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A bstract

The main challenge in computational aerodynamics is to provide practical, cred-
..

ible, cost and schedule effective methods for routine design application and for full 

integration of these methods into the design cycle. Although advances in phys

ical modelling and solution algorithms are continuing requirements of the aerospace 

industry, other more practical difficulties also impede the full realisation of the po

tential of existing methods. The contribution of this thesis is to examine and tackle 

several of these issues and to evaluate computational aerodynamics as a tool for 

engineering design and scientific enquiry.

An advanced computational aerodynamics method is evaluated as an engineering 

tool for axisymmetric forebody and base flow problems. First the adaption of an 

existing two-dimensional flow solver to axisymmetric flow is described, then specific 

test cases are considered. The motivation for creating an axisymmetric flow solver is 

the considerable performance improvements compared to a fully three-dimensional 

method. The accuracy and robustness of the method are very good for forebody 

problems. For base flow problems accuracy and robustness are less satisfactory, 

although the performance of other prediction methods is also poorer for this more 

demanding problem. For both problem types the speed of the flow solver, the 

required computing resource and the time and eflbrt necessary for pre- and post

processing are all satisfactory for routine calculation in an engineering environment.

Shock reflection hysteresis and plume structure in a low density, axisymmetric 

highly underexpanded air jet is examined using a Navier-Stokes flow solver. This 

type of jet is found in a number of applications e.g. rocket exhausts and fuel in
jectors. The plume structure is complex, involving the interaction of several flow 

features, making this a demanding problem. Two types of shock reflection appear 

to occur in the plume, regular and Mach, depending on the jet pressure ratio. The I

!
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existence of a dual solution domain where either type may occur has been predicted, 

in agi’eement with experiment where the same phenomenon has been observed for 

a nitrogen jet. There is a hysteresis in the shock reflection type; the reflection type 

observed in the dual solution domain depends on the time history of the plume 

development. A quasi-steady approach is employed in order to calculate the entire 

hysteresis loop. The results of the computational study are used to examine the 

structure of the plume, and are compared with experimental data where possible. 

Some flow features not initially recognised from experiment have been identified, 

notably curvature of the Mach disc, recirculation behind the Mach disc and the 

‘regular’ reflection having Mach reflection characteristics. Included in the study is 

a review of the two dimensional shock reflection hysteresis problem to establish a 

theoretical background. The value of CFD as a tool for scientific investigation is 

clearly demonstrated by this study.

The need for automation of the multiblock grid generation process is discussed. 

A new approach to automatically process a multiblock topology in order to prepare it 

for the grid generation process is described. The method is based on a cost function 

which attempts to model the objectives of the skilled grid generation software user 

who at present performs the task of block positioning and shaping in an interactive 

manner. A number of test cases are examined. It is also suggested that an existing 

unstructured mesh generation method could be adopted as an initial topology gen

eration tool. Further work towards creating a fully automatic grid generation tool 

and extension into three dimensions are discussed.

The parallel execution of an aerodynamic simulation code on a non-dedicated, 

heterogeneous cluster of workstations is examined. This type of facility is commonly 

available to CFD developers and users in academia, industry and government labor

atories and is attractive in terms of cost for CFD simulations. However, practical 

considerations appear at present to discourage widespread adoption of this techno

logy. The main obstacles to achieving an efficient, robust parallel CFD capability 

in a demanding multi-user environment are investigated. A static load-balancing 

method is described which takes account of varying processor speeds. A dynamic 

re-allocation method to account for varying processor loads has been developed. Use 

of proprietary software has facilitated the implementation of the method.
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Introduction

i: Sf
I

I
i

I

In the last forty years the discipline of computational fluid dynamics (CFD) has 

undergone considerable growth. CFD methods are now employed in a number of 

diverse fields including aircraft, ship and road vehicle design, meteorology, ocean

ography, haematology, astrophysics, mineral recovery, polymer manufacture and 

machinery lubrication. This work is primarily concerned with computational aero

dynamics, an important subset of CFD in which many of the elements of CFD 

technology were first developed. However, much of the discussion applies to other 
application areas.

The primary impetus for the development of computational aerodynamics has 

always been the requirements of aircraft designers, who need reliable aerodynamic 

predictions to produce better aircraft. Before the advent of computational tech-
:

niques the primary tool for aerodynamic investigation was the wind tunnel. This was 

complemented by an advanced theoretical understanding of fluid mechanics which 

aided interpretation of experimental results. Aerodynamic theory itself provided 

analysis tools, notably Kutta-Joukowski aerofoil theory, Prandtl’s wing and bound

ary layer theories, Jones’ slender wing theory[l] and Hayes’ linearized supersonic flow 

theory [2]. Notwithstanding the ingenuity and continuing relevance of these meth

ods, they all require simplifying assumptions which limit their applicability; none of 

the methods are suitable for complex flows with strong nonlinear effects. The advent 

of electronic computers made possible the use of numerical methods for calculating 

aerodynamic values. An early example of a numerical approach to an aerodynamic
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problem is the manual calculation of the Theodorsen method for conformai mapping 

to develop the NACA 6 aerofoil series in the 1940’s[3]. In 1947 tables for supersonic 

flow around cones were compiled by solving the Taylor-MacColl equation using a 

primitive computer[4]. Calculating machines created the potential to greatly extend 

the practicality of a numerical approach. By the 1960’s the possibility of using high 

speed digital computers arrived. A major breakthrough was the development of 

panel methods for the solution of linearized potential flow. Despite being restric

ted to inviscid, incompressible, irrotational flow this approach proved very useful in 

calculating pressure forces for commercial airliner configurations where the flow is 

largely attached. The method was first developed in 1962[5] and was subsequently 

applied to lifting flows[6] and linearized supersonic flow[7].

The 1970’s saw considerable effort devoted to nonlinear flow models, focus

sing on transonic flow with shock waves. A major advance was Murman and 

Cole’s scheme for solving the transonic small-disturbance equation[8]. Full potential 

flow methods followed quickly[9],[10],[11],[12]. Algorithm capability for the Euler 

equations[13],[14],[15] was greatly enhanced by the introduction of flux-splitting[16] 

for better shock capturing. Subsequent algorithm development for the Euler and 

Reynolds-Averaged Navier-Stokes (RANS) equations has continued apace; a very 

wide variety of discretisations and solution procedures are now available, see for 

example[17],[18].

Inevitably the development of CFD is strongly influenced by advances in com

puter hardware. Calculations using more complex mathematical models on a pro

gressively larger scale have been made possible by improvements in computer speed 

and memory size. It has been estimated that better algorithms and better hardware 

have contributed roughly equally to CFD progress in the last two decades[17]. In 

the 1950’s the state of the art was represented by the solution of a linear flow model 

with a few hundred unknowns. Before 1965 computational methods were scarcely 

used in aerodynamics, but within ten years linear potential methods applied to en

tire aircraft configurations were well established. In 1983 an Euler solution for an 

entire aircraft configuration was regarded as an attainable objective[19]. By 1989 

three-dimensional steady and two-dimensional unsteady RANS solutions were being 

obtained on supercomputers[20]. Now in 1998, three-dimensional unsteady RANS



CFD is now sufficiently developed to be widely accepted as a key tool in aero

dynamic design. Due to impressive algorithm development, especially in the past 

two decades, the underlying principles for the design and implementation of robust.

Introduction 3

solutions can be obtained using a parallel machine, based on commodity processing 

units, which is two orders of magnitude less expensive than the previous generation 

of supercomputers.

i:
accurate schemes are now well established [17]. CFD complements the other two 

approaches of pure theory and pure experiment in aircraft design. However, the 

aerodynamics community unanimously recognises that CFD still has far to go be

fore fully realising its potential[ 17], [21 ], [22], [23]. The main challenge of today is to 

provide practical, credible, cost and schedule effective codes for routine design ap

plication and for full integration of these codes into the design cycle, i.e. to obtain 

a mature CFD capability. Obstacles to this aim are the well-known modelling diffi

culties which limit the fidelity of computational aerodynamic simulation, principally 

regarding turbulence but also in other areas such as finite reaction rate chemistry 

and nonequilibrium thermodynamics. Industry would naturally welcome any ad

vances in modelling as well as in solution algorithms to improve the robustness and 

reduce the turn-around time of simulations. However to fully exploit today’s CFD 

technology, the best way forward for engineers is to learn to live with the modelling 

and algorithm limitations, to anticipate and quantify them, in the same way as in

herent limitations of wind tunnel testing can often be tolerated and accounted for by 

drawing on the large body of experience accumulated over time. The well established 

experimental and semi-empirical methods for aerodynamic analysis are useful tools 

because they are applied with sound engineering judgement. Credibility of CFD 

simulations is often doubted in industry; the best way to reduce the credibility gap 

is through gaining experience and understanding of the strengths and limitations of 

CFD methods to promote the application of engineering judgment. To encourage 

this, and to make CFD more attractive to the wider engineering community, the 

practical difficulties which impede use of CFD must be overcome; at present only 

large enterprises have the resources and expertise to purposefully exploit CFD. Ef

fective use of computational aerodynamics in the design process is hindered by long 

lead times (especially for grid generation) and very high computational and human

II
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costs. These practical difficulties will remain despite any advances in modelling or 

algorithms. The contribution of this thesis is to examine and tackle several of these 

issues and to evaluate CFD as a tool for engineering design and scientific enquiry.

The work presented here is based around an existing two-dimensional multiblock 

fiow solver for the Euler and Navier-Stokes equations, developed by the CFD group 

in the Department of Aerospace Engineering at the University of Clasgow. Details of 
the fiow solution method and implementation will be described where appropriate. 

However, it is useful to explain the term “multiblock” now since the concept is 

important to each of the following chapters. Figure 1.1 shows a structured grid 

for an aerofoil calculation. Note that for this case the grid can be mapped onto a 

rectangle in parametric space. This facilitates the implementation of a fiow solution 

method; the grid points and fiow quantities associated with grid cells are considered 

as elements of two-dimensional arrays. However, this feature does not extend to 

arbitrary geometries. Even for relatively simple configurations it becomes difficult 

or impossible to create a structured grid. There are two main approaches to this 

problem. An example of an unstructured grid for a two-element aerofoil problem is 

shown in Figure 1.2. It is possible to construct an unstructured grid for any geometry 

since there are no associated geometric restrictions. However, fiow solution methods 

are less efficient due to the necessity of a more laborious data structure. A detail 

of a multiblock structured  grid around the leading edge slat of an aerofoil is shown 

in Figure 1.3. The premise of the multiblock method is to employ a number of 

structured grids, or blocks, in order to achieve geometric fiexibility. The outlines of 

the grid blocks are shown in Figure 1.4. The advantages of the structured grid fiow 

solver are retained, but at the expense of considerable grid generation complexity. 

Thus the choice between an unstructured or multiblock approach is primarily a 

trade-off between fiow solver and grid generation complexity. Note however that 

there are also other issues; for example many researchers assert that shear layer 

resolution on unstructured grids is unsatisfactory. The multiblock method used 

here and unstructured grids are the two most common approaches, although other 

inventive approaches also appear in the literature[24].

The main body of this work is split into two parts. Part I (Chapters 2,3,4) 

concerns the implementation of an axisymmetric fiow solver and its application to
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Figure 1.1: Structured grid

Figure 1.2: Unstructured grid
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Figure 1.3: Detail of a multiblock structured grid

Figure 1.4: Block outlines of a multiblock structured grid
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engineering and scientific problems. Part II (Chapters 5 and 6) focusses on the more 

practical issues of multiblock grid generation and parallel computation.

In Chapter 2 the adaption of an existing two-dimensional fiow solver to axisym

metric fiow is described in detail. A fully three-dimensional fiow solver is required 

to simulate large, complex aerodynamic problems. However, for the special case of 

axisymmetric fiows, an essentially two-dimensional method can be employed, requir

ing substantially less memory and two orders of magnitude less computation time. 

The surprisingly wide application range for an axisymmetric fiow solver and the clear 

performance advantage over three-dimensional methods provides the motivation for 

this work.

In Chapter 3 the ability of an advanced CFD method to model two classes of 

flow, axisymmetric forebody and base fiow, is examined. The capability of the CFD 

method as an engineering tool for these problems is assessed. First the adaption 

of an existing two-dimensional fiow solver to axisymmetric fiow is described, then 

specific test cases are considered. The accuracy of the results, the robustness and 

speed of the fiow solver and the time and effort required for pre- and post-processing 
are considered. Particular emphasis is given to the prospect of routine calculation 

in an engineering environment for these problem types.

Computational aerodynamics has principally been viewed as a design tool which 

complements experimentation and theory. There is also the possibility of its use 

as a tool for scientific investigation[28]. The direct numerical simulation (DNS) of 

turbulence is a good example of this. In engineering codes turbulent fiow is usually 

modelled using the Reynolds-averaged Navier-Stokes equations with a single-point

closure turbulence model to account for the effects of turbulent motion, which is 

impractical to compute directly. The complexity of turbulence models varies from 

a modified laminar viscosity coefficient to an additional series of partial differential 

equations to model transport of turbulent stresses. Despite the plethora of models 

available, none have been accepted as generally accurate and applicable. The lack of

an appropriate statistical description of the effects of turbulence is frequently quoted 

as the pacing item for CFD simulation. Each model contains adjustable coefficients 
which are determined empirically. Part of the difficulty in turbulence modelling is 

that experimental measurement of the modelled quantities is difficult, rendering the
I
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empiricism unreliable. However, DNS results for simple turbulent shear flows on a 

small scale are becoming available, affording direct testing of turbulence models and 

investigation of turbulence phenomena in general.

Another area where CFD is used to promote understanding of physical phenom

ena is in shock reflection studies. Freestream perturbations in wind tunnel experi

ments on the stability of shock patterns have caused real uncertainty in interpreting 

results, so researchers are now relying heavily on the results of CFD simulations. 

In addition to improving the practicality and accuracy of simulations for design, 

how best to employ numerical techniques in scientific investigations such as the ex

amples given is another challenge to the CFD community. A detailed numerical 

study of shock reflection hysteresis in an underexpanded jet is described in Chapter 

4. This can be viewed as a model situation where experimental studies are limited 

and CFD can potentially play a very important role. The theoretical background 

and understanding of this complex phenomenon is reviewed. Recent experimental 

and numerical contributions in this area are discussed. The CFD method described 

in Chapter 3 is applied to an underexpanded jet fiow. Comparison with experi

mental data is made where possible. The detail obtained from the CFD simulation 

enables identification of several fiow features not initially recognised from the ex

periments. Understanding of the plume structures and hysteresis phenomenon have 

been greatly enhanced by the CFD study.

Part II concerns the more practical issues of pre-processing and parallel com

puting, each of which are in their own right important sub-topics in CFD. A major 

bottleneck in CFD analyses of complex configurations occurs at the pre-processing 

stage, consisting of geometry definition using computer aided design (CAD) soft

ware, interfacing the CAD model with grid generation software, and grid generation 

itself. Pre-processing remains a labour intensive task, especially at the grid gen

eration stage. Several man-months of skilled effort may be required to generate a 

structured grid around entire aircraft configurations. Generating unstructured grids 

requires less effort in general, but is still very time consuming. The large' amount 

of time and effort taken in generating grids is recognised as the major difficulty 

in the routine use of CFD[17],[25]. In Chapter 5 the need for automation of the 

multiblock grid generation process is discussed. A new approach to automatically
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process a multiblock topology in order to prepare it for subsequent grid generation 

is described. The method is based on a cost function which attempts to model the 

objectives of the skilled grid generation software user who at present performs the 

task of block positioning and shaping in an interactive manner. A number of test 

cases are examined. It is also suggested that an existing unstructured mesh genera

tion method could be adopted as an initial topology generation tool. Further work 

towards creating a fully automatic grid generation tool and extension into three 

dimensions are discussed briefly.

The exploitation of emerging technology as computing power continues to in

crease raises research issues in its own right. However, the large amount of research 

into parallel CFD is not matched by the amount of research conducted using parallel 

CFD as a tool[26]. The potential of using low-cost commodity processors or no-cost 

spare capacity on existing workstations for parallel aerodynamic simulations has re

cently added further to the large number of research papers devoted to parallel CFD, 

see for example[27]. In order for parallel CFD technology to have a greater impact 

on the productivity of CFD simulation, a number of practical difficulties must be 

fully addressed, most importantly effective parallélisation and robust, reliable exe

cution on non-dedicated parallel machines. This is the type of resource available to 

small and medium sized enterprises, rather than the large organisations with access 
to powerful dedicated computers on which the majority of parallel CFD research 

has been focussed and for which parallélisation is largely a solved problem. The 

parallel execution of an aerodynamic simulation code on a non-dedicated, “open” 

cluster of workstations is examined in Chapter 6. This type of facility is commonly 

available to CFD developers and users in academia, industry and government labor

atories and is a very attractive option to achieve an upgrade in computing resource 

for CFD simulations without large expenditure. However, practical considerations 

appear at present to be discouraging widespread adoption of this technology. The 

main obstacles to achieving an efficient, robust parallel CFD capability in a demand

ing multi-user environment are investigated. A parallelism strategy for a structured 

multiblock flow solver which takes account of heterogeneity of the parallel machine 

and of load variation due to the presence of other users is described. The emphasis 

is on robustness and ease of implementation, distinct from other published work in
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this area.

In the concluding chapter progress towards the stated aims of this work is re

viewed. General experiences gained in the course of this study are discussed, and 

recommendations are made for future work.



Part I

A pplication  o f an A xisym m etric

Flow Solver
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2.1 Introduction
■

In order to simulate large, complex aerodynamic problems using CFD a fully three-

dimensional flow solver is necessary, using a multiblock approach or otherwise to 

cope with geometric complexity. However, there is a class of aerodynamic flows 

for which it is not necessary to resort to the complexity and expense of a full 3- 
D method. It is possible to make use of an existing two-dimensional flow solver 

to develop an axisymmetric flow solver, thus achieving a level of three-dimensional 

capability, albeit limited to axisymmetric geometries at zero incidence and sideslip. 
For this type of problem an axisymmetric rather than a full 3-D solver is a more 

efficient tool, considering the comparatively large amount of memory and CPU time 

required for 3-D calculations. The equations for axisymmetric flow can be cast in a 

form very similar to those for planar two-dimensional flow, which can then be solved 

using a numerical scheme with few alterations from the planar case. Examples of 

interest include slender bodies, base flows and nozzle/plume flows. This effort is 

therefore worthwhile because the modification required is relatively straightforward 

and the range of application surprisingly wide.

Several examples of computational aerodynamics codes solving the axisymmetric 

Euler and Navier-Stokes equations appear in the literature, for example for base flow 

applications[35],[36],[37],[38],[39],[40],[41] and missile forebodies[42],[43],[44],[45]. 

Some other applications are hypersonic flow[46] and internal nozzle flow[47]. Ap

1

Î

Î
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plications to underexpanded jets are discussed in [48]. Some flow solvers use the 

present approach of considering the axisymmetric case as an extension of the two- 

dimensional case[35],[36],[39],[40],[41],[42],[44],[46],[47], thus allowing one flow solver 

to be used for two different types of flow. In this chapter the modification of an 

existing two-dimensional flow solver to axisymmetric flow is described. The flow 

solver will be applied to two classes of problem, supersonic forebody flow and high 
speed base flow. The aim of this chapter is to evaluate the effectiveness of a modern 

CFD method as a design and evaluation tool for these problem types. As well as 

examining the accuracy of the results from the flow solver, other issues which are 

important in an industrial context are considered: robustness, turnaround time, pre- 

and post-processing effort.

The flow solver used is based on the existing planar two-dimensional, steady-state 

flow solver PMB2D developed by the CFD group at the University of Glasgow, 

which has reached a level of maturity enabling application to a diverse range of 

aerodynamic problems. The main features of the flow solver are outlined here; for 

full details see [30],[31],[32],[33],

A cell-centred finite volume method is employed. Osher’s scheme and MUSCL 

variable interpolation are used to discretise the convective terms and central differ

encing for the diffusive terms. The linear system arising at each implicit time step is 

solved using a Generalised Conjugate Gradient method. A Block Incomplete Lower- 

Upper (BILU) factorisation is used as a preconditioner. A structured multiblock grid 

system is employed. The BILU factorisation is decoupled between blocks to reduce 

communication, improving efficiency on distributed memory parallel computers. An 

important feature of the flow solver is the use of approximate Jacobian matrices for 

the left hand side of the linear system. This has led to substantial reductions in 

memory and CPU-time requirements compared to the use of exact Jacobians. The 

k — u) turbulence model is employed with MUSCL variable interpolation and the 

Engquist-Osher scalar conservation law for the convective terms.

This chapter begins by presenting the equations for axisymmetric flow. Com

parison is made with the equations for two-dimensional planar flow. The alterations 
made to the original linear system in the implicit solution method are then dis

cussed. The test case of laminar Poiseuille flow in a pipe is then examined. The
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axisymmetric flow solver will be applied to engineering and scientific problems in

2.2 T he equations for axisym m etric flow

2.2.2 Mass continuity

where p is the fluid density and V  is the velocity vector which has components 

(fr, in cylindrical coordinates. The divergence of a vector A in a cylindrical

and therefore in a cylindrical frame equation (2.1) becomes

subsequent chapters.

V

2.2.1 Introduction

The Navier-Stokes equations and the two-equation k — u  turbulence model are 

presented in forms suitable for axisymmetric flow; the equations are written in cyl

indrical coordinates (r, z) with the assumptions of zero angle of incidence and 

sideslip (d/dO = 0) and no spin {vg =  0). A large part of their derivation from

general vector/tensor forms is also included for completeness. This should help to 

highlight the origins and purpose of the ‘extra’ terms present in the axisymmetric 

equations compared to the two-dimensional equations.

The equation of mass conservation, or continuity equation, is written in conservation 

form as [50],[51]:

| ?  +  V .(pV ) =  0 (2.1)

frame is

^  + §f(f»>r) + ~ { p v e )  + ^ { p v . )  -  (2.3)

'
With our assumptions of axisymmetric flow with no spin this reduces to

^  (m ) + ^  (m ) =  - ~  (2.4)

__
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2.2.3 M omentum conservation

The equations of motion or momentum equations neglecting body forces can be 

written in vector form as [50]

d V
^~dt + Vp -  | v  (V.V) -  pVW = 0 (2.5)

where V  is the velocity vector. When expanding the vector terms in equation (2.5) 

it should be recalled that in cylindrical coordinates the unit vectors are not invariant 

in space [51],[52]. Following equation (2.2), the divergence of velocity in cylindrical 

coordinates is given by

dVr Vr 1 dvg dv+dr r r 39 

The strain tensor VV in cylindrical coordinates is:

+ dz
(2.6)

VV =

( dvr
dr

I d ^  _  
r dO r

dVr
dz

§V3.
dr

_J_ Ve. 
r d9 r

dz

dvz
dr

1 dvz
r de

dVz
dz J

(2.7)

Expanding the Laplacian of the velocity vector in cylindrical coordinates gives 

VW = V. (VV) =

ur \  UT / T vr r uu \ r uu r / ux, \  u z  /  r  \  r uu

dr \  dr /  r dr r dO \ r  de r / dz \  dz J r \ r  dO r )

dr \  dr J r dr r dB \ r  d9 /  dz \ dz / /

Finally the pressure gradient term is

Vp  =

(  \

1 ^r de

% /

(2.8)

(2.9)
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The equations (2.5) to (2.9) are the momentum conservation equations in cylindrical 

coordinates. It is convenient at this stage to introduce our assumptions concerning 

axisymmetry, viz. djdQ =  0 and tig =  0 . The momentum equations in the radial 

(r) direction and axial {z) direction then become respectively

dvr
d t

dVr
dr

d V r
+

dp jjL d
dr 3 dr

d V r  , V r  , d v ^ i

dr r dz
d f  dv. dvr1 dvr d

dr \  dr J r dr dz \ dz
0 (2 .10)

dt
dv, dv. 4. Ü È .

dz  3 dz
du dv.
dr r dz

dr
dvz
dr

r
, 1 , 9

H â 'r dr dz
d v A
d z j \

These equations can be simplified, using the continuity equation (2.4), to

d . . d f 2 \ 7̂1
%  W  +  ^ ( p f r + P j ------

( m )  +  ^  {pVrVz) -

dr +  6
dTrz
dz

dr,...
dt dr dr dz  ̂  ̂  ̂ dz

where the shear stress components are written as
dvr 2 (  dvr

fnPr , ( r̂ 1-----
r

pVrV  ̂ n 
--------------r  "

(2 .11)

(2 .12)

(2.13)

T.

- p [ 2

dr
dvz
dz

dv dv.

T$e -^ * 1 2 7 - 3

r  V r
 j-------------------j ,

dr r dz
d V r  , V r  ,

dr r 9z )  )

(2.14)

dVr dv^ 
dz dr

As will be seen later, it is convenient to re-arrange equations (2.12) and (2.13) to 

the following form (which resembles the planar equations)

d r . 9 ( 2  \
^(Pî^r) +  ^ ( /? î^ r+ P )dr

(m % )
4
dz

d \ (n dVr
dr

p (2
dr

(  9vz dVr
^d r +  a ?

