begin{aligned} & 127.7 \\ & \pm 17.4 \end{aligned}$	$\begin{gathered} 132.1 \\ \pm 20.4 \end{gathered}$	$\begin{aligned} & 124.9 \\ & \pm 25.1 \end{aligned}$	$\begin{array}{r} 116.4 \\ \pm 6.1 \end{array}$	$\begin{aligned} & 108.8 \\ & \pm 7.7 \end{aligned}$

MAIN TABLE 24

\% Control Cross-section Area.			3 mins.	$6 \frac{\mathrm{Tmg}}{\mathrm{mins}}$	$\frac{\text { UTES AFT }}{15 \operatorname{mins}}$	$\frac{\text { ECTION. }}{30 \mathrm{mins}} .$	60 mins
Exp.	1	Arteries	71.2	87.7	78.7	55.3	35.8
		Veins	117.7	124.8	114.9	115.7	124.1
Exp.	2	Arteries	21.2	42.0	37.9	49.6	84.4
		Veins	136.3	120.9	112.2	98.8	95.8
Exp.	3	Arteries	54.4	61.2	77.4	88.8	85.7
		Veins	125.3	144.4	130.5	113.7	114.7
Mean		$\begin{aligned} & \text { Arteries } \\ & \pm \text { S.D. } \end{aligned}$	48.9	63.6	64.7	64.6	68.6
			± 25.4	± 23.0	± 23.2	± 21.2	± 28.4
Mean		$\begin{aligned} & \text { Veins } \\ & \pm \text { S.D. } \end{aligned}$	123.3	130.0	119.2	109.4	114.6
			± 12.3	± 12.9	± 13.9	± 12.9	亡14.4

MAIN TABLE 25
ACTION OF LACTIC ACDD ON THE MICROCTRCUIATION

ACTION OP LACIIC ACID
Injection of 100 micrograms Lactic Acid in 0.05 ml,
Ringer's Solution into the Hamster Cheek Pouch.

\% Control Cross-section Area.			3 mins .	$6 \frac{\mathrm{TIME}}{\mathrm{mins}} .$	$\frac{\text { TUTES AF }}{15 \operatorname{mins}}$	$\frac{\text { JECT ION. }}{30 \mathrm{mins}}$	60 mins
Exp.	1	Arteries	113.0	127.9	140.0	127.9	106.9
		Veins	121.2	129.8	127.4	130.1	119.3
Exp.	2	Arteries	89.5	111.4	131.5	119.0	115.3
		Veins	118.5	118.1	127.2	111.7	100.8
Exp.	3	Arteries	122.3	134.9	140.9	156.1	133.3
		Yeins	115.2	129.8	138.7	128.2	114.4
Mean		$\begin{aligned} & \text { Arteries } \\ & \pm \text { S.D. } \end{aligned}$	108.3	124.7	137.5	134.3	118.5
			± 16.9	± 12.1	± 5.2	± 19.4	± 13.5
Mean		$\begin{aligned} & \text { veins } \\ & \pm \text { S.D. } \end{aligned}$	118.3	125.9	131.1	123.3	111.5
			± 2.7	± 6.8	± 6.6	± 10.1	± 9.8

MAIN TABIE 26

\% Control Cross-section Area.		3 mins. $\quad 6 \frac{\text { qTME IN MINUTES AFTER INJECTION. }}{\text { mins. }} 15$ mins. $\quad 30$ mins. $\quad 60$ mins.				
Exp. 1	Arteries Veins	104.5	100.7	90.2	79.5	80.0
		94.6	89.4	90.1	88.4	94.7
Exp.	Arteries Veins	98.4	101.6	94.4	92.8	98.3
		92.9	90.1	92.9	95.9	99.7
Exp. 3	Arteries Veins	103.3	94.5	103.3	99.8	105.3
		99.9	104.1	104.1	110.9	98.1
Mean	$\begin{aligned} & \text { Arteries } \\ & \pm \text { S.D. } \end{aligned}$	102.1	98.9	96.0	90.7	94.5
		± 3.2	± 3.9	± 6.7	± 10.3	± 13.2
Mean	$\begin{aligned} & \text { Veins } \\ & \pm \text { S.D. } \end{aligned}$	95.8	94.5	95.7	98.4	97.5
		± 3.7	± 8.3	± 7.4	± 11.4	± 2.6

IAAIN TABIE 27
ACTION OF ENDOTOXIN ON THE MICROCTRCULATION

(A) Injection of 100 micrograms D. coli 026:B6 Hipopolysaccharide
in 0.05 ml . Ringer's solution into the Hamster Cheek Pouch.

\% Control Cross-section				TIME INT MINUTES ABPER INJECTION.			
Area.			3 mins.	6 mins	15 mins	30 mins .	60 mins.
Exp.	1	Arteries	106.2	115.0	118.3	122.3	120.8
		Veins	97.8	99.4	92.3	93.8	92.6
Exp.	2	Arteries	113.5	123.0	124.6	127.4	117.5
		Veins	98.2	92.4	96.6	96.7	96.2
Exp.	3	Arteries	139.4	143.5	146.6	149.4	154.7
		Veins	94.4	84.8	91.6	94.2	97.0
Exp.	4	Arteries	89.4	112.0	129.2	135.9	141.8
		Veins	95.5	95.8	86.6	87.5	91.8
Bxp。	5	Arteries	109.5	138.9	118.9	110.7	104.1
		Veins	83.6	72.7	89.3	89.0	94.7
Exp 。	6	Arteries	79.1	107.8	107.8	115.6	107.8
		Veins	97.5	91.7	84.0	91.9	97.5
Mean		Arteries	106.2	123.4	124.2	126.9	124.4
		\pm S.D.	± 20.9	± 14.7	± 13.1	± 14.2	± 19.8
Mean		Veins	94.5	89.5	90.1	92.2	95.0
		\pm S.D.	± 5.5	± 9.5	± 4.1	± 3.4	± 2.4

NAITI TABLE 28

MA IN TABIE 29

\% Control Cross-sectionArea.			3 mins.	$6 \frac{\text { TIME }}{\text { mins. }}$	$\frac{\text { NUTES AFTE }}{15 \operatorname{mins} .}$	$\frac{\text { TECTION. }}{30 \mathrm{mins}}$	60 mins.
Exp.	1	Arteries	121.3	132.9	126.2	131.9	109.9
		Veins	81.5	80.7	74.4	81.5	81.5
Exp.	2	Arteries	56.8	65.8	112.0	150.7	124.9
		Veins	82.0	84.5	81.4	87.8	90.5
Exp.	3	Arteries	100.9	113.5	120.0	117.6	109.9
		Veins	94.0	81.3	75.0	74.9	83.2
Mean		Arteries	93.0	104.1	119.4	133.4	114.9
		\pm s.D.	ذ 32.9	± 26.3	± 7.1	± 16.6	± 8.7
Mean		Veins	85.8	82.2	75.9	81.4	85.1
		\pm S.D.	± 7.1	± 2.0	± 3.9	± 6.4	± 4.8

MAIN TABLE 30
ACTION OF ENDOROXIN OII THE MICROCTRCULATION
(D) Injection $0.05 \mathrm{ml}, \mathrm{E}$, colich Filtrate

$\begin{aligned} & \text { \% ControI Cross-section } \\ & \text { Area. } \end{aligned}$			3 mins.	$6 \frac{\mathrm{mTME}}{\mathrm{mins}}$	$\frac{\mathrm{TUPES} \operatorname{AFP}}{15 \operatorname{mins}}$	$\frac{\operatorname{BCIION}}{30 \text { mins }}$	60 mins.
Exp.	1	Arteries	153.5	159.6	186.2	175.0	-
		Veins	84.0	76.6	82.7	65.7	-
Exp.	2	Arteries	95.3	82.1	168.1	147.1	191.3
		Veins	74.1	69.4	88.0	58.2	61.0
Exp.	3	Arteries	100.0	158.2	174.0	142.8	155.2
		Veins	92.6	80.4	79.5	77.3	88.4
Mean		Arteries	116.3	133.3	176.1	155.2	173.3
		\pm S.D.	± 32.3	± 44.4	± 9.2	± 19.3	± 25.5
Hean		Veins	83.6	75.5	83.4	67.1	74.7
		\pm S.D.	± 9.3	± 5.6	± 4.3	± 11.9	± 19.4

MAIN TABLE 31
SYSTEMIC ACPION OF ENDOROXIN ON THE MTCROCIRCUIATION

\% Control Cross-section Area.			TINE IN MTHUTES AFMER INTRAVENOUS INJECTION OF ENDOTOXTN				
			3 min	6 min	$15 \min$	$30 \mathrm{~min}$	60 mins.
Bxp.	1	Arteries Veins	$\begin{aligned} & 88.7 \\ & 98.1 \end{aligned}$	$\begin{aligned} & 53.6 \\ & 90.1 \end{aligned}$	$\begin{array}{r} 44.3 \\ 106.4 \end{array}$	$\begin{array}{r} 57.4 \\ 131.4 \end{array}$	$\begin{array}{r} 60.9 \\ 117.1 \end{array}$
Exp.	2	Arteries Veins	$\begin{aligned} & 92.5 \\ & 96.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 97.3 \end{aligned}$	$\begin{aligned} & 28.9 \\ & 91.3 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 96.1 \end{aligned}$	$\begin{array}{r} 32.0 \\ 104.7 \end{array}$
Exp.	3	Arteries Veins	$\begin{aligned} & 74.6 \\ & 76.2 \end{aligned}$	$\begin{aligned} & 72.9 \\ & 74.9 \end{aligned}$	$\begin{aligned} & 38.9 \\ & 52.1 \end{aligned}$	$\begin{aligned} & 56.7 \\ & 62.6 \end{aligned}$	$\begin{aligned} & 76.6 \\ & 69.4 \end{aligned}$
Erep.	4	Arteries Veins	$\begin{aligned} & 65.3 \\ & 95.8 \end{aligned}$	$\begin{aligned} & 48.1 \\ & 88.0 \end{aligned}$	$\begin{aligned} & 45.2 \\ & 79.9 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 77.0 \end{aligned}$	-
Mean		Arteries	80.3	48.7	39.3	44.3	56.5
		\pm S.D.	± 12.6	± 21.8	± 7.5	± 15.4	± 22.6
Mean		Veins	91.5	87.6	82.4	91.8	97.1
		\pm S.D.	± 10.3	± 9.3	± 22.9	± 29.8	± 24.8

MATN TABLE 32

	A Control (Before Endotoxin)	30 mins. after Endotoxin
Exp.	a. 744,000	17,000
		b. 767,000
Exp.	2	a. 742,000
	b. 766,000	14,000
Exp. 3	a. 782,000	116,000
	b. 753,000	134,000

MATN PABLE 33
ACTION OP NORMAL SERUM ON MICROCTRCULAT ION
Local injection of 0.05 ml . normal human serum into the Hamster Cheek Pouch.

Area.$\% \text { control Cross-section }$			3 mins.	$\frac{\mathrm{TIIN}}{6 \mathrm{mins}} \mathrm{m}$.		$\frac{\mathrm{IONOF} \mathrm{OF}}{30 \mathrm{mins}}$	60 mins .
Exp.	1	Arteries	61.3	96.5	101.3	79.9	72.2
		Veins	85.5	98.5	94.7	90.8	95.4
Exp.	2	Arteries	11.8	22.9	66.1	80.5	89.7
		Veins	76.1	85.2	84.3	91.3	88.7
Bxp.	3	Arteries	54.4	70.2	101.6	97.3	107.1
		Veins	101.1	109.9	110.9	101.9	100.2

IMAIN TABIE 34

CONPROI EXPERIMENTS (B)
ACTION OF IVORMAL PIASMA ON MICROCTRCULATION
LocaI injection of 0.05 ml . normal human plasma
into the Hamster Cheek Pouch.

$\begin{gathered} \text { \% Control Cross-section } \\ \text { Area } \end{gathered}$			3 mins.		$\frac{\text { Aqpar }}{15}$		60 mins.
Exp.	1	Arteries	100.9	99.7	102.9	105.3	
		Veins	104.7	103.0	90.4	86.6	
Bxp.	2	Arteries	97.2	96.0	104.0	99.2	102.9
		Veir	99.6	99.2	100.8	103.6	103.0
Exp.	3	Arteries	98.1	93.7	89.5	86.3	85.4
		Veins	97.9	96.1	100.8	102.7	103.8

MAIN TABLE 36
ACTION OF PIASMA FROM PATIENTS WITH BURINS
Local injection of 0.05 ml . plasma into Hamster Cheek Pouch.

$\begin{gathered} \text { \% Control Cross-section } \\ \text { Area. } \end{gathered}$			3 mins.	$6 \frac{\mathrm{TIMED} \text { I }}{\text { mins }}$	TES APTE	SCTION OF	60 mins
Patient 1		Arteries	19.3	25.8	29.7	21.7	32.1
		Veins	92.8	87.4	93.0	80.5	92.5
Patient 2		Arteries	22.2	32.2	24.8	28.5	33.2
		Veins	71.6	76.4	73.3	68.5	86.1
Patient 3		Arteries	51.1	43.4	41.5	50.8	66.7
		Veins	95.1	108.8	106.0	97.5	106.9
Patient 4		Arteries	95.4	96.2	97.0	96.3	92.0
		Veins	99.0	97.6	101.6	98.1	99.4

MAIN TABIE 37
MAJOR SITE OF DISEASE IN PATTENTS WITH BACTERABMIC SHOCK.

MAJOR SITE OF DISEASE	TOTAI	DEAD
AIMMENPARY TRACT (including traumatic and post-operative)	12	11
BILIARY TRACT	3	2
URINARY TRACT	2	1
FEMAIT REPRODUCTIVE TRACT	2	1
BURNS. (30-80\% body surface)	8	4
IMMUNOSUPPRESSIOI		
(Homotransplantation)	4	4
TOTAL	31	$23(74 \%)$

MAIN TABIE 38
POSITIVE BLOOD CUITURES

MATN TABLE 39
BACTERTOLOGICAL DATA FOR PATIENTS IN BACTERABMIC SHOCK

Patient	Respiratory Tract	Urine	Found	Peritoneum	Blood	Other Sites	POST MORTEM		
							$\begin{aligned} & \text { Heart } \\ & \text { Blood } \end{aligned}$	Iung	Other Sites
E.C. (F. 38 yrs) Abdominal injuries	-	$\begin{aligned} & \text { E.coli } \\ & \text { Yeasts } \end{aligned}$	$\frac{\frac{\text { B.coli }}{\text { Proteus }}}{\text { Enteron }}$	E. coli	E. coli	-		aut	
J.D. (M. 35 yrs) Abdominal injuries	$\begin{aligned} & \text { PS: } \\ & \text { S.aureus } \end{aligned}$	Ps.	Ps.	Ps.	Ps.	-	Ps.	Ps. Ae.	Peritoneum $\frac{\text { Ps. } A \text { e. } / \mathrm{K}}{\text { Fnterococc }}$
R.M. (M. 29 yrs) Abdominal injuries	Candida	-	E.coli	E.coli	I. coli	C.S.E. - E.coli	Ae./Kl.	$\mathrm{Ae} . / 1$	$\begin{aligned} & \text { Peritoneum } \\ & \text { E. coli } \\ & \text { Wound } \\ & \text { Ps., Ae. } / K \end{aligned}$
C.M. (M. 58 yrs) Carcinoma of stomach Peritonitis	Ae./KI.	-	$\frac{\mathrm{B.coli}}{\frac{\mathrm{PS} \cdot}{\mathrm{AE}_{2} / K I}}$	$\begin{aligned} & \frac{\mathrm{B} \cdot \operatorname{coli}}{\mathrm{PS} \cdot} \\ & \frac{\mathrm{Ae} \cdot / \mathrm{KI}}{} \end{aligned}$	Serratia sp.	-	$\frac{\text { S.aureus }}{\frac{\text { entero- }}{\text { cocous }}}$	-	-
B.G. (M. 57 yrs)	--	Ae./Kl.	-	-	-	-	-	Ae. $/ \mathrm{K}$	-

MATN TABLE 39 (CONP INUED)
BACTERIOLOGICAI DATA FOR PATIENTS IN BACTERABMIC SHOCK
POST MORTEM

MAIN TABLE 39 (CONT TNUED)
BACTERIOIOGICAL DATA FOR PATIENTS IN BACTERAEMIC SHOCK

Patient	Respiratory Tract	Urine	Wound	Peritoneum	Blood	Other Sites	POST MORTEM		
							$\begin{aligned} & \text { Heart } \\ & \text { Blood } \end{aligned}$	Iung	Other Sites
B.B. (M. 42 yrs) Haematemesis.	$\begin{aligned} & \text { Ae./KI, } \\ & \frac{\text { Bandida }}{\text { Eol }} \end{aligned}$	-	Ae./KI.	Ae. $/ \mathrm{KI}$.	Ae. $/ K$.	-	Ae. $/ K 1$	Ae./Kl.	-
E.K. (F. 63 yrs) Carcinoma of Rectum Post-op. obstruction	Ae. $/ \mathrm{KI}$.	Ae. $/ \mathrm{Kl}$.	Ae. $/ \mathrm{KI}$.	S.aureus	Ae. $/ \mathrm{Kl}$.	Gestrostomy Ae./Kl.	Ae. $/ K 1$	Ae./KI.	Peritoneum Ae./Kl.
C.T. (M. 50 yrs) Common Bile Duct Stenosis	-	-	E.coli	$\begin{aligned} & \text { E. coli } \\ & \text { Iroteus } \end{aligned}$	E.coli	$\text { Bile. } \frac{\text { B. coli }}{\frac{\text { Ps. }}{\text { Proteus }}}$		Recovere	
A.A. (M. 70 yrs) Cholecystectomy Liver Abscess	S.eureus	Candida	$\frac{\text { Ae. } / K 1}{\text { E.Coli }} .$	-	$\frac{\text { Bacter- }}{\text { oides }}$	$\begin{aligned} & \text { Call Bladder } \\ & \frac{\text { Ae. KI. }}{\text { a-haem. St. Soli }} \end{aligned}$	Ae./KI	-	Hepatic abscess and Peritoneum Ae. $/ \mathrm{Kl}$.
$\begin{aligned} & \text { G.s. (F. } 79 \text { yrs) } \\ & \text { Cholecystitis } \\ & \text { Pancreatitis } \end{aligned}$	-	Ae./Kl.	-	Ae. $/ K 1$.	Ae./Kl.	Gall Bladder Ae. $/ \mathrm{KI}$.	$\frac{A e_{0} / K I}{P S .}$	$\frac{\mathrm{Ae} \cdot / \mathrm{KI}}{\underline{\mathrm{Ps}} .}$	$\begin{aligned} & \text { Bile. Ae. } / \mathrm{K} \\ & \text { PS. } \end{aligned}$

MAIN TABIE 39 (OONTINUED)
BACTERTOLOGICAL DATA FOR PATIENTS IN BACTERAEMIC SHOCK

Patient	$\begin{gathered} \text { Respiratory } \\ \text { Tract } \end{gathered}$	Urine	Wound	Peritoneum	B1ood	Other Sites	POST MORTEM		
							Heart Blood	Lung	Other Sites
$\text { M.C. (F. } 66 \mathrm{yrs} \text {) }$ Burns.	$\frac{\frac{S_{2}}{} \text { aureus }}{\frac{\mathrm{Ae} \cdot / \mathrm{KI}}{\mathrm{PS}}}$	-	-	-	PS.	$\text { Burn. } \frac{\frac{\text { Ps. }}{\text { S. aureus }}}{\frac{\text { E. coli }}{A e_{0} / K I}}$	$\frac{P_{5}}{E_{i} \cdot \operatorname{coli}}$	$\frac{\frac{\text { Ae. } / K}{\text { Candi }}}{\frac{\text { a-hae }}{\text { strep }}}$	Brain. Ps
I.R. (F. 60 yrs) Burns.	Ae./Kl.	$\frac{\text { Candida }}{\text { Ae. } \sqrt{K]}}$	-	-	-	$\begin{aligned} & \text { Bum. S. aureus } \\ & \text { Ae./KI: PS. } \\ & \text { E.coli. } \end{aligned}$		overe	
$\text { S.W. (F. } 66 \mathrm{yrs} \text {) }$ Burns.	S. aureus	E.coli	-	-	-			covere	
$\text { F.J. (M. } 65 \text { yrs) }$ Burns.	$\frac{\text { S. aureus }}{\mathrm{Ae} \cdot / \mathrm{KI}}$	-	-	-	S.aureus	$\text { Burn. } \frac{\frac{S . \text { aureus }}{A e_{0} / K I}}{\frac{\mathrm{PS}_{-}}{}}$		overe	
$\text { R.W. (W. } 52 \text { yrs) }$ Burns.	-	-	-	-	$\frac{\mathrm{Ps}}{\mathrm{Ae} \cdot / \mathrm{KI}}$	$\text { Burn. } \begin{aligned} \frac{\text { Ps. }}{\text { AE. } / K I} \\ \text { E. coli }^{\prime} \end{aligned}$	$\begin{aligned} & \text { Ps. } \\ & \text { E.coli } \end{aligned}$		

MAIN TABLE 39 (CONT INUED)
BACTEFIOLOGICAL DATA FOR PATIENTS IN BACTERAEMIC SHOCK

Patient	Respiratory Tract	Urine	Wound	Peritoneum	Blood	Other Sites	POST MORTEM		
							$\begin{aligned} & \text { Heart } \\ & \text { Blood } \end{aligned}$	Lung	Other Sites
$\begin{aligned} & \text { C.A. (M. } 36 \mathrm{yrs} \text {) } \\ & \text { Burns } \end{aligned}$	$\begin{aligned} & \text { E. coli } \\ & \frac{A e \cdot / K 1}{A l c \cdot f a e c a l i s} \end{aligned}$	$\begin{aligned} & \text { S. aureus } \\ & \text { Ae./Kl. } \\ & \text { Proteus } \end{aligned}$		-	Alc.	$\begin{aligned} & \text { Burn. Ae./Kl. } \\ & \text { Alc. faecalis } \\ & \frac{\text { S. coli }}{\text { S. aureus }} \end{aligned}$		covered.	
$\begin{aligned} & \text { M.N. (F. } 54 \text { yrs) } \\ & \text { Burns } \end{aligned}$	Ae./KI.	-	-	-	Proteus	$\text { Burn. } \frac{\text { Proteus }}{\frac{\text { PS. } / K I . ~}{\text { Ae. }}} \frac{\text { Sureus }}{}$	$\begin{aligned} & \frac{\text { S.epia }}{\text { derm. }} \\ & \frac{\text { a-haem. }}{\text { strep. }} \end{aligned}$	$\begin{aligned} & \frac{\text { S. epi- }}{\text { derm. }} \\ & \frac{\text { a-haem. }}{\text { strep. }} \end{aligned}$	Burn. Proteus Kidney Proteus
$\begin{aligned} & \text { F.G. (M. } 78 \text { yrs) } \\ & \text { Burns } \end{aligned}$	Ae. $/ K 1$.	Ae. $/ \mathrm{Kl}$.	-	-	-	$\text { Burn. } \frac{\text { Ae. } / K l}{\text { S.aureus }}$	-	Ae. $/ \mathrm{KI}$.	
B.W. (F. 26 yrs) Septic abortion	$\frac{\text { S.aureus }}{\text { E. coli }}$	$\frac{\text { P. coli }}{\text { Candida }}$	$\frac{\text { E.coli }}{\text { Ae. } / \mathrm{KI}}$	$\frac{\frac{\mathrm{D} \cdot \mathrm{coli}}{\text { Ae./Kl }}}{\frac{\text { Cl.per }}{\text { Clons }}}$	Ae/KI.	$\begin{aligned} & \text { Uterus. } \frac{\mathrm{E} . \operatorname{coli}}{\mathrm{Ae} / \mathrm{KI}} \\ & \text { Cl.perfringens } \end{aligned}$		covered.	
G.I. (F. 35 yrs) Hys terec tomy Peritonitis	PS.	-	E.coli	E.coli	-	-	Ps.	PS.	$\begin{aligned} & \text { Peritoneur } \\ & \text { Ps. Enteri } \\ & \text { coccus. } \end{aligned}$

MAIN TABIE 39 (CONT INUED)
BACTERTOLOGICAL DATA FOR PATIENTS IN BACTERAEMIC SHOCK

| Patient | Respiratory |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Tract | |

MAIN TABIEE 39 (CONTINUWD)
BACTERIOIOGICAL DATA FOR PATIENTS IN BACTERAEMIC SHOCK

$\begin{gathered} \text { Respiratory } \\ \text { Tract } \\ \hline \end{gathered}$	Urine	Wound	Peritoneum	Blood	Other Sites		POST MORTEM		
							Heart Blood	Lung	Other Sites
$\begin{aligned} & \text { A.e. } / K l \\ & \text { Candida } \\ & \text { E. coli } \end{aligned}$	$\frac{\mathrm{E} . \mathrm{coli}}{\mathrm{Ae} . / \mathrm{Kl}}$	E. Coli	-	E.coli		-	-	$\frac{\text { E. coli }}{\mathrm{Ae} \cdot / \mathrm{Kl}}$	Pleura. E. coli Kidney. E. coli
S.aureus	S.aureus	S.aureus	S. aureus	-	$\begin{aligned} & T-T u b \\ & S . \quad a u \\ & \hline \end{aligned}$	reus	Ae./Kl.	-	$\begin{aligned} & \text { Liver. } \\ & \text { S. aureus } \\ & \text { Peritoneur } \\ & \text { Ae. } / \mathrm{KI} . \end{aligned}$
E. coli $=$ E	Escherichi	coli		Proteus $\quad=$ Proteus species					
Ae./Kl. $=$ A	derobacter/	Klebsiella	species	Cl. perfringens $=$ Clostridium perfringens					
S. aureus $=$ S	taphyloco coagula	us aureus positiv		Alc. faccalis $=$ Alca			faecal	= Staphylococcus epidermidis,	
Ps. $=P$	Seudomona	aeruginos					e negat		
Serratia $=\mathrm{S}$	Serratia sp	cies		a-haem. strep. = Alpha-haemolytic streptococcus					

$$
\begin{aligned}
& \text { MAIN TABLE } 40 . \\
& \begin{array}{rlllr}
1 & \text { C.T. (March 31) } & 1.02 & 0.16 & 6.4 \\
2 & \text { C.M. (Aug.8) } & 2.4 & 0.22 & 11.0 \\
3 & \text { I.R. (April 29) } & 1.223 & 0.182 & 6.7 \\
4 & \text { J.D. (Sept. 11) } & 2.25 & 0.23 & 9.8 \\
5 & \text { B.B. (Nov. 14) } & 6.33 & 0.477 & 13.2 \\
6 & \text { F.R. (Nov. 4) } & 7.45 & 0.57 & 13.0 \\
7 & \text { G.I. (1) (April 5) } & 9.8 & 0.56 & 17.5 \\
8 & \text { T.T. (July 20) } & 10.3 & 0.38 & 27.0 \\
9 & \text { G.S. (July 19) } & 13.1 & 0.63 & 21.0 \\
10 & \text { G.I. (2) (April 8) } & 17.1 & 0.56 & 30.6 \\
11 & \text { M.C. (1) (Harch 2-2 pm) } & 19.9 & 0.49 & 41 \\
12 & \text { M.C. (2) (March 2-10 pm) } & 25.1 & 0.66 & 38
\end{array} \\
& \text { * Excess Lactate (calculated from Huckabee's formula (1958). } \\
& \text { + Base Excess (calculated from Nomogram - Astrup). }
\end{aligned}
$$

[^0]APPENDIX 3.
SUPPORTING TABLES 1-106.

	Control		TINE IN HINUTES mins. 6 mins.				OF OBSIERVATIO 15 mins.		OF CHEEK POUCH			mins.
ARTERIES	D.	AREA										
1	38	1,134.1	38	1,134.1	40	1,256.6	40	1,256.6	38	1,134.1	36	1,017.9
2	34	907.9	34	907.9	36	1,017.9	34	907.9	36	1,017.9	34	907.9
3	36	1,017.9	36	1,017.9	36	1,017.9	34	907.9	34	907.9	32	804.2
4	16	201.1	14	153.9	16	201.1	18	254.5	18	254.5	18	254.5
TOTAL AREA		3,261.0		3,213.8		3,493.5		3,326.9		3,314.4		2,984.5
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		98.5		107.1		102.0		101.6		91.5
VEINS												
1	38	1,134.1	34	907.9	32	804.2	34	907.9	34	907.9	34	907.9
2	48	1,809.6	50	1,963.5	50	1,963.5	54	2,290.2	48	1,809.6	48	1,809.6
3	60	2,827.4	58	2,642.1	62	3,019.1	58	2,642.1	56	2,463.0	60	2,827.4
4	24	452.4	26	530.9	24	452.4	24	452.4	26	530.9	26	530.9
TOTAL AREA		6,223.5		6,044.4		6,239.2		6,292.6		5,711.4		6,075.8
$\begin{gathered} \text { \% Control } \\ \text { Area. } \end{gathered}$		100		97.1		100.3		101.1		91.8		97.6

A) CONTROL EXPERTMENT 2

Observation of the Hamster Cheek Pouch without injections.

	Control		3 mins. ${ }^{\text {P }}$		five In MINUTES 6 mins.		OF OBSERVATIOI 15 mins.		$\begin{aligned} & \text { OF CHEEK POUC } \\ & 30 \text { mins. } \end{aligned}$		60 mins.	
ARTERIES	D.	AREA	D.	AREA	D.	AREA	D.	AREA	D.	ARTA	D.	AREA
1	62	3,019.1	60	2,827.4	60	2,827.4	62	3,019.1	62	3,019.1	64	3,217.0
2	30	706.9	30	706.9	30	706.9	30	706.9	32	804.2	32	804.2
3	58	2,642.1	60	2,827.4	58	2,642.1	60	2,827.4	60	2,827.4	60	2,827.4
4	30	706.9	32	804.2	32	804.2	34	907.9	34	907.9	32	804.2
5	52	2,123.7	50	1,963.5	52	2,123.7	52	2,123.7	52	2,123.7	54	2,290.2
$\begin{gathered} \text { TOTAL AREA } \\ \% \text { Control } \\ \text { Area } \end{gathered}$		9,198.7		9,129.4		9,104.3		9,585.0		9,682.3		9,943.0
		100		99.2		97.9		104.2		105.2		108.1
VEINS												
1	30	706.9		615.8	30	706.9	30	706.9	30	706.9	32	804.2
2	40	1,256.6	40	1,256.6	42	1,385.4	38	1,134.1	40	1,256.6	40	1,256.6
3	36	1,017.9	36	1,017.9	32	804.2	34	907.9	34	907.9	36	1,017.9
4	40	1,256.6	42	1,385.4	42	1,385.4	42	1,385.4	40	1,256.6	40	1,256.6
5	44	1,520.5	44	1,520.5	44	1,520.5	42	1,385.4	42	1,385.4	46	1,661.9
$\begin{aligned} & \text { TOTAL AREA } \\ & \% \text { Control } \\ & \text { Area } \end{aligned}$		5,758.5		5,796.2		5,802.4		5,519.7		5,513.4		5,997.2
		100		100.7		100.8		95.9		95.8		104.2

	Control		TINE IN MINUTES OF OBSERVATION OF CHEEK POUCH									
ARTERIES	D.	AREA	D.	AR펴A	D.	ARTBA	D.	AREA	D.	AREA	D.	AREA
1	38	1,134.1	38	1,134.1	36	1,017.9	36	1,017.9	38	1,134.1	36	1,017.9
2	34	907.9	32	804.2	32	804.2	34	907.9	32	804.2	32	804.2
3	30	706.9	32	804.2	30	706.9	32	804.2	32	804.2	32	804.2
4	16	201.1	18	254.5	20	314.2	18	254.5	16	201.1	18	254.5
TOTAI AREA \% Control Area		2,950.0		2,997.0		2,843.5		2,984.5		2,943.6		2,880.8
		100		101.6		96.4		101.2		99.8		97.7
VEINS												
1	40	1,256.6	40	1,256.6	42	1,385.4	40	1,256.6	40	1,256.6	40	1,256.6
2	35	962.1	36	1,017.9	34	907.9	34	907.9	34	907.9	36	1,017.9
3	42	1,385.4	40	1,256.6	40	1,256,6	40	1,256.6	40	1,256.6	40	1,256.6
4	48	1,809.6	48	1,809.6	46	1,661.9	46	1,661.9	46	1,661.9	48	1,809.6
TOTAL AREA		5,413.7		5,340.7		5,211.8		5,083.0		5,083.0		5,340.7
$\%$ Control Area		100		98.7		96.3		93.9		93.9		98.7

SUPPORTING TABLE 4
B) CONTROL OBSERVATIONS ON THE MICROCIRCULATION
Local injection of 0.05 ml . Ringerts Solution
into the Hamster Cheek Pouch.
EXPERIMENT 1

1	34	907.9	32	804.2	30	706.9	32	804.2	30	706.9	30
2	48	$1,809.6$	44	$1,520.5$	44	$1,520.5$	46	$1,661.9$	50	$1,963.5$	50
3	60	$2,827.4$	56	$2,463.0$	60	$2,827.4$	60	$2,827.4$	58	$2,642.9$	60
4	26	530.9	26	530.9	28	615.8	26	530.9	28	615.8	28
4.8	615.8										
TOTAL AREA	$6,075.8$	$5,318.6$	$5,670.6$	$5,824.4$	$5,928.3$	$6,113.6$					
$\%$ Control											
Area											

SUPPORT IING TABLE 5
B) CONTROL OBSERVATIONS ON THE MICROCIRCUIATION
Local injection of 0.05 ml . Ringer's Solution _ into the Hamster Cheek Pouch.
EXPER IMETTY 2

	Control		3	$\begin{aligned} & \text { TINE IN } \\ & \text { mins. } \end{aligned}$		JTES AFTER mins.		CTION OF mins.		ER'S SOLUT mins.		mins.
ARTERTES	D.	ARTEA	D.	AREA	D.	ARTEA	D.	AREA	D.	AREA	D.	AREA
1	52	2,123.7	54	2,290.2	54	2,290.2	54	2,290.2	52	2,123.7	52	2,123.7
2	36	1,017.9	38	1,134.1	38	1,134.1	34	907.9	36	1,017.9	36	1,017.9
3	44	1,520.5	42	1,385.4		1,520.5	42	1,385.4	44	1,520.5	42	1,385.4
4	38	1,134.1	40	1,256.6	38	1,134.1	36	1,017.9	38	1,134.1	36	1,017.9
5	22	380.1	22.	380.1	20	314.2	18	254.5	20	314.2	20	314.2
TOTAL AREA \% Control		6,176.3		6,446.4		6,393.1		5,855.9		6,110.4		5,859.1
Area		100		104.3		103.5		94.8		98.9		94.9
VEINS												
1	64	3,217.0	62	3,019.1	62	3,019.1	60	2,827.4	62	3,019.1	58	2,642.1
2	52	2,123.7	56	2,463.0	54	2,290.2	56	2,463.0	54	2,290.2	54	2,290.2
3	76	4,536.5	72	4,071.5		4,071.5	74	4,300.8	76	4,536.5	76	4,536.5
4	82	5,281.0	84	5,541.8		5,541.8	86	5,808.8	84	5,541.8	82	5,281.0
5	82	5,281.0	80	5,026.5		5,026.5	78	4,778.4	82	5,281.0	80	5,026.5
6	76	4,536.5	76	4,536.5	74	4,300.8	74	4,300.8	76	4,536.5	76	4,536.5
TOTAL AREA	2	, ,975.7		24,658.4		24,249.9		24,479.2		25,205.1		24,312.8
$\begin{gathered} \text { Control } \\ \text { Area } \end{gathered}$		100		98.7		97.1		98.0		100.9		97.3

SUPPORT ING TABIE 6
 EXPERTMENT 3 B) CONTROL OBSERVATIONS ON THP MICROCIRCULATION ___ into the Hamster Cheek Pouch.

