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Suminary

Neuronal dendritic trees exhibit a huge varicty of morphologies, and iheir information
processing capabilities are, for the most part, poorly understood. The fundamental diffi-
culty stems from the fact that dendrites can be bewilderingly complicated and appear to
operate at a global level; an event in one location potentially influences the enlive tree. At
first sight, it would seem that the entire tree must be analysed as a single entity unless
conceptual gimplifications can be introduced.

This thesis presents procedurcs for reducing passive neuronal dendritic tree models
to fully equivalent unbranched non-uniform cables. A fully equivaleni cable is equivalent
in a mathematical sense to the original tree model and capable of reproducing the same
physiological behaviour, An understanding of the construction procedures, as well as
the results they produce, gives new, and general, insight into the local and global signal
processing capabilities conferred on passive dendritic trees by their geometry.

Chapter One (Neurophysiological Background and Dendrilic Funclion) outlines the
basic neurophysiology of relevance to this thesis. The major neuronal components, i.e.
dendritic trees, soma, axon, neuronal membrane, and synaptic connections, ave introduced.
The electrochemical basis of membrane excitability, mauifest as a changing transmembzrane
electrical potential, is described. We consider how ion channels allow specific ion species
(K+, Nat, Ca?t, Cl7) to pass across the membrane, and how equilibrium is scught as
transmembrane electrostatic forces balance with transmembrane chemical gradients to
establish a resting lransmembrane potential. Equivalent cable construction is particularly
concerned with dendritic trees and so their signal processing role is considered, from. the
generally accepted signal integration mechanisins that follow almost incvitably for such
branching excitable structures, to some theoretical and speculative possibilities that have
not so far heesn verifiable due to the lack of appropriate experimental techniques, but could
possibly have a significant role in certain aspects of real neuron operation.

Chapter Two {Cable Theory ond the Muliiple Scgment Dendritic Tree Model) details
a generalisation of the one dimensional cable theory commonly uscd to describe electrical
activity in neuronal structures. The derivation follows from fundamental principles such

as charge conservation and from the nature of membrane constitutive properties. Other




than the one-dimcnsional and ohmic electrical properties of the dendritic cytoplasm, few
assurnptions are wade about electrical and pgeornetrical propertics. The resulting cable
equation is valid for segments of dendrite with non-uniform cross-sectional profiles and can
incorporate arbitrary types and densities of ion channels and synaptic inputs. Following
this, the assumptions which must be made to yield the passive linear cable equatlion
—— which is the basis of equivalent cable construction — arc explained. By assuming
the existence of a steady resting transmembrane potential, the transmembrane currents
can be quite naturally expressed as a sum of linear and non-linear contributions. The
linear cable equation is obtained by assuming the non-linear component s zero. The
standard dimensionless (electrotonic) form of this equation is then formulated, along with
joling and terminal boundary conditions for the multiple segment dendritic tree model.
The multi-cylinder specialisations of the general equations are also given since these will
be used in later chapters to derive the methods of equivalent cable construction. For
the passive tree model to be valid for cquivalent cable construction, the membrane time
constant must be a constant over the entire tree, and only cut (zero potential) and current
injection (specified potential gradient) boundaxry conditions may be applied at terminals.

Chapter Three (Fguivalent Cables) outlines the cquivalent cable concept as it has de-
veloped over the years. An equivalent cable is basically an unbranched dendrite model
which Is, in gsome sense, “equivalent” to a dendritic tree model. We starl with a detailed
cxamination of the first major result concerning equivalence, i.e. Rall's eqnivalent cylin-
der, then proceed with an outline of the empirically derived and geometrically and/or
electrically restrictive cables that have heen inspired by Rall’s modei. We then move to a
thorough description of the new fully equivalent cables that are the concern of the vest of
this thesis, describing important structural properties such as the existence of disconnected
cable sections, and conserved quantities, such as electrotonic length and steady-state input
conductance. Of major importance is the definition of equivalence. Unlike previous mod-
cls, fully equivalent cables satisfy a rigorous mathematical deflinition of equivalence which
demands the existence of a bijective electrical mapping that specifies a unique relationship
between configurations of electrical activity on the trec model and those on its equivalent
cable. Whereas previous models have been developed mainly as an aid for neuron elec-
trical parameter estimation, the new fully equivalent cable model must be regarded as a
tfundamentally diflerent, and more powerful mathematical object. They have implications
for the understanding of local and glohal signal processing functions that arise as a conse-
quence of dendritic geometry, and introduce several new ideas such as passive coincidence
detection and characteristic distributions of tree activity. Much emphasis is placed on the
transformation of basic singly branched structure. Any trec may be transformed {o an

cquivalent cable by suecessive reduction of such Y-junctions.
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Chapter Four (Matriz Methods for Constructing Fully Equ-imlent Cables) describes a
matrix formalism for transforming passive dendritic tree models into their fully equivalent
cables. The matrix methods employ a finite difference scheme to build a nearly tri-diagonal
matrix representation of a dendritic tree, This matrix is then tri-diagonsalised, and the
resulting matrix represents the fully equivalent cable. Two methods, requiring specific
implementations of Lanczos tri-dingonalisation and Householder tri-diagonalisation, have
been found suitable. We show how the original {ree matrix structure guarsuntees that
essential equivalent cable matrix structure is preserved. Computer algorithms are given for
both methods, and aspects such. as elliciency aud storage are discussed. Algebraic examples
of each method are given. By employing numerical procedures, these methods obscure
details of the underlying conslruction mechanism, and we conclude that the theoretical
foundation of fully equivalent cable construction must follow from a more fundamental
analysis of the passive linear cable eqnation. This theorctical foundation is developed in
Chapters Iive, Six and Seven.

The full set of analytical construction rules exhibit a high level of algebraic coraplexity.
In order to present the basic cable construction ideas, and avoid too much technical detail,
we start in Chapter Five (Foundations of Equivalent Cable Construction) by introducing
all the required concepts via specific and reasonably simple examples. General solutions of
the Laplace transformed passive cable equation are employed as part of a loosely defined
first-principles algorithm for cable construction. This first-principles approach indicates
that cable construction is actually an iterative two-stage procedure. Firstly, electrical con-
tinuity, i.e. veltage continuity and current conservation, must be gnaranteed between the
cylinders that form a fully equivalent cable. We state several of the “electrical continuity”
rules that are developed in full in Chapter Six. However, it turns out that these rules do not
uniquely defermine equivalent cable structure, ie. cylinder diameters are not fixed. The
necessary constraints for determining the {inal, and unique, cable structure, and simuita-
neously ensuring eventual termination, are imposed by an “isolaiion condition”, which we
also state. This condition ensures that a dendritic sub-tree may be transformed witheont
concerning oneself with the struclure to which it is connected. Although the electrical
continuity rules arc obtainced in the Laplace domain, properties of the construction rules
are such that these rules are equally valid in the physical {electrotonic) domain.

Chagpler Six { The General Anealylical Construction Rules) containg the technical deriva-
tion of the analytical construction rules for a singly branched tree. Firstly, the general
clectrical continuity rules are obtained using the first-principles approach given in Chap-
fier Iive. These rules are are applied to an expression for the potential in one cylinder
in order to gencrate an expression for the potential in the next cylinder. Ouly a “frame-

work” potential is generated however, since cable cylinder diameters are not determined




at this stage. The necessary conslraiuts for determining the final cable structure, and
simultaneously ensuring eventual termination, are imposed by a set ol self-reinforcing
isolation—termination rules, of which the “isolation condition” is the simplest and most
tundamental. Ensuring that dendritic sub-structure may be transformed in isolation from
the rest of the tree corresponds to ensuring thaf the isolation condition is always satisfied.
Prior to construction, equivalent cable section lengths and boundary conditions may be
predicted using results from this chapter. There are indications in the analytical method
of a deeper mathematical structure that has yet ta be [ully determined.

Chapter Seven (An Anelysts of Cable Structure Using Branch Shifting) takes a more
in depth look af simple Y-junclious — singly branched structure where each branch is
formed from a single uniform dendritic segment. Their fully equivalent cables may be
constructed rapidly using a method that follows straightforwardly from the simplest ana-
Iytical construction rules. 'L'his method, referved to as branch-shifting, involves producing
an equivalent cable by passing through a set of equivalent Y-junctions, the final member
of which transforms to the fully equivalent cable. The analytical expressions given by this
method for a fully equivalent cable’s geometry and electrical mapping give very useful in-
sights into overall trends in cable structure. These insights are also valid for more general
Y-junctions, and may be simply stated as “sealed ferminals promote narvow cable diam-
eters, strong voltage mappings and weak current mapping”, and “cut terminals promote
large cable diameters, weak voltage mappings, and strong current mappings”.

Chapter Eight (Discussion, Conclusions, and Fulure Work) provides an overview of
the nature of fully equivalent cables and their inplications. We briefly review the con-
struction methods, and discuss, in physiological terms, and with illustrated examples,
revelations from previous chapters conecerning fully equivalent cable structure, To link the
construction techniques with reality, cables created using data for several real motoneuron
dendrites are also illustrated. Mathematical equivalence of fully equivalent cables permits
an exhaustive, and novel, analysis of the properties of passive dendritic geometry that
goes beyond the capabilitics of previous “quasi-equivalent” cable models, or numerical
simulation. Tt is significant that this method reveals signal integration properties that
arise solely as a consequence of dendritic geometry. We discuss the relatiouship between
dendritic geometry and dendritic fuuction in this new light. Limitations of the passive
model are balanced with the insight gained, and we consider the implications for more
senerally realistic active models. Possible applications and future extensions of this work

are discussed.
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Chapter 1

Neurophysiological Background

and Dendritic Function

1.1  Introduction

Formed from billions of interconnected neurons, the human nervous system is an incred-
ibly complicated structure. The level of physical intricacy is often bewildering, fromn the
molecular to the single ncuron, throuph the local networks they form, to the larger net-
works associated with distinct functional regions of the brain. When one also consgiders the
range of elecirical and biochemical processes through which neurons are able to interact
and adapt, and the rauge of time scales over which these processes take place, it becomes
even clearer why it has been difficult to obtain a detailed understanding of most aspects
of nervous system function. Evolution has enabled coherent function fo emerge from the
interaction of all these processes.

Neuron structure and interconnectedness seems to confer upon the brain its ability to
perform an impressive array of mechanical, regulatory and cognitive functions; through
various electrical and chemical processes, the brain is able to reccive, encode, decode,
transmit and retain, vast quantities of information. The way in which information is
represented and processed by neurons and their networks is only understood in limited
detail. Many advances have heen made where work has concenirated on functions that are
well-specified and do not present too much difficulty for experimental access, e.g. some
aspects of the visual and motor systewns. Properties of the nervous system that wnderlie
less directly accessible functions such as memory, and other cognitive aspects of brain
function, are not as well understood. However, with the introduction and widespread
use of powerful visualisation tools such as functional magnetic resonance imaging, it is

possible to observe (large scale) regional changes in hrain activity associated with specific
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cognitive functions, cnabling improved understanding of higher brain function. There
have also been advances al the molecnlar level, concerning, for cxample, the development
and the genetic basis of the nervous system. It is a major challenge, however, to gain a
detailed understanding of the intermediate functional levels of the single neuron and the
neural network.

Advances in understanding neuron function are contributed primarily by experiment.
although theoretical and mathematical modelling approaches play a significant role in
attempts to explain and predict the electro-chemical behaviour that underlies experimen-
ftally observed phenomcna. Neuronal models and signal analysis techniques are also used
to investigate how information might be coded in the clectrical signals that are input to
and output from real neurons and their networks, and how this information is transformed.
Many signal processing opcrations that real ncurons might perform have been postulated,
for example simple logic operations, input coincidence detection, and Hebbian learning
(see McKenna ef al., 1992, for an overview of several possibilities). The fact that neurons
process information in some way often motivates a description of neuron function in terms
of “computation”. However, since sighal processing in complicated real neurons is not
well understood (in coutrast with digital computation), the term is presently used fairly
vaguely, encompassing broad possibilities of neuron operation. Interesting discussions on
the nature of computation for real neurons can be found in Schwartz (1990).

Ever since the wealth of dendritic siruclure was revealed by Ramon y Cajal (1911), the
observed complexity and variety of single neuron morphology has raised many yuestions
concerning the role that geomelry might play in ncurcnal signal processiug. Unfortu-
nately, an extensively branched tree does not generally lend itself to mathematical or
experimental analysis which might reveal subtle and important function associated with
specific neuronal shapes. However, the fully equivalent cables that are the sulyject of this
thesis allow one to extract previously unobtainable information about the way dendritic
geomelry can influence the full range of electrical activity that arises in a particular class
ol tree models (electrically passive models). These equivalent cables are the first such tool
$0 allow this type of analysis for dendritic trees.

'I'he purpose of this chapter is to introduce some hasic neurophysiology, describing the

nature of electrical activity in neurons and covering bricfly the role ol dendritic trees in .

neuron function. The detail given here should he sufficient for an understanding of the

mathematical models and methods described in later chaptors.
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Figure 1.1: Idealistic representation of a neuron. (a) The main anatomical components of
a neuron are illustrated: the cell body, dendritic trees, and axon. (b) Cells influence one

another via synaptic connections. See discussion in text for more details.

1.2 Neuron Structure and Connections

Figure 1.1 illustrates the main physical features of a neuron in an idealised representation.
Not all neurons share these features, while some exhibit additional structure. The cell body,
or soma, is usually a distinct bulk, from which several long, thin, and usually branching,
cable-like appendages may emerge — the dendritic trees (or dendrites), of which there
can be several, are traditionally regarded as gatherers of electrical input, while the single
azon is the path of electrical output. Electrical activity at the soma (or more specifically,
at a trigger zone on, or near, the soma), which is due to the combined effects of inputs
on the dendritic trees and the soma itself, will determine if an output is generated at any
point in time.

The axon branches to form synaptic connections with other cells, often forming many
connections on each target cell. Local neurons form connections with other neurons in
the immediate vicinity of the output-generating cell, while the axons of projection neurons
are longer and sheathed in myelin, allowing signals to travel significant distances rapidly
and with little degradation to more distant target cells. The myelin sheath is broken at
regular intervals, known as nodes of Ranwvier, where output signals are reinforced.

This division of function among the main components of a neuron is a useful general-

isation for many purposes, but there is great scope within the dendritic trees and axonal
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irees for more complex roles. Dendritic frees, for example, because of their branched
structure and clectrical properties, are passibly capable of localised signal processing (e.g.
Koch et al., 1982; Woolf et al., 1991). Section 1.4 discusses general dendritic function in
greater detail.

Of course, a self-contained system of neuron to ncuron input-output is not of much
practical use to a living creaturc: some nenrons (in the peripheral nervous system, rather
than the central nervous system) must gather information about the outside world, and
others must control functions of the body. Apart from the most prevalent interncurons
which connect to other neurons, there are specialised sensory meurons which receive, for
example, visual, and anditory information; motoneurons control muscle.

Each neuron is bounded entirely by a thin membrane (width approximately 2.3 nm),
separating the intracellular fluid (cytoplasm) from the extraccllular space. The membrane
exhibits a capacitive effect, and is capable of retaining a charge density on the membrane-
intraccllular and membrane-extracellular interfaces (the membrane capacitance per wmit
area is often approximated as 1.0 uF/em?). The intracellular medium is an ionic solution
which conlaing sub-cellnlar components that perform essential metabolic processes; the
sowea contains the cell’'s nucleus. Tmimediately extraccllular to a neuron is another ionic
solution that forms a narrow region (roughly 20 nm) belween cells; segments of other
dendrites and axons may lie close by, perhaps receiving input from or sending input to
Lhe same sources, perhaps not. Also present are cells generally associated with regulatory
brain {unctions, known collectively as glial cells.

