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Abstract 

Current theories of visual categorization are cast in terms of information 

processing mechanisms that use mental representations. However, the actual 

information contents of these representations are rarely characterized, which in 

turn hinders knowledge of mechanisms that use them. In this thesis, I identified 

these contents by extracting the information that supports behavior under given 

tasks - i.e., the task-specific diagnostic information. 

In the first study (Chapter 2), I modelled the diagnostic face information for 

familiar face identification, using a unique generative model of face identity 

information combined with perceptual judgments and reverse correlation. I then 

demonstrated the validity of this information using everyday perceptual tasks that 

generalize face identity and resemblance judgments to new viewpoints, age, and 

sex with a new group of participants. My results showed that human participants 

represent only a proportion of the objective identity information available, but what 

they do represent is both sufficiently detailed and versatile to generalize face 

identification across diverse tasks successfully. 

In the second study (Chapter 3), I modelled the diagnostic facial movement 

for facial expressions of emotion recognition. I used the models that characterize 

the mental representations of six facial expressions of emotion (Happy, Surprise, 

Fear, Anger, Disgust, and Sad) in individual observers. I validated them on a new 

group of participants. With the validated models, I derived main signal variants for 

each emotion and their probabilities of occurrence within each emotion. Using 

these variants and their probability, I trained a Bayesian classifier and showed that 

the Bayesian classifier mimics human observers‘ categorization performance 

closely. My results demonstrated that such emotion variants and their probabilities 

of occurrence comprise observers‘ mental representations of facial expressions of 

emotion. 

In the third study (Chapter 4), I investigated how the brain reduces high 

dimensional visual input into low dimensional diagnostic representations to support 

a scene categorization. To do so, I used an information theoretic framework called 

Contentful Brain and Behavior Imaging (CBBI) to tease apart stimulus information 

that supports behavior (i.e., diagnostic) from that which does not (i.e., 
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nondiagnostic). I then tracked the dynamic representations of both in magneto-

encephalographic (MEG) activity. Using CBBI, I demonstrated a rapid (~170 ms) 

reduction of nondiagnostic information occurs in the occipital cortex and the 

progression of diagnostic information into right fusiform gyrus where they are 

constructed to support distinct behaviors. My results highlight how CBBI can be 

used to investigate the information processing from brain activity by considering 

interactions between three variables (stimulus information, brain activity, 

behavior), rather than just two, as is the current norm in neuroimaging studies. 

I discussed the task-specific diagnostic information as individuals‘ dynamic 

and experienced-based representation about the physical world, which provides 

us the much-needed information to search and understand the black box of high-

dimensional, deep and biological brain networks. I also discussed the practical 

concerns about using the data-driven approach to uncover diagnostic information. 
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1 General Introduction 

Categorization is the must-do task undertaken by our visual system. It is 

essential to human life because the categorization outcome allows us to make 

appropriate decisions and survive in the world. For example, we can categorize 

people as our friend or foe to decide whether we approach or elude, categorize 

foods as edible or poisonous to decide whether we eat or not, and categorize the 

environments as safe or dangerous to decide whether we involve or flee.  

To deal with the daily categorization task, our brain is proposed as a multi-

layered architecture (Bullmore & Sporns, 2009; K. J. Friston & Kiebel, 2009; Grill-

Spector & Weiner, 2014; Guclu & van Gerven, 2015; Kravitz, Saleem, Baker, 

Ungerleider, & Mishkin, 2013; Mumford, 1992; Van Essen, Anderson, & Felleman, 

1992) to transform the high-dimensional information representation mapped onto 

the retina (e.g. the full face morphology, complexion, and dynamic information) 

into low dimensional information representations (e.g. selectively process the lip 

corner puller and the eye wrinkled, see Schyns, Bonnar, & Gosselin, 2002) that 

support subsequent decision (e.g. a happy face). Such a stimuli input to behavioral 

output transformation along the brain hierarchies implicitly casts visual 

categorization as an information processing issue. Understanding the mechanisms 

of visual categorization in cognitive and neuroscience, therefore, requires tracing 

the information processing that subserves the corresponding behavior.  

Before we make endeavours to draw the full map of the information 

computation in the densely inner-connected, hierarchically organized brain 

network, we should start our analysis from the information goal: the information 

that the brain must process to resolve the categorization. Such goal matters as the 

information requirements from the stimuli input change under different 

categorizations (Harel, Kravitz, & Baker, 2014; Schyns et al., 2002; Sigala & 

Logothetis, 2002). For example, assigning a face stimulus to a specific identity 

Mary requires different information compared to categorizing the same face as 

Happy. 

My thesis focuses on uncovering such task-specific (diagnostic) 

information. In this chapter, I will start with section 1.1 to explain in more details 

why we should start our analysis from diagnostic information. Then in section 1.2, 

I will discuss the appropriate methodology to uncover the diagnostic information. In 
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section 1.3, I will review the research topics I‘m interested in: face identification, 

facial emotion recognition, neural representations of visual categorization, 

and discuss the unsolved issues from the aspects of diagnostic information 

representation. 

1.1 Diagnostic Information for Visual Categorization 

Human visual categorization refers to the cognitive process where the 

observer assigns the visual input received by the retina to discrete categories, 

according to their knowledge (Bar et al., 2006; Goldstone, 1994; Schyns, 

Goldstone, & Thibaut, 1998; Summerfield & de Lange, 2014). Computationally, we 

can translate the visual categorization process as such: human observers 

associate the visual stimulus Xi to a category label Yi via a transformation function 

f (Xi) ≈ Yi. If we implement such input to output transformation in the human brain, 

it introduces two essential aspects: 1) Stimulus Representation: how does our 

visual system represent the visual input Xi (i.e., the representational basis)? 2) 

Transformation Function: how our brain uses the stimuli representations to make 

correct categorization (i.e., the algorithm defined by the function f )? A complete 

model of visual categorization requires the specifications of both: the 

transformation function and its representational basis. 

In this section, I will firstly review the visual categorization research from the 

aspects of representational bases and their transformation in the fields of 

biological vision, computer science (see 1.1.1), and cognitive psychology (see 

1.1.2). Based on these reviews, I discuss the necessity to take the diagnostic 

information as a critical component (the information goal) to fertilize each field and 

to guide the complete information processing explanation of visual categorizations 

(see 1.1.3). 

1.1.1 Visual Categorization in Biological and Computer Vision 

How the human visual system represents the stimuli input along the visual 

hierarchies is mainly investigated by biological vision. It has been widely 

demonstrated that visual representation forms a spectrum ranging from low-level 

to intermediate-level and then to higher-level according to the constraints of 

representation at different hierarchies of the visual system. For example, at low-

level, representational models of primary visual cortex (V1) are mainly based on 

the output of multi-scale, multi-orientation Gabor filters, which mimics the turning 
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function of cortical cells in these early regions that is sensitive to different 

orientations and spatial frequencies (Hubel & Wiesel, 1998; Jones & Palmer, 

1987). At intermediate levels, the low-level outputs are summarized and combined 

to describe more complex features (Riesenhuber & Poggio, 1999; Rodriguez-

Sanchez & Tsotsos, 2012), e.g., curvature or local patches (see reviews, Kubilius, 

Wagemans, & Op de Beeck, 2014; Peirce, 2015), in intermediate level brain 

regions such as V2 (Freeman & Simoncelli, 2011; Freeman, Ziemba, Heeger, 

Simoncelli, & Movshon, 2013) and V4 (Pasupathy & Connor, 1999, 2001, 2002; 

Yamane, Carlson, Bowman, Wang, & Connor, 2008). The intermediate level 

outputs are then fed into the higher visual hierarchy (e.g., temporal cortex) to form 

features that capture higher complexity (L. Chang & Tsao, 2017; Huth, Nishimoto, 

Vu, & Gallant, 2012; Kornblith, Cheng, Ohayon, & Tsao, 2013; Kourtzi & 

Kanwisher, 2001) and finally enable the categorization.  

In computer vision, many hierarchical models (Fukushima, 1988; 

Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 2007; Ullman, 2007) and 

deep learning architectures (Guclu & van Gerven, 2015, and see reviews 

Kriegeskorte, 2015; LeCun, Bengio, & Hinton, 2015) have algorithmized this low-

intermediate-high level representations and their transformation with outstanding 

categorization performance. As they are beyond my knowledge and not the focus 

of my thesis, I will not review these models and their algorithms in details here; 

instead, I would like to raise a conceptual concern which I now detail in next. 

There is one challenge associated with the stimuli representations and their 

operations along the visual hierarchy. On the one hand, the representations 

across different level must capture sufficient detail so that the outcome of the 

higher-level contains enough features to allow accurate categorization (i.e., the 

accuracy concern). On the other hand, as the lower-level representations flow into 

higher visual hierarchies to create complex representations, robust diagnostic 

recognition is required to transfer the ‗correct‘ features and leave out the noise; 

otherwise, the process will be highly resource-intensive (i.e., the efficiency 

concern). 

However, the accuracy-efficiency trade-off does not attract enough attention 

in the field of biological and computer vision. In biological vision, researchers 

attend mainly to the ‗perceptual‘ component, so they emphasize the parameters 

that are constrained by neurobiological data and aim to design hierarchical models 
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that are biologically feasible. However, they overlook the ‗cognitive‘ component; 

most of these models are feed-forward so that they learn all the information in the 

visual input regardless of their diagnosticity for the categorization task at hand. 

This neglect arguably weakens the validity of these models as they incorporate 

information that could be redundant to human observers.  

In computer vision, the machine learning boom has resulted from neural 

networks with deep learning architectures and many deep networks recruit the 

back-propagation algorithm that propagates an error signal from more superficial 

(categorization or higher-level representation) layers to deeper (perceptual 

representation) layers. In such recurrent structures, only visual features that are 

diagnostic for categorization tasks will be learned, but they are diagnostic to the 

machine learning/algorithmic implementation. As the human brain and machines 

implement differently by nature, the diagnostic features learned by machine by 

minimizing the error signal between each layer is demonstrably not the same as 

the actual diagnostic features learned by human observers in reality (Nguyen, 

Yosinski, & Clune, 2015; Phillips, Hill, Swindle, & O'Toole, 2015; Phillips & 

O'Toole, 2014). 

Understanding the visual representation with biological constraints while 

considering the accuracy-efficiency trade-off, therefore, requires the incorporation 

of cognitive constraints. Cognitive constraints are investigated a lot by the 

psychological research on human observers, which I now introduce in the next 

section. 

1.1.2 Visual Categorization in Cognitive Psychology 

Three categorization models1 are popular in the field of psychology to 

understand the cognitive aspects of categorization, They are prototype, exemplar, 

and boundary models (see more categorization models discussed in Kruschke, 

2008). Prototype models propose that individuals calculate the similarity between 

the input stimulus and the prototypes (or best example) they have memorized for 

each category, and respond to the category that has the highest similarity (Reed, 

1972). Exemplar models assume that individuals calculate a global similarity 

between the input stimulus and every exemplar of each category, and choose a 

                                         
1
 I do not aim to discuss every categorization models and their variants in details. I list three main ones here 

to derive three components related to the representational basis and transformation function. 
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response based on the global similarity (Estes, 1986; Hintzman, 1986; Medin & 

Schaffer, 1978; Nosofsky, 1986). The boundary model, which does not explicitly 

specifies the contents (e.g., the prototype or every instance) for categorization, 

describes the decision boundaries along information dimensions to dissociate 

different categories through learning (Ashby & Gott, 1988; Ashby & Maddox, 

1992). For example, an observer might use the criteria 20-floors tall as a boundary 

between skyscraper and non-skyscraper, i.e., categories a building as a 

skyscraper if it is at least 20-floors tall.  

Though the categorization processing is implemented differently in these 

models, we can derive three main components from them: 1) stimulus 

representation, 2) mental representation and 3) decision making. The stimulus 

representation in cognitive psychology is always specified in a different form than 

the biological vision. It does not describe stimulus in its biologically-constrained 

form (see my discussion in 1.1.1); instead, it represents stimulus as a point in a 

multidimensional space in terms of their physical attributes, with the axes of the 

space representing features, and the prototype at the center of the space. The 

physical similarity between two items is described as their distance in the space 

(e.g., Blanz & Vetter, 1999 for face; Murase & Nayar, 1995 for object; see recently 

C. H. Chang, Nemrodov, Lee, & Nestor, 2017; Nestor, Plaut, & Behrmann, 2016 

for the space reconstruction based on human behavioural and neural data). The 

mental representation stored in memory is defined differently in the three models. 

In the prototype (vs. exemplar) model, the representation of prototype (vs. all know 

individual exemplars) in the space is memorized; in the boundary model, the 

feature dimensions in the space that maximize the categorization accuracy are 

learned and memorized. To transform the input stimulus to a category output, 

observers compare the stimulus representation with their mental representation, 

calculate their similarity (e.g., Euclidean or city-block distance in the 

multidimensional space) and, if they are close enough, decide a category. 

Mental representation is the critical component during input-to-output 

transformation in categorization models: it describes the information human 

observers do actually have and extract from stimulus representation before their 

response can be made for a particular task under the model. It explicitly deals with 

the content that is overlooked by biological/computer vision. However, in these 

models, the hypothesized representational contents could be too redundant (e.g., 
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in the exemplar model), too general (e.g., in the prototype model) and even falsely 

hypothesized and impair the categorization (see the limitation of Traditional 

Hypothesis Approach in later section 1.2.2.1). Precise access to the mental 

representation requires more careful estimation of the information that determines 

the categories. 

1.1.3 Diagnostic Information Matters 

Based on my discussions in 1.1.1 and 1.1.2, we know that models of visual 

categorizations in both biological/computer vision and cognitive psychology have 

their limitations. 

 Models in biological and computer vision focus on describing how the 

human brain represents the input stimuli along the visual hierarchy with biological 

feasibility (representational basis), and what algorithms can optimize (e.g., by 

minimizing the error) the mapping between input and output (transformation). 

However, they overlook the impact of humans‘ top-down knowledge so that the 

modelled and learned information by machines could be suboptimal and 

misleading to the human mind.  

Models in cognitive psychology release the stimuli representation from the 

biological constraint and build them in a more psychological traceable space 

(representational basis). In such space, they modelled the input-to-output 

transformation, using a critical component mental representation to determine 

what input information should be used based on observers‘ top-down knowledge. 

Thus, these models theorize the missing component in biological and computer 

vision. However, these models are with much disagreement on what actual 

information the mental representation characterizes, and we cannot derive a 

complete information processing explanation unless we have precise access to 

these representational contents. 

Now, I would like to take Diagnostic Information as a critical component for 

visual categorizations, and we need to investigate it explicitly in addition to the 

Stimulus Representation and the Transformation function that I formulated at the 

very beginning. From a functional standpoint, diagnostic information is the 

information that decimates the categories in principle, so it defines the information 

that necessarily connects a stimulus input to a category output. As such, 

diagnostic information provides a much precise estimation of the mental 



19 
 

representation. From a practical standpoint, as diagnostic information specifies the 

information contents of mental representation, it sets up the much-needed 

information for a task and enables the search of the emergence of behavior from 

the haystack of neural and (neutrally-inspired) activity. For example, by tracing the 

diagnostic information processing in the brain, we can track in the brain how the 

low-to-high feed-forwarding representation along the visual hierarchy is trimmed 

by a top-down propagation. 

In the next section, I will introduce how we can infer diagnostic information 

from human behavior. 

1.2 Inferring the Diagnostic Information from Human 
Observers 

1.2.1 The Nature of Diagnostic Information 

To categorize a visual input, the observer extracts task-relevant (i.e., 

diagnostic) information based on their knowledge stored in memory. There are two 

facets to this: 

1) It represents only a subset of the full information space (Schyns et al., 

2002; Sigala & Logothetis, 2002), which can be partly predicted from a 

consideration of the task goal (e.g. a subset of face morphology/complexion for 

individual identification, or a subset of facial movements for dynamic expression 

recognition). Such diagnostic recognition increases the coding efficiency and 

releases the brain from the burdensome computation to achieve the perceptual 

goal.  

2) It reflects observer‘s prior knowledge (Jack, Blais, Scheepers, Schyns, & 

Caldara, 2009; Jack, Garrod, Yu, Caldara, & Schyns, 2012) and therefore is 

difficult to predict – idiosyncrasies may reflect organism goals/bias unrelated to the 

explicit task. 

All these aspects of diagnostic information influence the experiment design 

to reconstruct the diagnostic information from the human mind. 

1.2.2 Deriving the Diagnostic Information 

At least two prerequisites we need to take into consideration:  
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1) diagnostic information comprises only a subset of full features, but 

uncertainty about the subset requires the testing to cover the full information space 

as much as possible. 

2) as diagnostic information can be idiosyncratic and reflects observers‘ 

own prior experience, it requires experimenters to set their own knowledge aside 

as far as possible to allow an unbiased estimation.  

However, the typical hypothesis-testing approach used in psychology is 

limited to satisfy the prerequisites (see 1.2.2.1), and we should adopt a Data-

driven approach widely used in psychophysics for a broader and unbiased 

investigation (see 1.2.2.2). 

1.2.2.1 Traditional Hypothesis Testing Approach and Limitations 

Typically, experimenters set their hypothesis as ―feature X elicits the 

processing of category Y.‖ To test the hypothesis, experimenters always show a 

series of stimuli to participants, with feature X present or absent, and ask them to 

categorize each according to a set of categorical labels. Based on participants‘ 

response, e.g., the presence of feature X is always related to the response label Y, 

experiments attribute the factors that drive the categorical decision Y to the feature 

X. However, I argue that hypotheses formulated in such a way are not sufficiently 

powerful to uncover the diagnostic information, at the level of details and precision. 

The first shortcoming of the typical design is the lack of (or poorly defined) 

content of the hypothesis. For example, one experiment showed that participants 

tend to perceive the anger faces of males or Caucasians as more dominant than 

faces of female or another ethnicity (Hess, Blairy, & Kleck, 2000). This result 

simply associates one stimulus category (i.e., male or Caucasian) with higher 

perceived dominance ratings than another stimulus category, thus it cannot 

specify what information present in the face (or particularly in the male or 

Caucasian faces) drives the perception along the dimension of dominance. 

Another example is the face inversion effect. Researchers found that participants‘ 

performance on face identity recognition is severely impaired when faces are 

displayed in their inverted orientations (R. K. Yin, 1969), and they ascribe such 

effect to a holistic processing of face information, i.e., a processing that integrates 

the facial features into a gestalt whole (Taubert, Apthorp, Aagten-Murphy, & Alais, 
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2011). However, the holistic processing is poorly defined: what actual facial 

features are integrated to form a gestalt whole?  

The second shortcoming is that the typical design is less sensitive to 

participants‘ idiosyncrasies. An example is a well-known hypothesis about the 

universal recognition of six facial expressions of emotion, i.e., happy, surprise, 

fear, disgust, anger, and sad, which however turned out to be inappropriate. The 

universality hypothesis is inspired by Darwin‘s theory which suggested these basic 

facial expressions have an evolutionary and biological basis. By virtue of such 

origins, researchers considered these signals should be similar among humans so 

that can be recognized regardless of culture (Ekman et al., 1987; Izard, 1994). To 

test this hypothesis, Western researchers derived a small set of facial movement 

patterns to represent six emotions according to their theory (Ekman, 1971) and 

asked both Western and non-Western participants to categorize these stimuli 

using a six-emotions alternative-force-choice task (6 AFC, see pioneer research 

(Ekman, Sorenson, & Friesen, 1969)). Indeed, both groups of participants can 

categorize (above chance level, 16.67%) these theoretically-derived models to 

their corresponding hypothesized emotion labels in the 6 AFC task. However, if we 

look at the data carefully, the non-Western societies showed much lower 

recognition level (Elfenbein & Ambady, 2002; Jack et al., 2009; Nelson & Russell, 

2013), suggesting cultural specificities of facial emotional signals. A recent data-

driven investigation demonstrated such culture-specific knowledge about the facial 

expressions of emotion (Jack, Garrod, et al., 2012). 

In the next section, I will introduce how we can use the data-driven 

approach to overcome the above limitations. 

1.2.2.2 Reverse Correlation Approach 

Based on the discussions in 1.2.2.1, an appropriate hypothesis should be 

formulated to test on rich information spaces. The reverse correlation approach 

used in psychophysics is a good practice (Murray, 2011). 

Reverse correlation approach breaks down stimuli information by sampling 

them parametrically in an information space, which increases the level of 

granularity and range in the content we can test. For example, to uncover what 

information present in the face that drives the perception of dominance, we can 

model the face as their position in a multidimensional space. The axes of the high-
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dimensional space represent the physical attributes of the face with high 

resolution. To sample face features covering a broader range, we can create many 

face stimuli by parametrically setting their weights on the multi-dimensions of the 

space. The testing is then performed on the fine-grained sampled contents. 

Reverse correlation approach measures the perceptual decision on the 

randomly sampled information, which releases our testing from a predefined 

subset of information (e.g., the X features I mentioned above) and increases the 

power to capture participants‘ idiosyncrasies. Let me use the facial expression 

signals to illustrate. Rather than theorizing a small set of facial movement patterns 

(e.g., the models proposed under the universality hypothesis), researchers can 

generate a face with a subset of randomly selected facial movements displayed. 

Many such random samples can constitute a set of stimuli that thoroughly cover 

the full information space of natural facial movements, which are then tested 

against a spectrum of perception (6 emotions plus ‗don‘t know‘). The rationale is 

that observers can only categorize the sampled facial movement signal as ‗happy‘ 

when it comprises diagnostic signals of the ‗happy‘ based on their mental 

representation (e.g., eyes wrinkled, cheek raised, and lip corner puller); in 

contrast, when the sampled information does not contain diagnostic information for 

any of  the categories, the observer will respond ‗don‘t know‘. 

By measuring the spectrum of the perception that rich stimuli sampling 

produces, reverse correlation approach can create a transfer function to describe 

how different information samples of the stimuli contribute to different 

categorizations, and based on which experimenters can infer the task-specific 

diagnostic information. For example, experimenters can measure the relationship 

between the sampled stimuli (i.e., the visibility of different facial movement) and 

the corresponding perceptual spectrum measuring (i.e., six emotions plus ‗don‘t 

know‘), using correlation, linear regression, or information theory. The resulted 

statistical parameters (e.g., r-value in correlation, β coefficients in regression, and 

mutual information in information theory) can quantify the contribution of each 

facial movement to the perception of different emotions.  

Critically, the reverse correlation approach is generic. We can adapt it to 

any types of visual stimuli that sampled in a variety of ways (see a review paper 

Jack & Schyns, 2017), to any categorization task, and test on any participant 

groups. Such a broader and more rigorous exploration uncovers the critical 
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information that drives perceptual decisions which might be hidden by 

experimenter‘s own knowledge. 

In my thesis, I applied reverse correlation approach to uncover the 

diagnostic information for face identity recognition and facial expression 

recognition, and to investigate further how human brain reduces the stimuli 

representations to the diagnostic representation for perceptual decisions. Given 

the focus of my thesis, I will review the research in each field in next sections to 

obtain a clear picture of the theoretical and empirical status and to understand how 

the investigations from the diagnostic recognition can contribute to these fields. 

1.3 Topics of Interest 

1.3.1 Face Identification  

Humans can remember hundreds of individual faces and identify each 

amongst others effortlessly under various conditions of pose, illumination, and 

ageing. This suggests the encoding and representations of face information that 

makes the face identification unique. There are mainly two lines of research in field 

of face identification. 

1.3.1.1 Holistic Processing of Faces 

Researchers interpreted the speciality of human face processing, compared 

with non-face categories, as its holistic way of representation; that is, face is not 

represented in its isolated component parts (e.g. round eyes, thin nose, and pouty 

mouth) or their combinations but as an integrative and un-decomposed whole. 

Empirical evidence supporting the holistic processing is from the behavioural tasks 

using inverted faces (Carey & Diamond, 1977; Freire, Lee, & Symons, 2000; 

Valentine & Bruce, 1986; R. K. Yin, 1969), composite faces (Rossion & 

Boremanse, 2008; Young, Hellawell, & Hay, 1987), and the part-whole recognition 

(Tanaka & Farah, 1993). In the face inversion effect, participants show more 

difficulties to recognize faces represented upside down than in their upright 

positions. As such inversion disrupts less for the objects (Rossion et al., 2000) and 

the isolated face parts recognition (Rhodes, Brake, & Atkinson, 1993), researchers 

attributed the impaired performance of inverted face (vs. objects or face parts) to 

the nature of global-based (vs. part-based) processing. In the composite face task, 

researchers assembled upper and lower half-faces from two identities, and they 
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found participants are slower to recognize the identity of a half-face when the two 

halves are aligned than they are misaligned. In the part-whole task, participants 

performed better to recognize a face part (e.g. nose) of a target identity when it is 

presented in the original face than in isolation. Both the composite and part-whole 

effects indicate that the representation of individual face feature is interfered by the 

presence of other parts of the face, suggesting a mandatory processing of features 

integration as a whole. 