2 (dVz d v r \ \

1 dVrpv^ 4/i
 r  “  . ^

r  3 \ r  dr
(2.15)

I

I
I
'4■ff:4:
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e
%
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£
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9 . . .  d . d 
di +  â?

dz
/i 2 ^  , 9 ^

3 \ dz dr

d
+  â i K ' + î ’)

fWrVg p  f ld V r  ,
I 1  rr  r  V3 a.2r or

(2.16)

2.2.4 Energy equation

The equation for the conservation of energy can be written as[51], [53]

■ V . q + f +  $ (2.17)

where e is the internal energy per unit mass, q is the heat transfer vector and Q is 

the heat added per unit volume by external agencies. 0  is the dissipation function, 

which can be written as

(VV +  VV^) : VV -  -  (V.V)' (2.18)

We are interested in the form of the energy conservation equation suitable for 

axisymmetric flow. In cylindrical coordinates, with the assumptions that d/dO =  0 
and fg — 0, the dissipation function becomes

2

dr dz
dUz dUr 
dr dz

d U r  U r  d U z

dr r dz )
(2.19)

Equation 2.17 can then be written, with the same assumptions, in the form

dqr
dr r

dqz
dz

dVr /dVr  ̂ dVz \  dVz , Vr
(2 .20)

assuming also that there is also no external heat addition. It can be shown using 

the continuity equation (2.4) that

_L (^r dVr
dt (pWr) +  ^  W )  +  ^  {pVrVz) +  ^  -

d
dt

d
dz
d

dz

dt
dvz
dt

(2 .21)

(2 .22)
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The following equation is obtained by substituting equation (2.21) into (2.12) mul

tiplied by Vr, and adding this to the equation obtained by substituting (2.22) into 

equation (2.13) multiplied by v^ :

dt
Ô T rrr ^  ' rz ^Trz 9T-

 V . —  V dz ̂ dz dr
=  'HtS Ih .Z .I e ). +  ü îü t  (2.23)

r r

An equation representing the conservation of energy per unit mass is then obtained 

by adding together equations (2.20) and (2.23) :

^di ^  (P'^r +  Q'r) +  ̂  ^  {pVz +  Qz)

d  ,  ^  y ,  V r T r r  +  Vd , . d f .
~ S r ' ẑ' r̂z) ~  -Q̂  {^z'^zz +  VrTrz)

VrTrr "f" V^Trz Qr

The total energy per unit volume Et is calculated as

Et = p ( e  +  i ( u ?  +  u^)) 

It can be shown using the continuity equation (2.4) that

(2.24)

dEt d
dt dr

Hence equation (2.24) becomes

4  —  (Vr { E t +  p)) H- —  {Vz (Et +p)) - —  {VrTrr +  V zTrz

+  =  ’̂ -(^«+ p) +  u .r.. +  U Æ  (225)
r

As will be seen later, it is convenient here to express this equation in the following 

form (which resembles the planar equations):

^  ' A
dz

dE,1 a a
^  ^  ^  +  P))

d ( r /  Ô«r 2 /p  [ 2
dr Vr

4 { -

—L  I __z_ 4
dr 3 \  dr dz
duz 2 (  dUr duz

+dz
1
r

3 \  dr dz

~\rV, P
dUr du4
dz dr 

. dUr dUz 
^ \ d z  dr

qr

Qz

(2.26)
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2.2.5 Non-dimensional, Reynolds-averaged form

The equations shown above are in dimensional form. In practise it is more convenient 

to use non-dimensional quantities. The procedure used for non-dimensionalising is 

described in sections A.2 and B.l, The Reynolds-averaging procedure, see appendix 

A.3, enables consideration of turbulent flow. The equations for mass continuity 
(2.4), momentum (2.16 and 2.15) and energy (2.26) become in non-dimensional, 

Reynolds-averaged form :

Mass continuity

(2.27)

M om entum

dt dr

+ ~  ipVrV.)

dr
p  +  P t  

Re

È .
dz

P  +  P T  
Re

\9 v r

dvz d ^  
dr dz

+ dVr
dr )1

pv? , 4 (p +  p t )  
r SRe

(  1 9 ^  Vr \  
\ r  dr r^)

(2.28)

P  +  P T

d
dz

p - \ -  P T
Re

(  dvz dvr\
+

d
(pVz+P)

P  +  P T

dz
pVrVz + rRe

f l d v r  dvz \

(2.29)
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Energy

~dt 'dr ^  (Et + P))

A
dr

dz

3 V ar +  7 7  ' +
P +  P T  f r , d u z  2 f d u r  , d u z \  , 2

yTF “ H tT + 77j + r*'

+  V ,

+ Vr

p + Pt  f  dur duz
Re \  dz dr

P + PT (  d ^  d ^
Re \  dz dr

d
dr I (7 — 1) \P r  

_  1
r

P , _Pt  \  -  —  I  1 (  J L a.
Prr J dr ) dz { { j  — I) MJ, \P r  Prr J dz J

’'^ (^ ‘ +^> +  ^ ^ 7 7 + 3 9.
d U z  , V z  d U r  4 V r  d U z  2 V r  ,pk

1 ( ji_  . PT_\ d r
(7 — 1) \ P r  Prr J dr

(2.30)

2.2.6 The two-equation k  — co turbulence model

The k ~  Lj turbulence model of Wilcox[54] is written in non-dimensional, general 

vector-tensor form in appendix B.l. In cylindrical coordinates, for axisymmetric 

flow with no spin, this becomes

Turbulence K inetic Energy

dr { p  4- a * p T )
dk
dr H-

d
dz

1 nHtP -  Ip k S  -  g ’pkw -  ^  ^ ,
3 r Re [ r {p + a ' p r ) ^  I

(2.31)

Specific D issipation R ate

9 r \ , 9 , \ , 9 , . I ( d
^  (pw) +  ^  {pWVr) + ^  (PW%) { p 4- a p r )

doj
dr +

d

(jj
“ 7 Pt P  “  -^pkS

dz
1 n

-  (3puP -  +
r  iîe 1 r

{ p  4- a p r )  

{ p 4- ct/zt)

duj
9 z
duj
dr

}}
(2.32)
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In the above relations,

S  = dVr dVz Vr
7 7 + 9 7  +  7

A )  +  ( A
dr I \ d z

2 f  d V r  , d V z  , V r

3 1 7 7 + 9 7  +  7

2.2.7 Curvilinear form 

M ean flow equations

Compare the equations for axisymmetric flow, equations (2.27) to (2.30), with those 

for planar flow (see appendix A), swapping the radial ordinate r  for y and the 

axial ordinate for a;; the left hand sides of the equations are identical. Hence the 

axisymmetric equations can be considered as consisting of the 2-D equations plus a 

source-like correction term for axisymmetry. See section (2.3.1) for a discussion of 

the numerical implications. The transformation of the left-hand side of the equations 

into (^, 77) space is therefore identical to that described for the two-dimensional equa

tions in appendix A.4. The right hand side of the transformed system of equations 

is written simply as

J  (§ ' +  Ê") (2.33)

after splitting the source-like term into in viscid and viscous parts.

Tw o equation  k —u  tu rb u len ce  m odel

The axisymmetric (equations 2.31 and 2.32) and the two-dimensional (see appendix 

B) formulations for the k and u) equations can be compared in a similar manner to 

above; the axisymmetric equations can be considered as consisting of the 2-D equa

tions plus a correction for axisymmetry. This correction is treated as an additional 

source term. Again the transformation of the left-hand side of the equations into 

(^,77) space is the same as for the planar equations, see equation (B.2). The right 

hand side of the transformed system of equations can be written as

l ( S r  +  S?.) (2.34)
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where Sy is the ‘original’ source term from the two-dimensional equations and Sf.

(2.35)

I

41;
'n

contains the additional axisymmetric terms.
,7

2.3 M odified num erical schem e  
.

2.3.1 Axisymmetric source terms

In the present method, the equations for axisymmetric flow are formulated to look 

like the planar flow equations except for a non-zero right-hand side which is treated 

as a source term. The fluxes on the left-hand side are treated as in the planar case.

In this way an existing planar flow solver can be modified easily for axisymmetric 

flow. This approach, which we will call here approach A, is popular in the literat

ure, see[35],[36],[39],[40],[41],[42],[44],[46],[47]. Another approach appearing in the 

literature[44],[45],[49], approach B, uses an alternative formulation. The equations

(2.35) show the axisymmetric Euler equations written in this manner. In this ap

proach the source terms of approach A do not appear, being contained in the radial 

flux terms on the left-hand side. The source term here consists only of a pressure 

term in the radial momentum equation. The manner in which the fluxes are calcu

lated for approach B cannot be taken directly from a planar method since the flux 

quantities are different.

d d d
di^'^P^ + '^4P '"r)  + -^{rpv^)  =  0

§ ^ i i ' p V r )  +  ^ { r [ p v ^ + p ] )  +  - ^ { r p V r V , )  =  p  

§^i'^P^4 + §^(rpVrV,) + . ^ { r [ p v l + p ] )  =  0

§^{rpE) + ^ (v p V rH )  + -l-Jrpv,H)  =  0

Good results are reported in the literature for both approaches and neither approach 

is reported to out-perform the other concerning accuracy or numerical implementa

tion issues. Accepting then that both approaches are valid, it is nonetheless inter

esting here to briefly discuss and compare the approaches since such a discussion 

does not appear in the literature, and at the same time hopefully gain some in-
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sight into the physical meaning of the source terms. For guidance we can refer to 

the application of the integral form of the conservation laws to a control volume 

fixed in space, which can form part of the derivation of the partial differential form 

of the equations [50]. This will shed some light on the origin and purpose of the 

source terms. Diagrams of control volumes for derivations in Cartesian {x,y, z) and 

cylindrical (r,9,z) space are shown in Figures 2.1 and 2.2.

Note that in Figure 2.2, the areas of the faces in the (9, z) plane of the control 

volume are not equal; one has area ( r—dr/2) and the other (r+ d r/2 ). Note also that 

a pressure force acting normal to the control volume faces which are of area drdz has 

a component in the radial direction. This means that when the integral forms of the 

conservation laws are evaluated for this control volume, involving fluxes through and 

normal stresses acting on each face, terms are retained in the resulting equations 

which cancel out due to symmetry in the equivalent procedure for the Cartesian 

control volume. These terms are the axisymmetric source terms. An example is 

shown below; first the equation for conservation of ^-momentum is derived using 

the Cartesian control volume, then the radial momentum equation is derived using 

the cylindrical control volume and assuming d/d9 = 0 and vg = 0 . The equation 

for the conservation of momentum, discounting viscous effects and heat transfer, 

can be written in integral form as [50] 
d

pWdU +  /p V (V .d S) = - j p d S (2.36)
'S  J S

where Q denotes the control volume and S  its surface.

M om entum  conservation in Cartesian coordinates (x-direction)

Refer to equation (2.36) and Figure 2.1 :

d{pu)
dt dxdydz — dydz

— dxdz

pu

puv

dxdy puw

2 d (pu^) dx 
dx 2

d (puv) dy
dy 2

d {puw) dz _ _ _ _ _ _

=  dydz

2 d (pu^) dx
“  - ~ S ^ T

— ^puw d (puw) dz
dz )]

dp dx
— (p —

d p d x \  
dx 2 /
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which reduces to

^^ipu) + -^{p u ^+ p ) + -^{puv) + -^{fmw) = 0

M om en tum  conservation  in  cylindrical coord inates w ith  ax isym m etry  (r- 

d irection)

Refer to equation (2.36) and Figure 2.2 :

■f

d jpVr) 
dt rdOdrdz — rdOdr pVrVz d{pVrVz) dz'

dz
dr dddz pvr

d (pv^) dr
dr 2 

dOdz p

2

H- I r  +

+ rdOdr 

dr

pVfVz + d{pvrVz) dz
dz

dp dr 
dr 2 -  r-i-

dOdz 

dr

2 I d{p»l)dr 
9r 2

dp drdddz P + dr 2
dO d.0

+ 4- p— drdx

which reduces to
d d d
Â7 ^  [fyVr +p) 4- ^  (pVrVz) PVr
dt dr  ̂  ̂ dz r

The axisymmetric source terms can be interpreted physically as the additional mass, 

momentum or energy, compared to the planar case, which enters the control volume 

normal to the (r, z) plane due to the axisymmetry of the flow. The effect of these 

terms is therefore equivalent to the effect of a surface source acting on the (a;, y) plane 

in the planar case. Restated, the axisymmetric equations written as in sections 2.2.5 

and 2.2.6 can be considered as the planar two-dimensional equations with additional 

surface sources of mass, momentum and energy which account for the shape of 

the control volume in cylindrical coordinates. We can therefore conclude that the 

present treatment of our right-hand side as source terms, approach A, is reasonable. 

Approach B may be attractive to the researcher developing an axisymmetric flow 

solver ‘from scratch’ due to the neater appearance of the governing equations when 

written this way. The inclusion of the radial ordinate in the flux quantities, a feature 

which does not occur naturally from a direct application of the integral form of the 

conservation laws as shown above, does appear slightly artificial in that it is difficult 

to interpret physically.
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■J

T

dz

Figure 2.1: Volume element in Cartesian coordinates

de

6

Figure 2.2: Volume element in cylindrical coordinates
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2.3.2 Implicit scheme, mean flow equations

The integration in time of the discretised equations to a steady state is done using 

an implicit time-marching scheme. The linear system arising at each time step for 

the 2-D planar formulation can be summarised as [31] ;

^ ^  A P =  - R ( ”) (2.37)
At ap  dP J

where P  =  l/J(p,Vr,Vz,p)^  is the vector of cell based primitive variables, W  — 

l/J(p,pVr,pVz^pEŸ^ is the vector of cell based conservative variables, A P is the 

update in P  from time level n  to tïH~1, R ” is the flux residual arising from the 

spatial discretisation at the time level n, and A t  is the time step. The updates are 

written in terms of primitive rather than conservative variables since the calculation 

of the linearisation matrices proves more efficient with respect to P  than W . For 

the axisymmetric case, there are extra terms on the right-hand side, see equation 

(2.33). The axisymmetric inviscid part is treated implicitly, but the viscous part is 

treated explicitly. Numerical experiments have shown that it is necessary to have 

an implicit treatment for the axisymmetric inviscid terms if a tight restriction on 

the allowable time step is to be avoided. The explicit treatment of the axisymmetric 

viscous terms does not have a deleterious effect on stability or limit the allowable 

time step, on comparison with the original planar code, so an implicit treatment was 

not attempted. See Section 3.2.4 for an example of the importance of the implicit 

treatment for the axisymmetric inviscid terms. The modified linear system for the 

axisymmetric case is then written as :

=  - r W +  +  H ”'") (2.38)

where H* and are the inviscid and viscous parts respectively of the discretised 

source term. System (2.37) is solved using an identical scheme [31] as used for (2.38). 

The inviscid source term Jacobian is evaluated as
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aH*
dP

Vr-V,

where | K p =  H- .

pVr PVz

2pvr

PVrVz +  pvl

(2.39)

2.3.3 Implicit scheme, k  — u) equations

The equations forming the turbulence model are solved in essentially the same man

ner as the mean flow equations. The linear system arising at each implicit time step 

for the 2-D planar formulation can be summarised as

where =  l/J(/c ,o ;)^  is the vector of cell based primitive variables, W y =  

1/ J  [pk^puS)^ is the vector of cell based conservative variables, AP^r is the update 

in P t  from time level n  to n+1 and and are the flux and source term 

residuals arising from the spatial discretisation respectively. For the axisymmetric 

case, there are extra terms on the right-hand side, see equation (2.34). The finvis- 

cid’ parts of the additional source term are treated implicitly. The modified linear 

system for the axisymmetric case is then written as :

where are the additional source term elements of the axisymmetric formula

tion. Its Jacobian is written as (discarding viscous terms)

0

OPt

Ipvr

0 (l +  |q:) pVr

(2.40)
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2.4 Laminar Poiseuille flow

2.4.1 Purpose of test case

An analytic solution of the Navier-Stokes equations exists for the case of laminar, 

incompressible, fully developed flow through a straight pipe of constant circular 

cross-section. A simulation of this type of flow using the laminar, axisymmetric 

version of PMB2D therefore provides a useful check on the formulation.

2.4.2 Description of test case

Fully developed flow in a pipe is characterised by a zero pressure gradient across 

the pipe, a constant pressure gradient along the pipe and a velocity profile which is 

invariant along the pipe. This situation arises because the pressure forces which drive 

the flow are exactly balanced by shear forces such that no acceleration can occur. 

For fully developed, steady, incompressible, laminar flow through a pipe of radius 

r* (axisymmetric Poiseuille flow) the analytic solution for the velocity components 

is written as [52] :

v; =  0
1 dp*

4/i* dz'*
vt =  (,.2 _

where r and are the radial and axial directions respectively. The superscript (*) 

denotes dimensional quantities. The flow solver uses non-dimensional quantities, so 

it is more convenient to use this expression in the form

0
Rei dp 
4/i dz

(2.41)

where
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' " ^ k ’

and l* is a characteristic length, for example the overall length of the pipe. Here 

the reference conditions are taken as the conditions at the centre-line of the inlet. 

A subscript oo is retained here to denote such conditions in order to follow the 

convention used in section A.2 . The Mach number and Reynolds number of the 

flow considered correspond to low speed laminar flow: M^o ~  0.01 and Rei =  500 .

2.4.3 Grid generation

The grid generation for this test case is straightforward. Two single block grids 

were used. Details of the grid dimensions and spacings are summarised in Table 

2.1. The grids used are shown in Figures 2.3 and 2.4. The flow is in the direction of 

increasing The grids are refined slightly towards the wall because of the higher 

viscous stresses expected in this area.

Name Dimensions Grid spacing at wall

Grid A 1 5x2 5 0.010

GridB 31 X 51 0.005

Table 2.1: Grids used for Poiseuille flow test case

2.4.4 Boundary and initial conditions

At the outlet, the pressure is imposed at a value of p =  1.0 and the density and 

velocity components are extrapolated from the interior. At the inlet, the velocity is 

imposed using the analytic expression (2.41) normalised to unity at the centreline. 

The density is imposed at p =  1.0, the flow being incompressible, and the pressure 

is extrapolated from the interior. The walls are modelled as being adiabatic with 

no slip; the velocity components are set to zero and the pressure and density are 

extrapolated from the interior. The following initial conditions were used throughout 

the domain: p = 1.0, Vr ~  0.0, =  1.0, p = 1.0.
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2.4.5 Results

Solutions were obtained successfully using both grids. The convergence criterion 

used was the reduction by eight orders of magnitude of the L2 norm of the residual. 

The rate of convergence was slow in both cases, taking around 8000 work units in 

to ta l\ This was expected when using a compressible flow solver for such a low 

speed flow, but is unimportant here where we are interested solely in the accuracy 

of the solution. The solutions obtained with the coarser grid A are identical to those 

obtained with grid B therefore the solutions can be considered grid converged. The 

pressure coefficient at every cell centre is plotted in Figure 2.5 for the calculations on 

both grids. This clearly shows features which correspond with the analytic solution: 

there is a constant pressure gradient in the axial direction and no radial pressure 

variation. Figures 2.6 and 2.7 show the calculated velocity profile for grids A and B 

respectively. Both are compared with the exact solution for the calculated pressure 

gradient. There is excellent agreement between the theory and the calculation. The 

computed profiles shown were taken from central sections; any section could have 

been used because the profile does not change along the pipe.

Here we are concerned with axisymmetric flow. The analytic solution for planar 

Poiseuille fiow[52] is similar but the maximum velocity is twice the magnitude of 

the axisymmetric case for the same axial pressure gradient. Planar Poiseuille flow 

has also been calculated using PMB2D, see [55]. The same approach was used as 

above and again very good agreement with theory was obtained. This underlines 

the important role played by the ‘additional’ viscous terms (section 2.2.7) in an 

axisymmetric formulation.

2.5 C onclusions

In this chapter the adaption of a two-dimensional flow solver to axisymmetric flows 

has been described. The equations for axisymmetric flow have been presented in 

full. It has been demonstrated how the axisymmetric flow equations can be cast in 

a form very similar to that of the two-dimensional equations. The equations can

work unit corresponds to the CPU time for 1 explicit time step
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test case

then be solved using essentially the same numerical scheme, the only alteration be

ing the introduction of source terms to account for axisymmetry. The introduction 

of the discretised source terms into the implicit scheme is also presented, the in

viscid parts are treated implicitly and the viscous parts explicitly. The simple test 

case of laminar Poiseulle flow through a pipe was examined. Excellent agreement 

between theory and computational results was obtained. The accuracy of the res

ults establishes confidence in the axisymmetric viscous treatment. In Chapters 3 

and 4 the axisymmetric flow solver is applied to engineering and scientific problems. 

In each case comparison is made between experimental and computational results. 

Section 3.4 includes an example of the performance advantage obtained by using an 

axisymmetric solver over a fully three-dimensional method.



C hapter 3 

Engineering Evaluation: Forebody  

and B ase Flows

3.1 Introduction

The engineer’s choice of aerodynamic analysis method has always been a trade-off 

between the cost of implementing the method and the accuracy of the results ob

tained. When faced with the task of evaluating multiple configurations the engineer 

would like to base conclusions on the results of exhaustive wind tunnel testing, 

but must usually employ a less expensive method. The purpose of this chapter is 

to evaluate the axisymmetric flow solver described in Chapter 2 as a tool for the 

aerodynamic analysis of engineering problems. Two classes of flow problem are con

sidered, axisymmetric forebody and base flow. For these problems it is likely that a 

large number of configurations over a wide range of fiow conditions would be con

sidered in an evaluation study, so the performance gains of an axisymmetric over a 

three-dimensional flow solver are important. A number of test cases for which ex

perimental data is available will be examined. Accuracy, robustness, speed and pre- 

and post-processing effort required will be assessed, with emphasis on the potential 

for routine calculation.

■I
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3.2 O N E R A  B1 and B2 ogive cylinders

3.2.1 Description of test cases

The ONERA B1 and B2 test case configurations appear frequently in the literature 

as benchmark test cases for slender-body supersonic flow, see for example [56]. Data 

from the original wind tunnel tests and from other computations are available for 

comparison. These are therefore useful test cases for code validation.

ONERA B1

The ONERA B1 configuration consists of a pointed convex forebody continued tan- 

gentially by a circular cylinder of diameter D. The forebody is of length 3D and is 

described by the arc of a circle of radius 9.25D. The test conditions reported from 

the original experiment are as follows:

Laminar flow 

Preestream Mach number, Mqo =  2.0

Reynolds number, Reo  =  0.16 * 10® 

Preestream stagnation pressure, ptoo = 50 * 10^Pa  

Preestream stagnation temperature, Ttoo =  330RT

Wall temperature, ~  315iP {adiabatic) 

Incidence, a  =  0°

ONERA B2

The ONERA B2 geometry is very similar to that of the Bl. The convex forebody is 

described by a parabolic profile, equation (3.1) rather than a circular arc. Again the 

forebody is of length 3D. The test conditions reported from the original experiment
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are as follows:

Turbulent flow 

Fixed transition dX z /D  

Preestream Mach number,

Reynolds number, R cd 

Preestream stagnation pressure, ptoo 

Preestream stagnation temperature, Ttoo 

Wall temperature,

Incidence, a

0.15 

2.0

1.2 *  10®

120 * 10®Fo 

300PT

285A' (adiabatic) 

0^

r
D \ d ) 18 \ d J (3.1)

3.2.2 Grid generation

The grids used in this study were standard grids supplied by ONERA as part of 

a GARTEUR workshop. Two grids were supplied for each case, the coarser inten

ded for inviscid (Euler) calculations and the finer for viscous calculations. Details 

of the grids are summarised in Table 3.1. Grid Blc, the coarser grid for the Bl 

case, is shown in Figures 3.1 and 3.2. The other grids are very similar. All of the 

grids include a small nose boom, one cell in width, of very small but finite radius 

(1.0xl0~^D). This feature was intended to aid contributors to the workshop using 

three-dimensional fiow solvers which would not handle the singularity at the nose. 

It was not needed here, but was retained since experiments using a modified grid 

with the nose boom removed showed that it has no effect on the solution.

Name Dimensions Grid spacing on cylinder surface
Blc 61 X 53 1.74 % 10-2 j3

B lf 61 X 85 2.00 * 10-4

B2c 61 X 53 1.74 * 10-2 D

B2f 61 X 85 2.50 * 10~® D

Table 3.1: Grids used for ONERA B l  and B2 test cases

a
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I
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Figure 3.1: Euler grid, ONERA B l test case

Figure 3.2: Nose region detail of Euler grid, ONERA B l test case
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3.2.3 Boundary and initial conditions

AU variables were extrapolated from the interior across the outflow boundary. The 

wall boundary was modelled as being adiabatic with no slip. A characteristic-based 

far-field boundary condition was employed at the remaining two domain boundaries.

3.2.4 Results

Solutions were obtained for all four cases: inviscid (Euler) calculations for B l and 

B2, laminar Navier-Stokes for B l and Reynolds-averaged Navier-Stokes with k ~ u  

turbulence model for B2. A summary of the calculations performed is shown in 

Table 3.2. Included in this table are the CPU times for each calculation on a Silicon 

Graphics Indy R6000. In each case, the calculation was considered converged when 

the L2 norm of the residual had reduced by eight orders of magnitude. Convergence 

histories for each case are shown in Figures 3.3 to 3.6. The B l Euler calculation 

was also attempted using an explicit treatment for the axisymmetric inviscid terms 

to examine the effect of the implicit treatment, see Section 2.3.2. In order to obtain 

a solution it was necessary to use twice as many explicit steps before switching 

to the implicit scheme, and the implicit CFL number was limited to 50, rather 

than a value of 250 used in the calculation shown. As a result the overall time 

taken for the calculation was increased by 50%. This supports the present method 

where the implicit treatment is used. The Bl Euler case has also been examined 

using a fully three-dimensional version of the present method. The calculation 

takes approximately 100 times as long and requires 50 times as much memory. The 

solutions are identical. This clearly demonstrates the utility of an axisymmetric flow 

solver.

Calculation Grid used CPU time

B l, Euler Blc 50 s

B2, Euler B2c 47 s

Bl, Laminar B lf 288 s

B2, Turbulent B2f 822 8

Table 3.2: Summary of calculations for ONERA B l  and B2
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Figures 3.7 to 3.12 show the calculated values of pressure coefficient, skin friction 

coefficient and local axial force. Comparison is made with experimental data [57] 

where possible and otherwise with other computations [58]. Table 3.3 shows a 

summary of the calculated total axial force coefficients: Cap denotes the pressure 

component, Ca/  the viscous component and Ca is the total.

Calculation Cap Caf Ca

Bl, Euler 0.0953 - 0.0953

B2, Euler 0.0947 - 0.0947

Bl, Laminar 0.0985 0.0511 0.1496

B2, Turbulent 0.0982 0.1310 0.2292

Table 3.3: Summary of calculated axial force coefficients

Good agreement was obtained with the experimental values of pressure coefficient 

for the Bl case, see Figure 3.7. The calculated skin friction coefficient curve, see 

Figure 3.8, agrees well with the ONERA computational results over the forebody. 

However, the two curves begin to diverge downstream, and at z fD  — 15 the ONERA 

computation predicts nearly twice as much skin friction. The calculated local con

tribution to the axial force for the B l case. Figure 3.9, shows up the same differences 

between the results i.e. a good match for the pressure component and a poor match 

for the viscous component. The axial force coefficient values quoted in Table 3.3 are 

calculated as the area underneath the local axial force curves. The good agreement 

of the pressure values with experiment shown (and with ONERA pressure results 

not shown) is encouraging from the point of view of verification of the flow solver. 

It is not possible at present to say much about the skin friction results since we 

only have the results from two computations, although the difference in results is 

disappointing.

The calculated pressure coefficient for the B2 case matches the experimental 

values very well over the forebody, but over the remainder of the surface the com

putational results seem to be offset slightly, see Figure 3.10. Comparison with the 

ONERA results for Cp values is not shown, but the agreement is very good. The cal

culated skin friction coefficient curves for the present calculation and from ONERA



model. Comparing the local contribution to the axial force for the B2 case with the

be relatively more important. This is a trend that we expect since the B2 case is 

turbulent with a higher Reynolds number.

3.2.5 Numerical implementation of the turbulence model

-#
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are in fairly good agreement, see Figure 3.11. Note that the k — u  turbulence model 

was used for the present calculation, and ONERA used a Baldwin-Lomax turbulence

B l case. Figures 3.9 and 3.12, for the B2 case the effect of viscous drag appears to

In the present method, a number of explicit (backwards Euler) iterations are per

formed before switching to the implicit scheme with a high, constant CFL number 

(say 250). Experience has shown that this is an effective way of initiating the calcu

lation. During this explicit stage in the turbulent B2 calculation the scheme became 

unstable. This seemed to be caused by the appearance of small and negative values 

of k and w. Other workers have also experienced such difficulties in the initial stages 

of a calculation when using two- and one-equation turbulence models [36], [59], [60], 

[61]. The various remedies reported apply specifically to implicit schemes. Here the 

problem arises during the explicit stage, and the straightforward remedy of limiting 

the values of k and w to be no less than the freestream values was applied. These 

limits were only used during the explicit stage. Figure 3.5 shows a convergence 

plot of the calculation. It is noted that the number of explicit iterations required 

is relatively large and that the residual for the turbulent quantities is small in the 

initial stages. An explicit CFL number of 0.4 was used here for both the mean flow 

and the turbulence equations. In an attempt to speed up the calculation by making 

the turbulent quantities do more work, the calculation was re-run using an explicit 

CFL number of 0.4 for the mean fiow equations and 0.6 for the turbulence equations. 