A digtribution of ion channels lies across the membrane, allowing specific ionic species
(in particular sodiwn, potussium, calcium and chloride jons) that are in solution cither
side of the membrane to pass across it. Section 1.3 explains how the type and density
of ion channels distributed over the neuron membrane, combined with intracellular and
exlracellular ion concentrations, dctermines the range of excitable electrical phenomena
that can be produced when the nearon is subject to synaptic input.

A synapse is a junction between two cells, where pre-syneptic structure (nsually an
axon terminal) influences posi-synapiic structure (usually the dendrites or soma). The
majority of synapses are chemical synapses, wheve the cells are not directly connected. In-
stead a neurotransmitter substance is released at the axon terminal of the pre-synaptic cell
in response to electrical activity (more specifically, an increase in intracellular calcium con-
centration). The neurotransmitter diffuses across the small pap between cells (the synaptic
cleft, approximately 20-40 nm in width) and binds to receptors on the post-synaptic cell
membrane, thus initiating electrical activity (sometimes through a secondary process) by
opening specialised ion channels and allowing specific jons to flow more easily across the

membrane. Chemical synapses are either excitatory, in which case, when activated, they
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increase the likelihood of an output signal being penerated by the post-synaptic cell, or
inbibitory, in which case the likelihood is decreased. There are also elecirical synapses
where the two cells are directly connectied by a small membrane gap-junction which allows
electrical activity to spread between cells in the same manner as it spreads within a cell.
These connections are offen associated with synchronisation of activity between popu-
lations of ncurons. FElectrical synapses are given no further consideration in this thesis.
Synaptic organisation in the brain is discussed in great detail in Shepherd (1990).

Depending on the neuron type, synapses may be located at mauy thousands, tens of
thousands, or even bundreds of thousands, of sitcs over the dendritic trees and soma. In
addition to the azo-dendrific (axon to dendrite) and azo-somatic {axon to soma) connec-
tions described above, there exist gzo-azonic (axon to axon) synaptic connections where
output from oue neuron can directly influence the outpul of another by connecting in the
region of an axon terminal. Less common, though not necessarily less important, arc the
dendro-dendritic synapses, where a dendrite of one cell [orms a synapéic connection with
the dendrite of another cell.

It is useful to consider typical dimensions of the often studied matoneurou, to get
an idea of the sizes of the objects under consideration, though it shonld be noted there
can be significant variation between ueuron types. (source of following data: Tuckwell,
19884a). The dendritic membranc surface area is usually much larger than that of the cell
body. Tor exarple, the ratio of dendritic to somatic surface areca for the motoncuron is
of the order 10, with a total combined surface area averaging 145,000 pm?; the density of
synaptic connections over the membrane is around 10 -20 synapses per 100 pm?, but varies
over the cell body and dendrites. The roughly spherical motoneuron soma has diameter of
approximately 80zm, while dendritic diameters range from around 10pm, narrowing with
distance from the soma. The dendrites of a single cell are typically long compared to the
soma and dendrite diamecters, reaching up to 500um or more in lenglh from (he cell body.
Local neurvns output to cells within a fow millimeters of the cell body, while projection

newrons can reach many cenlimeters.

Dendritic Structure

Neuronal dendritic trees exhibit a wide variely of observably distinct branching pallerns,

as shown by Ramon y Cajal (1911). Tigure 1.2 illustrates several of the many neuron types
familiar to neurophysiclogists. The major geometrical differences hetween neurons can be
characterised by the number of treecs that emerge from the soma, the number of branches
and branch points, branch lengths and diameters, and the three-dimensional orientation
of the branches.

Some dendritic trees, for example those of Purkinje cells (Figure 1.2a), are highly
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Figure 1.2: Examples of real neurons. (a) Purkinje cell. (b) Pyramidal cell. (c) Motoneu-

romn.
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branched, with branches tightly packed together in a two dimensional planar orientation;
it is estimated that as many as two hundred thousand synapses may form on these cells.
Qthers, such as the pyramidal cell (Figure 1.2a), have lcss packed branching and, in this
particutar cell, there are two distinct dendritic components: the apical dendrites emerge
from a long dendpritic trunk, while the basal dendrites branch closcr to the cell hody. Both
types of branching exhibit a three dimensional distribution.

The dendritic trees of certain neuronal types {e.g. DPurkinje ceils, pyramidal cells)
may, at least in part, be covercd in dendritic spines which are liny protrusions from the
sutface (in a sense tiny branches) still ensheathed in membrane to preserve the continaous
boundary of the ccll. Spines may take several distinet shapes, from the short stubby
type, to mushroom shaped, and elongated types (see e.g. Rall and Segev, 1990). If a
dendritic segment is covered in spines, synapses are usnally associated with the spines
rather than the main shaft of a dendritic branch segtment. Onc physical advantage of
spines is that they protrude through materials that closely surround the neuron, perhaps
allowing synaptic connections to form more easily. However, it is the role of spines in
synaptic plasticity that may be significant for learning and memory (see, e.g. Brown ef
al., 1992). Dendritic spines are narrow, with typical widths in the range 0.1-0.5 pm,
much wider than the cell membrane. Typical lengths arc in the range 1-2um.

Bxtensive illustration and discussion of central and peripheral nervous system organ-
isation, neuron morphologies, the chemical make-up of the membranc, glial cells, and

general cellular mechanisms can be found in c.g. Kandel et al. (1991).

1.3 The Nature of Electrical Excitability in Neurons

Membrane Jon Channels

The following is a hrief discussion of the nature of ion chanunels and the vital role they play
in nerve cell excitation. Certain aspects of the electro-chemical processes are presented in
a slightly simplified manner or in limited detail to highlight the most important features
for the mathewmalical models developed later. Hille (1984) gives a detailed account of
membranc ion channel properties and a historical background o the theory and experiment
sirrounding thelr discovery. More extensive discussion of the material outlined below can
alsoe be found in this book, and also in Shepherd {1990).

fonic species that are mobile in Lhe intracellnlar and extracellular solutions, most
significantly the cations potassimm (K™), sodinm (Nat), and calcium {Ca?t), and the
anion chloride (Cl7), can permeate the membrane through a distribution of ion channels.

Significantly, extiracellular and intracellular solutions contain different concentrations
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of the various lon species. For example, the ratio of intracellular to extracellular K+
concentrations is generally very high (a ypical ratio may he 30:1), while for Na™ and Ci™,
the extracellular to intraccllular concentration ratio is high (a typical ratio may be 10:1
in euch case). As diffusive and electrical processes act to move ions across the membrane,
and also cause them to disperse intracellularly, a spatio-temporally varying transmembrane
clectrical potential distribution is established.

Ion channels are either non-gated or gated. Non-gated channels are a permanently
open two-way route for ionic currcnts. Gated ion channels are opened in respounse to
either electrical (voltage gated channels) or chemical (chemically gated channels) stimuli.

Ton channels are often highly selective for just one ion species, i.e. primarily lons of
that typc arc able to pass, though they may display limited permeability to other major
species. There are also ion channel types that are significantly permeable to morce than
one of the main ion species. Ion channel types that differ physically (in their chemical
structure) may also be associated with the same ion species.

It is possible ta identify, experimentally, many distinct ionic currents, the time courses
of which are determined by differing channel activation and inaectivation characteristics;
these characteristics are controlled by underlying wolecular kineties and so can depend on
the chemical structure of the channel, local membrane electrical activity, the concentra-
tions of specifie ion species, and neurotransmitter substances. It is through combinations
and interactions of these varions currents that a specific neuron displays its characteristic
clectrical behaviour. lon channel types and densities can vary significantly over a single
neuron’s mernbrane, and between different neuron types. By employing different types
and distributions of ion channels, two classes of neuron can exhibit markedly different
electrical behaviour. A multitude of different ionic currents and channel types have been
discovered in recent years (Sejnowski, 1997). Hille (1984) gives an account of activation
and inactivation kinetics. See McCormick (1990) for a uscful overview of many different
types of ion currents and their activation/inactivation characteristics.

Ton channels are pores, and, when open, egsentially form holes in the membrane. The
size of an ion species (more specifically its hydrated form in solution) will determine
whether it can pass through a. specific channel. When open, a single ion channel allows
rapid movement of ious across the membrane, with rates typically of the order 10°-107
ions per second. ''he conductance of a single ion channel typically lies at some poink
in the range 1-150 pS. The low density of ion channels (of the order 1 per pm, though
increased at synaptic sites and other “hot spols” of activity such as nodes of Ranvier and
the action polential initiation site; they typically occupy less than one percent of the total
mewmbrane), is capable of producing transmembrane currents strong encugh for typical

levels of cell excitation (source of data: Hille, 1984).
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Tigure 1.3: Equilibrium states for membrane permeable to a single ion species. (a) Equi-
librium state for sodium ions in solution either side of a membrane permeable only to
sodium ions. Extracellular concentration is higher, so diffusive and electrical forces bal-
ance when lransmembrane potential is positive. (b) Bquilibrium state for potassinm ions
in solution either side of a membranc permeable only to potassium. Lntracellular concen-
tration is higher, so diffusive and electrical forces balance when transmembrane potential

is negative.

The Equilibrinm Potential

By convention; transmembrane potential is internal potential minus external potential.
Consider a single ion specics, Nat, with extracellular concentragion higher than intracel-
lular concentration, and a membrane permieable only to this ion. If the potential difference
across the membrane is initially zero, i.e. the solutions on each side of the membrane are
electrically neutral, then Nat* ions will diffusec down the concentration gradient, from ex-
tracellular to intracellular medium. The quantity of ions that traverse the membrane is
assumed to have negligible effect on the ion concentratinns — this is generally true unless
the activity is maintained for long periods, or excited structure is small, such as a spine
or narrow dendrite, where significant chanpges in concentration of certain ions may oceur.
A positive transmembrane potential develops since there is a greater number of positive
ions intracellularly, and the anions that ensure total overall electrical neutrality cannot
pass across the membrane. The resulting electric field across the membrane acts to resist
the movement of additional positive charge until eventually, at equilibrium, the diffusive
and electrical forces are balanced. There is no net How of ions and so no current fows.
Figure 1.3 illustrates the balance of lorces for both Nat and K7 ions individually.

The equilibrium transmembrane potential (or Nernst poteniial), for a single ion species,
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Figure 1.4: Equilibrium state for sodium and potassium ions in solution either side of a
membrane permeable only to these two ion species, Potassium permeability is higher than
sodium permeability of the membrane so concentration gradients and electrostatic forces

balance when transmembrane potential is negative.

k say, is defined as the potential at which electrical forces balance diffusive forces. It is

denoted Ej, and given by the Nernst equotion,

B, = %ln {[i}]‘:, (1.1)

where R is the gas constant (8.314 Jmol 'K}, 7' is Kelvin temperature (K), F is the
Faraday constant (9.648x10% Cmol™!), z is the valency of the ionic species, and [£],,
(%1, are respectively the extracellular and intracellular concenfration of ion species k. A
derivation of this equation is given in Tuckwell (1988a). The equilibrium potential for
potassium is typically negative (around - 80mV to —100mV); and for sodinm it is positive
{(around 4-40mV to +60mV).

The equilibrium potential for a single ion species is independent of the level of per-
meability of the membrane to the jon gpecies and so, if the transmembrane potential is
at the Nernst potential, opening any additional ion channels selective for species & will
not induce any current flow. If the transmembyrane potential is less than the equilibriure
potential, ions of species & low outward across the membrane to the extracellular solution
(if & is negatively charged) or inward (if & is positively charged) to restore the equilibrium.
The converse is true U the transmembrane potential is above the equilibrium potential.

When more than one ion species is involved, there are now mulfiple concentration gra-

dients {assumed independent) to be considered. The equilibrium potential in the presence
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of n ion species, assuming they all have the same valency, is

> P l#l,
k=1

AAR
k=1

wheve Py is the permeahility cocfficient of the membrane for ion species k, which is simply

(1.2)

a measure of how easily those ions will pass across the membrane. The value of P, will
depend on the density of open ion channels selective for each species and the rate at which
each ion channel allows ions to pass. The sum is taken over all ion species to which the
membrane is permeable. This is a spccial casc of the more general Goldman formula
derived by assuming a constant clectric field through tlke membrane (Goldman, 1943;
see also Hille, 1984; Tuckwell, 19882). FPigure 1.4 illusirases the situation for membrane
permeable to just sodium and potassium ions (with constant Ppy,q+ and Pge+ ).

When membrane is permeable to multiple ion species and the membrane potential is
at the corresponding equilibrium potential, no net current will flow. This potential is in
general different from the equilibrium potential for any one speeific ion species, and so
ions of all rclevant specics must be continually flowing across the membrane via channels.
Inevitably, there must eventually be & change in intracellular and extracellular ion concen-
trations, and a consequent alteration in the individual ion equilibrium potentials, unless
processes act to mainfain the ion concentrations. These processes are the sctive trans-
port, or pumping mechanisms. lons are exchanged hetween intraccllular and extracellular
solutions by cerrier molecules which arve embedded in the membrane. Most natably, the
Na~K pump which exchanges sodiun and potassium ions (three Na™ for each K, so there
is a net pumping current in this case}, moving sodium outwards and potassium inwards.
Discussion of active transport processes can be found in Hille (1984) and references therein.

For many neurons, the overall equilibrium, or resting, potential due ion channel and
pumping currents, is roughly -70 mV, between the sodium and potassium Nernst poten-
tials, but much closer to the potassiun potential since at rest there are more potassium
channels open.

The derivation of these equations assumes ionic independence, i.e. the ion solutions
are dilute enough that the probability of an ion cressing the membrane is independent of
the presence of other ions. The general mathematical representation of ionic currents is

given in Chapter 2.

Overview of Electrical Input, Integration, and Qutput

1t 13 useful Lo give an overview of the process of signal input, integration and output within

a neuron, In the light of the previous discussion of membrane ion channels. Figure 1.5
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Figure 1.5: Shape and strength of neuronal clectrical signals. Syvaptic potentials on
dendrites and soma coxmbine spatially and temporally. If the total effect ak the soma
(trigger zone) reaches a threshold value then an action potential is initiated which flows
along the axon.

illustrates the strength and shape of typical input and ouput potentials.

Membrane is depolarised when the potential becomes less negative than the resting
potential. The membrane is hyperpolarised when the potential becomes more negative
than the resting potential,

Electrical activity is initiated when ion channels open briefly to allow influx or efllux of
specific ion species at synaptic sites; the channels then inactivate and are closed (eventually
reactivating so that it is once more possible for them to open). 'F'he time scale of a typical
synaptic event is in the millisecond range (though there are important exceptions, such as
long term potentiation, see e.g. Brown et ol., 1992). The activity spreads {rom the synaptic
site as charge disperses intracellularly within the dendritic and somatic eytoplasm. As this
charge disperses, il can leak across the membrane, and way also initiate additional activity
by causing voltage-gated ion channels away from the initiation site to open. As a neuron
is bombarded with spatio-termporal patterns of thousands of synaplic inputs, the resuliing

distribution of excitation through a neuron can he extremely complicated.

Excitatory synaptic input causes a depolarisation of the membrane at the synaptic site

by temporarily increasing the number of channels open to ions with equilibyium potentials
greater than the resting potential (sodinm ions and calcinm ions). This canses charge to
briefly seek an equilibrivm potential that is temporarily raised. The membrane voltage
disturbance initiated in the post-synaptic cell by an excitatory synapse is known as the
excilatory post-synaptic potentiol or EPSP.