1.3.1.2 Feature-based Representations in Face Space 

In the feature-based approach, researchers investigated the face 

representations using the ‗face space‘ model. To create the face space, 

researchers used 2D face images or 3D faces and applied dimensionality 

reduction techniques (e.g. PCA see Turk & Pentland, 1991 and multidimensional 

scaling) to formalize a multidimensional space, where each dimension defines a 

face feature (e.g. an eigenface or classification image). Thus, each face has a 

weight on each feature dimension and its position in the space reflects how it can 

be represented as the combination of these component features. The face space 

framework offers an efficient coding scheme by referencing the quantities and 

qualities of variability in the population of human faces, rather than specifying the 

‗unique‘ identity information in an absolute term. 

The face space opens the door to investigate whether and how the features 

derived from objective face information can account for human subjective face 

identification. For example, to understand the contribution of each feature 

dimension to memory representations (including their neural coding), researchers 

modelled the relationship between the project weights of original 2D face images 

on each dimension and participants‘ corresponding behavioural (C. H. Chang et 

al., 2017) and brain (H. Lee & Kuhl, 2016; Nestor et al., 2016) response. As shown 

by Chang and Tsao (2017), neurons selectively respond along a single axis of the 

face space, not to the other, orthogonal axes, suggesting the feature-based 

identity representations in the brain (i.e. the axis model). In another line of study, 

researchers altered the feature weights of a target face in the face space into its 

opposite and create its anti-face. They found the adaption to the anti-face can bias 

the participants‘ perception towards the space centre, i.e. they recognized the 

average of the target face and centre face in the space as the original target. Such 

centre-shift aftereffect supports the norm-based coding theory of face identity: 
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human observers represent each face identity according to how they derive from 

the average of a multi-dimensional face space (Leopold, O'Toole, Vetter, & Blanz, 

2001; Rhodes & Jeffery, 2006). Monkey single cell responses show increased 

firing rate with increasing distance of a face to this average (as happens with e.g. 

caricaturing the feature values, Leopold, Bondar, & Giese, 2006), supporting the 

norm-based representation at the neural level.  

1.3.1.3 Unsolved Issues 

Under the diagnostic recognition framework, diagnostic information 

constitutes only a subset of the full information space based on the task goal (c.f. 

1.2.1 The Nature of Diagnostic Information). In the holistic processing 

approach, the researchers manipulated the face features in an arbitrary way, 

which cannot specify the source of the holistic or integration effect, i.e. what actual 

features are represented for integration and how they are integrated? 

Understanding the holistic processing of human face therefore requires the 

content-based emphasis. In the face space model, though it quantifies the face 

information and enables the well-controlled manipulation, the analysis typically 

adopts a brute force approach: it explains the variance comes from physical face 

shape and texture information from an average which can over fit subjective 

representation of (a subset of) face shape and texture. Thus, there is no provision 

in such physical face faces to enable better recognition of some faces (familiar 

faces) than others (unfamiliar faces). In sum, the investigation builds on the use of 

diagnostic information is always neglected in facial identity processing. 

1.3.2 Facial Emotion Recognition 

Mutual understanding of emotion between individuals is critical to human 

interactions, achieved primarily by exchanging a set of facial expressions. 

Accurately recognizing facial emotions requires the shared representation of the 

expressions in the mind between signal sender and receiver (Jack & Schyns, 

2015), which allows individuals to use the same set of diagnostic information to 

understand each other‘s state, demands and intentions, and coordinates them to 

behave optimally in the physical and social environment. Given the fundamental 

function of facial emotion in human society, understanding the mental 

representation of face emotions across individuals has been a primary goal in 

visual science. 
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1.3.2.1 Representation of Facial Expressions are Shared across 
Individuals 

Based on Darwin‘s theory, the true origin of facial expressions comes from 

their adaptive functions to increase the chance to survive (Darwin, 1999). For 

example, if we look at a disgusted face, it is typically characterized by the wrinkled 

nose and squeezed eyes. Such kind of facial muscle contraction can protect us 

against the exposure to noxious contaminants and signal companions about the 

threatening environment. By natural selection, the facial signals are then passed 

onto the next generation for survival. Under such an evolutionary view, facial 

expression of emotions should be innate, i.e. they are hardwired before the birth 

rather than learned during social interactions. Thus, representations of facial 

expressions should be shared across individuals. 

To provide empirical evidence to support the ‗universe hypothesis‘, Ekman 

and his colleagues did a series of pioneer studies, using a standard set of 

theoretically-derived models (i.e. prototypes) that they proposed to capture 

observers‘ representation of six facial expressions of emotions (Ekman & Friesen, 

1978). In a classic study, Ekman and his colleagues selected a set of facial 

photographs that display the prototypical facial expression of six emotions, then 

they tested the recognition of these photographs using a 6 emotions alternative-

force-choice (AFC) task in the observers from 5 different cultures (i.e. United 

States, Brazil, Japan, New Guinea, and Borneo). They found high agreement (i.e. 

based on above chance accuracy) across all cultures, and concluded a universal 

representation of facial expressions of six emotions. Since then, researchers start 

to use the standard model set for six emotions developed by Ekman to test human 

facial emotion recognition and to create facial expression databases (e.g., 

Rodbound faces database, Langner et al., 2010; and Japanese female facial 

expressions database, Lyons, 1998).  

1.3.2.2 Representation of Facial Expressions are Shaped by Culture 

As more and more data are collected in various cultures, researchers start 

to challenge the validity of the standard facial expressions developed by Ekman as 

the universal models characterizing the mental representations of six emotions in 

observers across all culture (see a review Russell, 1994; and a meta-analysis 

study Elfenbein & Ambady, 2002). One criticism is to use nAFC task (e.g. n = 6 

where the 6 emotion labels are used) to test the universal hypothesis. In a typical 
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nAFC design, experimenters selected a limited set of response labels in a top-

down manner which can misrepresent participants‘ perception (c.f. my discussion 

in 1.2.2.1), and the force-choice therefore lead the response to an ill-fitting 

category, especially in the absence of an ‗other‘ option (see also the discussion in 

Russell, 1993). Also, researchers typically used the proportion of correct response 

(based on the ―universal model‖) above chance level to determine whether a 

testing model is recognizable or not. However, without the estimation of response 

bias (uniform vs. modal distribution of response across pre-selected categories), 

experimenters simply comparing the proportion of correct response with chance-

level can increase Type I error and weaken the validity of conclusion they can 

draw (Jack, 2013).  

In a facial expression production experiment (Elfenbein, Beaupre, 

Levesque, & Hess, 2007), researchers directly asked participants to pose 

emotional expressions that they thought ―their friends would be able to understand 

easily what they feel.‖ The results showed that participants from two different 

culture groups (Quebec vs. Gabon) used different facial movements to produce 

―happiness‖, ―surprise,‖ ―anger‖ and ―sadness‖. The authors further tested these 

culture-specific posed emotional expressions to a new group of participants and 

found an in-group advantage, i.e. participants recognize the emotional expressions 

from their own culture significantly better than the prototypical models proposed by 

Ekman and Friesen (Ekman & Friesen, 1978). 

Using a data-driven approach, Jack and her colleagues directly modelled 

the mental representations of 6 facial emotions, separately for Western and East 

Asian participants (Jack, Caldara, & Schyns, 2012; Jack, Garrod, et al., 2012). In 

one study, they added random white noise (i.e. grey-scale pixel values) to a 

neutral face image to randomly change the appearance of the face. Then they 

asked participants to make a 7AFC task (6 emotions plus ‗don‘t know‘) on these 

stimuli. If the noise changes the neutral face in a way that matches the mental 

representation of facial expressions of the observers, they will categorize the 

neutral face as the corresponding expressive signal. To visualize the 

representational contents of each emotion, researchers averaged the noise in the 

trials associated with each emotion and then added it to the neural base face. The 

resulting contents (i.e. the averaged noise template) showed that, to perceive the 

neutral face as expressive, Westerners required the information to be added to the 
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eye and mouth regions whereas Asian people required more information to be 

added to the eye regions to perceive emotions (Jack, Caldara, & Schyns, 2012).  

As the facial expression is by nature dynamic, in a later study they created 

a series of random facial movements and tested them against 7 categorical 

options (i.e. 6 emotions plus ‗don‘t know‘). By analysing the relationships between 

the random facial movements and corresponding categorization behavior, they 

derived a set of dynamic models representing the mental representations of each 

emotion, independently for Western Culture and Eastern Cultural groups. By 

analyzing the facial movement patterns and their temporal dynamics, they 

demonstrated culture-specific representations for facial expressions of emotions: 

1) Westerners use distinct movement pattern to represent each emotion but 

Easters do not; 2) Easterners rely on early eye activity to represent emotion 

intensity whereas Westerners represent emotional intensity using other face parts  

(Jack, Garrod, et al., 2012). 

1.3.2.3 Unsolved Issues 

Under the diagnostic recognition framework, diagnostic information reflects 

observers‘ memory representation based on their past experience (c.f. 1.2.1 The 

Nature of Diagnostic Information). Different cultures are formed according to 

how the culture members interact with the physical world and in return shape their 

conceptual knowledge (i.e. mental representation) about the visual environment. 

Therefore, the standard set of mental models derived from the hypothesis-driven 

approach in one culture is ill-fitted the mental representations of individuals in 

other cultures. The valid set of expression models should be created for each 

culture, independently. 

Less bounded by experimenters‘ prior knowledge, the mental models 

reconstructed in the reverse correlation approach should depict participants‘ 

mental representation more precisely in principle. However, if we look at the 

procedure closely, each model is created by measuring across trials the 

relationship between Random Facial Movements and 7 Categorization, using the 

response of one specific participant (see methodology detailed in Jack, Garrod, & 

Schyns, 2014  and Jack, Garrod, et al., 2012). Thus, each model characterizes the 

mental representation of the tested participant, not the whole culture group, and 

need to be validated for its generalizability – i.e., the model is recognizable to 

other observers when displayed on different faces. 
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1.3.3 Visual Categorization in General  

For face identification, we see identity information from a face; for facial 

expression recognition, we see emotional information from a facial movement 

pattern. Now I would like to extend my reviews to the general visual categorization, 

i.e. to determine what we see from the visual input. In the literature, visual 

categorization, recognition, and visual perceptual decisions are always used 

interchangeably, which cover a broad range of stimuli from very basic types (e.g. 

dots motion, line orientation) to more complex ones (e.g. face, objects and scene). 

In my thesis, when I discussed visual categorization, recognition, or perceptual 

decisions, I refer to the same process by which our brain gathers and integrates 

information from the visual stimuli input and assigns it to a categorical proposition. 

I focus mainly on the research about complex stimuli, including face, object and 

complex scene recognition. 

1.3.3.1 Three Main Processing Components 

In a quantitative approach, perceptual decision is thought as a form of 

statistical inference (Kersten, Mamassian, & Yuille, 2004; Rao, 1999; Tenebaum & 

Griffiths, 2001). Researchers decomposed the inference procedure into three main 

processing stages: 1) representations of the visual information (i.e. the evidence), 

2) accumulating and integrating the evidence across time according to prior 

knowledge, 3) comparing the calculation output of 2) to a decision threshold to 

make response (see reviews in J. I. Gold & Shadlen, 2007). 

The evidence in general refers to the information we rely on to make the 

inference. For visual categorization, information conveyed by the stimulus is the 

evidence (e.g. a facial muscle movement such as lip corner puller) we use to make 

decisions. To use the evidence x, we need to interpret it under a given option R 

(for example, expressing a happy face), with the idea of ‗likelihood‘ p(x | R). When 

the relative likelihood of x given the option R (e.g. lip comer puller in a happy face) 

is over the other ¬R (e.g. lip corner puller in other expressive faces) and above a 

threshold, we make a decision (e.g. recognize the happy face). Visual 

categorization always relies on many features but not single one, therefore in most 

cases the likelihood ratios of multiple evidence (e.g. lip corner puller and the eye 

wrinkled) are calculated and accumulated over time, and the decision is made 

when the accumulated ratios supporting one option is above threshold (Link & 

Heath, 1975; Ratcliff, 1978; Usher & McClelland, 2001).  
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1.3.3.2 Neural Signatures 

I review the neural representations of visual categorization by incorporating 

the 3 decision components discussed in 1.3.3.1 into two lines of research. In the 

first line, researchers focus more on the perceptual component that deals with 

‗what‘ and ‗where‘ questions, i.e. coding selectivity of different visual information in 

different brain regions. This line of research informs the neural representation of 

visual evidence for different categories. In the second line, researchers investigate 

the ‗how‘ question under the theoretic framework in 1.3.3.1, i.e. relating the brain 

activity of different regions to evidence accumulation and decision making.  

 Representation of visual evidence for different categories 1.3.3.2.1

Visual categorization is neutrally implemented in a series of cortical regions, 

starting from the primary visual cortex (V1) that receives the information mapped 

on the retina. The primary visual cortex then projects, along the ventral stream, to 

V2, V3 and V4 - where the low-level physical properties such as contrast or 

orientation are processed to form texture and contour information (Freeman & 

Simoncelli, 2011; Freeman et al., 2013; Pasupathy & Connor, 1999, 2001; 

Yamane et al., 2008). These adjacent visual areas have a reversed representation 

of the external visual world due to the retinotopic mapping, i.e. flipped 

representation around the vertical (left vs. right) and horizontal (up vs. down) 

meridian of the visual areas. The visual information then progresses further to the 

high-level region -- ventral temporal cortex – where represents both the 

contralateral and ipsilateral of the visual fields and where the category selectivity 

emerges (see reviews Grill-Spector & Weiner, 2014; Op de Beeck, Haushofer, & 

Kanwisher, 2008). 

Face. Many studies using fMRI have discovered that the regions in ventral 

temporal cortex are activated stronger by face than non-face stimuli. In an fMRI 

study, Kanwisher and her colleagues (Kanwisher, McDermott, & Chun, 1997) 

localized one region in right fusiform gyrus that was consistently activated for 

faces than objects across participants in a passive view task. This region also 

showed face specificity in the tests that used the front-view face vs. scrambled 

face, front-view face vs. front-view house, and three-quarter-view face vs. human 

hands contrasts. In addition to the fusiform face area (FFA), a region in the inferior 

occipital gyrus - the occipital face area (i.e. OFA, Gauthier et al., 2000; Pitcher, 

Walsh, & Duchaine, 2011; Pitcher, Walsh, Yovel, & Duchaine, 2007), and a region 
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in the posterior superior temporal sulcus (STS, Haxby, Hoffman, & Gobbini, 2000) 

are also found for face-selective representations. The OFA is thought for face 

detection (Fairhall & Ishai, 2007; Haxby et al., 2000), the FFA plays a central role 

in individual identification (Gauthier et al., 2000; George et al., 1999; Grill-Spector, 

Knouf, & Kanwisher, 2004; Winston, Henson, Fine-Goulden, & Dolan, 2004), and 

the STS is involved in the recognition of facial emotion and gaze and has been 

suggested to process dynamic facial information (Andrews & Ewbank, 2004; 

Calder & Young, 2005; Hoffman & Haxby, 2000).  

Object. By comparing the brain activity when participants passively viewing 

the photographs of everyday objects and visual textures, Malach et al. (1995) 

found an object-selective activation located laterally to the fusiform gyrus. In a 

following fMRI study, Kanwisher et al. (1996) found a region, which locates very 

close to where Malach reported, responds significantly stronger to 3D objects line 

drawings than to scrambled line drawings. As more neural data collected using the 

contrast of  intact objects vs. control stimuli without clear shapes, researchers 

proposed an object-selective areas which locate mainly in lateral occipital cortex 

and extend anteriorly and ventrally into posterior temporal regions (see review 

Grill-Spector, Kourtzi, & Kanwisher, 2001). 

Scene. Another category selectivity region is in parahippocampal cortex, 

which responds stronger when subjects view topographical scene stimuli (e.g. 

outdoor and indoor scenes) than they view various nonplace controls (e.g. 

scrambled scenes or faces, Aguirre, Zarahn, & D'Esposito, 1998; Epstein, Harris, 

Stanley, & Kanwisher, 1999; Epstein & Kanwisher, 1998; Nasr et al., 2011). Due to 

its specificity for ‗place‘, researchers named this region as parahippocampal place 

area (PPA). To understand the scene-selectivity of PPA in a causal way, 

Mégevand et al. (2014) stimulated the activity of this region via the intracranial 

electrodes and found the stimulation can induce a topographic visual hallucination, 

i.e. the patient reported to see indoor or outdoor scene when he did not perform 

any task.  

Modular vs. Distributed.  Until now, I introduced the results showing the 

category selectivity in discrete regions, i.e. the modular representation. However, 

the category information is organized in a hierarchical structure: basic-level (e.g., 

faces vs. cars), superordinate-level (e.g., animate vs. inanimate object), and 

subordinate-level (e.g., Mary vs. Beetle). Such organization requires the flexible 
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access to different levels of categorical information. Then the question for module 

view arises: how many category-specific modules should exist? This is not the 

topic of my thesis, but I would like to provide some evidence supporting the 

distributed representation of category-specific information in ventral-temporal 

cortex. Using the multivoxel pattern analysis, researchers found there is not just 

one distinct region selective for face, but rather a series of sparsely-distributed 

clusters along the occipito-temporal sulcus and in fusiform gyrus (Weiner & Grill-

Spector, 2010). The FFA, face-selective module, has also been demonstrated to 

process not only face information but also body parts(Weiner & Grill-Spector, 

2010), vehicles and animals (Cukur, Huth, Nishimoto, & Gallant, 2013; Grill-

Spector, Sayres, & Ress, 2006; Hanson & Schmidt, 2011; McGugin, Gatenby, 

Gore, & Gauthier, 2012). 

Either modular or distributed, the ventral temporal cortex which is sensitive 

to categorical information represents the visual evidence for different categories. 

 Integration of visual evidence and decision formation 1.3.3.2.2

To directly track the accumulation of the visual evidence, Ploran et al. 

(2007) gradually reveal the contents of the picture on each trail, using a dissolved 

black mask at each successive 2s interval over the time course. They asked the 

participants to signal their recognition at any time during the display window by a 

button press, and recorded their brain activity using fMRI. They found the activities 

in inferior temporal, frontal and parietal regions are gradually increased as more 

contents are revealed, and peak at the time corresponding to when the recognition 

is made. This result suggests these regions accumulate the visual evidence to 

support the object identity in the picture. In medial frontal cortex, however, the 

activity remained near baseline until the recognition time, suggesting an operation 

related to the moment that decision formed. 

In the single-unit recording studies in monkeys, researchers found the 

decision is formed by comparing the response output of lower-level neurons that 

are sensitive to one category with those sensitive to another category, and such 

comparison is computed in higher-level cortical regions (e.g. the prefrontal cortex, 

Kim & Shadlen, 1999; and premotor cortex, Hernandez, Zainos, & Romo, 2002). 

To investigate such comparison operation in human brain, Heekeren et al. (2004) 

tested participants‘ brain response in a face-house discrimination task in the fMRI 

scanner while they also modulated the task difficulty using the degraded images 
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(i.e. hard trial) and clear image (i.e. easy trial). Based on the neurophysiological 

data obtained in monkeys, Heekeren proposed that the comparison computation 

area should fulfil two criteria: ―First, they should show the greatest activity on trials 

in which the evidence for a given perceptual category is greatest, for example, a 

greater fMRI response during decision about suprathreshold [clear] images of 

faces and houses than during decisions about perithreshold [degraded] images of 

these stimuli. Second, their activity should be correlated with the difference 

between the output signals of two brain regions containing pools of selectively 

tuned lower-level sensory neuron involved; that is, those in face- [i.e. FFA] and 

house-responsive [i.e. PPA] regions.‖ The only region fulfilled both criteria is the 

posterior portion of the left dorsal lateral prefrontal cortex, suggesting its role in 

integrating the response outputs from regions for visual evidence representation 

and accumulation (e.g. FFA vs. PPA) and using a comparison operation to make 

decision (face vs. house). 

1.3.3.3 Re-evaluation under the Diagnostic Recognition Framework 

Relating the neural activities of different regions to the three cognitive 

components in perceptual decisions enables us to infer the functional architectures 

of human brain underlying the visual categorization. However, if we look at the 

literatures carefully, there is still a missing component that reduces the full 

redundant visual information retinotopically represented in early visual cortex to 

the category-specific visual evidence represented in ventral temporal cortex. Such 

information reduction is necessary: to optimize the inference output (i.e. 

maximizing the percentage of correct response and/or shortening the decision 

time in the visual categorization task), the represented and accumulated visual 

evidence should not include redundant (nondiagnostic) information that in principle 

induces more processing cost, either by decreasing the chance of incorrect 

response or by increasing the time to accumulate the evidence. 

To understand where, when and how the human brain reduces the full 

stimuli representations to the visual evidence for perceptual decisions, we need to 

first tease apart visual information that supports category response (i.e. diagnostic 

information) from that which mapped on the retina but does not support decision 

(i.e. the nodiagnostic information), and then examine their neural representations 

separately. Such investigations rely on the reverse correlation approach together 
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with statistic measurements that can capture the triple relationship between visual 

stimuli, brain activity and perceptual decisions together. 

1.4 Thesis foci 

As discussed, diagnostic information plays an important role in 

understanding the information mechanism of visual categorization; however it 

does not attract enough attention in literature. With the development of sampling 

techniques, we can now model the diagnostic information in a much elegant way. 

In my thesis, I applied novel sampling tools to uncover the diagnostic information 

for two face categorization tasks: 1) familiar face identification (Chapter 2), which 

taps into the information space of face morphology (i.e. face shape) and 

complexion (i.e. face texture); 2) emotional facial expression recognition (Chapter 

3), which taps into the independent dynamic dimension of face information. In 

Chapter 4, I used a scene categorization task as a case study, to trace where, 

when and how human brain reduces the stimuli representations to the diagnostic 

information for perceptual decisions. 
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2 Study 1: Modelling the Diagnostic Information for 

Familiar Faces Identification 

2.1 Introduction 

Observers use their mental representations to identify familiar faces under 

various conditions of pose, illumination, and ageing, or to draw resemblance 

between family members. As we always recognize face effortlessly under a variety 

of conditions, the representational contents must be sufficiently detailed to enable 

accurate recognition —i.e. identifying ‗Mary‘ amongst other people, and sufficiently 

versatile to enable recognition across diverse everyday tasks  —e.g. identifying 

Mary in different poses, at different ages or even identifying her brother based on 

family resemblance (O'Toole, 2011; Rosch & Mervis, 1975; Tsao & Livingstone, 

2008). And yet, it remains a fundamental challenge to reverse engineer the 

participant‘s memory to model and thereby understand the detailed contents of 

their representations of familiar faces. This challenge is a cornerstone to 

understand the information processing mechanism of face identification, because 

they process the contents to predict the appearance of the familiar face of ‗Mary‘ in 

the visual array and to selectively extract its identity information to generalize 

behavior across common tasks. 

In this Chapter, I studied how our own work colleagues recognize the face 

of other colleagues from memory. The work environment provided a naturally 

occurring and common medium of social interactions for all participants, who 

developed their personal familiarity with the people whose faces the study tested. 

In Experiment 1 I used a novel 3D face information generator combined with the 

reverse correlation method to model the 3D face identity information of 4 familiar 

faces stored in the memory of 14 individual participants. In Experiment 2, I 

validated these memorized contents in a new group of participants, showing that 

the these contents compromise the face features that maximally distinguish each 

identity from a model norm. In Experiment 3, I further demonstrated that the 

faithful memorized contents (I call them the diagnostic contents) contain 

information that enables the third group of participants to generalize identification 

to new tasks with the changes in viewpoint, age, and sex of the face. 
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2.2 Experiment 1: Modelling the Contents of Mental 
Representations of Familiar Faces 

2.2.1 Participants 

I recruited 14 participants (all white Caucasians, 7 females and 7 males, 

mean age = 25.86 years, SD = 2.26 years) who were personally familiar with each 

familiar identity as work colleagues for at least 6 months. I assessed participants‘ 

familiarity on a 9-point Likert scale, from not at all familiar ‗1‘ to highly familiar ‗9‘ 

(see 2.6.2 Supplemental Tables, Table S2-1 for their familiarity ratings on each 

identity). All participants had normal or corrected-to-normal vision, without a self-

reported history or symptoms of synaesthesia, and/or any psychological, 

psychiatric or neurological condition that affects face processing (e.g., depression, 

autism spectrum disorder or prosopagnosia). They gave written informed consent 

and received £6 per hour for their participation. The University of Glasgow College 

of Science and Engineering Ethics Committee provided ethical approval. 