	Control		TIME 3 mins.		MINUTES AFTEER$6 \text { mins. }$		$\begin{aligned} & \text { INJECTION OF } \\ & 15 \text { mins. } \end{aligned}$		RINGER'S SOLUTION			
ARTERIES	D.	AREA	D.	ARTA	D.	AREA	D.	AREA	D.	AREA	D.	AREA
1	66	3,421.2	60	2,827.4	64	3,217.0	64	3,217.0	64	3,217.0		-
2	54	2,290.2	58	2,642.1	58	2,642.1	60	2,827.4	58	2,642.1		-
3	12	113.1	12	113.1	18	254.5	16	201.1	16	201.1		-
4	20	314.2	12	113.1	6	28.3	0	0	0	0		-
5	18	254.5	10	78.5	4	12.6	0	0	0	0		-
TORAL ARFA		6,393.2		5,774.2		6,154.5		6,245.5		6,060.2		-
Area		100		90.3		96.3		97.8		94.8		-
VEITS												
1	54	2,290.2	50	1,963.5	54	2,290.2	54	2,290.2	56	2,463.0		-
2	42	1,385.4	44	1,520.5	44	1,520.5	44	1,520.5	40	1,256,6		-
3	18	254.5	20	314.2	24	452.4	24	452.4	18	254.5		-
4	32	804.2	34	907.9	28	615.8	32	804.2	32	804.2		-
5	26	530.9	22	380.1	24	452.4	28	615.8	26	530.9		-
6	20	314.2	18	254.5	20	314.2	20	314.2	12	113.1		-
TOTAI ARFA		5,579.4		5,340.7		5,645.5		5,997.3		5,422.3		-
\% Control Area		100		95.7		101.1		107.5		97.2		-

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORTING TABLE 7
B) CONTROI OBSIRVATIONS ON THE MICROCIRCUIATION
Local injection of 0.05 ml Ringer's Solution
into the Hamster Cheek Douch.
EXPERINENT 4

	Control		TIME mins.		INUY 6	ES AFPER mins.		$\begin{aligned} & \text { TION OF } \\ & \text { mins. } \end{aligned}$		'S SOLUT mins.		mins.
ARTERTPS	D.	AREA										
1	62	3,019.1	60	2,827.4	60	2,827.4	62	3,019.1.	62	3,019.1	64	3,217.
2	30	706.9	30	706.9	30	706.9	30	706.9	32	804.2	32	804.
3	58	2,642.1	60	2,827.4	58	2,642.1	60	2,827.4	60	2,827.4	60	2,827.
4	30	706.9	32	804.2	32	804.2	34	907.9	34	907.9	32	804.
5	52	2,123.9	50	1,963.5	52	2,123.7	52	2,123.7	52	2,123.7	54	2,290.
TOTAL AREA \% Control		9,198.7		9,129.4		9,104.3		9,585.0		9,682,3		9,943.
Area		100		98.0		97.8		104.2		105.2		108.
VEINS												
1	30	706.9	28	615.8	30	706.9	30	706.9	30	706.9	32	804.
2	40	1,256.6	40	1,256.6	42	1,385.4	38	1,134.1	40	1,256.6	40	1,256.
3	36	1,017.9	36	1,017.9	32	.804.2	34	907.9	34	1907.9	36	1,017.
4	40	1,256.6	42	1,385.4	42	1,385.4	42	1,385.4	40	1,256.6	40	1,256.
5	44	1,520.5	44	1,520.5	44	1,520.5	42	1,385.4	42	1,385.4	46	1,661.
TOTAL AREA		5,758.5		5,796.2		5,802.4		5,519:7		5,513.4		5,997.
\% Control												
Area		100		$100 \cdot 7$		100.8		95.9		95.8		104.

SUPPORTING TABLE 8

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
VEINS
$-\mathrm{NM}+$ FNMナ Control

	Control		3	TINE IN mins.	$\begin{gathered} \text { MINU } \\ 6 \end{gathered}$	TES AFRHR mins.		CTION OE mins.	ING 30	R'S SOLUH mins.		mins.
ARTFRIES	D.	AREA	D.	AREA	D.	ARIPA	D.	AREA	D.	AREA	D.	AREA
1	42	1,385.4		1,256.6	40	1,256.6	38	1,134.1	40	1,256.6	40	1,256.6
2	38	1,134.1	38	1,134.1	38	1,134.1	38	1,134.1	38	1,134.1	36	1,017.9
3	30	706.9	30	706.9	28	615.8	26	530.9	28	615.8	30	706.9
4	18	254.5	20	314.2	20	314.2	18	254.5	20	314.2	18	254.5
TOTAI ARTPA		3,480.9		3,411.8		3,320.7		3.053 .6		3,320.7		3,235.9
\% Control Area		100		98.0		95.4		87.7		95.4		93.1
VPINS												
	40	1,256.6		1,256.6	40	1,256.6	42		40	1,256.6	42	
2	22	380.1	24	452.4	22	380.1	22	380.1	22	380.1	22	380.1
3	36	1,017.9		907.9	34	907.9	32	804.2	34	907.9	34	907.9
4	30	706.9	30	706.9	30	706.9	28	615.8	30	706.9	30	706.9
TOPAI ARFA		3,361.5		3,323.8		3,251.5		3,185.5		3,251.6		3,380.3
\% Control												
Area		100		98.9		96.7		94.8		96.7		100.6

SUPPORTING TABIE 9

	Control		TIME IN 3 mins.		TES	AFTEER II mins.		ON OF HI mins.		E IHTO C mins.		OUCH. mins.
ARTERIES	D.	AREA	D.	AREA	D.	AREA	B.	AREA	D.	AREA	D.	AREA
1	48	1,809.6	32	804.2	44	1,520.5	50	1,963.5	54	2,290.2	50	1,963.5
2	45	1,590.4	44	1,520.5	50	1,963.5	50	1,963.5	52	2,123.7	50	1,963.5
3	50	1,963.5	50	1,963.5	58	2,642.1	60	2,827.4	62	3,019.1	62	3,019.1
TOTAL ARTA		5,363.5		4,288.2		6,126.1		6,754.4		7,433.0		6,946.1
\% Control												
Area		100		80.0		114.2		125.9		138.6		129.5
VEINS												
1	30	706.9	28	615.8	24	452.4	28	615.8	30	706.9	28	615.8
2	36	1,017.9	32	804.2	32	804.2	30	706.9	28	615.8	30	706.9
3	58	2,642.1	52	2,123.7	48	1,809.6	50	1,963.5	50	1,963.5	48	1,809.6
4	38	1,134.1	40	1,256.6	36	1,017.9	36	1,017.9	32	804.2	36	1,017.9
TOTAT ARTA		5,501.0		4,800.3		4,084.1		4,304.1		4,090.4		4,150.2
\% Control												
Area		100		87.3		74.2		78.2		74.4		75.4

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.

	Control		TIME IN 3 mins.		ITES	AFYER II mins.	$\begin{gathered} \text { TECT }] \\ 15 \end{gathered}$	ON OF HIS mins.	$\begin{gathered} \text { AMII } \\ 30 \end{gathered}$	E INPO mins.		$\begin{aligned} & \mathrm{OUCH} \\ & \text { mins. } \end{aligned}$
ARTERIES	D.	ARTA	D.	AREA								
1	54	2,290.2	50	1,963.5	36	1,017.9	56	2,463.0	60	2,827.4	60	2,827.4
2	28	615.8	24	452.4	20	314.2	30	706.9	34	907.9	32	804.2
3	52	2,123.7	52	2,123.7	38	1,134.1	$\therefore 60$	2,827.4	62	3,019.1	66	3,421.2
TOTAL ARTEA		5,029.7		4,539.6		2,466.2		5,997.3		6,754.4		7,052.8
\% Control												
Area		100		90.3		49.0		119.2		134.3		1.140 .0
VEINS												
1	48	1,809.6	50	1,963.5	42	1,385.4	48	1,809.6	46	1,661.9	48	1,809.6
2	26	530.9	20	314.2	20	314.2	22	380.1	22	380.1	24	452.4
3	20	314.2	18	254.5	20	314.2	16	201.1	16	201.1	18	254.5
4	38	1,134.1	32	804.2	32	804.2	30	706.9	28	615.8	26	530.9
5	40	1,256.6	36	1,017.9	34	907.9	30	706.9	30	706.9	32	804.2
TOTAI AREA		5,045.4		4,354.3		3,725.9		3,804.6		3,565.8		3,851.6
\% Control												
Area		100		86.3		73.8		75.4		70.7		76.3

SUPPORTTING TABLE 11
A) ACTION OF HISTAMINE ON THE MICROC IRCULATION. EXPERTMENT 3.

	Control		TINE IN MINUTES APTER				INJECTION OF15 mins.		amine info 30 mins.			PUCH.
ARTIRIES	D.	AREA										
1	36	1,017.9	32	804.2	40	1,256.6	42	1,385.4	42	1,385.4	38	1,134.
2	14	153.9	20	314.2	22	380.1	24	452.4	20	314.2	18	254.5
3	40	1,256.5	34	907.9	44	1,520.5	44	1,520.5	44	1,520.5	14	1,256.6
TOTAL AREA		2,428.4		2,026.3		3,157.2		3,358.3		3,220.1		2,645.2
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		83.4		130.0		138.3		132.6		108.
VEINS												
	34	907.9	32	804.2	30	706.9	32	804.2	30	706.9	32	804.
2	38	1,134.1	30	706.9	30	706.9	32	804.2	30	706.9	33	855.
3	22	. 380.1	20	314.2	20	314.2	22	380.1	20	314.2	20	314.2
4	22	380.1	18	254.5	18	254.5	20	314.2	18	254.5	24	452.4
total area		2,802.2		2,079.8		1,982.5		2,302.7		1,982.5		2,426.
$\begin{aligned} & \% \text { Gontrol } \\ & \text { Area } \end{aligned}$		100		74.2		70.7		82.1		70.7		86.

SUPPORT ING PABEE 12
A) ACTION OF HISTAMINE ON THE MICROCIRCULATION. EXPERIMENT 4.
Local action of 10 micrograms histamine base in 0.05 ml .
Ringer's solution injected into the Hamster Cheek Pouch.

	Control		TINE IN MINUPES AFTIR INJECTION OF HISTAMINE INTO CHEEK POUCH. 3 mins. 6 mins, $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	AR楀	D.	AREA	D.	AREA	D.	AREA	D.	AREA
1	58	2,642.1	50	1,963.5	60	2,827.4	62	3,019.1	62	3,019.1	62	3,019.1
2	50	1,963.5	46	1,661.9	58	2,642.1	60	2,827.4	58	2,642.1	60	2,827.4
3	32	804.2	30	706.9	38	1,134.1	38	1,134.1	38	1,134.1	36	1,017.9
TOTAL AREA		5,409.8		4,332.3		6,603.6		6,980.6		6,795.3		6,864.4
\% Control Area		100		80.1		122.1		129.0		125.6		126.9
VEINS												
1	84	5,541.8	82	5,281.0	78	4,778.1	76	4,536.5	78	4,778.4	82	5,281.0
2	58	2,642.1	58	2,642.1	50	1,963.5	50	1,963.5	52	2,123.7	54	2,290.2
3	46	1,661.9	46	1,661.9	42	1,385.4	44	1,520.5	46	1,661.9	46	1,661.9
4	48	1,809.6	46	1,661.9	38	1,134.1	38	1,134.1	42	1,385.4	44	1,520.5
TOTAL AREA		11,655.4		11,246.9		9,261.1		9,154.6		9,949.4		10,753.6
\% Control Area		100		96.5		79.5		78.5		85.4		92.3

SUPPORTING TABLE 13
A) ACRION OF HISTAMINE ON THE MICROCIRCULATION. EXPERIMINT 5.
Local action of 10 micrograms histamine base in 0.05 ml.
Ringer's solution injected into the Hamster Cheek Pouch.
SUPPORTING TABLE 13
A) ACRION OF HISTAMINE ON THE MICROCIRCULATION. EXPERIMENT 5.
Local action of 10 micrograms histamine base in 0.05 ml.
Ringer's solution injected into the Hamster Cheek Pouch.
SUPPORTING TABLE 13
A) ACRION OF HISTAMINE ON THE MICROCIRCULATION. EXPERIMENT 5.
Local action of 10 micrograms histamine base in 0.05 ml.
Ringer's solution injected into the Hamster Cheek Pouch.

	Control		TIME IN 3 mins.		UTES 6	$\begin{aligned} & \text { AFTER IH } \\ & \text { mins. } \end{aligned}$	$\begin{gathered} \text { ECT I } \\ 15 \end{gathered}$	ON OF HIS mins.	$\begin{gathered} \text { AMIN } \\ 30 \end{gathered}$	E INSO CH mins.	$\begin{gathered} \text { WK P } \\ 60 \end{gathered}$	OUCH. mins.
ARTERTES	D.	AREA										
1	48	1,809.6	44	1,520.5	52	2,123.7	52	2,123.7	50	1,963.5	50	1,963.5
2	50	1,963.5	44	1,520.5	56	2,463.0	52	2,123.7	52	2,123.7	50	1,963.5
3	24	452.4	20	314.2	28	615.8	32	804.2	30	706.9	30	706.9
4	12	113.1	12	113.1	14	153.9	16	201.1	20	314.2	18	254.5
TOTAI AR鳋A		4,338.6		3,468.3		5,356.4		5,252.7		5,108.3		4,888.4
\% Control												
Area		100		79.9		123.5		121.1		117.7		112.7
VEINS												
	62	3,019.1	60	2,827.4	56	2,463.0		2,463.0	58		60	
2	34	907.9	30	706.9	28	615.8	28	615.8	30	705.9	30	706.9
3	30	706.9	28	615.8	30	706.9	28	615.8	28	615.8	28	615.8
4	28	615.8	28	615.8	26	530.9	22	380.1	24	452.4	24	452.4
TOTAL AREA		5,249.7		4,765.9		4,316.6		4,074.7		4,417.2		4,602.5
\% Control												
Area		100		90.8		82.2		77.6		84.1		87.7

Area $=$ Area in microns ${ }^{2}$.
$D=$ Diameter in microns.
SUPPORTTNG TABLE 14

A) ACTION OP HISTAMINE ON THE MICROCIRCULATION. EXPERIMENT 6.
 Local action of 10 micrograms histamine base in 0.05 ml . Ringer's solution injected into the Hamster Cheek Pouch.

	Control		TINE IN MINUTES AFYER INJECTION OF HISTAMINE INTO CHEEK POUCH.3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA										
1	58	2,642.1	70	3,848.5	72	4,071.5	68	3,631.7	60	2,827.4	58	2,642.1
2	50	1,963.5	58	2,642.1	60	2,827.4	58	2,642.1	52	2,123.7	52	2,123.7
3	32	804.2	40	1,256.6	42	1,385.4	38	1,134.1	36	1,017.9	34	907.9
TOTAL AREA \% Control Area		5,409.8		7,747.2		8,284.3		7,407.9		5,969.0		5,673.7
		100		143.2		153.1		136.9		110.3		104.9
VeINS												
1	65	3,318.3	60	2,827.4	58	2,642.1	56	2,463.0	60	2,827.4	58	2,642.1
2	22	380.1	26	530.9	26	530.9	26	530.9	20	314.2	20	314.2
3	30	706.9	28	615.8	26	530.9	24	452.4	28	615.8	27	572.6
4	28	615.8	28	615.8	28	615.8	26	530.9	28	615.8	28	615.8
TOTAI AREA		5,021.1		4,589.9		4,319.7		3,977.2		4,373.2		4,144.7
\% Control Area												
		100		91.4		86.0		79.2		87.1		82.5

Area $=$ Area in microns ${ }^{2}$.
$D=$ Diameter in microns.

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
TINE IN MTNUTES AFTER INJECTION OF HISTAMINE INTO CHEEK POUCH.
*suṬir 09 •suṬu OE *suṬm GL

	Sontrol		TIME IN 3 mins.		6	AFTER II mins.	15	ON OF HI mins.	$\begin{gathered} \text { AMIN } \\ 30 \end{gathered}$	E INTO C mins.		OUCH. mins.
ARTERTES	D.	AREA										
1	40	1,256.6	38	1,134.1	42	1,385.4	44	1,522.5	48	1,809.6	50	1,963.5
2	38	1,134.1	34	907.9	44	1,520.5	42	1,385.4	44	1,520.5	46	1,661.9
3	22	380.1	22	380.1	24	452.4	24	452.4	24	452.4	24	452.4
TOTAL AREA		2,770.8		2,422.1		3,358.3		3,358:3		3,782.5		4,077.8
\% Control												
Area		100		87.4		121.2		121.2		136.5		147.2
VEINS												
1	34	907.9	30	706.9	30	706.9	28	615.8	30	706.9	32	804.2
2	30	706.9	30	706.9	26	530.9	28	615.8	30	706.9	30	706.9
3	28	615.8	28	615.8	26	530.9	26	530.9	24	452.4	24	452.4
4	16	201.1	14	153.9	14	153.9	18	254.5	16	201.1	16	201.1
TOTAT AR雨A		$2,431.7$		2,183.5		1,922.6		2,017.0		2,067.3		2,164.6
\% Control												
Area		100		89.8		79.1		82.9		85.0		89.0

SUPPORT ING TABIT 16
B) ACTION OF HISTAMINE ON THE MICROCIRCULATION. EXPMRTMBNT 2.
Local action of 5 micrograms histamine base in 0.05 ml.
Ringer's solution injected into the Hamster Cheek Pouch.

	Control		TIME TiN 3 mins.			AFIER I mins.		ON OR HIS mins.		E INTO C mins.		OUCH. mins.
ARTERI边	D.	AREA	D.	AREA	D.	ARBA	D.	ARPA	\$.	AREA	D.	AREA
1	52	2,123.7	44	1,520.5	52	2,123.7	54	2,290.2	54	2,290.2	56	2,463.0
2	58	2,642.1	52	2,123.7	62	3,019.1	66	3,421.2	66	3,421.2	66	3,421.2
3	60	2,827.4	56	2,463.0	62	3,019.1	64	3,217.0	66	3,421.2	68	3,631.7
TOTAL ARTA		7,593.2		6,107.2		8,161.9		8,928.4		9,132.6		9,515.9
\% Control												
Area		100		80.4		107.5		117.6		120.3		125.3
VEITS												
1	80	5,026.5	76	4,536.5	68	3,631.7	66	3,421.2	68	3,631.7	64	3,217.0
2	48	1,809.6	38	1,134.1	38	1,134.1	34	907.9	42	1,385.4	46	1,661.9
3	44	1,520.5	42	1,385.4	42	1,134.1	38	1,134.1	38	1,134.1	40	1,256.6
4	26	530.9	20	314.2	24	452.4	22	380.1	24	452.4	24	452.4
5	22	380.1	20	314.2	20	314.2	22	380.1	22	380.1	20	314.2
TOTAL AREA		9,267.6		7,684.4		6,917.8		6,223.4		6,983.7		6,902.1
\% Control												
Area		100		82.9		74.7		67.1		75.3		74.6

SUPPORTING TABIE 17

B) ACTION OF EISTAMINE ON THE MICROCIRCULATION. EXPERTMENT 3.

	Control		TINE IN MINUYES AFTER INJECTION OF HISTAMINE INTO CHEEK POUCH. 3 mins. 6 mins. 15 mins. $\quad 30$ mins. 60 mins.									
ARTERTES	D.	AREA	D.	ARPA	D.	AREA	D.	AREA	D.	AREA	D.	AREA
1	48	1,809.6	40	1,256.6	50	1,963.5	54	2,290.2	56	2,463.0	52	2,123.7
2	40	1,256.6	38	1,134.1	46	1,661.9	46	1,661.9	50	1,963.5	50	1,963.5
3	32	804.2	30	706.9	36	1,017.9	38	1,134.1	40	1,256.6	40	1,256.6
$\begin{aligned} & \text { TOTAL ARPA } \\ & \% \text { Control } \\ & \text { Area } \end{aligned}$		3,870.4		3,097.6		4,643.3		5,086.2		5,683.1		5,343.8
		100		80.0		120.0		131.4		146.8		138.1
VEINS												
1	26	530.9	26	530.9	22	380.1	22	380.1	14	153.9	20	314.2
2	54	2,290.2	52	2,123.7	50	1,963.5	50	1,963.5	48	1,809.6	50	1,963.5
3	38	1,134.1	32	804.2	30	706.9	32	804.2	30	706.9	36	1,017.9
4	60	2,827.4	54	2,290.2	50	1,963.5	48	1,809.6	48	1,809.6	48	1,309.6
TOTAL AREA		6,782. 6		5,749.0		5,014.0		4,957.4		4,480.0		5,105.2
\% Control Area												
		100		84.8		73.9		73.1		67.2		76.4

SUPPORT ING TABLE 18
B) ACTION OF HISTAMINE ON THE MICROC IRCUIATTION. EXPERTMENT 4.

SUPPORTING TABIE 19
B) ACTION OF HISTAMINE ON THE MICROCIRCUIATION. FYPERTMINTY 5.
Local als solution injected into the Hamster Cheek Pouch. \square

	Control		TIME IN 3 mins.		6 mins.			ON OF H mins.		E INTO CH mins.		OUCH. mins.
ARTMRIES	D.	AREA	D.	AREA	D.	AREA	D.	AREA	D.	ARTEA	D.	AREA
1	20	314.2	18	254.5	18	254.5	24	452.4	24	452.4	26	530.9
2	22	380.1	20	314.2	22	380.1	24	452.4	26	530.9	26	530.9
3	10	78.5	8	50.3	8	50.3	8	50.3	8	50.3	10	78.5
TORAI AREA		772.8		619.0		684.9		955.1		1,033.6		1,140.3
\% Control												
Area		100		80.1		88.6		123.6		133.7		$147 \cdot 7$
VEITS												
1	34	907.9	26	530.9	26	530.9	32	804.2	34	907.9	36	1,017.9
2	16	201.1	18	254.5	14	153.9	16	201.1	16	201.1	14	153.9
3	18	254.5	18	254.5	16	201.1	18	$254 \cdot 5$	16	201.1	16	201.1
4	18	254.5	10	78.5	16	201. 1	16	201.1	16	201.1	16	201.1
TOTAT ARPA		1,613.0		1,118.4		1,087.0		1,460.9		1,511.2		1,574.0
\% Control												
Area		100		69.1		67.2		90.3		93.4		97.3

SUPPORTING TABIE 20
B) ACTION OF HISTAMINE ON THE MICROCIRCUIATION. WXPBRIMENP 6.
Hocal action of 5 micrograms histamine base in 0.05 ml.
Ringer's solution injected into the Hamster Cheek Pouch.

	Control		TINE IN MINUTE 3 mins.		```AFTER INJECTION OE HISTAMINE INTO CHEEK POUCH. mins. 15 mins. 30 mins.```					
ARTERTES	D.	AREA								
1	62	3,019.1	52	2,123.7	52	2,123.7	76	4,536.5	70	3,848.5
2	30	706.9	30	706.9	52	2,123.7	60	2,827.4	62	3,019.1
3	50	1,963.5	10	78.5	20	314.2	34	907.9	42	1,385.4
TOTAJ AREA		5,689.5		2,909.1		4,561.6		8,271.8		8,253.0
\% Control										
Area		100		51.1		80.2		145.4		145.0

VEITSS

1	84	$5,541.8$	82	$5,281.0$	76	$4,536.5$	92	$6,647.6$	96	$7,238.2$
2	126	$12,469.0$	118	$10,935.9$	116	$10,568.3$	116	$10,568.3$	118	$10,935.9$
3	108	$9,160.9$	82	$5,281.0$	80	$5,026.5$	82	$5,281.0$	82	$5,281.0$
4	34	907.9	32	804.2	30	706.9	26	530.9	30	706.9
TOMAT AREA \% Control Area	$28,079.6$	$22,302.1$	$20,838.2$	$23,027.8$	$24,162.0$					

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.

SUPPORT ING TABIE 21.

$$
\begin{gathered}
\text { ACIION OF SEROTONIN ON THE MICROCIRCUIATION. EXPERTMENT } 1 . \\
\text { Local injection of } 5 \text { micrograms, serotonin in } 0.05 \mathrm{ml} \text {. Ringer's } \\
\text { solution into the hamster cheek pouch. }
\end{gathered}
$$

	Control		TIME IN 3 mins.		ES 6	AFTER INJ mins.	$\begin{array}{r} \mathrm{ECT} \\ 15 \end{array}$	ION OF SER mins.	ROTON 30	IN INTO ins.	CHEEK 60 m	POUCH. mins.
ARTERTES	D.	AREA	D.	ARTH								
1	30	706.9	18	254.5	20	314.2	22	380.1	22	380.1	20	314.2
2	38	1,134.1	10	78.5	14	153.9	14	153.9	14	153.9	14	153.9
3	54	2,290.2	12	113.1	12	113.1	12	113.1	18	254.5	14	153.9
TOTAL AREA		4,131.2		446.1		581.2		647.1		788.5		622.0
\% Control Area		100		10.8		14.1		15.7		19.1		15.1
VETNS												
1	54	2,290.2	52	2,123.7	48	1,809.6	50	1,963.5	52	2,123.7	58	2,642.1
2	48	1,809.6	40	1,256.6	44	1,520.5	44	1,520.5	48	1,809.6	42	1,385.4
3	38	1,134.1	40	1,256.6	40	1,256.6	38	1,134.1	38	1,134.1	40	1,256.6
4	22	380.1	20	314.2	22	380.1	20	314.2	20	314.2	20	314.2
TOTAL AREA		5,614.0		4,951.1		4,966.8		4,932.3		5,381.6		5,598.3
\% Control Area		100		88.2		88.2		87.9		95.9		99.7

[^1]SUPPORTING TABLE 22.
ACTION OF SEROTONIN ON THE MICROCIRCULATION. EXPERIMENT 2.
Local injection of 5 micrograms, serotonin in 0.05 ml . Ringer's
solution into the hamster cheek pouch.

	Control		TIUE IN MINUTES 3 mins. 6			$\begin{aligned} & \text { AFTER INJ } \\ & \text { mins. } \end{aligned}$	CTION OF SE 15 mins.		30 mins.		CHEEK POUCH. 60 mins.	
ARTERIES	D.	AREA										
1	58	2,642.1	20	314.2	28	615.8	36	1,017.9	34	907.9	40	1,256.6
2	38	1,134.1	18	254.5	24	452.4	18	254.5	16	201.1	18	254.5
3	50	1,963.5	24	452.4	32	804.2	28	615.8	26	530.9	30	706.9
TOTAI AREA		5,739.7		1,021.1		1,872.4		1,888.2		1,639.9		2,218.0
\% Control Area		100		17.8		32.6		32.9		28.6		38.6
VEITYS												
1	46	1,661.9	46	1,661.9	48	1,809.6	42	1,385.4	38	1,134.1	40	1,256.6
2	38	1,134.1	40	1,256.6	42	1,385.4	46	1,661.9	44	1,520.5	42	1,385.4
3	48	1,809.6	46	1,661.9	44	1,520.5	40	1,256.6	42	1,385.4	42	1,385.4
4	32	804.2	30	706.9	30	706.9	28	615.8	28	615.8	20	314.2
TOTAL AREA		5,409.8		5,287.3		5,422.4		4,919.7		4,655.8		4,341.6
\% Control Area		100		97.7		100.2		90.9		86.1		80.3

[^2]SUPPORT ING TABIE 23. ACTION OF SEROTONIN ON THE MICROCIRCUTATION. EXPERIMENT 3. Local injection of 5 micrograms, serotonin in 0.05 ml . Ringer's solution into the hamster cheek pouch.

	Control		TIME IN MINUTES AFTER INJECTION OF SEROTONIN INTO CHEEK POUCH. 3 mins. 6 mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	ARTA								
1	68	3,631.7	66	3,421.2	42	1,385.4	58	2,642.1	52	2,123.7	60	2,827.4
2	96	7,238.2	68	3,631.7	50	1,963.5	64	3,217.0	56	2,463.0	52	2,123.7
3	62	3,019.1	60	2,827.4	36	1,017.9	58	2,642.1	48	1,809.6	40	1,256.6
4	20	314.2	12	113.1	8	50.3	10	78.5	8	50.3	8	50.3
TOTAL AREA		14,203.2		9,993.4		4,417.1		8,579.7		6,446.6		6,258.0
\% Control Area		100		70.4		31.1		60.4		45.4		44.1
VEINS												
1	90	6,361.7	84	5,541.8	84	5,541.8	88	6,082.1	90	6,361.7	78	4,778.4
2	42	1,385.4	38	1,134.1	34	907.9	40	1,256.6	38	1,134.1	32	804.2
3	68	3,631.7	64	3,217.0	68	3,631.7	70	3,848.5	70	3,848.5	62	3,019.1
4	88	6,082.1	94	6,939.8	96	7,238.2	90	6,361.7	88	6,082.1	82	5,281.0
TOTAL AREA		17,460.9		16,832.7		17,319.6		17,548.9		17,426.4		13,882.7
\% Control Area		100		96.4		99.2		100.5		99.8		79.5

$D=$ Diameter in microns
Area $=\quad$ Area in microns ${ }^{2}$.
-
Hocal injection of 5 micrograms serotonin in 0.05 ml . Ringeris _ solution into the Hamster Cheek Pouch.

	Control		TIME IN MINUTES AEPER INJECTION OF SEROTONIN INTO CHEEK POUCH. 3 mins. 6 mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	AREA	D.	ARBA	D.	AREA	D.	AREA	D.	AREA
1	58	2,642.1	12	113.1	20	314.2	32	804.2	30	706.9	28	615.8
2	54	2,290.2	12	113.1	12	113.1	18	254.5	20	314.2	22	380.1
3	22	380.1	0	0	5	19.6	14	153.9	14	153.9	12	113.1
4	40	1,256.6	10	78.5	12	113.1	18	254.5	18	254.5	20	314.2
TOTAL ARTA		6,569.0		304.7		560.0		1,467.1		1,429.5		1,423.2
$\%$ Control Area		100		4.6		8.5		22.3		21.8		21.7
VEIVS												
1	30	706.9	28	615.8	30	706.9	28	615.8	30	706.9	28	615.8
2	58	2,642.1	58	2,642.1	54	2,290.2	50	1,963.5	52	2,123.7	50	1,963.5
3	74	4,300.8	72	4,071.5	70	3,848.5	72	4,071.5	72	4,071.5	68	3,631.7
4	48	1,809.6	48	1,809.6	46	1,661.9	44	1,520.5	46	1,661.9	48	1,809.6
5	44	1,520.5	42	1,385.4	42	1,385.4	42	1,385.4	40	1,256.6	42	1,385.4
TOTAL ARFA		10,979.9		10,524.4		9,892.9		9,556.7		9,820.6		9,405.0
\% Control		100		95.9		90.1		87.0		89.4		85.7

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
ACTION OF SEROTONIN ON THE MICROCIRCUIATION. EXPFRTMENT 5.
Local injection of 5 micrograms serotonin in 0.05 ml . Ringer's
solution into the Hamster Cheek Pouch.