Inhibitory synaptic input acts to prevent membrane excitation by opening chanuels
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selective [or ions with equilibrium potentials less than or perhaps close to the resting po-
tential (chlorine and potassium ions). Tn the former case, the membrane is hyperpolarised.
In the latter case, there will be no discernible influence on electrical activity unless the
membrane is already excited away from rest; this is known as shunting inhibition. A mem-
brane voltage disturbance initiated in the post-synaptic cell by an inhibitory synapse is
known as the inhibitory past-synaptic potential, or IPSP.

Individnal synaptic inputs typically alter the local membrane polarisation by a few
millivolts. Synaptic input on the soma will have an immediate influence en the likelihood of
an output being generated, causing a sharp brief change in the local potential. By contrast,
input on distant sections of a dendritic tree will take time to exert their full influence on the
soma. As charge spreads within the tree, the voltage distribution is typically smoothed
and attenuated, with a weaker, graded, and longer lasting impact at the soma. If the
total depolarisation at the soma is sufficiently strong, i.e. the membrane potential reaches
a threshold valne, then an output spike (action potential) will be génerated. Differing
spatio-termporal velationships between inputs can have markedly different combined effect
on the soma.

Note that, in contrast with dendrites, most axons have very similar ionic properties,
with action potentials controlled by Na™ and K% ion channels. The sharp local depolar-
isation of membrane when a threshold potential is reached is due to sudden opening of
voltage-gated sodium channels and au in-rush of Na*, turning the membrane potential
positive. This influx quickly inactivates and a slower efffux of potassium ions restores Lhe
merbrane to equilibrivan after a small hyperpolarisation, The signal can wmove along the
axon, regenerated by the opening of sodium channels as the signal progresses, eventually
influencing potentially many hundreds, or even thousands, more neurons.

Action potentials can also be initiated in dendrites, bul are usually associated with

Ca?®* currents. They lave been found in, for example, Purkinje and pyramidal cells.

1.4 The Signal Processing Role of Dendritic Geometry

This thesis is concerned with dendritic signal processing function, in particular how elec-
trical activity inferacts in the presence of these complicated branched structures and how
to analyse this interaction. What follows is a brief overview of some fairly general and
widely accepted aspects of signal processing in dendritic trees, and, in addition, we spec-
ulate about the possible significance of differing geometries. Some aspects of dendritic
function have been investigated in modelling studies, however most suggestions that have
heen made are, at present, difficult to confirm by experiment. For much more exten-

sive discussion of neuron function, and experimentally observed phenomena in particular
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neurcnal types (primarily motoneurons, Purkinje cells, and pyramidal cells), see, for ex-
ample, Mel (1994), McKenna et al. (1992), Segev ef ol (1995), Koch (1997), Koch and
Segev (198Y), and Rugg (1997). Segev and Rall (1998) discuss receni experimental results
obtained using optical recording lechniques.

The formation in the nervous system of networks, newrons, and their dendritic trees is
due to a combination ol genetic pre-specilication and learning or adaptation mechanisms
involving structural or synaptic modification. Some basic neural framework within which
function may take place must be pre-defined, while learning mechanisms will adapt the

“individual neuron structure and counections over time to fine tune their eventnal function.
The two mechanisms may have contrasting significance for different neuron Lypes.

Neuran to neuron communication largely takes the torm of spike trains. Information is
encoded in the temnporal pattern of the spikes, since the spikes themselves are essentially
indistinguishable. This is of course a vital component of neuron processing, however,
here the focus is on the processes thal occur within dendritic trees, though the two are
inevitably strongly linked.

The number and branching patterns of dendrites can vary widely between diflerent
neuron types and it is a natural question to query the significance of a specific neuron
morphology. Whal functional advantages (if any), for cxample, does the shape of a mo-
toneuron dendrite offer over dendrites of, say, pyramidal or Purkinje cells, so that the
whole cell might perform its assigned task optimally? It is likely that the characteristic
shape of a specific class of dendritic trees is optimised specifically for the task the neurons
are involved in. Ideally, one wants tools to investigate, quautitatively, the cffect dendritic
geometry has on the integration of the full range of complex spatio-temporal patterns of
sypaptic input, with a view to understanding the nature of any signal processing opera-
tions being performed, and perhaps determining the synaptic distributions that might be
involved.

The dendritic tree has a fairly general and loosely defined role as an integrator of, and
physical framework for, distributed synaptic activity. Dendrites essentially funnel excita-
tion towards the acll body, but also allow each point on the tree to potentially influence
every other. Considering the complicated spatio-temporal patterns of synaptic input they
receive, and adding to this mechanisms for synaptic and structural modifications {e.g.
dendritic spines arc thought to be involved is synaptic plasticity), then it is reasonable o
believe that dendritic trees may be powerful signal processing units.

In terms of enhanced signal processing capability, & branched skructure has several
advantages over an unbranched structure, although branching is not essential for providing
the necessary surface area for all synaptic connections. There must be other reasons that

neurons can have such a wide field of reception. Branching that takes of advantage of three
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dimensional space allows a neuron to receive inputs more eagily from sources originating
from numerous directions. Branching can support complex patterns of spatio-temporally
distributed input, and allows a division of synaptic input into regious of a dendritic tree
which are themselves electrically remote from each other or the soma — in other words,
branching tmay support extensive local signal processing (Koch et al. 1982; Woolf et ol.,
1991; Mel, 1994). Branching allows input from nurmerous sources o connect at distributed
points which are equally significant, electrically, with respect to the soma, or with respect
ko other points on the tree.

There is also iImportant variation in synapse types, aside from the fundamental dif-
ferences that makes them inhibitory or excitatory. The membrane potentials they induce
can vary in strength and time-cowrse, features that may depend on the neurotransmitiors
involved, the local potential at the point and time of initiation, and on the presence of
other chemicals. Yet more variation can be found in the different membrane channels, and
consequent form of the ionic currents — a single neuron may cxhibit varying types and
densities over its surface, and the fypes may change from neuron to neuron. In conjunction
with dendritic geometry, 2 snitable arrangement of synapses and ion channels with par-
ticular voltage-dependent characteristics is possibly a vital feature for certain processing
operations. Perhaps “hot-spots” of jon channels that initiate strong activity play an im-
portant role in controlling this structure-signal interaction. Resulls in this thesis suggest
that processing propertics can arise solely as a consequence of specific geometry. It may
also be beneficial for a robust nervous systein if a neuron has multiple ways of performing,
or taking part in, the same signal processing operation; this idea of electrical degeneracy,
or redundancy, as a consequence of branching, is also introduced in this thesis within the
formmal mathematical framework of the fully equivalent cable.

The initiation of an output spike or spike train depends on the inpul patierns over the
dendritic trees. Can single neurons, or groups of neurons, represent information*, different
aspects of which are accessed (in some sense) and lransmitted as outpus, depending on
the mput pattern. Does a different input configuration mean that a different operalion iy
performed on this information, or maybe that different information is accessed altogether.
Basically, 1% 13 possible there are several modes of operation a single neuron may be in,
depending on outside influences (see e.r. Bernander et al., 1994; Bernander et al, 1991; -
Holmes and Woody, 1989). Perhaps changes between modes are permanent. temporary,
or transient. It may be that short term modifications arc part of a processing operation,
while long term changes mark an alteration in processing capabilities. Ior example, syn-
chronisation of synaptic activity has been investigated by Bernander et of. (1994} and
Rapp et al. (1992).

"The term “information” here is not used in any formal sense,
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In conclusion, it ig easy to speculate about possible dendritic function, and difficult to
determine the precise relationship between neuron functivn and dendritic structure. For
experimental reasons it is difficult to establish whether or not real neurons perform in
many of the ways that have been suggested (here and elsewherc).

T'his thesis outlines a method for completely analysing the role geometry plays in
signal integration within a specific typc of tree model, i.c. the passive tree model. New
and extensive insight into passive signal integration in neurons can be gained using this
technique. This is by no means the most realistic model, but 1t can capture well the
sub-threshold behaviour of some neurons. One cannot hope to understand in any grest
depth the role of geometry in more complicated models until the simpler models on which

they are based are fully understoond.
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Chapter 2

Cable Theory and the Multiple
Segment Dendritic Tree Model

2.1 Imntroduction

Within the context of neuronal modelling the lermn “cable theory” refers te a range of
non-linear and linear models that may be used to describe the behaviour of electrical
activity in arbitrarily branched dendritic trees, axons, and axonal trces, where physical and
electrical properties of the cell are represented to varying degrees of biophysical realism.
Cable theory was initially developed by Kelvin (1855) to describe clecirical transmission
in submarine cables. See Rall (1977) and Segev el al. {1995) for historical overviews.

Initially, we formulate a general non-linear cable equation that describes a non-uniform
segment of (unbranched) dendrite, for example that illustrated in Figure 2.1. Here, non-
uniformity implies that the eross-sectional area and perimeter may vary continuously. This
model can incorporate arbitrary synaptic inputs and digiributions of gated and non-gatad
ion channels. The derivation follows simply from. charpe conservation and a direct: analysis
of the currents thal are allowed to flow, given model assumptions about constitutive
properties of the dendritic segment.

Starting with the non-lincar cable cquation, which is significantly more general than
cable equations normally used for modelling purposes, we make simphfying assumptions
about the geometrical and electrical properties of the segment, progressively yielding sev-
eral equations more typical of those used in simulations. In particular, cylindrical ge-
ometry is often assumed, as is the existence of a resting state. We show how the lat-
ter allows a separation of the term due to transmembrane ionic currenis into linear and
non-finear components. To highlight the progression from the non-linear equation to the

passive linear equation that is eventually required, we brielly diseuss how the assumption
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of voltage-independence of the ion channel currents leads to a general linear cable equation
incorporating ionic equilibrinm potentials.

Eventually we obtain the linear cable equation for a uniform electrically passive den-
dritic segment, in both dimensional and convenient non-dimnensional forms. The validity of
the corresponding simplifying assumptions is considered. Here, uniformity implies a con-
stant crogs-sectional area along the length of the segment, and also a constant perimeter.
The common assumption of a cirewdar cross-section (e.g. Jack ef al., 1983; Tnckwell, 1988a)
need not be made. The given equations will usually be expressed in terms of bulk electri-
cal parameters that are independent of geometrical structure, however, to provide a link
with previous representations of the cable equation, commonly used geometry-dependent
paramelers are also included.

A dendritic tree model is then derived. It is formed from connected segments, each
represented by & general cable equation and linked or texminated by appropriate boundary
conditions. The non-dimensional linear cable eguation is the basis of the passive dendritic
trec model used for constructing the fully equivalent cables described in the remaining
chapters of this thesis. Important electrical properties of some simple passive siruciures

are illustrated and diseussed.

2.2 General Model of a Dendritic Segment

The model has three main components: Lhe inirocetlulor medium, ensheathed in a uni-
formly thin membrane, forms the dendritic segment; the segment is immersed in a perfectly
conducting eztracelluler medinm. The membrane is highly resistive, and also acts, in part,
a3 a capacitor, retaining charge on the membrane-liquid interfaces. Charge can accummlate
within the dendrite, moving across the membranc through a distribution of ion chaunels,
and dispersing longitudinally, establishing a time- and space-dependent transmembrane
voltage distribulion. We assume the whole sysiem is isothermal, so the temperature de-

pendence of relevant chemical interactions can be ignored.

2.2.1 Fundamenta! Model Assumptions

Intra~cellular Meditm — Ohmic Core Conductor

The cross-sectional dimensions of the core medium are sinall compared {0 the length of a
dendritic segment. Assuming an isotropic corc, potential gradients over the cross-sectional
surface are small compared to those longitudinally, i.e. for our purposes the cross-section
is effectively equipotential (a perfect conductor radiaily!).

These assumptions conveniently permit a one-dimensional treatment of the core; the
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Dendeitic Membrane

. Extraccliular Space
Dendritic Core
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Figure 2.1: A non-uniform segment of dendrite. The cross-sectional area profile of the
intracellular medium is Az}, whilc the perimeter profile is P(z). If J is the axial current
densily, axial current flowing into the segment at point z; is J(z1, ) A(21), while current
leaving the segment at point z, is J(zy, 1) A{x2). Membrane current densities are synap-
tic, Jyer, intrinsic and voltage dependent, Jrype, and active transport, Jp, while Jrer is

injected current.

only sputial dimension that is of explicit interest is denoted # and measured axially along
the length of dendritic segments. Only spatial variation of the transmembrane potential
with z is of concern. The cross-sectional profile of the dendrilic segment must have a
shape that docs not invalidate these assumptions. The imperfect, but roughly circular, or
elliptical, eross-sections of real dendrites are perfectly acceptable, though they are normally
treated as circular.

For cylindrical segments, a three-dimensional analysis of intracellular current flow has
been performed by Rall (1969b), and also Eisenberg and Johnson (1970}, justifying the
one dimensional treatient, except perhaps in the vicinity of a point current source in the

core, where cross-sectional poltential gradients tnay be sigunificant.

Extra-cellular Medium -— External Conductor

‘I'he extracellular solution forms a very narrow region between neighbouring cells. How-
ever, for many modelling purposes, it can be regarded as a very good conductor compared
to the highly resistive membranc. It is commonly treated as o perfect conductor, and we
follow this approach; charge that leaks from the dendritic segment is instantly lncorpo-
rated into what is regarded as an isopotential extracellular ion pool. Consequently, at
the membrane—extracellular interface there is no potential gradient to drive extracellular
currents, and this interface is isopotential. Branching angles, or curvature in dendritic seg-

ments may also conveniently be ignored since there are no complicated three-dimensional
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patterns of current flows ta account for in this model.

The cable equation derivation that follows later may he casily adapted to incorporate
an external longitudinal resistivily o current flow, whercby currents flow in the extra-
cellular medium flow parallel to the segment axis (see, for example, Tuckwell, 1988a, for
details).

Transmembrane Potential

Denote the internal (core) potential by vi{z,t). The spatislly uniform extracellular po-
tentfial is denoted v,, but can be arbitrarily fixed, and so is usually taken to be zerc.
The potential diffevence between internal and external media is called the transmembrone

poteniial, and denoted vy, where
g (2, £} = vy, ) — v,. (2.1)

Note that, by convention, « increases along dendrites away from the soma.

Axial Core Current and Axial Resistivity

The resistance to axial current flow presented by the core conductor is asswmed to be
ohmic. If J denotes the axial current densivy (axial current flow per unit cross-scctional

surface area) in the direction of increasing #, then Ohm’s law (for one dimension) is

_ 1 Oom(3,) (2.2)

J (37: t) = 0i A 3

where p; is the axial resistivity of the core, and is assumed to be constant. If the cross-
sectional area of the dendritic segmeni is denoted A(z), then the axial curzent, i,(xz,t), is
given by

to(®, t) = Alz)J(z,%). (2.3)

By convention, axial current ts positive where there is a net flow of positive charge in the
direction of increasing z.

Consider a uniform slab of core material with cross-secfional area 4 and length I, as
illustrated in IFigure 2.2. Ohm’s law (2.2) can be integrated to give ¥ = IR where V is
the potential across the segment, I is the axial current flowing through the segment, and »

R is the total resistance this slab presents to axial current flow, so that

R - "1;_.‘5- (2-4)

Thus the resistance per unit length of this segment, denoted »y, is

o= = L (2.5)




S Vemam

Figure 2.2: Uniform segment of core medium. Segment has surface area A, length [. Axial

current is /, while potential difference across segment is V.