Figure 3.6 shows a convergence plot of the calculation. In this case less explicit steps 

were required and the overall CPU time for the calculation was reduced by nearly 

20%.

When using an implicit scheme and a two- or one-equation turbulence model, 

the treatment of the source term Jacobian arising from the time linearisation of the 

updates for the turbulent quantities is reported to be important for stability, partie-

I
1

:
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ularly during the initial stages of the calculation[36],[54],[59],[60],[61]. As discussed 

above, in our case the initial instability problem is dealt with during the explicit 

stage. The effect of the suggested modified implicit schemes was investigated in any 

case for the B2 problem. The modified schemes all involve some variation of the 

tiurbulent source term Jacobian in the form of neglecting off-diagonal terms, varying 

the size of coefficients or altering the terms in the matrix according to sign changes. 

The modified schemes showed no improvement, either regarding robustness (the 

number of explicit steps required was unchanged) or speed of convergence.

3.2.6 Conclusions

The axisymmetric version of PMB2D has been successfully applied to two super

sonic slender-body aerodynamics problems. The results have been compared with 

experimental data and computational data from other sources. The agreement with 

other data is good. Together with other successful applications of the code to this 

type of fiow [62], this gives confidence in the accuracy of the code for this type 

of problem. Some useful insights into the numerical implementation of the k — uj 

turbulence model have also been gained. An implicit treatment of the inviscid part 

of the axisymmetric source term allows larger time steps to be used than an expli

cit treatment, and hence reduces run-time. The axisymmetric flow solver has been 

demonstrated to be significantly faster than a fully three-dimensional method, and 

also requires much less memory.

3.3 G A R T E U R  B ase Flow

3.3.1 Description of test case

The aerodynamics of the base region strongly influences the drag of a projectile. 

However, reliable prediction of base flow for the wide range of possible condi

tions (and geometric configurations) that a designer may wish to examine has still 

to be attained. Semi-empirical and multi-component methods are very useful in 

this field but the time-averaged Navier-Stokes approach is the most credible and 

promising[63],[64]. However, despite the apparent suitability of a Navier-Stokes ap-
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Figure 3.13: Mach number contours for ONERA B2 test case

proach to this type of aerodynamically complex problem results of studies to date 

have not always been quantitatively satisfactory[63]. Recent studies[36],[37],[65],[66], 

[67], have indicated the importance of grid generation and turbulence modelling . 

In particular, the algebraic Baldwin-Lomax turbulence model is dismissed as wholly 

inappropriate for base flows and the results for A: — e models and variations are better 

although inconsistent. Some improvement is reported through the use of more soph

isticated turbulence models[36]. The present study aims to evaluate the ability of 

the present method, which uses a. k — uj turbulence model, to provide accurate base 

flow predictions by examining a test case particularly designed for Navier-Stokes 

flow solver validation. At the same time the robustness of the present method, the 

effort required by the engineer in its application and the overall calculation time are 

kept in mind since accuracy is not the only consideration of the designer operating 

in a commercial/ industrial environment.

AFTERBODY TEST CASE IB: CONICAL BOAT-TAIL

The afterbody geometry consists of a short cylindrical section followed by a conical
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boat-tail at 6  ̂ to the cylinder’s surface and one cylinder diameter D in length. The 

geometry and test conditions are described in detail in [68]. The flow conditions are 

summarised as follows

Fully turbulent flow 

Freestream Mach number, Moo =  0.35

Reynolds number, iîCD =  1.54*10® 

Freestream stagnation pressure, ptoo =  10®Pn 

Freestream stagnation temperature, Ttoo =  330A

Incidence, cr =  0"

3.3.2 Grid generation

The grids used for previous numerical studies of this test case [64] vary widely in 

fineness, topology, stretching and far-field boundary extent. In addition, grid con

vergence checks were absent from these studies. In the present work, the far-field 

boundary extent was set at the largest values used in the previous studies (15 dia

meters downstream of the base and 5 diameters normal to the axis of symmetry). 

In order to determine the number of grid points to use, the number of points in 

each direction from the coarser grids in [64] was noted, and a grid with four times 

as many points in each direction was constructed. Successively coarser grids were 

then obtained by extracting points from this very fine grid, see Table 3.4. This 

hierarchy of grids formed the basis of the grid convergence study, see Section 3.3.4. 

The finest grid used here has more than twice as many points as any used in the 

previous studies. Figure 3.14 shows the coarse grid.
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Figure 3.14: Coarse grid used for GARTEUR afterbody IB

Number 

of points

Grids used : 

a.{very fin e ) b (/m e) c{m edium ) d{coarse)

Along base 121 61 31 16

Along boat-tail 161 81 41 21

Along symmetric line 281 141 71 36

Normal to symmetric line 281 141 71 36

Total 105163 26583 6793 1773

Table 3.4: Summary of grid dimensions

3.3.3 Boundary and initial conditions

The boundary layer thickness at the inflow boundary is included in the report of 

the experimental results[68]. In order to obtain values to impose at the inflow 

boundary for the main calculation, a short preliminary calculation was performed 

using the same conditions on a cylindrical body to simulate the flow upstream of the 

afterbody. At the axial position where the calculated boundary layer has grown to
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the reported thickness the values were extracted and used for the inflow condition 

of the main calculation. All of the flow variables are imposed except the pressure 

which is extrapolated from the interior since the flow is subsonic. A description of 

how the inflow boundary condition was tackled in the previous calculations was not 

included in their respective reports. The conditions at the remaining boundaries are 

more straightforward. The wall boundary was modelled as being adiabatic with no 

slip. Symmetry was imposed along the axis of symmetry and a characteristic based

far-field boundary condition was employed at the remaining two domain boundaries.

The calculation was initiated from freestream conditions in order to obtain the
'

coarse grid solution. This solution was used as the initial condition for the sub

sequent medium grid solution and so on. In this way the calculations on the finer 

grids were initiated from already ‘good’ conditions thus reducing overall run times.

' i
3.3.4 Results

Results were obtained on the coarse and medium grids without any problem. How

ever, on the two finer grids it was not possible to obtain a solution without altering 

the turbulence model implementation in an attempt to circumvent an instability 

problem. The solution would proceed apparently normally before becoming unstable 

in the vicinity of the free stagnation point and crashing. The initial manifestation 

of this instability is a sharp increase in the calculated turbulent kinetic energy pro

duction term P* (see Section B.2). A variety of alternative turbulent source term 

Jacobian matrices, see Section 3.2.5, were implemented in an attempt to improve 

stability with no success. In order to obtain a solution, the ratio of production to 

dissipation P^/D ^ was limited. Using the fine and very fine grids the maximum 

value of this ratio resulting in a stable solution were 1.7 and 1.6 respectively. Note 

that for the coarser grid calculations (and for calculations on the finer grids em

ploying first-order convective accuracy) this ratio could reach 4.0 in the converged 

solutions. Figure 3.26 shows a contour plot of this ratio for the solution on the 

medium grid. The highest values occur at the beginning of the boat-tail on the 

cylinder, in the free shear layer and in the recirculation region. Imposing a limit 

on this ratio forces a reduction on the amount of turbulent kinetic energy in the

',iîf

I
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flow and aids stability in the vicinity of the free stagnation point. Note that at the 

free stagnation point the ratio becomes negative. In addition, a stable solution was 

also obtained on the fine grid by ‘freezing’ the turbulent quantities at their values 

20 iterations before the failure and continuing to update the mean flow quantities 

normally. The justification for this is that before the solution becomes unstable 

the residuals for the mean flow and turbulent quantities have already decreased by 

more than three orders of magnitude, the calculation having been initiated from the 

medium grid solution, so the turbulence field should be a reasonable approximation 

to the ‘real’ solution. At the least a solution obtained in this way provides a useful 

comparison with the solution obtained by using a limit as described above.

Figure 3.15 shows the calculated pressure coefficient distribution along the sym

metric line using all four grid levels. The results shown for the fine and very fine grids 

are those obtained with the production-dissipation limit described above. Figure 

3.16 shows how the calculated pressure coeflScient distribution along the symmetric 

line for the ‘frozen turbulence’ and ‘limit’ calculations on the fine grid differ slightly. 

Fi'om these figures it is clear that a grid converged solution has not been obtained. 

It is not possible to blame the differences between the fine and very fine grids solely 

on the uncertainty caused by the limit used in the calculation. To help indicate 

whether the grid hierarchy should be sufficient to obtain grid independent results, 

laminar calculations were also performed. The calculated pressure coefficient dis

tributions along the symmetric line are shown in Figure 3.17. These are also not 

grid converged. The calculated pressure coefficient along the base compared with 

experimental data is shown in Figure 3.18. These results again indicate that grid 

independence has not been achieved and also show poor agreement with experiment. 

The present pressure coefficient results are similar to the numerical results presented 

in [64] regarding the location of the maximum and minimum pressures on the sym

metric line and generally poor prediction of the base pressure. The present study 

has strongly indicated the necessity of performing a grid independence study, raising 

considerable doubt over the validity of computational results obtained without the 

benefit of such a study even before possible modelling shortcomings are considered. 

Previous experience and CFD results from other researchers had suggested that the 

grids used here would be sufficiently fine so the lack of grid independence is disap-
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pointing. To complete the study an even finer grid should be used, although solving 

the instability problems noted above is perhaps a higher priority.

Figures 3.19 to 3.24 show the calculated axial velocity and turbulence kinetic 

energy profiles for the medium and fine grids compared with experimental data. 

Figures 3.25 and 3.27 show the calculated pressure and velocity vector field for the 

medium grid respectively.

The initial calculation performed on the coarse grid took 18 minutes for the resid

ual to converge by 8 orders of magnitude using a Silicon Graphics R5000 processor. 

The medium and fine grid calculations required 1 hour 17 minutes and 3 hours 20 

minutes to converge by 4 orders of magnitude on the same machine. The very fine 

grid calculation required 6 hours 2 minutes to converge by four orders of magnitude 

using a 200MHz Intel Pentium Pro processor. The strategy used for obtaining initial 

conditions is explained in Section 3.3.3. The convergence criteria used here in terras 

of residual levels are conservative. The overall execution time for these analyses 

is therefore very reasonable using widely available desktop computing power. For 

this case the problem geometry and grid topology are straightforward so the time

required for preprocessing should also not be excessive. It is reasonable to conclude 

that the necessary effort and time required to perform this, type of analysis for base

i:

flows with the present method should not be restrictive to the design or evaluation 

engineer.

3.3.5 Conclusions

The present method has been applied to an axisymmetric base flow test case de

signed specifically for the validation of Navier-Stokes flow solvers. The issue of grid 

convergence has been shown to be very important for this type of flow. Validation 

of the present approach has been hampered by numerical instability thought to be 

due to the implicit treatment of the source term in the k — u) turbulence model. The 

results which have been obtained are in reasonable agreement with calculations by 

other researchers. The promise of this type of analysis for base flow problems has 

been underlined. The potential for relatively inexpensive and fast calculations has 

been demonstrated.

I■•'ï
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Figure 3.15: Symmetric line pressure coefficient, IB

3.4 D iscussion

In this chapter the applicability of the present method to aerodynamic problems of 

interest to industry has been assessed. Test cases representative of two classes of 

problem, namely missile forebody and base flows, have been examined. It should be 

noted that other types of problem, for example aerofoil flows, have been examined 

elsewhere[31], [32], [34].

It has been demonstrated that the present method performs well for supersonic 

missile forebody calculations involving strong oblique shocks. This conclusion is 

drawn not only from the results presented in this chapter but also from [62] where 

a range of forebody geometries and freestream Mach number were considered. The 

calculations were performed using widely available desktop computing power on a 

timescale measured in minutes. In contrast, a calculation performed using a three- 

dimensional flow solver achieved the same results, but took approximately 100 times 

as long and requires 50 times as much memory.

Application of the method to base flow proved more problematic. Although
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Figure 3.25: Pressure contours, IB

i

Æ



60 Forebody and Base Flows

Highest values

Figure 3.26: P * /D t contours, IB

it is still possible to obtain solutions relatively quickly, the method is not robust 

due to an instability associated with the implementation of the k — uj turbulence 

model. Before the method can be applied routinely and with confidence to fiows 

of this type this shortcoming must be redressed. An improved implicit treatment 

of the turbulent source term may provide the solution to the robustness problem. 

On a more fundamental level, the deficiencies of two-equation turbulence models 

including the Boussinesq approximation are well known, see for example [54],[69]. 

The k — UJ turbulence model gives accurate results for two-dimensional boundary 

layer flows. However, when the normal components of the Reynolds-stress tensor 

become non-negligible compared to the shear components, such as in flows with 

boundary layer separation and sudden changes in shear strain rate, the Boussinesq 

approximation becomes inaccurate. It is therefore unlikely that close agreement with 

experiment can be obtained for base flow problems, as seen in the present results. 

This obvious disadvantage has to be seen in the correct context. Simpler analyses, 

using semi-empirical methods or CFD with an algebraic turbulence model, give
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Figure 3.27: Velocity vectors, IB

less accurate results in general and/or require case-dependent fine tuning. A CFD 

analysis employing a more advanced non-linear turbulence model entails prohibitive 
added complexity.

For axisymmetric problems of this nature a bottleneck in the analysis process 

often associated with other aerodynamic problems is avoided; grid generation is 

straightforward due to the relatively simple geometries. An engineer familiar with 

a structured grid generation tool should be able to construct a grid within a few 

hours, or modify an existing grid within a few minutes. The post-processing stage of 

an analysis is now also straightforward due to the wide availability of accomplished 

software for this purpose. For missile forebody and base flows the pre- and post

processing associated with the present method should not impede the engineer who 

requires routine and efficient analyses. For the calculation of axisymmetric forebody 

flows the present method therefore fulfills the criteria of accuracy and efficiency. 

Before the present method can be used with the same confidence for base flows 

further refinement of the numerical method is necessary, although the potential of
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a Navier-Stokes flow solver for these demanding problems is clear. At present, a 

standard two-equation turbulence model provides a good balance between accuracy 

and complexity.



C hapter 4 

Scientific Investigation: Shock  

R eflection  H ysteresis in an  

U nder expanded Jet

4.1 Introduction

4.1.1 Under expanded Jets

A jet is said to be underexpanded if the gas pressure at the nozzle exit is greater than 

the ambient pressure. When this pressure ratio is large, the jet is said to be highly 

underexpanded and the jet plume is characterised by a complex repeated shock 

structure. Many examples of real aerodynamic flows where knowledge of the beha

viour of this type of jet is necessary can be found in the literature. Rocket exhausts 

at high altitude may have highly underexpanded plumes. The study of such flows 

is important for predicting propulsive efficiency and plume signatures[70],[71],[72]. 

Experimental studies are also important for the validation of CFD codes which 

are used extensively in plume signature prediction work [71]. Vehicle manoeuvring 

thrusters may also give rise to underexpanded plumes[70],[71]. Proposed scramjet 

engine designs include supersonic underexpanded fuel injectors for which detailed 

modelling of the mixing process is required[73]. The behaviour of highly underexpan

ded jets must be understood for accurate consequence and risk assessment studies

__
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for accidental and operational releases of high pressure gas [74]. Underexpanded ex

haust plumes interacting with the freestream may arise in aeropropulsion testing in 

wind tunnels[75]. An appreciation of underexpanded jet plume structures is import

ant for the problems of plume-surface and plume-plume interaction and avoiding 

wall interference when studying thruster nozzles in ground facilities like vacuum 

chambers[76]. Supersonic underexpanded jets are used in experiments to exam

ine the aeroacoustic properties of strong shock cell structures [77]. Underexpanded 

hypersonic jets are used to study aerothermodynamic characteristics of hypersonic 

vehicle models in wind tunnels [78]. The same paper includes a very comprehensive 

account of how underexpanded jets are used in experimental and numerical studies 

of nonequilibrium thermo- and gasdynamic processes in hypersonic flow. The ex

perimental studies of Crist[70] and Abbett[79] established the basic wave structure 

of a highly underexpanded jet plume and that regular or Mach reflection may occur 

depending on the conditions. The method of characteristics has been employed by 

many authors[79], [80] ,[81], [82] in an attempt to develop predictive models for the 

core expansion and Mach disc location.

A phenomenon associated with low density highly underexpanded jets which has 

yet to be fully understood is shock reflection hysteresis as reported by Welsh[71]. 

For a (laminar) nitrogen jet exhausting from a nominally Mach 3 nozzle a set of 

conditions exist at which either regular or Mach reflection may occur depending on 

the history of the plume development. Since the reflection type strongly influences 

the interaction of the jet with its environment an understanding of the phenomenon 

and definition of the hysteresis loop limits are important. Quantitative experi

mental investigation of this problem, aside from being expensive, suffers from probe 

interference with the jet structure, necessitating the development of non-intrusive 

measurement techniques[71]. However, these promising methods have yet to reach 

full maturity and the potential of a CFD analysis is clear, providing the motivation 

for this study.
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4.1.2 Shock Reflection Hysteresis

The existence of a hysteresis effect in the type of reflection of a two-dimensional 

oblique shock wave at a wall or symmetric line has been established in recent years. 

The reflection of the oblique shock wave may take the form of a regular reflection 

(RR) or Mach reflection (MR). The type of reflection which occurs depends on the 

Mach number upstream of the incident shock and the shock angle. However, there 

is a dual solution domain where either type may occur and the solution exhibits a 

hysteresis effect. A summary of the elements of this topic which are of interest to 

this study is included in section 4.2.

4.1.3 CFD and Underexpanded Jets

Axisymmetric Euler and Navier-Stokes solvers have been used to obtain solutions for 

underexpanded jet plumes with impressive results, see for example[73],[74],[83],[84].

These calculations demonstrate good agreement with experiment for a wide range 

of conditions using parameters such as Mach disc location and centreline velocity 

and are reported to capture the complex wave structure in detail. No CFD study of 

the hysteresis phenomenon in underexpanded jets has been found. The hysteresis 

phenomenon associated with two-dimensional shock reflection has been successfully 

modelled numerically, see section 4.2. In this case the crucial quantities (upstream 

Mach number and incident shock angle) are relatively easy to control and model 

correctly in a computational approach. However in the case of shock reflection in the 

underexpanded jet, these quantities are inherent parts of the calculation rather than 

being “set” a priori. All of the interacting features of the complex flow field must
.

be resolved accurately, making this problem far more demanding. The application 

of a Navier-Stokes flow solver to shock reflection hysteresis in an underexpanded jet 

is described in section 4.3, with the objective of contributing to the understanding 

of this type of flow by combining the known features of two-dimensional shock 

reflection (see section 4.2) with the detailed solutions provided by a CFD analysis.

The axisymmetric flow solver described in Chapter 2 will be used. In Chapter 3 it 

was demonstrated how the axisymmetric flow solver has a considerable performance 

advantage over a three-dimensional flow solver. This feature is important to the

■a;
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present problem in particular and to jet plume studies in general since multiple 

solutions are typically required over a wide range of parameters, for example the 

ratio of nozzle exit and ambient pressures.

4.2 T w o-D im ensional Shock R eflection  H ysteresis

4.2.1 Introduction

Two different types of shock wave reflection, now known as Regular Reflection (RR) 

and Mach Reflection (MR), were first recorded by Ernst Mach in 1878. Analytic 

models for RR and MR were first developed by von Neumann in the 1940s. The 

existence of a hysteresis effect in the transition between types was first suggested in 

1979[85]. Subsequent experimental[86] and numerical studies[87],[88],[89] have since 

confirmed the existence of the phenomenon. These references together with review 

papers[90],[91] provide an extensive introduction to the topic of shock reflections and 

associated phenomena. This chapter summarises the parts of the above references 

relevant to the main study of underexpanded jets for which it is useful to introduce 

the theory and terminology of the two-dimensional case, and leans particulary on 

[86] and [90]. In addition, the current explanation for the hysteresis phenomenon is 

discussed. An attempt is made to fill the gaps in the explanation by applying the 

principle of minimum entropy production.

4.2.2 Shock Reflection Types

Schematic diagrams of the Regular and Mach reflection types are shown in Figure 

4.1. In the figures, i is the incident shock wave, r is the reflected shock wave, m is the 

Mach stem and s is the slip line. The reflection and triple points are labelled R  and 

T respectively. and are the incidence angles of i and r respectively. Oi, Or and 

6m are the flow deflections on passing through i, r and m respectively. The regular 

reflection, as shown in Figure 4.1(a), consists of an incident and reflected shock wave 

meeting at point R  on the reflecting surface. The incidence angle cf>i is small enough 

such that the flow deflection caused by the reflected shock wave is sufficient to cancel 

that caused by the incident shock wave. In this way the condition of flow tangency
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Figure 4.1: Schematic diagrams of (a) regular reflection and (b) Mach reflection
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Figure 4.2: Pressure-deflection diagrams



Oi~ Or =  Ojn

P2 — P3,T (4.2)

4.2.3 The Dual Solution Domain

of all possible solutions (1) when the free-stream state (0) is deflected through an 

angle 6 via an oblique shock wave. Similarly, the R  polar represents the locus of all 

possible solutions (2) when the free-stream (1) is deflected through an angle 9 via

;'!ï
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at the reflecting surface is maintained. Thus the boundary condition for RR is

9i — Or — 0 ('4.1)

The Mach reflection type, shown in Figure 4.1(b), consists of incident and reflected 

shock waves, a Mach stem and a slip line, all of which meet at the triple point, The 

Mach stem is perpendicular to the reflecting surface and may curve as shown to 

become concave as viewed from upstream. The flow being processed by the Mach 

stem may be considered to form a buffer region between the flow tangency condition 

at the reflecting surface and a detached regular reflection which cannot maintain this 

condition on its own. The flow behind the Mach stem is subsonic. The net flow

deflection behind the triple point is in general non-zero. Note that since the Mach 

stem is curved the conditions in region (3) are non-uniform; conditions behind the

Mach stem in the vicinities of R  and T  will be denoted with the subscripts s,r 

and respectively. Since flow on either side of the slip line must be parallel, the 

boundary conditions for a Mach reflection are

It is important to note that equation (4.1) considers local conditions in the vicinity 

of R  only. In the same way equations (4.2) consider local conditions in the vicinity 

of T. To apply these relations globally the shock waves i and r  and slip line s must 

be straight, implying regions of uniform flow.

Graphical solutions in the pressure-deflection (p — 9) plane, which are obtained from 

oblique shock theory [92], are useful for understanding shock-wave phenomena, and 

in particular the conditions for which each reflection type is possible. Figures 4.2 

are examples of (p — 9) diagrams. In these figures, the I  polar represents the locus

I
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an oblique shock wave. In the figures 9i is increasing as we progress from Figure 

4.2(a) to Figure 4.2(e). The RR boundary condition (4.1) implies that the solution 

of a regular reflection is at a point where the R  polar intersects the p-axis, i.e. 

where 9 is zero. Figure 4.2(a) shows two such points; the higher pressure point is 

observed to be unstable in experiments[86] and has been shown to be aphysical[93], 

a result which will be discussed in Section 4.2.6. Consequently, conditions at (2) 

are represented by the point RR. The MR boundary conditions (4.2) imply that the 

solution of a Mach reflection is at a point where the I  and R  polars intersect, e.g. 

Figure 4.2(e), States (2) and (3) of Figure 4.1(b) map onto the point MR indicated, 

state (2) being on R  and state (3) on the I  polar.

Three interesting cases which lie between those discussed above are shown in 

Figures 4.2(b) to 4.2(d). First, reconsider the case represented by Figure 4.2(a). If 

the upstream Mach number is held constant but the angle (j>i is gradually increased 

then the solution point RR moves up the p-axis until the condition represented by 

Figure 4.2(b) is reached. Since at this point both polars and the p-axis intersect, 

both RR and MR solutions are possible. The smallest incident shock angle for which 

MR is possible for a given upstream Mach number is represented at this point (except 

in the special case of Inverted  Mach Reflection as discussed below). This condition 

is known as the von Neum ann criterion. As (j)i is increased further the situation 

represented by Figure 4.2(c) occurs. The R  polar intersects both the /-polar and 

the paxis, so again both RR and MR solutions are possible although in this case 

with different values of p and 9. This figure represents typical solutions in the dual 

solution domain. The second limit of the dual solution domain is represented by 

Figure 4.2(d) where has been further increased such that the R-polar is tangent 

to the paxis. The largest incident shock angle for which RR is possible for a given 

upstream Mach number is represented at this point. This condition is known as the 

detachment criterion. Any further increase in (j)i results in the situation shown in 

Figure 4.2(e) where the /Z-polar no longer intersects the pax is so only MR is now 

possible.

As noted above, the von Neumann condition is at present accepted as the lower 

pressure limit to the dual solution domain. Recall that this condition is represented 

in the (p, 9) plane by Figure 4.2(b). If from this condition the incident shock angle
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Figure 4.3: Domains of possible reflection types

is increased then RR is observed, see Figure 4.2(a). Hornung[90] discusses the 

alternative of Inverted  Mach Reflection (IMR): if we consider that the flow may 

be deflected away from the wall by MR, i.e. 9m in Figure 4.1(b) is negative, then 

this would be represented in the (p, 0) plane by the point IMR in Figure 4.2(f). 

The curvature of m  is then necessarily convex as seen from upstream in order to 

achieve this deflection. Note that an IMR always has the alternative of a RR. The 

reflection type observed in experiment is RR unless it is suppressed by raising the 
downstream pressure, in which case the IMR occurs[90],[94]. This phenomenon has 

yet to be fully explained, and will be returned to in Section 4.2.6.

4.2.4 Analytic Solutions in the Dual Solution Domain

Analytic solutions for RR, MR the von Neumann and detachment criteria will be 

used in this study. They are readily obtained using the arguments of Section 4.2.3 

and oblique shock theory, making certain simplifying assumptions for the MR calcu

lations. Their calculation is straightforward and is outlined here for completeness. 

Figure 4.3 indicates the location of the dual solution domain in the {Mo,(pi) plane. 

The overlap region where both RR and MR are possible is clearly shown.
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Oblique Shocks

A result of oblique shock wave theory (see for example [95]) is that for any given 

ui>stream Mach number Mo the same flow deflection 0 can be achieved via two 

distinct straight shock solutions, provided that 9 is less than the maximum deflection 

possible 9max- This result is demonstrated in Figure 4.4 where the curve is the locus 

of all possible solutions in the {9,ff) plane when a free-stream of Mach number Mo is 

deflected through an angle ^ by an oblique shock wave at angle p  to the free-stream. 

The solution corresponding to the larger value of P is termed the ‘strong’ solution 

since the changes across the shock are more severe than for the ‘weak’ solution at 

the shallower angle. The density, pressure, Mach number and temperature changes 

across an oblique shock are given by

P i (7 +  1) M ^ sin̂  p
Po (7 ~  1) ^ 0  /? +  2

(4.3)

l  + p - l )  (4.4)
Va 7

^0 Po Pi
(4.6)

where (0) and (1) denote conditions before and after the shock respectively and 7 

is the ratio of specific heats. The flow deflection 9 due to the oblique shock is given 

by

M ^ s in ^ P - ltan 9 — 2 cot P (4.7)
M q  (7 + c o s  2/?) -F 2

Thus given the upstream conditions and shock angle p  the downstream conditions 

can be calculated in a very straightforward manner.