2.2.2 Generative Model of 3D Face Identity (GMF) 

My colleagues designed a generative model to objectively characterize and 

control face identity variance, using a database of 355 3D faces (acquired with a 

4D face capture system, see 2.6.1 Supplemental Methods, 3D Face Database). 

For each 3D face, its shape is parameterized with the 3D coordinates for each one 

of 4735 vertices, and its texture is parameterized with the RGB values of 800*600 

pixels (see Figure 2-1A). It is critical to reiterate that the familiar faces were not 

part of the 3D face database. 

To design the 3D GMF, we first applied a high-dimensional General Linear 

Model (GLM), separately to each 3D vertex coordinate and 2D pixel RGB value, to 

model and explain away variations in face shape and texture that arise from the 

non-identity categorical factors of sex, age, ethnicity, and their interactions. The 

GLM therefore: 1) extracted as a non-identity face average the shape and texture 

face information explained by non-identity categorical factors; and also 2) isolated 

the residual information that defines the 3D shape and 2D texture identity 

information of each face--i.e., the identity residuals.  

To further control identity information, we applied the Principal Components 

Analysis (PCA) to the identity residuals of the 355 faces, separately for shape and 

texture. The PCA represented shape residuals as a 355-dimensional vector in a 
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355-dimensional space of multivariate components, and a separate PCA 

represented the texture residuals as a 355 * 5 (i.e. 5 spatial frequency bands)-

dimensional matrix in a space of 355*5 multivariate components. Two sets of PCA 

coordinates therefore represented the objective shape and texture information of 

each identity in the principal components space of identity residuals.  

Our 3D GMF is formally expressed as follows: 

                                                        

Where Faces is the vertex (or texture) matrix of 355 faces: for vertices, it is 

[355 x 14,205] where 14,205 = 4,735 vertices x 3 coordinates; for texture, it is [355 

x 1,440,000] where 1,440,000 = 800 x 600 pixels x 3 RBG. Design Matrix defined 

the non-identity categorical factors and their interactions (N = 9), i.e. constant, age, 

gender, white Caucasian (WC), eastern Asian (EA), black African (BA), gender x 

WC, gender x EA, gender x BA, for each of face (N = 355), and therefore is [355 x 

9]. We estimated the linear effects of each non-identity factor and their interactions 

using the GLM which are represented in the Coefficient Matrix (i.e. [9 x 14,205] for 

shape and [9 x 1,440,000] for texture). After the GLM fit, the [355 x 14,205] shape 

(or [355 x 140,000] texture) residuals are further explained using the PCA 

analysis, resulting 355 components. 

Figure 2-1B schematizes the computation flow of the 3D face identity 

modelling (indicated by solid arrow). The GLM decomposes a scanned 3D face 

‗Tom‘ into his average face, which captures the non-identity categorical factors of 

his sex, ethnicity, age and their interactions. The corresponding heat map 

indicates the left identity residuals of his 3D shape (2D texture, not illustrated in 

the figure, is independently and similarly decomposed), on which the red color 

denotes the outward changes of the 3D vertices in relation to his category average 

whereas the blue color denotes vertices with the 3D inward changes. As shown, 

Tom has higher cheek bones, wider nose bridge, and flatter brow ridge than his 

average. His 3D shape residuals are further projected into a multidimensional PCA 

space to parameterize his specific identity information. 

The design of 3D GMF also enables us to synthesize new faces. Figure 2-

1B schematizes the reversed computation flow for 3D face identity generation 

(indicated by the dashed line), using controlled non-identity factors. First, I fitted 

Jane‘s face in the GLM to isolate its non-identity averages; then I created random 
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identity residuals using random PCA weighs; finally I plus these two together to 

obtain random face identities shared all other categorical face information with 

‗Jane‘. I used these generative properties to derive the stimuli used in this 

experiment (see 2.2.3.2 Stimuli, Random Face Identities). 

Figure 2-2 illustrates the sythesization of new faces, with the controlling of 

the identity residuals. First, I scanned the four familiar faces of the experiment (2nd 

column); then, I fitted each into the 3D GMF and got their non-identity GLM 

averages and identity PC weights. I plus their non-identity averages and their 

identity weights to generate their ground truth faces (the 3rd column), which show 

only minimal distortions from the scanned faces(shown in the 1st column). I can 

also change their non-identity GLM averages, e.g., change their age, sex or 

ethnicity separately, or jointly sex and ethnicity in GLM, plus them to their identitiy 

PC weights. The outcomes are older, sex swapped, ethnicity swapped and sex 

and ethnicity swapped versions of the same identity (the 4th to 7th column). I used 

these generative properties to derive the stimuli of Experiment 3 (see 2.4.2 

Stimuli). 
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Figure 2–1 Generative Model of 3D Face Identity. (A) 3D Face parameters. We 
parameterized the shape of a face with the 3D coordinates of 4,735 vertices and 
its texture with 800*600 RGB 2D pixels. (B) Generative model of face identity. In 
its forward computation flow (see identity modelling solid arrow), the General 
Linear Model (GLM) decomposes a 3D, textured face (e.g. ‗Jane‘ or ‗Tom‘) into a 
non-identity face shape average capturing the categorical factors of face sex, 
ethnicity, age and their interactions plus a separate component that defines the 
identity of the face (illustrated by the 3D shape decomposition; 2D texture, not 
illustrated, is independently and similarly decomposed). Heat maps indicate the 3D 
shape deviations that define ‗Jane‘ and ‗Tom‘ in the GLM in relation to their 
categorical averages. In the reverse flow (see dashed arrow of identity 
generation), we can randomize the 3D shape identity component (and 2D texture 
component, not illustrated here), add the categorical average of ‗Jane‘ (or ‗Tom‘) 
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and generate random faces, each with a unique identity that share all other 
categorical face information with ‗Jane‘ and ‗Tom.‘ 
 

 

Figure 2–2 Control of Non-identity and Identity Information. Distortion 
quantifies, vertex per vertex, the quality of the 3D GLM fit of the scanned familiar 
faces, Color scale indicates the normalized Euclidean distance between the 3D 
positions of each vertex in the scanned face and the GLM fit. Changing the 
categorical averages illustrates, in each column, the GLM controls the factors of 
sex, ethnicity, and age using local averages, while the identity residuals are kept 
constant. 

2.2.3 Stimuli 

2.2.3.1 Four Familiar Faces 

I scanned four faces ‗Mary‘ and ‗Stephany‘ (white Caucasian females of 36 

and 38 of age, respectively), and ‗John‘ and ‗Peter‘ (white Caucasian males of 31 

and 38 years of age, respectively) who were familiar to all participants as work 

colleagues (see Figure 2-2, 2nd column). These four familiar faces were not part of 
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the face database used to produce the 3D GMF introduced above. As I will 

explain, I used these scanned faces to compare the objective and mentally 

represented identity information in each participant. 

2.2.3.2 Random Face Identities 

For each of familiar face, I proceeded in three steps: First, I fitted the 

familiar identity in the GLM to isolate its non-identity averages, independently for 

shape and texture. Second, I randomized identity information by creating random 

identity residuals—i.e., I generated random coefficients (shape: 355; texture: 

355*5) and multiplied them by the principal components of residual variance 

(shape: 355; texture: 355*5). Finally, I added the random identity residuals to the 

GLM averages to create a total of 10,800 random faces per familiar identity used 

in this experiment. Critically, each random face shared other categorical face 

information (i.e. sex, age and ethnicity) with the familiar face it is generated from. 

2.2.4 Procedure 

Each experimental block started with a centrally presented frontal view of a 

randomly chosen familiar face (henceforth, the target). On each trial of the block, 

participants viewed six simultaneously presented random identities of the target, 

created by the 3D GMF. They displayed in a 2 x 3 array on a black background, 

with faces subtending an average of 9.5° by 6.4° of visual angle. I instructed 

participants to respond on one of 6 buttons to choose the face that most 

resembled the target. The six faces remained on the screen until response. 

Another screen immediately followed instructing participants to rank the similarity 

of their choice to the target, using a 6-point Likert scale (‗1‘ = not similar, ‗6‘= 

highly similar) with corresponding response buttons. Following the response, a 

new trial began. The experiment comprised 1,800 trials per target, divided into 90 

blocks of 20 trials each, run over several days, for a grand total of 7,200 trials per 

participant. Throughout, participants sat in a dimly lit room and used a chin rest to 

maintain a 76 cm viewing distance. I ran the experiment using the Psychtoolbox 

for MATLAB R2012a. 

To resolve the task, participants must compare the randomly generated 

faces presented on each trial with their mental representation of the familiar target 

in full frontal view. Therefore, each face selected comprises a match to the 

participant‘s mental representation of the target, which is estimated by the 
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similarity rating of that face (see Figure 2-3 for an example trial of target face 

‗Mary‘). 

 

Figure 2–3 Illustrative Experimental Trial with 6 Randomly Generated Face 
Identities. I instructed participants to use their memory to select the face most 
similar to a familiar identity (here, ‗Mary‘) and then to rate the similarity of the 
selected face (purple frame) to their memory of ‗Mary‘ (purple pointer). 

2.2.5 Analysis and Results 

2.2.5.1 Linear Regression Model 

For each participant and target face, each trial produced three outcomes: 

one matrix of 4,735*3 vertex parameters corresponding to the shape residuals of 

the chosen random face on this trial (c.f. face parameters in Figure 2-1A), one 

matrix of 800*600 pixels RGB corresponding to the texture residuals of this 

random face, and one corresponding rating response that captures the perceived 

similarity between the random face and the target.  

To measure the relationship between random face shape parameters and 

the similarity rating, I proceeded in 3 steps: 

Step 1: Across the 1,800 trials per target, I extracted the X, Y and Z 

coordinate value for one vertex and its corresponding similarity rating. 

Step 2: I linearly regressed (i.e., RobustFit, Matlab 2013b) the coordinate 

value and similarity rating, separately for X, Y and Z. This linear regression 

produced a linear model with the 3D (i.e. X, Y, Z) Beta_1 and Beta_2 coefficients 

for this vertex. 

Step 3: I repeated Step 1 and Step 2 for each of the 4735 3D vertices.  
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I applied the same analysis to measure the relationship between random 

face texture parameters and similarity rating, i.e. linearly regressing the RGB 

pixels (separately for R, G and B color channel) with the corresponding similarity 

rating values, and produced a linear model with 3D coefficients Beta_1 and 

Beta_2 for each RGB texture pixel. 

Figure 2-4A schematizes the linear regression, using the 3D vertices and 

responses of Mary‘s trials from one participant. I plotted the 3D (i.e. X, Y, Z) Beta 

coefficients for each vertex on the heat maps by calculating their 3D Euclidean 

distance. The 3D Beta coefficients quantify the weighted changes (inward or 

outward) of each vertex in relation to the similarity rating in 3D face shape space. 

We created for each participant and familiar face a linear model, separately 

for shape and texture. The linear models quantify how shape and texture identity 

residuals deviate from the GLM categorical average to represent the identity of 

each familiar face in the memory of each participant, which I used to reconstruct 

participant‘s memory representation (see the next section). 

2.2.5.2 Reconstructing Mental Representations 

Beta_2 coefficients can be amplified to control their relative presence in a 

newly synthesized 3D face. Figure 2-4B1 illustrates such amplification for one 

participant‘s Beta_2 coefficients of shape and texture of ‗Mary.‘ Following the 

reverse correlation experiment, I brought each participant back to fine-tune their 

Beta_2 coefficients for each familiar face, using the identical display and viewing 

distance parameters as in the reverse correlation experiment. 

In a self-adaptive procedure, I initialized Beta_2 amplification with equally 

spaced values between 0 and 50, with 10 unit increments. I then narrowed the 

amplification range to participant‘s responses until convergence, keeping the same 

total number of stimuli (i.e., 6 faces) per trial. Figure 2-4B2 illustrates the adaptive 

procedure. 

The fine-tuning experiment comprised one session per familiar face, with 

familiar face order randomized across participants. Each session started with the 

screen presentation of the front view of one familiar face target to instruct 

participants as to the target of the session. On each trial, six faces initially 

amplified between 0 and 50 appeared on the screen, randomly positioned in a 2 

by 3 array against a black background. I instructed participants to choose the face 
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that best resembled the familiar identity by pressing one of six response buttons. 

The six faces remained on the screen until response, immediately followed by the 

next trial. I repeated the trial five times, with the same six faces in different random 

array positions, to determine the next amplification range. I narrowed the 

amplification range every five trials by finding the minimum and maximum values 

that bound the participant‘s five choices. With this new range, I produced six new 

faces by evenly sampling the amplification values and again tested the participant 

over five new trials. I iteratively repeated sequences of five testing trials, updates 

of the amplification range, until it stabilized—i.e., remained constant over three 

blocks of five trials. I used the median of the final amplification range as value to 

generate the fine-tuned Beta_2 coefficients that I call mental representation in my 

analyses (see Figure 2-4B2). 
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Figure 2–4 Reverse-Correlating the Information Contents of Familiar Face 
Representations. (A) Estimating Beta_2 Coefficients. I linearly regressed the 3D 
vertices of shape (separately for the X, Y and Z coordinates, texture not illustrated) 
with similarity judgments of the selected random identities (illustrated here for 
‗Mary‘). For each vertex, 3D Beta_2 coefficients are color-coded according to their 
3D magnitude (i.e. Euclidean Distance). Yellow-to-red indicates an outward 
change from the categorical average; turquoise-to-blue indicates an inward 
change from the categorical average. (B) Fine-tuning Beta_2 Coefficients. (B.1) 
Amplifying Beta_2 coefficients. Illustration of the amplification of Beta_2 
coefficients. (B.2) Illustration of the fine-tuning experiment. 
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2.2.5.3 Vertex Contribution to Mental Representations 

Vertices, whether in the ground truth face or in the participant‘s mental 

representation, can deviate inward or outward in 3D from the corresponding vertex 

in the common categorical average of their GLM fits (cf. Figure 2-1B). Thus, I can 

compare the respective deviations of their 3D vertices in relation to the common 

GLM categorical average. 

For each participant and familiar face representation, I proceeded in three 

steps to classify each vertex as either ‗faithful‘ or ‗not faithful‘, and to test whether 

the vertices in mental representations deviated from the categorical average more 

than would be expected to occur by chance. I focus the analyses on the Beta_2 

coefficients because they quantify how shape and texture identity residuals 

deviate from the GLM categorical average to represent the identity of each familiar 

face in the memory of each participant. 

Step 1: I constructed a permutation distribution by iterating the regression 

analysis 1,000 times with random permutations of the choice response across the 

1,800 trials. To control for multiple comparisons, I selected maximum (vs. 

minimum) Beta_2 coefficients across all shape vertices (and texture pixels), 

separately for the X, Y and Z coordinates (RGB color channels) from each 

iteration. I used the resulting distribution of maxima (and minima) to compute the 

95% confidence interval of chance-level upper (and lower) Beta_2 value and 

classified each Beta_2 coefficient as significantly different from chance (p < 0.05), 

or not. I consider the vertex (or pixel) as significant if the Beta_2 coefficient of any 

coordinate (or color channel) was significant. There were very few significant 

pixels, with almost no consistency across participants (see Figure S2-1 in 2.6.1 

Supplemental Figures), so I excluded texture identity residuals from further 

analyses. 

Step 2: I used the chance-fit Beta coefficients in Step 1 and the Beta_2 

amplification value derived in 2.2.5.2 Reconstructing Mental Representation to 

compute the equation                                cf. Figure 2-4B2). As 

a result, I built a distribution of 1,000 chance fit faces. 

Step 3: To classify whether each significant 3D vertex in the mental 

representation of a participant is more similar to ground truth than we would 

expect by chance, I computed Dchance, the mean Euclidean distance between the 
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1,000 chance fit faces and the veridical line, and Dmemory, the distance between the 

same mental representation vertex and the veridical line.  If Dmemory  <  Dchance, this 

significant vertex is “Faithful” because it is significantly closer to the veridical line 

than chance. If Dmemory  > Dchance , and this vertex changes in the same direction as 

ground truth, the vertex is not faithful and I call it “Inaccurate+.” If Dmemory  > 

Dchance , and this vertex changes in a direction opposite to the ground truth, the 

vertex is not faithful either, and I call it “Inaccurate-.” 

Figure 2-5A shows results of one typical observer of familiar face ‗Mary.‘ To 

illustrate, grey faces on the x-axis show the ground truth identity component in the 

GLM for Inward and Outward 3D shape deviations in relation to the categorical 

average (i.e., all white females of 30 years of age, like ‗Mary‘). For example, 

Mary‘s nose is objectively thinner than the average of white females of her age, 

and so these vertices deviate inward. Likewise, her more pouty mouth is shown as 

an outward 3D shape deviation. The y-axis of Figure 2-5A uses the same format to 

show the mental representation. The Inward and Outward orange-to-purple 

patches reveal faithful representations of, for example, a thinner nose and a pouty 

mouth. Blue patches denote ‗inaccurate+‘ components of memory because they 

amplify (or caricature) the ground truth shape deviations. For example, a 

protruding part of the top lip exaggerates ‗Mary‘s‘ pouty mouth. Green regions 

reveal ‗inaccurate-‘ representation than changes in an opposite direction to the 

ground truth—i.e., inward residual vertices in memory when they are outward in 

the ground truth, or vice versa, such as the flatter surfaces between ‗Mary‘s‘ nose. 

A scatter plot visualizes the vertex by vertex fit between the mental 

representation (y-axis) and the ground truth 3D face (x-axis). The white diagonal 

line provides a veridical reference, where the identity component in the mental 

representation is identical to the ground truth face, for every single 3D vertex 

coordinates. As shown, the specific vertices near the veridical line faithfully 

represent ‗Mary‘ in the mind of this participant (p < 0.05, two-tailed), as orange-to-

red colored dots reported on the scatter and located on the y-axis faces in Figure 

2-5A. In contrast, blue, green and the nonsignificant (white) vertices away from the 

veridical line did not faithfully represent the face.  

I repeated the analysis of represented contents for each participant (N = 14) 

and each familiar face (N = 4). To derive group results, I counted across 

participants the frequency of each faithful/accurate+/accurate- vertex and used a 
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Winner-Take-All scheme to determine group-level consistency.  For example, if 

13/14 participants represented this particular vertex as ‗faithful,‘ I categorized it as 

such at the group level. Figure 2-5B reports the collated group results, using the 

format of Figure 2-5A, where colors now indicate N, the number of participants 

who faithfully/ inaccurately+/inaccurately- represented that identity in their mind 

with this particular 3D shape vertex. Figure 2-5B demonstrates that mental 

representations comprised similar information contents across the 14 individual 

participants. Most (10/14) faithfully represented ‗Mary‘s‘ thin nose, ‗John‘s‘ 

receding eyes and wider upper face (13/14), ‗Peter‘s‘ prominent eyebrow and 

jawline (13/14), ‗Stephany‘s‘ protruding mouth (13/14). 

To demonstrate the represented contents of individual participants 

comprise effective identity information, in next experiment, I tested these contents 

in a new set of participants. 
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Figure 2–5 Contents of Mental Representations of Familiar Faces. (A) Mental 
representation of ‗Mary‘ (a typical participant). Ground truth: 3D vertex positions 
deviate both Inward (-) and Outward (+) from the categorical average to objectively 
define the shape of each familiar face identity. Greyscale values reported on the 
flanking faces color-code the normalized magnitudes of inward and outward 
deviations from the categorical average. Mental representation: Inward and 
Outward red/blue/green face patches highlight the individual 3D vertices whose 
position faithfully/inaccurately+/inaccurately- deviate from the categorical average 
in the GLM. Color intensity represents the normalized magnitudes of their 
deviations. 2D scatter plots: Scatter plots indicate the relationship between each 
vertex deviation in the ground truth (rank-ordered on a normalized scale on the X-
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axis) and the corresponding vertex in the mental representation (also rank-ordered 
on a normalized scale on the Y-axis). The white diagonal line provides the 
reference of veridical mental representation in the GLM—i.e., a hypothetical 
numerical correspondence between each shape vertex position in the ground truth 
face and in the mental representation of the same face. White dots indicate 
vertices that were not significant in the linear regression. (B) Mental 
Representations (group results). Same caption as Figure 2-5A, except that the 
colormap now reflects the number of participants (N = 14) who 
faithfully/inaccurately+/inaccurately- represented this particular shape vertex. 
 

2.3 Experiment 2: Validating the Contents of Mental 
Representations of Familiar Faces 

2.3.1 Participants 

I recruited 20 Western Caucasian participants (15 females and 5 males, 

mean age = 31.15 years, SD = 7.47 years). Each participant had to be familiar 

with 1 to 4 of the identities as work colleges and only participated in validation of 

familiar identities, up to 10 participants per identity. Table S2-2 in 2.6.2 

Supplemental Tables reports the familiarity ratings of each identity for each 

participant. 

All participants with normal or corrected-to-normal vision participated. As 

per self-report, no participant had history or symptoms of synaesthesia, and/or any 

psychological, psychiatric or neurological condition that affects face processing 

(e.g., depression, autism spectrum disorder or prosopagnosia). All gave written 

informed consent and received £6 per hour for their participation. The University of 

Glasgow College of Science and Engineering Ethics Committee provided ethical 

approval. 

2.3.2 Stimuli 

I tested the 64 mental representation models (14 participants × 4 familiar 

faces) obtained in Experiment 1, together with 70 new random faces generated for 

each familiar identity (use the same way as described in Experiment 1, 2.2.3.2. 

Random Face Identities). 

2.3.3 Procedure 

Participants ran a block of 14 trials for each familiar identity (i.e., the target) 

they were familiar with. In each identity block, we randomly allocated 14 models 
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and 70 random faces into 14 trials, with one trial displayed one model plus 5 

random faces. Each trial started with the centrally displayed name of the target on 

a black background, which remained on the screen until participants pressed a 

button to start the trial. From the six faces randomly positioned in the 2 by 3 array 

on each trial, participants selected (with the mouse), the face most resembling the 

target, followed by the face least resembling the target. A 1.5s interval separated 

individual trials and a 30s break separated each target identity block. All viewing 

parameters were identical to the reverse correlation experiment. 

Throughout, participants sat in a dimly lit room and used a chin rest to 

maintain the viewing parameters identical to Experiment 1. I ran the experiment 

using the Psychtoolbox for MATLAB R2012a. 

2.3.4 Analysis & Results 

We measured identification performance for each memory representation 

model as a percentage -- the number of participants who selected the model as 

the face most resembling the familiar target divided by the total number of 

participants (see Table 2-1). 

Table 2-1. Recognition performance of mental representation models for the four 
familiar identities.  

Model NO.   Mary   Stephany   John   Peter 

1 
 

1 
 

0.8 
 

1 
 

1 

2 
 

1 
 

0.8 
 

1 
 

1 

3 
 

1 
 

0.7 
 

1 
 

0.9 

4 
 

1 
 

0.7 
 

1 
 

0.9 

5 
 

1 
 

0.7 
 

1 
 

0.9 

6 
 

0.9 
 

0.6 
 

0.9 
 

0.9 

7 
 

0.7 
 

0.6 
 

0.9 
 

0.9 

8 
 

0.7 
 

0.6 
 

0.8 
 

0.9 

9 
 

0.7 
 

0.5 
 

0.8 
 

0.8 

10 
 

0.7 
 

0.5 
 

0.7 
 

0.8 

11 
 

0.6 
 

0.4 
 

0.7 
 

0.8 

12 
 

0.6 
 

0.2 
 

0.6 
 

0.8 

13 

 

0.5 

 

0.1 

 

0.5 

 

0.8 

14 
 

0 
 

0.1 
 

0.4 
 

0.5 

         Mean 
 

0.74 
 

0.52 
 

0.81 
 

0.85 

SD   0.28   0.24   0.2   0.12 

Note: the recognition performance of ―Peter‘s‖ models is saturated, with 13 out of 
14 models of Peter showing excellent performance (>= 0.80, red outlined). 
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To understand the identification performance, I further tested the 

relationship (RobustFit, Matlab 2013b) between identification performance and the 

efficiency of mental representation derived by Equation (1), by pooling the data 

across 14 models of three identities. I withdrew the models of ‗Peter‘ from this 

analysis because they saturated identification performance (red-framed in Table 2-

1). 

           
                                

                
       (1) 

I found a robust positive correlation (r = 0.835, p < 0.001) between the 

efficiency index of individual models and their identification performance (see 

Figure 2-6). 