If cross-sectional area varies axially, then so will the resistance per unit length,

N P
ri(a,)—A(m). (2.6)

Using equations (2.2), (2.3), and (2.6), the axial current may be written

. 1 Ovy,
il B, 2.7
iala,t) = — - 5 (27)
The above equations can be adapted for spatially varying p;, however experimental
evidence for such variation is limited (see Rall et al., 1992, for an overview). The final

model we develop will require core homogeneity.

Cell Membrane

The membrane is permeable to the ion species relevant to cell excitation at sparsely dis-
tributed ion channels, as discussed in Chapter 1 (see also Hille, 1984). Associated with
each ionic species that contributes to electrical activity within the dendritic cylinder are
channels that permit only ions of that type to pass across the membrane. lon channel
density may vary over a segment of dendrite. A proportion of channels are non-gated, i.e.
permanently open, and always allow ionic currents to flow. The remaining channels may
be voltage-gated and chemically-gated. Ton channels are modelled as parallel transmem-
brane conductances. Although channels are located at discrete points over the membrane,
they can be effectively modelled as a continuum. The full model representation of the
corresponding ionic currents will be left until the general cable equation has been de-
rived. For the moment, we just consider the term Jp(z,t), which is a total current density
(current per unit area of membrane) that has contributions from all possible sources of
transmembrane currents. This includes gated and non-gated membrane ion channel cur-

rents, exogenous injected currents, synaptic currents and current due to active transport
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mechanisms. It does not include capacitive currents. We follow the convention that the
membrane current is positive when net positive charge flows outtwards from the core. Con-
sequently, -Jr gives the current flowing info the core across the membrane. Note that
only the spatio-temporal variation of Jr is explicitly indicated; contributions to Jr may
also have explicit voltage dependence, as well as dependence on variables describing the
molecular kinetics of the underlying mechanisms that allow current flow. For simplicity,

such dependencies may he assumed acceptable unless we state otherwise.

Membrane Capacitance

Let Cyr be the capacitance per unit surface area of membrane. Tt is assimed uniform over
the dendritic segment, although the cable equation derivation that follows allows spatial
(axial) variation. The current density {per unit area) due to capacitive effecis, denoted
Jo, is then

B O, E)
JC(-’I?, t) = OMT

The membrane capacitance per unit length ol segment, ¢, is also commonly used. If

(2.8)

#(z} describes the non-uniform segment perimeter (Figure 2.1) then

em(2) = CpF(e). {2.9)

2.2.2 Derivation of the General Cable Equation

Consider the dendritic segment illustrated in Figure 2.1, It has non-unitorm cross-section
and non-uniform perimeter, and the two ends of the segment are at points x; and .y,
where zy > x;. Using equation (2.3}, the total current flowing into the segment at time ¢
must be

Alwr) (21, 8) — Alws) T (g, £) — / () P(x) dz. (2.10)

So, during the time interval [t1,fs], the total charge flowing into the segment is

{2 fa  pun
/ [A(20) T (1, 2) ~ Am) T (a2, £)] di ~ f [ Tr(e, ) P(x) du dt. (2.11)
Sy t S

This additional charge is stored on the dendritic membrane, which has capacitance Car

per unit area. The charge stored in the segment vver time interval [£1,¢;] must be

T2

23

/ CrP{z) oy (2, 1y) de — Cy P (Yo (z, 1) da. (2.12)
4 I Y8

Conservation of charge requires that equations {2.11) and (2.12) are equal, so

/ CauP(z) [vm(,t2) — vep(z, 1)) d2

(2.13)
/h (A1) (1, 8) — Awa) (e, 8)] dd — / / Tl 1) P () da d.
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This is the fundamental equation describing the temporal and spatial evolution of the
membrane potential vy, (:, £). Provided v, is a sufficiently differentiable function of space
and time, then by dividing equation (2.13) by (¢ —t1) and subsequently letting #1,%, — #,

it follows that

T

" P20 i~ (A1) o1, 0) — A (2,0 -

<1

2
Jr(z, ) P(x) da.
(2.14)
Similarly, now divide by (ws — 1) and take the limit @, z9 — 2, revealing that vy, (z,t)
satisfies the partial differential equation
S (7, 1) 1 8(A(x)d(z,1))
] = — . — Jp{x, t). 15
Cu—y, P(x) oz I (z,1) (2.15)

This equation is entirvely a consequence of charge conservation, and the initial assumuptions

ensuring only axial core current flow. At this point we assuine the core is a homogeneous

ohmic resistance, and substitute for axial current density .J using equation {2.2), giving
Qv (z,t 1 9 [ A(z) Ovp(z
C ?)217.(1 I ) e ( (x) dvm(’lq t)) . JT("Z:J t)‘ (2.16)

Pi o
This equation will subsequently be referred to as the general ceble cquation. A second

M™8 " Plx)oz

order partial differential equation, it deseribes the non-linear diffusion of the transmem-
branc voltage over a segment of dendrite. Capacitive currents (the term on the left),
diffusive currents (the second order term) and membrane currents must all balance. As
charge moves axially in the core and radially across the membrane, an equilibrium state is
continually sought {whether or not it is ever actually reached depends on the properties of
the membrane and the associated transmembrane currents). Many commonly used cable
equations can be obtained from this general form.

The next section completes the descriplion of a dendritic segment by specifying general
forms for the transmembrane currents Jp. For details of the representation of specific
currents in various madels, see e.g. Poznanski (1999), Tuckwell (1988b), Koch and Segev
{1989), and McKenna et ol. (1992). Subsequent subscctions detail how assumptions
concerning geometrical and membrane constitutive properties give rise o various non-
linear and linear models. In section 2.5 we move to a complete tree where segments
must be linked at branch points by voltage continuity and currenl, conservation boundary
conditions, assigned appropriate terminal boundary conditions, and the trunk of the tree -

should be linked to a representation of the cell body.

The Non-dimensionalised Non-linear Cable Equation

The general cable equation may be expressed in a non-dimensional form, by an appropriate
change of variables from « and ¢. I'ull details of the non-dimensionalisation procedure are

given in section 2.4, where it is applied to the passive lincar cable eguation.
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2.2.3 Specification of the Membrane Currents

Agsume the membrane current density, Jy-, consists of four main components,
Jr = Jyvpo - Jsg + Jp ~ Jia, (2.17)

where Jrvpe represents Intrinsic and Voltage Dependent Currents, that s, currents
through all gated and non-gated ion channels, excepl those currents through chemically-
gated channels opened during synaptic events; Jger represents all Synaptic Cuarrents; Jp
repregents Pump currents due to active transport mechanisms. These first three currents
are determined by the constitufive properties of the membrane. The convention for di-
rection of current flow used for Jyvpe, Jso and Jp is the same as for Jr. The fourth
conbribution, Jye, represents exogenous current density (Injected Current, which is strictly
injected directly into the core medium, hut is straightforwardly (reated as a membrane
current density), however this current is assnmed positive when positive charge is injected

into the core, hence the minus sign in equation (2.17}).

Modelling Ton Channel Currents

The flow of fons through ion channels, and the resulting theory of equilibrium and resting
potentials was discussed in Chapter 1. Denote the current density (current per unit area)

flowing due to ionic species & by J (the k-current). Tt is modelled by
J(k) = g(k)(vm - Ek.)a (2'18)

where g'®) is the conductance per unit area of membrane, and [f is the equilibrium
potential (1.1) for ion species k&. There is zoero k-current when vy, = Lk, as should be
expected when diffusive and clectrical foxces are balanced and provided the ion species
flow essentially independently of each other. The conductance gt*) is generally non-linear,
following [rom the underlying kinctic processes that determine the activation/inactivation
characteristics of the ion channels; it is a function of time, oflen of voltage (if not explicitly,
then in terms of kinctic variables that are themselves voltage dependent in some way),
and may also contain explicit spatial variation il there is an inhomogeneous density of ion
chanuels (there is alvcady implicit spatial variation).
'I'he total ion chanwvel current is then given by
Jrvpe = zg(k)(vm — Ep). (2.19)
k
where the sum is over all the relevani lon species.

Conductances can be determined experimentally using techoiques such as voltage-

clamp (for details sec Jack et al., 1983; Hille, 1984); patch-clamp techniques allow currents
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through single ion channels to be recorded (Hamill et al., 1981; Sakmann and Neher,
1983). For example, the original Hodgkin-Huxley equations describing the squid giant axon
(Hodgkin and Huxley, 1952) identify one sodium current, and one potassium current, both
with non-linear conductances which describe the activation and inactivation characteristic
of the currents. The sodivm current is rapid, quickly depolarising the membrane, and
then quickly inactivating after  millisecond or so. The potassium current, which develops
more slowly, then takes over, repolarising the membrane and alter a brief hyperpolarisation
returning the membzrane to rest. Their model required ancther current referred to as the
leak current which is not associaled with any onc particular ion type but is necessary
to complete the model description of the experimental observations. The leak current is
effectively modelled with a constant leak conductance and a constant leak equilibriism
potential. More detail can be found in, e.g. Tuckwell (1988b).

At this paint, it would be possible to introduce additional equations to account for
varying intracellular and extracellular ion concenlratious, so that eqnilibrium potentials
are not constant. However, we now assumc constant concentrations since this is often

realistic, simpler to deal with, and essential fox the final model that will be developed.

Modelling Synaptic Inputs

The synaptic current, Jgo, which describes all inhibitory and excitatory synaptic eveuts,
are due to a temporary opening of specific chemically-gated ion channels. Again, they can
be raodelled by a conductance change at the synaptic site. If synapse 7 is located at point
x5, for j = 1,2,...,, N, and initiated at times ¢;; Lhen

oo N
Tsolz, ) => > ): o) (& — ) [om (w5, 8) — B} 6o — w5) (2.20)
=1 j=1 k

where tfj, 'ﬁ.’jj-, ... are the times at which ionic current % associated with synapse 7 becomes
active, while gEij,?z({) models the conductance associated with this current, and §(x — z;)
is the Dirac delta function at » = =z (sce below, equation 2.26). The profile of the
conductance ggﬂ(t) is a consequence of the kinetics of the neurotransmitter binding to
receptors and any other processes involved in opening ion channels. Howover, it is often
modelled using the time dependent alpha function (Juck et al., 1983),

& (), —w S
‘E'y?s{t} =gx 'te £ {251)

(%)

where gi° and o are constants.
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Modelling Active Transport Mechanisms

In cable theory, active transport currents are not often modelled explicitly. I'be corre-
sponding currents are typically relatively small over the thme scales typical of neuronal
signals. They way be assumed to contribute o constant current or they could be dependent

upon the membrane potential and ion concentrations.

Modelling Applied Currents

Current sources are agsumed to inject charge directly into the core medium. The resulting
axial core currents have uniform flux density through the cross-section, (the injected charge
at o may he regarded as applied uniformly over the cross-scction at z because of the
effectively zero radial resistance in the core). The distribution of applied current over a
dendritic segment can be expressed as a current line density (current per unit axjal length),
iu(x, 1), where

ig{, £} = Jro (e, 1) P(z). (2.22)
So, if 44(x1,29,%) denotes the total charge injected between points @1 and wg ovn the
segment, where ) < 29, then

-
ialerant) = [ iala,t)do. (2.23)
L |
It is also convenienl Lo define
iz, 1) = 14(0,2.1). (2.24)

A single point source of current, 44{%), injected at some point x = o aloug the segment

has current density

1d(z, &) = 1a(#)8(z — a), (2.25}
where §(z) is the Dirac delta function, satisfying
e
/ Sy = 1, (2.26)
J e
for any ¢ > 0. Il f is functiou of 2 then,
+00
/ F)o(n - a)dz = f(a). (2.27)
~-0Q

The applied current density (per unit length) may be expressed in terrus of the charge -
injected into the dendritic segment. [t g4 (%, ) vepresents the total charge introduced over

dendritic segment [0, z} over time interval [0,¢], then, by definition

) = dealz.t)

E:A(-'L'-, t, ot R (228)
so that o2 (1)

. galz, t

P ) = - e 2-
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Figure 2.3: Special cascs of dendritic structure described by simplified cable equations.
(a) Uniform dendritic segment with irregular cross-section. {b) Non-uniform dendritic

segment wilth cylindrical cross-seetion. (¢) Uniform cylindrical dendritic segment.

2.2.4 Constraints on Geometry

Consider now how constraints on geometrical structure simplify the form of the general

cable equation.

Tapering Cylindrical Dendrite

if the core crass-section is circular, as is widely assumed, with continuous diameter profile
d(z), as Figure 2.3b illustrates, then the cross-sectional surface area and cross-section

perimeter are given by

wd?(x)

Alz) = and Plz) = wd(z}. (2.30)

The general cable equation (2.16} can be rearranged to give

v, 1 8 (d*om, o ]

Using equations (2.6) and (2.9), note that the membrane capacitance per unit length of

dendrite and the intracellular resistance per unit length are given by

4p;
wd?(z)’

em(x} = Cymd(x) and ri(z) = (2.42)
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Uniform Segments of Dendrite

For uniform dendritic seginents (not necessarily cylindrical), for example Figure 2.3a, the
cross-sectional area, A, and the perimeter, P, are constant, so from equations {2.6) and
(2.9),

em = C'y P and Ty = /A (2.33)

are constant. Rewrite the cable equation (2.31) as

Bu, _ i Fvm

re = ——7F — FJ7. 2.34
© ot r; Om? T ( )

Uniform Cylindrical Segments of Dendrite

Tor the special case of uniform cylindrical dendritic segments, with constant diameter d,
e.g. Figure 2.3¢, then
wd?

_ . rd” o A :
P =nd, A= 1 ¢m  Cpmd, ry = poyr, (2.35)

Assumptions about current flow in the cylinder ensure that the rotational symmetry
(invariance under rotation about axis) of the cylinder holds for electrical activity as well

as physical structure.

2.2.5 Constraints on Constitutive Membranc Properties
Linear and Non-linear Contributions to lonic Currents

Cousider again the general cable equation describing a non-uniform dendritic segment., We
now suppose the segrent can be in a resling state, i.e. when no net current flows across
the membranc. Af rest there is no axial current flow in the sepment, no current may be
injected, and there arc no synaptic events, so Jjo = Jgo = 0; no nel kransmembranc
current must flow so Jp + Jiype = 0. All ionic channel and pumping currents that flow
across the membrane are balanced. The corresponding resting potential, denoted vg, is
uniform over the segmeut membrane. External and internal ion concentrations for the
various 101 species are maintained.

Denote the current density due (o ion channels and active transport by Jyz, so
Jv = Jp + Jrvpe- (2.36)
Since at rest this must be zero, we can write, without loss of generality,

T = Clum) — Clon), (2.37)
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where C'is a constitutive function of membrane potential. Assnming that €' is a suitably
differentiable function of vy, the mean value iheorem states that

_dC(v")

Jmr dv {vm — 'UR) = g[y*) {vm — Vi), (2.38)

where 0% = v* (0, vR) is a potential between v, and vg, and g(v*) may be regarded as
a non-linear conductance (per unit arca). Similarly, the mean value theorem applied to

g(v™) yields
dg(v™)
dv*

where gar = g{vy) Is a constant membrane conductance per unit area, v** = v**(v*, vg}

g(v*) = glve) + (" —vr) = gm + gni, (2.39)
is a. pofential between »* and vy (and consequently between v, and vg) and gy defines
a non-linear conductance per unit area. Note that gy is implicitly a function of v, and

is zero when vy, = vr. Thus, cquations (2.38) and (2.39) combined give

Jug = gt (U — vg) -+ gn1 (Vg — vR) (2.40)

which neatly separates the lincar contribution to membrane potential from the non-linear
contribution. The constant conductance per unit area, gar, can be associated with
non-gated ion chammels (or at least thosc that are open at rest), and resting state
pumping cwrrents, while gyy can be associated with voltage-gated ionic currents and
activity-dependent transport processes. The dendrilic segment membrane is said to be
possive it gy, = 0, otherwise it is active. Conductance gy may also be referred to as

the active conductance.