	Control		TIME IM MINUTES AFTER INJECTION OF SEROTONIN INTO CHBEK POUCH.3 mins. $\quad 6$ mins, $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA										
1	40	1,256.6	28	615.8	12	113.1	30	706.9	26	530.9	28	$615 . \varepsilon$
2	26	530.9	20	314.2	16	201.1	20	314.2	16	201.1	16	201.1
3	22	380.1	12	113.1	12	113.1	22	380.1	18	254.5	18	254.5
TOTAL AREA		2,167.6		1,043.1		427.3		1,401.2		986.5		1,071.4
\% Control												
Area		100		48.1		19.7		64.6		45.5		49.4
veins												
1	38	1,134.1	36	1,017.9	38	1,134.1	40	1,256.6	38	1,134.1	36	1,017.9
2	40	1,256.6	40	1,256.6	40	1,256.6	38	1,134.1	40	1,256.6	40	1,256.6
3	26	530.9	26	530.9	24	452.4	22	380.1	22	380.1	20	314.2
4	32	804.2	34	907.9	34	907.9	32	804.2	34	907.7	34	907.9
TOTAL AREA		3,725.8		3,713.3		3,751.0		3,575.0		3,678.7		3,496.6
\% Control												
Area		100		99.7		100.7		96:0		98.7		93.8

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORTING TABI出 26

	Control		TIME IN 3 mins.		ES AFTER6 mins.		CTION OP15 mins.		ONIN INTO30 mins.		$\begin{array}{r} E K] \\ 60 \end{array}$	OUCH. mins.
ARTERIES	D.	AREA										
1	42	1,385.4	20	314.2	12	113.1	28	615.8	24	452.4	38	1,134.1
2	48	1,809.6	18	254.5	14	153.9	20	314.2	22	380.1	40	1,256.6
3	20	314.2	10	78.5	8	50.3	14	153.9	12	113.1	16	201.1
4	12	113.1	8	50.3	4	12.6	10	78.5	12	113.1	10	78.5
TOTAT AREA		3,622,3		697.5		329.9		1,162.4		1,058.7		$2,670.3$
$\%$ Gontrol												
Area		100		19.3		9.1		32.1		29.2		73.7
VEINS												
1	54	2,290.2	52	2,123.7	50	1,963.5	54	2,290:2	50	1,963.5	50	1,963.5
2	50	1,963.5	46	1,661.9	48	1,809.6	50	1,963.5	50	1,963.5	48	1,809.6
3	55	2,375.8	50	1,963.5	50	1,963.5	52	2,123.7	48	1,809.6	50	1,963.5
4	48	1,809.6	44	1,520.5	42	1,385.4	46	1,661.9	46	1,661.9	48	1,809.6
TORAL AREA		8,439.1		7,269.6		7,122.0		8,039.3		7,398.5		7,546.2
\% Control												
Area		100		86.1		84.4		95.3		87.7		89.4

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.

	Control		TINE IN MINUUT		$\begin{aligned} & \text { ES APTER II } \\ & 6 \text { mins. } \end{aligned}$		15 mins.		30 mins .		60 mins.	
ARTERIES	D.	AREA	D.	AREA	D.	ARIA	D.	AR3	D.	AREA	D.	AREA
1	60	2,827.4	64	3,217.0	64	3,217.0	60	2,827.0	62	3,019.1	60	2,827.0
2	48	1,809.6	52	2,123.7	56	2,463.0	50	1,963.5	48	1,809.6	50	1,963.5
3	36 24	1,017.9	42	1,385.4.	44	$1,520.5$ 615,8	40	$1,256.6$ 530.9	20	$1,256.6$ 615.8	42 24	1,385.4
4	24	452.4	26	530.9	28	615,8	26	530.9	28	615.8	24	452.4

SUPPORT ING TABIT 28

	Control		TIME 3	IN MINUT mins.	ATTER II 6 mins.		ION 15	OF ACETY mins.		NE INTO mins.		$\begin{aligned} & \mathrm{OUCH} \\ & \text { nins. } \end{aligned}$
ARTERTES	D.	AREA	D.	ARTEA	D.	AREA	D.	ARFA	D.	AREA	D.	AREA
1	28	615.8	30	706.9	30	706.9	32	804.2	32	804.2	30	706.9
2	26	530.9	32	804.2	32	804.2	34	907.9	36	1,017.9	32	804.2
3	28	615.8	30	706.9	34	907.9	32	804.2	32	804.2	30	706.9
4	18	254.5	20	314.2	24	452.4	26	530.9	28	615.8	22	380.
5	38	1,134.1	36	1,017.9	38	1,134.1	38	1,134.1	40	1,256.6	36	1,017.1
TOTAL ARTA		3,151.1		3,550.1		4,005.5		4,181.3		4,498.7		3,616.0
\% Control Area		100		112.7		127.1		132.7		142.8		114.8
VEINS												
1	28	615.8	30	706.9	32	804.2	30	706.9	30	706.9	28	615.8
2	20	314.2	22	380.1	24	452.4	28	615.8	28	615.8	24	452.4
3	18	254.5	24	452.4	26	530.9	22	380.1	24	452.4	24	452.4
4	14	153.9	22	380.1	27	572.6	24	452.4	26	530.9	22	380.1
5	26	530.9	28	615.8	28	615.8	28	615.8	28	615.8	28	615.8
TOTAT AREA		1,869.3		2,535.3		2,975.9		2,771:0		2,921.8		2,516.5
\% Control												
Area		100		135.6		159.2		148.2		156.3		134.6

	Control		TIME 3	IN MTNUTI mins.	ATTER II 6 mins.		ION	OP ACETY mins.		NE INTO mins.		POUCH mins.
ARTERTES	D.	AREA	D.	ARTEA	D.	AREA	D.	ARFA	D.	AREA	D.	AREA
1	28	615.8	30	706.9	30	706.9	32	804.2	32	804.2	30	706.9
2	26	530.9	32	804.2	32	804.2	34	907.9	36	1,017.9	32	804.2
3	28	615.8	30	706.9	34	907.9	32	804.2	32	804.2	30	706.9
4	18	254.5	20	314.2	24	452.4	26	530.9	28	615.8	22	380.1
5	38	1,134.1	36	1,017.9	38	1,134.1	38	1,134.1	40	1,256.6	36	1,017.1
TOTAL ARTA		3,151.1		3,550.1		4,005.5		4,181.3		4,498.7		3,616.0
\% Control Area		100		112.7		127.1		132.7		142.8		114.8
VEINS												
1	28	615.8	30	706.9	32	804.2	30	706.9	30	706.9	28	615.8
2	20	314.2	22	380.1	24	452.4	28	615.8	28	615.8	24	452.4
3	18	254.5	24	452.4	26	530.9	22	$380 \% 1$	24	452.4	24	452.4
4	14	153.9	22	380.1	27	572.6	24	452.4	26	530.9	22	380.1
5	26	530.9	28	615.8	28	615.8	28	615.8	28	615.8	28	615.8
TOTAL AREA		1,869.3		2,535.3		2,975.9		2,771.0		2,921.8		2,516.5
\% Control												
Area		100		135.6		159.2		148.2		156.3		134.6

SUPPORTING TABLE 29
ACTION OP ACETYLCHOLINE ON THE MICROCIRCULATION. BXPFRIMENP 3.
Local injection of one microgram acetylcholine in 0.05 ml.
Ringer's solution into the Hamster Cheek pouch.

	Control		$T I M E$ INT MINUTES AFTER INJECTION OF ACTEIYICHOLINE TNTO CHEEK POUCH3 mins. 6 mins. 15 mins. $\quad 30$ mins. 60 mins.									
ARTPRIES	D.	AREA										
1	50	1,963.5	48	1,809.6	52	2,123.7	50	1,963.5	50	1,963.5	48	1,809.6
2	42	1,385.4	40	1,256.6	46	1,661.9	46	1,661.9	44	1,520.5	40	1,256.6
3	36	1,017.9	36	1,017.9	40	1,256.6	40	1,256.6	38	1,134.1	34	907.9
TOTAL AREA		4,366.8		4,084.1		5,042,2		4,882.0		4,618.1		3,974.1
\% Control Area		100		93.5		115.5		111.8		105.8		91.0
VEINS												
1	26	530.9	28	615.8	28	615.8	30	706.9	30	706.9	24	452.4
2	32	804.2	32	804.2	30	706.9	34	907.9	32	804.2	30	706.9
3	28	615.8	30	706.9	30	706.9	32	804.2	30	706.9	30	706.9
4	58	2,642.1	58	2,642.1	60	2,827.4	60	2,827.4	60	2,827.4	58	2,642.1
TOTAL AREA		4,593.0		4,769.0		4,857.0		5,246.4		5,045.4		4,508.3
\% Control Area		100		103.8		105.7		114.2		109.8		98.2

SUPPORTING TABIE 31
ACTION OF ACETYLCHOLINE ON THE MICROCIRCUIATION. FXPERIMENT 5.
Local injection of one microgram acetylcholine in 0.05 ml.
Ringer's solution into the Hamster Cheek Pouch.

	Control		TIME IN MINUTES AFTER INJECTION OF ACETYICHOLINE INTO CHEEK POUCH 3 mins. 6 mins. 15 mins. 30 mins. 60 mins.									
ARTBRIFS	D.	A.REA	D.	ARTA	D.	AREA	D.	ARTEA	D.	AFEA	D.	AREA
1	28	615.8	26	530.9	32	804.2	30	706.9	32	804.2	32	804.2
2	18	254.5	20	314.2	20	314.2	22	380.1	24	452.4	22	380.1
3	26	530.9	30	706.9	34	907.9	32	804.2	30	706.9	28	615.8
4	28	615.8	30	706.9	32	804.2	30	706.9	34	907.9	32	804.2
TOMAL AREA		2,017.0		2,258.9		2,830.5		2,598.1		2,871.4		2,604.3
\% Control												
Area		100		112.0		140.3		128.8		142.4		129.1
VEIMIS												
1	30	706.9	32	804.2	34	907.9	32	804.2	34	907.9	34	907.9
2	26	530.9	28	615.8	30	706.9	28	615.8	30	706.9	30	706.9
3	34	907.9	36	1,017.9	38	1,134.1	38	1,134.1	40	1,256.6	38	1,134.1
4	35	952.1	34	907.9	36	1,017.9	34	907.9	38	1,134.1	36	1,017.9
5	42	1,385.4	44	1,520.5	44	1,520,5	44	1,520.5	46	1,661.9	44	1,520.5
TOTAL AREA		4,493.2		4,866.3		5,287.3		4,982.5		5,667,4		5,287.3
\% Control												
Area		100		108.3		117.7		110.9		126.1		117.7

[^3]SUPPORT ING TABTE 32

Control

ARTERIES	D.	AREA	D.	APEA	D.	AREA	D.	AREA	D.	AREA	D.	AREA
1	62	3,019.1	72	4,071.5	74	4,300.8	72	4,071.5	70	3,848.5	64	3,217.0
2	34	907.9	40	1,256.6	46	1,661.9	42	1,385.4	42	1,385.4	40	1,256.6
3	60	2,827.4	68	3,631.7	66	3,421.2	64	3,217.0	66	3,421.2	66	3,421.2
TOTAL AREA \% Control Area		6,754.4		8,959.8		9,383.9		8,673.9		8,655.1		7,894.8
		100		132.7		138.9		128.4		128.1		116.9
V 3 INS												
1	38	1,134.1	48	1,809.6	50	1,963.5	44	1,520.5	48	1,809,6	48	1,809.6
2	60	2,827.4	64	3,217.0	64	3,217.0	62	3,019.1	62	3,019.1	60	2,827.4
3	56	2,463.0	70	3,848.5	68	3,631.7	62	3,019.1	54	2,290.2	58	2,642.1
4	56	2,463.0	58	2,642.1	60	2,827.4	58	2,642.1	58	2,642.1	58	2,642.1
TOTAL AREA		8,887.5		$11,517.2$		11,639.6		10,200.8		9,761.0		9,921.2
of Control												
Area		100		129.6		131.0		114.8		109.8		111.6

Area $=$ Area in microns ${ }^{2}$.
$D=$ Diameter in microns.
A) ACTION OF ANGIOTENSIN ON THE MICROCIRCUTATION. EXPERTMENT 1.
Local injection of 25 micrograms angiotensin II in 0.05 ml .
Ringer's solution into the Hamster Cheek Pouch.

	Control		TINE IN MINUTES AFTER INJECTION OF ANGIOTENSIN INTO CHEEK POUCH3 mins. 6 mins. 15 mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA										
1	58	2,642,1	12	113.1	12	113.1	18	254.5	58	2,642.1	56	2,463.0
2	60	2,827.4	14	153.9	10	78.5	12	113.1	54	2,290.2	56	2,463.0
3	38	1,134.1	8	50.3	6	28.3	22	380.1	40	1,256.6	40	1,256.6
TOTAL ARFA \% Control Area.		6,603.6		317.3		219.9		747.7		6,188.9		6,182.6
		100		4.8		3.3		11.3		93.7		93.6
VEINS												
1	60	2,827.4	42	1,385.4	40	1,256.6	48	1,809.6	42	1,385.4	46	1,661.9
2	76	4,536.5	68	3,631.7	70	3,848.5	72	4,071.5	68	3,631.7	68	3,631.7
3	70	3,848.5	68	3,631.7	66	3,421.2	68	3,631.7	72	4,071.5	70	3,848.5
4	112	9,852.0	86	5,808.8	88	6,082.1	110	9,503.3	114	10,207.0	112	9,852.0
TOTAL AREA		21,064.4		14,457.6		14,608.4		19,016.1		19,295.6		18,994.1
\% Control												
		100		68.6		69.4		90.3		91.6		90.2

SUPPORTING TABLE 34

A) ACPION OF ANGIOTENSIN ON THE MTCROCIRCUKATION. EXPERIMENT 2.
Local injection of 25 micrograms angiotensin II in 0.05 ml.
Ringer's solution into the Hamster Cheek Pouch.

	Control		TIME IN MTMUTES AFTER3 mins. 6 mins.				15	N OF ANG mins.	SENS	IN INTO mins.	$\begin{array}{r} E E K \\ 60 \end{array}$	$\begin{aligned} & \text { POUCH } \\ & \text { mins. } \end{aligned}$
ARTERIES	D.	ARFA	D	ARTA	D.	AREA	D.	AREA	D.	AREA	D.	APEA
1	45	1,590,4	12	113.1	20	314.2	24	452\% 4	50	1,963.5	48	1,809.6
2	28	615.8	5	19.6	10	78.5	14	153.9	20	314.2	30	706.9
3	58	2,642.1	10	78.5	24	452.4	22	380.1	54	2,290.2	58	2,642.1
4	14	153.9	0	0	0	0	8	50.3	10	78.5	12	113.1
TOTAT AREA		5,002.2		211.2		845.1		1,036.7		4,646.4		5,271.7
\% ControI Area		100		4.2		16.9		20.7		92.9		105.4
VEINS												
1	60	2,827.4	60	2,827.4	52	2,123.7	50	1,963.5	50	1,963.5	58	2,642.1
2	42	1,385.4	44	1,520.5	40	1,256.6	38	1,134.1	40	1,256.6	42	1,385.4
3	38	1,134.1	30	706.9	34	907.9	40	1,256.6	38	1,134.1	34	907.9
4	20	314.2	22	380.1	28	615.8	20	314.2	28	615.8	20	314.2
TOTAI AREA		5,661.1		5,434.9		4,904.0		4,668.4		4,970.0		5,249.6
\% Control												
Area		100		96.0		86.6		82.5		87.8		92.7

SUPPORTING TABLE 35

	Control		TIME IN MINUTES APTER INJECTION OF ANGIOTENSIN INTO CHEEK POUCH3 mins. 6 mins. 15 mins. $\quad 30$ mins. 60 mins.									
ARTERTES	D.	AREA	D.	AREA	D.	AREA	D.	APTA	D.	AREA	D.	AREA
1	50	1,963.5	18	254.5	40	1,256.6	40	1,256.6	44	1,520.5	42	1,385.4
2	44	1,520.5	12	113.1	32	804.2	40	1,256.6	42	1,385.4	40	1.256.6
3	28	615.8	12	113.1	24	452.4	24	452.4	28	615.8	26	530.9
4	18	254.5	10	78.5	16	201.1	18	254.5	20	314.2	20	314.2
TORAL AREA		4,354.3		559.2		2,714.3		3,220.1		3,835.9.		3,487.1
\% Control												
Area		100		12.8		62.3		74.0		88.1		80.1
VBINS												
1	40	1,256.6	40	1,256.6	38	1,134.1	40	1,256.6	38	1,134.1	40	1,256.6
2	38	1,134.1	34	907.9	36	1,017.9	32	804.2	34	907.9	38	1,134.1
3	18	254.5	20	314.2	20	314.2	22	380.1	20	314.2	20	314.2
4	30	706.9	28	615.8	30	706.9	32	804.2	30	706.9	32	804.2
5	62	3,019.1	62	3,019.1	60	2,827.4	60	2,827.4	62	3,019.1	60	2,827.4
IOTAL AREA		6,371.2		6,113.6		6,000.5		6,072.5		6,082.2		6,336.5
\% Control												
Area		100		96.0		94.2		95.3		95.5		99.5

SUPPORTING TABIE 36

A) ACTION OF ANGIOTENSIN ON THE MICROCIRCULATION. EXPERIMENT 4.
Local injection of 25 micrograms angiotensin IT in 0.05 ml.
Ringer's solution into the Hamster Cheek Pouch.

	Control		TIUE TN ITIN 3 mins.		PES 6	AFTER IN mins.	15	OH ANG mins:	30	IN INTO mins.	$\begin{aligned} & \text { EEX } \\ & 60 \end{aligned}$	POUCH mins.
ARTIRTES	D.	APEA	D.	AREA	D.	AREA	D.	AREA	D.	AREA	D.	ARTA
	58	2,642.1	12	113.1	20	314.2	50	1,963.5	56	2,463.0	56	2,463.0
	60	$2,827.4$	10	78.5	18	254.5	42	1,385.4	54	2,290.2	58	$2,642.1$
	48	1,809.6	12	113.1	18	254.5	40	$1,256.6$	46	1,661.9	46	1,651.9
	22	380.1	8	50.3	10	78.5	12	113.1	16	201.1	18	254.5
TOTAL AREA $\%$ Control		7,659.2		355.0		901.7		$4,718.6$		$6,616.2$		$7,021.5$
Area		100		4.6		11.8		61.6		86.4		91.7
VEITS												
1	84	5,541.8	80	5,026.5	78	4,778.4	80	5,026.5	82	5,281.0	54	$5,541.8$
2	52	2,123.7	46	1,661.9	50	1,936.5	50	$1,963.5$	52	2,123.7	50	$1,963.5$
3	74	4,300.8	72	4,071.5	72	4,071.5	72	4,071.5	72	4,071.5	72	4.071 .5
4	42	$1,385.4$	40	1,256.6	38	$1,134.1$	36	$1,017.7$	40	1,256.6	42	1,385.4
TOTAI ARBA		$13,351.7$		$12,015.5$		$11,947.5$		$12,079.4$		$12,732.8$		$12,962.2$
\% Control												
Area		100		90.0		89.5		90.5		95.4		97.1

Area $=$ Area in microns ${ }^{2}$.
-suouoṭu ut xəqəmetta = \mathbb{C}

	Control		THE IN MINUTES AFTER INJECTION OF ANGIOTENSIN INTO CHEEK POUCH3 mins. 6 mins. 15 mins. $\quad 30$ mins. 60 mins.									
ARTERISS	D.	AREA	D.	ARIEA	D.	AREA	D.	AREA	D.	AREA	D.	AREA
1	62	3,019.1	14	153.9	20	314.2	36	1,017.9	34	907.9	42	1,385.4
2	58	2,642.1	10	78.5	26	530.9	32	804.2	32	804.2	32	804.2
3	66	3,421.2	18	254.5	28	615.8	36	1,017.9	32	804.2	40	1,256.6
TOTAL AREA		9,082.4		486.9		1,460.9		2,840.0		2,516.3		3,446.2
\% Control Area		100		5.4		16.1		31.3		27.7		37.9
VEINS												
1	82	5,281.0	72	4,071.5	70	3,848.5	74	4,300.8	70	3,848.5	74	4,300.8
2	22	380.1	18	254.5	20	314.2	18	254.5	12	113.1	20	314.2
3	54	2,290.2	50	1,963.5	46	1,661.9	48	1,809.6	50	1,963.5	52	2,123.7
TOTAL AREA		7,951.3		6,289.5		5,824.6		6,364.9		5,925.1		6,738.7
\% Control												
Area		100		79.1		73.3		80.0		74.5		84.7

SUPPORT ING TABLE 38
B) ACTION OF ANGIOTENSIN ON THE MICROCIRCUIATION. EXPERTMENT 2.
Local injection of 5 micrograms angiotensin II in 0.05 ml.
Ringeris solution into the Hamster Cheek Pouch.

	Control		TIME IN MINUTES AFTER INJECTION OF ANGIOTENSIN INTO CHEEK POUCH 3 mins. 6 mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	AR3A	D.	AREA	D.	AREA	D.	AREA	D.	AREA
	78	4,778.4	72	4,071.5	72	4,071.5	70	3,848:5	58	2,642,1	58	2,642.1
	40	1,256.6	36	1,017.9	36	1,017.9	28	615.8	22	380.1	20	314.2
	38	1,134.1	34	907.9	32	804.2	32	804.2	34	907.9	30	706.9
	16	201.1	18	254.5	18	254.5	16	201.1	16	201.1	16	201. 1
TOTAI AREA $\%$ Control Area		7,370.2		6,251.8		6,148.7		5,469.6		4,131.2		3,864.3
		100		84.7		83.4		74.5		56.1		52.5
VEINS												
1	40	1,256.6	40	1,256.6	44	1,520.1	40	1,256.6	42	1,385.4	40	1,256.6
2	38	1,134.1	36	1,017.9	34	907.9	34	907.9	36	1,017.9	36	1,017.9
3	26	530.9	20	314.2	22	380.1	22	380.1	24	452.4	26	530.9
4	22	380.1	20	314.2	22	380.1	22	380.1	24	452.4	20	314.2
5	34	907.9	36	1,017.9	31	754.8	34	907:9	28	615.8	26	530.9
TOTAL AREA		4,209.6		3,920.8		3,943.4		3,832.6		3,923.9		3,650.5
\% Control												
Area		100		93.1		93.7		91.0		93.2		86.7

[^4]| | Control | | TIME IN MINUTES AFTER INJECTION OF ANGIOTENSIN INTO CHEEK POUCH 3 mins. 6 mins. 15 mins. $\quad 30$ mins. 60 mins. | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARTERIES | D. | AREA |
| 1 | 52 | 2,123.7 | 12 | 113.1 | 14 | 153.9 | 30 | 706.9 | 40 | 1,256.6 | 46 | 1,661.9 |
| 2 | 44 | 1,520.5 | 30 | 706.9 | 30 | 706.9 | 38 | 1,134.1 | 42 | 1,385.4 | 44 | 1,520.5 |
| 3 | 38 | 1,134.1 | 24 | 452.4 | 28 | 615.8 | 32 | 804.2 | 38 | 1,134.1 | 38 | 1,134.1 |
| TOTAI AREA | | 4,778,3 | | 1,272.4 | | $1,476.6$ | | $2,645.2$ | | 3,776.1 | | $4,316.5$ |
| \% Control | | | | | | | | | | | | |
| Area | | 100 | | 26.6 | | 30.9 | | 55.4 | | 79.0 | | 90.3 |
| VEINS | | | | | | | | | | | | |
| 1 | 62 | 3,019.1 | 60 | 2,827.4 | 62 | 3,019.1 | 60 | 2,827.4 | 62 | 3,019.1 | 64 | 3,217.0 |
| 2 | 22 | 380.1 | 24 | 452.4 | 22 | 380.1 | 22 | 380.1 | 24 | 452.4 | 24 | 452.4 |
| 3 | 64 | 3,217.0 | 62 | 3,019.1 | 62 | 3,019.1 | 60 | 2,827.4 | 62 | 3,019.1 | 62 | 3,019.1 |
| 4 | 34 | 907.9 | 32 | 804.2 | 32 | 804.2 | 32 | 804.2 | 32 | 804.2 | 32 | 804.2 |
| TOTAL AREA | | 7,524.1 | | 7,103.1 | | 7,222.5 | | $6,839.1$ | | 7,294.8 | | 7,592.7 |
| \% Control | | | | | | | | | | | | |
| Area | | 100 | | 94.4 | | 96.0 | | 90.9 | | 96.9 | | 100.9 |

SUPPORTING TABLE 40
B) ACTION OF ANGIOTENSTH ON THE MTCROCIRGULATION. EXPERTMENT 4.

	Control		TIME IN 3 mins.		ES	AFTER IN mins.	15	OF ANG mins.	$\begin{aligned} & \text { ENS } \\ & 30 \end{aligned}$	IN INMO mins.	$\begin{array}{r} E E K \\ 60 \end{array}$	POUCH mins.
ARTERIPS	D.	AREA	D.	AREA	D.	AREA	D.	AR星A	D.	AREA	D.	AREA
1	34	907.9	18	254.5	10	78.5	22	380.1	32	804.2	36	1,017.9
2	18	254.5	8	50.3	12	113.1	18	254.5	18	254.5	20	314.2
3	12	113.1	0	0	8	50.3	10	78.5	10	78.5	12	113.1
4	44	1,520.5	10	78.5	20	314.2	32	804.2	38	1,134.1	45	1,590.4
TOTAL AREA		2,796.0		383.3		556.1		$1,517.3$		2,271.3		3,035.6
\% Control												
Area		100		13.7		19.9		54.3		81.2		108.2
VEINS												
1	62	3,019.1	60	2,827.4	62	3,019.1	60		58	2,642.1	60	2,827.4
2	44	1,520.5	46	1,661.9	44	1,520.5	42	1,385.4	46	1,661.9	50	1,963.5
3	30	706.9	26	530.9	26	530.9	26	530.9	28	615.8	30	706.9
4	32	804.2	32	804.2	30	706.9	30	706.9	30	706.9	32	804.2
TOTAL APEA		6,050.7		5,824.4		5,777.4		5,450.6		5,626.7		$6,302.0$
\% Control												
Area		100		96.2		95.5		90.1		93.0		104.2

SUPPORTING TABIE 41
ACTION OF CATECHOIAMINES ON THE MICROCIRCUIATEIONF. EXPERIMENT 1. A) Local injection of one microgram adrenaline in 0.05 ml . 30 minutes by injection of 5 micrograms phenoxybenzamine. TIUE IN MINUTES AFTER INJECTIONS

SUPPORTING TABLE 42
ACTION OF CATECHOLAMINES ON THE MICROCIROULATION. EXPERIMENT 2.
A) Local injection of one microgram adrenaline in 0.05 ml .
30 minutes by injection of 5 micrograms phenoxybenzamine.

$$
\begin{aligned}
& D=\text { Diameter in microns. Area }=\text { Area in microns }{ }^{2} \text {. }
\end{aligned}
$$

SUPPORTING TABLE 43

	Control		3 mins.		6 mins.		TIHE 15 mins.		N MINUTES 30 mins.		3 mins.		6 mins.		15 mins.		30 mins.	
ARTERIES	D.	AREA																
1	40	1,256.6	12	113.1	12	113.1	10	78.5	10	78.5	22	380.1	28	515.8	34	907.9	34	907.
2	22	380.1	8	50.3	8	50.3	6	28.3	6	28.3	10	78.5	18	254.5	24	452.4	22	380.
3	34	907.9	10	78.5	8	50.3	8	50.3	6	28.3	12	113.1	24	452.4	36	1,017.9	38	1,134.
4	12	113.1	0	0	0	0	0	0	0	0	10	78.5	12	113.1	14	153.9	12	113.
TOTAL AREA \% Control		2,657.7		241.9		213.7		157.1		135.1		650.2		1,435.8		2,532.1		2,535.
Area		100		9.1		8.0		5.9		5.1		24.5		54.0		95.3		95.
VEINS																		
1	46	1,661.9	24	452.4	22	380.1	20	314.2	20	314.2	22	380.1	30	706.9	36	1,017.9	42	१,385.،
2	28	615.8	12	113.1	12	113.1	10	78.5	8	50.3	18	254.5	18	254.5	24	452.4	30	706.
3	38	1,134.1	16	201.1	18	254.5	18	254.5	14	153.9	20	314.2	24	452.4	22	380.1	30	706.
4	16	201.1	10	78.5	6	28.3	6	28.3	6	28.3	10	78.5	14	153.9	20	314.2	22	380.
5	36	1,017.9	20	314.2	22	380.1	20	314.2	18	254.5	22	380.1	26	530.9	26	530.9	28	615.$\}$
TOTAL AREA		4,630.8		1,159.3		1,156.1		989.7		801.2		1,407.4		2,098.6		2,695.5		3,795.
$\begin{aligned} & \text { \% Control } \\ & \text { Area } \end{aligned}$		100		25.0		25.0		21.4		17.3		30.4		45.3		58.2		82.1

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORTING TABLE 44
ACTION OF CATECHOLAMINES ON THE MICROCIRCUIATION. EXPFRIMENT 1.
B) Local injection of one microgram adrenaline in 0.05 ml . 30 minutes by injection of 5 micrograms phentolamine. TIME IN MINUTES AFTER INJECTIONS

	Control		3 mins.		6 mins.		15 mins.		30 mins.		3 mins.		6 mins.		15 mins.		30 mins.	
ARTERIES	D.	AREA																
1	26	530.9	10	78.5	8	50.3	8	50.3	8	50.3	18	254.5	28	615.8	26	530.9	24	452.
2	20	314.2	10	78.5	4	12.6	4	12.6	4	12.6	12	113.1	20	314.2	20	314.2	22	380
3	14	153.9	8	50.3	5	19.6	4	12.6	5	19.6	12	113.1	16	201.1	18	254.5	20	314
4	28	615.8	0	0	0	0	0	0	0	0	16	201.1	26	530.9	28	615.8	30	706
TOTAL AREA		1,614.8		207.3		82.5		75.5		82.5		681.8		1,662.0		1,715.4		1,853.
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		12.8		5.1		4.7		5.1		42.2		102.9		106.2		114.
VEINS																		
1	44	1,520.5	38	1,134.1	28	615.8	28	615.8	24	452.4	30	706.9	42	1,385.4	42	1,385.4	44	1,520.
2	20	314.2	12	113.1	12	113.1	10	78.5	8	50.3	12	113.1	18	254.5	20	1314.2	22	380
3	44	1,520.5	26	530.9	22	380.1	18	254.5	18	254.5	32	804.2	40	1,256.6	38	1,134.1	40	1,256
4	18	254.5	12	113.1	12	113.1	12	113.1	10	78.5	12	113.1	16	201.1	18	254.5	20	314
TOTAL AREA		3,609.7		1,891.2		1,222.1		1,061.9		835.7		1,737.3		3,097.6		3,088.2		3,471
$\begin{gathered} \text { Control } \\ \text { Area } \end{gathered}$		100		52.4		33.9		29.4		23.2		48.1		85.8		85.6		96.