 

Figure 2–6 Model Efficiency and Recognition Performance. Scatter plots 
indicate the positive relationship between the model efficiency (X-axis) and the 
recognition performance of the models (Y-axis). The scattered points color-code 
recognition performance of the 14 models for ‗Mary‘ (red), ‗Stephany‘ (green) and 
‗John‘ (blue). I provide the robust fit together with the 95% confidence interval. 
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2.4 Experiment 3: Efficacy of the Information Contents of 
Mental Representations in New Participants and Tasks  

Experiment 1 showed the convergence of represented contents across 

participants (cf. Figure 2-5), which suggests that the face representations could be 

multivariate (i.e., comprising contiguous surface patches rather than isolated 

vertices). Experiment 2 validated these models and shows that the faithful 

representational contents drive the face identification (cf. Figure 2-6). In this final 

experiment, I extracted the main multivariate components of faithfully represented 

surface patches, and validated their general use to other resemble tasks that 

preserve the identity identification – i.e., changes of viewpoints, age, and sex. 

2.4.1 Participants 

I recruited 11 Western Caucasians (7 females) and 1 East Asian (female), 

with mean age = 28.25 years and SD = 4.11 years. Each is familiar with the 

identities as work colleagues and also assessed familiarity on a 9-point Likert 

scale (see 2.6.2 Supplemental Tables, Table S2-3). All participants had normal or 

corrected-to-normal vision, without a self-reported history or symptoms of 

synaesthesia, and/or any psychological, psychiatric or neurological condition that 

affects face processing (e.g., depression, autism spectrum disorder or 

prosopagnosia). They gave written informed consent and received £6 per hour for 

their participation. The University of Glasgow College of Science and Engineering 

Ethics Committee provided ethical approval. 

2.4.2 Stimuli 

2.4.2.1 Extracting Diagnostic vs. Nondiagnostic components of Mental 
Representations 

To find common diagnostic components (multivariate features) that 

emerged in the group-level memory representation of each face identity, I 

factorized with Non-negative Matrix Factorization (NNMF, D. D. Lee & Seung, 

1999) the total set of memory representations models across familiar identities and 

observers. 

For each model, I recoded each vertex as ‗faithful‘ = 1, ‗inaccurate+,‘ 

‗inaccurate-‘ and not significant = 0, resulting in a 4735-d binary vector. I pooled 56 

such binary vectors (across 4 targets x 14 observers = 56) to create a 4735 by 56 

(i.e. vertex-by-model) binary matrix to which we applied NNMF to derive 8 
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multivariate components that captured the main features that faithfully represent 

familiar faces in memory across participants (Figure 2-7A shows each NNMF 

component). 

To determine the loading (i.e., the contribution) of each NNMF component 

in the group-level mental representation of each familiar face identity, I computed 

the median loading of this component on the 14 binary vectors representing this 

identity in the 14 observers. I applied a 0.1 loading threshold (> 73 percentile of all 

8 components × 4 identities median loadings) to ascribe a given component to a 

familiar face representation. The colored boxplot in Figure 2-7A represents the 

loading of each NNMF component at the group-level representation, showing that 

at least 2 above-threshold NNMF components represent each familiar identity. 

I then constructed the diagnostic component of a familiar identity 

representation as follows: for each vertex we extracted the maximum loading 

value across the NNMF components representing it, and normalized the values to 

the maximum loading across all vertices. This produced a 4735-d vector Vd that 

weighs the respective contribution of each 3D vertex to the faithful representation 

of this familiar identity that we call the ―diagnostic component.‖  The heat maps in 

the left column of Figure 2-7B represent the diagnostic component of each familiar 

identity. 

Crucially, I was then able to define a nondiagnostic component as the 

complement of the diagnostic component Vn = 1 – Vd, which capture variable face 

surfaces that do not comprise the participants‘ faithful mental representations.  It is 

important to emphasize that I adjusted the total deviation magnitude of the 

diagnostic and nondiagnostic components from the categorical average—i.e., by 

equating the total sum of their deviations. Such normalization ensures that 

diagnostic and nondiagnostic components are both equidistant from the average 

face in the objective face space. The right column of Figure 2-7B shows the 

nondiagnostic component of each familiar identity representation. 
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Figure 2–7 NNMF Multivariate and Compact Representations. A. NNMF 
representations of faithful 3D vertices across the mental representations of 
participants. The x-axis presents each NNMF component, where colors indicate 
the relative weight of each shape vertex in the component (normalized by 
maximum weight across components). Boxplots on the y-axis show the loading of 
each NNMF component on the faithful representations (N = 14, one per 
participant) of each familiar identity (N = 4 familiar identities), with colored boxes 
indicating above 0.1 threshold loading for NNMF components. B. Diagnostic and 
nondiagnostic components for each familiar identity. Heat maps in the left column 
show the group-level diagnostic component for each familiar identity; heat maps in 
the right column show the complementary nondiagnostic components. 

2.4.2.2 Synthesizing Diagnostic and Nondiagnostic Faces 

For each familiar identity, I synthesized new 3D faces that comprised 

graded levels of either the diagnostic or the nondiagnostic shape components. 

Specifically, I used the normalized diagnostic component Vd and its nondiagnostic 

complement Vn to synthesize morphed faces with shape information of each target 

identity as follows: 
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with amplification factor α = 0.33, 0.67, 1, 1.33, 1.67, to control the relative 

intensity of diagnostic and nondiagnostic shape changes. I rendered all these 

morphed shapes with the same average texture.  

I also changed the viewpoint, age, and sex of all of these synthesized faces 

(cf. Experiment1, Generative Model of Face Identity). Specifically, I rotated them in 

depth by -30 deg, 0 deg and +30 deg and using the 3D GMF; I set the age factor 

to 80 years/swapped the sex factor, keeping all other factors constant. Figure 2-8A 

shows the diagnostic and nondiagnostic faces of ‗Mary‘ with increasing 

amplification values and any changes of viewpoints/age/sex (see 2.6.3 

Supplemental Figures, Figure S2-2 to Figure S2-5 for all familiar faces). I added as 

filler stimuli the grand average face (for both shape and texture) of the 355 

database faces. 

It is important to emphasize that both diagnostic and nondiagnostic faces 

are equally faithful representations of the original ground truth. That is, their shape 

features are equidistant from the shared categorical average. However, whereas 

the diagnostic components deviate from the average with multivariate information 

extracted from the participants‘ mental representations, the nondiagnostic 

components do not. I hypothesized that, though equidistant from the categorical 

average, only the diagnostic components will effectively impact performance on 

the novel tasks. 

2.4.3 Procedure 

The experiment comprised 3 conditions (viewpoint, age and sex) that all 

validators accomplished in a random order, with one condition per day.  In the 

Viewpoint condition, validators ran 15 blocks of 41 trials (5 repetitions of 123 

stimuli). Each trial started with a centrally displayed fixation for 1s, followed by a 

face on a black background for 500ms. I instructed participants to name the face 

as ‗Mary,‘ ‗Stephany,‘ ‗John‘ or ‗Peter,‘ or respond ‗other‘ if they could not identify 

the face. Participants were required to respond as accurately and as quickly as 

possible. A 2s fixation separated each trial. Validators could break between 

blocks.  In the Age and Sex conditions, validators ran 5 blocks that repeated 42 

trials. They were instructed to respond ―Old ‗Mary,‖ ―Old Stephany,‖ ―Old John,‖ 

―Old Peter‖ or ―Other‖ in the age condition, and ―Mary‘s brother‖, ―Stephany‘s 

brother,‖ ―John‘s sister,‖ ―Peter‘s sister‖ or ―Other‖ in the sex condition. 
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2.4.4 Analysis & Results 

For each participant and generalization condition, I computed the percent 

correct identification of diagnostic and nondiagnostic faces for each familiar face 

and at each level of feature intensity. In each of the three Viewpoints, I paired the 

performance of diagnostic and nondiagnostic stimuli of each participant and 

identity, at each level of feature intensity (i.e., 5 levels x 4 identities x 12 

participants = 240 pairs). In Age and Sex, I paired the performance of diagnostic 

and non-diagnostic stimuli of each validator and identity at each intensity level 

(i.e., 5 levels x 4 identities x 12 validators = 240 pairs). Then, in each of the five 

tasks (3 views plus age and gender), I used a Wilcoxson sign ranked test to 

compare the diagnostic vs. nondiagnostic pairs and obtained the Wilcoxson sign 

ranked statistics W. I determined the statistical significance of W using a 

bootstrapped null distribution of W (N = 1,000 iterations). On each iteration, I 

randomly shuffled the participants‘ responses across stimuli within a task, and 

computed the W between two random pairs. I use the 99th percentile of resulting 

distribution as the statistical threshold (i.e., p < 0.01, one-tailed). I corrected 

significance across the five tasks—i.e., Bonferroni corrected p < 0.05, 1-tailed. 

In each task, I found a significantly higher global identification performance 

for diagnostic faces (see Figure 2-8B, red curves) than for nondiagnostic faces 

(black curves, p < 0.05, 1-tailed. Thus, the diagnostic contents of the memory 

representations I modelled do indeed contain the information that can resolve 

identity and novel resemblance tasks. 
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Figure 2–8 Generalization of Performance across Tasks. (A) Diagnostic and 
nondiagnostic Faces. Left panel: The red framed map shows the multivariate 
diagnostic components of faithful 3D shape representation of ‗Mary‘; the grey 
framed map shows the nondiagnostic complement (1 - diagnostic components). 
Middle panel: Faces synthesized with increasing amplification (0.33 to 1.67) of the 
diagnostic (top) vs. nondiagnostic (bottom) components. Right panel: For each 
synthesized face, we changed its viewpoint (30° left and 30° right), age (80 years 
old) and sex, shown here for faces synthesized at amplification = 1. (B) Task 
Performance. For each condition of generalization (y-axis) and familiar identity (x-
axis), 2D plots show the median identification performance computed across 
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participants (y-axis) for faces synthesized with the diagnostic (red curves) and 
nondiagnostic (grey curves) faces, at different levels of amplification of the 
multivariate components (x-axis). Shadowed regions indicate median absolute 
deviations (MAD) of identification performance. 

2.5 Discussion 

Mental representations stored in memory are critical to guide the 

information processing mechanisms of cognition. Here, with a novel methodology 

based on reverse correlation and a new 3D face information generator, I modelled 

the information contents of mental representations of 4 familiar faces in 14 

individual participants. I showed that the contents converged across participants 

on a set of multivariate features (i.e., local and global surface patches), which 

faithfully represent 3D information that is objectively diagnostic of each familiar 

face. Critically, I showed that validators could identify new faces generated with 

these diagnostic representations across new resemblance tasks—i.e., changes of 

pose, age and sex—but performed much worse with equally faithful, but 

nondiagnostic features. Together, these results demonstrate that the modelled 

representational contents were both sufficiently precise to enable face 

identification within task and versatile enough to generalize the face identification 

to other resemblance tasks. 

There has been a recent surge of interest in modelling face representations 

from human memory (C. H. Chang et al., 2017; H. Lee & Kuhl, 2016; Nestor et al., 

2016). These studies used 2D face images and applied dimensionality reduction 

(e.g. PCA ,Turk & Pentland, 1991; and multidimensional scaling) to formalize an 

image-based face space, where each dimension is a 2D eigenface or classification 

image  – i.e. pixel-wised RGB (or L*A*B) values. To understand the contribution of 

each 2D face space dimension to memory representations (including their neural 

coding), researchers modelled the relationship between projected weights of the 

original 2D face images on each dimension and participants‘ corresponding 

behavioral (C. H. Chang et al., 2017) and brain (H. Lee & Kuhl, 2016; Nestor et al., 

2016)) responses. 

These studies contributed important developments in face identification 

research because they addressed the face identity contents that the brain uses to 

guide face identification mechanisms. The aim of my experiments was to model 

the face identity contents in the generative 3D space of faces (not the 2D space of 

their image projections) and to use these models to generate identification 
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information in resemblance tasks that test the generalizability of identity 

information.  It is important to clarify that I modelled identity information in a face 

space that belongs to the broad class of 3D morphable, Active Appearance 

Models of facial synthesis (AAMs, Blanz & Vetter, 1999; Cootes, Edwards, & 

Taylor, 2001). These models contain full 3D surface and 2D texture information 

about faces and so with their better control superseded the former generation of 

2D image-based face spaces (Rhodes & Jeffery, 2006; Turk & Pentland, 1991; 

O'Toole, Castillo, Parde, Hill, & Chellappa, 2018). To synthesize faces, I used our 

GMF to decompose each face identity as a linear combination of components of 

3D shape and 2D texture added to a local average (that summarizes the 

categorical factor of age, gender, ethnicity and their interactions, cf. Figure 2-1B). 

To model the mental representations of faces, I estimated the identity components 

of shape and texture from the memory of each observer. These components had 

generative capacity and we used them to precisely control the magnitude of 

identity information in new faces synthesized to demonstrate generalization across 

pose, age and sex.  Thus, I used the same AAM framework for stimulus synthesis, 

mental representation estimation and generation of generalizable identities. 

There is a well-known problem with using AAMs to model the psychology of 

face recognition. Perceptual expertise and familiarity are thought to involve 

representations of faces that enable the greater generalization performance that is 

widely reported (Eger, Schweinberger, Dolan, & Henson, 2005; Jenkins, White, 

Van Montfort, & Burton, 2011; White, Phillips, Hahn, Hill, & O'Toole, 2015; Young 

& Burton, 2018). However, AAMs typically adopt a brute force approach to identity 

representation: a veridical (i.e., totally faithful) deviation of each physical shape 

vertex and texture pixel from an average. Thus, as AAMs overfit identity 

information, they appear as a priori weak candidate models to represent the 

perceptual expertise (O'Toole et al., 2018). My approach to studying the contents 

of mental representations offers a solution to this information processing 

conundrum. I showed that each observer faithfully represented only a proportion of 

the objective identity information that defines a familiar face identity. Its key 

theoretical contribution to face space is to formalize the diagnostic information as a 

reduced set of multivariate face features that can be construed as dimensions of 

the observer‘s face space. Observers develop these dimensions whenever they 

interact with the objective information that represents a new face identity in the 

real world. I modelled the objective information that is available to the observer for 
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developing their face space dimensions via learning as the veridical shape and 

texture information of the AAM (Gosselin & Schyns, 2002; O'Toole et al., 2018; 

Schyns, 1998). Key to demonstrating the psychological relevance of our 

psychological face space dimensions is that they should comprise identity 

information sufficiently detailed to enable accurate face identification and 

sufficiently versatile to enable similarity judgments of identity in novel tasks. My 

results demonstrated this potential when validators identified faces synthesized 

with the diagnostic dimensions in novel resemblance tasks. Thus, by introducing 

reduced faithful mental representations of identity information in the objective 

representations of AAMs my study provides the means of modelling the 

psychological dimensions of face space. 

The practical contribution of my study to face recognition is that we can now 

precisely track the development of the psychological dimensions of face space. 

AAMs enable a tight control of objective face information at synthesis, such as 

ambient factors of illumination, pose and scale, but also categorical factors of 

gender, sex, age and ethnicity and components of identity. Thus, it is now possible 

to tightly control the statistics of exposure to faces in individual observers, model 

the diagnostic dimensions of the psychological face space that are learned, and 

finally test the efficacy of the psychological face space as I did here. And when we 

understand how ambient and categorical factors influence performance, we can 

switch to understanding familiar face identification in the wild, where all ambient 

and categorical factors get naturally mixed up, and where the influence of each 

factor to identification performance becomes near impossible to disentangle, 

precluding a detailed information processing understanding of face identification 

mechanisms. 

Our results could suggest that the representation of face shape information 

trumps its texture. At this stage, it is important to clarify that shape and texture 

have different meanings in different literatures. For example, some authors in 

psychology discuss shape-free faces when referring to 2D images synthesized by 

warping an identity-specific texture to an identical ‗face shape‘ (defined as a 

unique and standard set of 2D coordinates that locate a few face features (Burton, 

Schweinberger, Jenkins, & Kaufmann, 2015)).  However, it is important to 

emphasize that the warped textures are not free of 3D shape information (e.g. that 

which can be extracted from shading, Erens, Kappers, & Koenderink, 1993).  In 
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computer graphics, the generative model of a face comprises a 3D shape per 

identity (here, specified with 4,735 3D vertex coordinates), lighting sources (here, 

N = 4), and a shading model (here, Phong shading, Phong, 1975).  The shading 

model interacts with shape and texture to render the 3D face as a 2D image.  To 

illustrate the effects of this rendering, Supplementary Figure 9 shows how applying 

the same 2D textures (rows) to different 3D face shapes (columns) generates 2D 

images with different identities.  We used the better control afforded by computer 

graphics to generate our face images and found that shaded familiar face shape 

was more prevalent in the face memory of individual participants than face texture. 

The models of mental representation should be construed as the abstract 

information goals that the visual system predicts when identifying familiar faces. I 

term the faithful components as the ‗abstract information goal‘ because it has to be 

broken down into global and local constituents according to the biological 

constraints of representation and implementation at each level of the visual 

hierarchy—or their analogues in a multi-layered deep convolutional network, 

where we can use a similar methodology to understand the identity contents 

represented in the hidden layers (Xu et al., 2018). In norm-based coding (Leopold 

et al., 2001; Rhodes & Jeffery, 2006), face identity information is represented in 

reference to the average of a multi-dimensional face space.  Monkey single cell 

responses increase their firing rate with increasing distance of a face to this 

average (as happens with e.g. caricaturing, Leopold et al., 2006). As shown by 

Chang and Tsao (2017), neurons selectively respond along a single axis of the 

face space, not to other, orthogonal axes. An interesting direction of research is to 

determine whether our reduced diagnostic features, as defined by our ‗abstract 

information goal‘ (see also Zhan, Ince, van Rijsbergen, & Schyns, 2019), provide a 

superior fit to the neural data than the full feature sets used in the axis model used 

by Chang et al. (L. Chang & Tsao, 2017). 

Though I modelled the mental representation of a face identity in an AAM, it 

is important to state that I do not assume that memory really represents faces in 

this way (i.e., as demarcations to an average, separately for 3D shape and 2D 

texture). AAM is only a state-of-the-art, mathematical modelling framework. I fully 

acknowledge there are many possible concrete implementations into a neural, or a 

neurally-inspired architecture that could deliver AAM-like performance without 

assuming an explicit AAM representation. What is clear is that whichever 
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implementation, in whichever architecture, the abstract information represented 

will have to enable the performance characteristics my resemblance tasks 

demonstrated. 
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2.6 Supplemental Materials 

2.6.1 Supplemental Methods 

3D Face Database. The face database comprised 197 females, 158 males, 

233 Western Caucasian, 122 East Asian, age between 16 and 86, SD = 15.06, 

scanned in-house with a Di4D face capture system, at a high resolution in shape 

(4,735 3D vertex coordinates) and texture (800*600 RGB pixels, see Figure 2-1A). 

All 3D models were in full color with hair removed, posing with a neutral facial 

expression. 
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2.6.2 Supplemental Tables 

Table S 2-1 Identity familiarity ratings of 14 participants in Experiment 1. 

Participants   Mary   Stephany   John   Peter 

1 
 

6 
 

4 
 

3 
 

7 

2 
 

7 
 

8 
 

9 
 

6 

3 
 

7 
 

9 
 

7 
 

3 

4 
 

8 
 

8 
 

7 
 

8 

5 
 

3 
 

4 
 

4 
 

4 

6 
 

3 
 

3 
 

4 
 

5 

7 
 

5 
 

6 
 

9 
 

4 

8 
 

5 
 

6 
 

9 
 

5 

9 
 

8 
 

7 
 

7 
 

4 

10 
 

8 
 

6 
 

8 
 

10 

11 
 

7 
 

7 
 

8 
 

7 

12 
 

7 
 

6 
 

6 
 

7 

13 
 

5 
 

3 
 

9 
 

7 

14 
 

9 
 

9 
 

9 
 

9 

         Mean 
 

6.29 
 

6.14 
 

7.07 
 

6.14 

SD   1.86   2.03   2.09   2.07 

Note: Ratings are from 1 (not familiar at all) to 9 (highly familiar). 
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Table S 2-2 Identity Familiarity rating of 20 participants in Experiment 2.  

Validators   Mary   Stephany   John   Peter 

1 
 

6 
 

7 
 

7 
 

5 

2 
 

9 
 

9 
 

9 
 

8 

3 
 

5 
 

-- 
 

4 
 

6 

4 
 

5 
 

-- 
 

5 
 

7 

5 
 

7 
 

-- 
 

7 
 

7 

6 
 

9 
 

9 
 

-- 
 

9 

7 
 

6 
 

-- 
 

5 
 

-- 

8 
 

7 
 

-- 
 

-- 
 

6 

9 
 

4 
 

8 
 

-- 
 

-- 

10 
 

5 
 

-- 
 

-- 
 

-- 

11 
 

-- 
 

9 
 

-- 
 

7 

12 
 

-- 
 

5 
 

-- 
 

-- 

13 
 

-- 
 

6 
 

-- 
 

-- 

14 
 

-- 
 

5 
 

-- 
 

-- 

15 
 

-- 
 

7 
 

-- 
 

-- 

16 
 

-- 
 

5 
 

-- 
 

-- 

17 
 

-- 
 

-- 
 

5 
 

7 

18 
 

-- 
 

-- 
 

6 
 

8 

19 
 

-- 
 

-- 
 

6 
 

-- 

20 
 

-- 
 

-- 
 

7 
 

-- 

         Mean 
 

6.3 
 

7 
 

6.1 
 

7 

SD   1.7   1.7   1.45   1.15 

Note: Ratings are from 1 (not familiar at all) to 9 (highly familiar). ―--‖ indicates 
validators did not give rating or participate in the experimental block, since they 
were not familiar with the target identities. 
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Table S 2-3 Identity familiarity ratings of 12 participants in Experiment 3. 

Model NO.   Mary   Stephany   John   Peter 

1 
 

1 
 

0.8 
 

1 
 

1 

2 
 

1 
 

0.8 
 

1 
 

1 

3 
 

1 
 

0.7 
 

1 
 

0.9 

4 
 

1 
 

0.7 
 

1 
 

0.9 

5 
 

1 
 

0.7 
 

1 
 

0.9 

6 
 

0.9 
 

0.6 
 

0.9 
 

0.9 

7 
 

0.7 
 

0.6 
 

0.9 
 

0.9 

8 
 

0.7 
 

0.6 
 

0.8 
 

0.9 

9 
 

0.7 
 

0.5 
 

0.8 
 

0.8 

10 
 

0.7 
 

0.5 
 

0.7 
 

0.8 

11 
 

0.6 
 

0.4 
 

0.7 
 

0.8 

12 
 

0.6 
 

0.2 
 

0.6 
 

0.8 

13 

 

0.5 

 

0.1 

 

0.5 

 

0.8 

14 
 

0 
 

0.1 
 

0.4 
 

0.5 

         Mean 
 

0.74 
 

0.52 
 

0.81 
 

0.85 

SD   0.28   0.24   0.2   0.12 

Note: the recognition performance of ―Peter‘s‖ models is saturated, with 13 out of 

14 models of Peter showing excellent performance (>= 0.80, red outlined). 
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2.6.3 Supplemental Figures 

 

Figure S 2-1 Beta_2 Coefficients of Face Texture. Yellow colored overlays on 
each familiar face illustrate the significant Beta_2 coefficients for RGB texture 
pixels in each participant (labelled S1-S14). Dark purple pixels represent non-
significant RGB coefficients. 
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Figure S 2-2 Diagnostic (Left) and Nondiagnostic (Right) Faces of ‘Mary.’  
Each row presents the main conditions of stimulus synthesis (i.e., 3 viewpoints, 
age and sex).  Each column presents a level of diagnostic (vs. nondiagnostic) 
component amplification in the face. 
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Figure S 2-3 Diagnostic (Left) and Nondiagnostic (Right) Faces of 
‘Stephany.’ Same caption as in Figure S2-2. 
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Figure S 2-4. Diagnostic (Left) and Nondiagnostic (Right) Faces of ‘John.’ 
Same caption as in Figure S2-2. 
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Figure S 2-5. Diagnostic (Left) and Nondiagnostic (Right) Faces of ‘Peter.’ 
Same caption as in Figure S2-2. 
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3 Study 2: Modelling the Diagnostic Information for 
Facial Expression Recognition 

3.1 Introduction 

Accurately recognizing facial expressions of emotion requires shared 

representation of the expressions in the mind between signal sender and receiver 

(Jack & Schyns, 2015). Such shared knowledge is perceived, consolidated and 

retained during individuals‘ interaction with the external environment (Yuille & 

Kersten, 2006), and is therefore expressed in a cultural-specific manner (Blais, 

Jack, Scheepers, Fiset, & Caldara, 2008; Jack et al., 2009; Jack, Caldara, et al., 

2012; Jack, Garrod, et al., 2012).  