The peneral cable equation {(2.16) can be re-written using equations (2.17), (£.36) and
(2.40), to give
g (w,t) 13 (i(.z,_) Qv (2, )

On at P20z \ s dw

) —gu (v — wR) - gNnL (Vo —vR) — Jsc -+ Jic.
(2.41)
It is convenient to work with the potential relative to the resting potential, v, given by

Wz, 1) = v (e, L) — vR, {2.42)
so that, if the dendritic membrane is in a resting state then « = (. Since v; has been
assumed constant, the cable equation (2.41) now becomes

. Ovlz,t) 18 [A(zx)Ou(x,1)
Cpg el = T g

ot Plz)ox

From eguations (2.7) and (2.42), and noting again that vr is constant, the axial current

) — guv(z,t) — gnvle, ) — Jso + Jro. (2.43)

can be written in terms of the deviation from resting potential,
1 dv

g = = 2.44
B i Om ( )
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The General Linear Cable Equation

Returning to the general cable equation, one can obtain the most general form for a linear
cable equation by assuming that all sources of transmembrane current only exhibit spatial
and temporal dependence. Basically, ion channel conductances, g (1), are voltage
independent so that the conlribution from the ion channel currents muintain the linearity
of the differential operator. Similarly, synaptic conductances, g?{,zl and consequently
syuaptic currents must maintain the linearity of the differential operator (e.g. the alpha
[unction), as must pumping currents and, as usual, injected currents.

While the resulting equation is strictly linear, it is not considered passive since mem-
brane properties may still vary. The equation traditionally thought of as the cable equation
is a simplified version, with gy = 0, and additional geometrical constraints, as shown

below. Tf is much more easily solved.

2.3 The Passive Linear Cable Equation

The linear cable equalion for a uniform segment of passive dendrite is obtained from
the cable equation (2.43), with the relevant geomelrical simplifications given by equation
(2.33)L. "There are no synaptic currents {(Jy¢ = 0), the non-linear contribution to mem-
brane condnctance is zero {gnz, = 0), and applied currents are expressed as a line density,
using equation (2.22). Thus, alier a slight rearrangement,

du(z,t) 1 0%w(x,t)
8 r; Oa2

- Pgpu(z, t) + iglw,1). (2.45)

Cm

This expression 13 sirictly only valid where |gnr| < [gam |, that is, when the transmembrane
potential does not deviate far enough from rest to open significant numbers of voliage gated
channels. The validity of the expression for a particular neuron, or dendritic segment,
depends entirely on the nature of any aclive conductances, and the threshold potentials
at which they are strongly activated. The linear cable equation effectively describes sub-
threshold neuronal activity, although it should be noted that some active conductances,
i.e. significant non-linearities, may be activated very rapidly at low threshold.

In its own vighl, lhe linear cable equation describes membrane where the ionic cur-
rents flow through a constant population of open ion channels; any pumping mechanisms
contributc a constant current. At the resting meinbrane potential, these currents are bal-
anced. Synaptic input currents must now only be modelled nging the linear exogenous
current injection term, iy, and not as conductance changes.

Note again that the segment has not been assumed eylindrical, as is convenbional. Such

* A passive non-uniform scginent would be described if the assumption of uniformity had not been made.




a condition is unnecessary, as the eguations ave of the same fundamental form whether

the cross-section is circular or not.

Another Form of the Linear Cable Equation

The membrane conductance is often expressed as a conductance per unit axial length of
segment, g,,, where
1 .
Im = gu P = — {2-45)

T

and 7y, 18 the membrane vesistance of a unit (axial) length of cylinder.
Finally, the lincar cable cquation (2.45) for a uniform dendritic segment of length 1
can be multiplied through by rp,, and reformulated as

iz, t Ov(z,t
5’1—-3’-%-’1 - rmcm---?-ﬁ-ﬁ--l + 0@, ) - rmia(z,d),  O<z<l, t>0, (247)
i 87: C)ir

where, to re-cap, at position 2 and time ¢, v(z,¢) is the transmembrane poteuntial with
respect to the segment’s uniform resting pofential, 45(, t) is a current line density applied
directly into the core medium, 7, is the membrane resistance of & unit length of segment,
7; is the resistance of the intracellular medivxn per unit length of segment. ¢, is the
membrane capacitance per unit length of segment. To summarise, the three hnpoxtant

electrical parameters are given by

i 1
Ty = %, Tm = 91\7, O ™ OMP (248)

Circuit Analogy

The linear cable equation (2.47) is traditionally derived by considering a circuit diagrain.
The membrane is treated as a discrete network of paraliel capacitance and resistance
connecting the isopotential extraceliular commpartment to the resistive core compartment.
Current is conserved in the segment of infinitesimal length Aw, and the litnit is taken. For
details see, for example, Tuckwell {1988a).

2.4 'The Dimensionless Linear Cable Equation

2.4.1 Electrotonic Units

The linear cable equation {2.47) can be simplified even Further by rewriting it in terms of
dimensionless, or electrotonic units, which are measures of space and time that characterise

the steady-state clectrical properties of a passive nniform segment.
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Electrotonic Length

Axial resistance is expressed per unit {ength by r;, while membrane resistance is expressed
times unit length by r;m. Consider the length of segment, denoted A, for which the core

axial resistance is matched to the membranc resistance,

Tm
1'1- B —— ‘. 9
P = N (2.4}

‘ —
'i”:‘/gMp¢f (2.50)

This characteristic length, determined by electrical and geometrical properties of both

so that, using equations (2.48),

core and membrane, is known as the electrotonic space constent, though significantly it
actually varics with the cross-sectional profile.

Electrotonic length is csscentially a measure of the electrical compaciness of a uniform
dendritic segment. This is better illustrated by considering steady-state solutions of the
cable equation. ‘I'he steady-state cable equation is obtained by sefting the time derivative

to zero in the linear cable equation (2.47), and ignoring the time dependence, thus

T &o(x)

52 v(x). (2.51)

Take a semi-infinite cylinder with diameter d and apply a constant current boundary
condition, ¢,(0,{) =4y, at terminal & = 0 for a time long enough so that a steady state is
achieved, and . constant potential vy is evolved. Let v{z) = 0 as = — oo he the second
Loundary condition (boundary conditions are considered in more detail in section 2.5).

The steady-state solution ig of the form
v(2) = voe %, (2.52)

At 2= A, Le. onc space constant, the potential has decayed to 1/e of its value at z = 0.
Consider, for example, the two semi-infinite cylinders, with different diameters, illus-
trated in Figure 2.4. For cylindrical geometry, A/FP = d/4, thus

reme——

1 d
a=1 , 2.53
2\/934,0-5 (2:53)

s0 the space constant varies with the square root of diameter. Qther specific electrical

properties being equal, a laxger diameter implies a larger space constant so that, at the
same physical distance from the terminal, the potential on the parrower cable experiences

greater attenuation, and is considered more compact electrotonically.
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Wigure 2.4: Eleclrical compactness of a semi infinite nerve cylinder.

Electrotonic Time

Consider a uniform segment of dendrite with passive membranc and transmembrane po-
tential v(z,t) = v(f) that is ensured uniformn over the segment. 'There are no applied
currents and the potential is initially non-zero, such that v{0) = wy. This segment is

described by the space-independent (space-clamped) cable equation,

At
7'mcma—g) == — (1), (2.54)
with solution,
v{t) = vge HTmom, (2.55}

'T'he segment may be rcgarded as a capacitor that is discharging through the membrane.
Current fows only radially as chaxge leaks across the membrane in such a way that the
potential has decayed to 1/e of its inifial value after characteristic time, 7, given by

Cnt

2.56
M ( )

V= Uyl =

T'his is the membrane time constant, determined entively by properties of the membrane,

noh the core.

Re-expressing the Linear Cable Equation

Dimensionless electrotonic length, X, and time, T', are given in units of the space constant

and tie constant, respectively

X =7 T (2.57)
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All electrical quantities can be re-expressed in terms of electrotonic units, and are writ-
fen in upper case in this chapter to distinguish them from their dimensional counterparts.

The transmembrane potential (with respect to the resting potential), is
V(X,T) = v(z,t). (2.58)

[n terms of units and magnitude, V and v are identical. Note the following transformations,

du _ AvdT 18V i

Bt ardt 101 (2.59)
Su avVdx 18V

3 = 09X dz ~ NBX’ (2.60)
9% 1 82y

ov 190V 2.61
Oz? M pxe (2.61)

Re-expressed in electrotonic units, using equations (2.48) and (2.50), axial currcut,

equation (2.44), becomes

_LOVOCT)AX 1 QVOOT) _ OV(XT)

Lo(X,T) = ;. O0X  dr | A 89X 8X

(2.62)

where U, referred (o as the u-valne {with nnits ohm™!, i.e. a conductance), is a product

of clectrical (E) and geometrical ()} parameters, i.e. I = E@, where

E=,/% and G=vVAP. (2.63)
pi -

Re-expressed in electrotounic units, charge injected into dendritic segment [0, X| over

time interval [0, T is given by
QA(Xa T) = (IA(Q':: £)- (264)

From equation (2.29), the applied current line densiiy may he rewritten

azQA(XaT) ﬂ_d‘gi__ _]'-_82QA(X>T)
Xt dz dt A 8X8T

ig(z, 1) = (2.65)

It is convenient to define an electrotonic current density which has no geometry depen-
dence,
52Q (X,1)
Tg( X, T) = — L2 2.66
since, as will emerge laler, its behaviour can be directly relaled to ihat of the actual
applied currents. A point current source, i (%), injected at some point along the segment,

can be written
Ta(T) =ia(2). (2.67)




Finally, substitute for z, ¢, v{z,?) and ¢4(x,t) in the cable equation (2.47) using cqua-
tlons (2.59) and (2.61) to alter the derivatives, (2.58) to alter the voltage, then (2.65) and
(2.66) to alter the applied current term. This yields the dimensionless cable equation for
a uniform sepgment, with time constanl 7 and space constant A, and electrotonic length

L=1I/A

SW(X,T)  9V(X,T)
8x2 9T

Id(X= T)
U

+V{(X.T) — 0< X <L, >0, (2.68)

where, to re-cap, at glectrotonic length X and electrotonic time T, V{X, T} is the trans-
membrane potential with respect to the resting potential, 7;(X, T') is an electrotonic cur-
rent density (charge applied per unit electrotonic length per unit electrotonic bime), and

U is a constant for the uniform segment.

Uniform Segments or Uniform Cylinders?

in neuronal modelling, cable theory is almost invariably used just to describe cylindrical

dendritic segments. For a cylinder with diameter d,

G = ,70?3/21 (2.69)
2
and the dimensionless cable equation can be written
@S%T)- = 8»»—1759‘7,;”1'} +VIX,T) - nL){i 7 (2.70)
where
0= :FE_E (2.71)

For convenience, an alternative geometrical parameter is used, i.e. the three halves power

of diameter which is commonly encountered term when dealing with passive cylinders,
o= 32 (2.72)

where ¢ will be referred to as the c-value (terminology introduced in Ogden el ol., 1999).

In this case, the segment clectrical parameters may be wrillen

4p; 1 1 _1 s
= £ == Crn, = Uy, A E (QM(”K) é \/C_l) T = "“}'{

rp = —— P, ==
wd?’ O gaewd’

M
(2.73)
Note the diameter dependence of all parameters except the time constant.
1t should be noted that all results and methods that have heen developed over the
years for the cylindrical case are equally valid, perhaps with very slight modifications, far

the more general uniform segment case.
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‘The general form is also valid for equivalent cable construction, however, although
the spatial structure of a dendritic tree is collapsed, the methods used require that the
temporal properties of the membrane, embodicd in 7, arc constant for all segments used

to represent a complete dendritic tree.

2.5 The Multiple Segment Model of a Dendritic Tree

2.5.1 Introduction

A dendritic tree can be represented by a number of non-uniform scgments, cnough to
connect all branch points and mark all ferminals. However, it is much more common to
find that a multi-cylinder representation is used. An arbitrary number of these uniformn
cylinder building blocks, generally with different diameters, can be placed together to
form features such as tapering, and brauching. As a consequence, rather than a particulsar
branch being modelled by a single general cable equation (2.186), it is described by a set
of cylinders that are each described by a geametrically simplified cable equation (2.34).
Each model branch therefore has a piecewise unitorro, rather than continuous, diameter
profile.

Compuler modelling of dendritic trees was pioneered by Rall (1964), who adapted
comwarbtmental modelling. With compartmental models, a tree is essentially represented
by an arbitrary number of cylinders. IHowever, instead of modelling each cylinder with a
cable equation, they are assumed to be isopotential compartments linked by axial resis-
bances. Each compartment is deseribed by the space-clamped cable equation (2.54) (with
additional synaptic, ionic, injected currents), a first order ordivary differential equation.
The model is inteprated in time using finite difference schemes. (For details of compart-
mental models see, e.g. Perkel and Mulloney, 1978a, 1978b; fidwards and Mulloney, 1984;
Iines, 1984; Segev et ol, 1989; Lindsay et l, in press).

In the limit, as compartment size decreases and the number of compartments increases,
the compartmental model tends to produce the same resulis as the cable model. However,
cowpartinental modelling {(which is regularly used} is distinguished from cable modelling
(rarely used for numerical purposes) because if a limited number of isopotential compart-
ments are nsed, the tree geometry is not well represented. If cach eylinder is modelled by
a. cable equation, the full influence of geometry can be accounted for. It is in fact perfectly
feasible to perform computer simulations of the non-uniform cable model using spectral
methods {(e.g. Lindsay et al., in press; Canuto et al., 1990) which have numerical propes-
ties that are far superior to those of the traditional finite difference schemes employed in

compartmental modelling {(e.g. Mascagni, 1989).




2.5.2 Modelling Using Real Data

When morphological data, typically consisting of branch lengths and dismeters (plus
branching angles and threc-dimensional orientation in some circumstances, though this
information i’ not required here), obtained by sampling the rcal tree at a suitable number
of points, is acquired from a real neuron and nsed to build a model tree, it is given to soe
level of resolution dependent upon the experimental measuring procedure. Dimensional
constraints have thus automatically been placed on the model, so that any variation in
branch lengths and diameters within a cerfain bound cannot really be considered alter-
ations at the level of the model. However, al the level of resolution typically obtained, it
is reasonable to suspect thatl the essential morphological variation is well represented by
the data.

There are additional constraints on the electrical properties of the model. While it is
possible to examine a nearon at the single channel level to obtain local information about
the membrane properties, it is diflicult to determine accurately how membrane properties
vary over the whole neuwron membrane. A lot of assumptions must be made about ion
channel densities, and distribution of synaptic inputs.

There is also the question of how (o represent ferminals, and what sort of terminal
boundary conditions to apply. Should a terminal be represented by a narrowing chain of
short segments, or a single abrupt terminal cylinder (and does it really matter given the
model resolution). Does the terminal leak a significant current, or can it be considered
leak-free.

Modcl detail (physical structure, membrane properties, numerical accuracy) must even-
tually balance with computational cost (time, storage) when it comes to actually running
computer simulations.