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORTING TABLE 45

	Control		3 mins.		6 mins.		TINE IN MINUTES APTER INJECTIONS								15 mins.		30 mins.	
ARTERIES	D.	AREA	D.	AREA	D.	AREA	D.	AREA	D.	ARTA	D.	AREA	D.	AREA	D.	AREA	D.	AREA
1	40	1,256.6	20	314.2	12	113.1	10	78.5	10	78.5	26	530.9	32	804.2	40	1,256.6	40	1,256
2	22	380.1	0	0	0	0	0	0	0	0	18	254.5	20	314.2	20	314.2	18	254
3	38	1,134.1	12	113.1	8	50.3	8	50.3	8	50.3	28	615.8	36	1,017.9	40	1,256.5	40	1,256
TOTAL AREA		2,770.8		427.3		163.4		128.8		128.8		1,401.2		2,136.3		2,827.4		2,767
\% Control Area		100		15.4		5.9		4.6		4.6		50.6		77.1		102.0		99
VEINS																		
1	54	2,290.2	50	1,963.5	42	1,385.4	38	1,134.1	36	1,017.9	45	1,590.4	54	2,290.2	52	2,123.7	52	2,123
2	48	1,809.6	40	1,256.6	36	1,017.9	34	907.9	36	1,017.9	38	1,385.4	46	1,661.9	46	1,661.9	46	1,661
3	34	,907.9	28	, 615.8	28	615.8	22	380.1	24	+452.4	28	,615.3	30	706.9	32	804.2	30	706
4	30	706.9	22	380.1	18	254.5	16	201.1	14	153.9	22	380.1	30	706.9	30	706.9	30	706
TOTAL AREA		5,714.6		4,216.0		3,273.6		2,623.2		2,642.1		3,720.4		5,089.4		5,296.7		5,199
$\%$ Control Area		100		73.8		57.3		45.9		46.2		65.1		89.1		92.7		91

Area $=$ Area in microns ${ }^{2}$.
SUPPORTING TABIE 46
ACTION OF CATECHOLAMINES ON THE MICROCTRCULATION. EXPERTMENT 3. B) Local injection of one microgram adrenaline in 0.05 ml .
Ringer's solution into the Hamster Cheek Pouch, followed in
30 minutes by injection of 5 micrograms phentolamine. TIME IN MINUTES AFTER INJECTIONS

	Control		3 mins.		6 mins.		15 mins.		30 mins .		3 mins.		6 mins.		15 mins.		30 mins.	
ARTERIES	D.	AREA	D.	ARE														
1	48	1,809.6	14	153.9	10	78.5	8	50.3	8	50.3	22	380.1	40	1,256.6	44	1,520.5	46	1,661.
2	30	706.9	10	78.5	8	50.3	8	50.3	0	0	20	314.2	28	615.8	30	706.9	32	804.
3	28	615.8	0	0	0	0	0	0	0	0	20	314.2	24	452.4	24	452.4	28	615.
4	20	314.2	0	0	0	0	0	0	0	0	15	176.7	22	380.1	22	380.1	22	380.
TOTAL AREA		3,446.5		232.4		128.8		100.6		50.3		1,185.2		2,704.9		3,059.9		3,462.
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		6.7		3.7		2.9		1.5		34.4		78.4		88.8		100.
VEINS																		
1	50	1,963.5	28	615.8	26	530.9	22	380.1	20	314.2	28	615.8	25	490.9	30	706.9		1,134.
2	58	2,642.1	48	1,809.6	40	1,256.6	34	907.9	28	615.8	40	1,256.6	48	1,809.6	48	1,809.6		2,463.
3	74	4,300.8	60	2,827.4	52	2,123.7	50	1,963.5	42	1,385.4	54	2,290.2	62	3,019.1	66	3,421.2	66	3,421.
4	32	804.2	28	615.8	20	314.2	18	254.5	18	254.5	22	380.1	28	615.8	30	706.9	30	706.
TOTAL ARIEA		9,710.6		5,858.6		4,225.4		3,506.0		2,569.9		4,542.7		5,935.4		6,644.6		7,725.
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		60.4		43.5		36.1		26.5		46.8		61.1		68.4		79.

[^5]
SUPPORTIIJG TABTIE 47

> ACTION OF CATECHOLAMINES OF THE MICROCIRCULATION. EXPERTMENT 1. C) Local injection of one microgram noradrenaline in 0.05 ml .
Ringer's solution into the Hamster Cheek Pouch, followed in 30 minutes by injection of 5 micrograms phenoxybenzamine. TIME IN MINUTES AFTER INJECTIONS

	Control		3 mins.		6 mins.		TIME IN MINUTES AFTER INJECTIONS								15 mins.		30 mins.	
ARTERIES	D.	AREA	D.	AREA.	D.	AREA												
1	42	1,385.4	10	78.5	10	78.5	18	254.5	20	314.2	48	1,809.6	50	1,963.5	50	1,963.5	50	1,963.
2	42	1,385.4	11	95.0	9	63.7	18	254.5	18	254.5	30	706.9	38	1,134.1	40	1,256.6	36	1,017.
3	34	907.9	8	50.3	6	28.3	10	78.5	8	50.3	28	615.8	36	1,017.9	34	907.9	34	907.
4	22	380.1	0	0	0	0	8	50.3	5	19.6	16	201.1	20	314.2	20	314.2	18	254.
TOTAL AREA		4,058.8		223.8		170.5		637.8		638.6		3,333.4		4,429.7		4,442.2		4,143.
$\% \text { Control }$		100		5.5		4.3		15.7		15.7		82.1		109.1		109.4		102.
VEINS																		
1	40	1,256.6	38	1,134.1	32	804.2	38	1,134.1	40	1,256.6	40	1,256.6	42	1,385.4	44	1,520.5	48	1,809.
2	32	804.2	26	530.9	22	380.1	26	530.9	22	380.9	32	804.2	34	907.9	32	804.2	32	804.
3	28	615.8	30	706.9	20	314.2	22	380.1	20	314.2	28	615.8	30	706.9	28	615.8	30	706
4	32	804.2	26	530.9	28	615.8	28	615.8	24	452.4	30	706.9	30	706.9	28	615.8	32	804.
5	58	2,642.8	44	1,520.5	34	907.9	40	1,256.6	38	1,134.1	. 44	1,520.5	50	1,963.5	52	2,123.7	50	1,963.
		6,123.6		4,423.3		3,022.2		3,917.5		3,537.4		4,904.0		5,570.6		5,680.0		6,088.
\% Control																		
		100		72.2		49.4		64.0		57.8		80.1		92.6		92.8		99.

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORT ING TABLE 48
ACTION OF CATECHOLAMINS ON THE MICROCIRCULARTON. EXPERTUENT 2.
C) IOcal injection of one microgram noradrenaline in 0.05 ml
Ringer's solution into the Hamster Cheek Pouch, followed in 30
minutes by injection of 5 microrrams phenoxybenzamine.

$$
\begin{aligned}
& D=\text { Diameter in microns. Area }=\text { Area in microns }{ }^{2} \text {. }
\end{aligned}
$$

SUPPOPT TING TABIE 49
ACTION OF CATECHOLAMINES ON THE MICROCIRCULATION. EXPERINENT 3.
C) LOcal injection of one microgram noradrenaline in 0.05 ml .
Ringerts solution into the Hamster Cheek Pouch, followed in 30
minutes by injection of 5 micrograms phenoxybenzamine.

	Control		3 mins.		6 mins.		TIME IN MINUTES AFTER INJECTIONS								15 mins.		30 mins.	
ARTERIES	D.	AREA																
1	42	1,385.4	8	50.3	6	28.3	6	28.3	10	78.5	32	804.2	40	1,256.6	42	1,385.4	42	1,385.
2	48	1,809.6	6	28.3	5	19.6	6	28.3	12	113.1	36	1,017.9	40	1,256.6	46	1,661.9	48	1,809.
3	18	254.5	4	12.6	0	0	0	0	0	0	12	113.1	20	314.2	20	314.2	22	380.
4	22	380.1	0	0	0	0	0	0	0	0	14	153.9	16	201.1	20	314.2	20	314.
IOTAL AREA		3,829.6		91.2		47.9		56.6		191.6		2,089.1		3,028.5		3,675.7		3,889.
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		2.4		1.3		1.5		5.0		54.6		79.1		96.0		101.
VEINS																		
1	32	804.2	22	380.1	18	254.5	12	113.1	10	78.5	12	113.1	12	113.1	28	615.8	28	615.
2	44	1,520.5	24	452.4	22	380.1	15	176.7	12	113.1	15	176.7	20	314.2	32	804.2	38	1,134.
3	30	706.9	18	254.5	12	113.1	5	19.6	5	19.6	10	78.5	16	201.1	22	380.1	24	452.
4	36	1,017.9	20	314.2	18	254.5	8	50.3	8	50.3	14	153.9	16	201.1	30	706.9	32	804.
? OTAL ARFA		4,049.5		1,401.2		1,002.2		359.7		261.5		522.2		829.5		2,507.0		3,006.
\% ControI		100		34.6		24.7		8.9		6.5		12.9		20.5		61.9		74.

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORT ING TABEE 50.

SUPPORTIIGG TABIE 51
ACTION OF CATECHOLAMINES ON THE IAICROCIRCUIATION. EXPERINENT 2.
D) Iocal injection of one microgram noradrenaline in 0.05 ml.
Ringer's solution into the Hamster Cheek Pouch, followed in 30
minutes by injection of 2 micrograns phentolamine.
TIME IN MINUTES AFTER INJECTIONS

	Control		3 mins,		6 mins.		15 mins.		30 mins.		3 mins.		6 mins.		15 mins.		30 mins.	
ARTERIES	D.	AREA	D.	AREA	D.	ARTA	D.	AREA										
1	66	3,421.2	30	706.0	18	254.5	12	113.1	10	78.5	33	855.3	48	1,809.6	64	3,217.0	66	3,421.
2	58	2,642.1	26	530.9	12	113.1	10	78.5	8	50.3	36	1,017.9	54	2,290.2	60	2,827.4	60	2,827.
3	46	1,661.9	12	113.1	0	0	0	0	0	0	24	452.4	40	1,256.6	42	1,385.4	42	1,385.
TOTAL AREA		7,725.2		1,350.9		367.6		191.6		128.8		2,325.6		5,356.4		7,429.8		7,634.
$\begin{gathered} \text { Control } \\ \text { Area } \end{gathered}$		100		17.5		4.8		2.5		1.7		30.1		69.3		96.2		98.
VEINS 1	51	2,042.8	46	1,661.9	38	1,134.1	24	452.4	20	314.2	34	907.9	46	1,661.9	48	1,809.6	46	1,661.
2	56	2,463.0	32	804.2	32	804.2	28	615.8	24	452.4	40	1,256.6	48	1,809.6	52	2,123.7	50	1,963.
3	72	4,071.5	48	1,809.6	44	1,520.5	42	1,385.4	40	1,256.6	52	2,123.7	64	3,217.0	66	3,421.2	68	3,631.
4	30	706.9	26	530.9	20	314.2	16	201.1	16	201.1	26	, 530.9	28	615.8	30	706.9	26	530.
[OTAL AREA		9,284.2		4,806.6		3,773.0		2,654.7		2,224.3		4,819.1		7,304.3		8,061.4		7,788.1
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		51.8		40.6		28.6		24.0		51.9		78.7		86.8		$83 .!$

[^6]SUPPORT ING TABLIE 52

> ACTION OF CATECHOLAMINES ON THE MICROCIRCULATION. EXPERTIGENT 3.
> D) Local injection of one microgram noradrenaline in 0.05 ml .
Ringer's solution into the Hamster Cheek Pouch, followed in 30
> _ minutes by injection of 2 micrograms Phentolamine.
SUPPORTING TABLe 53

\section*{EXPERIMENT 1.
 | Local injection of 20 micrograms phenoxybenzamine in 0.05 ml. |
| :---: |
| Ringer's solution into the Hamster Cheek Pouch. |}

	Control			NUTES AFH mins.		INJECTION mins.		HENOXYBE mins.		INE IIMPO mins.		$\begin{aligned} & \text { POUCH } \\ & \text { mins. } \end{aligned}$
ARTERTES	D.	AREA										
1	54	2,290.2	52	2,123.7	52	2,123.7	52	2,123.7	50	1,963.5		-
2	40	1,256.6	38	1,134.1	42	1,385.4	42	1,385.4	42	1,385.4		-
3	42	1,385.4	42	1,385.4	44	1,520.5	46	1,661.9	38	1,134.1		-
4	24	452.4	28	615.8	28	615.8	28	615.8	28	615.8		-
5	58	2,642.1	56	$2,463.0$	56	2,463.0	52	2,123.7	50	1,963.5		-
TOTAL AREA		8,026.7		7,722.0		8,108.4		7,910.5		7,062.3		-
\% Control												
Area		100		96.2		101.0		98.6		88.0		-
VEINS												
1	88	6,082.1	84	5,541.8	86	5,808.8		5,281.0		5,808.8		-
2	30	706.9	32	804.2	28	615.8	26	530.9	28	615.8		-
3	52	2,123.7	54	2,290.2	52	2,123.7	52	2,123.7	50	1,963.5		-
4	68	3,631.7	68	3,631.7	66	3,421.2	64	3,217.0	66	3,421.2		-
5	54	2,290.2	52	2,123.7	52	2,123.7	54	2,290.2	52	2,123.7		-
TOTAL AREA		$14,834.6$		14,391.6		14,093.2		13.442.8		13,933.0		-
\% Control												
Area		100		97.0		95.0		90.6		93.9		-

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORT IING TABIE 54

$A C T I O N$ OF PHENOXYBENZANINE ON THE MICROCIRCUTARTON. EXPERTMENT 2.
Local injection of 20 micrograms phenoxybenzamine in 0.05 ml.
Ringer's solution into the Hamster Cheek Pouch.

	Control		$\begin{array}{r} \text { IN } \\ 3 \end{array}$	VInUTES mins.	$\begin{gathered} \text { FTER } \\ 6 \end{gathered}$	INJHCTIO ins.		PHETOXYB mins.		$\begin{aligned} & \text { MINE INNO } \\ & \text { mins. } \end{aligned}$	$\begin{aligned} & \mathrm{CHE} \\ & 60 \end{aligned}$	EK POUCH mins.
ARTEPTMS	D.	AREA										
1	20	314.2	20	314.2	22	380.1	22	380.1	22	380.1	22	380.1
2	16	201.1	16	201.1	14	153.9	16	201.1	16	201.1	16	201.1
3	28	615.8	26	530.9	28	615.8	30	706.9	30	706.9	28	615.8
TOTAL AREA		1,131.1		1,046.2		1,149.8		1,288.1		1,288.1		1,197.0
$\%$ Control Area		100		92.5		101.7		113.9		113.9		105.8
VEIITS												
1	48	1,809.6	46	1,661.9	46	1,661.9	44	1,520.5	50	1,963.5	48	1,809.6
2	32	804.2	30	706.9	30	706.9	32	804.2	30	706.9	30	706.9
3	38	1,134.1	40	1,256.6	40	1,256.6	38	1,134.1	36	1,017.9	36	1,017.9
4	24	452.4	26	530.9	28	615.8	24	452.4	24	452.4	24	452.4
TOTAL AREA		4,200.3		4,156.3		4,241.2		3,911.2		4,140.7		3,986.8
\% Control												
Area		100		99.0		107.0		93.1		98.6		94.9

SUPPORTING TABLE 55
ACRION OF PHENOXYBENZAMINE ON THE HICROCIRCULATION. EXPERTMBNT 3.
Local injection of 20 micrograms phenoxybenzamine in 0.05 ml .
Einger's solution into the Hamster Cheek Pouch.

	$\text { Control }{ }^{\text {TIME }}$		IN MINUTES3 mins.		APTER INJECITOI6 mins.		$\begin{aligned} & 150 \mathrm{~F} \\ & 15 \end{aligned}$	PHBNOXYBENZAMINE IMHO mins. 30 mins.			CHERK POUCH 60 mins.	
ARTERIES	D.	APRA	D.	AREA	D.	ARPA	D.	AREA	D.	AREA	D.	AREA
1	60	2,827.4	58	2,642.1	62	3,019.1	60	2,827.4	62	3,019.1	62	3,019.1
2	38	1,134.1	40	1,256.6	40	1,256.6	40	1,256.6	42	1,385.4	40	1,256.6
3	18	254.5	20	314.2	20	314.2	20	314.2	20	314.2	20	314.2
4	54	2,290.2	52	2,123.7	54	2,290.2	56	2,463.0	54	2,290.2	52	2,290.2
TOTAL AREA		6,506.2		6,336.6		6,880.1		6,861.2		7,008.9		6,880.1
\% Control Area		100		97.4		105.7		105.5		107.7		105.7
VEINS												
1	68	3,631.7	66	3,421.2	66	3,421.2	68	3,631.7	66	3,421.2	68	3,631.7
2	40	1,256.6	42	1,385.4	40	1,256.6	42	1,385.4	40	1,256.6	40	1,256.6
3	48	1,809.6	48	1,809.6	50	1,963.5	48	1,809.6	50	1,963.5	50	1,963.5
4	48	1,809.6	48	1,809.6	46	1,661.9	44	1,520.5	44	1,520.5	46	1,661.9
5	30	706.9	32	804.2	32	804.2	32	804.2	32	804.2	30	706.9
TOTAL AREA		9,214.4		9,230.0		9,107.4		9,151.4		8,966.0		9,220.6
\% Control												
Area		100		100.2		98.8		99.3		97.3		100.1

Ringer's solution into the Hamster Cheek Pouch.

		Trol ${ }^{\text {TIME }}$		MINUTES mins.		INJECTI mins.	15	PHETVTOI nins.	ITN	INTO CH mins.	KK	OUCH
ARTERIES	D.	AREA	D.	AREA	D.	AREA	D.	ARTA	D.	AR至A	D.	ARTPA
1	66	3,421.2	62	3,019.1	64	3,217,0	66	3,421.2	64	3,217.0	66	3,421.2
2	70	3,848.5	64	3,217.0	72	4,071.5	70	3,848.5	72	4,071.5	70	3,848.5
3	30	706.9	28	615.8	28	615.8	32	804.2	30	706.9	28	615.8
4	18	254.5	18	254.5	16	201.1	20	314.2	18	254.5	18	254.5
TOTAL AREA		8,231.1		7,106.4		8,105.4		8,388.1		8,249.9		8,140.0
\% Control												
Area		100		86.3		98.5		101.9		100.2		99.0
VEINS												
1	37	1,075.2	36	1,017.9	38	1,134.1	36	1,017.9	38	1,134.1	38	1,134.1
2	45	1,590.4	40	1,256.6	44	1,520.5	44	1,520.5	46	1,661.9	42	1,385.4
3	33	855.3	34	907.9	32	804.2	34	907.9	34	907.9	35	962.1
4	26	530.9	26	530.9	28	615.8	26	530.9	28	615.8	28	615.8
TOTAL ARPA		4,051.8		3,713.3		4,074.6		3,977.2		4,319.7		4,097.4
\% Gontrol												
		100		91.6		100.6		98.2		106.6		101.1

SUPPORTING TABIE 57

	Control			MINUTES mins.	$\begin{gathered} \text { PEF } \\ 6 \end{gathered}$	INJECTIO mins.	$\begin{aligned} & 0 \mathrm{OH} \\ & 15 \end{aligned}$	PHENTOTA mins.	$\begin{aligned} & \text { INTNH } \\ & 30 \end{aligned}$	INTO CH mins.	60	OUCH mins.
ARTHRIES	D.	AREA										
1	54	2,290.2	54	2,290.2	56	2,463,0	52	2,123.7	54	2,290.2	56	2,463.0
2	46	1,661.9	44	1,520.5	42	1,385.4	44	1,520.5	44	1,520.5	46	1,661.9
3	52	2,123.7	50	1,963.5	50	1,963.5	50	1,963.5	52	2,123.7	52	2,123.7
TOTAI AREA		6,075.8		5,774.2		5,811.9		5,607:7		5,934:4		6,248.6
\% Control												
Area		100		95.0		95.7		92.3		97.7		102.8
VEINS												
1	50		50		52				52		52	2,123.7
2	66	$3,421.2$	66	$3,421.2$	64	$3,217 \cdot 0$	64	$3,217.0$	64	$3,217.0$	66	$3,421.2$
3	46	1,661.9	48	1,809.6	48	1,809.6	46	1,661.9	50	1,963.5	48	1,809.6
4	38	1,134.1	34	907.9	36	1,017.9	34	907.9	34	907.9	30	706.9
5	36	1,017.9	38	1,134.1	36	1,017.9	38	1,134.1	40	1,256.6	36	1,017.9
TOTAL AR退A		9,198,6		9,236.3		9,186.1		9,211.1		9,468.7		9,079.3
\% Control												
Area		100		100.4		99.9		100.1		102.9		98.7

SUPPORTING TABLI 58
ACTION OF PHENTOLAMINE ON THE MICROCTRCULATION. EXPERIMEMP 3.
Local injection of 10 micrograms phentolamine in 0.05 ml
Ringer's solution into the Hamster Cheek Pouch.
ternerne TTME TIT MTNUTES AFTER IHJECTION OF PHENTOTAMINE INTO CHEEK POUCH
60 mins.
ma
od

	Control			MINUTES mins.		IIJJECT I mins.		PHENTOI mins.		$\begin{aligned} & \text { INTO CHE } \\ & \text { mins. } \end{aligned}$	$\begin{array}{r} 3 E K ~ \\ 60 \end{array}$	OUCH mins.
ARTERIES	D.	AREA	D.	ARTA								
1	50	1,963.5	52	2,123.7	50	1,963.5	52	2,123.7	52	2,123.7	50	1,963.5
2	62	3,019.1	60	2,827.4	62	3,019.1	60	2,827.4	60	2,827.4	60	2,827.4
3	40	1,256.6	36	1,017.9	38	1,134.1	42	1,385.4	40	1,256.6	42	1,385.4
TOTAL AREA		6,239.2		5,969.0		6,116.7		6,336.5		6,207.7		6,176.3
\% Control Area		100		95.7		98.0		101.6		99.5		99.0
VEITSS												
1	36	1,017.9	38	1,134.1	36	1,017.9	38	1,134.1	40	1,256.6	38	1,134.1
2	40	1,256.6	40	1,256.6	40	1,256.6	40	1,256.6	42	1,385.4	42	1,385.4
3	68	3,631.7	66	3,421.2	68	3,631.7	66	3,421.2	66	3,421.2	66	3,421.2
4	50	1,963.5	50	1,963.5	48	1,809.6	48	1,809.6	50	1,963.5	52	2,123.7
TOTAL AREA		7,869.7		7,775.4		7,715.8		7,621.5		8,026.7		8,064.4
\% Control Area		100		98.8		98.0		96.8		102.0		102.5

SUPPORT TNG TABLE 59

A) ACTION OF ISOPROTPRENOI ON MHE MICROCIRCUTARTON. BXPMRIMENT 1.

	Control		IN MINUTRS 3 mins.		6	INJECTI mins.		ISOPROT mins.	$\begin{gathered} \text { RTMN } \\ 30 \end{gathered}$	I INTO mins.	$\begin{array}{r} \text { EEK } \\ 60 \end{array}$	$\begin{aligned} & \text { POUCH } \\ & \text { mins. } \end{aligned}$
ARTERIES	D.	ARTA	D.	AREA	D.	AREA	D.	ARTA	D.	AREA.	D.	AREA
1	24	452.4	18	254.5	12	113.1	10	78.5	20	314.2	24	452.4
2	36	1,017.9	10	78.5	10	78.5	8	50.3	12	113.1	14	153.9
3	30	706.9	12	113.1	10	78.5	8	50.3	22	380.1	23	415.5
TOTAL AREA		2,177.2		446.1		270.1		179.1		807.4		1,021.8
\% Control												
Area		100		20.5		12.4		8.2		37.1		46.9
VEINS												
1	44	1,520.5	42	1,385.4	46	1,661.9	44	1,520.5	46	1,661.9	46	1,661.9
2	25	490.9	28	615.8	30	706.9	24	452.4	22	380.1	20	314.2
3	48	1,809.6	52	2,123.7	56	2,463.0	50	1,963.5	54	2,290.2	50	1,963.5
4	28	615.8	30	706.9	30	706.9	28	615.8	26	530.9	24	452.4
TOTAL ARBA		4,436.8		4,831.8		5,538.7		4,552.2		4,863.1		4,392.0
$\%$ Control												
Area		100		108.9		124.8		102:6		109.6		99.0

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORT ING TABIE 60
A) ACTION OF ISOPROTERENOI ON THE MICROCIRCULATION. EXPERIMENT 2.
Local injection of 10 micrograms isoproterenol in 0.05 ml .
—_hinger's solution into the Hamster cheek Pouch.

	Control		IN MINUTES 3 mins.		FTER INJECTI 6 mins.		OF ISOPROTMRENOL INIO CHEEK POUCH					
ARTERIES	D.	AREA	D.	ARTA	D.	AREA	D.	AREA	D.	AREA	D.	ARTEA
,	60	2,827.4	20	314.2	50	1,963.5	60	2,827.4	60	2,827.0		
2	55	2,375.8	25	490.9	50	1,963.5	50	1,963.5	55	2,375.8		
3	35	962.1	30	706.9	40	1,256.6	40	1,256.6	40	1,256.6		-
4	16	201.1	10	78.5	10	78.5	10	78.5	15	176.7		
TOTAI AREA		6,366.4		1,590.5		5,262.1		6,126.0		6,635.5		
\% Control		100		25.0		82.7		96.2		104.2		
VEITS												
1	40	1,256.6	45	1,590.4	45	1,590.4	40	1,256.6	45	1,590.4		-
2	20	314.2	42	1,385.4	25	490.9	25	490.9	20	314.2		-
3	25	490.9	25	490.9	25	490.9	30	706.9	25	490.9		-
4	30	706.9	30	706.9	35	962.1	35	962.1	30	706.9		
TOTAL AREA		2,768.6		4,173.6		3,534.3		3,416.5		3,102.4		-
\% Control												
Area		100		150.7		127.7		123.4		112.1		-

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORTING TABLI 61

	Control		$\begin{array}{r} \text { IN } \\ 3 \end{array}$	MINUTES mins.	$\begin{gathered} \text { TER } \\ 6 \end{gathered}$	INJECTIO mins.	$\begin{gathered} \mathrm{OF} \\ 15 \end{gathered}$	$\begin{aligned} & \text { ISOPROTE } \\ & \text { mins. } \end{aligned}$	$\begin{aligned} & \text { REIN } \\ & 30 \end{aligned}$	OI IITMO CH mins.	$\begin{array}{r} \text { EEK } \\ 60 \end{array}$	POUCH mins.
ARTERIES	D.	AREA	D.	ARFA	D.	AREA	D.	AREA	D.	ARTA	D.	ARTA
1	34	907.4	12	113.1	20	314.2	28	615.8	30	706.9	28	615.8
2	26	530.9	18	254.5	16	201.1	20	314.2	20	314.2	26	530.9
3	18	254.5	5	19.6	14	153.9	14	153.9	12	113.1	10	78.5
4	38	1,134.1	14	153.9	36	1,017.9	34	907.9	30	706.9	22	380.1
TOTAL ARBA		2,827.4		541.1		1,687.1		1,991.8		1,841.1		1,605.3
\% Control												
Area		100		19.0		59.7		70.4		65.1		56.8
VEINS												
1	32	804.4	32	804.4	38	1,134.1	32	804.4	36	1,017.9	38	1,134.1
2	34	907.9	42	1,385.4	34	907.9	32	804.4	38	1,134.1	36	1,017.9
3	28	615.8	40	1,256.6	32	804.4	36	1,017.9	30	706.9	32	804.4
4	24	452.4	24	452.4	28	615.8	22	380.1	22	380.1	20	314.2
TOTAL ARPA		2,780.5		3,898.8		3,462.2		3,006.8		3,239.0		3,270.6
\% Control												
Area		100		140.2		124.5		108.1		116.5		117.6

[^7]SUPPORTING TABTE 62
A) ACTION OF ISOPROTHRENOL ON THE MICROCIRCULATION. EXPMRINENT 4.
Local injection of 10 micrograms isoproterenol in 0.05 ml
Ringer's solution into the Hamster Gheek Pouch.

		ntrol		MINUTES mins.		INJECT I mins.	OP 15	ISOPROT mins.	30	I INPO mins.	62\%	POUCH mins.
ARTBRIES	D.	ARFA	D.	AREA								
1	50	1,963.5	38	1,134.1	42	1,385.4	46	1,661.9	50	1,963.5	50	1,963.5
2	42	1,385.4	36	1,017.9	40	1,256.6	40	1,256.6	38	1,134.1	40	1,256.6
3	20	314.2	18	254.5	16	201.1	18	254.5	20	314.2	22	380.1
4	18	254.5	10	78.5	16	201.1	14	153.9	16	201.1	18	254.5
5	18	254.5	12	113.1	16	201.1	14	153.9	16	201.1	14	153.9
TOTAL AREA		4,172.1		2,598.1		3,245.3		3,480.8		3,814.0		4,008.6
$\%$ Control Area		100		62.3		77.9		83.4		91.4		96.1
VEINS												
1	32	804.2	30	706.9	40	1,256.6	38	1,134.1	36	1,017.9	32	804.2
2	26	530.9	30	706.9	32	804.2	34	907.9	28	615.8	26	530.9
3	28	615.8	30	706.9	32	804.2	32	804.2	28	615.8	26	530.9
4	30	706.9	36	1,017.9	44	1,520.5	44	1,520.5	34	907.9	32	804.2
5	18	254.5	22	380.1	28	. 615.8	30	706.9	24	452.4	22	380.1
IOTAJ AREA		2,912.3		3,518.7		5,001.3		5,073.6		3,609.8		3,050.3
\% Control												
Area		100		120.9		171.7		174.2		124.0		$104 \cdot 7$

SUPPORT ING TABIE 63

[^8]
SUPPORTING TABLE 64
A) ACTION OF ISOPROTERENOI ON THE HICROCIRCUIATION. EXPERIMENM 6.
Local injection of 10 micrograms isoproterenol in 0.05 ml
Ringer's solution into the Hamster Gheek Pouch.

SUPPORT ING TABLE 65

		TIME		MINUTES mins.		INJECTI mins.		$\begin{aligned} & \text { ISOPROT } \\ & \text { mins. } \end{aligned}$		I INTO CE mins.		POUCH mins.
ARTERIES	D.	AREA	D.	AREA.	D.	AREA	D.	APTA	D.	AREA	D.	AREA
1	60	2,827.4	48	1,809.6	50	1,963.5	52	2,123.7	46	1,661.9	34	907.9
2	42	1,385.4	40	1,256.6	40	1,256.6	38	1,134.1	30	706.9	28	615.8
3	44	1,520.5	36	1,017.9	48	1,809.6	40	1,256.6	32	804.2	26	530.9
TOPAL AREA		5,733.3		4,084.1		5,029.7		4,514.4		3,173.0		2,054.6
\% Control												
Area		100		71.2		87.7		78.7		55.3		35.8
VEINS												
1	62	3,019.1	68	3,631.7	76	4,536.5	72	4,071.5	70	3,848,5	72	4,071.5
2	34	907.9	38	1,134.1	40	1,256.6	42	1,385.4	40	1,256.6	46	1,661.9
3	26	530.9	26	530.9	30	. 706.9	28	615.8	32	804.2	30	706.9
4	78	4,778,4	80	5,026.5	80	5,026.5	76	4,536.5	78	4,778.4	80	5,026.5
TOTAI AREA		9,236.3		10,323.2		$11,526.5$		10,609.2		10,687.7		11,466.8
\% Control												
Area		100		111.7		124.8		114.9		115.7		124.1

SUPPORT ING TABLE 66
B) ACTION OF ISOPROTERENOL ON THE MICROCTRCULATION. EYPERTMENT 2.
Local injection of 5 micrograms isoproterenol in 0.05 ml.
Ringer's solution into the Hamster Cheek Pouch.