Regular R eflection

A regular reflection solution involves two oblique shocks. Referring to Figure 4.1(a), 

the conditions at (1) and the deflection 9i are calculated using the oblique shock
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Figure 4.4: Weak and strong solutions in the (9,13) plane

relations, see directly above. To calculate the conditions at (2), (f>r is obtained by 

invoking the condition (4.1) and solving equation (4.7). It is not possible to solve for 

directly so a simple iterative procedure (such as a bisection method) is required. 

Note that the ‘weak’ solution is assumed normally to be correct in the absence of 

additional boundary conditions (see Section 4.2.6). Figure 4.5 includes the pressure 

ratio P2,rr/pq  for various Mq within the dual solution domain, the subscript RR 

referring to the regular reflection type discussed here. Note that in the figure each 

curve extends from (f)i =  (j)f on the left of each curve to <j)i =  (j>f on the right.

T h e  D etachm en t C rite rio n

For a given free-stream Mach number Mg the incident shock angle (f)̂  corresponding 

to the detachment criterion (see Section 4.2.3) is obtained by gradually increasing 

when calculating a RR until the solution for r  can no longer be achieved. The 

variation of ç!if with M q is shown in Figure 4.3.
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Figure 4.5: Pressure ratios across shock reflections in dual solution domain 

T he von N eu m an n  C rite rio n

For a given free-stream Mach number Mq the incident shock angle <f)̂  corresponding 

to the von Neumann criterion (see Section 4.2.3) is obtained by first calculating the 

pressure behind a normal shock. For some small value of (f>i a RR solution 

is then calculated; the pressure p2 behind r  should be less than p^^R. (j>i is then 

gradually increased until p2 equals p^^R. The variation of (f)f with Mq is shown in 

Figure 4.3. Note that for Mq < 2.20 the von Neumann criterion does not exist.

M ach R eflection

Referring to Figure 4.1(b), a first guess for the conditions at (2) and (3,T), for 

which the boundary conditions (4.2) apply, is obtained by calculating the pressure 

behind T  if m  is locally normal to the flow, i.e. by taking ps^R as an initial guess 

for ps^T- The deflections 9rn and 9r are then calculated for this pressure value using 
equation (4.7) with equation (4.4), the conditions at (0) and (1) being known. The 

pressure pq t̂  is gradually decreased until the conditions (4.2) are true. Note that 

this analysis gives a ‘Mach reflection solution’ in that the gasdynamic conditions at 

(0),(1),(2) and (3) are known. However, note that the length of m  and its inclination
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comes vanishingly small. The most complete explanation to date for the hysteresis 

is provided by Hornung[90] and is summarised below.

A feature of MR not present in RR is the existence of a characteristic length,

I
%

between R  and T  are not calculated. A more involved approach has been used[96] to 

estimate the length of m  with some success. Regarding the conditions in region (3), 

note that this analysis yields two sets of conditions here; conditions (3,T) behind T  

which uphold the MR boundary conditions, and conditions (3,R) behind R  where 

m  is normal to the free-stream. Figure 4.5 includes the pressure ratios P2,mr/po I
and Pq/po for various M q within the dual solution domain. Note that P2,m r / P q and

P s ,t / p o are equivalent due to condition (4.2). Note also that P2,m r / p q and Pq^r/pq 
’

diverge by only a very small amount; in Figure 4.5 their respective curves are all 

but identical.

4.2.5 The Hysteresis Phenomenon
_

Pressure-deflection maps provide useful illustrations of how a dual solution domain 

can occur. However, when more than one reflection type is possible no clue is given 

by these maps as to which mode actually occurs. The existence of a hysteresis ef

fect in the shock reflection type in the dual solution domain was first postulated by 

Hornung[85]. A number of relatively recent experimental studies have contributed 

to the understanding of this type of flow[85], [92], [94], [97] culminating in the first ex

perimentally recorded shock reflection hysteresis[86]. Figure 4.6 shows schematically 

a typical experimental set up for examination of this problem. Wave diagrams for 

(a) Regular Reflection and (b) Mach Reflection are also shown. Recent numerical 

studies have also predicted the phenomenon[87],[88],[89],[98]. If the dual solution 

domain is approached from a condition for which only RR may occur, then RR per

sists until the detachment criterion is reached where the reflection type flips to MR. 

Likewise, if the dual solution domain is approached from a MR condition, then MR 

persists until the von Neumann condition is reached where the reflection type flips 

to RR. Figure 4.7 shows a schematic representation in the plane, Im being

the length of the Mach stem m, and w being the length of the wedge from leading 

to trailing edge. Note that as the von Neumann condition is approached, be-

I

!
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(a)

777777777

(b)

Figure 4.6: Use of a wedge shock generator for (a) regular reflection and (6) Mach 

reflection experiments
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Figure 4.7: Schematic illustration of the hysteresis loop in the (4>i,lm) plane

namely the length of the Mach stem. In the absence of mechanisms which may 

provide a characteristic length scale such as viscous effects, heat dissipation and 

relaxation, the length scale must be provided by the geometry of the boundary 

conditions. The obvious candidate is the length w from the leading to trailing edge of 

the wedge creating the incident shock. Such a wedge has been used in all experiments 

to date. The inform ation condition requires that for MR to occur an information 

path must be open from the trailing edge of the wedge to the interaction area in 

order to transmit the characteristic length information. This information path is 

provided by an expansion from the trailing edge reaching the subsonic area behind 

the Mach stem. The transition criteria are then explained using this condition. An 

information path does not exist in the case of RR, thus when the dual solution 

domain is approached from a RR condition, the RR persists until the detachment 

criterion is reached. An information path is open in the case of MR, thus when the 

dual solution domain is approached from a MR condition, there is no impediment 

to MR occurring so it persists until the von Neumann criterion is reached.

This description of the mechanisms causing the hysteresis does not seem com

plete. The explanation for the persistence of RR until the detachment condition is

h

I
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reasonable, and is the only one to be suggested as yet in the literature. Here a new 

alternative explanation is proposed, based on upstream boundary conditions. Refer

ring to Figure 4.1(b), a boundary condition for MR is that conditions immediately 

upstream of the contour formed by the i,m  shock front are freestream conditions. 

The equivalent RR configuration satisfies this condition, so RR can conceivably oc

cur spontaneously from the MR configuration (within the dual solution domain). 

However, referring to Figure 4.1(a), a boundary condition for RR is that conditions 

immediately upstream of the contour formed by the i shock front are freestream 

conditions. The equivalent MR configuration does not satisfy this condition, so MR 

cannot occur spontaneously from the RR configuration.

There is as yet no explanation for the persistence of MR, it has only been ex

plained how there is no impediment to MR; it has not been explained why the MR 

should persist in preference to RR. An explanation for the MR persistence symmet

rical to the RR persistence arguments would require an identified impediment to 

the existence of RR when an MR condition exists within the dual solution domain. 

An alternative approach is the possibility that when either RR or MR is possible, 

MR may be the preferred solution. Note that such an argument would not contra

dict the above explanations for the persistence of RR (where MR is impeded). An 

explanation of why MR is preferred would then constitute an explanation for the 

persistence of MR, i.e. for one half of the hysteresis loop. The principle of minimum 

entropy production will be applied to this problem in Section 4.2.6 in an attempt 

to contribute to the explanation of the hysteresis phenomenon.

4.2.6 The Principle of Minimum Entropy Production

The principle of minimum entropy production[99] states that if more than one steady 

state solution is compatible with the problem boundary conditions then nature 

prefers the solution of minimum dissipative structure i.e. the observed solution is 

that with the minimum rate of entropy production. The principle has been applied 

to the deflection of supersonic flow by wedges to explain the prevalence of ‘weak’ 

over ‘strong’ shock solutions[93],[100j. By extension, the prevalence of ‘weak’ over 

‘strong’ regular reflections, a problem already mentioned in Section 4.2.3, has also



ns

4.2 Two-Dimensional Shock Reflection Hysteresis___________________ 79

been explained using this principle[93]. Pseudo-steady shock reflection (as opposed 

to the steady shock reflections considered in this work) has also been examined 

using the principle[101]. Thus a precedent clearly exists for using the principle to 

help explain phenomena associated with shock wave reflections. Encouraged by this, 

the principle will be applied below to two shock reflection phenomena which have 

not yet been fully explained, namely why the von Neumann criterion is the lower 

pressure limit on the dual solution domain and IMR is not normally observed (see 

Section 4.2.3) and the persistence of MR in the hysteresis loop (see Section 4.2.5). 

As a preliminary, the principle is first re-applied to supersonic flow deflection and 

regular shock reflections.

Supersonic Flow Deflection

If a supersonic free-stream of Mach number M q is deflected by a wedge at incidence 

9 to the free-stream {9 being less than the shock detachment angle) then oblique 

shock theory admits two solutions (see Section 4.2.4). For an ideal gas[102]

ds = C pd ln T  ~ R d ln p  (4.8)

where s denotes entropy. This can be integrated directly to yield

Si — So =  Cpdln'— ’- R d l n — (4.9)
-lq P o

which is an expression for the increase in entropy when an ideal gas is changed from

state (0) to state (1) by some process. Here Cp is the specific heat at constant

pressure and R  is the specific gas constant. If the process is an oblique shock, then 

equations (4.3) to (4.6) can be substituted into equation (4.9) to obtain

7 — 1
Si — So =  Cy ^ 7 ln 

4" In

+
. (7 +  1) Mq sin 7 +  1

27 w 2 • 2.0 7 - 1-Mq sin j3 (4.10)_7 +  1 7 +  1_
where Cy is the specific heat at constant volume. Figure 4.8 shows the entropy 

increase across an oblique shock calculated using this expression for various free

stream Mach numbers Mq with air as the working gas. It is evident that the entropy 

increase across the shock increases with shock angle, as might be expected. The
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‘strong’ oblique shock solution has a greater shock angle than the ‘weak’ solution, 

and hence has a greater associated entropy rise. This can be stated as

strong ^  ^^weak (4.11)

If J  is the shape of the reflected shock wave front then the rate of entropy production 

S  across the shock is given by[93]

S  = J  poUosml3{si — so)dw (4.12)

where dw is a differential line element along J. In this case the shock wave is straight

and the entropy increase across the shock does not change along J. Since the total 

mass flow rate must remain constant (the upstream conditions (0) are not influenced 

by the reflected shock angle) an increasing entropy jump across the shock implies 

increasing entropy production. Thus condition (4.11) implies

^strong ^  (4.13)

and by the principle of minimum entropy production the ‘weak’ solution is the stable 

i.e. physical solution.

As noted in Salas[100] the principle of minimum entropy production explains the 

prevalence of ‘weak’ over ‘strong’ oblique shock solutions in the simple deflection of 

supersonic flow, but does not disprove the possibility of a ‘strong’ shock solution 

if the downstream pressure is given as a boundary condition. The principle of 

minimum entropy production applies only when multiple steady states occur which 

satisfy the same boundary conditions. Thus in this case for a fixed Mq and 0 from 

oblique shock theory both ^strong and could occur but the principle indicates 

Pweak’ However if the downstream pressure is given as a boundary condition then 

the boundary condition set has changed and the only possible solution is some 0 

which satisfies the pressure.

Regular Reflection

As has been mentioned in Section 4.2.3, two possible RR solutions exist when (f)i < 

(f)f. This situation is represented in the (p, 0) plane in Figure 4.2(a). The two 

possible solutions, at the points where the R  polar intersects the p axis, arise because
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Figure 4.8: Increase in entropy across an oblique shock
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Figure 4.10: Entropy increase across RR and oblique part of MR in dual solution 

domain

two values of reflected shock angle d>r,weak and d>r,strong can achieve the Or necessary 

to satisfy the RR boundary condition (4.1). This situation is clearly very similar 

to supersonic flow deflection (see directly above) and the result is the same; the 

principle of minimum entropy production predicts that for a given M q and (j)i the 

‘weak’ solution is observed since it entails a lower rate of entropy production. The 

entropy increase As =  S2 — so variation with <j)i for various Mq across an RR with 

a ‘weak’ reflected shock is shown in Figure 4.9. That the entropy increase in each 

case would be greater for a ‘strong’ solution is evident from Figure 4.8 if 

are substituted for j3 and Mq. Note that the possibility of a ‘strong’ RR has not 

been disproved, see the end of Section 4.2.6.

In v erted  M ach R eflection

As has been discussed in Section 4.2.3, why the von Neumann condition should mark 

the lower pressure end of the dual solution domain and IMR is not normally observed 

has yet to be fully explained. In this and in subsequent sections the conditions in 

region (3) behind R  will be denoted with the subscript 3 rather than with 3̂  ̂ to 

shorten the notation. Note that the conditions in region (3) behind T  are equivalent
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Figure 4.11: Entropy increase across Mach stem part of MR in dual solution domain

to those in region (2) behind r  in the cae of MR so the subscript notation 3̂7- is now 

discarded. Figures 4.10 and 4.11 show the calculated entropy increases across a 

regular reflection (gg.ÆÆ -  sq) and the oblique {s2,mr — Sq) and Mach stem (53 -  sq) 
parts of a Mach reflection within the dual solution domain for a representative range 

of Mach numbers M q . Each curve extends from the von Neumann — ( p f ) to the 

detachment { ( p i  —  ( p f )  condition. Note that for each M q ,  (S3 — s q )  is greater than 

both { s 2 , r r  — S q )  and { s 2 , m r  —  s q ) .  Note also that at the von Neumann condition 

{s2,RR — Sq) and (s2,mr — Sq) are identical (because the Mach stem has vanished) 

and that { s 2 , r r  —  S q )  increases more sharply with incident shock angle i.e.

d { s 2 , R R  —  S q )  ^  d { s 2 , M R  ~  ^o)
d(pi d(pi

For (pi < (i.e. where an IMR is theoretically possible) this trend continues since

( p r , M R  must be greater than the corresponding (p r^ R R  in order to achieve the negative 

flow deflection. As a consequence for <  ( p f  the entropy increase across both parts 

of the MR is greater than that across the corresponding RR. This can be written as

{s2,MR — > {s2,RR —

I
I

(4.14)
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The expression (4.12) for the rate of entropy production for an oblique shock is 

adapted here for the entropy production rates for regular and Mach reflection

S rr = /  P2,RRU2,RRSin {<l>r,RR ~ Ot̂ Rr) {s2̂ RR — SQ)dWr,RR (4.15)
djr.HR

SmR ~  / P2,MiiW2,MR sin {(f>r,MR ~  ^r,MR) {S2,MR “  8o)(^^r,MR

+  /  PoWo(s3 -  So)dWjn (4.16)
d  Jm

where Jt,rr  ̂ Jt,m r , Jm are the shapes of r  (in RR and MR) and m  respectively; 

dWr^Rji, dWr̂ MR and dwm are their respective differential line elements. Note that in 

these expressions all sources of entropy production other than the incident shock, 

reflected shock and Mach stem are neglected. The total mass flow rate for a given 

Mo and (pi must be equal for RR and MR. However, not all of the flow is processed by 

the shock system (see Figure 4.6). We make the assumption that the same amount of 

flow is processed by our simplified models of the RR and MR systems. This is exactly 

true at the von Neumann condition and appears to be a good approximation in 

the vicinity of this condition from flow visualisations[85], [86], [92]. This assumption 

provides a continuity equation

/ P 2,R R U 2 ,R R  sin {(pr ,RR ~  ^r.iïJî) d W r ,R R  = 
d Jr.RR

j  P 2 ,M R '^ 2 ,M R S ^ '^ { ( p r ,M R ~  O r ,M R ) d W r , M R +  I  P o U o d W m  (4.17)
d Jr,M R d Jffi

From equations (4.15) and (4.16) the entropy production rate is the product of 

mass flow rate and entropy increase integrated across the shock system. Since the 

entropy increase across both parts of the IMR is greater than across the RR (see the 

inequalities (4.14)) and the total mass flow rate is the same in each case (see equation

(4.17)), then we can conclude that the IMR entropy production rate is greater than 

the RR, regardless of the proportions of the total mass flow being processed by by 

the MR components. This is stated as

Hence by the principle of minimum entropy production RR is the observed solution.
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The possibility of suppressing the RR to obtain the IMR does not violate this 

result for the same reasons as discussed in Section 4.2.6. In the present case for a 

fixed Mq and both IMR and RR could occur from oblique shock theory but the 

principle selects RR. However if the downstream pressure is given as a boundary 

condition then the set of boundary conditions has changed and the principle does 

not apply. According to Hornung[92], if RR is impeded by setting the downstream 

pressure to a high value then IMR may occur, explaining the results of Henderson[94] 

where IMR was observed.

Shock Reflection Hysteresis

As discussed in Section 4.2.5, the persistence of MR in the dual solution domain 

i.e. for one half of the hysteresis loop has yet to be fully explained. In this section 

it will be argued that the MR may have a lower entropy production rate than the 

RR, and hence by the principle of minimum entropy production MR is the observed 

solution.

Figures 4.10 and 4.11 show the calculated entropy increases across a regular 

reflection {s2,rr  — Sq) and the oblique {s2,mr ~  ^o) and Mach stem (53 -  Sq) parts of 

a Mach reflection within the dual solution domain. From these figures it is evident 

that within the dual solution domain the entropy increase across the oblique part of 

the MR is less than that across the RR, but the entropy increase across the Mach 

stem is greater. This can be written as

(«3 -

(4.18)

We would like to compare RR and MR entropy production rates. In this case to do 

this we must also examine the relative proportions of mass flow processed by each 

MR component. Expressions for S r r  and Sm r  ̂ the rates of entropy production for 

RR and MR respectively, are given by equations 4.15 and 4.16. If we make the 

further assumption that these shocks are straight then the expressions simplify to

S r r  =  p2,RRU2,RRBm { ^ r ,R R  “  &r,RR) (S 2 ,R R  ~  S q )  l r ,R R  (4.19)
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S m R =  p2,M RU 2,M R Sin {(f)r,MR ~  ̂ r.AfJî) {S2,MR ~  «o) It,M R +  PqUq (S3 —  S q )  Im

(4.20)

where Iv,rr , It,m r , and Im are the lengths of r  (in RR and MR), and m  respectively. 

To help us examine this, we define A, B and C as follows

A =  P2,RRU2,RR sin {(f>r,RR — Or,RR) (^2,ER “  ^o)

B =  PqUq (sa — So) (4.21)

C =  p2,MRU2,M R sin {(f>T,MR ~  Ot,M r)  {s 2,MR ~  S q)

then equations (4.15) and (4.16) become respectively

S r r  =  A l r ^ n R

S m R = +  Clr,MR (4.22)

Figure 4.12 shows the variation of the parameters A, B  and C with (f>i within the

dual solution domain for a free-stream Mach number Mq =  4.96 for which =

30.9°. The significance of this particular condition is explained later. As illustrated 

in Figure 4.7 a feature of the von Neumann condition is that the length of the Mach 

stem m  has become vanishingly small; the RR and MR are effectively identical 

(Irn = 0, (l)r,RR — (/>r,MR)- This Can be seen in Figure 4.12 where A(<^f ) =  C{(j>f) as 

a consequence. On increasing <f)i, A increases more quickly than C. Within the dual 

solution domain the principle of minimum entropy production has the potential 

for allowing selection of the prevailing reflection type. However, as is clear from 

equations (4.19) and (4.20), knowledge of the shock wave lengths as well as the 

quantities A ,B ,C  is required in order to make a direct comparison between S r r  

and S m r -  Introducing a relationship between the total mass flow rates through the 

RR and MR aids clarification. Assuming that the mass flow through the RR is the 

same as that through the MR and that the shocks are straight, equations (4.19) and 

(4.20) become

P2,RRU2,RR sin {(j)r,RR ~  ^t,RR =  +  P2,MRU2,MR sln {(f>r,MR ~  ^ t,M r)  ^r,MR

(4.23)
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We want to show that MR is the observed solution by the principle of minimum 

entropy production i.e.

S r r >  S m r  (4.24)

Combining this condition with equations (4.21),(4.22) and (4.23) gives a geometric 

condition for the prevalence of MR in the dual solution domain in terms of the 

gasdynamic conditions

Im ^  P2,RRU2,RR sin ((f)r,RR {^2,RR ~ S2,Mr ) (4 25)
ir ,RR Po'fJ'O (̂ 3 —  S2,Mr )

It is not possible to evaluate the LHS of this expression using the present analysis. 

Experimental results for shock reflection hysteresis at Mq ~  4.96 have been presen

ted in [86]. The same problem has also been studied numerically[87],[88],[98]. Prom 

these results it is possible to extract a value for lmllr,RR within the dual solution 

domain and test the condition (4.25). However, it is useful to recap on how this 

expression was obtained. In particular, two important simplifying assumptions have

been made:

T he to ta l m ass flow ra te  th ro u g h  th e  R R  and  M R  a re  equivalent. As shown 

in Figure 4.6 the expansion around the trailing edge of the wedge interacts with the 

reflected shock wave. Some of the flow which is processed by the incident shock is 

not processed by the reflected shock. As the Mach stem grows the inclination and 

length of the reflected oblique shock changes. As a result, the proportion of the flow 

processed by the reflected oblique shock is different for RR and MR.

Sources of en tropy  p ro d u c tio n  o th e r th a n  shock waves are  neglected. The

entropy production due to the interacton of the reflected shock with the expansion 

is assumed to be equivalent for RR and MR i.e. does not influence comparisons of

entropy production rates.

The errors associated with these assumptions increase on departing from the von 

Neumann condition. They are difficult to quantify; from flow visualisations[85] ,[86],[92] 

the lengths of the reflected shocks in the dual solution domain do not appear to differ
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greatly for RR and MR but this does not provide sufficient justification for identi

fying some range of ÿ, in the vicinity of for which condition (4.25) is valid, 

even before taking into account errors associated with measuring and It

is therefore difficult to investigate whether the condition (4.24) is true for even one 

particular set of conditions.

Directly comparing S r r  and S m r  on a reliable basis using the present approach 

is therefore not possible. However, it is still possible to make use of the fact that 

our assumptions are exact at the von Neumann condition. If condition (4.24) is true 

for the dual solution domain then the condition

must also hold since

(4.27)

Noting that for MR any increase in the mass flow through the Mach stem due to 

its growth entails a corresponding reduction in the mass flow through the reflected 

shock i.e.

- ^ { P 2 , M R U 2 , M R ^ ^ ^  {(f>r,MR ~ ^t,Mr) It,Mr) +  ^^(pO^^oC) =  0 (4.28)

then after some manipulation equations (4.19),(4.20) and (4.26) yield

\ ^  ^  f \ I Po^o(^3 — S2,Mr)  dim
\ S 2 , R R ~ S q) >  ■j T~{^2 , M R ~  So)

d(f>i ’ d(j)i ’ p 2 ,R R U 2 ,R R S m ( ( f ) r ,M R  — O r ,M R ,) lr ,R R d ( l) i

(4.29)

which is valid only at the von Neumann condition. If h i n  is the distance between 

the leading edges of the two symmetric wedges {hin/ 2 is then the distance from the 

wedge leading edge to the symmetric line/reflecting surface in Figure 4.6) then we 

have simply

d(f>i 2 d(j)i

Equation (4.29) then becomes

d  \  ^  d   ̂  ̂ P qU o { s 3 — S 2 , M R ) { h i n l 2 )
- r r [ S 2,RR —  5 o )  >  -JJ-{S2,MR "  -S o )  H----------------------------  f , -----------------------------Q-----------------Ÿ,-------------------------T 7 -----------

d(pi  d (p i  p 2 ,R R 't^ 2 ,R R S m {Ç r^ M R  — d r , M R ) l r , R R

(4.30)
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0

The quantity poUo{hin/2) is the total mass flow rate between the wedge and the 

symmetric line. The quantity p2,RRU2,RR^i'^{4>r,MR -  O r,M R .)lr ,R R  is the total mass 

flow rate across the reflected oblique shock. Their ratio, which we denote ratiofi^w, 
can be estimated from experiment along with the quantity / d(f)i. All other

quantities in this expression can be obtained from our simplified analysis. The 

quantities pertaining to condition (4.30) for the von Neumann condition Mq — 4.96, 

cj)f = 30.9° are summarised in Table 4.1. Note that the necessary geometric values 

extracted from experimental data are deliberately estimated on the side of a high 

RHS to this condition in order to avoid uncertainty in this conclusion^P rom  this 

analysis the condition (4.30) is demonstrated to be true, and therefore condition

(4.24) is true in the vicinity of the von Neumann condition for Mq — 4.96.

I
Note that for the experiment referred to here the dual solution domain was found 

to terminate a few degrees before the detachment condition. It is possible that at this 

point the condition (4.24) is no longer true. An observation from [86] which supports 

this is that / d(j)i increases on departing from the von Neumann condition.

The present simplified approach is not adequate to conclusively demonstrate whether 

the principle of minimum entropy production can explain the persistence of MR as 

part of the hysteresis loop. However, the above result can at least be regarded 

as evidence which supports this idea. A conclusive analysis would require at least 

accurate experimental measurement of shock wave lengths. An alternative approach 

could be to directly measure the entropy production from numerical results.

4
      "..

This estimate is taken from the flow visualisations in [86]. Prom these images between 40% 
and 50% of the total mass flow is processed by the reflected oblique shock. Here a value of 30% is 
assumed to ensure a valid conclusion.

^Estimated from the straight line part of Figure 10(a) in [86]. Using the least-squares fit would
yield a smaller value.
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Figure 4.12: Variation of parameters A^B^C in dual solution domain for M q =  4.96

'^^{s2,RR -  So) 1.2478

-^.(s2,MR "  -®o) 0.6675

(S3 — S2,Mh) 0.5116

r atio fiofji) 3.3333^
 ̂ (. fm \ d<Pi ^hin/2/ 0.28432

LHS of (4.30) 1.248

RHS of (4.30) 1.152

Table 4.1: Values for condition (4-30) at M q ~  4.96, (f)  ̂=  30.9®

4.2.7 Discussion

The principle of minimum entropy production has been applied to some shock wave 

and shock reflection phenomena in an attempt to explain experimental observations.
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First, the conclusions of other authors who examined supersonic flow deflection and 

regular shock reflection were restated to establish that a precedent for this type of 

approach exists. It was then demonstrated how the principle can be used to explain 

why the well known von Neumann criterion marks one limit of the shock reflection 

dual solution domain and Inverted Mach Reflection is not normally observed. It 

is then suggested that the phenomenon of shock reflection hysteresis has yet to be 

fully explained; that the principle of minimum entropy production may provide an 

explanation for the persistence of Mach reflection when the dual solution domain is 

approached from a Mach reflection condition is proposed. The difficulties associated

with applying the principle to this problem are discussed. Some evidence supporting
'

this theory is presented for one particular hysteresis case for which experimental data 

is available. Some recommendations are made for continued study of this problem.

4.3 N um erical M ethod

4.3.1 Flow Solver

a

i
,.îïl
I

In this section, it is described how an axisymmetric (laminar) Navier-Stokes flow 

solver has been used to study the phenomenon of shock reflection hysteresis in an 

underexpanded jet. The results of this study will be examined in the light of the 

understanding of the two-dimensional hysteresis phenomenon established in section 

4.2. The flow solver used is described in Chapter 3.

For this study it is assumed throughout that the working gas is in the continuum 

regime with no condensation and has constant specific heats. These assumptions are 

verified in a straightforward manner. The extremities of pressure, temperature etc. 

experienced in the experiments can be obtained from [71]. The Knusden number 

based on the shock cell length was calculated [103] [104] as being less than 0.15 at 

all times. The continuum Navier-Stokes equations hold up to Knusden numbers of 

0.2 [105] so we are just within the continuum regime. Based on the experiments re

ported in [106] the present cases are also condensation free. Despite the high Mach 

numbers and strong shock waves encountered in the experiments the gas temper- 

ature remained relatively low at all times, well below the levels where molecular

f
I
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dissociation or vibrational excitation become important [105]. These assumptions 

are confirmed by the Hypersonic Aerodynamics Group at DERA Farnborough where 

the experiments were carried out.