When dealing with a computer model of a dendritic tree, whether lor siimulation or
equivalent cable coustruction purposes, it is necessary to replace the real data with ap-
proximations suitable for computer implementations. Snppose the physical lenglhs of the
segments that make up the original tree data are denoted 14, I, ... I,. The corresponding
electrotonic lengths are denoted Ly, Lo, ... Ly. Associated with each electrotonic length,
L; is an error ¢; which embodies errors in measuring the length and the cross-sectional
profile of the dendritic segment. We want to choose a suitably small quantum length L
siuch that

Ly — mpL| £ e, 1<k<n, (2.71)

where mq, My, ..., My are integers. Each measured electrotonic length, Ly, can therefore
be replaced by a mode! electrotonic length, my L, that is an integral raultiple of the quan-

tum lenglh. The two lengths are identical within the level of resolution afforded by the
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data. More details are given in Lindsay et ol (in press).

Incorporating Spines

If a segment of dendritic tree is covered in spines, the spines will contribule significantly to
the electrotonic properties of the tree. Spines can be modelled explicitly as small branches;
alternatively, physical or electrical properties of dendritic segments can be adjusted to
account for the membrane surface arca of spines (Stratford et al., 1989; Holmes, 1986;
Holmes and Woody, 198%; Rall et al., 1992 swmmarise the mefthods). This thesis is not

concerned with the non-passive properties of spines.

2.5.3 Obtaining Solutions for a System of Cable Equations

"I'his Lhesis is not concerned directly with solving a set of cable equations for an arbisrarily
branched tree. Many melhods are available for this task, and many computer modelling
suites implement numerical procedures.

In particular, there are several analytical methods now available for solving the linear
cable equations that describe a multi-cylinder passive tree model. The gheady state system
was solved by Rall (1959}, For the time-dependent problem, Butz and Cowan (1974)
introduced a graphical method based on Laplace transforms that could handle arbitrary
geometry; this approach was extended by Horwitz (1981, 1983); Kawato and Tsukabara
(1983} adapted it for dendrites with spines, Tuckwell (1988a) has presented several steady-
state and time-dependent solutions to cable equations. Abbot et ol. (1991}, introduced a
path integral approach (see also Abbat, 1992; Cau and Abbot, 1993).

There are many recent papers that present analytically derived series solutions iu
terms of eigenfunctions of the system. The various papers deal with different boundary
and initial conditions and tree geometries: Major (1993); Major et al. (1993a); Major et
al. (1993b); Major and Evans (1994); Evans and Kember (1998); Evans ef al. (1992);
Evans ef al. (1995); Kember and Fvansg (1995).

Numerical procedures are generally of more practical use, since they are not restricted
to the linear cable model. Scveral computer programs are available that have cither been
written specifically with neuwron simulation in mind, or can be adapted for such use (e.g.
NEURON, NODUS, Genesis, SPICE). Dc Schutter (1992) provides an overview of this
software. (Note, however, that sivaulation using spectral methods is superior to compart-
mental modelling in most respects and should become more prevalent as the modelling
community becomes more familiar with them; see Lindsay et al., in press}.

Despite the variety of methods now available, the large number of possible input con-

fisurations for any one simulation mcan it is difficult to use these methods to get any




insight into how geometry shapes the full range of electrical activity over a neuron.

2.5.4 Tree Structure Terminology

Here we define the terminology used to describe features of multi-cylinder dendritic struc-
ture. 'Fhis should help to aveid any possible confusion, though mosl terms are fairly
obvious in their meaning. Figures 2.5a-b illustratc the usc of terms the are not specific
to the multi-cylinder model, i.e. that can describe features of any tree, while Tigure 2.5¢
describes features characteristic of the multi-cylinder model.

A complete dendritic tree, formed from a set of cylinders (or uniform segments) of
various lengths and diameters is often referred to simply as a free. Several trees may
connect to a single neuron’s soma. Note that the distance hetween two points on a tree
is measured along the shortest, non-recursive, axial path within the tree. Furthermore,
physical length {and consequently electrotonic length) is measured along such a path,
always increasing away from the soma.

A point on a tree where three or rore cylinders meet is called a branch point or
junction; a threc cylinder junction is called a binary branch point. Of the cylinders that
meet at the branch point, that nesrest the soma is the parent cylinder, the others are
known as child cylinders. The point where two cylinders meet is called a diameter step. A
point that marks the end of one cylinder, and is not associated with any other cylinders,
is callied a terminal.

The term branch itselfl refers to a segment of tree that connects one branch point to
another or one branch point to a terminal. Of the branches that meect at a branch peoint,
that nearest the soma is the pareni branch, the others are called child branches. 1t is
possible that a cylinder constitutes an entire branch.

Fach trec has o brenching order defined as the maximum number of branch poinls
encountered in a non-recursive path starling at the soma, and ending on a terminal, moving
away from the soma at all times. An unbranched structure therefore has branching order
0. Bach branch ov cylinder in a tree can also be assigned a branching order, i.c. the
number of branch poiuts that are encountered on a direct path from soma to the branch
or cylinder. A structure with branching order one, the single hranch point being binary,
is called a Y-junction. It consists of a parent branch (opiional) connected to two child
branches, usually referred to as left and right.

Take any branch and isolate a cylinder on it. This cylinder plus the entire section of
the tree connected Lo it, and furiher from the cell body than it, is called a sub-iree, or
dendritic sub-structure. Any two cylinders in a sub-tree are linked by path along a subset
of the cylinders that form the sub-tree. The free branch that connects to the cell body is

called the #runk. The branch at the rool of a sub-tree is referred tio as the trimk of that
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Figure 2.5: Dendritie tree model terminology. (a) General trec terminology. {(b) Y-junctiown

terminology (¢} Multi-cylinder texminology. See text for full details.
sub-tree. Similarly, there will be trunk cylinders, and sub-tree trunk cylinders.

2.5.5 Initial and Boundary Conditions

If one’s aim is to solve the set of cable equations describing a complete tree, the initial
electrical state of the segments must be specified, as must the physical boundaries and
the nature of the electrical activity at these boundaries. Voltage continuity and currents
conservation conditions must be applied where dendritic segments connecs, i.e. at branch
points, or where diamcter is discontinuous. It will become clear in later chapters that
equivalent. cable constrnction, on the other hand, only requires knowledge of houndary
conditious (even then no representation of the soma is usually required, and only the
general type of terminal need be know).

The following conditions are given in physical units. For the passive tree model, elec-
trotonic forms of the conditions acceptable for equivalent cable construction are given

later.

Initial Conditions
Initial conditions constitute a specified transmembrate potential distribution,

o(z,0) = vp(x). (2.75)
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CGeneral Terminal Condition

Consider a dendritic segment with length ¢, terminated at # = 0 and 2 = 1. The trans-
membrane potential at the terminal is v,,{¢,%); 2 current i4(¢) is also injected. The total
current flow out from the terminal must be ¢,{l,%} -+ i4(¢). This current is assumed fto
be driven, by deviations from the resting potential, v{/, ), across a terminal with leakage
conductance gr, thus

1o (d, 1) + 14(t) = gro(l, ). {(2.76)

Rewriting the axial current contribution using equation (2.44) gives an alternative form
of this boundary condition,

1 dv(i,t)

~ - gro,t) = ialt). (2.77)

If o similar condition is imposed at # = 0 then, because of conventions for the direction

of current flow, the current leaking from the terminal is —i,(0, %) +44(f), thus

—ia{0, 1) + ia(t) = gru(0,1), (2.78)
and so 1 90(0,1)
(0, .
"ET + grv(0,t) = ia(t). (2.79)

Under certain assumptions this general boundary condition collapses to the following

more commonly used conditions.

General Current Injection Condition

If a generally time-dependent axial current is specified at segment boundary = = I, and
no current may Jeak from the terminal, so that gr = 0 in cquation (2.76), then

1av(,h)

bt = =

= —ialt). (2.80)

The minus sign appears because injected current is constrained to How in the direction of

decreasing z. Similarly, at £ = 0, equation (2.78) gives

. L 6v(0,1) .
ia(0,8) = — - 2 — g (4). 2.81) -
a( ) } r Oz T A( ) ( )

In this case injected current is constrained to How in the direction of increasing z.
A zero terminal conductance is equivalent to an infinite terminal resistance to axial
current flow. Thus, from equation (2.6}, this condition is equivalent to a sudden drop in

cross-sectional surface area to zero.



Sealed End Condition

The sealed end condition is the special case of the general current injection condition

(2.80) or (2.81} where no cwrrent is actually applied,
ia(t) =0, (2.82)
so that
(1, t) =0 ot {0, ) = 0, (2.83)

‘Fhis is often taken as the natural terminal condition for dendritic tips. Esscntially, no

current leaks from the terminal.

Cut End Condition

The cut end (or killed end) condition is obtained from (2.76} by letting gr — co, thus
v(l,t) =0 or v(0,t) = 0, (2.81)

depending on the terminal subject to the boundary condition. The transmembranc po-
tential at the terminal is equal to the segment’s resting potential.

This i1s not strictly a short circuit across the membrane, in which case Lhe actual
fransmembrane potential at the terminal would be zero. However, there is essentially no
axial resistance to currents that would move the polential at the terminal sway from rest.
Equation (2.6) suggests that a cul terminal may be regarded as a point where the segment

surface area jumps abruptly to infinity.

Joining Conditions

If the parent segment (p) has length £, and is connected to n child segmenis (¢, ..., ¢,)

then the voltage continuity condition at the branch poinl cau be expressed
Up{gp, t) :'U‘r:k(g,?t), (2.85)

for all child cylinders 1 < k < n. Denote axial current iu segment j by 4, ;. Conventions
for direction of axial and exogenous injected currents requires that at the branch point

K1

b (lps £ 84 (1) =) e, (0,4), (2.86)
k=1

where 44(2) is current injected into the junciion and the sum is over all child segments.
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The Sorma Boundary Condition

To complete the model (ignoring the axon), it is necessary to attach the dendritic tree
to a representation of the soma. Most commonly, a point representation is used. The
soma membrane has surface area Ag, capacitance per unit area C's, and transmembrane
potengial vg.

Suppose that m dendritic trees segmenis are altached to the soma. Segment j has
transmembrane potentisl v;{z) and cross-scctional area A;(x). Voltage continuity requires
that vg(t) = v1(0,2) = v2(0,£) = ... = v, (0,%). The axial current in segment j is denoted
iq,j- Suppose also that Jg is the total enrrent density (per unit area) flowing out from the
soma across the membrane, The total amount of charge then flowing inte the soma is

4,(0) 8v;{0,%) )

—JgAs — > il(0,1) = —JsAs 2.87)
54s JZ: (0,t) JsAs + Z Py oy (2.87)
‘T'his must balance the somal capacitive current, so
dot,(t) Aj (l)) dv; (D t)
AsCs—p = = —JsAs + Z A (2.88)

e M
The current density Jg may consist of voltage dependent ionic currents, s¥naptic currents,
puraping currents and exogenous injected currents. [t can be expressed in a similar manner
to the segment transmembrane current Jp, with synaptic, injected, ionic and pumping
components. The reduction in soma surface arca where dendrites connect has not been

accounted for, but is easily done so by replacing Ag with As — 37, A;(0).

2.5.6 The Passive Multi-Segmeut Tree Model

The passive multi-segment iree model, valid for the construction of fully equivalent cables,
18 now simariged.

A {ree is represented by an arbitrary number of uniforim segments. Associated with
each cylinder j is a surface area, 4;, a perimeter Fj, a space constant Aj, a physical length
I;, a potential V;, an applicd current density fg;, and electrotonic length Lj = [;/A;.
TFurthermare, there is a n-value U; = F;G;.

From equation {2.70), the electrical characteristics of cylinder j are described by the

dimensionless linear cable equation,

azvj(x': T) av_}(X) :P) g Id](X‘IT) v . ¢
3 CRa + Vi(X, )~—~;Uj—, 0< X <Ly T>0 (289
Axial current for cylinder j is denoted I, ;(z, ), so equation (2.62) is

V3 (X, T)
ax
Only the following boundary conditions are valid for equivalent cable construction.

L{(X,T) = =U; (2.90)




General Current Injection Condition

The current injection condition, equation (2.80), becomes

_ VLT .
I(L,T) = U5 = ~1alT). (2.91)
Similarly, at « = 0, equation (2.81) becomes
ovio, T
120, T) = — —eg“}?“_) _ 1.(T). (2.92)

Sealed End Condition

The sealed end condition, equation (2.83), is the special case of the general current injection
condition (2.91) where no current is actually applied,

L{L,T)=0 o  1(0,1)=0, (2.93)

depending on the terminal subject to the boundary condition.

Cut End Condition

In electrotonic units, the cut end condition (2.84) is
V(L,T) = or V{0,T) =0, (2.94)

depending on the terminal subject to the boundary condition.

Joining Conditions

If the parent cylinder (p) is counected $o n child cylinders (e, ..., ¢, ), then the voltage

continuity condifion in electrotonic form is
VoL, T) = V2 0,T), (2.95)

for all k& where 1 < k < n.
Conventions for the direction of axial and exogenous injected currents requires that at
the brauch point
T p(Lpy TY + Ta(Z Z Ton (0,7, (2.96)
km.
where I4(t) is current injected into the juuction and the sum is over all child cylinders &

that meet parent cylinder p at the junction.

To ensure that this passive tree model is suitable for equivalent cable construction, it

is ouly necessary to insist that 7 is constant aver the whole tree, i.e. the quantity Ca/gm
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is constant over the tree. Cylinder c-values {3/2 power of diameter), which have a more
immediate physical interpretation than the u-values. Thus we shall formulate the passive

multi-cylinder model with homogeneous specific electrical parameters.

2.5.7 The Passive Multi-Cylinder Tree Model!

We assuine thal the specific electrical constants for dendritic cylinders, gas, p;, and Cyy, are
identical for each cylinder used to repregent: the tree. Consequently, 7 must be constant,
as stk 2. Tt has alrcady been shown in equation (2.48) that ¢y, Tm, 74, and A; equation
only have a diameter dependence over the tree.

From equation (2.70), the electrical characteristics of cylinder j are described by the

dimensionless linear cable equation,

VX, Ty  ovi(X. 1) | .. Ly (X, 1) ) A
s = gp - HVET) SRS, 0<X <Ly T>0. (2.97)
Axial current for cylinder j is
oVH{X, 1)
Io (X, T) = _ch"JaT' (2.98)
where o
K==l [0 (2.99)

2.5.8 Typical Electrical Parameters in a Tree

‘I'he membrane capacitance per unit area, Cyr, i8 usually assumed to be 1.0uFem ™.
Intracellular resistivity, p;, may range around 50-100Q2/cn. Membrane resistance per unit
surface area (1/gp7) is not easily determined accurately, but typically is assumed to fall
within the range 5,000 to 100,000 Qcm?. Rall ef ol (1992) outline methods for parameter

estimagion.

2.5.9 The Tree Model Surface Area

The membrane surface area of uniform dendritic segment 7, with length 1; and perimeter
Pj, 13

85 = Pjl;. {2.100)
In terms of clectrotonic length, where L; = {;/A;, this becomes

§j = PjAij‘. (2101)

‘I'he total surface area, S¢ of tree §, is

Se =% sj, (2.102)

J
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where the sum is over all segments used to represent the tree.
Now, suppose all segments have the same physical length, {, the total surface area is
given by
Se=1Y_P; (2.103)
7

If all segments have the same electrotonic length, L, total surface arvea ig given by

Se =LY P (2.104)
i

If the uniform segment is cylindrical, and electrical propertics are constants for the
tree, then P;A; = 7w /2 /0ppi. and

T
S = ——— cj. 2,105
3 2\/9Mpi zj: J ( )

Iissentialty, the surface area of a unit electrotonic length of scgment is proportional to its

c-value. The sum of the c-values can be used as o measure of tree membrane surface avea.