	Control		$\begin{array}{r} \text { In } \\ 3 \end{array}$	MINUTES mins.	$\begin{gathered} A F T E R \\ 6 \end{gathered}$	INJECTIO mins.		ISOPRORE mins.	30	IL INTO CH mins.	$\begin{array}{r} \text { IEEKK } \\ 60 \end{array}$	POUCH mins.
ARTERIES	D.	AREA	D.	AREA	D.	AREA	D.	ARTEA	D.	AREA	D.	AREA
1	28	615.8	16	201.1	20	314.2	18	254.5	20	314.2	28	615.8
2	26	530.9	10	78.5	16	201.1	16	201.1	18	254.5	22	380.1
3	20	314.2	8	50.3	12	113.1	10	78.5	14	153.9	18	254.5
4	14	153.9	4	12.6	8	50.3	10	78.5	10	78.5	12	113.1
TOTAL AREA		1,614.8		342.5		678.7		612.6		801.1		1,363.5
\% Control												
Area		100		21.2		42.0		37.9		49.6		84.4
VEITS												
1	24	452.4	36	1,017.9	30	705.9	30	706.9	26	530.9	24	452.4
2	28	615.8	30	706.9	28	615.8	30	706.9	28	615.8	28	615.8
3	36	1,017.9	38	1,134.1	38	1,134.1	34	907.9	34	907.9	34	907.0
4	26	530.9	30	706.9	30	706.9	28	615.8	26	530.9	26	530.9
TOTAL AREA		2,617.0		3,565.8		3,123.7		2,937.5		2,585.5		2,507.0
\% Control												
Area		100		136.3		120.9		112.2		98.8		95.8

SUPPORTTIIG TABLE 67
B) ACMION OF ISOPROTERENOL ON THE MTCROCIRCULATION. EXPERIMENT 3.
Local injection of 5 micrograms isoproterenol in 0.05 ml.
Ringer's solution into the Hamster cheek Pouch.

		trol		INIUPES mins.		INJECTI mins.	15 15	ISOPROT mins.	30	$\text { INTO } \mathrm{CH}$ mins.	EEK	POUCH mins.
ARTERIES	D.	AREA	D.	AR포A	D.	ARFA	D.	ARTEA	D.	AREA	D.	AREA
1	20	314.2	17	227.0	18	254.5	18	254.5	20	314.2	18	254.5
2	15	176.7	7	38.5	10	78.5	12	113.1	13	132.7	13	132.7
3	12	113.1	8	50.3	11	95.0	12	113.1	12	113.1	12	113.1
4	21	346.4	16	201.1	14	153.9	18	254. 5	19	283.5	20	314.2
TCPAL AREA		950.4		516.9		581.9		735.2		843.5		814.5
$\%$ Control												
Area		100		54.4		61.2		77.4		88.8		85.7
VEINS												
1	42	1,385.4	42	1,385.4	45	1,590.4	42	1,385.4	40	1,256.6	40	1,256.6
2	37	1,075.2	44	1,520.5	47	1,734.9	45	1,590.4	42	1,385.4	40	1,256.6
3	29	660.5	41	1,320.3	46	1,661.9	45	1,590.4	40	1,256.6	38	1,134.1
4	37	1,075.2	39	1,194.6	40	1,256.6	33	1,134.1	34	907.9	38	1,134.1
5	38	1,134.1	40	1,256.6	43	1,432,2	40	1,256.6	40	1,256.6	41	$1,320.3$
TOTAI ARTA		5,330.4		6,677.4		7,696.0		6,956.9		6,063.1		6,101.7
\% Control												
Area		100		125.3		144.4		130.5		113.7		114.7

[^9]

		TTM?	$\begin{array}{r} \text { IN } \\ 3 \end{array}$	HINUTES A mins.	$\begin{gathered} \text { ETY } 2 \text { E } \\ 6 \end{gathered}$	INJECTI mins.	$\begin{array}{r} \text { N OI } \\ 15 \end{array}$	TACTIC A mins.		INTO CHEF mins.		JCH mins.
ARTERIES	D.	AREA										
1	32	804*2	30	706.9	34	907.9	36	1,017.9	34	907.9	34	907.9
2	42	1,385.4	46	1,661.9	48	1,809.6	48	1,809.6	48	1,809.6	42	1,385.4
3	36	1,017.9	40	1,256.6	42	1,385.4	46	1,661.9	42	1,385.4	38	1,134.1
TOTAI AREA		3,207.5		3,625.4		4,102.9		4,489.4		4,102.9		3,427.4
\% Control												
Area		100		113.0		127.9		140.0		127.9		106.9
VæINS												
1	30	706.9	34	907.9	36	1,017.9	34	907.9	36	1,017.9	32	804.2
2	42	1,385.4	44	1,520.5	44	1,520.5	44	1,520.5	42	1,385.4	42	1,385.4
3	44	1,520.5	46	1,661.9	50	1,963.5	48	1,809.6	48	1,809.6	46	1,661.9
4	38	1,134.1	46	1,661.9	46	1,661.9	48	1,809.6	50	1,963.5	48	1,809.6
TOTAI AREA		4,746.9		5,752.2		6,163.8		6,047.6		6,176.4		5,661.1
\% Control												
Area		100		121.2		129.8		127.4		130.1		119.3

SUPPORTING TABLE 69
促

SUPPORTING TABLE 70

		Control	$\begin{array}{r} \text { IN } \\ 3 \end{array}$	MINUTES mins.	PEP	INJECTIO mins.	$\begin{gathered} 0 \mathrm{~F} \\ 15 \end{gathered}$	LACTIC mins.	$\begin{aligned} & \text { CID } \\ & 30 \end{aligned}$	INTO CH mins.		JCH mins.
ARTERIES	D.	AREA	D.	ARFA	D.	AREA	D.	AREA	D.	AREA	D.	AREA
	34	907.9	38	1,134.1	40	1,256.6	40	1,256.6	42	1,385.4	40	$1,256.6$
2	32	804.2	40	1,256.6	44	1,520.5	42	1,385.4	46	1,661.9	40	1,256.6
3	28	615.8	24	452.4	24	452.4	28	615.8	26	530.9	28	615.8
4	18	254.5	20	314.2	18	254.5	22	380.1	24	452.4	20	314.2
TOTAT AREA		2,582.4		3,157.3		3,484.0		3,637.9		4,030.6		3,443.2
$\%$ Control												
Area		100		122.3		134.9		140.9		156.1		133.3
VETHS												
1	26	530.9	28	615.8	30	706.9	30	706.9	32	804.2	30	706.9
2	20	314.2	20	314.2	18	254.5	22	380.1	20	314.2	22	380.1
3	20	314.2	20	314.2	24	452.4	22	380.1	22	380.1	24	452.4
4	32	804.2	36	1,017.9	38	1,134.1	40	1,256.6	36	1,017.9	30	706.9
TOTAL AREA		1,963.5		2,262.1		2,547.9		2,723.7		2,516.4		2,246.3
\% Control												
Area		100		115.2		129.8		138.7		128.2		114.4

SUPPORT ING TABLE 71

ACPION OF CORTISONE ACETATE ON THE MICROCIRCUIATION. EXPERIMENT 1.
Local injection of 50 micrograms cortisone acetate in 0.05 ml.
Ringer's solution into the Hamster cheek Pouch.

	Control		1 3	MINUTES ins.		INJECT mins.		F CORTIS mins.		NTO CHETE mins.		CH mins.
ARTERIES	D.	AREA	D.	ARTA								
1	52	2,123.7	52	2,123.7	50	1,963.5	48	1,809.6	48	1,809.6	48	1,809.6
2	50	1,963.5	50	1,963.5	50	1.963 .5	46	1,661.9	44	1,520.5	42	1,385.4
3	39	1,134.1	40	1,256.6	38	1,134.1	36	1,017.9	30	706.9	32	804.2
4	18	254.5	22	380.1	24	452.4	24	452.4	20	314.2	22	380.1
TOTAI AREA		5,475.8		5,723.9		5,513.5		4,941.8		4,351.2		4,379.3
\% Control												
Area		100		$104 \cdot 5$		100.7		90.2		79.5		80.0
VEINS												
1	56	2,463.0	54	2,290.2	52	2,123.7	50	1,963.5	52	2,123.7	54	2,290.2
2	50	1,963.5	50	1,963.5	48	1,809.6	50	1,963.5	50	1,963.5	50	1,963.5
3	42	1,385.4	38	1,134.1	36	1,017.9	34	907.9	30	706.9	32	804.2
4	48	1,809.6	50	1,963.5	50	1,963.5	50	1,963.5	50	1,963.5	52	2,123.7
5	30	706.9	26	530.9	26	530.9	30	706.9	28	615.8	30	706.9
TOTAI AREA		8,328.4		7,882.2		7,445.6		7,505.3		7,373.4		7,888.5
\% Control												
Area		100		94.6		89.4		90.1		88.4		94.7

SUPPORTING TABLE 72
$\begin{array}{r}\text { ACTION OF CORTISONE ACETATE ON THE MICROCIRCUTATION. EXPERTIENT } 2 . \\ \text { Local injection of } 50 \text { micrograms cortisone acetate in } 0.05 \mathrm{ml} . \\ \text { Ringer's solution into the Hamster Cheek Pouch. } \\ \hline\end{array}$

	Control		3 mins.		6 mins.		15 mins.		30 mins .		60 mins.	
ARTERIES	D.	ARTBA	D.	AREA	D.	AREA	D.	AR迷A	D.	AREA	D.	AREA
1	58	2,642.1	58	2,642.1	60	2,827.4	56	2,463.0	56	2,463.0	60	2,827.4
2	36	1,017.9	34	907.9	38	1,134.1	36	1,017.9	34	907.9	34	907.9
3	62	3,019.1	62	3,019.1	60	2,827.4	60	2,827.4	60	2,827.4	60	2,827.4
TOTAL AREA		6,679.1		6,569.1		6,788.9		6,308.3		6,198.3		6,562.7
\% Control												
Area		100		98.4		101.6		94.4		92.8		98.3
VEINS												
1	24	452.4	22	380.1	22	380.1	20	380.1	22	380.1	24	
2	40	1,256.6	40	1,256.6	38	1,134.1	40	1,256.6	40	1,256.6	40	1,256.6
3	48	1,809.6	46	1,661.9	44	1,520.5	46	1,661.9	48	1,809.6	46	1,661.9
4	42	1,385.4	40	1,256.6	42	1,385.4	40	1,256.6	40	1,256.6	44	1,520.5
TOTAI AREA		4,904.0		$4,555.2$		4,420.1		4,555.2		4.702 .9		4,891.4
\% Control												
Area		100		92.9		90.1		92.9		95.9		99.7

SUPPOPITING TABIE 73

		Control		MINUTES mins.		INJECI mins.	15	CORTIS mins.	30	TTO CHEE mins.	POU 60	mins.
ARTERIES	D.	AREA.	D.	AREA								
1	20	314.2	20	314.2	18	254.5	20	314.2	22	380.1	20	314.2
2	24	452.4	22	380.1	20	314.2	22	380.1	22	380.1	24	452.4
3	60	2,827.4	62	3,019.1	60	2,827.4	62	3,019.1	60	2,827.4	62	3,019.1
TOTAL AREA \% Control Area		3,594.0		3.713 .4		3,396.1		3,713.4		3,587.6		3,785.7
		100		103.3		94.5		103.3		99.8		105.3
VEINS												
1	32	804.2	30	706.9	32	804.2	32	804.2	30	706.9	30	706.9
2	38	1,134.1	38	1,134.1	36	1,017.9	36	1,017.9	40	1,256.6	38	1,134.1
3	26	530.9	24	452.4	28	615.8	28	615.8	30	706.9	28	615.8
4	35	962.1	38	1,134.1	38	1,134.1	38	1,134.1	38	1,134.1	34	907.9
TOTAL AREA		3,431.3		3,427.5		3,572.0		3,572.0		$3,804.5$		3,364.7
\% Control												
		100		99.9		104.1		104.1		110.9		98.1

SUPPPORT ING TABITE 75
A) ACTION OF ENDOTOXIN ON THE MICROCTRCUIATION. EXPERIMENT 2.
Local injection of 100 micrograms E. coli 026:B6 lipopolysaccharide
in 0.05 ml . Ringer's solution into the Hamster Cheek Pouch.

	Control		$\begin{gathered} \text { ME TN } \\ 3 \end{gathered}$	IMINUTES mins.		ER INJECT mins.	$\begin{array}{r} \text { ION } \\ 15 \end{array}$	OF BNDOTO mins.	$\begin{array}{r} \mathrm{ZIN} \\ 30 \end{array}$	INTO CHEEP mins.		UCH mins.
ARTERIES	D.	AREA	D.	AREA	D.	ARPA	D.	AREA	D.	AREA	D.	AREA
	80	5,026.5	92	6,647.6	90	6,361.7	88	6,082.1	88	6,082.1	84	5,541.8
	72	4,071.5	72	4,071.5	78	4,778.4	82	5,281.0	80	5,026.5	78	4,778.4
	30	706.9	32	804.2	40	1,256.6	44	1,520.5	42	1,385.4	38	1,134.1
	78	4,778.4	80	5,026.5	84	5,541.8	82	5,281.0	88	6,082.1	86	5,674.5
$\begin{aligned} & \text { TORAL ARTA } \\ & \% \text { Control } \\ & \text { Area } \end{aligned}$		14,583.3		16,549.8		17,938.5		18,154.6		18,576.1		17,128.8
		100		113.5		123.0		124.6		127.4		117.5
VEITS												
1	122	11,689.9	120	11,309.7	114	10,207.0	122	11,689.9	118	10,936.0	118	10,936.0
2	84	5,541.8	82	5,281.0	80	5,026.5	80	5,026.5	82	5,281.0	82	5,281.0
3	34	907.9	32	804.2	36	1,017.9	38	1,134.1	42	1,385.4	40	1,256.6
4	92	6,647.6	94	6,939.8	92	6,647.6	88	6,082.1	90	6,361.7	90	6,361.7
TOTAL AREA		24,787.2		24,334.7		22,899.0		23,932.6		23,964.1		23,835.3
\% Control		100		98.2		92.4		96.6		96.7		96.2

[^10]
SUPPORT ING TABIE 76

	A) ACTION OF ENDOTOXIN ON THE MICROCIRCUIATION. EXPERTMENT 3. Local injection of 100 micrograms E. coli 026:B6 lipopolysaccharide in 0.05 ml . Ringer's solution into the Hamster Cheek Pouch.											
TIME IN MINUTES AFPER INJECMION OF ENDOTOXIN INTO CHEEK POUC												
	Control		3 mins.		6 mins.		15 mins.		30 mins.		60 mins.	
ARTPRIES	D.	APGA	D.	AREA	D.	AREA	D.	AREA	D.	ARBA	D.	AREA
1	48	1,809.6	58	2,642.1	60	2,827.4	62	3,019.1	62	3,019.1	62	3,019.1
2	52	2,123.7	60	2,827.4	58	2,642.1	60	2,827.4	62	3,019.1	64	3,217.0
3	28	615.8	36	1,017.9	38	1,134.1	34	907.9	32	804.2	34	907.9
4	12	113.1	12	113.1	14	153.9	14	153.9	14	153.9	14	153.9
5	14	153.9	12	113.1	14	153.9	14	153.9	16	201.1	14	153.9
TOTAL AREA \% Control Area		4,816.1		6,713.6		6,911.4		7,062.2		7,197.4		7,451.8
		100		139.4		143.5		146.6		149.4		154.7
VEINS												
1	50	1,963.5	50	1,963.5	48	1,809.6	50	1,963.5	50	1,963.5	48	1,809.6
2	44	1,520.5	46	1,661.9	44	1,520.5	46	1,661.9	44	1,520.5	46	1,661.9
3	42	1,385.4	36	1,017.9	34	907.9	34	907.9	36	1,017.9	38	1,134.1
4	44	1,520.5	38	1,134.1	34	907.9	36	1,017.9	40	1,256.6	42	1,385.4
5	48	1,809.6	50	1,963.5	48	1,809.6	50	1,963.5	50	1,963,5	50	1,963.5
TOTAI AREA \% Control		8,199.5		7,740.9		6,955.5		7,514.7		7,722.0		7,954.5
Area		100		94.4		84.8		91.6		94.2		97.0

SUPPORT ING TABIE 77

	A) ACTION OF ENDOTOXIN ON THE MICROCIRCULATION. EXPERTMENP 4. ocal injection of 100 micrograms 1 . coli 026:B6 lipopolysaccharide in 0.05 ml . Ringer's solution into the Hamster Cheek Pouch.											
	Control		TINE IN MINUTBS AFTER INJECTION OF ENDOTOXIN INTO CHEPK POUCH 3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTIERTES	D.	AREA										
1	48	1,809.6	40	1,256.6	42	1,385.4	44	1,520.5	50	1,963.5	46	1,661.9
2	28	615.8	24	452.4	24	452.4	30	706.9	32	804.2	40	1,256.6
3	36	1,017.9	38	1,134.1	40	1,256.6	48	1,809.6	46	1,661.9	46	1,661.9
4	22	380.1	24	452.4	32	804.2	30	706.9	30	706.9	32	804.2
5	20	314.2	22	380.1	30	706.9	28	615.8	24	452.4	26	530.9
6	18	254.5	18	254.5	20	314.2	20	314.2	22	380.1	20	314.2
TOTAL AREA		4,392.1		3,930.1		4,919.7		5,673.9		5,959.0		6,229.7
Area $\%$ Control		100		89.4		112.0		129.2		135.9		141.8
VEINS												
1	52	2,123.7	48	1,809.6	50	1,963.5	48	1,809. 6	46	1,661.9	58	2,642.1
2	44	1,520.5	42	1,385.4	42	1,385.4	38	1,134.1	40	1,256.6	34	907.9
3	58	2,642.1	60	2,827.4	58	2,642.1	54	2,290.2	58	2,642,1	58	2,642.1
4	46	1,661.9	50	1,863.5	52	2,123.7	52	2,123.7	50	1,963.5	48	1,809.6
5	40	1,256.6	32	804.2	30	706.9	28	615.8	26	530.9	24	452.4
TOTAL AREA		9,204,8		8,790.1		8,821.6		7,973.4		8,055.0		8,454.1
$\%$ Control Area		100		95.5		95.8		86.6		87.5		91.8

SUPPORTING TABLE 78

	Control		TIME IN MTNUTES AETGR INJECTION OR EMDOTOXIN INTO CHEEK POUCH 3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ART YRIES	D.	ARTA	D.	AREA	D.	AREA	D.	ARTA	D.	ARTA	D.	AReA
1	58	2,642.1	60	2,827.4	66	3,421.2	60	2,827.4	60	2,827.4	60	2,827.4
2	60	2,827.4	62	3,019.1	72	4,071.5	68	3,631.7	64	3,217.0	62	3,019.1
3	36	1,017.9	40	1,256.6	44	1,520.5	40	1,256.6	38	1,134.1	34	907.9
TOTAL AREA $\%$ Control		$6,487.4$		7,103.1		9,013.2		7,715.7		7,178.5		6,754.4
Area		100		109.5		138.5		118.9		110.7		104.1
VEINS												
1	50	1,963.5	46	1,661.9	46	1,661.9	50	1,963.5	48	1,809.6	50	1,963.5
2	16	201.1	16	201.1	16	201.1	18	254.5	18	254.5	20	314.2
3	48	1,809.6	44	1.520 .5	40	1,256.6	42	1,385.4	44	1,520.5	44	1,520.5
4	62	3,019.1	56	2,463.0	50	1,963.5	58	2,642.1	58	2,642.1	60	2,827.4
TOTAL AREA		6,993.3		5,846.5		5,083.1		6,245.5		6,226.7		6,625.6
\% Control												
Area		100		83.6		72.7		89.3		89.0		94.7

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.

	Control		TIME IN NINUTES AFTER INJECTION OF SNDOTOXIN INPO CHEEK POUCH 3 mins. 6 mins. 15 mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	AREA	D.	ARTA	D.	AREA	D.	AREA	D.	AREA
	38	1,134.1	34	907.9	34	907.9	34	907.9	36	1,017.9	38	1,134.1
2	36	1,017.9	32	804.2	40	1,256.6	40	1,256.6	42	1,385.4	40	1,256.6
3	34	907.9	30	706.9	38	1,134.1	38	1,134.1	38	1,134.1	34	907.9
TOTAI AREA \% Control Area		3,059.9		2,419.0		3,298.6		3,298.6		3,537.4		3,298.6
		100		79.1		107.8		107.8		115.6		107.8
VEINS												
1	40	1,256.6	38	1,134.1	34	907.9	32	804.2	38	1,134.1	40	1,256.6
2	42	1,385.4	40	1,256.6	40	1,256,6	38	1,134.1	38	1,134.1	38	1,134.1
3	42	1,385.4	44	1,520.5	42	1,385.4	40	1,256.6	42	1,385.4	44	1,520.5
4	28	615.8	28	615.8	30	706.9	30	706.9	28	615.8	28	615.8
TOTAL ARTA		4,643.2		4,527.0		4,256.8		3,901.8		4,269.4		$4,527.0$
\% Control												
Area		100		97.5		91.7		84.0		91.9		97.5

B) ACTION OF ENDOTOXIN ON THS MTCROCIRCULATION. EXPERINDNT 1.
Local injection of 500 micrograms E. coli 026:B6 lipopolysaccharide
in 0.05 ml . Ringerts solution into the Hamster Cheek Pouch.

	Control		TINR IN MTNUTES AFTER INJ 3 mins. 6 mins.				JECTION OF ENDOTOXIN INNO CHEPK POUCH15 mins. $\quad 30$ mins. 60 mins.					
ARTERTIES	D.	AREA										
	36	1,017.9	50	1,963.5	50	1,963.5	48	1,809.6	40	1,256.6	38	1,134.1
2	20	314.2	26	530.9	30	706.9	28	615.8	26	530.9	20	314.2
3	12	113.1	20	314.2	22	380.1	18	254.5	14	153.9	14	153.9
4	45	1,590.4	52	2,123.7	58	2,642.1	58	2,642.1	52	2,123.7	46	1,661.9
TOTAL AREA		3,035.6		4,932.3		5,692.6		5,322.0		4,065.1		3,264.1
\% Control Area		100		162.5		187.5		175.3		133.9		107.5
VEITS												
1	60	2,827.4	62	3,019.1	60	2,827.4	60	2,827.4	58	2,642.1	60	2,827.4
2	50	1,963.5	46	1,661.9	50	1,963.1	44	1,520.5	48	1,809.6	46	1,661.9
3	30	706.9	26	530.9	26	530.9	22	380.1	26	530.9	26	530.9
4	32	804.2	32	804.2	30	706.9	34	907.9	36	1,017.9	32	804.2
TOTAI APEA		6,302.0		6,016.1		6,028.3		5,635.9		6,000.5		5,824.4
\% Control Area		100		95.5		95.7		89.4		95.2		92.4

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORTING TABLE 81

B) ACTION OF BNDOTOXIN ON THE MICROCIRCULATION. EYPERIMENT 2.
Local injection of 500 micrograms E. coli 026:B6 Iipopolysaccharide
in 0.05 ml . Ringer's solution into the Hamster Cheek Pouch.

	Control		$\begin{aligned} & \text { TINE IN } \\ & 3 \text { mins. } \end{aligned}$		$\begin{array}{r} \text { TTES } \\ 6 \end{array}$	$A F T E R$ INJ mins.	$\begin{gathered} \text { FERI } \\ 15 \end{gathered}$	ON OT EMD mins.	$30 \mathrm{TOX}$	IN INTO mins.	$\begin{gathered} \text { CHEES } \\ 60 \end{gathered}$	$\begin{aligned} & \mathrm{X} \text { POUCH } \\ & \text { mins. } \end{aligned}$
ARTIERTES	D.	AREA										
1	32	804.2	30	706.9	40	1,256.6	44	1,520.5	40	1,256.6	38	1,134.1
2	26	530.9	30	706.9	34	907.9	38	1,134.1	38	1,134.1	36	1,017.9
3	28	615.8	28	615.8	30	706.9	32	804.2	32	804.2	30	706.9
TOTAL AREA		1,950.9		2,029.6		2,871.4		3,458.8		3,194.9		2,858.9
$\%$ Control												
Area		100		104.0		147.2		177.3		163.8		146.5
VEITS												
1	44	1,520.5	38	1,134.1	38	1,134.1	36	1,017.9	38	1,134.1	38	1,134.1
2	32	804.2	30	706.9	30	706.9	28	615.8	30	706.9	30	706.9
3	44	1,520.5	46	1,661.9	44	1,520.5	40	1,256.6	42	1,385.4	44	1,520.5
4	20	314.2	20	314.2	18	254.5	20	314.2	18	254.5	22	380.1
TOTAL AREA		4,159.4		3,817.1		3,616.0		3,204.5		3,480.9		3,741.6
$\begin{gathered} \% \text { Control } \\ \text { Area } \end{gathered}$		100		91.8		86.9		77.0		83.7		90.0

SUPPORTING TABLE 82

	Control		T INE IN MINUTES AFPER IN3 mins. 6 mins.				JEGTION OF BMDOTOXIN INTO CHEEK POUCH15 mins. $\quad 30$ mins. 60 mins.					
ARTERTES	D.	AREA										
1	26	530.9	30	706.9	30	706.9	32	804.2	30	706.9	28	615.8
2	18	254.5	20	314.2	24	452.4	22	380.1	22	380.1	22	380.1
3	22	380.1	28	615.8	32	804.2	34	907.9	32	804.2	30	706.9
4	12	113.1	12	113.1	14	153.9	14	153.9	14	153.9	14	153.9
TOTAL AREA		1,278.6		1,750.0		2,117.4		2,246.1		2,045.1		1,856.7
\% Control Area		100		136.9		165.6		175.7		159.9		145.2
VPINS												
1	24	452.4	20	314.2	22	380.1	22	380.1	20	314.2	20	314.2
2	26	530.9	26	530.9	26	530.9	24	452.4	24	452.4	24	452.4
3	20	314.2	14	153.9	14	153.9	10	78.5	18	254.5	20	314.2
4	44	1,520.5	34	907.9	34	907.9	30	706.9	30	706.9	34	907.9
TOTAL ARPA		2,818.0		1,906.9		1,972.8		1,617.9		1,728.0		1,988.7
\% Control												
Area		100		67.7		70.0		57.4		61.3		70.6

[^11]SUPPORT ING TABLE 83

C) ACTION OF ENDOROXIN ON THE MICROCIRCUIATION. BXPRRIMENT 1.
Local injection of 0.05 ml crude extract E. coli 026:B6
antigen into the Hamster Cheek pouch.

Control

-NMホL

,

	Control		TINE ITM MIMUTES AFTER				INJECTIONS OF ENDOTOXIN INTO 15 mins. $\quad 30$ mins.				CHEEK POUCH 60 mins.	
ARTIRIES	D.	AREA										
1	38	1,134.1	42	1,385.4	42	1,385.4	40	1,256.6	40	1,256.6	40	1,256.6
2	32	804.2	38	1,134.1	40	1,256.6	40	1,256.6	42	1,385.4	36	1,017.9
3	20	314.2	18	254.5	22	380.1	22	380.1	20	314.2	18	254.5
4	10	78.5	10	78.5	12	113.1	12	113.1	14	153.9	10	78.5
5	12	113.1	12	113.1	12	113.1	10	78.5	12	113.1	10	78.5
TOTAL AREA		2,444,1		2,965.6		3,248.3		3,084.9		3,223.2		2,686.0
$\%$ Control		100		121.3		132.9		126.2		131.9		109.9
VEINS												
1	20	314.2	20	314.2	22	380.1	18	254.5	20	314.2	20	314.2
2	24	452.4	22	380.1	20	314.2	22	380.1	22	380.1	20	314.2
3	22	380.1	20	314.2	22	380.1	18	254.5	20	314.2	22	380.1
	34	907.9	30	706.9	28	615.8	30	706.9	30	706.9	28	615.8
5	32	804.2	28	615.8	28	615.8	26	530.9	28	615.8	30	706.9
TOTAL AREA		2,858.8		2,331.2		2,306.0		2,126.9		2,331.2		2,331.2
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		81.5		80.7		74.4		81.5		81.5

SUPPORTING TABLE 84
C) ACPION OF ENDOTOXIN ON THE MICROCIPCUTATION. EXPGRINENT 2.
Local injection of 0.05 ml . crude extract E. coli 026:B6
antigen into the Hamster Cheek Pouch.

	Control		TIME IN 3 mins.		TES 6	AFTER INJ mins.	$\begin{array}{r} \mathrm{ECT} \\ 15 \end{array}$	ON OF END mins.	$\begin{gathered} \text { OTOX } \\ 30 \end{gathered}$	IN INTO mins.	$\begin{array}{r} \mathrm{HEE} \\ 60 \end{array}$	$\begin{aligned} & \text { I POUCH } \\ & \text { mins. } \end{aligned}$
ARTERIES	D.	AREA	D.	AREA	D.	AREA	D.	AREA	D.	APEA	D.	AREA
1	28	615.8	20	314.2	22	380.1	30	706.9	36	1,017.9	32	804.2
2	26	530.9	20	314.2	22	380.1	28	615.8	32	. 804.2	30	706.9
3	20	314.2	16	201.1	16	201.1	20	314.2	22	380.1	20	314.2
TOTAL AREA		1,460.9		829.5		961.3		1,636.9		2,202.2		1,825.3
\% Control												
Area		100		56.8		65.8		112.0		150.7		124.9
VPINS												
1	28	615.8	24	452.4	26	530.9	26	530.9	26	530.9	26	530.9
2	32	804.2	32	804.2	32	804.2	30	706.9	28	615.8	30	706.9
3	30	706.9	28	615.8	30	706.9	28	615.8	30	706.9	32	804.2
4	36	1,017.9	30	706.9	28	615.8	30	706.9	34	907.9	32	804.2
TOTAI AREA		3,144.8		2,579.3		2,657.8		$2,560.5$		2,761.5		2,846.2
\% Control												
Area		100		82.0		84.5		81.4		87.8		90.5

[^12]SUPPORT INT TABLE 85
C) ACTION OP INDOROXIN ON THE MICROCIRCUTATION. EXPERTIENT 3.
Local injection of 0.05 ml . crude extract E. coli $026: \mathrm{B6}$
antigen into the Hamster Cheek Pouch.

	Control		TIME IN MINUTES APTRR INJECTION OF ENDOTOXIN INTO CHEEK POUCH 3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	AREA	D.	AREA	D.	ARTA	D.	AREA	D.	AREA
1	58	2,642.1	52	2,123.7	54	2,290.2	60	2,827.4	60	2,827.4	58	2,642.1
2	36	1,017.9	40	1,256.6	38	1,134.1	42	1,385.4	40	1,256.6	40	1,256.6
3	32	804.2	38	1,134.1	40	1,256.6	38	1,134.1	40	1,256.6	38	1,134.1
4	40	1,256.6	40	1,256.6	48	1,809.6	44	1,520.5	42	1,385.4	40	1,256.6
TOTAI AREA		5,720.8		5,771.0		6,490.5		6,867.4		6,726.0		6,289.4
\% Control Area		100		100.9		113.5		120.0		117.6		109.9
VEITSS												
1	70	3,848.5	70	3,848.5	64	3,217.0	64	3,217.0	62	3,019.1	66	3,421.2
2	52	2,123.7	46	1,661.9	44	1,520.5	38	1,134.1	38	1,134.1	40	1,256.6
3	30	706.9	30	706.9	28	645.8:	28	615.8	30	706.9	30	706.9
4	36	1,017.9	36	1,017.9	34	907.9	32	804.2	34	907.9	35	1,017.9
TOTAL AREA		7,697.0		7,235.2		6,261.2		5,771.1		5,768.0		6,402.6
\% Control												
Area		100		94.0		81.3		75.0		74.9		83.2

SUPPORTING TABLF 86
D) ACTION OF ENDOTOXIN ON THF MICROCIRCULATION. EXPBRIMENT 1.
Local injection of 0.05 ml . E. coli filtrate
into the Hamster Cheek Pouch.

	Control		TINTEN MINUTE 3 mins.			$A F T E R$ mins.		ON OR 胃N mins.	$\begin{gathered} \text { OTOX } \\ 30 \end{gathered}$	IN INPO mins.	$\begin{gathered} \text { HESI } \\ 60 \end{gathered}$	$\begin{aligned} & \mathrm{S} \text { POUCH } \\ & \text { mins. } \end{aligned}$
ARTMRIES	D.	AREA	D.	ART3A	D.	AREA	D.		D.	AREA	D.	AREA
1	12	113.1	18	254.5	18	254.5	22	314.2	22	380.1		-
2	25	490.9	48	1,809.6	48	1,809.6	52	2,123.7	52	2,123.7		-
3	52	2,123.7	52	2,123.7	54	2,290.2	58	2,642.1	54	2,290.2		-
TOTAL AREA		2,727.7		4,187.8		4,354.3		5,080.0		4,794.0		-
\% Control												
Area		100		153.5		159.6		186.2		175.8		-
VEINS												
1	34	908.0	32	804.2	34	908.0	34	908.0	28	615.8		-
2	30	706.9	22	380.1	24	452.4	28	615.8	24	452.4		-
3	28	615.8	24	452.4	28	615.8	22	380.1	22	380.1		-
4	24	452.4	28	615.8	10	78.5	20	314.2	20	314.2		-
TOTAI AREA		2,683.1		2,252.5		2,054.7		2,218.1		1,762,5		-
\% Control												
Area		100		84.0		76.6		82.7		65.7		-

	Control		TIME TIV MINUTES 3 mins.			AFTER INJ mins.	$\begin{gathered} E C T \\ 15 \end{gathered}$	ON OE BND mins.	$\begin{gathered} \text { OTOX } \\ 30 \end{gathered}$	IN INTO mins.	$\begin{gathered} \mathrm{HEPK} \\ 60 \end{gathered}$	$\begin{aligned} & \mathrm{K} \text { POUCH } \\ & \text { mins. } \end{aligned}$
ARTMRTES	D.	ARTEA	D.	AREA	D.	ARPA	D.	AREA	D.	AREA	D.	AREA
1	40	1,256.6	42	1,385.4	36	1,017.9	54	2,290.2	46	1,661,9	52	2,123.7
2	36	1,017.9	32	804.2	32	804.2	40	1,256.6	40	1,256.6	48	1,809.6
3	18	254.5	16	201.1	18	254.5	30	706.9	32	804.2	34	907.9
TORAJ AREA		2,529.0		2,390.7		$2,076.6$		$4,253.7$		3,722.7		4,841.2
\% Control												
Area		100		95.3		82. 1		168.1		147.1		191.3
VEINS												
1	40	1,256.6	34	907.9	32	804.2	36	1,017.9	30	705.9	28	615.8
2	18	254.5	20	314.2	14	153.9	20	314.2	12	113.1	14	153.9
3	15	201.1	14	153.9	20	314.2	20	314.2	16	201.1	18	254.5
4	30	706.9	24	452.4	22	380.1	24	452.4	22	380.1	24	452.4
5	18	254.5	14	153.9	16	201.1	18	254.5	14	153.9	14	153.9
TOTAL APFA		2,673.6		1,982.3		1,853.5		2,353.2		1,555.1		1,630.5
\% Control												
Area		100		74.1		69.4		88.0		53.2		61.0

SUPPORT ING TABIE 88

	Control		TIME IN MINUTES AFTER INJECTION OF EMDOTOXIN INTO CHEEK POUCH3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	AR ${ }^{\text {P }}$ A	D.	AREA	D.	AREA	D.	AREA	D.	AREA
1	30	706.9	30	706.9	34	907.9	40	1,256.6	36	1,017.9	38	1,134.1
2	12	113.1	12	113.1	18	254.5	12	113.1	12	113.1	12	113.1
3	12	113.1	12	113.1	20	314.2	18	254.5	16	201.1	16	201.1
TOTAL AREA		933.1		933.1		1,476.6		1,624.2		1,332.1		1,448.3
\% Control												
Area		100		100		158.2		174.0		142.8		155.2
VEITS												
1	38	1,134.1	40	1,256.6	36	1,017.9	38	1,134.1	36	1,017.9	38	1,134.1
2	20	314.2	18	254.5	16	201.1	20	314.2	20	314.2	20	314.2
3	38	1,134.1	34	907.9	34	907.9	30	706.9	32	804.3	36	1,017.9
4	22	380.1	20	314.2	18	254.5	16	201.1	14	153.9	14	153.9
TOTAL AREA		2,962.5		2,733.2		2,381.4		2,356.3		2,290.3		2,620.1
\% Control												
Area		100		92.3		80.4		79.5		77.3		88.4

SUPPORT ING TABTE 89

	Control		TTMETN M 3 mins.		$\begin{array}{r} \text { IUTI } \\ 6 \end{array}$	S AFTER mins.	$\begin{gathered} \text { NER } \\ 15 \end{gathered}$	VEENOUS IN mins.		ION OF mins.		XIN mins.
ARTMRIES	D.	ARPA	D.	$A R E A$	D.	AREA	D.	AREA	D.	ARTA	D.	AR2A
1	48	1,809.6	42	1,385.4	32	804.2	32	804:2	40	1,256.6	38	1,134.1
2	32	804.2	32	804.2	26	530.9	16	201.1	20	314.2	22	380.1
3	40	1,256.6	40	1,256.6	32	804.2	30	706.9	32	804.2	36	1,017.9
4	30	706.9	28	615.8	20	314.2	20	314.2	18	254.5	18	254.5
TOTAL ARFA		4,577.3		4,062.0		2,453.5		2,026.4		2,629.5		2,786.6
$\%$ Control												
Area		100		88.7		53.6		44.3		57.4		60.9
VEINS												
1	56	2,463.0	58	2,642.1	54	2,290.2	60	2,827.4	72	4,071.5	62	3,019.1
2	56	2,463.0	56	2,463.0	52	2,123.7	58	2,642.1	62	3,019.1	64	3,217.0
3	28	615.8	30	706.9	28	615.8	28	615.8	30	706.9	32	804.2
4	32	804.2	30	706.9	30	706.9	30	706.9	30	706.9	26	530.9
5	54	2,290.2	52	2,123.7	50	1,963.5	52	2,123.7	58	2,642.1	56	2,463.0
6	32	804.2	28	615.8	32	804.2	38	$1,134.1$	40	1,256.6	36	1,017.9
TOTAL AREA		9,440.4		9,258.4		8,504.3		10,050.0		12,403.1		11,052.1
$\%$ Control												
Area		100		98.1		90.1		106.4		131.4		117.1

SUPPORT ING TABITP 90

SUPP ORT ING TABIE 91

travenous injection of 2 mgms. E. coli 026:B6 Iipopolysaccharide in 0.5 ml . Ringer's solution and observation of changes in the Hamster Cheek Pouch Microvasculature.				