In this study, I used the facial expression models of six emotions (i.e. 

Happy, Surprise, Fear, Disgust, Anger and Sad) derived from Western observers 

in a reverse correlation experiment (Jack et al., 2014) and tested them in a new 

group of Western validators. Among these models, I selected a subset that shows 

good recognition performance as the validated models and use these models to 

derivd the main vairants of each emotion. Using these emotion variants and their 

probabilities of occurrence in the validated set, I trained a Bayesian classifier that 

showed a level of categorization performance mimics human observers closely. I 

explained these emotion variants together with their occurrence probability as the 

mental representation of six facial emotions for Western observers at the 

population level. 

3.2 Experiment 

3.2.1 Participants 

Three hundred (150 female, 284 European, 15 North American, 1 

Australian) Western white Caucasian (WC) participants (mean age of 20.9 years, 

SD = 2.948 years; range 18-30 years) with normal, or corrected to normal vision 

participated in the experiment. All participants had minimal experience of non-

Western cultures (as assessed by questionnaire, see 3.4 Supplemental Materials, 

Screening Questionnaire), normal or corrected to normal vision, gave written 

informed consent and received £6 per hour. The University of Glasgow College of 

Science and Engineering Ethics Committee provided ethical approval. Henceforth, 

we called these participants ‗validators.‘ 
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3.2.2 Stimuli 

I included 720 dynamic models (120 for each emotion) reconstructed from a 

reverse correlation experiment (Jack et al., 2014). I synthesized each model to a 

set of 50 WC faces (25 females and 25 males, between 18 and 31 years of age, 

mean = 22.5 years, SD = 3.69 years) obtained using standard face capture (Yu, 

Garrod, & Schyns, 2012). This produced a total of 36,000 dynamic validation 

stimuli (720 models x 50 identities). 

To better understand these dynamic models and the analysis in section 

3.2.4, it is necessary I introduce three crucial components in the reverse 

correlation experiment: 

Generative Face Grammar (GFG). In the Generative Face Grammar, the 

generative model of facial expression signal is the dynamic 3D face, equipped with 

42 independent and biologically plausible facial movements (called Action Unites, 

(Ekman & Friesen, 1978)). A subset of active Action Units (AUs) comprises a 

pattern of facial movements on 3D faces; and the temporal dynamics of each 

active AU is modelled using 6 parameters: onset, acceleration, peak amplitude, 

peak latency, deceleration and offset. GFG was designed to synthesize 3D face 

dynamics by tightly controlling the active AUs (Yu et al., 2012). Figure 3-1 

illustrates the GFG platform, using one example that comprises 3 AUs with 

different temporal dynamics. 

Reverse Correlation Experiment. On each experimental trial, the GFG 

randomly sampled 42 AUs and their 6 temporal parameters to synthesize random 

expressive face animations. The observer categorized the random facial animation 

according to the six classic emotion categories – ‗happy,‘ ‗surprise,‘ ‗fear,‘ 

‗disgust,‘ ‗anger,‘ ‗sad‘ – only when the random facial movements corresponded 

with their mental representation of one of the emotions. Alternatively, observers 

selected ‗don‘t know.‘  

Dynamic Models. To model the pattern of facial movement that drives each 

emotion categorization, the researchers performed a Pearson correlation between 

the binary activation parameter of each AU (i.e., on vs. off across trials) and the 

binary response variable (e.g., happy vs. not happy across trials, for happy model 

reconstructing), independently for each emotion. This built a 42-dimensional binary 

vector, per emotion and participant, specifying the contribution of each AU to a 
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particular emotion category. To further model the dynamic characteristics of the 

significant/active AUs underlying each emotion, the researchers performed, for 

each active AU, a linear regression between binary emotion response variables 

and the six temporal parameters. As a result, they computed a total of 720 

dynamic facial expression models (6 expressions × male/female face × 60 

participants).  

 

Figure 3–1 Generative Face Grammar (GFG). GFG randomly selects a subset 
AUs (AU4 colored in blue, AU5 colored in green and AU20 colored in red), from a 
total 42, and assigns values to 6 temporal parameters for each (see corresponding 
colored curves). These dynamic AUs are then combined and synthesized on a 3D 
face to produce an animation. Here, only 4 snapshots of the animation are 
included for the illustrative purpose. This figure is adapted from (Jack et al., 2014), 
and permission to reproduce this has been granted by the publisher Elsevier. 

3.2.3 Procedure 

On each trial of the validation experiment, naïve validators viewed the 

animation of a dynamic facial expression model and categorized it according to the 

six classic emotions— ‗happy,‘ ‗surprise,‘ ‗fear,‘ ‗disgust,‘ ‗anger,‘ and ‗sad.‘ Stimuli 

were presented stimuli on a black background monitor (75Hz refresh rate), in the 

center of the validator's visual field. A chin rest was used to ensure a constant 
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viewing distance of 71 cm with stimuli subtending 14.25° (vertical) and 10.08° 

(horizontal) of visual angle, thereby presenting faces typical of natural social 

interactions (Hall, 1966; Ibrahimagić-Šeper, Čelebić, Petričević, & Selimović, 

2006). Each animation was played once for 1.25 seconds before the response 

options appeared and remained on the screen until the validator responded. Each 

validator completed 200 trials randomly sampled (with replacement) from the set 

of 36,000 stimuli. Each dynamic model, on average, was tested on 83 validators. 

3.2.4 Analysis & Results 

3.2.4.1 Categorization Accuracy 

For each dynamic model, I computed the categorization performance (i.e., 

proportion correct to target emotion and proportion confusions to other emotions), 

across all tested validators. As shown in Figure 3-2, the categorization 

performance of these models reveals a pattern similar to that reported in 

experiments on static images: surprise-fear and disgust-anger elicit high 

confusions (see values in red in right panel), whereas happy stimuli are least 

confused with other emotions. Table S3-1 (see 3.4.2. Supplemental Tables) and 

Figure S3-1 (see 3.4.3 Supplemental Figures) showed the categorization 

performance of the most accurate models. This performance level together with 

the reported confusion pattern demonstrate that the reverse correlated dynamic 

models of facial expressions of emotions (which reveal the mental representation 

of individual observers) can in turn be used as faithful facial signals of these 

emotions. 
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Figure 3–2 Categorization Performance of Dynamic Models. Left Panel. The 
color-coded confusion matrix shows the accuracy of each model used as stimulus 
(Y-axis) according to the six emotion categories (X-axis, categorization 
responses). Black-red-white color scale denotes the response proportion (black = 
0%, white = 100%). Right Panel. Values in each cell show the corresponding 
categorization accuracy averaged across all expression models in each stimulus 
category (%). Yellow-colored values denote the average categorization accuracy 
per emotion category; red-colored values denote the high confusions (e.g., 
Surprise and Fear, Disgust and Anger). Standard error (SE) is between 
parentheses. 

3.2.4.2 Analyse the Model Variants in Each Emotion  

There are signal variants for each of the emotions (Ekman & Friesen, 

1978). To estimate the main variants of these dynamic models, for each emotion I 

restricted the analyses to the models that were best categorized by the validators 

(i.e., accuracy rank >= 75 percentile across 120 models, leading to 30 models per 

category and in total 180 models, see Table S3-1 in 3.4.2 Supplemental Tables).  

Here, I am only interested in active AU patterns, so each model is coded as a 42-

dimensional binary AU vector (i.e., AUs‘ on or off of each model).  

To examine the structure of dynamic models in each emotion, I computed 

the similarity (Pearson correlation) between each pair of models using the binary 

AU vector, and derived for each emotion their similarity matrix. As shown in Figure 

3-3, the similarity matrices of ‗happy‘ and ‗surprise‘ show clear, large clusters, 

suggesting few variations in the models of these emotions; whereas for ‗fear‘, 

‗disgust‘, ‗anger‘ and ‗sad‘, their similarity matrices reveal more small clusters, 

suggesting more variations for these emotions. 
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To quantify the numbers of variants per emotion, I applied k-means 

clustering analysis (with k = 1 to 20) to the models, separately for each emotion.  

For each value of k, I computed a measure of fitness (Sum of Squared Error, SSE 

– the sum of the squared distance between each member of the cluster and its 

centroid). In each emotion category, I chose the optimal k as the minimum of the 

second derivative of the SSE over the values of k (the elbow criterion, see Figure 

S3-2 in 3.4.3 Supplemental Figures). Figure 3-3 shows the cluster assignment of 

each model. As predicted, models within each cluster show high similarity, on 

which basis I explained them as one variant. I derived the probability of each 

variant using the number of models they included. 

 

Figure 3–3 Similarity Matrix between Models in Each Emotion. Bright white 
indicates high similarity, whereas dark black denotes low similarity. The colored 
bar on the top of each similarity matrix provides the cluster assignment of each 
model, where each color represents a different cluster (i.e., variant), and the width 
of each colored bar represents the probability of each cluster (i.e., variant). 

As I explained at the beginning, each dynamic model represents the mental 

representation of one observer. Nevertheless, the similarity across models showed 

in Figure 3-3 illustrates that the individual differences in the mental representations 

of facial expressions are not random. Rather, they form clusters with a probability 

of occurrence over the population. Figure 3-4 plots in pink the frequency 

distribution of models within each emotion variant, together with their 
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categorization performance as a boxplot. As shown, some AU combinations are 

more likely to be produced, and can lead to the typical performance reported in the 

literature. To illustrate the variants, I stacked the dynamic model that best fits 

(highest correlates) the centroid of the cluster over the bar. 

 

Figure 3–4 Model variants of each emotion category. In each emotion panel, 
pink bars plot the number of models in each variant, together with their 
categorization accuracy as a boxplot. The faces stacked above the frequency bars 
show the emotional expressions. The texture maps show the appearance of 
emotional expressions on an exemplary face; the color-coded heat maps illustrate 
the location of the active AUs, with the red colour for the highest magnitude of 
vertex movement. 

3.2.4.3 Analyse the Model Variants and Their Probabilities as the 
Diagnostic Information for Facial Expressions of Emotion Recognition 

Perceptual processes reflect the interplay between bottom-up extraction of 

information from sensory inputs and top-down inferential processes based on the 

mental representation that guides what information (i.e., diagnostic information) to 

extract from the input. If, within a culture, observers have adjusted their prior 

knowledge to reflect the probability of different variants in each emotion category, 

then their categorizations should integrate the probabilities as predictions about 

the likelihood of facial expression inputs. Specifically, individual observers should 
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know what the main variants of each emotion category are, and how likely they are 

as a facial expression of this category. Under this hypothesis, I can now construct 

a categorization model of six emotions that uses the probabilities of occurrence of 

emotion variants.  

I built a Bayesian classifier on the 39 AFC task (one per variant category), 

using the probabilities of variants within each emotion as priors and setting the 

probability of occurrence of each emotion according to participants‘ response 

distribution across six emotions during reverse correlation (see Table S3-2 in 3.4.2 

Supplemental Tables). In a leave-one-out method, at each of 10000 iterations, I 

trained a Bayesian classifier on 179 models randomly selected from the 180 

models (i.e., training models) and tested its classification of the remaining model 

(i.e., testing model) to each of 39 response category. Each model is coded as a 

42-dimensional binary AUs vector that characterizes the active AU patterns, not 

their temporal dynamics. Intuitively, human will perceptually ignore some AUs 

during recognition in reality; therefore, on each iteration I simplified the testing 

model by keeping the status of core active AUs (upper lid raiser and nose wrinkle 

(Jack et al., 2014)) while randomly turning off the remaining proportionally (i.e., 

0%, 25%, 50%, 75% AUs off). On each iteration, I computed classification 

performance across all six response categories by summing the posterior 

probabilities across the variants of each category. For each facial expression 

model (row in Figure 3-5B), I averaged (N = 10000 iterations) these sums and 

reported them for each of 6 response categories (column in Figure 3-5B). 

 

Figure 3–5 Categorization Performance of Human Validators and Bayesian 
Classifiers. A. Performance of Human Validators. The color-coded confusion 
matrix shows the accuracy of each model used as stimulus (rows) according to the 
six emotion categories (columns, categorization responses). B. Performance of 
Bayesian Classifier tested on the models with active AUs turning off proportionally, 
shown in the same format as A. Black-red-white color scale denotes the response 
proportion (black = 0%, white = 100%). 
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The color-coded confusion matrices in Figure 3-5 report the performance of 

human validators (A) and Bayesian classifier (B). As shown, the Bayesian 

classifier could closely replicate validators‘ confusion pattern for six emotions in 

certain case: 1) cross confusion between surprise and fear, and between disgust 

and anger; 2) spread confusion-prone of fear and sad; 3) and the least confusion 

of happy models.  

To quantify how well the Bayesian classifier could mimic human‘s 

perception, I calculated the Euclidean distance between their confusion matrices, 

separately for each emotion and each case (i.e., 0%, 25%, 50% AUs off), with the 

smaller distance indicating higher similarity. Red lines in Figure 3-6 plot the 

classifier-human similarities when I turn off AUs under different proportion 

condition. To establish the statistical significance for each case, I bootstrapped a 

null distribution of similarities as follows. On each permutation (N = 200), I 

repeated above Bayesian classifier training by randomly shuffling the variant label 

of training models; then I calculated the classifier performance on six categories at 

chance-level and obtained the confusion matrix; lastly, I used the chance-level 

confusion matrix to computed the classifier vs. human performance similarity. 

Across 200 permutations, I obtained a distribution of chance-level similarity. I used 

the percentile 0.21 of the chance distribution as the statistical threshold 

(Bonferroni corrected, p < 0.05, 1-tailed). Black dash lines in figure 3-6 show the 

statistical threshold. 
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Figure 3–6 Performance Similarity between Human Vlidators and Bayesian 
Classifier. In each emotion panel, the red line plots the similarity (i.e., calculated 
by the Euclidean distance) between the confusion matrices of human observer 
and Bayesian classifier in each case of proportional AUs off.  

Figure 3-6 shows that the Euclidean distances between the performance of 

human and the Bayesian classifier are closer than chance in most case, except 

the anger models tested by keeping all active AUs. These results demonstrate that 

the main signal variants and their probability I have derived work well to depict the 

expectation of individuals in Western population. Also, the Bayesian classifier 

mimics human performance best when it is tested on models with some active 

AUs turned off (i.e., 50% off for Happy, Fear, Disgust, Anger, and 25% off for 

Surprise), indicating that human does not take all active AUs into account during 

their recognition but bias towards fewer AUs. 

3.3 Discussion 

In this study, I tested 720 dynamic models of facial expression of six 

emotions on a group of WC participants and demonstrated the validity of a subset 

models. Clustering analysis on the validated models revealed main signal variants 

for each emotion, and showed some variants are more likely to be produced than 

others. The Bayesian classifier was then trained using these variants and their 

probabilities, which showed a level of categorization performance mimics human 

observers closely. Together, my results demonstrate that 1) these reverse 
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correlated dynamic models are sufficiently precise to characterize the diagnostic 

facial movements for facial emotions recognition in the Western population; 2) they 

can be structured as some main signal variants for each emotion category; 3) the 

probabilities of these variants should have been learned by Western people and 

construct their mental representation of facial expressions of emotion.  

It should be noted that, though the reverse-correlated models have high 

resolution on their temporal dynamics (i.e., modelled by 6 temporal parameters), 

my analysis tapped in only their spatial pattern (i.e., AUs binary on-off pattern). 

Future work need to clarify the psychological status of AUs‘ dynamics. At this 

stage, it would like to step away from current results and emphasize the potentials 

of using GFG platform to study the temporal dynamics of facial movement. 

Facial expressions are by nature dynamic, thus understanding the mental 

representation of facial expressions requires the incorporation of their dynamic 

properties. With GFG platform, we can rigorously control such temporal dynamics 

at very high temporal/spatial resolution by precisely specifying the active AUs and 

their six temporal parameters. Such manipulation goes beyond the current state of 

the art, which creates dynamic face by either proportionally amplifying the intensity 

of AUs at each frame using the morphing techniques (arbitrary temporal 

properties, e.g. Kamachi et al., 2001and Krumhuber & Kappas, 2005), or recording 

facial expressions generated by instructed actors (no manipulable temporal 

properties, e.g. Kanade, Cohn, & Tian, 2000; van der Schalk, Hawk, Fischer, & 

Doosje, 2011; L. J. Yin, Chen, Sun, Worm, & Reale, 2008). Together with the 

reverse correlation approach, the GFG platform provides a powerful tool to 

decipher the psychological relevance of different AUs and their dynamic 

properties. For example, by analysing reverse correlated dynamic AUs patterns, 

researchers have demonstrated that the biologically rooted facial signals (e.g., 

Upper Lid Raiser and Nose Wrinkler which modulate sensory exposure, see Rozin 

& Fallon, 1987; Rozin, Lowery, & Ebert, 1994; Susskind et al., 2008) are 

transmitted earlier to express elementary categories (e.g., approach/avoidance); 

whereas, more complex signals are transmitted later for the discrimination of six 

emotions (Jack et al., 2014). The same approach can be applied to a broad 

spectrum of facial expression, ranging from very fundamental signals (i.e., physical 

pain and pleasure) to very socially-interactive signals (i.e., mental states), to fully 

understand the functional role of the facial signal dynamics. 
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3.4 Supplemental Materials 

3.4.1 Screening Questionnaire  

I selected participants who answered ‗NO‘ to ALL questions. 

Have you ever: 

i) lived in a non-Western* country before (e.g., on a gap year, summer 

work, move due to parental employment)? 

ii) visited a non-Western country (e.g., vacation)? 

iii) dated or had very close friendship with a non-Western person? 

iiii) been involved with any non-Western cultural societies/groups? 

*by Western country/person/group, we are referring to Europe (East and 

West), North American, Australia, and New Zealand. 
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3.4.2 Supplemental Tables 

Table S 3-1 Confusion matrix of models with categorization accuracy ranking over 
75%. Each cell shows the averaged response proportion (%) of models in each 
emotion category (row) to six emotion labels (column). SE is in Italic. 

    Happy Surprise Fear Disgust Anger Sad 

 

Happy 94.87 0.51 0.51 0.86 1.56 1.69 

  
-0.2 -0.12 -0.13 -0.14 -0.17 -0.25 

 

Surprise 1.07 87.54 8.76 0.55 0.87 1.21 

  
-0.22 -0.4 -0.6 -0.19 -0.22 -0.34 

% Fear 0.75 15.13 59.45 13.71 1.41 9.56 

  
-0.19 -2.05 -0.82 -1.37 -0.26 -1.64 

 

Disgust 0.36 0.92 1.68 81.45 13.27 2.32 

  
-0.11 -0.16 -0.27 -0.57 -0.53 -0.36 

 

Anger 1.23 5.49 3.99 29.38 59.25 0.66 

  
-0.4 -0.75 -0.53 -1.77 -1.16 -0.18 

 

Sad 0.55 2.78 6.01 8.9 3 78.76 

    -0.16 -0.42 -0.69 -0.74 -0.42 -0.85 

 

 

 

 

Table S 3-2 Number of responses in each of 6 emotion categories. 

  Happy Surprise Fear Disgust Anger Sad 

Mean 355.45 338.63 244.78 451.7 358.93 279.42 

SD 150.72 112.41 114.61 152.46 158.06 131.28 

SD = standard deviation. 
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3.4.3 Supplemental Figures 

 

Figure S 3-1 Categorization Performance of the Best Dynamic Models. Five 
models with the best performance in each emotion category are selected (N = 30 
in total). Their performances are illustrated in the same format as Figure 3-1.  
 

 

 

 

Figure S 3-2 Number of Clusters. In each emotion category, the blue line plots 
the sum of squared distance between each member of the cluster and its centroid 
(Y-axis), calculated across a range of cluster numbers (X-axis, i.e., k=1-20, 
inclusively). The white dash line shows an optimal number of k, where adding 
more clusters cannot explain considerable variance more. 
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4 Study 3: Dynamic Construction of Diagnostic 
Information in the Brain for Perceptual Decision 
Behavior 

4.1 Introduction 

Over the past decade, extensive studies of the brain regions that support 

face, object and scene recognition suggest that these regions have a hierarchically 

organized architecture that spans the occipital and temporal lobes (Cichy, Khosla, 

Pantazis, Torralba, & Oliva, 2016; K. Friston, 2008; Grill-Spector & Weiner, 2014; 

Guclu & van Gerven, 2015; Kravitz et al., 2013; Riesenhuber & Poggio, 1999; 

Schwiedrzik & Freiwald, 2017; Sigala & Logothetis, 2002; Van Essen et al., 1992), 

where visual categorizations unfold over the first 250 milliseconds of processing 

(Cichy, Pantazis, & Oliva, 2014; Ince et al., 2016; Liu, Harris, & Kanwisher, 2002; 

Schyns, Petro, & Smith, 2007; VanRullen & Thorpe, 2001). This same architecture 

is flexibly involved in multiple tasks that require task-specific diagnostic 

representations—e.g., categorize the same face as ―happy,‖ ―Mary,‖ the same 

object as ―a car‖ or ―a Porsche,‖ and the same scene as ―city‖ or ―New York.‖ 

While we partly understand where and when these categorizations happen in the 

occipito-ventral pathway, the next challenge is to unravel how. That is, how does 

high-dimensional input collapse in the occipito-ventral pathway to become low 

dimensional representations (i.e., the diagnostic information) that guide behavior?  

To address this, in this study, I investigated what information the brain processes 

in a scene categorization task and visualized the dynamic representation of this 

information in brain activity. 

To do so, I used the Contentful Brain and Behavior Imaging (CBBI), an 

information theoretic framework, to tease apart stimulus information that supports 

behavior (i.e., diagnostic) from that which does not (i.e., nondignostic). I then 

tracked the dynamic representations of both in magneto-encephalographic (MEG) 

activity. Using CBBI, I demonstrated that a rapid (~170 ms) reduction of 

behaviorally irrelevant information occurs in the occipital cortex and that 

representations of the information that supports distinct behaviors are progressed 

ventrally and constructed in the right fusiform gyrus (rFG). 
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4.2 Experiment 

4.2.1 Participants 

Five participants with normal (or corrected to normal) vision participated in 

the experiment. We obtained informed consent from all participants and ethical 

approval from the University of Glasgow Faculty of Information and Mathematical 

Sciences Ethics Committee. 

4.2.2 Stimuli 

I cropped a copy of Dali‘s Slave Market with the Disappearing Bust of 

Voltaire (see Figure 4-1 A-a, Stimulus) because it contains a complex, ambiguous 

scene that observers perceive as either ―the nuns‖ or ―Voltaire.‖ The cropped 

image size was 256 x 256 pixels, presented at 5.72° × 5.72° of visual angle on a 

projector screen. I used the Bubbles technique (Gosselin & Schyns, 2001) to 

break down the stimulus information into random samples for each experimental 

trial (see Figure 4-1 A-a, Stimulus Sampling). I now explain the sampling 

procedure in details. 

I first decomposed the image into six independent Spatial Frequency (SF) 

bands of one octave each, with cut-offs at 128 (22.4), 64 (11.2), 32(5.6), 16 (2.8), 

8 (1.4), 4 (0.7) cycles per image (c/deg of visual angle), respectively.  For each of 

the first five SF bands, a bubble mask was generated from a number of randomly 

located Gaussian apertures (the bubbles), with standard deviations of 0.13, 0.27, 

0.54, 1.08, and 2.15 deg of visual angle, respectively. I sampled the image content 

of each SF band by multiplying the bubble masks and underlying greyscale pixels 

at that SF band, summed the resulting pixel values across SF bands, and added 

the constant 6th SF band to generate the actual stimulus image. The total number 

of 60 Gaussian apertures on each trial remained constant throughout the task, 

ensuring that equivalent amounts of visual information were presented for each 

trial, at a level found previously to maintain ―don‘t know‖ responses at 25% of the 

total response number (Schyns, Jentzsch, Johnson, Schweinberger, & Gosselin, 

2003). Since the 6th underlying SF image was constant across trials, I performed 

all analyses on the 5 bubble masks controlling visibility, but reported only the first 

three because they represented most of the information required for perceptual 

decisions. For analysis, I down-sampled (bilinear interpolation) the bubble masks 

to a resolution of 64 × 64 pixels to speed up computation. 
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4.2.3 Procedure 

Each trial started with a fixation cross displayed for 500 ms at the centre of 

the screen, immediately followed by a stimulus generated as explained above that 

remained until response. We instructed observers to maintain fixation during each 

trial, and to respond by pressing one of three keys ascribed to each response 

choice—i.e. ―the nuns‖, ―Voltaire‖, or ―don‘t know‖ (see Figure 4-1 A-b, Perceptual 

Decision). Stimuli were presented in runs of 150 trials, with randomized inter-trial 

intervals of 1.5–3.5s (mean 2s). Observers performed 4–5 runs in a single day 

session with short breaks between runs. Observers completed the experiment 

over 4–5 days. 