4.3.2 Boundary Conditions

Figure 4.13 shows a diagram of the computational domain with labelled boundary 

condition types (the size of the nozzle is exaggerated for clarity). The boundaries 

labelled A  denote adiabatic wall boundaries with no slip and zero normal pressure 

gradient. At R a symmetry condition was applied. To decide which boundary 

conditions to apply at C  we have the advantage that across all of this boundary 

we know that we should have outflow. In keeping with an inviscid characteristic 

analysis, the flow variables are extrapolated from the interior of the domain except 

for the case of locally subsonic outflow where the pressure was imposed at the 

background level. Two alternative treatments were tested and rejected. First, all of 

the flow variables were extrapolated across all of the boundary. This significantly 

impaired convergence in regions of subsonic outflow. Secondly, the background 

pressure was imposed across all of the boundary. This did not impair convergence 

but did result in significant spurious oscillations in regions of supersonic outflow. 

The boundary condition treatment at the nozzle inlet D  requires a somewhat more 

involved treatment. We know the reservoir stagnation conditions (denoted here 

by r) but require boundary conditions for the nozzle inlet i. This is achieved by 

assuming that the total enthalpy and entropy are the same for the reservoir and 

nozzle inlet, thus obtaining expressions for pf and pi which are imposed. The velocity 

components are extrapolated from the interior of the domain. Note that assuming 

constant entropy s implies a constant entropy measure S  defined by

For convenience the non-dimensionalisation is constructed such that

Pr =  1, Pr =  -  (4.31)
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are the values of density and pressure respectively in the reservoir. The reservoir 

sound speed, total enthalpy and the entropy measure are then

1 1
( 7 - 1 )  7

We now have two conditions to impose at the inlet i :

The velocity components U( and Vi are extrapolated from the interior of the domain. 

The inlet density and pressure are then

Pi
1 _ 

ft =  -P i

For the boundary condition treatment at E  the background stagnation conditions 

are known but the flow direction is not known a priori. This being similar to 

the nozzle inlet boundary treament, the boundary conditions here are treated in 

the same manner except that background conditions are used instead of reservoir 

conditions in equation 4.31.

It is possible to construct a Riemann invariant based boundary condition treat

ment for the boundaries at C and E  analogous to that commonly used as a “far-field” 

condition for aerofoil flow studies. However the present approach was found to be 

adequate and its implementation straightforward in the framework of the existing 

flow solver. One more boundary condition was used; as described below, calcula

tions were also carried out concerning only the nozzle flow. At the nozzle outlet, 

where the flow is supersonic except in the boundary layer, all flow variables were 

extrapolated from the interior of the domain.
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D

Figure 4.13: Boundary conditions

4.3.3 Initial Conditions and Quasi-Steady Approach

As a first step to studying the full problem a preliminary calculation for the nozzle 

only was carried out. Using a linear variation from reservoir to Mach 3 conditions 

along the axis from the inlet to the outlet as initial conditions was found to consid

erably reduce the calculation time compared with using uniform reservoir or sonic 

conditions. The solution from this calculation was used as the initial solution in 

the nozzle for the main calculation, and the calculated nozzle exit conditions were 

used as the initial conditions for the domain directly downstream of the nozzle exit. 

For the remainder of the domain the background conditions were applied as initial 

conditions. Calculations were performed over a range of pressure ratios from well 

inside the regular reflection range to well inside the Mach reflection range including 

the hysteresis loop. A quasi-steady approach was employed in order to account for 

time history effects. First, converged solutions were obtained for the conditions at 

the extremities of the range of interest. These were used as initial solutions for a 

calculation with a small change in pressure ratio, thus beginning to traverse the



4.3 Numerical Method 95

range, this solution being used subsequently as the next initial solution etc. By 

using a small step change in pressure ratio between calculations this approach is 

very robust and converges quickly at each condition, as shown in Figure 4.14. Here 

it should be noted that the scaling residual used in the figure, the residual after the 

first step, is already small. A reduction of just over two orders of magnitude in the 

residual was found to be sufficient for the step size used. Further convergence did 

not alter the solution. This usually required around 100 steps to achieve^ but may 

require up to 500 steps when a switch in shock reflection type occurs. By contrast, 

obtaining a converged solution (without the aid of a close initial solution) for the 

end points of the pressure ratio range is far more demanding, requiring approxim

ately 30 times the computational effort. The step change in pressure ratio used is 

2.857, corresponding to a step change in reservoir stagnation pressure of 0.1 torr for 

a background pressure of 35 mtorr in terms of the original experiments.

'0.2

20 40 60
Iterations

80 100

Figure 4.14: Convergence behaviour at each step

4.3.4 Grid

The grid generation for this case is straightforward due to the simple geometry. The 

computational domain extends 70 nozzle throat diameters downstream in order to

^corresponding to a CPU time of 950 seconds on a 200MHz Intel Pentium Pro processor
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capture at least two shock cells and 20 diameters radially from the symmetric line. 

The grid within the nozzle consists of 58 and 21 points in the axial and radial dir

ections respectively, this number having been determined from a grid convergence 

study carried out independently of the plume calculations. The plume calculations 

were also performed using a number of grids. The effect of the radial extent of 

the computational domain was examined by comparing results for calculations with 

gi’ids extending 20 and 40 nozzle throat diameters from the symmetric line. The 

results are identical, see for example Figure 4.15. It was also found that the grid 

density in the radial direction can be surprisingly coarse compared to the axial dir

ection, 65 points being sufficient. In order to obtain a grid converged solution, the 

necessary axial grid density was much finer. Results were obtained for three different 

levels of axial grid fineness, see Table 4.2. Using the grid convergence measure of 

the calculated limits of the hysteresis loop, a grid converged solution was obtained 

using 937 points in the axial direction. Centre-line values were also checked for grid 

convergence, see Figure 4.16. For any given pressure ratio the grid is excessively fine 

in places, but since the location of the shock reflections vary widely with pressure 

ratio and the same grid was used in each case this was unavoidable.

0.03
20  d iam eters —  
40 d iam eters  —0.028
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Figure 4.15: Effect of radial extent of domain for Pr/Pb =  285.7
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Figure 4.16: Result of grid convergence study for Pr/pb =  285.7

No. points Lower limiR Upper lim ifi

along axis Pr/Pb X /D Pr/Pb X /D

469 200.0 1 1 202.9 14.10 11 13.14 434.3 11 437.1 21.02 1 1 18.81

937 214.3 1 1 217.1 14.55 11 13.41 334.3 11 337.1 18.32 1 1 16.50

1405 214.3 1 1 217.1 14.55 11 13.41 334.3 11 337.1 18.32 1 1 16.50

Table 4.2: Grid independence study for hysteresis loop

4.4 R esults

4.4.1 Nozzle Calculations

Welsh [71] describes a series of experiments where the effect of varying the ratio of 

reservoir stagnation pressure p^ to background pressure Pb on the plume of a highly 

underexpanded nitrogen jet is examined. The reported shock reflection hysteresis 

phenomenon provided the motivation for this CFD study. In the experiments Pr

 ̂first value is highest pressure ratio not on MR curve, second is lowest ratio in loop 
f̂irst value is highest pressure ratio in loop, second is lowest ratio not on RR curve
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was varied and pi, was kept constant. In this way the nozzle exit conditions as well 

as the pressure ratio were varied. In addition, experiments were carried out for a 

number of values of pb and for two different nozzle sizes. It is difficult then to isolate 

the effect of the varying pressure ratio. For these reasons, as a preliminary to the 

nozzle-plume study, it is useful to perform calculations for the nozzle alone in order 

to examine the effect of the nozzle Reynolds number on the nozzle exit conditions. 

This will help to put subsequent nozzle-plume calculations and comparison with 

experiment in their proper context.

Calculations were performed for a range of reservoir stagnation pressures, from 2 

t(yrr to 70 torr  ̂ covering the range used in the experiments. The reservoir stagnation 

temperature To is constant at 288.OK and the two throat diameters used are 5.19 

m m  and 15.3 mm. The Reynolds number based on throat conditions Re can then be 

calculated for each assuming sonic conditions at the throat, using the isentropic 

relations and Sutherland’s law for viscosity. The variation of Re with pressure ratio 

for each nozzle is shown in Figure 4.17. The present CFD method was then used to 

obtain results for the nozzle flow for a range of Re.

The calculated variation of the maximum nozzle exit Mach number Mexit with 

throat Reynolds number Re is shown in Figure 4.18. The crosses in the figure, 

which have been joined by straight lines, indicate the twenty calculation points. 

Calculated pressure contours for Re =  800 are shown in Figure 4.19. As expected, as 

Re decreases so does Mexit, caused by the displacement effect of the boundary layer 

decreasing the effective area of the divergent section of the nozzle. The thickness of 

the boundary layer can be visualised from the Mach number plot Figure 4.20. The 

magnitude of the trend confirms that for each of the experiments the nozzle exit 

conditions vary significantly.
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Figure 4.17: Reynolds number variation with stagnation pressure

2.8

2.75

2.7

2.65

2.6

S  2.55

g

I
2.5

2.45

2.4

2.35
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T hroat Reynolds N um ber ( Re )

Figure 4.18: Effect of throat Reynolds number on maximum nozzle exit Mach number

..

 .



100 Shock Reflection Hysteresis in an Underexpanded Jet

Figure 4.19: Pressure contours, nozzle calculation, Re = 800.0

Figure 4.20: Mach number contours, nozzle calculation. Re ~  800.0
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4.4.2 Hysteresis Loop

The calculated shock reflection type and distance variation with- pressure ratio is 

shown in Figure 4.21. The Reynolds number was kept constant, as discussed below. 

The shock reflection distance is the axial distance {Xsr) from the nozzle exit to the 

centre of the first centre-line regular reflection or Mach disc, non-dimensionalised 

with respect to the nozzle throat diameter {D). The figure shows how for a small 

range of pressure ratios either regular reflection (RR) or Mach reflection (MR) may 

occur. Which condition prevails depends on the time history of the plume devel

opment, in accordance with experimental observation. Selecting, for example, the 

pressure ratio value of 300 in Figure 4.21, the corresponding point on the RR(MR) 

curve will be reached if the condition immediately prior was also on the RR(MR) 

curve. The arrows on the figure indicate the “flip” in reflection type which occurs 

at the limits of the hysteresis loop. From this figure it can be concluded that the 

quasi-steady approach (section 4.3.3) has been successful, at least qualitatively, in 

modelling the shock reflection hysteresis phenomenon. A description of the plume 

structures associated with RR and MR is included in section 4.4.3.

Figure 4.22 shows the extent of the calculated hysteresis loop compared with 

the data from experiments[71]. The scatter in the experimental results should be 

explained. Each experiment was carried out with a constant background pressure 

and varying reservoir stagnation pressure, with the result that the nozzle Reynolds 

number is not constant. This is illustrated in Figure 4.17 which shows the effect of 

the varying stagnation pressure on the throat Reynolds number for the nozzles used 

in the experiment. The effect of a varying nozzle Reynolds number on the maximum 

exit Mach number for these nozzles is shown in Figure 4.18. Thus for each of the 

experiments it is difficult to examine the effect of a varying pressure ratio when the 

Reynolds number and nozzle exit conditions are not constant.

With this is mind, the present calculations were performed with a constant throat 

Reynolds number of 4000 and a varying pressure ratio, which in effect models varying 

background pressure and constant nozzle conditions, thus enabling examination of 

the pressure ratio influence independently. Although we cannot expect close agree

ment with the experiments for this reason, we can at least conclude from Figure

Ï
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Figure 4.21: Distance to reflection for range of pressure ratios, Re = 4 OOO

4.22 that our present calculation of the location of the hysteresis loop is reasonable 

in terms of both pressure ratio and reflection distance. Comparison will be made 

in the remainder of this chapter with the experimental conditions where the value 

of Re in the reported dual solution domain is closest to our constant value, namely 

the case with £)=15mm, p5= 35mtorr where the value of Re varies between approx

imately 3500 and 4500 in the dual solution domain. The calculated Mach number 

on the axis immediately upstream of the first shock reflection is plotted in Figure

4.23 for a number of representative points in the pressure ratio range. Within the 

dual solution domain, a higher Mach number is reached before the shock reflection 

in the regular reflection cases. This trend is discussed in section 4.4.3.

Across most of the pressure ratio range the predicted reflection type matches 

the experimentally observed type. Very good agreement between calculated and 

experimental temperature profiles was achieved in these cases. Figures 4.24 to 4.43 

show several comparisons. Note that absolute temperatures are shown here, the 

ambient temperature being 288K. The experimental data[71] was obtained using 

a non-intrusive measurement technique, with expected accuracy of ±5%. Figures

4.24 to 4.34 compare temperature results on the plume centre-line and across sev

eral radial sections respectively for a regular reflection at Pr/pb = 228.6. Figure 4.24
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shows a good prediction of the regular reflection location, indicated by the sharp rise 

in temperature, and downstream of the reflection agreement is also good although 

temperature is slightly over-predicted. The radial temperature profile comparisons 

for regular reflection show good agreement. Figure 4.28 for example shows good 

agreement in the temperature profiles at an axial position downstream of the first 

regular reflection. At the centre-line the temperature is high since the gas has been 

compressed by the incident and reflected shock and has yet to re-expand. Moving 

across the plume, there is a sharp decrease in temperature as the reflected shock is 

traversed. The fast moving gas in the shock layer behind the incident shock, which 

has yet to be processed by the reflected shock, is shown by the temperature trough. 

The temperature recovers through the shock layer to the ambient value. The dif

fering behaviour at the centre-line in Figure 4.25 is because X /D  ~  14.84 is just 

upstream of the predicted shock reflection distance, but is at the experimentally 

observed shock reflection distance. Figures 4.35 to 4.43 compare temperature res

ults on the plume centre-line and across several radial sections for a Mach reflection 

at Pr/Pb =  328.6. Good agreement is also demonstrated here. The diflfering beha

viour near the centre-line in Figure 4.36 is because X /D  =  16.28 is just downstream 

of the predicted shock reflection distance, but just upstream of the experimentally 

observed shock reflection distance. Note that in Figure 4.37 the calculated temper

ature reaches the stagnation value of 288K after the Mach disc, implying that the 

flow has stagnated. This will be discussed in section 4.4.3.

In section 4.2.4 it is described how in the case of two dimensional shock reflection 

hysteresis the limits of the dual solution domain can be calculated from knowledge 

of the Mach number upstream of the reflection and the incident shock angle. In 

principle a similar analysis is possible here; the Mach number and local shock angle 

can be obtained from the CFD results, and the theoretical limits to the dual solution 

domain calculated and compared with the numerical results. However, this approach 

was not successful since the shock angles are difficult to measure accurately from 

field plots due to curvature of the shock and shock smearing. Other aspects of the 

analysis of the computational results are also hampered by this problem, as discussed 

in section 4.4.3.
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Figure 4.29: Temperature profile at X /D  ^  16.47, regular reflection
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Figure 4.30: Temperature profile at X /D  =  17.12, regular reflection
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Figure 4.31: Temperature profile at X /D  — 17.77, regular reflection
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Figure 4.34: Temperature profile at X /D  = 19.73; regular reflection
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Figure 4.35: Centre-line temperature, Mach reflection
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Figure 4.36: Temperature profile at X /D  =  16,28, Mach reflection
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Figure 4.37: Temperature profile at X /D  =  16.93, Mach refiection
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Figure 4.38: Temperature profile at X /D  = 17.58; Mach reflection
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Figure 4.39: Temperature profile at X /D  =  18.23, Mach reflection
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Figure 4.42: Temperature profile at X /D  =  22.14, Mach reflection
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i4.4.3 Plume Structure

Presentation of R esults

It is useful here to include a note on the sequence in which the results are presented. 

The figures appear out of sequence when referenced from the text; this is because 

all of the field plots (whether for RR or MR) are grouped together, followed by the 

centre-line plots, in this way aiding comparison of figures. It should be noted that the 

field plots of the CFD results presented in this section agree well with the excellent 

flow visualisation photographs included in the report on the experiments[71].

Regular Reflection

Figure 4.44 shows calculated density contours for a pressure ratio Pr/Pb — 185.7 

which lies in the regular refiection range. The figure clearly shows the repeated 

shock cell pattern typical of this regime. Figures 4.45 to 4.47 show a detail of the 

second shock cell including the incident shock from the first cell and reflected shock 

at the beginning of the third. Pressure contours, Mach contours, velocity vectors 

and streamlines are shown. For clarity velocity vectors are shown for only every 

fifth grid cell in the axial direction and every fourth in the radial direction. From 

these field plots the important elements of the plume structure can be visualised. 

On exiting from the nozzle (on the left hand side of Figure 4.44) the air is at a 

higher pressure than the ambient air and expands sharply, increasing the cross- 

sectional area of the plume. Expansion waves reflect from the free jet boundary as 

compression waves, and in so doing turn the jet boundary towards the axis. The

curved nature of the jet boundary causes the compression waves to coalesce and form 

an oblique shock wave, the incident shock labelled. Air passing through this shock 

is turned back towards the axis and collects in a shock layer of increasing density, 

causing the shock itself to turn further towards the axis. This is also encouraged by 

the increasing Mach number of the air before the shock in the still expanding core 

flow, whose pressure now lies below the background pressure. The axisymmetric 

shock intersects the axis and is reflected as another oblique shock. This Regular 

Reflection is analogous to the Regular Reflection in two dimensional uniform flow 

discussed in Chapter 4.2. The shock reflection is the mechanism through which the

I
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condition of axial flow on the centre-line is achieved; after the incident shock the 

flow is converging on the axis and is then turned away by the reflected shock. The 

flow direction can be clearly seen from the streamlines in Figure 4.47. Immediately 

downstream of the reflection point the air being processed by the reflected shock is 

of increasing density due to the accumulated shock layer, turning the shock towards 

the axis. This tendency is quickly overtaken by the rapidly re-expanding core flow 

which causes the shock to turn outwards again towards the jet boundary. The 

change in curvature of the reflected shock is best seen in Figure 4.45. The shock 

is reflected as expansion waves by the free jet boundary which is turned back away 

from the axis. This expansion reinforces the expansion of the under-expanded core 

flow, and initiates another shock cell when the expansion waves again reflect from 

the jet boundary. The pattern is repeated, its strength gradually lessening, until 

the structure is destroyed by diminishing pressure ratio and mixing.

Figures 4.55 to 4.58 show calculated centre-line distributions of pressure, density, 

Mach number and axial velocity. Regular reflections arising for three pressure ratios 

are shown; Pr/P6 =  334.3 is the highest pressure ratio for which regular reflection 

occurs (a limit of the hysteresis loop), Pr/Vh =  57.1 was the lowest pressure ratio 

considered and Prjph — 185.7 was selected as an intermediate point. The ragged 

peaks to the pressure and density curves for the lower pressure ratio cases are pos

sibly explained by the interaction of the shock layer behind the incident shock with 

the reflected shock. It is interesting to note that upstream of the interactions all 

of the curves are coincident. Despite the fact that the cross-sectional area of the 

plume increases with pressure ratio, the core expansion along the axis appears to 

be independent of pressure ratio until the reflection occurs. From Figure 4.57 it can 

be seen that the flow behind the first regular shock reflection may become subsonic. 

From the present calculations, the lowest pressure ratio at which this occurs is Pr/Pb 

=  171.4 and as the pressure ratio increases in the regular reflection range the sub

sonic region becomes larger and the minimum Mach number smaller. At the upper 

limit of the RR range {Pr/Pb =  334.3) the subsonic region is 2.65 throat diameters in 

length with a minimum Mach number of 0.26 , More will be said about the region 

of subsonic flow in section 4.4.3.
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Mach Reflection

As the ratio of nozzle exit to background pressure increases, the amount of expansion 

at the nozzle exit increases and the shock cell grows in size. As the pressure ratio 

increases, the angle at which the incident shock intersects the axis increases. This 

is a trend which is evident from comparison of contour plots for various pressure 

ratios, but the actual angle is difficult to measure precisely due to the curvature of 

the shock and its apparent thickness in the CFD results due to shock smearing. The 

increasing angle has the result that the flow behind the incident shock is deflected 

more towards the centre-line. The stronger incident shock also results in a greater 

decrease in Mach number across the shock, an effect which is countered by a gi'eater 

Mach number in the core flow upstream of the incident shock, as shown in Figure 

4.23. The shock deflection angle necessary for a reflected shock to re-align the flow 

is thus increasing, and at the same time the Mach number between shocks may be 

decreasing. A point is reached where an oblique shock solution for the required 

6 given Mi is not possible. The re-alignment is in this case achieved via a Mach 

reflection, which consists of a normal shock called a Mach disc and a curved oblique 

shock, see Figures 4.48 to 4.51. The flow is subsonic behind the Mach disc, but is 

supersonic behind the oblique shock. These areas are separated by a slip line which 

emanates from the triple point where all three shocks meet. Downstream of the 

Mach disc, the flow re-expands to become supersonic and initiates a second shock 

cell in a similar fashion to the case of regular reflection. As the pressure ratio is 

increased further, the shock cell grows in size, and the incident shock angle upstream 

of the triple point continues to steepen. This Mach Reflection is analogous to the 

Mach Reflection in two dimensional uniform flow discussed in Chapter 4.2.

A recirculation zone was predicted behind the Mach disc, see for example Figures 

4.51 and 4.52. This surprising result was first reported by Martin Gilmore at DERA 

Farnborough for an as yet unpublished single calculation in the MR region. This 

feature is predicted in the present results for all the pressure ratios examined in the 

MR range. As can be seen from Figures 4.49 and 4.59, immediately downstream 

of the Mach disc the pressure is still increasing; this pressure gradient appears to 

be driving the recirculation. An explanation for the continuing increase in pressure

I
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is that immediately downstream of the Mach disc the gas being processed by the 

reflected oblique shock is of relatively high density due to the accumulation in the 

incident shock layer.

The calculated Mach disc is curved, convex if viewed from upstream, for each of 

the pressure ratio values examined. The amount of curvature increases slowly with 

pressure ratio. The curvature is apparent in Figures 4.49 and 4.50. This curvature 

implies that the flow is being turned away from the axis at the triple point. This 

corresponds to an Inverted Mach Reflection following Hornung’s classification [90]. 

However, due to the curvature of all three shocks and their apparent thickness in 

the present results it is difficult to precisely identify the location of the triple point 

and verify the Mach Reflection type. The flow direction changes significantly in the 

locality of the triple point, see Figure 4.52.

Figures 4.59 to 4.62 show calculated centre-line distributions of pressure, density, 

Mach number and axial velocity. Mach reflection results for three pressure ratios are 

shown; PvlVh — 217.1 is the lowest pressure ratio for which Mach reflection occurs 

(the lower limit of the hysteresis loop), Pr/Vh — 685.7 was the highest pressure ratio 

considered and Pr/Pb ~  342.9 was selected as an intermediate point. As also shown 

in the regular reflection results, upstream of the interactions all of the curves are 

coincident. From Figure 4.62 it can be seen that the flow behind the Mach disc 

reverses. At the lower limit of the hysteresis loop [pr/Pb — 217.1) the subsonic 

region is 5.58 throat diameters in length. At the highest pressure ratio considered 

{Pr/Pb — 685.7) the subsonic region is 8.82 throat diameters in length.

The shock reflection type in the subsequent shock cells downstream of the first 

was calculated to be regular in all cases, as shown in Figure 4.61 where the flow 

is supersonic following the second (and third) sudden compressions. However, this 

study has concentrated on the first shock cell and no grid independence study was 

carried out for the other cells.

Dual Solution Dom ain

Figures 4.53 and 4.54 show calculated density contours for both MR and RR for 

the same pressure ratio (pr/pb =  285.7), a condition which lies in the dual solu

tion domain. Note that upstream of the first shock reflection no diflference in the
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flow behaviour can be detected. This point is supported by Figures 4.63 to 4.67 

where centre-line distributions of pressure, density, Mach number, axial velocity 

and temperature are compared for the same calculations. Upstream of the first 

shock reflection the curves are coincident. It is also clearly shown in these figures 

that the MR occurs slightly upstream of the corresponding RR, allowing a greater 

initial expansion in the RR case.

I

Pseudo-M ach Reflection

There is some evidence to suggest that the regular reflections discussed above are 

in fact Mach reflections with a Mach disc of small diameter. In Figure 4.46 there 

appears to be a slip line behind the ‘regular’ reflection; compare with the stream 

line behind the Mach reflection in Figure 4.50. As already noted in section 4.4.3 

there is a significant subsonic region behind the ‘regular’ reflections at the higher 

pressure ratios. On close examination of the pressure contours in the region around 

the reflection (see Figure 4.45) there is an apparent Mach disc of approximately 

three grid cells in radius. As discussed in section 4.3.4 the criterion used in the grid 

independence study is the calculated hysteresis loop limits and not the resolution of 

any particular flow feature. However, refinement of the grid in this area by a factor 

of ten had no impact on this feature. It appears that two different levels of Mach

refiection are occurring. Referring to the pressure-deflection diagrams introduced
...

in section 4.2.3 the situation is complicated because the incident shocks are in this 

case curved. The condition (1) on the I  polar could be in several different locations 

for the same incident shock because the deflection 9 varies along the shock and 

conditions upstream of the shock are varying along its length. Consider an inverted 

Mach reflection, see Figure 4.2(f), in the underexpanded jet plume. As the pressure 

ratio is decreased from this condition the reflection type may suddenly change not 

to regular reflection but to an entirely different Mach refiection with a much smaller 

Mach disc. A possible location for the point (1) relative to its IMR location is at a 

greater 9 value, corresponding to a longer incident shock which is steeper at the triple 

point and a smaller Mach disc. Such a reflection is represented in the (p, 9) plane 

by Figure 4.2(c). As discussed in section 4.2.3, a dual solution domain can exist in 

the simpler case of the reflection of a straight, planar shock wave. Examination of

Î
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the problem via (p, 0) diagrams does not provide information about the Mach stem  

length. Applied to the case of a curved incident shock this implies that multiple 

Mach reflection solutions are possible.

In the initial test programme it was assumed that a regular reflection was oc

curring, so the present results showing a ‘pseudo-Mach reflection’ were surprising. 

However, subsequent tests[107] have indicated that what had been previously ac

cepted as a regular reflection is in fact a very small diameter Mach reflection. In 

addition, it has been argued that a true axisymmetric regular reflection cannot ex

ist, with the results of numerical experiments presented as evidence [108]. This very 

small diameter Mach reflection has been termed an apparent regular reflection.