2.6 Electrical Activity in Simple Passive Structurcs

2.6.1 Passive Signal Propagation

Electrical input on a passive dendritic tree will, geometry permitting, induce changes in
the membrane potential at structure nearer and further from the soma than the input
site. These cffects arve carried by charges spreading axially as equilibrium is sought. A
transient current inpuat, for example, causes a fransient change m membrane potential at
the input locasion. The magnitude of this effect decays in time, as charge moves both
across the membrane (radially) aud through the branching tree system (axially), causing
changes in the membrane potential at all poinls in the tree. The distance of a point on
the tree from the input site, as well as overall tree geometry and the electrical properties
of tree membraxne and core, determine the strength and time course of the response at this
poiut. Dendritic geometry and terminal houndary conditions can have a major influence
on the spread of charge ut points such as terminals, branch points and changes in diameter.
Recall again that a general current injection condition is analogous to a drop in diameter
to zero, while & cut condition is analogous to a sudden jump of diameter to infinity —

charge may flow unhindered from the terminal.

2.6.2 lmpedance Matching

Itopedance matching is a uasefnl concept. Two adjacent structures on a dendritic iree

are irmpedance matched if a charge imbalance that has accumulated at the confact point
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disperses equally into both. Essentially, there is equal immediate (local) impedance to
current low into both structures.

For example, any point on a uniform infinite cylinder represents an impedance matched
structure and consequently an electrical inpul generates a voltage distribution that is
symmetric about the inpul site. Impedances are not matched at terminals and abrupt
diameter changes. At branch points, where more than (wo cylinder meet, it is possible
that subsets of the cylinders are impedance matched. Where impedances are nol matched,
which is likely in real neirons, structures with lower impedances (larger diameters) receive
more of the accumuiated charge.

2.6.3 Steady State Solutions of the Cable Equation

It is helpful to illustrate impedance matching by considering the sleady state solution for
coustant current injected at the point where two semi-infinite cylinders connect. In Figure
2.6a, two such cylinders are illustrated. Figure 2.6b shows that the voliage response in
physical space is unsymmetric about the contact point. If x is measured increasing away

from the discontinuity for both cylinders, the solutions in each cylinder are,

-2/

vi(e) = we and va(x) = vge 2172, (2.106)

The voltage decays with a shorter space constant in the narrower cylinder. However, if
the respoansce is drawn in electrotonic space, Figure 2.4c¢, it is symmetric about the contact
point, since

Vi(X) = Va(X) = Ve ™. (2.107)
Current conservation at the discontinuity means that

-
IA(T) = —Ke v,

v
- Ke
axX

Y2 BX

a=0 lg=0Q

(2.108)

Since K is constant and the voitage response profiles are identical in electrotonic space,
then the ratio of the currents flowing into each cylinder is the ratio of c-values. (This
generalises (o the u-valnes for nniform segments with different electrical and geometrical
properties. )

Now congider a binarvy branch point where three semi-infinite cylinders (denoted par-
ent, left and ripbt} connect. In each eylinder, = increases away from the branch point.
Again, the voltage responses in cach cylinder are identical in electrotonic space (though
in physical space they will depend on the diameter). The ratio of corrent flowing into
any two cylinders depends on their relative c-values. Thus, the same amount of current
flowing inta the left and right cylinders will equal that flowing into the parent only when

cp =«r, +Cp.
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Figure 2.6: Steady state response in two conuecied sewi-infinite cylinders.

Consider a set of connected cylinders. QOue sub-set of these cylinders is impedance

watched with the remaining sub-gset if the sum of c-values for each sub-set is equal.

2.6.4 Steady-State Input Conductance

The steady-state input conductunce, Gy, with respect to a specific poini on a branched
tree structure, is the ratio of steady input current (4p) at the input site to the the steady
potential (vg) cvolved ab the input site, thus
%
Gin = —. (2.109)
¥
For example, in the case of o semi-infinite cylinder, equations (2.44) and (2.55) give
1 1
Gip =~ = . 2.110
" ra'}- AVARTYE ( )

Rall (19569) gives a recursive procedure for evaluating Gy, for any multi-cylinder passive

tree.

2.6.5 Uniform Voltage Decay

Consider a complete multi-segment dendribic tree with arbitrary geometry but all terminals
sealed. The tree is isopotential so that no axial currents flow. A similar analysis to -
that for the single dendritic segment (Section 2.4.1) reveals that this voltage decays with

characteristic time constant 7. The total capacitive discharge currenl flow is

OM& ﬂzpz _ Oy a(t)zs"' (2.111)

¢

where the suin is over all dendritic segments that form the tree. The current is proportional

1o the surface area.
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2.7 Requirements for Equivalent Cable Construction

Although cable construction theory is valid for passive uniform segments (provided the
membrane time constant is actually a constant for the whole tree), the rest of this thesis is
developed from just the dimensionless passive linear cable equation for ¢ylindrical geometry
(2.97), the corresponding vquation for axial current (2.98), expressions for ent and current
injection terminal boundary conditions (2.91, 2.93, and 2.94), plus voliage continuity and
current conservation joining conditions (2.95 and 2.96). Bulk electrical parameters Chy,
gm and p; are taken to be constant.

I required, cable results could be extended quite naturally from cylinders to segments,
with u-values replacing c-values. Thus there is some [lexibility in the choice of electrical
paraweters gas, pi, and Cpy, and geometrical parameters 4 and P which may vary between
segments provided a constant membrane time constant (Cyr/gas) is maintained.

The measures of surface area, steady-state input conductance, and Lhe idea of a uni-
form potential over a completely sealed tree decaying uniformly, are introduced becausc
they are significant whole-tree properties that must be conserved during equivalent cable

construction for all, or important classes of, model trees.
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Chapter 3

Equivalent Cables

3.1 Introduction

Within the context of neuronal modelling, the terin “cquivalent cable” has bheen used
to describe a variety of unbranched, and often non-uniform, reduced models which are
“electrically equivalent”, in some sense, to an original dendritic tree mode! {(or perhaps
axonal tree model}, and can thus be used to analyse its electrical propertivs and signal
processing {unction. The motivation for develaping these modcls has been the success of
the original eguivalent cylinder result {Rall, 1962b), which we describe in detail in section
3.3. In prineiple, the electrical properties of an unbranched structure can be analysed more
casily than the original tree. If one can construct an unbranched structure that preserves
many of the tree's electrical properties, then it may be easier to gain some insight inlo
its funclion, or estimate tmporftant electrical parameters. Rall showed how this could be
done for a limiled class of bree, and subsequent efforts have attempted to generalise his
result.

Here we describe and compare the different cable models that have been propnsed,
then comment briefly on how they are constructed, and how they are used, i.e. primarily
whole-cell elecirical parameter estimation. We emphasise the fact that these cable models
cannot be equivalent to the original trec model in a mathematical sense. We subsequently

state a precise definition of equivalence that has a rigorous mathematical basis, and then

describe the fully equivalent cables that were discovered by Whitehead and Rosenberg -

(1993) and which satisfy this definition. True mathemaiical equivalence between a tree
model and an unbranched cable i1s a very powerful concept, and we consider some of
the general insights that follow from this result. Existing quasi-equivalent cable modeis
are also compared in light of the delinition of equivalence. Three different methods for
constructing these cables are briefly discussed; the full details, given in Chapters 4, 5, 6

and 7 form the bulk of this thesis. Significant general features concerning the shape and
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boundary conditions of fully equivalent cables are also outlined, anticipating more detailed
discussion and illustration, also given in these chapters and overviewed in Chapter 8.

It is important to note thai, while the results given in this chapter assume, and were
originally derived for, cylindrical dendritic segments, they can be shown tc be valid for
general uniform segments with non-circular cross-section, as was stressed in Chapter 2.
The model equations have an essentially identical form.

In this chapter, in contrast to the previous chapter, for notational convenience lower
case letters are used to represent electrotonic units and quantities expressed in terms of

electrotonic units.

3.2 The Various Cable Models

An equivalent unbranched structusre can only be construcied and compared to the dendritic
tree it s supposed to represent provided one has a working definition of what is meant by
“equivalence”. Previous notions of cquivalence has primarily been “needs-led”, e.g. the
need to reproduce results with the cable model that can be identified with results of an
experimental procedure, such as a transient vollage response at the soma. Hqnivalence is
typically measured with respect to the soma, and once a cable has been generated it is
attached to the soma instcad of the tree (that is, the model is replaced); ideally the two
structures have identical electrical properties and thns represent identical electrical loads
that are indistinguishable by the soma. In practice, the perceived notion of equivalence
is often either geometrically and/or eleclrically restrictive (Rall 1962a, 1962h; Tuckwell,
1988a; Olune and Schierwagen, 1998), or even approximate in nature (Fleshman ei «f,
1988; Strattord et al, 1989; Clements and Redman, 1989; Manor et af, 1991). The question
“What constitutes truc electrical equivalence?” is often unasked. It is easy to say this
with hindsight, of course. It is most likely that, given the complexity of realistic geometry,
it was assumed unlikely an exactly equivalent structure existed in general. Construction
procedures for quasi-equivalent cables can differ markedly, are intimately linked to the

definition of equivalence, and can be classified into two general Lypes.

(A) Restricted Cables: Equivalent cables that follow directly from the mathematical
model of the dendritic tree, i.e. it is possible o prove that they meet some level
of “cquivalence”. One imposes conditions, some of which are unrealistic, or at bost
rvarely encountered, on the geometry of, and/or the electrical activity within, a den-
dritic tree, until the cqnivalent model falls out inevitably, via mathematical analysis,
from the specified mathematical description of the tree. (Note that any such condi-
tions arc in addition to the basic assumptions of the mathematical model — usually

the passive multi-cylinder model described in Chapter 2.)
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(R) Fmpirical Cables: Tquivalent cables that are constructed using some heuristic based
on empirically observed conditions for reproducing voltage responses observed at the
cell body. Given some known parameters that arve characteristic of the whole trec
(for example steady-state input conductance, and in certain cases membrane surface
area) that one expecis should be invariaut iz an equivalent structure, one tries to
build a cable that also has these properties.

In addition, the fully equivalent cables introduced by Whitehead and Rosenberg (1993)
fall into a category ol their owrn.

(C) Fully Fguivalent Cables: See delinition later.

Cables of both type (A} and (B) are, under certain eircumstances, incomplete special
cases of type (C} — significantly, they are always incomplete in o mathemalical sense.
Categorics (A) to (C) roughly encapsulates the chronological order of the introduction of
all cables, with minor exceptions.

The power of truc cquivalence, and the absence of geometrical and electrical restric-
tions, ensures that the new cables represent an analytical tool capable of giving far more
insight into the signal processing properties of passive tree geametry than cables of type
(A) and (B).

It should be noted that unbranched models are often uwsed in computer simulations
where one is investigating properties of ncurons but is not necessarily concerned with
the influence of branching structure (scc, for example, Goldstein and Rall, 1974; Halliday,
1995h; Toth and Crunelli, 1998). The unbranched structure is just a convenient framework
for producing the phenomena of interest. Though often similar in structure to eguivalent

cables, they are not intended as a replacement for a specific dendritic tree.

3.3 Rall’s Equivalent Cylinder

The classie, and probably most well-known example of a reduced model is Rall’s equivalent
cylinder {Rall, 1962b, 1964, 1977), which is the precursor to, and inspiration for, all
subsequent equivalent cable models. It falls into category (A). The desire to construct
equivalent cables has arisen primarily hecause of the suceess of Rall’s model for estimating
passive electrical parameters ol neurons (e.g. gar, pi)- Fts simple structure makes it more
susceptible to mathematical analysis and iis electrical propertics are more easily visualised
than those of the corresponding tree.

(iiven a multi-cylinder model of a passive dendritic tree, as described in Chapter 2,
where uniform cylinders meet only at branch points, the tree is a Rall free provided the

following three conditions hold:




cp

e tr=cL R
Figure 3.1: Singly hranched binary Rall tree and its equivalent cylinder. Each tree Hmbs
has electrotonic length £, ag does the equivalent cylinder, Tree limbs and equivalent cylin-

der have the same terminal boundary condition, denoted 7'

1. All terininal boundary conditions are of the same type.

2. At any branch point the sum of child cylinder c-values (cy, ..., ,) equals the c-value
of the paxent cylinder (p}, thus ¢, = 3, ¢;. Recall from Chapter 2 that ¢, = di/ 2, 80

this is Rall’s 3/2 power law for dendritic cylinder diameters.

3. All dendritic terminals ave localed at the same clectrotonic distance, L, from the

50Ina.

We assume that condition (1) siinply requires that the potential, v;(x, ), of terminating
cylinder ¢, satisfies the boundary condition

a O, (l'h !‘)

eyl 1) + —7 == = fi(t). (3.1)

where, from equation (2.76), « is 2 measure of leakage conductance from the terminal,
{3 is a measure of intracellular axial conductance at the terminal, and f; represents the
(current) supply or forcing term. The quantity /8 thus measures relative amounts of
leakage and axial current flow. Current injection (¢ = 0) and cut (@ — o) conditions are
just special cagses of equation (3.1). Condition (2) is essentially an impedance-matching
condition between the parent cylinder and its child cylinders at cach branch point.

A Rall tree may be replaced by a uniform ¢ylinder, attached to the soma. This eylinder
exhibils (he same irmpedance matching properties as the Rall tree. Tt has electrotonic
length L, the same Lype of teriminal condition as the tree terminals, and c-value equal to
that of the trunk cylinder, i.e. that which connects to the soma. It has total surface area
equal to that of the tree.

Figure 3.1 illustrates a singly branched Rull tree and its equivalent cylinder. The
equivalent cylinder result need only be proven for this simple case. The general resuls for

multiple branching follows by successive reductions.
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3.3.1 Proof

Rall originally demonstrated the [oundations of his result by analysing steady state solu-
tions of the cable equations, and determining the simplifying conditions that ensure the
steady state input conductance for the tree is identical to that for a uniform cylinder {Rali,
1959; 1962b). This approach is unnecessary (though insightful) however, and the result
follows simply for the time-dependent case from an elementary amnalysis of the partial
differential equations. One need not be concerned with specific expressions for the tree
cylinder potentials (c.g. steady-stale solutions in terms of sinhz and coshz). All that is
required are the describing equation (the cable equation) and the boundary conditions.

Cousider the left (L) and right (R) cylinders of the simple symmetric Y-junction, each
with electrotonic length {, and c-values ¢z and cg. The left and right potentials, vz(x, %)
and vgr(z,t) satisfy the dimensionless cable equation, thus

vy Ouyg i

oz~ At o M e T

where iy {z,t) and ig(2,t) are the electrotonic applied current densities on each branch.