4.2.4 MEG Data Acquisition 

I measured the observers‘ MEG activity with a 248-magnetometer whole-

head system (MAGNES 3600 WH, 4-D Neuroimaging) at a 508 Hz sampling rate. I 

performed analysis with the FieldTrip toolbox (Oostenveld, Fries, Maris, & 

Schoffelen, 2011) and in-house MATLAB code, according to recommended 

guidelines (Gross et al., 2013). For each participant, I discarded runs based on 

outlying gradiometer positions in head-space coordinates. That is, I computed the 

Mahalanobis distance of each sensor position on each run from the distribution of 

positions of that sensor across all other runs. Runs with high average Malahanobis 

distance were considered outliers and removed. The distances were then 

computed again and the selection procedure was repeated until there were no 

outlier runs (Mahalonobis distances > 20). I high-passed filtered data at 1 Hz (4th 

order two-pass Butterworth IIR filter), filtered for line noise (notch filter in frequency 

space) and de-noised via a PCA projection of the reference channels. I identified 

noisy channels, jumps and other signal artefacts using a combination of 

automated techniques and visual inspection. I then epoched the resulting data set 

(mean trials per observer 3396, range 2885–4154, see Table S4-1) into trial 

windows (−0.8s to 0.8s around stimulus onset) and decomposed using ICA, 

separately for each observer. I identified and projected out of the data the ICA 

sources corresponding to artefacts (eye movements, heartbeat; 3 to 4 components 

per observer). 

I then low-pass filtered the data to 40Hz (3rd order Butterworth IIR filter), 

specified our interest time period 0-400ms post stimulus, and performed the 

Linearly Constrained Minimum Variance Beamforming analysis (VanVeen, 
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vanDrongelen, Yuchtman, & Suzuki, 1997) to obtain the source representation of 

the MEG data on a 6mm uniform grid warped to standardized MNI coordinate 

space (12,773 sources, henceforth I call them MEG voxels). I low-pass filtered the 

resulting single trial voxel time courses with a cut-off of 25Hz (3rd order Butterworth 

IIR filter, two-pass). In the following analysis, based on the obtained single trial 

voxel activity time courses (12,773 MEG voxels, every 2ms between 0 - 400ms 

post stimulus), I analyzed the dynamic representation of features in the brain for 

perceptual decisions. 

The following sections detail each step of the information processing 

pipeline. Figure S4-14 provides a schematic graphic overview of the pipeline. 

4.2.5 Analysis & Results 

4.2.5.1 Contentful Brain and Behavior Imaging (CBBI) 

Our colleague developed the CBBI based on the statistical framework of 

information theory for neural imaging data analysis. This framework can measure 

the co-representations between three essential components, i.e. stimulus 

information, brain activity, behavioral response, and therefore enables us to 

understand the information processing from brain activity. In this section, I will 

briefly introduce this information theoretical framework, which estimate is mainly 

based on the Mutual Information (MI) and Redundancy (Red). 

MI measures the statistical dependence between two variables (Cover & 

Thomas, 1991; Shannon, 1948), by calculating entropy differences. As entropy 

quantifies the uncertainty of variables, MI actually measures the reduced 

uncertainty (or increased certainty) about variable X based on the knowledge of 

variable Y, which is in other words the common variations between two variables. 

We can define the MI in three mathematically equivalent ways: 

MI <R; F> = H (F) – H (F|R)                 (1) 

                 = H (R) – H (R|F)                 (2) 

                 = H (R) + H (F) – H (R, F)     (3) 

To illustrate in a psychology context, MI <R; F> is the MI between the 

response distribution R and the stimulus feature distribution F. In the formula, H(F)  

denotes the entropy of feature distribution F, and H(R) is the entropy of response 
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distribution R. H(F|R) represents the conditional entropy, i.e. the entropy of feature 

distribution F on the presence of response value r of R. H(R,F) is the entropy of 

the joint distribution of F and R. 

In (1), MI quantifies the average reduction in uncertainty about which 

feature was presented when we observed a response of R. Symmetrically, MI 

defined in (2) quantifies the average reduction in uncertainty about the response 

when we know which stimulus feature is represented. In (3), MI quantifies the 

difference between the entropy of a model in which features representations and 

responses are hypothesized as statistically independent and the entropy of their 

true joint distribution. This should be ―the most useful interpretation of MI from 

neuroimaging perspective: a statistical test for independence.‖ (Ince et al., 2017) 

MI has several useful properties. First, its calculation requires no 

assumptions on the distribution of variables, and therefore can quantify non-

parametrically the relationship between variables (i.e. linear vs. nonlinear). 

Second, MI is additive for independent variables: MI <R1, R2; F> = MI <R1; F> + 

MI<R2; F>, which is derived from the logarithm of entropy calculation (see detailed 

explanation in (Ince et al., 2017)). The addictive property is crucial because it 

enables the quantification of triple interaction effects, termed the redundancy 

(Panzeri, Magri, & Logothetis, 2008; Schneidman, Bialek, & Berry, 2003; Timme, 

Alford, Flecker, & Beggs, 2014), by calculating the MI which is shared between 

MI<R1; F> and MI <R2; F>: 

Red <R1, R2, F> = MI <R1; F> + MI <R2; F> – MI <R1, R2; F> (4) 

In (4), Red quantifies the difference between the MI of a model in which two 

responses of feature representations are hypothesized as statistically independent 

and the MI of considering both Reponses together. This measures the statistic 

independence of three variables, or alternatively the independence of two co-

represented information. 

In my thesis, I use ―< ; >‖ to denote the relationship between variables 

measured by the information theoretic statistics introduced above - MI and Red. 

4.2.5.2 Diagnostic Features of Behavior 

To compute the diagnostic features of perceptual decisions, I quantified the 

statistical dependence between the pair <Information Samples; Perceptual 
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Decision> using Mutual Information (MI, Ince et al., 2017). I used MI because it 

non-parametrically quantifies the common variations between information and 

decisions to reveal the features that support the decision. I schematized the 

relationship between the two variables of information sample and decision as a 

Venn diagram in figure 4-1A, where they intersect was designated the ―diagnostic 

features‖ that support each observer‘s decisions (Schyns, 1998; Tversky, 1977). 

Using MI, I computed diagnostic features separately for the behavioral contrasts 

<Information Samples; ―the nuns,‖ vs. ―don‘t know‖>, excluding ―Voltaire‖ trials, 

and <Information Samples; ―Voltaire,‖ vs. ―don‘t know‖>, excluding ―nuns‖ trials. I 

now explain the calculations in details. I precede the MI calculations in 3 steps: 

Step 1: Binarize the Pixel Visibility. On each trial, 5 real-valued Gaussian 

bubble masks multiply the visual information represented in 5 SF bands (see 

Figure 4-1 A-a, Stimulus Sampling, for an illustration). Thus, on a given trial, a real 

value represents the visibility of that pixel under a Gaussian bubble, with 1 

indicating full visibility and 0 indicating no visibility. For each pixel of the bubble 

mask, I converted its random distribution of real values across trials into 2 bins—

values below 0.2 were ascribed to the ―no to low visibility‖ bin and values above 

0.2 to the ―low to full visibility‖ bin.  

Step 2: MI <Pixel Visibility; Perceptual Decision>. I used MI to quantify the 

statistical dependence between the binarized pixel visibility values and the 

corresponding observer responses, grouping ―the nuns‖ vs. ―don‘t know‖ 

responses together in one computation (i.e. <Pixel Visibility; ―the nuns,‖ ―don‘t 

know‖>) and the ―Voltaire‖ vs. ―don‘t know‖ responses in the other (i.e. <Pixel 

Visibility; ―Voltaire,‖ ―don‘t know‖>).  

Step 3: Diagnostic Pixels for Each Perception. Computations in step 2 

resulted in two MI perceptual decision pixel images per participant (see Figure S4-

1A in 4.4.3 Supplemental Figures for the thresholded classification images for 

each participant). I used the method of maximum statistics (Nichols & Holmes, 

2002) to determine the statistical significance of MI pixels and correct for multiple 

comparisons. Specifically, for each of 10,000 permutations, I randomly shuffled the 

participant‘s choice responses across trials, repeated the computation of MI for 

each pixel as explained and extracted the maximum MI across all pixels over the 5 

SF bands. I used the 99th percentile of the distribution of maxes across 10,000 
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permutations to determine the above-chance significance of each MI pixel (FWER 

p < 0.01, one-tailed). 

Across observers, I reported the diagnostic pixels with significant MI in the 

first 3 SF bands that illustrate the consistency of the main diagnostic features 

underlying perceptual decision behaviors (see Figure 4-1A-c, Diagnostic Features 

of Behavior). As shown in Figure 4-1A-c, all participants used the left and right 

nun‘s faces at higher spatial frequencies (HSF) to respond ―the nuns‖, whereas 

they used the global face of Voltaire at lower spatial frequencies (LSF) to respond 

―Voltaire‖ (see Figure S4-1A in 4.4.3 Supplemental Figures for each participant‘s 

features). Since diagnostic features influence behavior, the participant‘s brain must 

represent at a minimum these features between stimulus onset and observer 

decision. Next, I will show that the brain does indeed represent all diagnostic 

features over time, as well as other features. 

4.2.5.3 Representation of Features in the Brain 

To show where and when each participant‘s MEG activity represents 

stimulus features, I used MI to evaluate the single-trial relationship <Information 

Samples; MEG Voxel Activity>. Here, I used the Gaussian-Copula Mutual 

Information estimator (Ince et al., 2017) for continuous values. 

In each participant, I measured single-trial MEG activity with the bivariate of 

amplitude and instantaneous MEG gradient on 12,773 voxels, every 2 ms between 

0 and 400 ms post-stimulus. A high-dimensional 12,773 x 200 voxel-by-time matrix 

therefore structures the MEG data. For each participant, I aimed to quantify the 

features of the stimulus that each cell of this matrix represents, if any. I proceeded 

in three steps. 

Step 1: Computation of the Relationship <Information Samples; MEG 

Activity>. I aim to identify, in each participant, the features represented in each cell 

of the full voxel-by-time matrix of MEG activity.  However, it is computationally 

impractical to directly compute the features from the single-trial relationship 

<Information Samples; MEG Voxel Activity>, due to the enormous dimensionality 

of the space—64 x 64 x 5 SF bands pixels x 12,773 voxels × 200 time points.  

Instead, I used the method reported in (Ince et al., 2015), which computes the 

relationship over the more computationally tractable matrix of 60 Independent 
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Component Analysis (ICA) sources representing MEG activity over 75 time points 

that span 0 to 600 ms post stimulus every 8 ms. 

Step 2: Computation of Brain Features. For each participant, the reduced 

matrix computed above (i.e., 60 ICA sources x 75 time points) comprised MI 

images in each cell, for a total of 4,500 MEG-pixel information images across 5 SF 

bands. I vectorized each (64 x 64 x 5 = 200,480) MEG MI image as a 20,480-

dimensional vector. I applied Non-negative Matrix Factorization (NMF, D. D. Lee & 

Seung, 1999) to the set of 4,500 vectorized MEG MI images to characterize the 

main NMF features of the stimulus that modulate MEG source activity, resulting in 

21–25 components per observer. I thresholded these NMF features by setting to 

zero the pixels with low MI values (< 15% of the maximum pixel value across SFs).  

I then normalized the NMF features (L2-norm). Henceforth, we call ―brain features‖ 

the normalized NMF features of each participant that modulate the MEG activity of 

their brain. 

Step 3:  Computation of the Relationship < Brain Feature; MEG Voxel 

Activity> in the Full Voxel-by-Time MEG Activity Matrix. I used the brain features 

computed above from the reduced matrix of ICA MEG sources to quantify their 

representation into each cell of the full voxel-by-time matrix. To this aim, first I 

computed the visibility of each brain feature into the information samples (i.e., 

bubble mask) presented as stimulus on each trial. That is, I spatially filtered (i.e., 

dot product) the bubble mask for that trial with the brain feature computed above, 

thereby producing a scalar value indicating the visibility of this feature on this trial. 

I call these real values ―brain feature coefficients.‖ Next, for each brain feature, 

and for each cell of the full voxel-by-time MEG activity matrix, with MI I quantified 

the relationship <Brain Feature Coefficient; MEG Voxel Activity>. This produced 

for each participant, a 3D feature-by-voxel-by-time MI matrix. I determined the 

statistical significance for each cell using a permutation approach and the method 

of maximum statistic to address multiple comparisons (Nichols & Holmes, 2002).  

Specifically, for each of 200 permutations, I randomly shuffled the brain feature 

coefficients values across trials and recalculated the MI of the single trial 

relationship <Randomized Brain Feature Coefficients; MEG Voxel Activity>. I then 

computed the maximum of the resulting 3D MI matrix for each permutation and 

used the 95th percentile of this maximum value across permutations as the 

statistical threshold (i.e., FWER p < 0.05, one-tailed). In the remaining analyses, I 
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used the thresholded 3D feature-by-voxel-by-time MI matrix of each participant 

which I called ―Representation Matrix.‖ The 3D Representation Matrices for 

each participant are unique to my analysis: they reveal the stimulus features that 

the brain dynamically represents, separating out the features that are relevant for 

the perceptual task. 

Figure 4-1B shows the common brain features represented cross 

observers. Comparing Figure 4-1B with Figure 4-1A reveals that some brain 

features correspond to the same visual information as the features that are 

diagnostic of behavior (i.e., the red and blue nun‘s faces at HSFs and the green 

face of Voltaire at LSFs), whereas others do not (e.g. the brown features flanking 

Voltaire‘s face). 

4.2.5.4 Diagnostic and Nondiagnostic Brain Features. 

Now I divided the brain‘s features into diagnostic or nondiagnostic for the 

task. The Venn diagram of Figure 4-1B illustrates such division: the addition of 

brain measures produces a white area of intersection that represents the 

diagnostic features that influence both behavioral and brain measures; the 

magenta intersection designates the nondiagnostic features that influence brain 

measures but not behavior. 

For each participant, I determined the diagnostic vs. nondiagnostic status of 

their brain features as follows. Using only the trials associated with ―the nuns‖ vs. 

―don‘t know‖ behavioral responses, I computed the single-trial MI relationship 

<Brain Feature Coefficient; ―the nuns,‖ ―don‘t know‖> to derive the brain features 

diagnostic for ―the nuns‖ perception. Likewise, I computed independently the 

single-trial MI relationship <Brain Feature Coefficient; ―Voltaire,‖ ―don‘t know‖> to 

derive the brain features diagnostic for ―Voltiare‖ perception, using only the trails 

including ―Votaire‖ and ―don‘t know‖ reponse. In both cases, a strong relationship 

(i.e., MI above 75th percentile of the distribution of MI across all brain features) 

would classify this brain feature as diagnostic—i.e., of ―the nuns‖ or of ―Voltaire.‖  

Finally, to decide the brain features that are irrelevant to behavior, I use all trials 

and computed the single-trial MI relationship <Brain Feature Coefficient; ―the 

nuns,‖ ―Voltaire,‖ ―don‘t know‖>. A weak relationship (MI below 25th percentile of 

the MI distribution) would classify this brain feature as nondiagnostic of perceptual 

decisions (see Figure S4-1B in 4.4.3 Supplemental Figures for the perception-

specific brain features and nondiagnostic features of each participant). 
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Figure 4-1C illustrates the expected topological representation of brain 

features during the first 20 ms of representation (see Figure S4-2 in 4.4.3 

Supplemental Figures for each participant‘s topological representation). Color 

codes reveal that the participants‘ brains contral-laterally represented the 

diagnostic eyes of Voltaire (see the red and blue voxels) and the brown 

nondiagnostic features flanking the centre of the stimulus, in relation to the 

bilaterally represented LSF Voltaire face (see green voxels). 

 

Figure 4–1 Diagnostic and Brain Features. A. Diagnostic Features.  (a) The 
original stimulus (left), which was decomposed into 6 spatial frequency (SF) bands 
(middle, band 6 is not shown) of one octave each for each trial, starting at 128 
cycles per image. Samples were added across bands to generate one 
experimental stimulus (dark blue frame, right). (b) Perceptual decisions recorded 
by observers, as: ―the nuns,‖ ―Voltaire,‖ or ―don‘t know‖. The cyan intersection in 
the Venn diagram illustrates the relationship between information samples (blue) 
and perceptual decisions (green): the diagnostic features of behavior. (c) 
Diagnostic feature of behavior. The cyan-framed images show significant pixels 
(Family-wise error rate (FWER), p < 0.01, one-tailed) in the first three SF bands 
that reveal features diagnostic for observers responding ―the nuns‖ (the two small 
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faces in SF band 1) and ―Voltaire‖ (the broad face in SF band 3). Color saturation 
indicates N, number of observers.  B. Brain Features. White frames highlight ―the 
nuns‖ and ―Voltaire‖ diagnostic and color-coded brain features represented by a 
majority of observers (i.e. N>3). The magenta frames highlight color-coded non-
diagnostic brain features represented by a majority of observers (i.e. N>=3). The 
magenta intersection in the Venn diagram represents the relationship between 
information samples (blue) and MEG voxel activity (red) whereas the white 
intersection represents the relationship between all three variables, including 
behavior. (C) Early Representation of Brain Features. Common, color-coded brain 
regions, show the early (during the initial 20 ms of representation) topological 
representation of each correspondingly colored brain feature (FWER, p < 0.05, 
one-tailed). Each observer contributed at least one significant voxel for each color-
coded feature. 

4.2.5.5 Divergence of Nondiagnostic and Diagnostic Brain Features in 
the Occipito-Ventral Pathway  

To examine the representation divergence of diagnostic vs. nondiagsotic 

brain features for each observer, I used their un-thresholded full 3D 

Representation Matrix. For each of the 5,869 cortical voxels, I extracted the max 

MI across all diagnostic (vs. nondiagnostic) features and all time points in 10 ms 

time windows between 0 and 400 ms post stimulus. This resulted in one 2D matrix 

(un-thresholded MI of 5869 voxels in 40 time windows) of diagnostic feature 

representation and another of nondiagnostric feature representation. Using this 2D 

matrix, in each time window, I computed the similarity between diagnostic and 

nondiagnostic representations with the de-meaned dot-product between the two 

5,869 dimensional vectors.  To establish statistical significance, I bootstrapped a 

null distribution as follows. On each iteration (N = 1000), I randomly shuffled the 

values across the dimensions of the two 5,869 dimensional vectors and calculated 

their de-meaned dot product. I used the percentile 0.625 and 99.9375 of the 

chance distribution as the upper and lower boundaries for the chance-level 

similarity (Bonferroni corrected, p < 0.05, 2-tailed). I performed the same analysis 

at the group level, by pooling all participants‘ data together to form a larger 2D 

matrix (29345 voxels by 40 time windows). I found that diagnostic and 

nondiagnostic brain features diverge around 170 ms post-stimulus (see Figure S4-

3 in 4.4.3 Supplemental Figures).  

On this basis, I defined an earlier ([50-170 ms] post stimulus) and a later 

time window ([170-400 ms] post stimulus), that flank the N/M170; the Event 

Related Potential ~170 ms post-stimulus commonly associated with visual 

categorizations (Bentin, Allison, Puce, Perez, & McCarthy, 1996; Cichy et al., 

2014). I summarized the representation of brain features in each window as such: 
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a voxel would represent diagnostic (vs. nondiagnostic) brain features if it has 

significant MI (FWER p < 0.05, one-tailed) for at least one diagnostic (vs. 

nondiagnostic) brain feature in this time window. For each voxel, then I counted 

the number of participants satisfying these criteria and reported the distributions 

for diagnostic (white schematic brains in Figure 4-2) and nondiagnostic (magenta 

schematic brains in Figure 4-2) brain features in each time window. I reported only 

the 5,869 cortical voxels in the figures. 

The color-coded brains in Figure 4-2 summarize the evolving 

representations of the diagnostic and nondiagnostic features across two post-

stimulus time windows. A comparison of the nondiagnostic and diagnostic brain 

features across the earlier and later time windows reveals a consistent pattern.  

Over the first 170 ms of processing, representation of diagnostic and 

nondiagnostic brain features similarly involve occipital cortex (Bonferroni corrected 

p < 0.05, two-tailed). They diverge afterward and only representations of 

diagnostic brain features are sustained in all occipito-ventral regions.  

 

Figure 4–2 Nondiagnostic Feature Reduction and Diagnostic Feature 
Progression.  Magenta color-coded brains show voxels that represent at least 
one significant (FWER p < 0.05, one-tailed) nondiagnostic brain feature 
(represented with a magenta color in the Venn diagram) in earlier [50-170 ms] and 
later [170-400 ms] time windows, post stimulus. White color-coded brains show 
voxels that represent at least one significant (FWER p < 0.05, one-tailed) 
diagnostic brain feature (represented with a white color in the Venn diagram) in 
earlier [50-170 ms] and later [170-400 ms] time windows, post stimulus. Voxel 
brightness denotes the number (N) of participants for whom these criteria held 
true.  For all observers, nondiagnostic features were consistently reduced over 
time in the occipital cortex while diagnostic features were sustained and 
progressed into the ventral pathway. L, left; R, right. 
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These data suggest that a spatio-temporal junction exists between the 

occipital and occipito-ventral cortex around 170 ms, after which only behaviorally 

relevant features flow into the temporal cortex, with the processing of irrelevant 

features ending in the occipital cortex.  In the next two sections, I detail what 

happens before and after this junction. 

4.2.5.6 Dynamic Reduction of Nondiagnostic Brain Features in the 
Occipito-Ventral Pathway 

I now investigate the temporal and spatial properties of diagnostic and 

nondiagnostic features representation in the occipital cortex towards the occipito-

ventral junction, where they diverge ~170 ms post stimulus. To do this, I used 

each observer‘s 3D representation matrix and computed the maximum 

representation strength (i.e., MI effect size) across nondiagnostic (vs. diagnostic) 

brain features, separately for each voxel and time point. Specifically, for each 

observer I proceeded in two steps: 

Step 1: Dynamics of brain feature representation between 0 and 400ms 

post stimulus. For each participant, I used their representation matrix and selected 

the voxels with significant MI for at least one nondiagnostic brain feature in the 0 to 

400ms time window (henceforth, ―nondiagnostic voxels‖). For each nondiagnostic 

voxel, at each time point, I extracted the maximum MI over all nondiagnostic brain 

features to plot the maximum representation curve of this voxel. Figure 4-3A 

shows the representation curves of all nondiagnostic voxels. The curve of each 

voxel had an onset (the first time point at which maximum MI was significant) and 

an offset (the last time point of significance) that I computed; representation 

duration on a voxel was therefore computed as offset - onset. To capture the 

spatial properties of nondiagnostic voxels, I further computed the Euclidean 

distance (in the common MNI space) of each voxel in relation to the voxel with the 

earliest onset. I repeated above computations separately for diagnostic brain 

features. 

For nondiagnostic voxels (vs. diagnostic voxels), I fitted a robust linear 

regression line between their onset times and Euclidean distances from the voxel 

of initial onset. I computed another robust linear regression between their 

representation duration and Euclidean distances (see panel A and B in Figure S4-

4 to S4-8 for individual results in 4.4.3 Supplemental Figures). Table S4-2 and S4-

3 detail the statistics of the robust linear regressions (see 4.4.2 Supplemental 
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Tables). I excluded outlier voxels for these analyses—i.e., voxels with > 3 standard 

deviations from the median onset of all voxels, computed separately using 

nondiagnostic and diagnostic voxel onset distributions, see Table S4-4 for the 

percentage of voxels exclusion in 4.4.2 Supplemental Tables. 

Step 2: Spatial-temporal junction of divergence between nondiagnostic and 

diagnostic feature representations. I selected the voxels representing 

nondiagnostic features that were furthest in the brain--i.e., with Euclidean 

distances > 75th percentile of distances of all nondiagnostic voxels. These voxels 

represented the spatial marker of the junction. I defined the latest representation 

offsets of these voxels as the temporal marker of the junction (see Figure 4-3A the 

vertical dash line on the representation curves). To identify the brain regions 

(based on the ―Talairach Demon Atlas‖ warped into MNI space) involved in the 

junction, I grouped nondiagnostic voxels of each observer according to their 

location in the cuneus (CU), lingual gyrus (LG), inferior occipital cortex (IOG), 

middle occipital gyrus (MOG), superior occipital gyrus (SOG), fusiform gyrus 

voxels locates quite close to LG (LG/FG, see Figure S4-16 for location), fusiform 

gyrus (FG), inferior temporal gyrus (ITG), middle temporal gyrus (MTG), superior 

temporal gyrus (STG), inferior parietal lobe (IPL), and superior parietal lobe (SPL). 