	Control		TIM球 IN 3 mins.		$\begin{gathered} \text { NUTI } \\ 5 \end{gathered}$	APTYR mins.		THOUS II mins.		ION OF E mins.		XIN. mins.
ARTIRIFS123	D.	AR超A	D.	AREA	D.	AREA	D.	AR23A	D.	ARPA	D.	AREA
	44 20	$1,520.5$ 314.2	38 20	$1,134.1$ 314.2	40 18	$1,256.6$ 254.5	28 14	615.8 153.9	34 12	907.9 113.1	38 18	$1,134.1$ 254.5
	50	1,963.5	42	1,385.4	40	1,256.6	30	706.9	38	1,134.1	44	1,520.5
TOTAI AREA \% Control Area		3,798.2		2,833.7		2,767.7		1,475.6		2,155.1		2,909.1
		100		74.6		72.9		38.9		56.7		76.6
VPINS												
1	58	2,642.1	50	1,963.5	52	2,123.7	40	1,256.6	42	1,385.4	50	1,963.5
2	64	3,217.0	56	2,463.0	54	2,290.2	42	1,385.4	46	1,661.9	50	1,963.5
3	42	1,385.4	42	1,385.4	40	1,256.6	36	1,017.9	40	1,256.6	38	1,134.1
4	70	3,848.5	58	2,642.1	58	2,642.1	52	2,123.7	58	2,642.1	58	2,642.1
TOTAT AREA \% Control Area		$11,093.0$		8,454.0		8,312.6		5,783.6		6,946.0	7,703.2	
		100		76.2		74.9		52.1		62.6		69.4

SUPPORTING TABLE 92

	Control				NUT 6	S AFPIER mins.	$\begin{gathered} \mathrm{NJEC} \\ 15 \end{gathered}$	TION OF mins.	$\begin{gathered} \text { ERUN } \\ 30 \end{gathered}$	INTO CHI mins.	60	OUCH mins.
ARTERIES	D.	AREA	D.	ARPA	D.	AREA	D.	AREA	D.	AREA	D.	ARTA
1	50	1,963.5	35	1,017.9	44	1,520.5	46	1,661.9	38	1,134.1	36	1,017.9
2	44	1,520.5	38	1,134.1	46	1,661.9	46	1,661.9	42	1,385.4	40	1,256.6
3	28	615.8	20	314.2	30	706.9	30	706.9	30	706.9	28	615.8
4	18	254.5	16	201.1	20	314.2	22	380.1	18	254.5	18	254.5
TOTAI AREA		4,354.3		2,667.3		4,203.5		4,410.8		3,480.9		3,144.8
\% Control												
Area		100		61.3		96.5		101.3		79.9		72.2
VEINS												
1	40	1,256.6	40	1,256.6	42	1,385.4	42	1,385.4	40	1,256.6	42	
2	38	1,134,1	36	1,017.9	38	1,134.1	40	1,256.6	38	1,134.1	36	1,017.9
3	18	254.5	18	254.5	20	314.2	20	314.2	20	314.2	20	314.2
4	30	706.9	26	530.9	28	615.8	28	615.8	28	615.8	26	530.9
5	62	3,019.1	58	2,642.1	60	2,827.4	56	2,463.0	56	2,463.0	60	2,827.4
TOMAI AREA		6,371.2		5,702.0		6,276.9		6,035.0		5,783.7		$6,075.8$
$\%$ Control												
Area		100		85.5		98.5		94.7		90.8		95.4

	Control			TIME IN M mins.	$\begin{gathered} \text { INUTE } \\ 6 \end{gathered}$	ES ATMER I mins.		$\begin{aligned} & \text { CTION OF } \\ & \text { mins. } \end{aligned}$	$\begin{gathered} \text { SERUI } \\ 30 \end{gathered}$	$\begin{aligned} & \text { M INPO CHE } \\ & \text { mins. } \end{aligned}$	$\begin{gathered} \text { EEK I } \\ 60 \end{gathered}$	POUCH mins.
ARTERIES	D.	AREA	D.	AREA	D.	AREA	D.	AREA	D.	ARPA	D.	AREA
1	68	3,631.7	22	380.1	34	907.9	56	2,463.0	62	3,019.1	62	3,019.1
2	72	4,071.5	20	314.2	34	907.9	62	3,019.1	70	3,848.5	72	4,071.5
3	56	2,463.0	18	254.5	22	380.1	38	1,134.1	40	1,256.6	52	2,123.7
4	26	530.9	20	314.2	18	254.5	24	452.4	25	490.9	22	380.1
TOTAL AREA \% Control Area		10,697.1		1,263.0		2,450.4		7,068.6		8,615.1		9,594.4
		100		11.8		22.9		66.1		80.5		89.7
VEINS												
1	82	5,281.0	74	4,300.8	80	5,026.5	82	5,281.0	84	5,541.8	82	5,281.0
2	50	1,963.5	44	1,520.5	50	1,963.5	52	2,123.7	50	1,963.5	52	2,123.7
3	122	11,689.9	102	8,171.7	108	9,160.9	106	8,824.7	112	9,852.0	110	9,503.2
4	128	12,868.0	114	10,207.0	118	10,935.9	116	10,568.3	122	11,689.9	120	11,309.6
TOTAL AREA		31,802.4		24,200.0		27,086.8		26,797.7		29,047.2		28,217.5
\% Control												
		100		76.1		85.2		84.3		91.3		88.7

SUPPORT ING TABIE 95
ACTION OT MORNAL SERUR ON THE MICROCIRCULATION. EXPERTMEINT 3.
Local injection of 0.05 ml . normal human semm (No.3) into the Hamster Cheek Pouch.
业

	Control		TINE IN MINUTES AFPER INJEGTION OF SERUM INTO CHPEK POUCH3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA										
1	20	314.2	20	314.2	18	254.5	20	314.2	20	314.2	20	314.2
2	38	1,134.1	34	907.9	30	706.9	40	1,256.6	38	1,134.1	40	1,255.6
3	58	2,642.1	42	1,385.4	58	2,642.1	60	2,827.4	60	2,827.4	60	2,827.4
4	62	3,019.1	40	1,256.6	42	1,385.4	60	2,827.4	58	2,642.1	64	3,217.0
TOTAL AREA		7,109.5		3,864.1		4,988.9		7,225.6		6,917.8		7,615.2
\% Control												
Area		100		54.4		70.2		$101: 6$		97.3		107.1
VEINS												
1	34	907.9	32	804.2	38	1,134.1	36	1,017.9	32	804.2	34	907.9
2	59	2,734.0	60	2,827.4	62	3,019.1	58	2,642.1	52	2,123.7	56	2,463.0
3	92	6,647.6	90	6,361.7	96	7,238.2	102	8,171.2	100	7,854.0	94	6,939.8
4	70	3,848.5	74	4,300.8	72	4,071.5	70	3,848.5	68	3,631.7	70	3,848.5
TOTAL AREA		14,138,0		14,294.1		15,533.9		15,679.7		14,413.6		14,159.2
$\%$ Control												
Area		100		107.1		109.9		110.9		101.9		100.2

$D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.
SUPPORTTNG TABTE 96

ACTION OF NORMAL PLASMA ON THE MICROCIRCULATICN EXPBRIMENT 1.
 Iocal injection of 0.05 ml ．normal human plasma（No．1）
 into the Hamster Cheek Pouch．

	Control		TIME IN 3 mins．		UTPS 6	AFTRR I mins．	$\begin{gathered} J E C T \\ 15 \end{gathered}$	ION OR P mins．	$\begin{aligned} & \text { ASM } \\ & 30 \end{aligned}$	INTO CH mins．	玉K P 60	OUCH mins．
ARTIERI枵	D．	ARTA	D．	ARTA	D．	AR至A	D．	AREA	D．	AREA	D．	AREA
1	66	3，421．2	68	3，631．7	68	3，631．7	68	3，631．7	64	3，217．0		－
2	52	2，123．7	54	2，290．2	56	2，463．0	58	2，642．1	60	2，827．4		－
3	30	706．9	32	804.2	30	706．9	24	452．4	30	705.9		－
4	64	3，217．0	60	2，827．4	58	2，642．1	62	3，019．1	62	3，217．0		－
		9，468．8		9，553．5		9，443．7		9，745．3		9，968．3		－
\％Control												
Area		100		100.9		99.7		102.9		105.3		－
V7TMS												
	68		70		70		64		64	3，217．0		－
2	58	$2,642.1$	62	$3,019.1$	64	$3,019 \cdot 1$	58	2，642．1	54	2，290．2		－
3	42	1，385．4	40	1，256．6	40	1，256．6	36	1，017．9	38	1，134．1		－
4	26	530.9	24	452.4	20	314.2	26	530.9	24	452.4		－
TOTAL AREA		8，190．1		8，576．5		8，438．3		7，407．9		7，093．7		－
\％Control												
Area		100		104.7		103.0		90.4		86.6		－

SUPPORT ING TABTIT 97

,

	Control		TIME IN		APTER I		J※CTION OH 15 mins.		30	INTO CH mins.	60	OUCH mins.
ARTERIPS	D.	AREA	D.	AREA	D.	AREA	D.	ARFA	D.	AREA	D.	AREA
1	42	1,385.4	42	1,385.4	44	1,520.5	44	1,520.5	46	1,661.9	46	1,661.9
2	46	1,661.9	46	1,661.9	44	$1,520.5$	46	1,661.9	46	1,661.9	46	$1,661.9$
3	44	1,520.5	42	1.385 .4	42	$1,385.4$	44	$1,520.5$	40	$1,256.6$	42	$1,385.4$
4	18	254.5	18	254.5	16	201.1	20	314.2	16	201.1	18	254.5
TOTAI AREA		$4,822.3$		$4,687.2$		$4,627.5$		$5,017.1$		$4,781.5$		$4,963.7$
$\%$ Control												
Area		100		97.2		96.0		104.0		99.2		102.9
VETNS												
1	58	2,642.1	56	$2,463.0$	56	$2,463.0$	54	2,290.2	56	$2,463.0$	58	$2,642.1$
2	30	706.9	32	804.2	30	706.9	32	804.2	30	706.9	30	706.9
3	35	962.1	36	1,017.9	34	907.9	34	907.9	36	$1,017.9$	32	804.2
4	56	$2,463.0$	56	$2,463.0$	58	2,642.1	60	$2,827.4$	60	$2,827.4$	60	$2,827.4$
TOPAL ARPA		6.774 .1		$6,748.1$		$6,719.9$		$6,829.7$		7.015 .2		$6,980.6$
\% Control												
Area		100		99.6		99.2		100.8		103.6		103.0

[^13]SUPPORT ING TABIE 98

ACTION OF NORMAT PTASMA ON THE MICROCIRCULATION. EXPERIMENT 3.
Local injection of 0.05 ml . normal human plasma (No.3)
into the Hamster Cheek Pouch.

	Control		TIME IN MINUTES AFTER INJECTION OF PIASNA INIO CHERK POUCH3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERTES	D.	AREA	D.	AREA	D.	AREA	D.	ARPA	D.	AREA	D.	AREA
1	62	3,019.1	60	2,827.4	60	2,827.4	58	2,642.1	58	2,642.1	58	2,642.1
2	60	2,827.4	62	3,019.1	60	2,827.4	60	2,827.4	60	2,827.4	58	2,542.1
3	48	1,809.6	46	1,661.9	44	1,520.5	42	1,385.4	38	1,134.1	40	1,256.6
TOTAL AREA		7,656.1		7,508.4		7,175.3		6,854.9		6,603.6		6,540.8
$\begin{gathered} \text { \% Control } \\ \text { Area } \end{gathered}$		100		98.1		93.7		89.5		86.3		85.4
TEINS												
1	56	2,463.0	56	2,463.0	56	2,463.0	56	2,463.0	58	2,642.1	58	2,642.1
2	40	1,256.6	42	1,385.4	40	1,256.6	40	1,256.6	38	1,134.1	42	1,385.4
3	52	2,123.7	50	1,963.5	50	1,963.5	54	2,290.2	56	2,463.0	54	2,290.2
4	36	1,017.9	34	907.9	34	907.9	34	907.9	32	804.2	32	804.2
TOTAL AREA		6,861.2		6,719.8		6,591.0		6,917.7		7,043.4		7,121.9
$\begin{gathered} \text { Control } \\ \text { Area } \end{gathered}$		100		97.9		96.1		100.8		102.7		103.8

SUPPORT ING TABIN 99

	Controi		THME IN 3 mins.		$\begin{gathered} \text { TUTES } \\ 6 \end{gathered}$	AFTER IN mins.	$\begin{gathered} \text { TJECT } \\ 15 \end{gathered}$	ION OF PI mins.	$\begin{gathered} A S M A \\ 30 \end{gathered}$	$\begin{aligned} & \text { A INTO CHE } \\ & \text { mins. } \end{aligned}$	$\begin{gathered} \text { EK } P \\ 60 \end{gathered}$	OUCH mins.
ARTERIES	D.	AREA	D.	ARTIA	D.	AREA	D.	AREA	D.	AREA	D.	ARTEA
1	48	1,809.6	30	706.9	38	1,134.1	30	706.9	32	804.2		-
2	42	1,385.4	32	804.2	30	706.9	24	452.4	28	615.8		-
3	20	314.2	12	113.1	14	153.9	12	113.1	10	78.5		-
4	14	153.9	8	50.3	8	50.3	8	50.3	12	113.1		-
5	18	254.5	12	113.1	14.	153.9	16	201.1	18	254.5		-
TOTAI ARTEA		3,917.6		1,787.6		2,199.1		1,523.8		1,866.1		-
\% Control												
Area		100		45.6		56.1		38.9		47.6		-
VETITS												
1	50	$1,963.5$	54	2,290.2	52	2,123.7	52	2,123.7	50	1,963.5		-
2	36	1,017.9	40	1,256.6	38	1,134.1	40	1,256.6	42	1,385.4		-
3	34	907.9	34	907.9	28	615.8	32	804.2	32	804.2		-
4	40	1,256.6	32	804.2	40	1,256.6	38	1,134.1	42	1,385.4		-
5	42	1,385.4	40	1,356.6	44	1,520.5	42	1,385.4	42	1.385 .4		-
TOTAL AREA		6,531.3		6,515.5		5,650.7		6,704.0		6,923.9		-
\% Control Area		100		99.8		101.8		102.6		106.0		-

SUPPORT ING TABLE 100 ACTION OF PLASMA FROM PATIENTS WITH BACTERABMTC SHOCK．EXPERTMENT 2． Local injection of 0.05 ml plasma from patient（T．T．）－in bacteraemic shock－
into the Hamster Cheek Pouch． TIME IN DIINUTES AFTER INJJECTION OF PIASMA INTO CHBEK POUCH
60 mins．
D AREA DABEA DARTA $1,520.5$
$1,520.5$

530.9 | $2,136.3$ | $2,240.0$ | $3,571.9$ |
| ---: | ---: | ---: |
| 50.7 | 53.2 | 84.8 |

－

カ・ャ6	$1 \cdot 26$	て！88	9＊＊ 6
$6^{*} 266{ }^{6} \varepsilon$	$\zeta^{*} 568^{\prime}$ ¢	$\chi^{\bullet} 2 \varepsilon L^{\bullet}$ ¢	$\nabla \cdot 200^{6} \downarrow$

$D=$ Diameter in microns．Area $=$ Area in microns ${ }^{2}$ ．
$-N M$
Control
VEINS
$-N M+$
\％Contro
Area
，
SUPPORTIMG RABLE 101
ACTION OF PLASMA FROM PATIENTS WIPH BACTERAEMIC SHOCK. EXPYRIUENT 3.

SUPPORT ING TABLE 102
ACTION OF PLASMA FRON PATIENTS WITH BURNS. EXPERIMENT 1.
Local injection of 0.05 ml . plasma from patient (I.R.)
into Hamster Cheek Pouch.

	Control		TITM IN MINUTES AFTMR INJECTION OF PLASMA									
ARTTERTMS	D.	AREA	D.	AREA	D.	ARTA	D.	AREA	D.	AR壁A	D.	AREA
1	48	1,809.6	22	380.1	26	530.9	26	530.9	24	452.4	26	530.9
2	46	1,661.9	20	314.2	22	380.1	24	452.4	22	380.1	24	452.4
3	24	452.4	12	113.1	12	113.1	14	513.9	8	50.3	14	153.9
4	20	314.2	0	0	8	50.3	10	78.5	0	0	10	78.5
5	26	530.9	12	113.1	14	153.9	16	201.1	14	153.9	20	314.2
TOTAL AREA		4,769.0		920.5		1,228.3		1,416.8		1,036.7		1,529.9
\% Control Area		100		19.3		25.8		29.7		21.7		32.1
TEINS												
1	28	615.8	28	615.8	26	530.9	26	530.9	22	380.1	28	615.8
2	24	452.4	22	380.1	22	380.1	24	452.4	20	314.2	22	380.1
3	42	1,385.4	40	1,256.6	38	1,134.1	42	1,385.4	40	1,256.6	40	1.256 .6
4	30	706.9	28	615.8	30	706.9	30	706.9	30	706.9	30	.706.9
5	34	907.9	34	907.9	32	804.2	30	706.9	28	615.8	32	804.2
TOTAI AREA		4,068.4		3,776.2		3,556.2		3,782.5		3,273.6		3,763.6
\% Control												
Area		100		92.8		87.4		93.0		80.5		92.5

SUPPORT ITHG TABIE 103

ACTION OF PLASMA FROM PATIENTS WITH BURISS. BXPERINENT 2.
Local injection of 0.05 ml . plasma from patient (S.W.)
into Hamster Cheek Pouch.

	Control		TMME INT MINUTES ATPER IHJECION OF PLASMA INTO CHEEK POUCH 3 mins. $\quad 6$ mins. $\quad 15$ mins. $\quad 30$ mins. $\quad 60 \mathrm{mins}$.									
ARTPRIES	D.	AREA	D.	AREA	D.	AREA	D.	ARTA	D.	AREA	D.	ARPA
1	50	1,963.5	26	530.9	32	804.2	28	615.8	30	706.9	32	804.2
2	44	1,520.5	22	380.1	26	530.9	24	452.4	26	530.9	28	615.8
3	38	1,134.1	12	113.1	14	153.9	10	78.5	10	78.5	12	113.1
TOTAI AREA		4,618.1		1,024.1		1,489.0		1,146.7		1,316,3		1,533.1
\% Control												
Area		100		22.2		32.2		24.8		28.5		33.2
VPITS												
1	30	706.9	22	380.1	24	452.4	26	530.9	22	380.1	24	452.4
2	32	804.2	28	615.8	28	615.8	28	615.8	24	452.4	26	530.9
3	28	615.8	24	452.4	26	530.9	24	452.4	28	615.8	30	706.9
4	36	1,017.9	32	804.2	32	804.2	30	706.9	30	706.9	36	1,017.9
TOTAL ARTEA		3,144.8		2,252.5		2,403.3		2,306.0		2,155.2		2,708.1
$\% \text { Control }$ Area		100		71.6		76.4		73.3		68.5		86.1

	Control		TINE IN MINUTPS AFTER INJECTION OE PLASMA INTO CHEEK POUCH 3 mins. 6 mins. $\quad 15$ mins. $\quad 30$ mins. 60 mins.									
ARTERIES	D.	AREA	D.	ARTEA	D.	AREA	D.	AR32A	D.	AREA	D.	ARTEA
1	38	1,134.1	26	530.9	22	380.1	24	452.4	28	615.8	32	804.2
2	40	1,256.6	30	706.9	24	452.4	25	490.9	28	615.8	30	706.9
3	18	254.5	12	113.1	20	314.2	14	153.9	12	113.1	18	254.5
TOTAL AREA		2,645.2		1,350.9		1,146.7		1,097.2		1,344.7		1,765.6
\% Control Area		100		51.1		43.4		41.5		50.8		66.7
VEINS												
1	32	804.2	34	907.9	34	907.9	34	907.9	32	804.2	34	907.9
2	30	706.9	30	706.9	30	706.9	28	615.8	28	615.8	30	706.9
3	24	452.4	26	530.9	28	615.8	27	572.6	26	530.9	28	615.8
4	16	201.1	14	153.9	15	201.1	14	153.9	18	254.5	16	201.1
5	18	254.5	14	153.9	16	201.1	20	314.2	14	153.9	14	153.9
TOTAL AREA		2,419.1		2,299.6		2,632.8		2,554:4		2,359.3		2,585.6
\% Control Area		100		95.1		108.8		106.0		97.5		106.9

SUPPORT IITG TABIE 105

ACTION OF PTASMA FROM PATIENTS WITH BURNS. BXPERIMENT 4.
 Local injection of 0.05 ml . plasma from patient (N.C.)

	Control		T工地 IN 3 mins.		TES 6	AFTER IN mins.	$\begin{gathered} \mathrm{TECP} \\ 15 \end{gathered}$	ION OF P mins.	$\begin{gathered} A S M A \\ 30 \end{gathered}$	$\begin{aligned} & \text { INTO CHE } \\ & \text { mins. } \end{aligned}$		OUCH mins.
	D.	AREA	D.	ARTA	D.	AFEA	D.	AREA	D.	AREA	D.	AREA
1	54	2,290,2	52	2,123.7	50	1,963.5	52	2.123.7	52	2,123.7	52	2,123.7
2	22	380.1	22	380.1	24	452.4	24	452.4	22	380.1	20	314.1
3	40	1,256.6	38	1,134.1	40	1,256.6	38	1,134.1	40	1,256.6	38	1,134.1
4	26	530.9	28	615.8	28	615.8	28	615.8	26	530.9	26	530.9
TOTAJ APTA		4,457.8		4,253.7		$4,288.2$		4,326.0		$4,291.3$		4,102.8
\% Control												
Area		100		95.4		96.2		97.0		96.3		92.0
VEINS												
1	48	1,809.6	48	1,809.6	50	1,963.5	50	1,963.5	48	1,809.6	50	1,963.5
2	52	2,123.7	50	1,953.5	48	1,809.6	50	1,963.5	48	1,809.6	48	1,809.6
3	62	3,019.1	62	3,019.1	60	2,827.4	62	3,019.1	62	3,019.1	60	2,827.4
4	46	1,661.9	47	1,734.9	48	1,809.6	48	1,809.6	48	1,809.6	50	1,963.5
TOTAI AREA		8,614.3		$8,527.1$		8,410.1		8,755.7		8,447.9		8,564.0
\% Control												
Area		100		99.0		97.6		101.6		98.1		99.4

$$
D=\text { Diameter in microns. Area }=\text { Area in microns }{ }^{2} \text {. }
$$

SUPPORT ING TABIE 106
ACMION OF PLASMA FROM PATIENT (G.S.) IN BACTERAEMIC SHOCK RECEIVING ITTRAVENOUS NORADRTNAIINE.
IOCal injection of 0.05 ml . plasma from patient (G.S.) into the Hamster Cheek Pouch,
followed in 30 mins. by injection of 10 micrograms phentolamine in 0.05 ml . Ringer's solution.

	Control		TIRE In MINUTES AFTER INJECTION OF PLASMA AND Phentolamine into cheek pouch															
ARTERIES	D.	AREA																
1	42	1,385.4	12	113.1	14	153.9	10	78.5	14	153.9	30	706.9	38	1,134.1	36	1,017.9	34	907.
2	20	314.2	0	0	0	0	0	0	4	12.5	12	113.1	18	254.5	18	254.5	16	201.
3	28	615.8	4	12.6	4	12.6	5	19.6	8	50.3	20	314.2	26	530.9	28	615.8	26	530.
4	38	1,134.1	8	50.3	6	28.3	6	28.3	14	153.9	30	706.9	32	804.2	32	804.2	30	706.
TOTAL AREA		3,449.5		176.0		194.8		126.4		370.7		1,841.1		2,723.7		2,692.4		2,346.
$\begin{gathered} \text { Control } \\ \text { Area } \end{gathered}$		100		5.1		5.6		3.7		10.7		53.4		79.0		78.1		68.
VETIS																		
1	64	3,217.0	66	3,421.2	62	3,019.1	60	2,827.4	56	2,463.0	58	2,642.1	60	2,827.4	60	2,827.4	62	3,019.
2	20	314.2	18	254.5	18	254.5	14	153.9	72	113.1	22	380.1	22	380.1	20	314.2	20	314
3	36	1,017.9	40	1,256.6	40	1,256.6	42	1,385.4	38	1,134.1	40	1,256.6	42	1,385.4	36	1,017.9	38	1,134.
4	52	2,123.7	50	1,963.5	52	2,123.7	48	1,809.6	52	2,123.7	50	1,963.5	50	1,963.5	50	1,963.5	52	2,123.
TOTAL AREA		6,672.8		6,895.8		6,653.9		$6,176.3$		5,833.9		6,242.3		6,556.4		6,123.0		6,591.
$\begin{gathered} \text { Control } \\ \text { Area } \end{gathered}$		100		103.3		99.7		92.6		87.4		93.5		98.3		91.8		98.

APPENDIX 4.

CASE HISTORY SUMMARTES $1-31$.

CASE 1

Patient E.C. female, age 38 years.
Diagnosis: Traumatic rupture of the duodenum.
Qneration: Laparotomy and repair of duodenal laceration.

Clinical Summary: The patient struck a tree with her automobile and sustained facial, head and abdominal injuries. There had been transitory unconsciousness at the time of the accident but when the patient was admitted to hospital she was vomiting and complaining of abdominal pain.

Laparotomy was performed and a traumatic laceration of the duodenum at the junction of the 3 rd and 4 th parts was repaired and the abdomen closed around a peritoneal drain. Post-operatively the patient developed a marked tachycardia and hypotension. The blood pressure improved with intravenous therapy but over the following ten days the abdomen remained distended and the patient had a continuous pyrexia of $103^{\circ} \mathrm{F}$. On the eleventh post-operative day dehiscence of the wound occurred and leakage of fluid suggested a duodenal fistula. On radiological examination, barium administered orally to the patient, was observed to pass out of the duodenum at the site of the previous traumatic rupture. The patient's condition continued to deteriorate and on the 16 th day following the accident, she was transferred to the intensive care unit of the Peter Bent Brighem Hospital.

On admission, the patient was found to be acutely ill. Rectal temperature was 102.80 F. , arterial blood pressure was $84 / 60 \mathrm{mrn} . \mathrm{Hg}$. and pulse rate was 120 per minute. The wound was gaping and pus was leaking from the drain incisions and from the saphenous vein 'cut-down' sites. White blood count was 33,600 per c.mm. Marked dehydration and electrolyte imbalance were present. Over the next 3 days, in spite of intensive therapy, (intravenous fluids and antibiotics) the temperature rose to 104° F., pulse rate rose to 180 per minute and systolic arterial. blood pressure remained below $80 \mathrm{~mm} . \mathrm{Hg}$. Bacterial swabs from the abdominal wound grew Ji. coli and later, blood cultures grew the same organism.

On the third day following her transfer, the patient's urinary output was only 180 ml . in 24 hours. She developed respiratory distress and central venous pressure was found to be 20 cms . water. Acute pulmonary oedema developed. Electrocardiography showed no major abnormal finding. Phlebotomy (400 mls . blood), mannitol infusion (12.5 G), dibenzyline (15 mgms.), and low molecular weight dextran (500 mls .) were without effect and the patient died. Terminally the patient's blood pH fell to $7.05 ; \mathrm{pO}_{2}$ was $56 \mathrm{~mm} . \mathrm{Hg}$. and pCO_{2} was $40 \mathrm{~mm} . \mathrm{Hg}$.

A post-mortem examination wes not
obtained.

Abstract

CASE 2 Patient J.D., male, age 35 years. Diagnosis: Multiple injuries. Operations: Tracheostomy. Laparotomy for alimentary tract bleeding gastrectomy.

Clinical Summary: Four days prior to admission the patient had a motor cycle accident. He sustained multiple injuries including broken ribs, fracture of the left tibia and fibula, puncture wounds of the abdomen and concussion. At that time the patient was admitted to a local hospital for emergency treatment. His pulse and blood pressure were unrecordable and he was cold and shocked. With multiple blood transfusions the patient's condition improved. Arterial blood pressure rose to $130 / 60 \mathrm{~mm} . \mathrm{Hg}$. Bmergency treatment of the fractures was carried out. Over the next three days the patient's urinary output decreased to 300 mls . per day. Gross haematuria was noted. He was transferred to the intensive care unit of the Peter Bent Brigham Hospital.

On admission the patient's abdomen was tympanitic and in the left upper quadrant there was a palpable mass. X-rays showed comminuted fractures of the left tibia and fibula. There was a large left pleural effusion with some pneumothorax and consolidation at the left base.

Initial Laboratory Data:-

Haematocrit	-35 per cent.
W.B.C.	$-18,500$ per c.mm.
Blood Urea Nitrogen	$-64 \mathrm{mgms} \cdot$ per 100 mls.
Electrolytes Na	-110 mEq. per litre.
K	$-5.7 \mathrm{mEq} \cdot$ per litre.
Cl.	-82 mEq. per litre.

Case 2 (Contd.)

Blood Gas Estimations

pH	-6.9
pCO_{2}	$-43.4 \mathrm{~mm} \cdot \mathrm{Hg}$.
Oxygen Saturation	-68.4 per cent.
CO_{2} content	-14.2 mVq . per litre.

Hospital Course.

Tracheostomy and left thoracentesis were carried out with improvement in the patient's respiratory state. Because of oliguria and a blood urea nitrogen rising rapidly to 176 mgms . per 100 mls . renal injury was suspected, but retrograde pyelography demonstrated bilateral intact collecting systems. Haemodialysis carried out on three occasions lowered the blood urea nitrogen level to 110 mgms . per cent and urinary output increased to 500 mls . in 24 hours. Further progress was complicated by massive alimentary tract bleeding. After six litres of blood had been transfused, emergency laparotomy was carried out. The stomach was ful. 1 of blood. A left subphrenic abscess was discovered and the spleen and left kidney were involved in dense fibrous tissue. Pseudomonas aeruginosa was cultured from the abscess.