Figure 4.44: Density contours showing regular reflection, Pr/Pb =  185.7
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Figure 4.45: Pressure contours showing regular reflection, Pr/pb = 185.7
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Figure 4.46: Mach number contours showing regular reflection, Pr/pb =  185.7
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Figure 4.47: Velocity vectors and streamlines showing regular reflection, Pr/Vb =  

185.7

g

Figure 4.48: Density contours showing Mach reflection, Pr/Pb =  342.9
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Figure 4.49: Pressure contours showing Mach reflection, Pr/pb = 342.9

INCIDENT SHOCK

REFLECTED SHOCK 

EXPANMÎN-

SLIP LINE 

TRIPLE POINT

Figure 4.50: Mach number contours showing Mach reflection, Pr/Pb =  342.9
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Figure 4.51: Velocity vectors and streamlines showing Mach reflection, Pr/pb =  342.9

Figure 4.52: Detail of velocity vectors and streamlines showing Mach reflection, Pr/Pb

= 342.9
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Figure 4.53: Density contours showing regular reflection, Pr/pt = 285.7

Figure 4.54: Density contours showing Mach reflection, Pr/Pb =  285.7
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Figure 4.55: Centre-line pressure distribution, regular reflection
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Figure 4.56: Centre-line density distribution, regular reflection
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Figure 4.57: Centre-line Mach no. distribution, regular reflection
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Figure 4.58: Centre-line axial velocity distribution, regular reflection
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Figure 4.60: Centre-line density distribution, Mach reflection
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Figure 4.61: Centre-line Mach no. distribution, Mach reflection
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Figure 4,62: Centre-line axial velocity distribution, Mach reflection
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Figure 4.64: Centre-line density comparison, regular and Mach reflection
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Figure 4.66: Centre-line axial velocity comparison, regular and Mach reflection
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Figure 4.67: Centre-line temperature comparison, regular and Mach reflection To 
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4.4.4 Discussion

A hysteresis effect has been predicted in the shock reflection type of an axisymmet

ric jet plume for a range of pressure ratios and a constant Reynolds number. The 

predicted hysteresis loop agrees well with experimental results where the Reynolds 

number was also varying. The predicted temperatures in the jet plume agree well 

with experimentally recorded values. Field plots of the results which enable visual

isation of the plume structure also agree well with the excellent flow visualisation 

images included in the original report. Having gained confidence in the accuracy of 

the simulation, the detail obtained from the CFD analysis was used to examine a 

number of flow features not recognised in the original experimental study. These fea

tures are Mach disc curvature, recirculation and continuing compression behind the 

Mach disc and the presence of a small diameter Mach disc in the apparent regular re

flection. The possible existence of multiple Mach reflection solutions agrees with the 

shock reflection theory discussed in section 4.2. Further use of shock reflection the

ory in comparing the present axisymmetric results with established two-dimensional 

theory was hampered by difficulties measuring shock angles due to shock curvature
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and smearing. A study of the shock reflection hysteresis in isolation rather than 

in the context of a jet plume would be much simpler to perform and could lead to 

a clearer understanding of the mechanisms involved, without the complications of 

curved shocks, shear layers etc. A full analysis of the present computational res

ults using the methods used for the problem of two dimensional shock reflection 

hysteresis in uniform flow would require more accurate shock wave resolution than 

achieved in the present study. The success of the present study gives confidence that 

the same methods could be applied to promote the understanding of other shock 

interaction phenomena in the same series of experimental studies [107].

4.5 C onclusion

In this chapter the application of a CFD method to examine shock reflection hys- 

teresis in an underexpanded jet plume has been described. Included in the study 

is a review of two-dimensional shock reflection hysteresis which has been useful in 

establishing theoretical background and terminology, and has also highlighted some 

remaining gaps in the understanding of this phenomenon. The interpretation of the 

CFD results against this theoretical background and combined with experimental 

data has contributed to the understanding of the plume structure and hysteresis 

phenomenon. The value of CFD as a scientific investigation tool for this type of 

problem has been clearly demonstrated, along with the wider potential of applying 

CFD to other problems where the role of experiments is limited.
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C hapter 5

5.1 T he need for autom ation

Towards A utom atic M ultib lock  

Topology G eneration

5.1.1 Introduction
I

IMultiblock or zonal structured grids remain a popular choice in CFD. This ap

proach involves an unstructured arrangement of blocks with structured grids which 

conform with the problem geometry. The alternatives of unstructured, Cartesian, 

hybrid structured-unstructured and overset (Chimera) grids each have their own 

advantages and disadvantages. The choice of which one to use is difficult, an es

sential element of which is a compromise between the relative complexity of grid 

generation and flow solution. Multiblock grids afford the advantage of easier cal

culation management and lower operation counts and memory requirements due to 

their inherent structure, but grid generation for complex configurations is problem

atic and time-consuming. The subject of which method to choose is not discussed 

further here, for an introduction to the issue see [109],[24]. Here we are interested 

in the multiblock grid generation procedure, and note that to address its particular 

problems is relevant and useful since simulation using multiblock grids is popular. 

For some recent examples of its application see [110],[111],[112],[113]. I
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5.1.2 Elements of the analysis process

Figure 5.1 shows a schematic diagram of the elements of a CFD analysis using 

multiblock grids. With modern CAD and graphical plotting software, the geometry 

definition and results analysis stages present few problems. Numerous satisfactory 

commercial packages exist for these tasks, with present work concentrating on im

proving speed and extending capability although the basic tools are well established. 

The flow solution stage is the subject of much ongoing research, but with modern 

computing power even large scale simulations can be achieved with reasonable turn

around times. The primary obstacle to obtaining accurate flow solutions is the lack 

of a practical, accurate and general turbulence model.

G E O M E T R Y  D E F I N I T I O N

R E S U L T S  A N A L Y S I S

F L O W  S O L U T I O N

M U L T I B L O C K  T O P O L O G Y  D E F I N I T I O N

T O P O L O G Y  O P T I M I S A T I O N /  
G R I D  G E N E R A T I O N

Figure 5.1: A CFD analysis process using the multiblock method

The bottleneck in the process occurs at the second and third stages. Even for 

fairly simple geometries in two dimensions, the task of designing a suitable arrange

ment for the grid blocks can be a demanding one. Each part of the problem geometry 

requires a body conforming local arrangement of the blocks, for example a ‘C’-shaped 

arrangement around an aerofoil, but these local patterns are often difficult to match 

as a coherent whole. The task of defining an appropriate block pattern is known as
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‘topology generation’. In three dimensions the task can be daunting and requires 

considerable skill. Fine adjustments of the curves and block faces making up the 

topology and actually generating the grid to satisfaction can take man-months of 

effort for complicated configurations like full aircraft. The need to facilitate the to-

pology and grid generation process by providing interactive graphical environments
:

specifically designed for the task was recognised nearly ten years ago [114],[115]. A

few years later Thompson and Weatherill [24] were able to list several commercial 

packages providing this capability and subsequent development has continued apace. 

Although these tools undoubtedly accelerate the process, the amount of time and 

effort required for grid generation still impedes routine analyses for multiple geomet

ries, especially for complex configurations. Progress towards the alternative goal of 

fully or mostly automatic grid generation for arbitrary geometries [24],[115] has not 

been as impressive. In Thompson’s recent review paper [25] the need for automation 

is particularly stressed. Real progress has been made by several authors but all of

■g

the diverse approaches suggested to date require a degree of skilled user input. The 

main problem is the difficulty in encapsulating the ‘a rt’ of topology generation in a 

programmable method. The approach of Dannenhoffer[116],[117], which is an integ

ral part of the National Grid Project[118], is probably the most advanced method 

to date in terms of automating as much of the grid generation process as possible. 

An abstract “topology plane” is employed initially to interactively design the topo

logy, and block faces are automatically set up by the code. A stochastic process is 

then employed to reduce the number of blocks. The user then proceeds to edit the 

topology and construct the grid using a state-of-the-art GUI. Stewart[119],[120] em

ploys a search algorithm with a directional probe to build a two-dimensional block 

decomposition. This promising approach has proven difficult to apply generally, and 

it is unclear how well it could extend to three dimensions. The SAUNA[121] system 

employs a library of known topologies; to generate a new grid with a known topology 

is therefore straightforward, but for a new topology considerable effort is required 

to add to the library. The ICEM-CFD system[122] can automatically generate local 

topologies around recognisable components, after which the user must create the 

remainder of the topology. Unstructured quadrilateral and hexahedral mesh gener

ation techniques have also been employed to create block topologies[123],[124]. Note
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that the methods used are not fully automatic and appear to suffer from generality 

problems. However, this type of approach appears very promising since a number 

of general, fully automatic methods have been established in the parallel field of 

structural mechanics. In Section 5.1.3 it will be suggested that a particular method 

for initial topology generation possessing the characteristics required already exists 

and has been well developed. There is therefore the potential to fully automate 

one of the troublesome elements of Figure 5.1. Section 5.2 is the main part of the 

present study. Having defined an initial multiblock topology, the actual shape and 

location of the blocks must be defined. A new, straightforward method is proposed 

for automatically adjusting both the relative placement of blocks and the shape of 

the curves making up their edges. In this way the subsequent generation of the 

block interior grids can take place with little or no recourse to further manual block 

placement or edge shape modification. This process is here called ‘topology pro

cessing’. Together with established algebraic grid generation and elliptic smoothing 

techniques this provides the potential for automation of the third stage in Figure

5.1. After a topology of good quality has been obtained, the task of generating the 

grid proper in the interior of the blocks becomes straightforward using conventional 

algebraic grid generation tools. Any remaining grid smoothness problems across 

block boundaries can be treated using elliptic smoothing.

5.1.3 Autom atic topology generation

A multiblock grid consists of an unstructured arrangement of structured grid blocks. 

Traditionally the definition of this block arrangement is conceived by the expert user 

who views the domain in question and imagines the best way to fill it with blocks. 

This is a skilled task, especially in three dimensions. An attempt to replicate the 

expert’s thought processes in code to produce an automatic tool would necessar

ily involve shape recognition and trial and error as well as an appreciation of the 

target flow solver’s requirements for the grid. Rather than starting from scratch in 

an attempt to create such a tool, a simpler alternative is possible. Since the topo

logy consists essentially of unstructured quadrilateral blocks in 2D or unstructured 

hexahedral blocks in 3D, it is possible that one or more automatic mesh genera
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Î
tion procedures developed for structural analysis could be suitable for generating

initial multiblock topologies. In this way the expert task of generating multiblock
■

topologies for each individual case can potentially be reduced to the expert task of 

choosing an existing automatic mesh generation method which produces multiblock 

topology-like results. Several automatic unstructured quadrilateral and hexahedral 

mesh generation methods exist, see for example [125], the resulting meshes each hav

ing there own attributes. An approach which generates results consistently striking 

in their similarity to good multiblock topologies is the Medial Axis approach of Arm

strong et ah, see [126]-[130]. The method is based on a skeletonization technique 

(where for example a 2D shape is encoded in an essentially ID manner) which is 

well known for its high quality of shape description. Intriguingly, the method was 

initially proposed as a model for human shape perception, which perhaps explains 

its ability to generate domain decompositions which fit geometries well, the main 

requirement of a multiblock topology. This speculation aside, in the Medial Axis 

approach there is an established automatic domain decomposition technique which 

results in good quality unstructured quadrilateral or hexahedral meshes which ap

pear to meet the requirements of multiblock decompositions. Of course an initial 

topology formed in this way would consist of blocks with straight-sided faces. The 

initial topology may also have other unwanted features such as poor orthogonality 

at block corners and poorly shaped blocks which do not conform well with other 

blocks and the problem geometry. The re-shaping of the initial topology for our 

purpose is the subject of the next section.

!
5.2.1 Rationale

Once the initial topology has been constructed, it is necessary to form the detailed 

shape of the curves making up the edges of the blocks and to decide on the placement 

of important points such as where a number of block corners meet. This process is 

referred to here as topology processing. There is no generally applicable definition 

of an optimal multiblock grid or topology. Different grids and different topologies
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can be used to obtain good results, see for example [131] where various grids and 

topologies were employed to good effect on the same two-element aerofoil problem. 

In the absence of a definite objective in optimising the topology, to achieve our goal 

of obtaining an automatic procedure we instead attempt to model the actions of an 

experienced grid generation engineer. Topology processing is achieved with modern 

grid generation packages using an interactive Graphical User Interface (GUI). The 

GUI enables simultaneous design and assessment of the topology but is very labour 

intensive. The skill involved is to shape the topology in a manner which will allow the 

generation of a grid with good characteristics such as orthogonality and smoothness. 

These qualities are in themselves difficult to define as well as to achieve, which is 

one reason why grid generation is often referred to as an art as well as a science. An 

engineer experienced in multiblock grid generation soon recognises certain simple 

elements to this process however; in this section it is argued that these elements can 

be formulated in a cost function which can be used to quantify the quality of the 

topology. To simulate the interactive operations of an engineer the cost function 

can then be minimised to achieve a topology of good quality. The cost function will 

be constructed using geometric considerations only. In some cases another factor 

in grid generation, including the topology design, is the expected behaviour of the 

flow itself; notably grid lines can be deliberately aligned with streamlines and shock 

waves. Topology design based purely on geometry will in many cases be sufficient, 

and at the least will provide an advanced starting point for further modification 

based on the actual flow.

In Section 5.1.3 it was discussed how an unstructured mesh generation method 

can provide an initial topology definition. An ideal initial topology generator would 

produce topologies which would require no processing, this stage could be by-passed 

and grid generation could proceed directly. Even if the topology generator produced 

straight-sided blocks, elliptic smoothing could be sufficient to provide a smooth grid 

especially if a large number of small blocks were used. However, although it is 

difficult to quantify how much poor quality in a block topology elliptic smoothing 

can cure, there does not appear to be at present an automatic, unstructured quad

rilateral /hexahedral mesh generation method which can deliver the ideal level of 

topology quality. Even the most promising method available for this application.
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the Medial Axis approach discussed in Section 5.1.3, would require significant addi

tional refinement of block edge shape and singular point location, which is too much 

to demand of elliptic smoothing in the general case.

5.2.2 Curve definitions

In the present study each curve or block edge is defined simply as consisting of 

straight line segments joining p equally spaced points with index j ,  see Figure 5.2. 

To simplify programming, all curves have p points irrespective of the actual curve 

length or shape. The initial location of the points is obtained by interpolation from 

the initial topology definition. A straight line segment approach cannot provide a 

high quality of shape description without using an excessive number of data points. 

However, since these curves are used here only to define internal block boundaries, 

onto which a spline can be fitted for algebraic grid generation and across which 

elliptic smoothing may be employed, such a definition is adequate. Note that al

though the problem geometry is also represented by straight line segments during 

the topology processing, the problem geometry is fixed and the original definition 

can be recalled on proceeding to the grid generation stage.

5.2.3 Cost function

Figure 5.3 shows a multiblock grid for the NLR 7301 wing/fiap configuration which 

has been used in a CFD study where excellent agreement with experiment was 

obtained[132]. Figure 5.4 shows the topology defined by the block edges, and Figure 

5.5 shows a detail of this around the flap. Reference will be made to these figures 

to help illustrate the objectives of the cost function construction.

In Figure 5.5, there are two points in the vicinity of the flap leading edge where 

five blocks corners meet. Here the designer must consider how best to set the block 

corner angles. Structured grid flow solvers give most accurate results when the grid 

cells are orthogonal since this minimises the truncation error associated with the 

discretisation. When four blocks meet at a point, as shown in Figure 5.6(a), it is 

therefore desirable to ensure that the angle 9 in the corner of each block is as close 

as possible to a right-angle. Similarly when three, five or more blocks meet at a
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j=p=6

Figure 5.2: Curve defined as straight line segments

point, as shown in Figures 5.6(b) and 5.6(c), it is desirable to have the same value 

for 6 in each of the block corners so that no one block corner has cells with a large 

deviation from orthogonality. In our cost function we therefore penalise deviation 

of the vertex angles 0* for each block corner or vertex i. A simple way of achieving 

this is to write the cost associated with block vertices

c .  =  (5.1)
„ 1.1

t=l
where v is the total number of vertices. In this way where four blocks meet at a point

the cost is zero if all of the block corners form right angles, and the cost increases 

sharply on deviation from this. Since the exponent is greater than one, when a 

number of blocks other than four meet at a point the minimum cost is incurred 

when all the block corner angles are equal. A value of 2 was used initially for the 

exponent, but the cost incurred when other than four blocks would meet at a point 

rendered other costs insignificant.

Figure 5.3 shows a grid with good smoothness properties. On examining figure 

5.4, it is evident how the shape of the interior block edges follows the shape of the
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Figure 5.3: Multiblock grid for NLR 7301 wing/flap configuration

Figure 5.4; Block topology for NLR 7301 wing/flap configuration
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Figure 5.5: Detail of block topology around flap

(a) (b)

(c)

Figure 5.6: Several block corners meeting at one point
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Figure 5.7: Measurement of shape-folio wing cost element

aerofoil surfaces to contribute to this smoothness. Grid smoothness is possible only 

if gradual changes in the curvature of adjacent grid lines are permitted. Consider 

Figure 5.7 where two blocks are shown which share a common edge q. To encourage 

grid smoothness between the block edges p  and r  the shape of q  will ideally represent 

a transition from the shape of p  to r. The closer q is to p, the more closely the 

shape of q should follow that of p, and the more the influence of r  should diminish. 

A cost element to penalise poor ‘shape-following’ has been constructed as

c p-1 r 

i= l  j=2  I

bi {
(5.2)

A,

bi,j+i -  2 b i j  H- b i j - i

where c is the total number of curves. On each curve i there are p equally spaced 

points. The distance from the point j  on the curve i to the corresponding point on 

an opposing block face is labelled aij as indicated in Figure 5.7. The quantity A ij  is

I

:

I

3
I
I
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Figure 5.8: Measurement of block expansion cost element

therefore a measure of how well the local curvature of p  is following that of q. This 

is summed over the length of the curve. Each curve in the interior of the domain (i.e. 

each curve that does not define a fixed geometry) has two opposing counterparts; 

üij and bij are the distance measures to each. To ensure greater influence of curves 

in close proximity, the influence on curve i of each opposing curve is scaled by their 

average separations a* and 6* from defined as

1 ^

^ j=i

^ j=i
(5.4)

The construction of a cost function element to model shape-following is not straight

forward. The engineer with experience of multiblock grid generation can readily 

recognise when blocks are well shaped, but how to define what this means in terms 

of gradients, curvatures etc. is not obvious. The cost element (5.2) tries to match 

local curvature. The definition of the gradients at the curve ends is then important
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to the success of the method. A previous attempt at constructing a cost element 

was based on local gradient rather than curvature. Referring to Figure 5.7, this 

worked very well for cases where the curves p  and r  have approximately the same 

orientation as q, but becomes a poor measure of shape-following otherwise.

In Figure 5.4 the blocks are fairly regularly shaped in that none of the blocks 

expand in size very sharply. If a block expands too sharply, then cell orthogonality 

and grid smoothness can be adversely affected in the block interior. Figure 5.8 shows 

two blocks sharing a common edge of length I. The opposing edges have lengths 

and A cost element Ce to penalise sharp block expansions has been constructed 

as

+ ' ' I .

liO'i lih
(5.5)

i = l

The total cost Q  associated with the quality of the topology can then be written as

Ct ”  kyCy +  ksCg “t" /ZgCg (5.6)

where /c«, kg, ke are positive constants which define the relative importance of the 

cost elements. Appropriate values for these constants were found by experimentation 

using simple model cases and verification on more complex cases, see Section 5.2.4.

5.2.4 Cost function minimisation

Equation (5.6) defines a cost function which measures the quality of a multiblock 

topology. This cost function is minimised in order to obtain a topology of good 

quality. The resulting topology is referred to as the ‘processed’ topology. To do 

this, a straightforward iterative improvement technique is employed. The number 

of points p defining each curve is chosen as the minimum number which give a 

suitable definition of the problem geometries, typically between 8 and 40. A point 

on one of the c curves is chosen at random. Two random numbers between -1 and 

1 are multiplied by the pre-defined maximum displacement distance and the 

selected point is displaced in the x and y directions by each result respectively, 

remembering that a point may belong to more than one curve. Points on curves 

defining the domain boundaries, i.e. on “exterior” edges, are not permitted to
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move. If the total cost of the modified topology has been reduced then the move is 

accepted. Otherwise the move is rejected and the former position of the displaced 

point is recalled. A large number Nc  of trial moves are attempted, N  being some 

large integer.

In the cost elements (5.2) and (5.5) the quantities âj and bi are used as scaling 

factors. In implementing the cost function minimisation procedure, care must be 

taken to ensure that the block shapes are not being inadvertently altered to maximise 

these quantities in order to minimise the cost (they are on the denominator). To 

achieve this they are evaluated infrequently, every 100 successful trial moves.

It is well known that simple iterative improvement does not provide a mechan

ism for avoiding local minima. Careful selection of the trial moves can help avoid 

this problem. Trial moves of curve sections as well as single points were employed. 

Although this helps to avoid local minima to some extent, this simple approach to 

cost function minimisation could be improved upon, as will be discussed in Section

5.3.1. It is considered sufficient however for the task of demonstrating the general 

method. As will be demonstrated below for a number of test cases, iterative im

provement has succeeded in finding a good enough local minimum where the block 

topology properties have clearly been improved in terms of preparation for the grid 

generation stage.

5.2.5 Calibration test cases

A simple test case was constructed, consisting of two blocks sharing a common edge, 

in order to find appropriate relative magnitudes of ky and kg in equation (5.6). For 

these tests ke was set to zero. Figure 5.9 shows some representative results for a 

number of cases where kg — 1.0 and the magnitude of ky was varied. The curve 

definition p =  10 was used. With ky =  0.0 the shape-following cost is the only 

non-zero part of the cost function. As expected the shape of the resulting curve lies 

somewhere between the straight line of the left-hand opposing curve and the greater 

curvature of the right-hand opposing curve. As ky is increased the tendency for the 

ends of the curve to form right angles at the block corners increases, eventually to 

the detriment of the overall shape. A good compromise is found at values around
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0.0
0.001

0.01

Figure 5.9: Test case to find value for ky

Figure 5.10: Test case to check shape-following
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ky =  0.001 (with ks =  1.0), at which condition the effect of the cost associated with 

corner angles becomes noticeable. For this case the final cost becomes converged 

to three significant figures for N  =  15000. A set of similar tests was carried out to 

ensure that the proximity of opposing block edges has the desired influence on the 

shape-following cost. Keeping ky =  0.001 and kg =  1.0, the location of the common 

edge was varied; the results are shown in Figure 5.10. Note that the original result 

with a central common edge is shown with the other results superimposed. There 

is a smooth transition in curve shape as required.

An eight block grid for a single element aerofoil was used to determine a suitable 

value for the block expansion cost coefficient k^. Figure 5.11 shows the initial topo

logy, taken from a grid known to be of good quality which has been used successfully 

in a CFD study [33]. The figure also shows a processed topology obtained by setting 

ks =  1.0, ky — 0.001 and ke =  0.0. For this case the curve definition p =  20 was used 

and the final cost becomes converged to three significant figures for A  =  20000. The 

result obtained using ke — 0.0 is satisfactory in this case since the initial topology 

used does not contain blocks with an unacceptable block expansion rate. However, 

following the same approach as for ky, gradually increasing the value of ke should 

indicate a value where the block expansion cost element begins to have an effect 

but is not yet dominating the other cost elements. Figure 5.12 shows the effect of 

varying the value of ke. The block expansion cost element begins to take effect for 

values of ke around 0.001; in the figure for this value the block edge emanating from 

the aerofoil leading edge has been stretched slightly to match the length of the block 

edges emanating from the trailing edge. For lower values of ke there is no effect, 

and for higher values the block expansion cost begins to swamp the other cost ele

ments, as shown in the figure where the processed topology for ke = 0.01 has poor 

shape-following and block corner angle charactersistics. These two examples have 

indicated appropriate values for the coeflGicients in equation (5.6) and demonstrated 

that the method works well for simple cases. Encouraged by this, the method will 

now be applied to other existing multiblock topologies from real problems, in order 

to examine how the method performs on topologies which are known to be already 

of good quality and to check that no deleterious effects are experienced, before mov

ing on to more realistic test cases. The same coeflH-cients will be used throughout as
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original
0.0  ~

Figure 5.11: Block expansion test case, initial topology and processed topology with
ke =  0.0

0.0
0,0001

0.001
0.01

Figure 5.12: Processed topologies with various values of
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were used for the example test cases (ks =  1.0, kv =  0.001, ke =  0.001) in the hope 
that their values will be case independent.

5.2.6 Existing topologies

A simple and common multiblock topology is a three block grid around a single 

element aerofoil. The same grid as used above for the calibration case was also 

used in three-block form. Figures 5.13 and 5.14 show the original and processed 

block outlines for this case. The curve definition p =  40 was used and the final 

cost becomes converged to three significant figures for N  = 10000. The topology 

processing method has improved the block corner angles at the trailing edge and 

maintained a satisfactory shape for the interior block edges.

Figures 5.15 shows the original and processed topology for a grid used in a 

nozzle/plume study [48]. For this case the curve definition p =  10 was used and the 

final cost becomes converged to three significant figures for N  = 15000. Again the 

topology processing method has improved the block corner angles, quite significantly 

changing the shape of one curve, but a satisfactory trade-off between orthogonality 

and curve smoothness/shape-following has been achieved.

Figures 5.16 shows the original and processed topology for a grid used in a 

cavity fiow study. The cavity has a right-angled leading edge and a radiused trailing 

edge, the novel topology created for this configuration is a good example of how 

some imagination can be required to create a topology suitable for even simple 

configurations. For this case the curve definition p =  10 was used and the final 

cost becomes converged to three significant figures for N  = 20000. The topology 

processing method has again significantly altered the shape of one of the curves in 

order to improve block corner angles.

Figure 5.17 shows the multiblock topology for a multi-element aerofoil grid from 

British Aerospace which has been used in a CFD study of a high-lift configura

tion where good agreement with experiment was achieved[133]. The large number 

of blocks required for even moderately complex configurations (81 in total for this 

grid) is evident from the figure. The result of the topology processing procedure is 

shown in Figure 5.18. For this case the curve definition p =  30 was required and



5.2 Automatic topology processing 155

original

Figure 5.13: Three block single element aerofoil grid;, entire domain

processed

Figure 5.14: Three block single element aerofoil grid, detail
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original
processed

Figure 5.15: Nozzle/plume grid

original
p rocessed

Figure 5.16: Cavity flow topology
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the final cost becomes converged to three significant figures for N  =  20000. There 

is very little room for improvement from the initial excellent configuration, the only 

real difference is an improvement of the block corner angles, most notably at the 

point where five blocks meet below the forward part of the main element.

The topology processing method has been applied successfully to simple test cases 

in Section 5.2.5 and to real problems where the topology is already of good quality in 

Section 5.2.6. The main aim of this work is to produce a topology processing method 

applicable to the inevitably unrefined initial topologies which can be generated using 

unstructured quadrilateral grid generation techniques, see section 5.1.3. A coarse, 

straight-sided topology has been created manually for a model marine application. 

This is a demonstration case in order to simulate the result of such an automatic 

topology generation method, see Figure 5.19. The corresponding processed topology 

is shown in Figure 5.20. For this case the curve definition p ~  10 was used and the 

final cost becomes converged to three significant figures for N  ~  40000. The initial 

configuration has been improved considerably; the blocks have good orthogonality 

characteristics, do not expand rapidly and conform well with the geometry and each 

other.

An unstructured quadrilateral grid for this geometry has been obtained from the 

Finite Element Modelling Group at the Queen’s University of Belfast. The Medial 

Axis approach, described in section 5.1.3, was used to automatically generate the 

initial topology shown in Figure 5.22. For this case the curve definition p =  10 was 

also used, and the cost becomes converged to three significant figures for N  =  50000. 