In each anatomical region, I then checked the Euclidean distance (see step 1) of 

all nondiagnostic and diagnostic voxels (see panel C of Figure S4-4 to S4-8 for 

individual results in 4.4.3 Supplemental Figures). 

Figure 4-3A shows the representation time courses and brain scatters, 

which illustrates the dynamic reduction of nondiagnostic feature representations in 

each participant. Specifically, nondiagnostic feature representations initially travel 

as a wavefront that then reduces in duration as it progresses through the occipital 

cortex (c.f. the linear regression between Euclidean distance and duration in 

Figure S4-4A to S4-8A and Table S4-2 in 4.4 Supplemental Materials). Thus, the 

wavefront of nondiagnostic feature representations rapidly collapses (around 170 

ms) as it travels into the occipital cortex. In contrast, identical computations 

applied to diagnostic features (see Figure 4-3B) demonstrate that the diagnostic 

wavefront progresses past 170 ms and deeper into ventral and dorsal regions. 

Figure S4-3C summarizes the anatomical brain regions where the two wavefronts 

diverge (see Figure S4-4 to S4-8 for each observer in 4.4.3 Supplemental 

Figures). 
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Figure 4–3 Dynamic Reduction of Nondiagnostic Brain Features in the 
Occipital-Ventral Pathway. Dynamics of (A) Nondiagnostic Brain Feature 
Reduction and (B) Diagnostic Brain Feature Progression. For each observer, a 
plot shows the curves of maximum (A) nondiagnostic and (B) diagnostic brain 
feature representation (i.e. MI effect size) for each voxel between 0 and 400ms 
post stimulus, color-coded by ranked onset time (blue, early; magenta, midway; 
yellow, late). In (A), the vertical dashed lines represent the time (~170 ms) at 
which the brain stops representing nondiagnostic features.  Adjacent brain scatters 
locate the voxels associated with each curve using the same color code.  C. 
Divergence of Nondiagnostic and Diagnostic Feature Representations. In each 
panel, brain regions comprise one column per observer, where each horizontal 
line represents one voxel from the region. Lines denote two voxel properties: the 
color denotes representation onset, and the length, representation duration.  
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Adjacent white bars show median representation duration across all regions, 
organized by the Y-axis of MNI Euclidean distance of each voxel to the voxel of 
initial representation onset.  The dashed white horizontal line shows the 
nondiagnostic wavefront extends ventrally in the LG up to the junction with the TG 
and FG, and dorsally with IPL and SPL (see regions shaded a lighter grey).  The 
diagnostic wavefront extends further into the ventral (i.e. FG, ITG, MTG, and STG) 
and dorsal (i.e. IPL and SPL) (see pink to yellow colors). Abbreviations:  Cuneus 
(CU), lingual gyrus (LG), inferior occipital cortex (IOG), middle occipital gyrus 
(MOG), superior occipital gyrus (SOG), fusiform gyrus (FG), inferior temporal 
gyrus (ITG), middle temporal gyrus (MTG), superior temporal gyrus (STG), inferior 
parietal lobe (IPL), and superior parietal lobe (SPL). Observer = participant. 

4.2.5.7 Dynamic Construction of Behavior Representations in the Right 
Fusiform Gyrus:  

Above results show that only diagnostic brain features are represented past 

the occipito-ventral, 170 ms junction. A prevalent hypothesis is that visual 

information represented early and separately across the left and right occipital 

cortices (Niemeier, Goltz, Kuchinad, Tweed, & Vilis, 2005) later converges in the 

rFG to support visual cognition tasks, such as visual decisions (Ince et al., 2015). 

However, conclusive testing of this hypothesis remains challenging for two 

reasons. First, the hypothesis implies the need to characterize the evolution of 

increasingly complex (e.g., lateralized to bilateral) stimulus representations in the 

dynamic brain activity of this specific region, and not others. Second, it requires 

demonstrating that the representations specifically support task behaviors. I now 

settle these 2 points step by step: 

Step 1: Redundancy Computation. The CBBI framework introduces the 

calculation of feature redundancy (Red, Ince et al., 2017). Red quantifies the 

shared variability between: <Information Samples; MEG Activity; Perceptual 

Decision> on individual trials. It therefore directly measures modulations of feature 

representations in the brain to support each perception specifically. 

Specifically, for each observer, we computed the triple relationship between 

<Brain Feature Coefficients; MEG Voxel Activity; ―the nuns,‖ ―Voltaire,‖ ―don‘t 

know‖>: 

                                        

                               

                                                   (5) 

(5) is equivalent to the set theoretic intersection of three variable entropies, 

or alternatively the intersection of any two mutual information. I applied Equation 
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(1) for each combination of diagnostic brain feature, brain voxel, and every 2 ms 

between 0 and 400 ms post stimulus. This computation produced a 3D 

redundancy matrix (feature × voxel × time point). I established statistical 

significance for each cell by recomputing redundancy with shuffled decision 

responses across trials (repeated 200 times), and used the 95th percentile of 200 

maximum values (each taken across of the entire 3D redundancy matrix per 

permutation) as statistical threshold (i.e. FWER, p < 0.05, one-tailed). 

Step 2: Representational Complexity Computation. If information converges 

on a brain region to support task behavior, then the number of features 

represented in the region‘s voxels should increase over time - an increase in the 

complexity of the region‘s population code. For each participant, I quantified 

representational complexity for behavior by counting the number of different 

features that each brain voxel represents redundantly with behavior, independently 

in 5 evenly distributed time intervals over the between 120-220 ms post stimulus  

(see grey level scatters in Figure S4-9A to S4-13A for individual participant in 4.4.3 

Supplemental Figures). This specific time interval encompasses the M/N170 time 

course (Bentin et al., 1996; Schyns et al., 2007). To represent the complexity at 

the group level, in each time window and for each of the 12,773 brain voxels, I 

calculated the median number of different redundant features it significantly 

represented across five participants. 

As shown in Figure 4-4A, representational complexity does indeed increase 

over time and peaks between 161 – 201ms, primarily in the rFG (see also Figure 

S4-9A to S4-13A for this increase in each participant in 4.4.3 Supplemental 

Figures). 

Step 3: Representation of Behavior in the Brain. To confirm the behavioral 

relevance of such complexity, for each voxel, I also computed MI <MEG Voxel 

activity, ―the nuns,‖ ―Voltaire,‖ ―don‘t know‖ >, resulting in a 2D voxel by time 

matrix. To establish statistical significance, I extracted the maximum MI across the 

matrix recomputed, shuffling decision responses across trials in each cell 

(repeated 200 times). I used the 95th percentile of this maximum distribution as 

statistical threshold (i.e., FWER, p < 0.05, one-tailed). Figure 4-4B shows the 

behavioral representation in FG voxels at group level in each time window, using 

the median of MI values (max in each window) cross 5 participants (see also 

orange scatters in Figure S4-5.1B to S4-5.5B for individual participant in 4.4.3. 
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Supplemental Figures). As demonstrated, the perceptual decision peaks in brain 

activity in the time window during which representation complexity peaks 

(comparing Figure 4-4A and B). 

Step 4: Decision-specific Feature Representations. I further decomposed 

representational complexity into the specific features that underlie each perceptual 

behavior, in each individual observer. Specifically, I uncovered the perception-

specific redundant features of each observer by computing information theoretic 

redundancy between <Brain Feature Coefficients; MEG Voxel Activity; ―the nuns,― 

―don‘t know‖>, and between <Brain Feature Coefficients; MEG Voxel Activity; 

―Voltaire,― ―don‘t know‖>, separately. I used the permutation test described in Step 

1 to threshold redundancy values and obtain the features represented on rFG 

voxels for each perceptual decision behavior (see color-coded scatters in Figure. 

S4-9 C to S4-13 C for each participant in 4.4.3. Supplemental Figures). 

Figure 4-4C shows the perception-specific redundant features 

representation in the fourth time window, when both the feature complexity and 

behavioral representation peak (see Step 2 and 3). As shown, voxels at the top of 

the rFG represent redundant features that are linked to the response ―Voltaire‖ 

(primarily the green global face in SF3, the right orange eye in SF1, and the right 

red eye in SF2). Other redundant features are primarily linked to the response ―the 

nuns‖ (the turquoise left face in SF1, and the blue and red faces in SF2). Note also 

that the representation of ipsi-lateral information in the rFG (e.g., the orange and 

red features) implies that inter-hemispheric information transfer occurs from its 

initial contra-lateral representation in the left occipital cortex (see Figure 4-1C and 

Ince et al., 2015). 

Thus, by using feature redundancy and representational complexity, I have 

demonstrated that rFG voxels represent stimulus information with a selectivity and 

complexity that supports task-specific behaviors. 
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Figure 4–4 Dynamic Construction of Behavior Representations.  A. 
Representational Complexity. Grey level voxels in each brain schematic and in 
each time window denote the median number of redundant behavioral features 
represented across observers. Times in brackets indicate the range of each time 
interval (time started and ended). Beneath, voxels in the rFG show that 
representational complexity peaks at the top of the rFG in the fourth [183 – 201 
ms] time window (highlighted). Voxel size denotes the number (N) of observers 
who represented at least one redundant behavioral feature on this voxel and time 
window. B.  Representation of Behavior.  Yellow voxels in each time window 
denote the median MI between MEG activity and the decisions ―the Nuns,‖ 
―Voltaire,‖ ―don‘t know‖ across observers (illustrated with the yellow intersection in 
the Venn diagram). C. Feature Representation for each Decision in rFG. 
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Representational complexity was decomposed at each rFG voxel and time window 
by showing features that are redundantly represented in MEG activity and for each 
behavioral decision, in each observer (see adjacent color-coded features). 
Adjacent histograms show the number of rFG voxels representing each redundant 
feature.  The bottom histograms show the median number of voxels representing 
each redundant feature across observers, showing feature selectivity for each 
decision (e.g., the turquoise HSF left nuns face and the green LSF bust of 
Voltaire). 

4.3 Discussion 

In this case study, I investigated how high-dimensional information input 

collapses in the occipito-ventral pathway to become low dimensional 

representations that guide behavior, using a novel information theoretic framework 

called CBBI. Using this framework, I identify that high dimensional stimuli are 

reduced in the occipito-temporal pathway into low dimensional representations 

that can support subsequent perceptual decision making. To address the where, 

when and how of information processing, I tracked dynamic feature 

representations in the brain and show that behaviorally irrelevant information is 

rapidly reduced at the occipito-ventral junction around 170ms. The results also 

showed that rFG representations for behavior are constructed between 161 and 

201 ms, post stimulus. Remarkably, I replicated all these results independently in 

5 individual observers, as is now better practice, with high effect sizes, in part due 

to high trial numbers.  Specifically, using non-parametric family-wise error rate 

correction I found spatio-temporally coincident significant effects within all five 

observers. This is a substantially stronger finding than conventional cluster 

corrected group statistics, where the effects can be driven by a small subset of 

participants and are usually non-significant within any individual observer. Thus, 

CBBI enabled us to interpret the information processing of task-related brain 

activity because it computes the interactions between three variables in individual 

observers, rather than two across groups of observers, as is typical in 

neuroscience and neuroimaging – i.e. either the interaction between stimulus and 

neural response, or stimulus and behavior, or neural response and behavior, 

separately. By directly computing the interactions between all three variables (i.e. 

the three double interactions plus the full triple interaction, cf. the colored set 

intersections) CBBI addressed the recent argument (Krakauer, Ghazanfar, 

Gomez-Marin, MacIver, & Poeppel, 2017) that neuroscientific explanations need to 

include behavior to better tease apart the component processes of the brain. 
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4.3.1 Information Reduction in the Occipito-Ventral Pathway 

The information reduction process I documented evolves over time from a 

state of many to a state of fewer dimensions of stimulus representation. Such 

many-to-fewer transition does not imply that the transition involves only 

feedforward processes. Instead, the hierarchical layers of the occipito-ventral 

pathway likely communicate with each other using both feedforward and feedback 

signals to implement the data reduction over time.  Such interactive architectures 

of are similar to well-known network models that resolve ambiguity between 

hierarchically organized representations (T. S. Lee & Mumford, 2003; Mcclelland & 

Rumelhart, 1981). I subscribe to this interactive organization whereby selection of 

diagnostic features from the visual stimulus probably involves memory predictions, 

which propagate down the visual hierarchy and interact with the feedforward flow 

(Bar, 2007; K. Friston, 2008; Slotnick & Schacter, 2004; M. L. Smith, Gosselin, & 

Schyns, 2012). Although in this study I can visualize the feedforward flow of 

stimulus representation by coupling information samples with subsequent brain 

responses, the arrow of time prevents me from visualizing the representation of 

top-down predictions in brain activity (though see M. L. Smith et al., 2012 for such 

visualizations from behavior). Nevertheless, this interactive architecture could be 

further documented by visualizing successive transformations of stimulus 

representations over time. 

I traced the dynamic representation of a nun‘s face (the HSF pixels 

representing this image feature) from occipital cortex into the ventral pathway. It 

would be naïve to assume that the nun‘s face is represented as such in any of 

these regions, but we need a broad view of the information-processing, which this 

approach affords. To better understand the transformation of representations 

along the visual hierarchy, researchers would need to sample an explicit 

hierarchical generative model of visual information of face, objects and scenes 

(with invariant representations at the top of its hierarchy and with Gabor-type filters 

at the bottom, which better model stimulus feature representations in the early 

visual cortex (Kay, Naselaris, Prenger, & Gallant, 2008). Likewise, models tolerant 

to changes in size, rotation, and illumination would better reflect properties of 

higher-level ventral pathway representations. Designing such generative models 

remains a necessary but considerable challenge to understanding complex 

sensory representations (see also Olman & Kersten, 2004; Ponsot, Burred, Belin, 

& Aucouturier, 2018; Zhan, Garrod, Van Rijsbergen, & Schyns, 2017; Zhu, 2007). 
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4.3.2 Time Course of Information Processing in the Occipito-
Ventral Pathway 

The information processes at the occipito-ventral junction flank the timing 

and sources of the N/M170 event related potentials (Horovitz, Rossion, Skudlarski, 

& Gore, 2004), which reflects a network that represents and transfers features 

across the two hemispheres (Ince et al., 2016). I showed earlier that the N/M170 

first represents the contra-lateral diagnostic eye prior to the N170 peak, followed 

by the ipsi-lateral diagnostic eye, transferred after the N170 peak from the 

opposite hemisphere. The timing of this process is analogous to that documented 

here in Fig. 4. Potentially, the N170 peak might reflect the event when the 

wavefronts of behaviorally relevant and irrelevant information diverge. 

Alternatively, the pre- and post-170 ms rFG time courses could reflect two 

processing stages.  Pre-170 ms, rFG could buffer visual information arising first 

from the contra-lateral visual field, followed by the ipsi-lateral visual field 

information that is transferred from the left occipital hemisphere; post-170 ms, rFG 

could integrate this buffered information across the two visual fields, as shown 

here.  Our results should generalize to expert categories (Gauthier, Tarr, 

Anderson, Skudlarski, & Gore, 1999) and to the overlapped rFG representations of 

faces, objects and scenes (Grill-Spector, 2003).  Future research can tease these 

apart within CBBI and characterize their category-specific representation dynamics 

in the occipito-ventral and dorsal pathways. 

4.3.3 Relationship between Information Reduction in Occipital 
Cortex and Consolidation in rFG 

Our CBBI results inform early vs. late attentional models of information 

selection (Driver, 2001), though we must be careful with interpretation because our 

study was not specifically designed to address them.  We identified an occipito-

ventral spatiotemporal junction that constrains where and when feature reduction 

occurs—i.e. in occipital cortex, before 170 ms—and where and when feature 

consolidation for perceptual decision occurs—i.e. in rFG, from 170 ms.  Our data 

show that reduction involves other regions than V1-V2, though these could 

influence selection with gain control mechanisms (Hillyard, Vogel, & Luck, 1998; 

Schwartz & Simoncelli, 2001).  However, reduction is not as late as rFG, because 

this region mainly represents diagnostic features.  Thus, the spatiotemporal 

characteristics we report is akin to mixed model of attentional selection.  CBBI 
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offers a powerful platform to directly study the attentional mechanisms for feature 

reduction and selection in complex tasks. 

To conclude, the CBBI framework enables us to investigate task-sensitive 

brain activity that relates information processing in the brain to behavior.  CBBI 

enables brain processes to be isolated (here, the reduction of behaviorally 

irrelevant information and the construction of behavioral representations), and 

employs principles that are broadly applicable across different modalities and 

granularities of brain measures used in a wide range of cognitive and systems 

neuroscience. 
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4.4 Supplemental Materials 

4.4.1 Supplemental Method 

K-means of Brain Features. Observers‘ brains represented similar brain 

features in the task (see Figure S4-1B). This warranted their projection onto a 

common feature basis for group-level visualization.  To this aim, we applied k-

means clustering by setting k, the number of clusters, to 25, to align the number of 

means to the maximum number of NNMF brain features computed in any 

observer.  We pooled the normalized NNMF brain features of all observers, 

resulting in a 115 x 20480 matrix (115 NNMF components in total for 5 observers 

and 64 pixels * 64 pixels * 5 SFs weights). We applied k-means (cosine similarity, 

1000 repetitions) to this matrix (see Figure S4-15 for the resulting k-means 

clusters). It is important to emphasize that we performed all analyses on the 

specific brain features of each observer. I only indexed these individual features 

onto the common k-mean feature basis and corresponding color codes to report 

group results (e.g. in Figure 4-1 and 4-4). See Figure S4-6D K-means of Brain 

Features for a graphic illustration of the process. 
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4.4.2 Supplemental Tables 

Table S 4-1 Number of trials following pre-processing of MEG data.  

    All   "Nuns"   "Voltaire"   "Don't Know"  

Participant 
 

responses 
 

response 
 

response 
 

response 

1 
 

3314 
 

1189 
 

1313 
 

812 

2 
 

3604 
 

1666 
 

1263 
 

675 

3 
 

4154 
 

1634 
 

1892 
 

628 

4 
 

3023 
 

1603 
 

738 
 

682 

5   2885   1007   1346   532 
 
 
 
 

Table S 4-2 Nondiagnostic voxels. Linear models between the Euclidean 
distance (Y) and Onset/Duration (X), and p values for the slope, per observer.  

    Onset   Duration 

Participant 

 
model 

 
p value 

 
model 

 
p value 

1 

 
Y=0.118X - 3.546 

 
p < .001 

 
Y = -0.063X + 4.906 

 
p < .001 

2 

 
Y=0.094X - 3.222 

 
p < .001 

 
Y = -0.057X + 3.673 

 
p < .001 

3 

 
Y=0.084X -0.457 

 
p < .001 

 
Y = -0.064X + 5.189 

 
p < .001 

4 

 
Y=0.201X - 10.535 

 
p < .001 

 
Y = -0.083X + 3.746 

 
p < .001 

5 

 
Y=0.154X - 7.912   p < .001   Y = -0.061X + 2.869   p < .001 

 
 
 
 

Table S 4-3 Diagnostic voxels. Linear models between the Euclidean distance 
(Y) and Onset/Duration (X), and p values for the slope, per observer  

    Onset   Duration 

Participant 

 
model 

 
p value 

 
model 

 
p value 

1 

 
Y=0.024X + 3.214 

 
p < .001 

 
Y = -0.025X + 7.013 

 
p < .001 

2 

 
Y=0.030X + 1.343 

 
p < .001 

 
Y = -0.021X + 5.852 

 
p < .001 

3 

 
Y=0.055X + 2.462 

 
p < .001 

 
Y = -0.015X + 7.408 

 
p < .001 

4 

 
Y=0.174X - 8.126 

 
p < .001 

 
Y = -0.011X + 5.004 

 
p = .094 

5   Y=0.000X + 4.061   p = .919   Y = -0.014X + 4.693   p < .001 

 
 
 
 

Table S 4-4 Percentage of voxels excluded from onset analysis. 

Participant   Diagnostic   Nondiagnostic 

1 
 

1.81% 
 

0.35% 

2 
 

0 
 

2.45% 

3 
 

2.21% 
 

0.19% 

4 
 

3.52% 
 

0 

5   0.58%   0 
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4.4.3 Supplemental Figures 

 

Figure S 4-1 Diagnostic Features and Brain Features of each Observer. 
Diagnostic Features. The cyan framed images in column A report the significant 
(FWER p < 0.01, one-tailed) MI value for each pixel in the first three SF bands, 
revealing across observers the features most diagnostic for responding ―the nuns‖ 
(the two small faces in SF band 1) and ―Voltaire‖ (the broad face in SF band 3). 
Brain Features. White frames in column B highlight the diagnostic features that 
MEG voxels represented, separately presented for decisions ―the nuns‖ and 
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―Voltaire;‖ Magenta frames in column B highlight the nondiagnostic features that 
MEG voxels represented. In column C and D, each cell of the Diagnostic (column 
C) and Nondiagnostic (column D) representation matrices report the color-coded 
significant brain feature with maximum representation in MEG effect size (i.e. MI) 
across all brain features, at this voxel and time point.  For reference, alternating 
white/black bars flanking each matrix indicate the anatomical brain region of the 
corresponding voxels. To illustrate, the representation matrices of Observer 1 
reveal that the diagnostic brain feature ―nose of Voltaire‖ in yellow is primarily 
represented in specific EV, MOG and FG voxels with highest effect sizes across 
the full-time course.  In contrast, the brown nondiagnostic brain feature is primarily 
represented in occipital regions, and before ~170 ms. EV = early visual cortex 
(including lingual gyrus and cuneus), IOG = inferior occipital gyrus, MOG = middle 
occipital gyrus, SOG = superior occipital gyrus, FG = fusiform gyrus, ITG = inferior 
temporal gyrus, MTG = middle temporal gyrus, STG = superior temporal gyrus, 
IPL = inferior parietal lobe, SPL = superior parietal lobe. 
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Figure S 4-2 Early Representation of Brain Features. For each observer, color-
coded brain regions show the early (during the initial 20 ms of representation) 
topological representation of diagnostic and nondiagnostic brain features (FWER, 
p < 0.05, one-tailed). Here, we only show the common brain features represented 
by the majority of observers (see Figure S4-1B for the representation of all 
diagnostic and nondiagnostic features in each observer). 
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Figure S 4-3 Divergence of Diagnostic and Nondiagnostic Brain Features. A. 
Group Results. The plot shows the similarity (i.e. de-meaned dot product) between 
diagnostic and nondiagnostic brain feature representations over the time course of 
visual information processing. The shadowed region indicates the Bonferroni 
corrected chance-level similarity (p < 0.05, two-tailed). B to F.  Diagnostic vs. 
nondiagnostic brain feature representation similarity for each observer.  Together, 
the results show a consistent dynamic pattern of increasing similarity of diagnostic 
and nondiagnostic feature representations in the brain of each observer, up until 
170 ms post-stimulus, following which diagnostic and nondiagnostic feature 
representations become dissimilar (i.e. diverge). 
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Figure S 4-4 Dynamic Reduction of Nondiagnostic Brain Feature 
Representations in Occipito-Ventral Pathway (Participant 1). A. Wavefront 
Property of Nondiagnostic Brain Feature Representations. The left scatter shows a 
linear relation between the representation onset times of voxels and their 
Euclidean distances to the voxel of initial representation onset.  The right scatter 
shows that duration of nondiagnostic feature representation linearly decreases 
with the increasing distance of the considered voxel from the voxel of initial 
representation onset.  B. Wavefront Property of Diagnostic Brain Feature 
Representation.  Same caption as in panel A for diagnostic brain features, with 
later onsets (pink to yellow colors) in ventral and dorsal regions. C. Junction of 
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Reduction of Nondiagnostic Brain Features.  In the left panel, voxels color-coded 
by onset times are pooled by anatomical brain region (X-axis) and scattered 
according to their Euclidean distance to the initial onset voxel of nondiagnostic 
representation on the Y-axis. In the right panel, the same caption for diagnostic 
voxels. The horizontal dashed line indicates the brain regions of furthest 
representation of nondiagnostic features. LG/FG on the X-axis comprises voxels 
located near to LG (see Figure S4-8 for location). LG = Lingual Gyrus, CUN = 
cuneus, IOG = inferior occipital gyrus, MOG = middle occipital gyrus, SOG = 
superior occipital gyrus, FG = fusiform gyrus, ITG = inferior temporal gyrus, MTG = 
middle temporal gyrus, STG = superior temporal gyrus, IPL = inferior parietal lobe, 
SPL = superior parietal lobe. 
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Figure S 4-5 Dynamic Reduction of Nondiagnostic Brain Feature 
Representations in Occipito-Ventral Pathway (Participant 2). Same caption as 
in Figure S4-4. 
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Figure S 4-6  Dynamic Reduction of Nondiagnostic Brain Feature 
Representations in Occipito-Ventral Pathway (Participant 3). Same caption as 
in Fig. S4-4. 
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Figure S 4-7 Dynamic Reduction of Nondiagnostic Brain Feature 
Representations in Occipito-Ventral Pathway (Participant 4). Same caption as 
in Figure. S4-4. 
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Figure S 4-8 Dynamic Reduction of Nondiagnostic Brain Feature 
Representations in Occipito-Ventral Pathway (Participant 5). Same caption as 
in Figure S4-4. 
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Figure S 4-9 Dynamic Construction of Representations for Behavior in rFG 
(Participant 1). A. Representational Complexity in rFG. Starting and ending times 
in brackets indicate the ranges of the time intervals for this observer. The grey 
level of the right Fusiform Gyrus (rFG) voxels corresponds to the number of 
redundant features that it represented within each time interval. B. Representation 
of Behavior in rFG. Yellow voxels denote the maximum MI (un-thresholded) 
between MEG activity and decisions ―the Nuns‖, ―Voltaire,‖ ―don‘t know‖ in each 
time interval. The yellow level represents the maximum MI value. C. Feature 
Representation for each Decision. Specific redundant features represented at 
each rFG voxel and time interval for each decision behavior (see the color-coded 
features for interpretation). 
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Figure S 4-10 Dynamic Construction of Representations for Behavior in rFG 
(Participant 2). Same caption as in Figure S4-9. 
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Figure S 4-11 Dynamic Construction of Representations for Behavior in rFG 
(Participant 3). Same caption as in Figure S4-9. 
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Figure S 4-12 Dynamic Construction of Representations for Behavior in rFG 
(Participant 4). Same caption as in Figure S4-9. 
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Figure S 4-13 Dynamic Construction of Representations for Behavior in rFG 
(Participant 5). Same caption as in Figure S4-9. 
  