An emergency gastrectomy was carried out. For the following five days the patient's condition remained poor. X-ray of chest showed generalised infiltration of lung fields. Tracheal cultures and blood cultures grew pseudomonas aeruginosa. Hypotension became refractory and the patient died.

Post-Mortem Findings.
At post-mortem examination, the patient was found to have a ruptured spleen, peri-splenic and subhepatic abscesses. The splenic vein and left renal artery and vein were thrombosed with infarction of the spleen and left kidney. The right kidney showed signs of acute tubular necrosis. Prostatic abscesses were present. Further abscesses were present in the liver and pancreas. Peptic ulceration was present in the gastric remnant and there was acute inflammation of the serosal surfaces of the stomach and duodenum. Diffuse bilateral bronchopneumonia with pulmonary emboli and an abscess of the right middle pulmonary lobe was found. Death was due to widespread sepsis with respiratory and renal failure.

CASE 3

Patient R.M., male, age 29 years.
Diagnosis: Abdominal Injuries.
Operation: Splenectomy, Nephrectomy and Colostomy.

Clinical Summary: The patient, a 29 year old man was struck in the left flank by a shell casing which had detonated near him. He was admitted to the local hospital and was taken immediately to the operating theatre where a ruptured spleen and fragmented left kidney were removed. There was a laceration of the splenic flexure of the colon and a fracture of a lumbar vertebra with severe bleeding from dural veins and a cauda equina injury. A colostomy was fashioned and packing was required to control retroperitoneal bleeding.

A few hours later the patient had to return to the operating theatre for further control of haemorrhage from epidural veins. With massive blood transfusions the patient's blood pressure was maintained but after 24 hours anuria, he was transferred for haemodialysis to the Peter Bent Brigham Hospital.

A blood urea nitrogen of 150 mgms . per 100 ml . and a serum potassium of 7.3 mEq . Iitre fell to 48 mgms. per 100 ml . and 5.3 mEq ./litre respectively after haemodialysis.

Owing to increasing respiratory difficulties, a tracheostomy was carried out and controlled respiration instituted.

On the evening of the second day after his transfer, the patient became drowsy and then comatose. The following day he developed twitching and later, epileptiform seizures.

Blood cultures grew E. coli and later cerebro-spinal fluid also grew E. coli and showed 11,000 white cells per c.mm. The temperature was 102.80 F . (axillary).

Hypotension was persistent and in spite of the administration of oxygen, hypoxia was progressive. Shortly before death, pO_{2} was $35 \mathrm{~mm} . \mathrm{Hg}$. during 100 per cent oxygen inflation of the lungs. The patient died six days after the injury.

Post-Mortem Findings.
At necropsy, there was a large traumatic wound of the left flank. A colostomy was present. Spleen and left kidney had been removed. A left subphrenic abscess was present with localised peritonitis.

A laxge retroperitoneal haematoma was associated with fractured transverse processes and trauma to nerve roots. Acute congestion of liver, stomach, duodenum and small bowel were present. The remaining kidney (right) was the site of acute tubular necrosis. Acute tracheitis and extensive acute bronchopneumonia were present. There was evidence of meningitis with petechiae on the base of the frontal and temporal lobes of the brain.

CASE 4

Patient C.M., male, age 58 years.

Diagnosis:	a) Peritonitis from Diverticulitis. b) Carcinoma of Stomach.
Operation:	1) Transverse Colostomy and Peritoneal

2) Laparotomy for Haematemesis.

Clinical Summary: The patient, a 58 year-old man who had acute lower abdominal pain was admitted to hospital. A diagnosis of diverticulitis was made and laparotomy was performed. A generalised peritonitis was found and there was diverticulitis of sigmoid colon. A transverse colostony was fashioned and the abdomen closed with peritoneal drainage.

The patient's condition continued to deteriorate over the following seven days and he was transferred from his local hospital to the intensive care unit of the Peter Bent Brigham Hospital. Tracheostomy was performed and tracheal aspiration, associated with assisted respiration with a Bird respirator, improved the patient's respiratory state. Abdominal distension persisted and there was copious aspiration of gastric fluid. Barium swallow and fluoroscopy revealed a chronic posterior gastric ulcer. There was no evidence of perforation of the ulcer.

Blood pressure, haematocrit, blood volume and central venous pressure were normal. White blood count was 13,000 per c.mm. Blood urea nitrogen was normal and intravenous infusions maintained serum electrolyte values within the normal range. Following admission to the intensive care unit the patient's condition gradually improved. On the seventh day after admission however, the patient developed a sudden rigor, and his temperature rose to $105-106^{6} \mathrm{~F}$. Hypotension developed and the extremities became cold, cyanosed and mottled. The abdominal wound appeared infected and several serial blood cultures grew organisms of the serratia species. Urinary output decreased and the blood urea nitrogen rose to

Case 4 (contd.)

/
95 mgms. per 100 ml . There was severe gastro-intestinal haemorrhage with haematemesis and melaena. The bleeding was not controlled by massive blood transfusion (8 litres) and laparotomy was performed. The previously observed posterior-wall gastric ulcer was found to be a necrotic bleeding carcinoma fixed to the pancreas. Gastrectomy was not possible and bleeding was controlled by suture and the abdomen closed. The patient's condition did not improve and he died the following day.

Post-Mortem Findings

Post-mortem examination confirmed the presence of a carcinoma of stomach with considerable bleeding into the alimentary tract. There was generalised peritonitis with diverticulitis. Acute tracheobronchitis with hypostatic pneumonia was present.

CASE 5

Patient B.G., male, age 57 years.
Diagnosis: Mitral Stenosis (Rheumatic).
Operation: Mitral Valve Replacement.

Clinical Summary: This 57 year-old male patient had long standing mitral stenosis. He had rheumatic fever, aged 12 years. Mitral valvuloplasty had been performed in 1944 and two years later re-operation of mitral valvuloplasty was performed, marked calcification being found in the cusps with moderate regurgitation. I'he patient was readmitted for assessment. He had increasing shortness of breath with episodes of paroxysmal tachycardia resulting in unconsciousness. After further investigation, open heart operation, using the heart-lung machine, was performed. The mitral valve was excised and replaced with a Harken valve prothesis. Owing to the two previous thoracotomies, there was marked difficulty in clearing the lung from the chest wall.

Immediately after operation the patient's condition was satisfactory. Barly on the second postoperative day, the patient was found to be hypotensive with poor urinary output. Blood urea nitrogen was 34 mgms. per 100 mls . The haematocrit was 45 per cent, central venous pressure fluctuated between $8-15 \mathrm{cms}$, saline, and blood volume estimated with the "Volemetron" using 1125. Albumen was normal ($5,500 \mathrm{ml}$.).

The patient complained of lower
abdominal pain, and abdominal distension was noted. Fresh blood was aspirated on gastric suction. The abdomen was tender and tympanitic and there was early ecchymosis in the flanks. Serum amylase was 750 units (Somogyi) and lactic acid dehydrogenase was 1400 units.

An X-ray of chest showed opacities on the left side, the right lung field being normal. There was gaseous distension of the small bowel and colon. Intravenous noradrenaline was given but the systolic arterial blood pressure remained below $90 \mathrm{~mm} . \mathrm{Hg}$.

On the second post-operative day the
patient's abdominal discomfort and distension became more marked. Hypothermia had been used during operation and post-operatively the patient remained on a cooling blanket, the temperature being controlled between 97-980. The patient's blood pressure could not be maintained with fluids and vasopressor drugs. Central venous pressure rose to 22 gms. saline. In spite of attempts at resuscitation the patient died.

Post-Mortem Findings.
The patient had rheumatic heart disease. The heart weighed 600 grans. Mitral valve replacement was satisfactory.

There was severe bilateral bronchopneumonia with scattered intrapulmonary haemorrhages in the left lung. Both kidneys were the site of acute tubular necrosis.

The most striking findings involved the alimentary tract. There were superficial mucosal haemorrhages in the stomach and the oesophagus. There was acute exudative entero-colitis with focal mucosal. haemorrhages and necrosis. Death had supervened at the time of almost total intestinal necrosis. No thrombi or emboli were present in the superior mesenteric artery.

COMMENT - This patient's death and post-mortem findings were similar to the severe intestinal changes found in the dog in irreversible haemorrhagic shock. The primary cardiac defect, and operation had produced hypotension with poor tissue perfusion resulting in irreversible intestinal ischaemia.

CASE 6

> Patient I.I., male, age 66 years.
> Diasnosis: Carcinoma of Blader.
> Operation: 1) Total Cystectomy and Ileal Bladder.
> 2) Laparotomy for intestinal obstruction.

Clinical Summary: In 1949 the patient had a partial cystectomy for carcinoma of bladder. Within the last year he had chemotherapy and cystodiathermy for recurrence of tumour and one month before present admission cystoscopy revealed extensive tumour of the bladder trigone and intravenous pyelography demonstrated bilateral hydronephrosis.

Total cystectomy and fashioning of an ileal conduit were carried out in a one-stage operative procedure. I'welve days later re-exploration was required for intestinal obstruction. There was atonic dilatation of small bowel but no obvious mechanical obstruction. On the third day after the laparotomy the patient's temperature rose to $105^{\circ} \mathrm{F}$., systolic arterial blood pressure fell to $80 \mathrm{~mm} . \mathrm{Hg}$. and oliguria (120 mls . urine in 24 hours) was noted. The patient was transferred to the j.ntensive care unit.

Initial Laboratory Findings.

Haematocrit	-48 per cent.
Blood urea nitrogen	-203 mgms. per 100 ml.
Electrolytes	
\quad Serum Sodium	-163 mEq. per litre.
\quad Serum Potassium	-7.1 mEq. per litre.
\quad Serum Chloride	-130 mEq. per Iitre.

Haemodialysis was instituted shortly after admission and blood urea nitrogen fell to 68 mgms. per 100 ml . Serum potassium, sodium and chloride concentrations were 3.5, 142 , and 103 mLq . per litre reapectively imnediately after haemodialysis.

The patient continued to have pyrexia (103.4 ${ }^{\circ}$ F). Blood pressure was maintained with vasopressor (noradrenaline). Central venous pressure remained low (less than 4 cms. water).

Repeated blood cultures grew pseudomonas aeruginosa. Upper gastro-intestinal bleeding occurred. Clotting time was prolonged (14 mins.), prothrombin concentration was low and platelet count was 92,000 per c.mm.

A tracheostomy did not materially improve hypoxia and respiratory distress. A marked metabolic acidosis was treated with intravenous sodium bicarbonate and Tris. buffer. The patient's condition continued to deteriorate and death occurred nineteen days after the cystectomy.

Post-Mortem Findings.
Necropsy revealed a dehiscence of the left-uretero-ileal anastomosis with generalised peritonitis.

The kidneys were the site of long standing hydronephrosis with acute and chronic pyelonephritis. Acute tubular necrosis was present.

Acute ulceration of oesophagus was found and the stomach was full of clotted blood. Punctate ulcers with a haemorrhagic reaction were present throughout the ileum and colon. Histologically there were thrombi in the small vessels of the bowel and clumps of bacillii in the base of ulcers.

The lungs were consolidated with microabscesses and both bases were involved in acute necrotising bronchopneumonia.

Patient F.R., male, age 75 years.

Diagnosis: Peritonitis - superior mesenteric artery
Operation: Laparotomy. Thrombendarterectomy and resection of small bowel.

Clinical Summary: The patient, a 75 year-old man who had recent recurrent abdominal cramps was admitted to hospital with acute abdominal pain and rigidity. Laparotomy was carried out, and the superior mesenteric artery was found to be occluded. Thrombendartectomy was performed with restoration of blood flow to the distal small bowel. The proximal small bowel remained ischaemic however and the proximal $\frac{2}{3}$ rds was resected.

The patient developed acute renal failure on the first post-operative day. Peritoneal dialysis was instituted on the second post-operative day when serum potassium rose to 7.5 mliq . per litre and the blood urea nitrogen concentration was 140 mgms . per 100 ml . The patient's condition continued to deteriorate. Hypotension which developed did not respond to vasopressors and intravenous fluids and death occurred on the 3rd postoperative day.

Post-Mortem Findings.

There was generalised atherosclerosis with acute occlusion of the superior mesenteric artery. There was old complete occlusion of the left renal artery. Atherosclerosis involved the coronary vessels and there was marked atheroma of lower aorta and iliac vessels.

The remaining ileo-jejunal segments of small bowel on either side of the anastomosis were infarcted and peritonitis was present. Acute haemorrhagic gastritis was found and there was acute congestion of the liver and spleen. Multiple calculi were present in the right kidney. The lungs showed bilateral bronchopneumonia. Escherichia coli, isolated from the peritoneal fluid at the time of operation was also isolated from post-mortem cultures taken from heart blood, lung and peritoneum.

CASE 8

Patient F.R., male, age 58 years.
Diagnosis: Carcinoma of Bladder.
Operation: 1) Ileal Bladder.
2) Resection and anastomosis of small bowel.

Clinical Summary: The patient, a 58 year-old male, who had previous radiotherapy for a carcinoma of bladder was admitted to hospital and on the second hospital day an ileal-loop diversion was performed as a preliminary to cystectomy. Post-operatively the patient developed a pyrexia and on the 14 th post-operative day there were signs of generalised peritonitis associated with hypotension. Exploratory laparotomy showed generalised peritonitis due to a breakdown in the ileal anastomosis. E. coli was cultured from the peritoneal exudate. A resection and anastomosis of ileum were pexformed. Postoperatively the patient required vasopressors to sustain a satisfactory blood pressure. There was pyrexia (temperature $103^{\circ} \mathrm{F}$). Pneumonic consolidation of the lower lung lobes occurred. Tracheostomy was performed with mechanical respiration to overcome hypoxia. It was noted that the patient had a low platelet count and a prolonged bleeding and clotting time.

A bone marrow examination showed marked megakaryocytic and myeloid hyperplasia. An isologous Cr_{51} labelled platelet transfusion study showed an increased destruction or sequestration of platelets. Renal function which was initially poor promptly improved. Blood volume studies showed a marked expansion of the effective blood volume after operation. The blood volume fell to normal levels over the following days and was associated with a marked diuresis. The patient's general condition steadily improved and he was discharged from hospital, afebrile 3 weeks after the second operation. On discharge from hospital blood urea nitrogen levels, white blood cells and platelet concentrations were normal. Main Table 41 summarises the patient's hospital course.

CASE 9

Patient K.W., male, age 64 years.
Diagnosis: Abdominal aortic aneurysm.
Operation: Resection of abdominal aneurysm.

Clinical Summary: This 64 yearmold man had been receiving medical treatment for hypertension. Six weeks before admission to hospital the patient complained of low back pain which radiated around the abdomen. X-ray examination (Aortography) confirmed the clinical diagnosis of an aortic aneurysm about 10 cms . in diameter and 12 cms . in length. Both common iliac arteries were dilated and the aneurysm extended up to just below the renal vessel.s. X-ray: of lumbar spine, intravenous renal pyelography and a gastro-intestinal barium series demonstrated no other cause for the persistent low back pain.

At operation the aneurysm was found to be extremely adherent to the surrounding structures, particularly to the duodenum and to the inferior mesenteric vein. The posterior wall of the aneurysm was absent and the false membrane was composed of the anterior spinal. ligaments. A knitted Dacron bifurcation prosthesis was used to replace the resected aneurysm.

The patient's immediate post-operative course was good. Urinary output was maintained at 50-60 ml . per hour. On the seventh post-operative day there was dehiscence of the abdominal wound. Under general anaesthesia protruding small bowel was replaced and secondary suture of the wound performed. Following the resuture of the abdominal wound, the patient's temperature became elevated to $101^{\circ} \mathrm{F}$ and did not settle. White blood count on the 16 th day following the primary operation was 37,000 per c.mm. Later the same day the patient had a shaking chill lasting 15 minutes. Temperature rose to $102^{\circ} \mathrm{p}$ and within two hours, the blood pressure, normally $180 / 120 \mathrm{~mm} . \mathrm{Hg}$. fell to $96 / 60 \mathrm{~mm} . \mathrm{Hg}$. Several blood cultures were sterile. Blood gas analysis and blood pH were normal. An electrocardiograph suggested anteroseptal ischaemia. Blood volume and haematocrit were satisfactory. Intravenous fluids were given and

Case 9 (contd.)

$/$

noradrenaline infusion restored the blood pressure to normal levels. Urinary output was low (less than 30 ml . per hour) and blood urea nitrogen rose to 114 mgms. per 100 ml .

The following day the patient had another hypotensive episode with blood pressure falling to $60 / 40 \mathrm{~mm} . \mathrm{Hg}$. Temperature remained elevated and X-ray of chest showed atelectasis and consolidation of the right lung base. Antibiotics, steroids and intravenous fluids (including low molecular weight dextran) were administered. The patient's condition continued to deteriorate and he died early the following morning.

Post-Mortem Findings.
The patient had generalised atherosclerosis. The dacron graft aortic prosthesis was satisfactory. There were mucosal and submucosal haemorrhages in the stomach and small bowel. Multiple duodenal ulcers were present and there was necrosis and perforation of the third part of the duodenum with a large retroperitoneal abscess. Acute pancreatitis with focal fat necnosis was present. Multiple recent small pulmonary emboli were present in both lungs and there was atelectasis and consolidation of the right lower lobe.

Patient F.F., male, age 75 years.
 Diagnosis: Carcinoma of head of pancreas.
 Operation: Pancreatico-duodenectomy.

Clinical Summary: This 75 year-old man was admitted to hospital for investigation of jaundice associated with abdominal pain and weight loss. The gall-bladder was palpable and there was an epigastric mass mainly on the left side. Occult blood was present in the stool. Serum bilirubin was 5.5 mgms . per 100 ml . and the other liver function tests suggested obstructive jaundice.

At laparotomy a tumour of the head of pancreas involving the ampulla was found. Biopsy of the tumour showed it to be a poorly differentiated adenocarcinoma.

A pancreatico-duodenectomy was carried out, the common bile duct and stomach being anastomosed to the jejunum. Four bottles of blood were given during the operation. For the first post-operative week, the patient's course was satisfactory. He was then notjeed to have some mental confusion. The abdomen was distended, urinary output was poor and the blood urea nitrogen concentration was elevated. The patient suddenly became shocked; his systolic arterial blood pressure fell to $65 \mathrm{~mm} . \mathrm{Hg}$. and he had a bulky bowel movement containing bright fresh blood. Blood transfusions were given and laparotomy was carried out. At the re-exploration of the peritoneal cavity, a bleeding point on the gastrojejunostomy suture line was oversewn. Culture of the wound at the time of operation grew Klebsiella-Aerobacter species.

During the following two weeks the patient had intermittent haemorrhage from his abdominal wound. Blood pressure fluctuated and repeated blood transfusions were necessary. Klebsiella-Aerobacter species, Escherichia coli and Staphylococcus aureus were grown from the wound. Serial blood cultures were all sterile.

Increase in the discharge from the wound suggested a gastro-jejunal fistula, which was confirmed by giving methylene blue by mouth, the wound discharge containing dye. The patient's general condition continued to deteriorate over the following days. The extremities were blue and mottled. Hypotension became irreversible and the patient died.

Post-Mortem Findings.
At post-mortem examination there was generalised peritonitis with marked left paramcolicabscess formation. A fistula could not be identified in the inflammatory mass. There was a left nephro-pyelitis with a grossly distended left pyo-ureter. The abdominal. abscess grew proteus species and the organisms isolated from cultures of kidney, pelvis, ureter and heart blood, were proteus species and Klebsiella-Aerobacter species.

Patient B.B., male, age 42 years.
Diagnosis: Haematemesis from luodenal Ulcer.
Operation: 1) Partial Gastrectomy.
2) Laparotomy for post-gastrectomy haemorrhage.

Clinical Summary: This 42 year-old male who hed a two year history of peptic ulcer was admitted to hospital suffering from recurrent gastro-intestinal bleeding. After a massive haemorrhage from an ulcer of the second part of the duodenum a polya gastrectomy was performed. Because of the proximity of the ulcer to the ampulla the duodenum was closed above the ulcer. Two weeks later after further alimentary tract haemorrhage the patient was transferred to the intensive care unit at the Peter Bent Brigham Hospital. On admission the patient's temperature was $105^{\circ} \mathrm{F}$ and his pulse was 120 per minute. Bilateral rales were audible in the chest. The patient's temperature was considered to be due to pneumonia.

Seven hours later further haemorrhage occurred and the patient's blood pressure fell to $70 / 50$ $\mathrm{mm} . \mathrm{Hg}$. After blood transfusion, laparotomy was performed and the duodenal ulcer which was still bleeding was excised. A T-tube choledochostomy drain was inserted. (The common bile duct being explored to confirm that it remained intact after the excision of the ulcer in the second part of the duodenum.)

The following day, because of increased respiratory difficulties a tracheostomy was performed. The patient still had a pyrexia and an x-ray of chest showed bilateral basal infiltrates. During the following three days, although there was no further haemorrhage, the patient's condition did not improve. Jaundice was noted and it became progressive. A platelet count was 88,000 c.mm. Haematocrit and blood volume were within normal range. In spite of platelet transfusions the thrombocytopenia persisted. Klebsiella-Aerobacter species were isolated from consecutive blood cultures. The blood pressure fell and became refractory to intravenous fluids and vasopressor drugs. Dedema of the legs and cyanosis

Case 11 (contd.)

of the extremities were marked. The patient developed anuria and died one week after the second operation.

Post-Mortem Findings.
There was severe bilateral bronchopneumonia with consolidation. (Post-mortem cultures from the lungs and heart blood grew Klebsiella-Aerobacter organisms.) The polya gastrectomy anastomosis and choledochostomy were satisfactory. There was no evidence of obstruction in the post-hepatic biliary system. There was an infarct of the spleen and petechiae and recent infarcts in both kidneys.
Patient I.K., female, age 63 years.
Diagnosis: Carcinoma of Rectum.
Operation: 1) Abdomino-perineal excision of rectum.
2) Laparotomy for intestinal obstruction.

Clinical Summaxy: The patient who had an abdomino-perineal excision of rectum performed for carcinoma of rectum developed oliguria. (less than 300 mls . urine per day) and was transferred to the Peter Bent Brigham Hospital where haemodialysis was performed. I'here was persistent abdominal distension and at laparotomy a small bowel obstruction around the colostomy was found and corrected. Post-operatively the patient's temperature was 1020 Blood urea nitrogen concentration continued to rise and further haemodialysis was carried out. The clotting time at the end of the dialysis was 18 minutes.

Marked bleeding occurred from the alimentary tract. Blood cultures grew KlebsiellaAerobacter species. (Four bottles). Hypotension became progressive and the patient died one week after the second operation.

Post-Mortem Findings.

There was acute peritonitis with 1500 ml . pus in the peritoneal cavity. There was no evidence of mechanical obstruction. Blood was present in the stomach and erosions were found in the oesophagus and stomach. Acute necrotising enterocolitis involved most of the small bowel. and colon. The kidneys were pale. There was acute tubular necrosis with pyelonephritis. The lungs showed bilateral haemorrhagic bronchopneumonia.

CASE 13

Patient C.T., male, age 50 years.
Diagnosis: Obstructive Jaundice and Cholangitis.
Operation: Reconstruction of stenosed bile duct.

Clinical Summary: Two years prior to the present admission the patient had a cholecystectomy carried out following an attack of jaundice and fever. The common bile duct was not explored. Two months later further laparotomy had been carried out for recurrence of abdominal pain, jaundice and pyrexia. At laparotomy the common bile duct could not be identified in inflammatory adhesions. A sub-hepatic abscess was drained and a biopsy of liver showed chronic active cholangitis with biliary stasis. Intermittent bouts of fever and jaundice persisted. During three separate episodes of fever, organisms (Escherichia coli) were cultured from the blood. A further laparotomy was carried out. Transduodenal exploration of the common bile duct allowed identification and exploration of the common bile duct with \mathbb{T}-tube drainage. Following this procedure the patient became hypotensive; he had a chill and rigor and blood cultures again grew Escherichia coli. With antibiotic therapy and intravenous fluids the patient's condition improved. After the T-tube had been removed he was allowed home.

There were minor intermittent attacks of fever and jaundice over the next nine months.

On his present admission following a more severe attack the patient was found to be shocked. His blood pressure was $84 / 44 \mathrm{~mm} . \mathrm{Hg}$. Blood urea nitrogen was 75 mgms . per 100 ml . and serum bilirubin 8 mgms . per cent. The patient complained of fatigue and loss of energy. Temperature was $103.8^{\circ} \mathrm{F}$ and white blood cell count was 14,860 per c.mm. Blood cultures were once more positive (E.coli). Treatment with intravenous fluid and antibiotics improved the patient's condition but the jaundice persisted and a further laparotomy was performed. The lower surface of the liver was involved in dense

Case 13 (contd.)

$/$

adhesions. A transhepatic cholangiogram showed a distended upper part to the common bile duct and distended branches. The duodenum was opened and the common bile duct irrigated. There was considerable stenosis and tortuosity of the lower part of the common bile duct. A Roux-Y loop of jejunum was anastomosed to the upper dilated common bile duct and a T-tube drain inserted. Following this procedure, E. coli, proteus species and Pseudomonas aeruginosa were cultured from the bile draining from the T-tube. The wound surface also showed evidence of E. coli but there was no recurrence of pyrexia and further blood cultures were sterile. Ihe serum bilirubin fell to normal levels.
COMMENT: - The patient had recurrent attacks of
ascending cholangitis associated with stenosis
of the common bile duct. There were episodes
of bacteraemia complicated by hypotension on
some occasions. Operative correction of the
biliary stasis and antibiotic treatment of the
residual biliary duct infection cured the
patient's symptoms.

CASE 14
Patient A.A., male, age 70 years.
Diagnosis: Cholecystitis.
Operation: 1) Cholecystectomy.
2) Drainage of Subphrenic Abscess.

Clinical Summary: The patient was a 70 year-old man who had diabetes which was poorly controlled. He had a long history of intermittent cholecystitis, and a few months before his present admission he had a cerebral thrombosis producing an incomplete left hemiparesis.

After a further severe episode of cholecystitis the patient was admitted to hospital for cholecystectomy. At operation a large thickened but not tense gall-bladder containing several stones was removed. The common bile duct was normal and was not opened. The following day the patient appeared drowsy; his temperature was $102^{\circ} \mathrm{F}$ and his arterial blood pressure was $180 / 80 \mathrm{~mm} . \mathrm{Hg}$. (similar pre-operative blood pressure.) Blood sugar was 480 mgms . per 100 ml . and insulin was given. Later the same day the patient perspired freely and his temperature rose to 1040 F and his blood pressure fell to $120 / 70 \mathrm{~mm} . \mathrm{Hg}$. The patient's condition then appeared to improve until the eighth post-operative day when he had a sudden shaking chill. He sweated profusely. The skin was dusky violet in colour. The patient was disorientated and the temperature rose sharply to 1050F.

The following day after a further similar rigor, operative exploration of the subhepatic space was carried out and a localised abscess was evacuated and a drain inserted. Blood cultures taken on four separate occasions all grew bacteroides species. After temporary improvement the patient's temperature once more became elevated. He continued to appear toxic and during the third post-operative week, hypotension supervened. Noradrenaline was given with only temporary improvement and the patient died in coma on the 28 th postoperative day.

Case 14 (contd.)

$/$
Post-Mortem Findings.
There was a purulent peritonitis, acute splenitis and a large intrahepatic abscess.

Acute erosions were found in the oesophagus. There was gastromalacia with post-mortem perforations. Multiple acute duodenal ulcers were present and there were copious bloody contents in the whole small bowel. In the respiratory system there was acute tracheobronchitis and confluent bronchopneumonia. A large pulmonary embolism was present in the right lower lobe.

Patient G.S. female, age 79 years.
Diagnosis: Acute cholecystitis and acute pancreatitis. Operation: Cholecystostomy.

Qlinical Summary: This was the third hospital admission of this elderly widow who had previously repeatedly refused operative treatment for recurrent cholecystitis. Prior to the present admission the patient had a one weelt's history of acute upper abdominal pain associated with vomiting.

In hospital the patient appeared acutely ill. White blood count was 21,000 per c.mm., haematocrit was 37 per cent. Blood urea nitrogen and serum electrolytes were normal but the lactic acid dehydrogenase, semum glumatic oxalo-acetic transanimase and serum amylase levels were considerably elevated. Blood volume estimation: was normal. At laparotomy an empyema of the gall-bladder associated with acute pancreatitis was found. Cholecystostomy and peritoneal drainage were performed.

Post-operatively the patient's condition remained very poor. Intravenous fluids and noradrenaline did not improve the hypotension. A marked metabolic acidosis was treated with tris buffer (THAM) and sodium bicarbonate. Serial blood cultures grew AerobacterKlebsiella species. The patient developed generalised petechiae. There was acrocyanosis of the extremities. The hypotension was refractory to treatment. The acidosis became progressive and the patient died on the third day following admission to hospital.

Post-Mortem Findings.
There was severe acute and chronic cholecystitis and cholelithiasis with haemorrhagic necrosis of the gall-bladder wall. Ascending cholangitis with small intrahepatic abscesses was found. There was thrombosis of the portal vein with infarction of a segment of the liver. Acute pancreatitis with areas of fat necrosis was also found. A fibrinous peritonitis with perisplenitis and perihepatitis was found and there was a generalised severe exudative necrotising enterocolitis. Petechiae and haemorrhages were present in the skin, pleura, oesophagus, stomach and bowel. The kidneys were the site of acute tubular necrosis.

CASE 16
Patient M.C., female, age 66 years.
Diagnosis: Severe burns (60-70\% Body Surface).
Operation: Multiple excisions of necrotic skin and skin grafting.

Clinical summary: This 66 year-old married women received 60-70 per cent body surface burns when her dressing gown caught fire at her kitchen stove.

Although there was marked facial oedema there did not appear to be any pharyngo-laryngeal injury and tracheostomy was not required. With intensive intravenous therapy, monitored carefully by biochemical and haemodynamic measurements the patient progressed satisfactorily at first and on the twelfth day after the accident excision of some burned areas with autogenous skin grafting was carried out.

On the second post-operative day the patient had a rigor and her temperature rose to $103^{\circ} \mathrm{F}$: the bacterial colonization of the burned areas and the bacteriological state of the environment were studied closely. Figure 23 summarises the bacteriological findings during the patient's hospital course.

The initial grafts on the chest wall had taken satisfactorily and ten days later further excision of necrotic areas was performed and homologous cadaveric grafts were applied. Once again, in spite of careful antibiotic therapy, on the 2nd post-operative day the patient had a shaking chill and the temperature rose to 104 FF . There was however no hypotension.

Subsequently the burned areas appeared to become more infected. Staphylococcus aureus and pseudomonas aeruginosa (pyocyaneus) were the dominant organisms at this time. Minor excision and grafting procedures were carried out but the patient's general condition continued to deteriorate. Four weeks after admission to hospital the patient became drowsy and then
comatose. She had a generalised convulsion followed by minor seizures and thereafter appeared to be in a stupor. Temperature remained elevated. Blood cultures, which previously had always been sterile now grew pseudomonas aeruginosa. Hypoglycaemia was found but there was no ketosis and the blood urea nitrogen was normal. The hypoglycaemia and a marked metabolic acidosis were treated rigorously but the patient developed increasing hypotension and died on the fifth week after sustaining the burn injury.

Post-Mortem Findings.
At autopsy the brain had a peculiar sweet smell characteristic of pseudomonas infection. There was severe laryngitis and oesophagitis which had not been suspected clinically.

All the blood had clotted. The peritoneal cavity seemed very dry and there was premortem ischaemia of the bowel.

Bilateral pleural effusions were found and there was bronchopneumonia with focal segmental atalectasis.

Patient L.R., female, age 60 years.
Diagnosis: Burns (70\% body surface).
Operation: Multiple excisions of sloughs and skin grafting procedures.

Clinical Summary: This patient was burned when she lit a match while looking for a gas leak in her cottage basement. She was treated at the local hospital with intravenous infusions of electrolyte solutions and blood. Because of oliguria, and the extensive nature of the burns the patient was transferred to Boston for further treatment.

The patient had burns of the face, mouth, chest, arms, legs and abdomen. Later when it was possible to assess the depth of burns, 35% body surface had full skin thickness burns and a further 35% body surface had partial skin thickness burns.

On admission to hospital the patient's haematocrit was 66 per cent and serum sodium was 124 mEq . per litre. With infusion of 3% saline solution the haematocrit fell and urinary output returned to normal.

The bacteriological state of the necrotic burned areas was assessed frequently. A heavy mixed infection of staphylocoons aureus and several gram negative bacteria colonised the burns. After the second week the patient appeared toxic and she developed intermittent pyrexia. Dehydration and hypotensive episodes responded to energetic intravenous fluid therapy. Repeated blood cultures were negative. Antibiotic drug therapy, assessed on bacterial susceptibilities, was changed from time to time. After several operative skin-grafting procedures the patient's condition slowly improved and she was discharged from hospital two months after the accident.

Patient S.W., female, age 66 years.
Diapnosis: Burns. (40% body surface).
Operation: 1) Skin grafting operations.
2) Bilateral common femoral vein ligations.

Clinical Summary: This 66 year-old widow (a sister of l.R., Case 17,)was involved in the same gas explosion accident as her sister and sustained burns. (40\% body surface).