Again the initial configuration has been improved considerably. For this example, 

the assertion that the automatic unstructured mesh generation technique produces 

suitable initial multiblock topologies has been affirmed.
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original

Figure 5.17: Original multi-element aerofoil topology

p rocessed

Figure 5.18: Processed multi-element aerofoil topology
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Figure 5.19: Initial topology A, marine application example

Figure 5.20: Processed topology A, marine application example
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Figure 5.21; Initial topology B, marine application example

Figure 5.22: Processed topology B, marine application example
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To investigate a further example using initially poor topologies, two coarse straight-
- ,

sided topologies have been created manually for a two-element aerofoil demonstra

tion case in order to simulate the result of such an automatic topology generation 

method, see Figures 5.23 and 5.24. The Williams B aerofoils[134] are used in both 

cases. The corresponding processed topologies are shown in Figures 5.25 and 5.26.

The initial topology A (Figure 5.23) has the agreeable feature of well located block 

corners. To modify this topology to obtain a form suitable as a basis for the actual 

grid generation phase involves changing the shape of the block edges to a smoother, 

more geometry conforming pattern. This has been achieved by the present topo

logy processing method, see Figure 5.25. The initial topology B has the additional 

problem of an irregularly shaped block at the leading edge of the ‘flap’. The topo

logy processing method has also coped with this well, see Figure 5.26, by drastically 

reducing the lengths of the long sides of the block at the nose of the flap. Both 

results from the topology processing method could be used as inputs to the grid 

generation proper stage. The method has been successful in finding a compromise 

between smoothing the initial configuration, maintaining reasonable orthogonality 

and resizing blocks which expand too sharply. It is noted however that the final 

configurations are different, so the minimisation method has clearly not found a 

global minimum. This issue will be discussed in Section 5.3.1.

%

a

5.3 Problem s encountered and future work

5.3.1 Global Minimum

The present method does not find a global minimum for the multi-element aerofoil 

case. This is not surprising given the very simple minimisation procedure employed. 

The local minima obtained for the cases examined here are satisfactory, but there 

is doubt whether this will be generally true. A straightforward extension of the 

iterative improvement technique is simulated annealing[135] which is well known to 

obtain near-optimal results for a broad range of minimisation problems. A drawback 

to this method is that it necessitates additional computational effort; the present
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Figure 5.23: Initial topology A, two-element aerofoil

Figure 5.24: Initial topology B, two-element aerofoil
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Figure 5.25: Processed topology A, two-element aerofoil

Figure 5.26: Processed topology B, two-element aerofoil
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method already requires a substantial amount of computing time, the two-element 
aerofoil example requiring approximately half an hour using a desktop PC. Ulti

mately the most promising direction is likely to be to begin with a higher fidelity 

curve description (for example using B-splines) to reduce the number of data points 

and hence operations, and using a more advanced minimisation procedure, perhaps 

again borrowing from structural mechanics where there are established techniques 
for shape optimisation in component design.

5.3.2 Curve definition refinement

As noted directly above, a reduction of the computational time required for the 

process is desirable. If a small number of points is used in the curve definition, 

then the number of operations necessary to evaluate the cost function (and hence 

computational time) is reduced. However, often a finer definition of the curves is 

required to adequately represent the problem geometry. With this in mind, a curve 

refinement approach was adopted. The initial curve definition could be fairly coarse, 

and after a number of trial moves the curve definition would be successively refined. 

This approach did reduce the overall time required to obtain a converged solution in 

some cases, but was not successful generally. In Figure 5.11, the curves are defined 

using 20 points connected by straight line segments. These segments are small 

enough to represent the strong curvature at the leading edge. When the refinement 

approach was attempted for this case, a coarser curve definition misrepresents the 

leading edge curvature, introducing unwanted features into the curves attempting 

to follow the aerofoil surface. These features must then be removed by applying a 

large number of trial moves in the later stages when the curve definition becomes 

adequate.

5.3.3 Generality

The same cost function and cost function coefficients were used to process all the 

test cases presented. This provides some evidence that the method may be generally 

applicable, but realistically a far larger number of test cases from a greater range of 

problems should be examined before being able to state this confidently. A particular
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question is how the method will perform using large numbers of small blocks; all of 

the test cases considered had a relatively small number of large blocks.

5.3.4 Automatically generated topologies

This report has concentrated on demonstrating the potential of an automatic topo

logy processing method, which has been examined essentially in isolation from the 

other elements of the multiblock grid generation process. The next step should be 

to examine whether the method can fulfil its potential by linking with the other 

elements, see section 5.1.2. There is little doubt that algebraic grid generation and 

elliptic smoothing performs well when based on a sound topology. The main ques

tion is how well the processing method would perform given automatically generated 

initial topologies. Only one example has been presented here; although the results 

are encouraging, the next step should be to use the Medial Axis unstructured mesh 

generation method to create numerous initial topologies for the processing stage. In 

this way, the assertion that the approach can produce multiblock topologies pos

sessing the required characteristics can be verified.

5.3.5 Extension to 3-D

In three dimensions the problem of multiblock grid generation is more demanding 

and the need for automation is even greater. As an example, a computational aero

dynamic analysis, using the multiblock method, of the flow around a wing with 

high lift devices is feasible using present technology. Suitable flow solution methods 

are available, and sufficiently powerful parallel computers are becoming available. 

However, the enormous amount of time and effort that would be required to inter

actively generate a multiblock grid precludes the use of CFD as a design tool for 

problems with this level of geometric complexity. The present topology processing 

method generalises to three-dimensions; the cost function is based on the shape of 

block edges and the angles of block corners only. The method suggested in section

5.1.3 for the initial topology generation has already been extended successfully to 

three dimensions. Thus there is a clear path to extending the overall approach to 

three-dimensional problems, where an automatic grid generation method could not
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only accelerate the analysis process, but also allow problems to be tackled which 

were previously considered as being prohibitively complex.

5.4 C onclusion
\

A new approach for automatic multiblock topology processing has been presented. 

A cost function which evaluates the quality of a multiblock topology has been cre

ated. The elements of the cost function are based on the objectives of the multiblock 

grid generation software user when interactively constructing the topology. A simple 

minimisation procedure is employed to obtain a topology of good quality. The po

tential of the method has been demonstrated using a number of test problems. It 

has been suggested that full automation of the entire multiblock grid generation 

procedure is possible using in sequence an existing unstructured grid technique to 

obtain an initial topology, the present processing method, then conventional algeb

raic grid generation and elliptic smoothing. Problems encountered during the study 

and future work have been discussed. The potential for extending the method to 

three dimensional problems shows considerable promise.
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on O pen W orkstation C lusters

1
%

6.1 Introduction

Parallel computing in computational fluid dynamics is a very broad area of current 

research and development. Parallel computing software and hardware technology 

is developing very rapidly, and the CFD community is at the forefront in exploit

ing emerging technology to obtain the high performance computational resource 

required to solve large CFD problems. The enthusiasm for parallel computing in 

the CFD community is based on present cost effectiveness compared to conventional 

computing, and future projections of enormous computing power. The exploitation 

of parallel computing is considered to be a key to tackling the grand challenges in 

CFD[22].

To effectively use a parallel computer an intelligent mapping of subsets of the 

total computational work onto processors must be performed. There are several 

different levels of parallelism, ranging from job parallelism where processors ex

ecute tasks with no interdependency, to arithmetic parallelism where the work of 

the simplest operations is shared amongst processors. A coarse-grain data parallel 

approach[29] is usually employed in parallel CFD, where sub-domains of the com- 

putational grid are mapped onto the set of processors, with the objective of finding 

a mapping which results in the fastest overall execution of the parallel task. This

;
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approach is commonly referred to as domain decomposition in the literature. The 

principal feature of an efficient domain decomposition is that the load is evenly 

distributed across the processors. A typical parallel CFD application involves a 

communication phase where information must be passed between the processors. 

Communication is necessary periodically, e.g. once every time step. If the load is 

evenly distributed then the processors arrive at the communication phases simul

taneously, minimising processor idle time. For many applications, attempting to 

minimise the time spent in the communication phase is also necessary for efficient 

implementation. The problem of optimal domain decomposition is well known to be 

NP-complete[136],[137], i.e. a deterministic solution procedure is impractical. The 

task of achieving a parallel execution via domain decomposition can be viewed as a 

two-stage process; mesh partitioning to form the sub-domains and allocation of sub- 

domains to processors to achieve load balanced execution [ 136], [ 138]. A wide variety 

of methods have been proposed, see for example the proceedings of the Parallel CFD 

conferences[27],[139], reflecting the variety of problems considered and architectures 

used. For unstructured grid problems the prevalent approach is to use a mesh parti

tioning heuristic to obtain equally sized sub-domains and at the same time attempt 

to minimise the sub-domain interface length to keep down the amount of necessary 

communication. The resulting partition then consists of the same number of sub- 

domains as there are processors, and communication has already been considered 

implicitly in the partitioning stage, so it is sufficient to allocate the sub-domains dir

ectly onto the processors. An initially popular method was the ‘Greedy’ algorithm 

for mesh partitioning[140], so called because successive ‘bites’ are taken from the 

domain. The Greedy algorithm is very fast since it essentially involves only one 

sweep across the mesh, but is unreliable since the last ‘bites’ can leave sub-domains 

of inappropriate size and shape. Most researchers now employ a recursive bisection 

approach from graph theory, a good review of which is provided in [141]. In recent 

years some specific methods have become established in the CFD and structural 

finite-element communities and are available in the public domain[142],[143],[144]. 

Alternative non-deterrainistic approaches such as simulated annealing and stochastic 

evolution have been used for unstructured mesh partitioning, but have the disad

vantage of being slow in comparison to recursive bisection methods[137],[138],[145].
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Applying the methods of unstructured grid partitioning to multiblock structured 

grids is often quoted as being possible, but only one example has been found in the 

literature[146]. This is for two reasons. First, partitioning a multiblock structured 

grid is easier than an unstructured grid in that there are less possible boundary path 

permutations, but harder in terms of programming in that flow solver constraints 

(e.g. block interface matching) must be considered in the partitioning algorithm. 

Secondly, often the number of grid blocks naturally arising from the grid generation 

process is far greater than the number of processors, so this partition can be ac

cepted as long as a heuristic is designed to arrange these blocks onto the processors 

such that the load is balanced. If there are very large blocks which impede a good 

load balance then it is a simple matter to split them ‘manually’, unlike unstructured 

grids. Hence for structured multiblock grids the emphasis in domain decomposition 

is much more on the allocation stage. The heuristic techniques employed, often cost 

function minimisation procedures, are similar to those attempted for unstructured 

mesh partitioning, but are better suited for this problem due to the reduced size of 

the state-space[136]; tens or hundreds of blocks are considered rather than tens or 

hundreds of thousands of grid cells. See references [136],[138] for a summary of the 

preferred methods.

The domain decomposition methods mentioned above have all considered the 

static problem, where the decomposition is determined before run-time. Dynamic 

re-allocation methods have not been discussed. It is necessary to reconsider the 

decomposition during run-time to preserve load balance if the solution procedure is 

adaptive, for example when adaptive grids are used. Also, some researchers seeking 

the last percentages of parallel performance gains maintain that a static decomposi

tion can never exactly account for actual processor speeds and communication costs, 

so some degree of dynamic re-allocation is required. For an overview of this type 

of dynamic problem see references [26],[27]. We are interested here in a different 

type of dynamic problem where the decomposition may have to respond to varying 

processor loads; this point is returned to below.

Compared to a decade ago, parallel CFD technology is considerably more ad

vanced. However, as noted by Knight [26], the huge amount of publications devoted 

to parallel CFD research is not matched by the amount of CFD research conducted
I

S
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using parallel CFD as a tool. Based on contacts between the CFD group at Glasgow 

University and the U.K. aerospace industry, this appears to be as much the case for 

CFD use in industry as in academia. Knight suggests three reasons for this:

• parallel computers are perceived as lacking a decisive performance advantage

•  parallel code has portability problems

• parallel code is difficult to program efficiently

Advances in hardware and software have now made the first two points an irrelev

ancy. Numerous recent projects have demonstrated the enormous potential and cost 

savings of using workstation clusters or modern commodity processors in parallel, 

for example[147]. The development of standards in languages (eg. High Perform

ance Fortran[148]) and message passing (eg. MPI[149], PVM[150]) have brought the 

portability of parallel code almost to the same level as sequential code. The problem 

lies in the third point; the practical difficulties in making parallel CFD work can be 

discouraging[151]. To aerodynamicists, there has always been a trade-off between 

the amount of effort necessary to apply a prediction method and the accuracy of the 

results that the method produces. In addition to the effort required for a sequential 

CFD capability, parallel CFD requires the aerodynamicists to:

• obtain and install a message passing library or parallel compiler

• write the parallel code

• write a domain decomposition method or assimilate an ‘off the shelf’ method

• manage the execution of parallel tasks

The first two points are mitigated by the emergence of standards in parallel pro

gramming, as mentioned above, where message passing libraries are in the public 

domain, parallel compilers are available from vendors, advances have been made in 

making parallel programming easier and help on all of these is freely available via the 

internet. However, it is noted that large organisations are likely to employ specialist 

programmers and information technologists; small and medium-sized organisations 

are more likely to be discouraged by the first two points. Chien et al. [152] have
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made some important observations concerning the third and fourth points. Existing 

domain decomposition methods are restricted to parallel systems consisting of a ho

mogeneous processor set^ and which are operated in single-user mode. This typifies 

a dedicated parallel machine possessed by a large organisation; smaller organisa

tions are likely to make their first steps in parallel processing using a non-dedicated 

heterogeneous network of workstations. Making use of spare capacity on existing 

UNIX workstations, originally obtained for other purposes, was pioneered by Pratt 

& Whitney[154] and McDonnell Douglas. However in these cases a policy of inter

active /sequential and batch/parallel use segregation was enforced, the parallel jobs 

being executed overnight, and all other jobs being suspended. This heavy-handed 

restriction on activity is unwanted in any environment and practically impossible to 

enforce in academia. To make parallel CFD more attractive on ‘open’ networks of 

workstations, the ideal parallélisation approach should

• include a domain decomposition method for a heterogeneous processor set

• be integrated seamlessly with existing sequential batch queueing

• take account of varying network load

Type 1 Type 2 Type 3 Type 4

No. of machines 3 2 4 7

Processor R5000 R4400 R4400 R4600

Speed (MHz) 150 150 150 133
Main memory (Mb) 96 160 64 64

Data cache (Kb) 32 16 16 16

Instruction cache (Kb) 32 16 16 16
CPU factor, k 1.9 1.6 1.6 1.2

Table 6.1: Specifications of the workstation cluster
^this assertion is perhaps slightly too strong. Varying processor power is occasionally accoun

ted for in a cost function approach, but without the method being actually demonstrated on a 
heterogeneous network, for example in [136]. In addition, a successful, truly heterogeneous domain 
decomposition has been demonstrated[l 53] ; however the dynamic re-allocation method used to 
achieve the load balance appears very communication-intensive and may only be suitable for very 
compute-intensive problems of the type presented.
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In this chapter, the integration of a parallel multiblock structured aerodynamic 

simulation code into an open, heterogeneous workstation cluster environment is 

examined. The use of clusters of workstations for parallel CFD is of high interest to 

industry[165]. The expected performance increase is limited but comes essentially 

free since the workstations have usually already been purchased and installed for 

either sequential CFD work or other tasks. The workstation cluster used is located in 

the Department of Aerospace Engineering at the University of Glasgow. The cluster 

consists of a number of Ethernet-connected Silicon Graphics Indy workstations of 

four different types, as described in Table 6.1. The cluster is typical of departmental 

level computing facilities (albeit larger than usual) and the facilities at the disposal of 

industry, where often the development of the computing resource over time results in 

an inevitably heterogeneous computing environment [156]. The focus of the work is 

to consider the needs of small and medium sized organisations who require a parallel 

capability to scale up their computing resource but may at present be discouraged 

by the perceived practical difficulty involved. This differs from the majority of 

parallel CFD research where the principal or sole aim has been to achieve the high 

parallel efficiencies necessary for potential or actual massively-parallel applications 

on dedicated machines. Network load management software services are exploited 

to facilitate the application of the decomposition method, and assimilating parallel 

tasks into the overall batch scheduling and queueing system for the workstation 

cluster is considered.

The flow solver used is described in Chapter 2. Overlapping grids are employed 

with two rows of ‘halo’ cells associated with each internal block boundary. After each 

time step the updated solution is copied to these halo cells from the corresponding 

cells in the adjacent block, such that each block has the necessary information to 

form the residual vectors and Jacobian matrices for the next time step. If blocks 

sharing a common boundary reside on different processors, then the copying of data 

is enabled using message passing.
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6.2 C ost function  m inim isation

We wish to distribute structured data blocks amongst the processors of a paral

lel machine. The primary consideration in determining an efficient distribution is 

that each processor should spend the same amount of time performing calculations 

between the synchronous communication phases i.e. that the processors are not 

idle. This is the load balancing problem. Restricting our discussion at present to 

a homogeneous parallel machine (where all the processors are identical), for CFD 

applications a balanced load can be obtained, to a good approximation, by assign

ing an equal number of grid cells to each processor. Sub-domain shape, e.g. block 

aspect ratio, and boundary conditions can also influence processor load[157] but 

these are usually ignored as less important effects. The load balancing problem can 

then be modelled as a minimisation problem for the ‘cost’ H  due to the time spent 

performing calculations[145]:

^  (G'l)

Ï

where P  is the number of processors, N  is the total number of grid cells and Ng 

is the number of grid cells resident on the processor q. As noted in section 6.1, 

non-deterministic procedures are used to solve this allocation problem. No clear 

consensus on which method is best has appeared in the literature, although sim

ulated annealing (S.A.) is most often cited as reliably producing near-optimal res- 

ults, for example in [137],[145],[157], although there are some reservations about 

the relatively long execution time of the S.A. algorithm. An iterative improvement 

(LI.) technique is said to often out-perform S.A. if tailored towards the particular 

application[158]. For these reasons I.I. and S.A. will be evaluated as minimisation 

procedures for the cost function (6.1). Their algorithms are described below. I:

Ji|

Iterative Improvement

An algorithm based on iterative improvement[158],[159] is very straightforward to 

program. Some initial configuration of the state (which can be generated at random 

if necessary) is required, along with a cost function definition. In an iterative man

ner, a small change based on a random selection is made to the system and this ‘basic

I
' I .
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move’ is either accepted or rejected. The acceptance criterion is as follows: if the 

move causes the cost to decrease, the move is accepted, otherwise the move is rejec

ted. The process is terminated when a large pre-determined number of consecutive 

attempts are unsuccessful. Note that careful selection of the basic move is crucial 

to the success of the method. The method is sometimes referred to as ‘hill-climbing’.

Simulated Annealing

The method of simulated annealing[158],[159],[160] is a relatively new method for 

the minimization of objective functions. It is particularly suited to discrete, very 

laige configuration spaces i.e. for combinatorial optimization problems. The title 

of the method is due to an analogy with the slow cooling of metals. The simu

lated annealing algorithm is straightforward to program, and has as its kernel the 

iterative improvement algorithm. Again an initial configuration of the state and 

a cost function definition are required. The acceptance criterion is as follows: if 

a proposed basic move reduces the cost, then the move is accepted. If the cost is 

increased, then the move is only rejected with a certain probability, called the Met

ropolis criterion[161]. Included in this criterion is an artificial system ‘temperature’ 

such that at high temperatures almost any basic move is accepted, however costly, 

and at low temperatures effectively zero ‘bad’ moves are accepted i.e. the algorithm 

becomes one of iterative improvement. A high starting temperature is used, and 

the temperature is periodically forced down by some factor after a large number of 

basic moves have been proposed. The intention is to explore the entire state-space 

with the Metropolis criterion providing a means of escape from local minima.

Two structured multiblock grids were considered to evaluate I.I. and S.A. for the 

allocation problem. Details of grid dimensions are shown in Table 6.2. Note that 

both grids consist of a large number of blocks with widely varying block sizes. To 

evaluate the effectiveness of the cost minimisation procedures, an efficiency measure 

El is defined as

(6.2)
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Grid 1 Grid 2

Total number of cells (N) 

Number of blocks 

Average block size 

Biggest block size 

Smallest block size

48,425

81

598

2349

104

43,417

21

2067

6642

319

Table 6.2: Details of multiblock grids used in allocation test problems

where is the greatest number of grid cells on any one processor in the final al

location. Note that for an ideal allocation Ei is unity. Two basic moves were used for 

both I.I. and S.A.; a ‘simple’ move where two randomly chosen processors swap ran

domly chosen blocks, and a ‘complex’ move where clusters rather than single blocks 

are swapped. The clusters begin as randomly chosen blocks, then collect blocks on 

the same processor with a probability of 0.2 for each possible collection[145]. The 

values of Ei obtained for each minimisation method and different numbers of pro

cessors are shown in Figures 6.1 and 6.2. In each case S.A. out-performs I.I. for the 

‘simple’ move. S.A. provides a mechanism for avoiding local minima which can trap 

the I.I. procedure. However, there is negligible difference in the final result for the 

‘complex’ move. This basic move is designed to enable larger jumps in the state- 

space of the type required to avoid local minima (for this problem), and has had the 

desired effect. Note that the complex S.A. has also out-performed the simple S.A. 

method. A very good discussion of the importance of choosing an appropriate basic 

move is included in [145]. Note that for both test problems, the efficiency of the final 

allocation begins to decrease when an allocation over a large number of processors 

is attempted. This occurs when the number of cells in the largest block becomes 

larger than the ideal number of cells per processor N /P .  If it were desired to use 

a large number of processors, this problem could be avoided by manually splitting 

the biggest grid block.

For the remainder of this work the complex I.I. minimisation procedure will 

be used. More detailed cost functions will be employed, but the nature of the 

minimisation problem will remain the same. It is preferred to the complex S.A. 

procedure since it requires less execution time, less than one second compared to



176 Parallel Aerodynamic Simulation on Open Workstation Clusters

about four seconds, and provides equally high quality results.

6.3 C om m unication cost

The majority of parallel applications of structured multiblock codes which have 

appeared in the literature consider only the criterion of load balancing to achieve 

good parallel performance. A good example is [146] where impressive results are 

demonstrated on a number of parallel machines, including a dedicated workstation 

cluster. However, a number of researchers have also stressed the need to take into 

account communication overhead. The simplest way to take into account the cost of 

communication as well as computation is to introduce a communication cost element 

into the cost function, and use a balance coefficient p  to scale the relative importance 

of the cost elements. The cost function for the allocation problem then becomes

^  (63)
g=l '  '  e-H-/

The first term in this equation is the load balancing term of equation (6.1). The 

second terra is the communication overhead term. For all the cells e on block edges 

which must communicate with cells /  in other blocks, a cost is incurred if e and 

/  do not reside on the same processor q. The choice of scaling constants for each 

cost element is designed to keep their relative magnitudes constant regardless of 

the problem size, as discussed in [145]. For codes with a great deal of calculation 

compared to communication p  should be small, and vice-versa. This explains why 

communication cost may be disregarded for some flow solvers. According to De 

Keyser and Roose[136], it is only important to determine approximately the relative 

magnitude of computational and communication cost, rather than a precise value 

for p. Hence we seek a value for p  where the resulting final allocation may differ 

from that obtained with ^  =  0, indicating that ‘physical’ adjacency of blocks is 

being taken into account to a degree, but where the load balancing problem is 

not being overwhelmed, i.e. Ei does not become too small. Trial allocations with 

varying values of balance coefficient p and numbers of processors P  for Grids 1 

and 2 indicated the range < p < 10“ .̂ To be more certain of obtaining an 

appropriate value for p, trial runs of 50 implicit time steps using Grid 1 on two
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 m  (64)

processors of Type 3 were performed for various p. The results are shown in Figure 

6.3. The timings shown are averages of ten runs performed overnight when the 

workstation cluster was very lightly loaded. The parallel efficiency Ep shown is 

defined as

sequential execution tim e , .
{parallel execution time) * {no. o f  processors used, P)

The single processor run was perfomed on a processor of Type 2 which has the same 

speed as Type 3 processors but enough memory for a sequential execution. From 

the figure the communication model has had a small effect on execution times. The 

shortest execution times were obtained for 10"® < p < 10~ ;̂ note that for these 

cases the allocations found by the minimisation procedure were identical. For high 

values of p  the communication cost begins to dominate, to the detriment of the 

load balance. For p ~  1.0 all of the blocks were allocated to one processor. The 

maximum parallel efficiency achieved was 82%. This indicates that communication

costs for the flow solver on the workstation cluster are high. That a greater parallel

efficiency was not achieved is not an indication of a failure in the cost function al

location method; regardless of which allocation is determined, communication must 

always occur between processors. To achieve a higher parallel efficiency without re

sorting to changing the flow solver algorithm, the way in which the message passing 

is programmed could be examined for possible improvement, or the communication 

network upgraded. Far greater parallel efficiency has been obtained for the same 

code on a dedicated parallel machine[147]. However, in the present work the object

ive is to achieve a scaling-up of computing power, accepting that performance gains 

are limited. In this context the parallel efficiencies obtained are acceptable. For 

subsequent results presented in this chapter, a value oî p ~  10"^ will be used where 

a communication cost model is employed. The same problem was also calculated 

using 3 to 6 processors (of Types 2 and 3), with and without the communication 

overhead term in the cost function. The averaged execution times, parallel efficien

cies and parallel speedups are shown in Figures 6.4, 6.5 and 6.6 respectively. The 

parallel speedup S  is defined simply as

S  =  EpP  (6.5)
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Note that for all cases the inclusion of the communication cost element has led to 

improved parallel performance.

When communication overhead is taken into account, the most popular approach 

is to approximately account for the relative importance of computational and com

munication costs, as described above for the allocation problem, and also for the 

mesh partitioning problem. For particular applications a direct mapping of the 

computational domain onto processors can be visualised and exploited, as discussed 

in [136]. A good example of this is included in [162] where a large single block prob

lem is decomposed into a two-dimensional array of rectangular patches to exploit 

the processor connectivity of a massively parallel machine where the processors are 

arranged in a two-dimensional array. However, this type of approach lacks gener

ality, few computational domains decompose easily to topologies which match the 

target machine topology. The obvious next step in developing a communication 

cost model is to explicitly predict or measure the communication time, rather than 

approximately accounting for it. However, communication time is a function of 

message size, message-passing method, processor type, processor loading, network 

type and network loading which means creating a predictive model is prohibitively 

complex[136],[163]. Some researchers have attempted to measure inter-processor 

communication costs during run-time[163],[164] which removes some of the diffi

culties but the implementation of such an approach is still an order of magnitude 

more difficult than using the simpler method employed here, and a commensurate 

improvement in performance has not been demonstrated.

6.4 H eterogeneous load balancing

The computational cost is a function of the processor speed as well as the number of 

cells allocated to the processor. As discussed in Section 6.1, research in parallel CFD 

has almost exclusively concentrated on homogeneous parallel computers consisting 

of identical processors. However, if the parallel computer consists of a non-dedicated 

workstation cluster, for example that considered in this work (see Table 6.1), then 

the varying processor speeds of the heterogeneous computer must be included in 

the cost function to efficiently use the resource. Extending equation (6.3) to include
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different processor speeds gives the new cost function

«
g—1  ̂  ̂  ̂  ̂ e<r̂ f

where kg is a coefficent which varies directly with the processing speed of processor q. 