127 
 

 

Figure S 4-14 Schematic of Analysis Pipeline. A. Diagnostic Features of 
Behavior illustrates the single trial MI calculation of the relationship <Information 
Samples; ―the nuns‖ vs. ―don‘t know‖>. B. Feature Representations in the Brain 
illustrates the computations leading to Brain Features (i.e. steps 1 & 2) and the 
calculation of MI <Brain Features; MEG Voxel Activity> (step 3). C. Diagnostic and 
Nondiagnostic Brain Features illustrates the determination of nondiagnostic and 
diagnostic brain features from the distribution of MI <Brain Feature Coefficient; 
―the nuns‖ vs. ―Voltaire‖ vs. ―don‘t know‖>. D. K-means of Brain Features illustrates 
k-means clustering of brain features across observers to display group level 
representations of similar features on MEG voxels. 
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Figure S 4-15 K-means Analysis. Color-coded, clustered brain features (i.e. k-
means) computed from the brain features of 5 observers. 
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Figure S 4-16 Location of LG/FG Voxels. The dark purple scatters show lingual 
gyrus (LG) voxels; the light purple scatters show LG/FG voxels which are fusiform 
gyrus voxels located next to lingual gyrus voxels; the white scatters show the well-
demarcated FG voxels that we included in our analysis of feature representations 
for behavior. 
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5 General Discussion 

Mental representations stored in memory are critical to guide the 

information processing mechanisms of cognition. In this thesis, I concretize the 

information contents of mental representations by investigating the diagnostic 

information for different visual categorization tasks.  

In Study 1, I modelled the diagnostic information of familiar face 

identification. Using a novel 3D face information generator, I reverse correlated the 

representational contents of 4 familiar faces in 14 individual participants. Further 

analyses reveal that the diagnostic contents across these participants converge on 

a subset of faithful features, which maximally distinguish each identity from their 

categorical averages (i.e., the average face with the same age/gender/ethnicity as 

the identity) and enable a new group of validators to generalize the identification to 

different views, age and even the kinship task.  

In Study 2, I modelled the diagnostic information for facial expressions of 

emotion recognition. I used the models that characterize the mental 

representations of six facial expressions of emotion in individual participants. I 

selected a subset as the validated models based on their categorization accuracy 

in a new group of validators. A cluster analysis of these validated models derived 

main variants for each emotion and their probability to be produced. Using a 

Bayesian classifier, I demonstrated that the diagnostic contents of facial 

expressions of emotion comprise these main variants and their probability of 

occurrence.  

In Study 3, I tracked how our brain dynamically reduced the nondiagnostic 

information and constructed the diagnostic information for a scene categorization 

task. With a new information theoretic framework -- Contentful Brain and Behavior 

Imaging -- I first teased apart two types of stimulus information represented in the 

brain: that which supports decision behavior (i.e., diagnostic) and that which does 

not (nondiagnostic). Then I tracked the dynamic representations of both in the 

brain, using the magneto-encephalography (MEG) that is advantageous to both 

temporal and spatial resolution. My results reveal a many to fewer dimensions 

reduction of stimulus representation along the occipital-ventral pathway: the 

nondiagnostic features are rapidly collapsed at the occipito-ventral junction around 

170ms, whereas the diagnostic features are transmitted progressively into right 
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fusiform gyrus where multiple diagnostic features are integrated for distinct 

behavior between 161 and 201 ms, post-stimulus. 

Together, using elegant information sampling techniques and the reverse 

correlation method, my studies identified the diagnostic information for three 

different visual categorization tasks: familiar face identification, facial expressions 

of emotion recognition, scene categorization. This task-specific diagnostic 

information formalizes observers‘ mental representation of different visual 

categories (i.e., familiar faces, six emotions, and objects in the scene), which 

provides the critical link to derive a complete information processing mechanism 

for visual categorizations. The CBBI framework further enables the information 

processing interpretation in neural (neutrally-inspired) activity. In this section, I will 

discuss some points regarding the psychological status of diagnostic information 

(see 5.1), information processing implemented in the brain (see 5.2), and practical 

concerns about using the data-driven approach to uncover the diagnostic 

information (see 5.3 and 5.4). 

5.1 Diagnostic Information: the Experienced-based 
Representation of the Physical World  

How we represent the physical world is strongly embedded in the way we 

interact with it (Barsalou, 2009). In visual task, individuals‘ experience shapes their 

inner representation about the input stimuli. This fact is massively documented by 

a wide variety of studies, involving perceptual learning (Ahissar & Hochstein, 1997, 

2004; Dosher & Lu, 1998; Fine & Jacobs, 2002; J. Gold, Bennett, & Sekuler, 1999) 

and concept learning (Goldstone, 1994; Livingston, Andrews, & Harnad, 1998; 

Schyns & Rodet, 1997; Soto & Ashby, 2015; Tanaka, Curran, & Sheinberg, 2005) 

on normal people and the investigations on the people who have been deprived of 

experience from early life (Bouvrie & Sinha, 2007). The key idea is that during a 

course of training, observers learn distinctive features by using the information that 

improves their behavioral output (e.g., detection and categorization performance) 

efficiently, and as a result the stimulus representation redundancy is reduced. 

Such acquired feature distinctiveness is memorized by observers, which is not 

fixed but dynamically updated to adjust to new contingencies. Culture-specific 

mental representation (Blais et al., 2008; Chua, Boland, & Nisbett, 2005; Jack, 

Caldara, et al., 2012; Jack, Garrod, et al., 2012; Kelly et al., 2007; Nisbett & 

Miyamoto, 2005) provides a good illustration of experience-based representation 
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in real life, and the development of perceptual expertise (Palmeri, Wong, & 

Gauthier, 2004; Tanaka & Taylor, 1991) and the face familiarity effect (Ellis, 

Shepherd, & Davies, 1979) in visual cognition are two practical cases illustrate the 

representation plasticity outside the laboratory scenario. 

Taken together, individuals‘ knowledge of the external event is dynamically 

developed when they interact with the environment. This informs the observers to 

update their weights on features selection and forms the effective representation 

to deal with upcoming events. As a result, the diagnostic information is formalized 

as only a reduced set of the full information input and constructs observers‘ 

dynamic psychological space of the physical world. In this stance, a precise 

modelling about the emergence/development of psychological space for visual 

categorization is necessary, which enable us to better theorize the psychological 

status of these dimensions. The methodology framework of my thesis provides a 

practical way to deal with this issue. For example, we can use advanced 

generative models to tightly control the physical stimuli, reverse correlated the 

diagnostic information underlying a task demand,  and track the formation of 

psychological dimensions (substantialized as diagnostic information) through 

training. With the CBBI framework (introduced in Chapter 3), we can further clarify 

the information processing development from neural processing. This approach is 

generalizable to face, object and scene categories in visual recognition, as well as 

other categories in different perceptual mode (e.g. auditory, olfactory and tactile). 

5.2 The Computable Mind for Visual Categorization 

An influential idea links cognition, the brain, and the theory of computation 

is that we explain human behavior in terms of information processing mechanisms. 

Such information emphasis makes it possible to track and compute the 

transformation between stimuli input and behavioral output, and formalize the 

cognitive processing as a series of computable inner-states implemented in the 

functional architectures of the human brain. To offer an analysis of such 

information processing systems and the underlying neural mechanisms, Marr 

provided his three levels of analysis: the computational, the algorithmic, and the 

implementational (Marr, 1982). The computational level defines the most abstract 

level, which describes the overall goal of the computation (e.g., identify a familiar 

face), what is computed (e.g., visual information) and the logical to achieve the 

computation (e.g., using a subset of face information among all visual information). 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.2.0/resultui/dict/
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The algorithmic level decomposes the abstract goal into specific procedures, by 

defining the representation of input (e.g., 3D vertices position for face shape and 

2D RGB pixels for face texture), and output (e.g., an identity name), and the 

algorithms used to transform the former into the later. The implementational level 

deals with the ―the details of how the algorithm and representation are realized 

physically‖ (p. 25 in Marr, 1982), for example in the brain. 

5.2.1 Computational goal 

The first computational level plays a crucial role in the analysis because it 

defines the computation goal, i.e., what is computed from the stimuli input. The 

models of diagnostic information should be constructed as the abstract information 

goals that the visual system predicts under different task demands, and mapped 

onto this computation level. I term the diagnostic information as the ‗abstract 

information goal‘ because it has to be broken down into global and local 

constitutes according to the constraints of representation and implementation at 

each level of the visual hierarchy. For example, we would hypothesize that the 

diagnostic identity components in Study 2 (cf. Figure, 2-8A) are broken down, 

bottom to top, into the representational language of V1—i.e., as representation in 

multi-scale, multi-orientation Gabor-like, retinotopically mapped receptive fields 

(Kay et al., 2008; F. W. Smith & Muckli, 2010); at intermediate levels of 

processing, as the sort of local surface patches (Kubilius et al., 2014; Peirce, 

2015) that we reveal, and at the top level as the combinations of surface patches 

that enable identification and resemblance responses. Under a framework of top-

down prediction (A. Clark, 2013; K. J. Friston & Kiebel, 2009), the abstract 

information goal of a familiar face identity should trim, in a top-down manner, the 

fully-mapped but redundant information on the retina into the task-relevant 

features that are transferred along the occipital to ventral/dorsal visual hierarchy. 

The study reporting in Chapter 4 provides the first step to characterize the 

spatiotemporal dynamics of such information reduction from neural processing. 

5.2.2 Theoretic Algorithm 

Decision-theoretic models provide a good framework to algorithmize the 

visual categorization, because they do not only propose a series of inner states 

underlying the decision (i.e. evidence representation, evidence accumulation and 

integration, and decision making) but also specify their corresponding operations 
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in computational level and the implementation in neural level (see a general review 

in 1.3.3.1 and detailed discussions in J. I. Gold & Shadlen, 2007; Philiastides & 

Heekeren, 2009). On such model basis, my work contributes further by precisely 

quantifying the represented evidence that has to be task-targeted, which is not 

explicitly specified in theoretic models for perceptual decision. In this section, I will 

discuss a possible operation that happens earlier and enables the task-relevant 

evidence representation based on selective attention and diagnostic recognition. 

Visual systems rely on selective attention to filter out unwanted information 

(by inhibition) – i.e. the nodiagnostic information, and focus on the information 

relevant to current goals (by amplification) – i.e. the diagnostic information (see 

reviews Hillyard et al., 1998), to facilitate the perception (Desimone & Duncan, 

1995). The Guided-Search model of selective attention by Wolfe (1994) provides a 

good computational account to explain the information reduction under the 

diagnostic recognition. This model introduces the idea of a top-down feature map 

which in its essence weights the sensory inputs according to their relevance or 

diagnosticity to the task goal. This model theorizes a two-stage processing of 

visual information selection (see also Treisman & Gelade, 1980), which can 

formalize the reduction of nondiagnostic information found in my results. The first 

stage is pre-attentive and encodes in a spatially parallel way the presence and 

physical salience of simple visual features mapped on the retina. In this stage, the 

visual system creates a retinotopic map reflects the bottom-up activation value of 

each feature, which can explain the earlier representation of both diagnostic and 

nondiagnostic features. Then the bottom-up feature values are combined with the 

top-down feature values according to their task-relevance to generate the 

―saliency feature map‖. In the second and attentive stage, the visual system 

searches information in a spatially serial way according to the feature values 

defined by the ‗saliency map‘. The greater the activation at a location, the more 

likely the attention will be directed to that location earlier. The serial search 

terminates if the features are accumulated enough for a successful recognition, 

which defines the diagnostic features I reconstructed from the reverse correlation 

task. 

It is interesting that we can notice the similarity between the Guide Search 

model of selective attention and the computation models of perceptual decision. 

That is, both two specify the process of information accumulation before the 
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decision forms, i.e. a diffusion model that visual information is continuously 

accumulated until one of N response criteria (e.g. in N-AFC task) is reached. What 

the selective attention model informs the decision model are: 1) it specifies the 

starting point of the evidence accumulation (i.e. the second stage) and 2) it 

increases the drift rate (i.e. achieve to the response criteria in a short decision 

time) due to the accumulation of task-relevant features. 

5.2.3 Neural Implementations 

Based on the theoretic algorithm discussed in 5.2.2, I now would like to 

discuss the nondiagnostic information reduction using a sensory gain-control 

mechanism underlying selective attention (Hillyard et al., 1998). The sensory ‗gain 

control‘ enhances the excitability of extrastriate neurons coding attended features 

(i.e. diagnostic features in my case) and suppress the excitability (or reduce the 

gain) of those coding ignored features (i.e. nondiagnostic features). In EEG 

research, three main components are usually found in the selective attention tasks 

that compare the attended vs. unattended stimuli (Hillyard & Anllo-Vento, 1998). 

These components are termed as C1, P1, and N1 and have been shown to play 

distinct roles in sensory gain control.  

C1 is the earliest ERP component with an onset latency of 50-60ms, but it 

does not show any significant changes between attended and unattended stimuli 

(V. P. Clark & Hillyard, 1996; Gomez Gonzalez, Clark, Fan, Luck, & Hillyard, 1994; 

Johannes, Munte, Heinze, & Mangun, 1995; Wijers, Lange, Mulder, & Mulder, 

1997). Source localization of C1 points its neural generator in occipital regions (V. 

P. Clark & Hillyard, 1996; Gomez Gonzalez et al., 1994), and C1 systematically 

changes its topography and as a function of stimuli position in a manner of 

retinotopic organization (i.e. contra-lateral mapping, V. P. Clark, Fan, & Hillyard, 

1995). These findings are consistent with what I found for the early contra-lateral 

representation (i.e. < 170ms) of both diagnostic and nondiagnostic features in 

occipital regions (c.f. Figure 4-1C and Figure 4-2).  

The P1 component starting from 80ms post-stimuli appears to be the 

earliest neural attention effects, i.e. larger amplitude for attended stimuli than 

unattended ones (V. P. Clark & Hillyard, 1996; Johannes et al., 1995; Rugg, 

Milner, Lines, & Phalp, 1987; Valdes-Sosa, Bobes, Rodriguez, & Pinilla, 1998; 

Wijers et al., 1997). This component has been demonstrated to reflect a 
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suppression of input processing at ignored (task-irrelevant) locations to reduce the 

interference and processing cost (Luck & Hillyard, 1995). The source localization 

techniques point the generator of P1 primarily in lateral extrastriate cortex near the 

border of Brodmann‘s Areas 18 and 19 (V. P. Clark et al., 1995), which together 

with its time window (80 – 160ms) are consistent with where and when I found the 

reduction of nondiagnostic features in my MEG study. In a recent study, Zanto et 

al. (2011) used the repetitive transcranial magnetic stimulation (rTMS) to perturb 

the function of inferior frontal junction prior to participants performing a selective- 

attention task, and found such perturbation reduced the suppression degree of 

ignored stimuli and diminishes P1 amplitude difference between the processing of 

attended vs. ignored stimuli to nonsignificant. This study provided direct evidence 

for the top-down inhibition from prefrontal cortex to early visual regions, indicating 

a neural network underlying the information reduction (of non-diagnostic features). 

In my MEG study, I indeed found the prefrontal activation in one observer, which 

peaks at the time when nondiagnostic features are reduced below threshold (c.f. 

Figure 4-3). This finding implies a top-down modulation from frontal regions to 

occipital-temporal junction to inhibit the representation of nondiagnostic 

information during visual categorization. However, the prefrontal activation is 

missing in other four observers, which might be due to the very conservative 

threshold with multiple corrections over 12,773 voxels and more than 20 features. 

The third component N1 also shows larger amplitude for attended vs. 

ignored stimuli and appears in the 120 – 180ms post-stimuli range (V. P. Clark & 

Hillyard, 1996; Johannes et al., 1995; Rugg et al., 1987; Valdes-Sosa et al., 1998; 

Wijers et al., 1997). This time window is roughly the same as my study that 

showed feature integration in right fusiform gyrus. Different from P1, N1 attention 

effect reflects the amplification of input processing at the attended location and 

therefore facilitates the discriminative processing (Luck, 1995; Luck & Hillyard, 

1995). Thus, this component should relate to the representation and integration of 

task-relevant evidence (i.e. diagnostic features) for the perceptual decision. 

Source localization suggests multiple generators of the N1 effect, including 

posterior temporal, parietal and frontal regions; and the frontal and parietal ones 

with latency between 130 and 140ms appear earlier than the posterior temporal 

one with latency between 165 – 175ms (V. P. Clark et al., 1995). The posterior 

temporal one should relate to the N170, the Event Related Potential ~170 ms post-

stimulus commonly associated with visual categorizations (Bentin et al., 1996; 
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Cichy et al., 2014). Together with my results showing the increased number of 

diagnostic features represented in right fusiform gyrus and other studies showing 

increased activity in frontal and parietal regions as more evidence accumulated for 

decision, such spatial-temporal profile of N1 families should indicate a top-down 

modulation from prefrontal and parietal regions for the integration of diagnostic 

features for visual categorization in ventral temporal cortex (Heekeren et al., 2004; 

Ploran et al., 2007). 

5.3 Reverse Correlated Diagnostic Information: Memory 
Representations or Task Representations? 

A general question with reverse correlation tasks is whether the resulting 

models represent the diagnostic information of a particular visual category or the 

task from which the model was reconstructed (see discussion in Schyns, 1998). 

Here, let me use the face identity experiment (Chapter 2) to illustrate.  

Since the reverse correlation method examines face recognition under 

highly constrained and controlled conditions, there are concerns about the 

ecological validity of the technique. First, in this study, recognition of four familiar 

persons was tested with faces shown in a single frontal pose. Hence, the findings 

could be idiosyncratic to the face familiarity in one image rather than the robust 

recognition of a familiar person across many images that the face recognition 

works in our everyday lives. Second, to derive the mental representation model, 

the method required 90 blocks of 20 classification trials per identity (7200 total 

trials). This experimental procedure could change the face recognition process 

itself, e.g., participants adopt strategies driven by the task demands of the 

experiment that they would not normally apply in real-world face recognition. 

To justify the reverse correlation approach, I run validation experiments 

afterward, which contributed to such mental representation vs. task representation 

debate by showing that the identity information reconstructed in one task had 

efficacy in other tasks that involved identity. Importantly, the tasks were designed 

to test two classes of factors: ambient and categorical. For example, I showed that 

the identity component extracted in one ambient viewpoint (full face, 0 deg) could 

be used to generalize identification of the same face under two new ambient 

viewpoints (-30 and +30 deg of rotation in depth). I also showed that the identity 

component extracted for identities (all < 40 years of age) generalized to older age 
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(80 years). Furthermore, I showed that though extracted from a given sex, the 

identity component would generalize to another sex, a kinship task. Hence, there 

is no dramatic difference due to the effect of task of extraction of the identity 

component. Rather, the extracted representational basis is useful for all tasks 

tested, whether using ambient or categorical factors of face variance. This 

therefore suggests that using the reverse correlation approach I have tapped into 

some essential information about familiar face identity.  However, I acknowledge 

that the generalizations I demonstrated might still be a function of an interaction 

between the nature of memory and the similarity task from which I estimated the 

identity component. The component could have differed had the task been more 

visual than memory based (e.g., identification of the same face under different 

orientations, or a visual matching task) and my experiments might not have 

derived an identity component that enabled such effective generalization. To 

achieve the robust estimation about the mental representations, future work 

should also take more task flexibility into consideration.  

5.4 Reverse Correlation: What Information Should We 
Sample? 

What information we should sample relies on at what level we aim to 

understand the diagnostic information. If we aim to know which part of the 

information in a 2D image drives a perceptual decision (cf. Dali ambiguous 

painting in Chapter 4), we can sample the information visibility to observers. On 

this basis, Gosselin and Schyns (2001) designed the Bubbles technique, which 

samples the pixel visibility at different spatial frequency using contiguous bubbles. 

Bubbles sampled spatial frequency because spatial filtering is an early stage of 

visual processing (Ginsburg, 1978), which enables the representation of a wide 

range of visual information, ranging from the fine details to large coarse parts. 

Another practice to sample the visibility is adding noise to stimuli, using either the 

white noise (random greyscale pixel values, e.g. Jack, Caldara, et al., 2012) or the 

structured (Gabor) noise (van Rijsbergen, Jaworska, Rousselet, & Schyns, 2014). 

In either way (i.e., Bubbles or adding noise), few assumptions are set about the 

structure of the stimuli population (cf. the multidimensional features space), thus 

we can call it the ‗bottom-up‘ sampling. 

However, image sampling via pixel visibility is relevantly a brute force 

approach. Under this approach, we understand the diagnostic information in a 
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manner of presence vs. absence, but we cannot know how the revealed diagnostic 

features relate the structure of the visual events, e.g., how a diagnostic face 

features distribute in an information space describing the variance all white 

Caucasian faces. If we aim to investigate the diagnostic information at the 

structure level, we need to sample the generative basis that produces the 2D 

images (cf. Generative Model of Face Identity in Chapter 2 and GFG in Chapter 

3). Unlike a bottom-up sampling, generative model is designed rather in a top-

down manner. It is created fully based on the explicit hypothesis of the visual 

information which we researchers believe to support the categorization and is also 

sufficiently realistic to engage the visual system. For example, we model the 3D 

face shape and colored texture as the generative basis of individual face 

identification (Chapter 2), and model biologically plausible facial movement as the 

generative basis of facial expressions (Chapter 3). Bear in mind, sampling 

information by a generative model will limit the investigation to the information 

dimensions the model can generate. 

6 Concluding Remarks 

I started with a perspective that we can model the visual categorization as 

information processing flows implemented in the brain, with the information 

contents specified along with the stimuli input to behavioral output transition. I 

discussed the mental representations as the critical component to derive the 

complete information processing explanations of visual categorizations, and 

discussed the task-specific diagnostic information as a precise estimation of 

mental representations of different categories, which together motived me to carry 

out three studies. In my first and second behavioral studies, I modelled the 

diagnostic information that guides the visual information processing for familiar 

face identification and facial expressions of emotion recognition. In my third study, 

I tracked the diagnostic as well as the nondiagnostic information represented in 

the brain, and documented the input-to-output transition as many-to-fewer 

dimensions of information reduction along the occipito-ventral pathway. The 

approach and results I provided open new research avenues for the interplay 

between visual information, categorization tasks and their implementation as 

information processing mechanisms in the brain.  
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