The initial progress of the patient was satisfactory although an elevation of the blood urea nitrogen did not fall to normal until the 12th day after the burn injury. Staphylococcus aureus, pseudomonas aeruginosa and Klebsiella-Aerobacter organisms were the main bacteria isolated from the necrotic skin. Multiple skin grafting operations were carried out.

Five weeks after the accident the patient became hypotensive and appeared to have congestive cardiac failure. Subsequently she had sudden left pleuritic pain associated with left calf tenderness. Ihe blood lactic dehydrogenase (L.D.H.) rose to 174 units per cent. Bilateral common femoral vein ligation was performed. Serial blood cultures were sterile. Digitalis and diuretic therapy was instituted and the patient's cardio-respiratory state improved.

As the grafted areas healed, infection subsided slowly. The patient's general condition improved gradually and she was allowed to leave hospital three months after the burns accident.
Patient F.J., male, age 65 years.
Diagnosis: Burns (25% body surface).
Operation: 1) Tracheostomy.
2) Skin-grafting procedures.

Clinical Summary: This patient threw petrol on to a garden fire to make it burn better and sustained flash burns. He was admitted to hospital where he appeared to have 25% body surface burns. As the patient's face was badly burned and as he had laryngeal stridor tracheostomy was performed shortly after his admission to hospital.

At first the burned surfaces were sterile. Subsequently B. subtilis and B. cereus were isolated and later staphylococcus aureus and pseudomonas aeruginosa were isolated from the burned surfaces. Three weeks after the initial injury excision of sloughs and skin grafting were carried out. The following day the patient had a shaking chill and a tachycardia of 160 per minute. Arterial blood pressure which had been stable at $180 / 80 \mathrm{~mm} . \mathrm{Hg}$. fell to $100 / 60 \mathrm{~mm} . \mathrm{Hg}$. and the temperature rose to 104.40 F . An electrocardiogram and an $x-r a y$ of chest were both normal and a blood volume estimation was 300 ml . greater than the expected value. A pure culture of staphylococcus aureus was isolated from three blood cultures. The staphylococcus appeared to belong to the same phage type as the staphylococcus isolated from the patient's nose, hands and burned surfaces. (Phage Type U.C. 18).

With intravenous fluid therapy and intravenous and topical antibiotic therapy the patient's condition rapidly improved. Urinary output was maintained at a satisfactory level and the blood urea nitrogen level was not raised.

As the autogenous grafts epithelialised the burned areas the local sepsis subsided, and the patient appeared less toxic. There were no subsequent rigors or hypotensive attacks and the patient's temperature returned to normal.

CASE 20

Pati.ent R.W., male, age 52 years.
Diagnosis: Burns (60% body surface).
Operation: Debridement and skin grafting.

Clinical Summary: This patient sustained severe third degree burns when he was sprayed with burning lighter fuel while igniting a picnic stove. On admission to hospital. his haematocrit was 60 per cent, white blood count was 10,000 per c.mm. Blood urea nitrogen was 73 mgms . per 100 ml . and serum electrolytes were within normal limits. He was given intensive electrolyte and colloid intravenous infusions and with the help of 1000 ml . 10% mannitol, urinary output improved and the blood urea nitrogen concentration fell. The haematocrit fell from 60 to 45 per cent. Later when the haematocrit fell further to 29 per cent a whole blood transfusion was given.

On the sixth day the patient was eating well. Electrolytes were normal. Blood urea nitrogen was 26 gms . per 100 ml . Haematocrit was 35 per cent and white blood count was 12,000 per c.mm. Temperature fluctuated between $100-101^{\circ} \mathrm{F}$.

Operative debridement and skin grafting were carried out on the seventh hospital day. Immediately post-operatively the patient was hypotensive. Blood pressure was $80 / 50 \mathrm{~mm} . \mathrm{Hg}$. and although massive blood transfusion (4 litres) was given, central venous pressure remained low. The haematocrit was 25 per cent. In the early morning of the second post-operative day the patient again sustained a rapid fall in blood pressure. the systolic arterial blood pressure was below $70 \mathrm{~mm} . \mathrm{Hg}$. and urinary output diminished.

Blood transfusion, steroid therapy, oxygen administration and vasopressors were given. The patient became comatose and died on the second postoperative day.

From the blood cultures, taken immediately after the operation and on the first post-
operative day, pseudomonas aeruginosa was isolated. This organism was also the dominant species cultured from the burn surfaces.

Post-Mortem Findings.
There were extensive thermal burns (3rd degree) involving approximately 60% body surface. Pseudomonas infection was widespread.

There was a recent acute myocardial infarction. The kidneys were swollen and pale - the site of acute tubular necrosis. Acute tracheobronchitis and petechial haemorrhages of the pleura were found. Multiple acute ulcers of oesophagus and stomach were present. There was acute congestion of the liver and spleen and focal fat necrosis of the pancreas. Both adrenal glands showed diffuse hyperplasia.

CASE 21

Patient C.A., male, age 36 years.
Diarnosis: Burns (50% body surface).
Operation: Skin grafting (Multiple procedures).
Drainage of empyema of chest.

Clinical Summary: This 36 year-old man was covered with burning petrol from an exploding engine and sustained 50% body burns. (45% body surface being third degree burns.) The majority of the anterior and posterior portions of the trunk, upper arms and neck were included in the burn area. The initial response was good and by the 5 th hospital day the patient was eating regularly.

On the eleventh hospital day 15% body surface burn was debrided and grafted. At this time cultures from the burn surfaces grew mainly alcaligenes faecalis and Klebsiella-Aerobacter species. A further 7\% burn area was grafted on the 17 th day. Following this procedure the blood urea nitrogen was slightly raised but urinary output was normal. On the evening of the third post-operative day, however, the patient became drowsy. The lethargy increased and the following morning the patient was in coma.

The blood sugar concentration was found to be 1660 mgms . per 100 mP . Blood urea nitrogen was 68 mgms. per 100 ml ., serum sodium, potassium and chloride were $160 \mathrm{mEq} ., 4.6 \mathrm{mEq}$. and 120 mEq . per litre respectively. The CO_{2} combining power was 20.2 millimoles per litre and the serum osmolarity was 459 millimoles per litre. The urine contained a large amount of sugar but no ketones.

Vigorous insulin and fluid therapy rapidly improved the patient's condition. At this time several blood cultures grew alcaligenes faecalis.

Eleven days after the acute hyperglycaemic episode the patient's blood sugar levels were normal and insulin was discontinued. Urinary excretion
of 7 -hydroxy-corticoids which had been high throughout, reached a peak value at the onset of the hyperglycaemic coma when the 24 hour urinary excretion was 34.7 mgms .

Following the coma the patient became more febrile and a right lobar pneurnonia was complicated by a right-sided empyema. The right pleura was drained and alcaligenes faecalis, Escherichia coli and KlebsiellaAerobacter organisms were isolated from the pus.

At the end of the second month after a further debridement and grafting operation the patient had several fainting spells and then became hypotensive and comatose. Blood sugar estimation was 17 mgms . per cent. Ihe patient had received no insulin in the preceding 38 days. Measurement of the serum insulin-like activity was very low (less than 31 micro-units per ml.). Blood sugar rapidly stabilised with glucose therapy and there were no subsequent episodes.

The patient's further progress was steady but slow. The burned areas gradually healed and the patient was discharged home six months after the original accident.

CASE 22

Patient M.N., female, age 54 years.
 Diagnosis: Burns (70% body surface) .
 Operation: Excision of necrotic skin and homologous skin grafting.
 Tracheostomy.

Clinical Summary: This 54 year-old married woman sustained grave third degree burns (70% body surface) when a falling lighted cigarette ignited a flannel duster and the patient's clothing.

Initially the patient was given antibiotics, anti-tetanus serum, and an intravenous infusion of electrolyte solutions, dextran and whole blood. The patient was nursed on a Stryker frame with a plaster cast support. There was intermittent pyrexia. The predominant organism infecting the burned surfaces was Proteus vulgaris although staphylococcus aureus, pseudomonas aeruginosa and Klebsiella-Aerobacter species were also isolated from some of the burned areas. On the seventh day after the accident cadaveric skin homografts were applied to excised burned areas and further grafting was carried out on the eleventh day. The wounds however became progressively more septic. The temperature became elevated. 3lood cultures on three successive days grew proteus vulgaris. The patient developed lethargy and for the last two days before death was hypotensive and semi-comatose. Tracheostomy performed the day before death was not helpful.

Post-Mortem Findings.

Deep thermal burns (70% body surface), partially replaced with homografts, were necrotic and septic. lividence of generalised systemic sepsis was found acute splenitis, tracheobronchitis, bilateral bronchopneumonia and haemorrhagic necrosis of the adrenal gland (especially the zona reticularis). The liver showed passive hyperaemia and there were mucosal haemorrhages in the stomach and urinary bladder.

CASE 23

Patient F. (r., male, age 78 years.
Diagnosis: Burns (30% body surface).
Operation: Debridement and skin grafting.

Clinical Summary: This elderly man stated that while sitting in a chair lighting a pipe, the match dropped into his lap igniting his clothes. On admission to hospital shortly after the accident he was noted to have a third degree burn over the entire anterior chest and abdomen. Both upper arms were involved and there was partial thickness burns of the hands. Haematocrit was 38 per cent. White blood count was 21,000 per c.mm. and blood urea nitrogen was 14 mgms . per 100 ml . An electrocardiogram revealed a possible old antero-septal myocardial infarct.

The burn was treated in an open fashion. Antibiotics and fluid replacement therapy were comnenced and on the ninth hospital day the patient had an excision and skin-grafting operation. 95% of the autogenous grafts were successful. On the nineteenth hospital day however, the patient became progressively hypotensive. Heart rate was regular (64 per minute). The heematocrit fell from 30 to 26 per cent. The patient appeared dehydrated and he subsequently became oliguric with only 45 ml . urine being produced in 8 hours. Fluid therapy overcame the dehydration but the oliguria persisted. At this time occult blood was present in the stools. A chest film revealed an infiltrate and possible pleural effusion on the right side. Bronchoscopy was performed and KlebsiellaAerobacter organisms were isolated from the aspirated pus. Despite therapy the patient became progressively more hypotensive and after lapsing into coma, he died three weeks after the burn accident.

Post-Mortem Findings.

At autopsy the burned area was excised and covered with healthy skin grafts. The significent pathological findings were in the respiratory system. Both lungs showed evidence of chronic bronchiectasis with superimposed bilateral bronchopneumonia, the bronchi containing abundant secretion. The coronary vessels were widely patent. There was hepatic congestion and mucosal petechiae in the stomach. The urinary bladder showed erosions and there was arteriolar nephrosclerosis.

CASE 24

Patient B.W., (4-26-45), female, age 26 years.
Diagnosis: Septic abortion.
Operation: 1) Subtotal hysterectomy and right oophorosalpingectomy.
2) Laparotomy and ligation of bleeding vessel.

Qlinical summary: The patient was a 26 year-old married woman who was admitted to hospital following a septic criminal abortion. She had five previous pregnancies. The last menstrual period was 3 to 4 months earlier. Two days before admission the patient had soap suds introduced into the uterus to produce an abortion. In the evening she developed lower abdominal pain and diarrhoea, followed by shaking chills. The following day she had an incomplete abortion. The abdominal pain and fever increased and she was admitted to her local hospital. There she was found to have a temperature of 1050F, peritonitis, hypotension and anuria and was transferred to the Peter Bent Brigham Hospital, Boston.

On admission her blood pressure was $80 / 40 \mathrm{~mm} . \mathrm{Hg}$., her pulse rate was 140 per minute and her respiratory rate was 20 per minute. The patient appeared to be acutely ill and toxic. She complained of generalised abdominal pain. There was slight icterus of the slrin and sclerae. Chest examination revealed no abnormality. The abdomen showed an increased girth and the uterus was palpable to just below the umbilicus. There was generalised abdominal tenderness. The uterus was exquisitely tender and hard and crepitus could be elicited on palpation. A straight x-ray film of the abdomen showed concentric gas shadows in the uterus, very suggestive of a clostridial infection. (Jigure 24).

Initial Laboratory Findings.
Urine: very scanty and dark brown.
Haematology: Haematocrit 26 per cent.
Leucocyte count 19,500 per c.mm.
Platelet count 44,000 per c.min.
Clotting time 15 minutes.
Fibrinogen 100 mgms. per cent.
Serum haemoglobin 227 mgms per cent.
Serum methaemoglobin 0.4 per cent.
Sulphaemoglobin less than 0.1 per cent.
Blood Chemical
Analyses: Blood urea nitrogen 58 mgms. per 100 ml .
Serum bilirubin 2.3 mgms. per 100 ml .
The initial problem was septic abortion with peritonitis,
haemolysis and anuria. Investigation was carried out to
see if ureteric obstruction was present. Cystoscopy and
retrograde pyelograms were normal. At laparotomy the
peritoneal cavity contained sero-sanginous fluid. The
fundus of the uterus was black and necrotic. Cultures of
the peritoneal fluid and of the uterus, grew Cl. per-
fringens, E. coli, and Klebsiella-Aerobacter organisms.

Blood cultures on the first three consecutive days were all positive for gram-negative organisms of the Klebsiella-Aerobacter group. All subsequent blood cultures were sterile.

Supracervical hysterectomy and right oophoro-salpingectomy were carried out. Antibiotics included penicillin and streptomycin. Later chloramphenicol was used.

After the patient's return from the operating room it was considered that hyperbaric oxygen therapy might be helpful and she was transferred to the hyperbaric chamber and treated under light general anaesthesia for 2 hours at a pressure of 30 pounds per square inch. During this time peak arterial po was $1150 \mathrm{~mm} . \mathrm{Hg} . ; \mathrm{pCO}_{2}$ was $34 \mathrm{~mm} . \mathrm{Hg}$. and pH was 7.64 .

On the second hospital day the patient appeared to have improved. With intravenous vasopressors
(noradrenaline) a systolic blood pressure of $100 \mathrm{~mm} . \mathrm{Hg}$. was maintained. The patient remained anuric and an arterio-venous plastic tube shunt was inserted into the left arm. Haemodial.ysis, using the twin-coil kidney, was carried out three times over the next nine days. On the 10th post-operative day, oozing from the abdominal wound became much more marked and further operative exploration was necessary. Arterial bleeding found in the necrotic tissue of the right parametrium was controlled by suture. There was a serious thrombocytopenia and only on the patient's 15th hospital day did the platelet count rise above 50,000 per c.mm. It subsequently rose to above 110,000 per c.mm. The patient remained almost completely anuric for two weeks. From the 15th day urinary output commenced and associated with an initial post-anuxic diuresis there was an accompanying fall in the blood urea nitrogen level. Figure 25 demonstrates the patient's clinical course.

A monilial infection of alimentary, urinary, and respiratory tracts, occurring later in the patient's illness, responded to nystatin therapy.

COMMENI - The patient illustrated the problems associated with severe sepsis from mixed grampositive and gram-negative infection with hypotension and a low flow state, oliguria and coagulation defects. A satisfactory response was achieved by a combination of surgical treatment, hyperbaric oxygen therapy, haemodialysis, intermittent brief use of vasopressor substances, blood and platelet transfusions and intensive antibiotic therapy.

CASE 25

Patient G.I., female, age 35 years.
Diagnosis: Endometriosis.
Operation: 1) Hysterectomy.
2) Drainage of Pelvic Abscess.

Clinical Summary: The patient, a 35 year-old married woman had four previous admissions to hospital for recurrent respiratory disease (bronchitis and pneumonia). Six days prior to admission to the Peter Bent Brigham Hospital, the patient had a hysterectomy for endometriosis performed at another hospital. On the first post-operative day the patient was noted to have pulmonary congestion and a pyrexia of $101^{\circ} \mathrm{F}$. Antibiotic therapy was commenced. During the following few days there was increasing abdominal distension and the patient's temperature rose to $104^{\circ} \mathrm{F}$. A diagnosis of pelvic abscess was made and gastric aspiration was commenced. Urinary output was $600-700 \mathrm{ml}$. per day. The haemoglobin fell from $14 G$. per cent to 9.4 . . per cent post-operatively.

On the 6th post-operative day the patient was transferred to the intensive care unit at the Peter Bent Brigham Hospital. On admission her temperature was $103.4^{\circ} \mathrm{F}$., respiratory rate 40 per minute, pulse 120 per minute and blood pressure $100 / 80 \mathrm{~mm} . \mathrm{Hg}$. Coarse rhonchi were present throughout the lungs. The abdomen, which was grossly distended was silent to auscultation. X-ray of chest showed a collapsed left lower lobe of lung. On the 9 th post-operative day the patient had an infected pelvic haematoma drained. In view of the increasing pulmonary upset a tracheostomy was carried out and intermittent tracheal aspiration was performed. Further x-rays showed bilateral basal consolidation of the lung fields. The pyrexia (1040F) persisted. With assisted respiration the patient's arterial pO_{2} rose to $225 \mathrm{~mm} \cdot \mathrm{Hg}$. when breathing 100% oxygen.

Dark foul-smelling fluid drained from the vagina. Pulmonary oedema responded to treatment by

Phlebotomity of 300 ml . blood. A central venous pressure of $10-12 \mathrm{cms}$. water was recorded and there was no subsequent rise in venous pressure.

The patient's abdominal distension persisted and her pulmonary condition continued to give anxiety. On the 16 th post-operative day after the hysterectomy, the patient became acutely cyanotic with maxked respiratory distress and hypotension. Tracheal suction produced copious purulent secretions. Controlled respiration with 100% oxygen was carried out. Iater an x-ray chest showed a right-sided pneumothorax. A pleural water-seal drain caused only slight improvement. Arterial pO_{2} fell to $40 \mathrm{~mm} . \mathrm{Hg}$., hypotension was unresponsive and death occurred on the evening of the 16 th day.

Laboratory Data on day of Death.

White blood count	$-19,300 \mathrm{c} . \mathrm{mm}$.
Prothrombin concentration	-36% of normal.
Blood urea nitrogen	-14 mgms. per 100 ml.

Blood Gas Estimations
pH
pO_{2}
pCO_{2}
CO_{2} content(plasma) $19 \mathrm{mM} /$ litre.
Serum lactate
Serum pyruvate
29.8 minols./litre.

(2)
 $43 \mathrm{~mm} . \mathrm{Hg}$. $70 \mathrm{~mm} . \mathrm{Hg}$. $0.82 \mathrm{mlMols} /$ litre.

On day of death patient had a severe combined respiratory and metabolic acidosis.

Post-Mortem Findings.

1. Generalised peritonitis with fibrinous adhesions.
2. Hepatomegaly (wt 2170 G) with biliary stasis - jaundice.
3. Superficial ulceration of oesophagus, stomach and duodenum.
4. Cystitis.
5. Acute laryngo-trachea-bronchitis.

Bilateral bronchopneumonia and consolidation. Bartially organised bilateral pulmonary thrombo-emboli.

CASE 26

Patient H.F., male, age 83 years.
Diagnosis: Urethral Stricture. (Post perineal prostatectomy).

Operation: Urethral bouginage.

Clinical Summary: 17 years previously the patient had a perineal prostatectomy for benign prostatic hypertrophy. Four years before his present admission to hospital the patient had developed a urethral stricture and had attended from time to time for urethral dilatation. Since the last bouginage 2 months previously the patient had intermittent haematuria, increased frequency and hesitancy of micturition.

Urethral dilatation was attempted under local anaesthesia and was unsuccessful. A urethrogram showed some extravasation of dye. Later the same evening the patient had a shaking chill, and was found to have pulmonary oedema. Blood pressure was $60 / 40 \mathrm{~mm} . \mathrm{Hg}$. and temperature was $105^{\circ} \mathrm{F}$. The patient was treated with morphia, aminophyliine, phlebotomy, oxygen, chloramphenicol and noradrenaline. Large doses of steroid were given by continuous intravenous infusion over the next 48 hours. Suprapubic cystomy was performed. Two days after the onset of symptoms, the white blood count wes 40,000 per c.mm. and the blood urea nitrogen was 89 mgms. per cent. Positive blood cultures were not obtained but the urine grew E . coli and Klebsiella-Aerobacter organisms.

After making slow progress over the next two weeks the patient then developed a further attack of pulmonary oedema. He became cold and sweating and developed marked ventricular tachycardia. On this occasion the patient was unresponsive to energetic therapy and died.

Permission for post-mortem examination
was not granted.

CASE 27

Patient F. 工., male, age 54 years.
Diagnosis: Adenocarcinoma of Prostate.
Operation: Total perineal prostatectomy.

Clinical Summary: One month before admission to hospital, at a medical examination for business purposes the patient was found to have a firm nodule in the prostate. He had occasional dysuria. There was no haematuria or back pain. The patient was admitted to hospital for investigation.

Initial Laboratory Findings.

Urine - mid-stream specimen - sterile.
Blood urea nitrogen - 18 mgms. per 100 ml . blood.
Serum, calcium, phosphorus and phosphatase wexe normal.
White blood count was $6,600 / \mathrm{c} . \mathrm{mm}$. (78% neutrophils).
Haematocrit 45.5 per cent.
X-ray of Chest, Iumbar Spine and Pelvis werenormal.
Intravenous pyelography showed normally functioning kidneys.
The bladder outline was normal but a post-micturition cystogram showed some residual urine.
An electrocardiogram showed left ventricular hypertrophy.

On the 3rd hospital day, total perineal prostatectomy was performed. A biopsy of prostate taken at the time of operation confirmed the presence of adenocarcinoma. Jater histological examination of the whole specimen demonstrated adenocarcinoma involving perineural lymphacics, periprostatic capsule and seminal vesicles. During operation three bottles of blood were given.

The patient's post-operative progress was at first satisfactory.

On the 6th post-operative day the patient developed a shaking chill and his temperature rose to 104.40 F . There was some discharge from perineum.
$/$
The catheter drained urine satisfactorily. Blood pressure which had been steady at $190 / 100 \mathrm{~mm} . \mathrm{Hg}_{\mathrm{g}}$. fell. to $108 / 60 \mathrm{mr} . \mathrm{Hg}$.

Urine and blood cultures on the 6th and 7 th post-operative days grew li. coli. Later blood cultures were sterile.

Blood urea nitrogen never rose above 30 mgms. per cent and daily urinary output remained satisfactory. The patient was given chloramphenicol and streptomycin. In the following days the temperature gradually fell. The patient was allowed home on the 20th post-operative day. Urinary control was satisfactory when the patient was discharged from hospital.

Abstract

CASE 28

Patient W.K., male, age 24 years. Diagnosis: Renal Pailure from chronic glomerulonephritis. Operation: Bilateral nephrectomy and splenectomy with renal homotransplantation.

Clinical Summary: This 24 yearmold man who had chronic renal failure secondary to chronic glomerulonephritis, had a renal homotransplantation with his mother as donor. Bilateral nephrectomy and splenectomy were performed at the same operation. Early rejection of the homografted kidney was overcome by using azaserine, actinomycin C and prednisolone. The patient was discharged from hospital 5 weeks after the operation and at that time maintenance immuno-suppressive drug therapy consisted of 100 mgms . prednisolone and 200 mgms . asathioprine (Imuran) daily. Three weeks later the patient woke up with sudden severe pains in both knees. He was re-admitted to hospital. Temperature on admission to hospital was $102^{\circ} \mathrm{F}$. White blood count was 8,200 per c.mm. and a platelet count was 285,000 per c.mm. X-rays of both knees showed no abnormality. Blood urea nitrogen was 16 mgms. per 100 ml . and urine findings were normal.

A few days later the patient had a shaking chill and his temperature rose to $105^{\circ} \mathrm{F}$. He had frequent loose bowel movements. Serial blood cultures were negative and no pathogens were cultured from the stool.

The patient's subsequent hospital course lasted twenty days until the time of death. He had daily spikes of fever (103-105 ${ }^{\circ}$). During the last week the patient's temperature never fell below $102^{\circ} \mathrm{E}$. Careful examination failed to detect any localised site of infection.

In addition to the diarrhoea the patient developed marked dysphagia. Barium swallow revealed no abnormality. The serum bilirubin rose to 3.2 mgms. per 100 ml . Abdominal distension became
progressive and the patient had severe enterocolitis. He became hypotensive. Vasopressor drugs were of temporary value. There was marked metabolic acidosis, the blood pH falling below 7.0. Further resuscitation was impossible and the patient died 2 months after kidney homotransplantation operation.

Post-Mortem Findings.
Staphylococcus aureus was isolated from the deeper part of the operation wound. The homotransplanted kidney was healthy and satisfactory. The liver was the site of severe fatty changes with numerous gas pockets apparently from clostridial infection. From liver slices E. coli and alpha-haemolytic enterococci were cultured. E. coli was also isolated from postmortem heart blood. There was peritonitis with dilatation of small and large intestine. No perforation was found in the alimentary tract.

Confluent bronchopneumonia was present associated with bilateral purulent pleural effusions.

CASE 29

Patient M.D., male, age 24 years.

Diagnosis: Chronic glomerulonephritis with renal failure.
Operation: 1) Homotransplantation of kidney (cadaver
2) Appendicectomy for acute appendicitis.
3) 2nd Homotransplantation of kidney.
4) Evacuation of Ischio-rectal abscess.

Clinical Summary: This 24 year-old man had chronic azotaemia associated with chronic glomerulonephritis. He had long term intermittent dialysis. At first repeated peritoneal dialysis was performed but later on account of peritoneal sepsis and adhesions haemodialysis was undertaken. In April, 1962 a kidney from a 32 yearold male who died during aortic valve replacement was transplanted into the patient's right iliac fossa. Long term chemotherapy to prevent immunological rejection of the donor kidney was employed using azathioprine (Imuran) and prednisolone. The patient remained in satisfactory health for the following 20 months at which time he was re-admitted to hospital with a temperature of 1030 F and acute lower abdominal pain. These symptoms were due to acute appendicitis and appendicectomy was performed. In the following weeks signs of rejection of the donor kidney became marked and to overcome the renal insufficiency a second homotransplantation was carried out. A kidney removed during operation for relief of hydrocephalus in a child (Matson procedure - ventricular drainage via plastic tube into ureter) was transplanted into the patientis left iliac fossa, the failing first transplanted kidney on the right side being undisturbed.

Following the operation the patient developed a persistent wound infection. Pseudomonas aeruginosa, Escherichia coli and staphylococcus aureus were isolated.

The patient had a remittent temperature and later E. coli was isolated from blood cultures. A large ischio-rectal abscess in the perineum was evacuated, pseudomonas aeruginosa and staphylococcus epidermidis

Case 29 (contd.)

1

being cultured from the pus.
A leucocytosis between 20,000 and 42,000 per c.mm. had been maintained for several weeks. Multiple septic foci occurred on the legs. Jaundice and hypotension finally supervened and the patient died six months after the second renal homotransplantation (26 months after the initial transplantation).

Post-Mortem Findings.

The right iliac fossa kianey (1st donor transplant) had been destroyed and was surrounded by dense adhesions. The left donor kidney had fistulae and abscesses. Clumps of gram-negative rods were present in the liver which was enlarged and congested. Linear erosions were present in the oesophagus and multiple superficial ulcers were found in the stomach and duodenum. Multiple thrombi or emboli with small abscesses were scattered throughout both lungs.

CASE 30

Patient W.J., male, age 46 years.
Diagnosis: Polycystic kidney disease. Renal failure.
Operation: Bilateral Nephrectomy, splenectomy and renal homotransplantation.

Clinical Summary: This 46 year-old man had a ten year history of progressive renal failure, uraemia and hypertension associated with bilateral polycystic kidneys.

He had been maintained on a chronic dialysis regime until renal homotransplantation was performed. The donor kidney was from the patient's wife who shared all but two minor blood groups. At operation bilateral huge polycystic kidneys were removed along with the spleen.

After the transplantation operation the patient's progress was good. Blood urea nitrogen fell to $20-30 \mathrm{mgms}$. per 100 ml . Immuno-suppressive chemotherapy was maintained with a daily dose of 200 mgms . azathioprine (Imuran) and 100 mgms. prednisolone.

Three months after the operation the patient developed a febrile illness and a cough. X-ray demonstrated a poorly circumscribed lesion in the right upper lung field. It was considered that the lesion of the lung might have been tuberculosis, sarcoid, cocidioidomycosis or histoplasmosis. Bronchoscopy was performed with negative results.

Iow grade fever persisted for 2-3 weeks at which point the patient developed a sudden shaking chill and his temperature rose to $103^{\circ} \mathrm{F}$. Blood cultures at this time were sterile. White blood count was 14,000 per c.mm., platelet count 280,000 per c.mm., haematocrit 35 per cent, and blood urea nitrogen had risen to 82 mgms . per 100 ml . Immuno-suppressive drugs had to be continued as there was evidence of rejection of the kidney. The donor kidney in the right iliac fossa was enlarged and tender and the
blood urea nitrogen had risen. The patient's condition continued to deteriorate. He looked pale and toxic and the pyrexia persisted. Although the platelet count was maintained at a normal level subsequent white cell counts revealed a leucopenia (the terminal white blood count being in the 1,500-2,500 per c.mar. range).

Hypotension associated with marked respiratory distress developed. The pyrexia, increased and blood cultures became positive (1.. coli). Further deterioration took place and the patient died 15 weeks after the renal homotransplantation operation.

Post-Mortem Findings.

There was active rejection of the homotransplanted kidney. A large abscess was found in the right lung and E . coli was cultured from it. There was a terminal massive bronchopneumonia. Mucosal petechiae and haemorrhages were found in the stomach, duodenum and small bowel. The parathyroid glands were enlarged.

CASE 31

Patient J.B., male, age 58 years.
Diagnosis: Carcinoma of liver.
Operation: Homotransplantation of liver.

Clinical Summary: This 58 year-old man who had a long history of alcoholism was admitted to hospital with abdominal pain and weight loss. He had never suffered from haematemesis, ascites or convulsions.

Admission examination revealed a fine, nodular liver which was considerably enlarged and which contained discrete hard masses. Rectal examination and sigmoidoscopy were negative. Barium meal and barium enema examinations were also negative and liver function tests were within normal limits. Cholecystography was normal and x-ray of chest and skeleton showed no abnormality.

At laparotomy, an enlarged, fibrosed liver was found to contain multiple tumour deposits. Careful examination of the abdominal cavity revealed no evidence of primary tumour elsewhere. A liver biopsy was taken and the abdomen closed. The histological report of the biopsy confirmed the presence of adenocarcinoma of liver and suggested that the tumour was metastatic to a carcinoma of stomach, colon, pancreas or lung. Chemotherapy was commenced with 'Cytoxan' but one week later a suitable liver became available and the patient underwent liver homotransplantation.

The donor was a 35 year-old policeman who had been shot through the head and who died almost immediately after admission to hospital.

At operation the patient's liver was removed and the donor liver transplanted. The circulation which was established appeared satisfactory. The total donor liver circulation occlusion time was 2 hours, 50 minutes. Immuno-suppressive drug therapy included azathioprine (Imuran), azaserine and cortisone.

On the day following operation, blood volume estimation, blood urea nitrogen and serum electrolytes were normal. Liver function tests were - bilirubin 3.8 mgms. per cent, alkaline phosphatase 0.9, S.G.O.T. 960 units, lactic acid dehydrogenase (I.D.H.) 620 units, total protein 4.7 G. per cent and albumen 3.5 G . per cent.

During the next seven days the patient developed a marked thrombocytopenia and liver function progressively deteriorated. By the tenth post-operative day the patient had lapsed into coma and the arterial blood pressure fell progressively and was unresponsive to vasopressor drug therapy. Just before death liver function tests demonstrated gross liver failure (bilirubin 42 mgms. per cent, S.G.O.T. 3,000 units and I.D.H. 3,150 units).

Blood cultures had remained sterile but bacteriological specimens from the wound and T-tube bile drainage contained staphylococcus aureus.

Post-Mortem Findings.
There was generalised acute sepsis. Bacteria were found in the liver, heart, lungs and kidneys. Microabscesses were found in the heart muscle and there was bilateral bronchopneumonia.

There was massive hepatic necrosis with thrombosis of the hepatic vessels. Blood was present in the stomach, small and large bowel. Multiple superficial recent gastric and pyloric ulcers were found. A small primary carcinoma was found in the sigmoid colon. The kidneys were the site of acute tubular damage.

[^0]: * Predicted normal blood volume $4,900 \mathrm{ml}$.

[^1]:
 II

[^2]:

[^3]: Area $=$ Area in microns ${ }^{2}$

 Diameter in microns.
 II
 ©

[^4]: , suoxoṭu ut bexy = BəコV

[^5]: $D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.

[^6]: $D=$ Diameter in microns. Area $=$ Area in microns ${ }^{2}$.

[^7]: Area $=$ Area in microns ${ }^{2}$.

[^8]: (

[^9]: * z SUOJOŢW UȚ

 Rexv
 -suoxotu ut xaqəmeta =

[^10]: N
 suoxoṭu uT 8วエV =
 Area

 Diameter in microns.

[^11]: Area $=$ Area in microns ${ }^{2}$.
 -SUCJOTM UT JəqəWeta $=\mathbb{I}$

[^12]:
 11

[^13]: Area $=$ Area in microns ${ }^{2}$.