Hence if an allocation is attempted onto two processors, the first with twice the speed 

of the second (i.e. k i / k2 =  2), then to minimise the computational cost two thirds 

of the cells would be allocated to the first processor and one third to the second. 

The most reliable way to determine values for k is to compare execution times on 

each of the processors for a standard sequential problem [156]. Vendor information 

concerning processing speed is unreliable for this purpose, especially when processors 

from more than one vendor are used. On the workstation cluster considered the 

commercial management software LSF is used for job control and batch scheduling. 

Use of such management software enables efficient use of distributed computing 

networks[166] and is becoming widespread in industry. LSF also provides numerous 

functions for interrogation of processor configuration and loading that can be simply 

included in user programs. An LSF function for ascertaining directly the coefficents 

kg (termed ‘CPU factors’ in LSF) was employed in the static allocation method. 

Values for k from the workstation cluster used are included in Table 6.1. The 

computational cost model could be further refined. The processor speed is influenced 

by the proportion of accessed memory which resides in the memory cache rather than 

the main memory [165], although most researchers ignore or disregard this effect as 

insignificant.

In order to examine the effectiveness of the new cost function (6.6) in exploit-

1ing a heterogeneous processor set, the trial problem of 50 time steps using Grid 1 

was repeated using various heterogeneous workstation sets for the parallel machine. 

Ideally the execution time will vary inversely with the sum ktotai of the CPU factors 

k of the processors used. The execution times are plotted against l/hotai in Figure 

6.7. The serial execution time is included in the figure, and is joined by a straight 

line through the origin to indicate optimal performance. The parallel timings are 

presented in three groupings, results for 2, 4 and 6 processors. For each grouping, 

the result with the largest 1/ ktotai is the result for execution on a homogeneous 

set of Type 4 processors (the slowest available grouping). For each group, if the
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results formed a straight line passing through this end point, with gradient equal 

to the optimal gradient, then the usage of available processing power would be as 

efficient as the homogeneous case. We could expect the gradient to be slightly less 

than optimal since the communication time remains approximately constant for in

creasing processor speed. The results demonstrate a general trend of decreasing 

execution time with increasing processor power as required, except at a few points 

where the execution time has increased with increasing processor power. This is dis

appointing since a heterogeneous execution should always be at least as quick as a 

homogeneous execution using processors of the slowest type in the heterogeneous set. 

However it is perhaps unrealistic to expect a non-deterministic allocation method 

to always produce a near-optimal result; none of the timings are unacceptable and 

the general trend clearly indicates that heterogeneity is being reasonably accounted 

for. Examining some particular results helps to indicate the worth of employing 

the heterogeneous allocation model. Using two processors of Type 3 {ktotai = 3.2, 

^/ktotai =  0.3125) the execution time is 838 seconds. Replacing one of these pro

cessors with the faster Type 1 processor (now ktotai =  3.5, 1 /ktotai = 0.2857) would 

not result in a faster execution if a homogeneous allocation method were employed, 

the faster processor having to wait while the slower computes its half of the load. 

With the heterogeneous allocation model the execution time was 761 seconds, a 

reduction of 9.2% for a 9.4% increase in computing power.

Note that in Figure 6.7 results are again presented for allocations determined 

both with and without communication cost modelling. In every case the executions 

were faster when the communication cost element was included.

6.5 D ynam ic load balancing

In Section 6.1 it was described how the available parallel computing resource often 

takes the form of a non-dedicated heterogeneous network of workstations. Most 

parallel CFD work is performed at present using dedicated, single-user parallel com

puters. The presence of other users’ tasks causes a serious problem for parallel 

applications. Even if the subset of processors to be used for the parallel task is care

fully selected before run-time, either manually or using management software, the



6.5 Dynamic load balancing_______________________________________ 181

load during run-time on these processors can vary dramatically and unpredictably. 

A load histogram for the workstation cluster considered in this work is included in 

[166]. One sequential task running interactively on a processor already being used

for a parallel task can double the execution time of the parallel task. Inexperienced 

use of a workstation can lead to disk space/main memory ‘swapping’ which can eas

ily reduce the effective processing speed by an order of magnitude and have an even 

worse effect on the parallel task. Even seemingly benign activities such as using 

an internet browser or a graphical electronic mail tool can have a significant effect.

This dynamic load balancing problem must be tackled if the objective of reliable, 

robust parallel execution is to be achieved.

The recorded execution times for twenty trial runs of the test problem described 

in Section 6.3 using four processors of Type 4 are shown in Figure 6.8 for various 

network conditions. The timings denoted ‘quiet’ are the results of overnight runs 

when the cluster was lightly loaded. The variation in execution time from the fastest
......

possible is small. The timings denoted ‘busy’ are the results of day-time runs when 

the workstation cluster was moderately to heavily loaded. The timings are far less 

predictable, some taking 30% longer than the fastest possible. From experience,

I;
some of these timings could have been even greater. The longest execution times 

shown are probably due to interactive use of internet browsers and mail tools on one 

or more processors. Other common workstation cluster activities which would have 

a greater impact are the use of graphical grid generation and solution visualisation 

software. A ‘worst case’ timing is also included in the figure. After initialising 

the parallel task, an interactive serial task was deliberately started on one of the 

processors. This has increased the execution time by approximately 55%. The 

present dynamic load balancing problem is then to bring the ‘busy’ and ‘worst case’ 

timings down to the ‘quiet’ level. The averaged parallel efficiencies are 64%, 57% 

and 42% for the ‘quiet’, ‘busy’ and ‘worst case’ situations respectively.

Chien et al.[152],[155] present an advanced dynamic load balancing method. The 

effective speed of each processor is continually monitored by measuring and compar

ing the waiting time for the communication phase to complete on each processor, 

adjusting coefficients in the cost function if necessary, and re-allocating the mesh 

partitions if necessary. The method is very efficient for re-allocating a dynamically

'■M-
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adapted grid, and enables eventual complete migration of the parallel task from a 

heavily loaded processor if necessary. The approach of Chien et al. produces impress

ive results but at the expense of considerable complexity and programming effort. 

Furthermore, the group have themselves asserted^ that the dynamic load balancing 

problem has been over-elaborated in recent years, with very complex methods being 

developed to achieve increasingly small performance gains, and that the only real 

problem in dynamic load balancing on open workstation clusters can be presented 

simply as

• recognise when processor A is being heavily used by another task

• identify a lightly loaded processor B

• migrate the work of processor A onto processor B

• do all of this as quickly and simply as possible

These are also the objectives of the present work. From Figure 6.8, some interference 

of the parallel task can be tolerated (where the ‘busy’ timings are only slightly longer 

than the ‘quiet’), any performance gains in sending a subset of the blocks on the 

‘busy’ processor to other processors are likely to be small and would not justify the 

programming effort. The only real problem arises when a processor becomes heavily 

loaded, and the entire load from that processor should be migrated. Note that this 

also protects the interests of the interactive user, who then becomes the sole user of 

the processor. A dynamic re-allocation method was implemented as follows, using 

native LSF and PVM functions called from within the flow solver code for simplicitly 

rather than creating custom software:

• periodically monitor processor loadings (LSF)

• if a processor is too heavily loaded, find a candidate alternative (LSF)

• initiate a new task on the new processor (PVM), pass all the necessary in

formation including the solution and the grid to the new task (PVM)

• stop the old task and proceed with the calculation

^during their ECCOMAS conference presentation[152]
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Note that the frequency of load monitoring and the threshold for deciding whether 

a processor is overloaded are decided before run-time by the user. The major part 

of the information passed to the new process consists of the solution and grid for 

the partition allocated to that processor. For the present test problem this is ap

proximately 500Kb for each migration, which is a manageable figure for an Ethernet 

network. It is not necessary to pass the Jacobian matrices (for the implicit scheme) 

which form the major part of the total memory usage for the flow solver. The 20 

trial runs in the ‘worst case’ scenario were repeated, but this time using the dynamic 

re-allocation method. The results are denoted ‘dynamic’ in Figure 6.8. The load 

monitoring frequency was set at every 10 time steps, recalling that 50 time steps are 

executed in total. It was detected that one processor was over-loaded at the first 

call of the load monitoring function (i.e. after 10 time steps) and the load from that 

processor was transferred to a lightly loaded processor. There is therefore a clear 

improvement over the ‘worst case’ execution time. An average parallel efficiency 

of 57% was achieved in the ‘dynamic’ case, as opposed to 42% for the ‘worst case’. 

The ‘dynamic’ execution times could be further reduced by increasing the load mon

itoring frequency. Note that this model parallel CFD task has a lower associated 

parallel efficiency than would be the case for a real problem. It is unlikely that an 

engineer would use four processors for a problem which comfortably executes on 

two of the same processors, as in this case. It is well known that larger problems 

have greater parallel efficiencies (since the communication cost to computational 

cost ratio decreases), so since the dynamic re-allocation method effectively reduces 

the computational cost the performance gains for real problems would be larger. In 

addition, dynamic re-allocation would be of greater use for typical CFD jobs with 

longer execution times than the ten minutes in the current test problem.

In the event of no suitable alternative processor being available, the present 

method proceeds with the calculation on the same processor. This could be improved 

by first attempting to contract the problem onto one less processor, or if this is 

not possible by automatically re-submitting the parallel task to the batch queue, 

re-starting from the latest checkpoint files. The present method includes periodic 

checkpointing to local and main disks to enable re-starting in the event of a network 

failure.
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Most organisations with a distributed computing network employ a batch schedul

ing and queueing system, either developed in-house or proprietary, to enable trans

parent load management and achieve high productivity. Users are becoming ac

customed to the convenience of high performance environments, where the system 

does the work of prioritizing batch jobs and selecting resources, and the user must 

only submit the (sequential) job and can depend on the timely arrival of the results. 

Ideally executing parallel tasks should be as simple and reliable. The dynamic re

allocation method presented here coupled with management software such as LSF 

which fully supports sequential and parallel applications alike makes this possible.

6.6 D iscussion

A domain decomposition method for a parallel, structured multiblock flow solver has 

been presented. The method is suitable for use on a non-dedicated parallel computer 

consisting of a heterogeneous workstation cluster. It has been noted that the ma

jority of work concerning parallel CFD considers dedicated, homogeneous parallel 

computers. The additional difficulties encountered in a non-dedicated heterogen

eous environment have been discussed. The parallel computing resource available 

to many engineers in small and medium-sized enterprises is of this type, although 

widespread use of parallel CFD to achieve a scaling-up in computational resource 

appears to be hindered by the perceived complexity involved. With this in mind, 

the domain decomposition strategy presented here attempts to deliver an effective 

resource in as straightforward a manner as possible.

The method employs a cost function minimisation approach. It is assumed that 

the multiblock grid consists of enough small blocks to enable a reasonably balanced 

distribution. The cost function consists of computational and communication cost 

elements. The time required for a processor to compute its share of the load is 

assumed to vary directly with the number of grid cells assigned to that processor. 

The time required for inter-processor communication is assumed to vary directly 

with the number of cells on the block boundaries which must communicate with 

blocks which reside on different processors. The relative importance of the cost 

elements is defined by a coefficient, a value for which is determined from timing
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experiments. The various processor speeds are ascertained using the management 

software LSF and are accounted for in the cost function. LSF is also used to mon

itor interference of other users’ tasks with parallel execution, and to select a lightly 

loaded processor as a target for migration. The method enables effective paral

lel execution in the demanding environment of an open heterogeneous workstation 

cluster. Implementation is straightforward, facilitated by modern management soft

ware and message-passing libraries, and does not require a specialist programming 

or information technology effort.
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C hapter 7

C onclusion

The axisyrametric flow solver was applied to high speed forebody and base flow 

cases in Chapter 3. The motivation was to assess the capability of the method as

;
I
'à
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I '

The general aim of this work has been to promote computational aerodynamics as 

a useable technology in engineering design and scientific enquiry. Several aspects of 

applied CFD have been considered, each reflecting current problems, concerns and 

requirements of CFD users.

In Part I of this work the implementation of an axisymmetric flow solver was 

described, and its use as a tool for engineering design and scientific enquiry was 

examined. First, in Chapter 2 the adaption of an existing two-dimensional flow 

solver for axisymmetric flow is described. The main points of the chapter are as 

follows: à
Ithe axisymmetric Euler and Navier-Stokes equations can be cast in a form 

very similar to the two-dimensional equations

for axisymmetric problems, the potential performance gains of an axisymmet

ric flow solver over a fully three-dimensional method are considerable

• the inclusion of the axisymmetric source terms for the Navier-Stokes and k — uj 
turbulence model equations in the numerical scheme is described

an exact, laminar test case is considered, for which very good agreement with 

theory is demonstrated.
■i
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an engineering tool; as well as evaluating the accuracy of the results, pre- and post

processing effort, robustness and required computing power were also considered. 

These issues can be grouped together as ‘cost’, and as such are important to engineers 

in an industrial/commercial environment. For the high speed forebody applications, 

the results of the study can be summarised as:

• good agreement was obtained with experimental data and other calculations

• the flow solver is robust and fast, the run-times being measured in minutes

• an implicit treatment of the inviscid part of the axisymmetric source terms 

improves the performance of the method

• the very significant performance advantage over a three-dimensional method 

was demonstrated

•  the computing resource required is modest

•  pre- and post-processing are straightforward.

The method therefore clearly satisfies the demanding requirements of an engineer 

operating in an industrial/commercial environment. The design of forebody geo

metries is not straightforward, involving compromise between several aerodynamic 

effects which can be counter to intuition[62]. The present method enables solutions 

to be obtained in minutes using modest computing power. This affords the possibil

ity of employing automatic design techniques for forebody geometries which appear 

at present to have been limited to inviscid aerofoil and wing calculations[17],[167]. 

This is a potentially fruitful avenue for future work.

Application of the method to base flow problems proved more problematic. The 

results of the study can be summarised as follows:

•  fairly poor agreement with experimental data was obtained, similarly to other 

published calculations for the problem considered

• the method is not robust for this type of application. The numerical instability 

is associated with the implementation of the k — u) turbulence model, and 

originates in the vicinity of the free stagnation point
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•  a method for including upstream boundary condition information in the sim

ulation has been described

• the computing resource required is modest

• pre- and post-processing are straightforward.

In general, for turbulent base flow calculations with large scale separation the 

method performs less well than for the forebody problems. Although it is still 

possible to obtain solutions relatively quickly, the robustness should be improved 

before the method can be considered practical for this problem. The deficiencies 

of a two equation turbulence model, employing the Boussinesq approximation, are 

well known for highly separated flows, although in the context of available predic

tion methods the balance between accuracy and complexity is reasonable. If in 

future work the numerical instability problem could be solved, the method would 

then become viable as an engineering tool. The form of the turbulent source term 

Jacobian matrix appears to be a key to this problem. The next step would then 

be to evaluate the inclusion of more advanced turbulence models, which have the 

potential to improve the accuracy of the simulation, but may incur a large penalty 

in computational cost and complexity.

Chapter 4 describes how a complex shock interaction phenomenon was success

fully examined using a computational aerodynamics method. The main results of 

the study are:

• the hysteresis in the shock reflection type occurring in the plume of an under

expanded jet has been successfully predicted, showing good agreement with 

experiment

• nozzle calculations over a range of Reynolds number have helped explain the 

scatter in the experimental results

•  the detailed results from CFD have enabled identification and examination of 

flow features not initially recognised in the experiments:

1
# grid convergence is an important and demanding issue for this type of applic

ation

:;S
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— Mach disc curvature

— recirculation and continuing compression behind the Mach disc

— the presence of a small diameter Mach disc in the apparent regular re

flection

•  two-dimensional shock reflection theory has been reviewed and employed to 

aid interpretation of the results

# appropriate boundary conditions for this type of problem have been estab

lished.

The numerical investigation, used in conjunction with experimental data and shock 

reflection theory, added significantly to the understanding of the problem. Ex

perimental investigation of shock interaction problems is hampered by practical 

difliculties, thus the potential for numerical investigations is large. At the 1998 In

ternational Mach Reflection Symposium it was noted that more than 90% of the 

presentations included numerical results, either as the sole analysis method or com

plementing experiment and/or theory, underlining this point. Although the role 

of theory in this study has been stressed, a comprehensive theory for the reflec

tion of conical shock waves does not exist at present. In a manner analogous to 

the two-dimensional shock reflection problem, the present method could be used 

to study reflection of conical shock waves out with the context of a complex plume 

structure. This would strengthen the theoretical framework available for analysis of 

shock interaction problems, and would facilitate the investigation of more complex 

axisymmetric problems. The success of the numerical method in the present work, 

and the recent extension to a fully three-dimensional flow solver, points to another 

area of future work. Numerical investigation of further shock interaction problems 

from the same series[107] should now be possible, for which the necessary computing 

power is now available[147].

Part II of this work concerns the issues of pre-processing and parallel computing, 

both of which are important to the practicality of routine CFD analyses, and are 

important sub-topics of CFD in their own right. Chapter 5 describes a new approach 

to multiblock grid generation. The main conclusions of the study are:
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an unstructured quadrilateral/hexahedral mesh generation method which has 

the potential for use as an automatic multiblock topology generator has been
J:

identified

• a new approach for automatic topology processing has been presented

• a cost functon for multiblock topologies has been constructed, based on ex- 

perience using interactive grid generation tools

•  the approach has worked well for a number of test problems, using simple curve 

definitions and a straightforward, non-deterministic minimisation method

• there is a clear route to extending the method to three-dimensional problems.

The large amount of human effort required for grid generation is increasingly be

coming a frustration of CFD users. As solution methods improve and available 

computing power continues to increase, the main obstacle to performing large, com

plex simulations is now frequently grid generation, the technology for which has not 

progressed at the same rate as other elements of the CFD analysis process. The 

topology processing method described in this work provides the possibility, in con

junction with an identified unstructured quadrilateral/hexahedral grid generation 

method and existing structured grid generation technology, for a fully automatic 

grid generation capability for even complex configurations. The unstructured grid 

generation method is well established in structural analysis. The potential of the 

topology processing method has been demonstrated in this work. The capabilities 

(and limitations) of existing structured grid generation technology are well known. 

Assembling all of the elements together would undoubtedly be a significant task, 

but the technology does exist at present and the potential rewards surely justify 

the effort. Immediate future work in this area should begin by improving the curve 

definitions and minimisation algorithm. This should not be problematic since meth- : 

ods for both problems are well established. The topology processing method should 

then be coupled with the initial topology generator and structured grid generation 

routines to obtain a fully automatic grid generation tool. If this can be achieved 

without unforeseen difficulties, which seems likely since all the elements of the pro-
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cess are well established, then the generalisation to an automatic three-dimensional 

grid generation tool becomes a real prospect.

Chapter 6 concerns the implementaton of a parallel computing strategy for com

putational aerodynamic simulation using a non-dedicated, heterogeneous network of 

workstations. Some care was taken in assessing the current status of parallel CFD, 

with the following conclusions:

• parallel computing is accepted at present as providing the most cost-effective 

route to high performance computing, a requirement of the CFD community

• the perceived difficulty in achieving a parallel CFD capability is impeding 

widespread adoption of the technology

• this is especially true of small and medium sized enterprises, who do not possess 

dedicated parallel machines and therefore have the additional problems of 

heterogeneity and dynamic load imbalance

•  the vast majority of parallel CFD research has concerned homogeneous, ded

icated parallel machines, compounding the point above.

Parallel computing has for some time been seen as the solution to CFD’s continual 

requirement for increasing computing power. The gradual maturing of the associ

ated technology, parallel solution algorithms, message passing libraries and parallel 

compilers, has encouraged the adoption of parallel computing by the CFD com

munity. This work has addressed many of the issues which are discouraging more 

widespread exploitation of parallel CFD. It has been demonstrated that it is now 

possible to implement parallel CFD even in a demanding open workstation cluster 

environment where heterogeneity and dynamic load imbalance must be considered. 

The conclusions of the study are as follows:

• load-balanced allocations of grid blocks to processors can be achieved using a 

cost function approach

• a tailored iterative improvement algorithm is an effective minimisation method, 

out-performing simulated annealing in terms of execution time
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the importance of communication time to parallel performance is application- 

specific. For the present parallel fiow solver, employing an artificial balance 

coefficient to scale the relative importance of computation and communication 

cost is effective

the heterogeneity of a parallel computer can be accounted for easily in the cost 

function

• proprietary management software is useful for obtaining processor information 

for static load balancing and dynamic load information

•  dynamic load balancing is important for maintaining acceptable productivity 

when using a non-dedicated parallel machine

•  a dynamic re-allocation method has been described.

,
It is likely that parallel CFD will become commonplace if the perception that it is 

a difficult technology can be overcome, especially with continued improvements in 

parallel computing technology, notably resource management software. i:
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A ppendix  A  

T he tw o-dim ensional (planar) 

N avier-Stokes equations

A .l  Introduction

In this appendix the two-dimensional Navier-Stokes equations are presented in vari

ous forms for the sake of completeness and ease of reference to the axisymmetric 

equations presented in the main body of the report.

A .2 N on-dim ensional form

The derivation of the Navier-Stokes equations is included in most fluid dynamics 

texts, for example [53]. In a two-dimensional cartesian frame they can be written as

d w  a(F* -  F n  a(G* -  c n
d i  +  d~y -

The vector W  is the vector of conserved variables:

0 (A.l)

W (A.2)

f  P \
pu 

pv 

\ p E  J

where p is the density, V  =  (u, u) is the Cartesian velocity vector and E  is the 

total energy per unit mass. The flux vectors F and G consist of inviscid (*) and (^)
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viscous diffusive parts. These are written in full as :

F* =

G* =

pu 

pu^ + p  

puv 

\  puH J

^ pv ^

puv 

pv"̂  -f-p

V )

(A.3)

Re

0
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k  U T x x  T  V T x y  Q x j  

0 \  

'̂ xy
Re 'yy

\  U'Txv +  •>̂ yy +  <lv J

(A.4)

The stress tensor and of the heat flux vector components are written as:

Txx — P

yy

'xy

Qx —

Qy —

du 2 f  du dv 
dx 3 \d x  dy
dv i 

du
d y ^ d x )

du d v \ \

(A.5)

p  a r
(7 — Pr dx

1 p dT
(7 -  1)M ^ P r dy

Here 7 is the specific heat ratio, Pr  is the laminar Prandtl number, T  is the static 

temperature and Moo and Re are the freestream Mach number and Reynolds num-
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H  = E - ¥ -

E  =

P
e -h “  -f

P = (7 -  1) pe
P T
P

Finally, the laminar viscosity p  is evaluated using Sutherland’s law:

where pq is a reference viscosity at a reference temperature T q . These can be taken 

as p o  =  1.7894x10“® kg/(m.s) with T q — 288.16 K. It is stressed that the quantities 

presented here have been non-dimensionalised. The procedure used is as follows:

X* y* t*
 ̂= T7 . y  ^

A.3 Reynolds-averaged form

%

ber, respectively. The various flow quantities are related to each other by the perfect

gas relations:

(A.6)
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“ = ^ >
oo ^ oo P o o

P’J  v s
(A.8) ;f

The Reynolds-averaged form of the Navier-Stokes equations permits turbulent flow

€
to be considered. The development is not presented here. It is merely noted that 

fundamental to this approach is the consideration of the flow variables as consist

ing of two components, a time averaged component and a turbulent fluctuation 

component. For example, density and velocity components are decomposed as
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The quantities k (the turbulent kinetic energy), pT (the turbulent viscosity) and 

P tt (the turbulent Prandtl number) are introduced via the important Boussinesq 

assumption in an attempt to model the fluctuating-variable stress terms arising 

from the Reynolds averaging. For a complete discussion of this subject see [53]. 

The Reynolds-averaged form of the Navier-Stokes equations are identical to those 

presented in appendix A.2, except for the stress tensor and heat flux vector com

ponents shown below. The variables should be considered as mean flow quantities 

(superscripts are dropped for clarity). The turbulent nature of the flow is modelled 

via pT and k and a closure hypothesis or turbulence model, for example the k — uj 

model, appendix B.

-  (m+ ( 2g  -  ? (1 ^ + 1 ^ )) + \p k

- ( /x  +  M  ( 2 ^ - | ( £  + J ) ) + | p
du dv 
dy dx

Ttm —
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i-y -  l )M ^  \ P r  P rx J  dy

(A.IO)

A .4 Curvilinear form

The governing equations are written in curvilinear (^,p) form to facilitate use on 

curvilinear grids of arbitrary local orientation and density. A space transformation 

from the Cartesian coordinate system to the local coordinate system must then be 

introduced:

^

Tj =  r}{x,y) 

t = t

The Jacobian determinant of the transformation is given by

d(x,y)
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The equations A.l can then be written as

d W  d{¥^ -  F^) d{&  -  G^)
dt + + dr)

(A .ll)

where

w  = W

pi = 1  (&F' +

G* = -J (%F' + %G')

F̂  = 1  (&F"+ e,G”)

Ĝ  =

(A.12)

U

V

The expressions for the inviscid fluxes can be simplified somewhat by defining

T

V xU  -\-T]yV

The inviscid fluxes can then be written as

f  pU \

puU H- ^xP 

pvU +  4 p

V pUH )

f  p y  ^
puV  +  TjxP 
fyuV + pyp 

\  PVH )

(A.13)

F '

G ' = (A.14)

The derivative terms found in the viscous fluxes are evaluated using the chain rule, 

for example

du
dx

du du

The evaluation of the metrics of the transformation is clearly important, and is 

described in full in [53].
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A ppendix  B  

T he tw o-equation k  — u  turbulence  

m odel

B .l  N on-dim ensional form

The k — ÜJ turbulence model of Wilcox[54] in non-dimensional form can be written 

as follows:

Eddy V iscosity
fj/r =  pk/u)

Turbulence K inetic Energy

dk \ 2
+ pV.V/c —-^^V. [(p +  <j*pr) VA;] =  fj/rP ~~-^pkS ~  (3*pku

Specific D issipation R ate

R — —pkS  — (3pcĴ
sxe /fc L o  J

Closure Coefficients

a =  5/9, (3 =  3/40, p* =  9/100, a =  1/2, a* =  1/2 (B.l)

In the above relations,

P  =

s  = v .v

(VV +  VV^) : V V  -  I  (V.V)^
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The equations for k and u  can be written in a curvilinear form analogous to that 

used for the mean flow equations in section A.4 . Written in full, the two-dimensional 

Cartesian form of equations B.l and B.l become

I {p +  afj,T){Cx<v^-\-rjxU)rj)
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The equations as shown above use the same non-dimensional quantities as in section 

section A.2, with the addition of

, k*Re u)*L* jjL
" • ‘ v S '

B .2 Curvilinear form

I
9W r 9(F |,-F ? ,) 9(G^ -  G^) St

where the vectors of conserved variables, convective and diffusive fluxes are respect

ively

Î

where the tensors M and N are equal to

N = J _ (  +  +  I
t  (// + 4- J

„p::.
■,ly-

i
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Finally, the source term is written as

with the components

Pfc ~  ijfc 
P w -D w

d u \^  f  dv
d x )

2 f  du dv

fd u  d v \  
d y )

Dfc =  (3* pu)k

w .

Do; = PfxJ

Again the velocity derivative terms are evaluated in (f,?;) space via the chain rule, 

as mentioned in section A.4, but remain unexpanded in the source term components 

above for brevity.
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