+up —

. a° S ;
L ”;f_- = TR e QI 0<z <l (3.2
Cr

Recall that £ is constant. Voltage continuity at the branch point ensures that vp(0,¢) =

vr(0,%). The two terminal boundary conditions are

ITAUR: Avr(l,t)

cevr, (8,14} + ,6'-"‘“571:—) = fr.(t) and . avp(l,t) + ﬁT = fr(t). (3.3)

Using equation (2.98), the total axial cwrrent flowing into the two cylinders from the

Junction is

. vy Aup
iy = —K |ep —— R —— . 3.4
is [ LG | TR B |, {3.4)
Now consider the simple linear combination of potentials,
CL Cit
volw, t) = ———urn(a, t) + ———wug(x, ). 3.5
C(,] CL+clh’_r(’) cr, 4+ Ccgr R(j) ( )

"The claim is that vg represents the potential in a uniform cylinder, with e-valuc ¢z - ¢p,
and which can be connected to the branch point instead of the Y-junction while still
preserving voltage continuity and current conservation. Voltage continnity where the new
cylinder connects to the junction is guaranteed, becanse of voltage continuity in the original

Y-junction juncéion, ie.

cr CR o
(0,8) == —E (0,8 + — B (0, 8) = vz (0, £) = vr(0, 1) ,
ve(0,1) o1 on 0 )+ op 1 o Ur(00) = vr(0,8) = vn(0,2) (3.6)
Also, since
L CR
(L) = ——wu (¢ ——aup(l, 1), .
ve(ls ) CL+CRUL(7)+CL+CR?R(1) (8.7)
and
Oue(l, t) __CL Oup(l,t) CR OUR(E,t) (3.8)
I c, +cr 0% cr ey Oz )
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then ve satisfies the terminal condition

avo(lt) + f——

Al t) , o
5, = Jolt), (3.9)

where
fo(t) = fL( I+t —— fR(t) (3.10)

Current conservation at the JllIlCthIl is guarani;eed since, from equation (2.98), and using
equalions (3.8} and (3.4)

g
~Keq —= =4y, (3.11)
O =0
provided ¢o = ¢z, 4+ cg. Choosing
i t) = ig(@, 1) + igla, b, (3.12)
it is easy to check that vy satisfies
Sue e N 1%]
—_—= y - =, Lz <l 3.13
52 B + ¢ e <z < (3.13)

T'he equivalent cylinder result for the Y-junciion follows immediately.

The general Rall tree can be reduced Y-junction by Y-junction, with the equivalent
cylinder potentials (applied currents) now being formed from nested combinations of tree
cylinder potentials (applied currents) as more and more structure is transformed. If v;(z)
and 4;(«) represent the potential and applied current on branch 7, at a distance z from
the cell body, then the potential and applied current over the equivalent cylinder that

represents the whole tree are given by

vel(x) = Z 2—21,-,- (=) and  ig(z) = 2_:1.7 (z), (3.14)
J i

where the sums are taken over all branch cylinders, 7, that lie at a distance z from the ccll

body. The cylinder ¢-value, ¢, is the sum of all branch c~values that lie at any particular

distance from the soma — the Rall conditions ensure this is a constant throughout the
tree, from soma to tips. .

Figure 3.2 illustrates the reduction of a highly symmetric Rall tree with four ovders of
branching. 1f any of the structures (b) to (e) are attached to the soma instead of the original
tree (a), one cannot determine which [rom their individual voltage responscs at the soma.
Any electrical activity on tree (a) can be mapped (using equations of the form 3.5 and 3.12)
to any structure (b) to (). Note that, of course, activity only needs to be mapped from
sub-structure that has been transformed. Electrical activity on untransformed structure

will be identical. Resulting elecirical activity observed at the cell body will he, necessarily,

identical.
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Figure 3.2: Successive reduction of Rall Y-junctions af the tips of more complicated Rall
trees, to transform a complicated Rall free to its equivalent cylinder. Reduction from (a)
4-order branching, though (b)-(d) to (e) zero orders of branching. All terminal boundary

conditions are of the same type.

Note that Tuckwell (1988a) has proposed an equivalent cylinder theorem (theorem
5.2} including applied currents that attempts to formalise Rall’s result, but imposes un-
necessary restrictions upon vg, vg, ir and i¢g. His subsequent theovem (theorem 5.3) {sce
also Walsh and Tuckwell, 1985) is cssentially the correct vesult. He also states thal it
is possible to determine the potential over the whole Rall tree using this theorem, given
the potential over the cylinder. It is not however, possible to determine an wnigue con-
figuration given the potential on the cquivalont cylinder. The following discussion about

mapping electrical activity should clarify this point.

3.3.2 Mapping Electrical Activity Between Tree and Cylinder

Given some confignration of electrical activity (voltage distribution and applied currents)
in the Y-junction, the activity within the cylinder that penerates the same response al the
branch point is given by equations (3.5) and (3.12).

1t is less clear how Lo map electrical activity back to the free from the cylinder, Consider
Figure 3.3a. A single input current, I, is mapped from the Rall Y-junction limb to the
equivalent cylinder using equation (3.12). In Figure 3.3b, two currents are applied to
the Y-junction, one an each branch, at the same distance from. the branch point. One

has magnitude ri, the other magnitude s7, where » + 8 = 1. Again the corresponding
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Figure 3.3: The electrical mapping from Rall cylinder to tree is not unique. Different

applied currents on the trces (a)—(c) will map to the same configuration over the cable.

input current on the equivalent cylinder is I, at the same distance from the branch point.
S0, there is an infinite number of tree input configurations, determined by the choice of
r and s, that map to the same cylinder input. Inpuis need not even be located at the
same distance from the soma. In Figure 3.3¢, two additional currents, +-{; and —I, are
applied on the limnbs, equidistant from the branch point. They cancel when mapped to
the equivalent cylinder. The consequent non-uniqueness of the mapping from cylinder to
tree is clear — to which free canfiguration is the cylinder input mapped?

In mathematical terms, the mapping of electrical activity from tree to cylinder is
surjective (every configuration of cable activity is associated with at least one configuration
of tree ackivily), however it is not injective {(which requires that no two tree configuration
map to the same unique cable configuration), thus the mapping between cable and tree is
not unique, i.c. the mapping is not bijective, which follows from surjectivity and injectivity
corubined.

In a different formn, this non-uniqueness of the mapping between Rall trec and equiva-
lent cylinder has been referred to as the “principle of independence of response on geom-
elry” for Rall {rees {Tuckwell, 1988a; Walsh and Tuckwell, 1985). Given the response at
the soma to an input somewhere on the tree, only the electrotonic distance of the input

from the soma may be inferred, not its precise location on the tree. The same current
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Figure 3.4: The mapping between a Rall Y-junction and its fully equivalent cable is unique.
(a) A single injected current maps fo the usual injected current on the cylinder plus a scaled
current on the disconnected section. (b)-(c¢) Individually, these cable currents each map

to two tree currents. (d) The mapping in (a) is unique and reversible.

input at two different locations on the tree, equidistant [rom the soma. will give rise to

the same response al the soma. The soma cannot distinguish such inputs.

3.3.3 A Hint of Full Equivalence

It is instructive to introduce, in their simplest form, some features of fully equivalent
cables. Consider the auti-symmetric combination of Rall Y-junction limb potentials (as

opposed to the weighted symmetric combination ve),
’Uu(iﬂ,t) = UL(m!t) - viﬁ(:ﬁst)s (315)
and observe that vp satisfies a cut condition at z =0, i.e.

vp(0, t) = ?JL(O, t) - TJR(O, t] = {, (316)
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in sympathy with voltage continuity at the origin. At 2 = I, »p satisfies the boundary

condition 5
vp(l, ¢
ovp(l,t) + f~ ?95.-: ) = p(t), (3.17)
whoere
Fo(t) = fu(t) - fr(t). (3.18)
Taking
iD(myt) _— Q,L(w,t} _ ‘Z;R(.'L",ﬁ) (.} 1())
Cp Ct cr o
potential vp satisfies the cable equalion
vy Oup . i) :
%2— 3? VD — E;, 0<xz<l. (320)

So, »p is the potential in a cylinder with electrotonic length 7, and c-value ¢p (which has
not heen specified, and may take any positive value). Appropriate boundary conditions
are salisfied at & == 0 and @ — [, and cylinder D is not attached to the soma -— in fact
it is ot attached to anything. This is the disconnccted section of a Rall Y-junction’s
fully equivalent. cable; the equivalent cylinder is the comnected section. In this case, the
disconnected section describes the difference belwesn the potentials on the two limbs.
This is information that structure connected to the Y-junction canuot discern, hence the
disconnection.

We now have two linearly independent equations describing the two potential functions
on the two Y-junction limbs. The entire space of electrical activity over the Y-junction
is represented by vo and vp. It is now possible to invert the mapping from tree to cable

(equations 3.5 and 3.12), thus
CR CrL ¢
vi{e,8) =vcle, ) + —up(z,t),  wgls.1) = volz,t) — —op(e, i), (3.21)
C C
and

CRCT,
coen

CRCY,
ok
eaen

. . . c . . . C .
i{z,t) = ic(z, f):i— +ip(x,1) iplz, 1) = zc(m,t)£ —iplz,t) (3.22)

Iransformations that generate fully equivalent cables must be (clectrotonic) length-
preserving. By their very nature, no quasi-equivalent cable model can achieve this.

Figure 3.4 illustrates the equivalent cylinder for a singly branched binary Rall tree,
and the uniqueness of the electrical mapping. Figure 3.5 illustrates the equivalent cable
for the 4-order Rall tree in Figure 3.2.

Slight Relaxations of Rall’s Conditions

‘We just briefly mention that an extension fo the above analysis, using multiple cylinders

for each limb, will show {hat if the Y-junction has branchcs with non-uniform (piccewise
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Figure 3.5: The Y-junction by Y-junction reduction of a Rall tree into its fully equivalent
sable. Trees (a)—(d) are successively reduced and eventually (e) & single conmected section
is produced, plus 21 — 1 disconnected sections, All five structures are equivalent since an

slectrical mapping will uniquely relate activity between any two.




uniform) diameter profiles, such that cp(z)/eg(x) = r is a constant, but otherwise satisfies

the Rall conditions (1) and (3) above, then the potential

b 1
velz, i) = T 7"ur,(:z:, )+ T rﬂR(m, ), {3.23)

degeribes an equivalent structure with diameter profile cex(z) = (1 + r)eg(x). A discon-

nected section with potential
vplx,t) = vr(z,t) —vrs,t) (3.24)

has a similar diameter profile, with cp(z) == Feg(z), where F is an arbitrary positive
canstant.

Apgain, successive reductions may be applied to a highly branched tree provided the
diameter profiles of each lirab are appropriate. This resuli is discussed in greater detail in
Chapter 6, where an alternative proof is given.

The left and right ¢-value profiles may in fact be continuous {unctions of z. This can
easily be shown using a similar analysis to that above for Rail’s equivalent cylinder, but
using a nou-uniforin passive cable equation based on equation (2.16) (it must first be non-
dimensionslised). Taking the arguments even further, the diameter profiles may in fact be
a. mixture of both continuous and discontinuous segments, again provided that the limb
ratios arve constant. The quantity gasr/Chs, i.e. the titne constants, may even very iu each
limb, provided 77{X) = 7p(X).

3.3.4 Application of Rall’s Equivalent Cylinder

The equivalent ¢ylinder concept was just one resull that followed from Rall’s application of
passive cable theory to obtain expressions for steady-state electrical properties of neurons
(details given in Rall, 1977; Rall et al., 1992). Rall (1959, 1960) recognised that previcus
estimates of motoneuron parameters, such as steady state input conductance, and the
membrane time constant, were erroneous because the significance of the electrical and
geometrical properties of dendrites had been underestimated. Historical overviews can be
found in Rall (1977) and Segev et al. (1993). This work clarified the electrical significance
of dendrites, and also synaptic events that are initiated away from the cell body, and was
an important step in treating the spatial complexity of these structures mathematically.
Estimating parameters is a vital component of constructing and constratning biophysi-
cally detailed models of neural activity. A typical approach to parameter estimation using
the eyuivalent cylinder model may. involve analysing recorded somatic voltage transicots
(generated by applying a current pulse at the soma) and comparing them, in some way,
to theoretical responses corresponding to an equivalent cylinder. For example, the voltage

responsge in a passive iree may be Lheoretically a sum of expouential decays. Omne can
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estimate the largest decay time constant since it dominates the tail (late times) portion
of the transient voltage response. Additional time constants are determined by “peeling”,
which involves subtracting the estimated exponential conlribution to the transient so that
the tail portion is now dominated by the next largest time constant.

The obvious limitation of the equivalent cylinder representation for realistic dendritic
trees was recognised by Rall (who has cantioned against its inappropriate use), yet it has
proved to be an extremely useful simplification that has helped in the understanding of the
electrical characteristics of passive dendritic {rees, and has heen widely used in theoretical
(e.g. Rall and Rinzel, 1973; Rinzel and Rall, 1974; Jack and Redman, 1971a, 1971b) and
experimental (e.g. Iansek and Redman 1973; Jackson, 1992; Ulrich et al. 1994) studies.

The problem ol parameter estimation using equivalent strueturcs can be quite compli-
cated, with many experimental and theoretical factors to consider, as discussed in detail
in Rall et al. (1992). While Cy; is often taken to be 1.0xl7, there can be great variation
in the values of gp; and p; that fit experimental data. Furthermore, as soon as one staxts
using these techniques for trees which do not satisfy Rall’s conditions, then one must be
careful how one should (if at all) interpret the results. Although for certain real neuronal
trees Rall's conditions for an equivalent cylinder seem fo be satisfied approximately, for
others, and in general, this clearly isn’t the case (see Rall, 1977 for discussion), and the
equivalent cylinder is not an appropriate representation. Consequenily, there have been
several efforts to improve and extend the parameter estimation using model to dendritic
trees which are not geometrically constrained by Rall's canditions.

Following from the equivalent cylinder approach is the idea that a complicated dendritic
tree might have an effective electrotonic length — the electrotonic length of its best fit
equivalent cylinder. Expressions for estimating the electrotonic length of a vylinder for

various boundary conditions are given in Rall (1969a).

3.4 Continuous Tapering Models

Rall (1962a) proposed an extension to the equivalent cylinder result in an attempt to
account for tapering tree geometry. This resull assumes that the nurber of branches
at a distance z from the soma is continnous function, n{z), of distance from the soma, .
as is the radius of each branch, »{z). The idea is to choose a tapering profile, r, then
determine the corresponding n so that the tree can be represented by one cable equation
{with gencralised lenglh parameter) that describes an equivalent cylinder. Jack et al
(1983) list several pairs of tapering and branching functions. These cables are of type (A)
{vestricted cables). Clearly, the introduction of fractional orders of dendritic branching

is unphysiological. Onc mmst approximate the theoretical object with a tree that has
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Figurce 3.6: Elcctrotonic dendrogram representation of a dendritic tree and its correspond-

ing lambda, cable.

integral numbers of branches at any distance from the soma. Consequently, this approach
is limited in its applicability, and is only remotely reasonable for trees with a high order
of branching.

Poznanski (1988, 1991, 1994; Poznanski and Glenn, 1994) has used tapering cable
models to estimate eflective electrotonic lengths using the formulas of Rall (1969a) derived
for the equivalent cylinder.

Ohme and Schierwagen (1998) have proposed continions tapering cables which they
claim justify the use of the (discontinuous) empirical cables discussed in the next scection.
They also claim that their result is a generalisation of Rall’s equivalent ¢ylinder to active
dendrites with tapering diameter profiles. It is in fact just an extension to Tuckwell’s
(unmecessarily rostrictive) variation on the equivalent cylinder result (Tuckwell, 1988a),
with an array of imposed unrealistic geometrical and elechrical conditions on the tree that

are cssential only in the non-linear case.

3.5 Empirical Cable Models

Empirical cables (type B) are built by marching along a dendritic trec in small steps, from
soma to tips, using some measure of electrotonic architecture to determine the step size in
each branch; at each step outwards from the soma, segments of tree are lumped together
by preserving surface area.

The original, and most commonly used, measure of step size is electrotonic length
(Clements and Redman, 1989; FFleshman et al, 1988). Burke (1997) refers to cables gen-
erated in this way as lambde cables. This approach automatically preserves surface area;

when drawn in electrotonic space, the soma-to-lip surlace area profile of the dendritic trec
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is identical to the original tree, as Figure 3.6 illustrates using an electrotonic dendrogram.
Burke (1997) has also used the “temporal delay for transient signals propagating outward
[rown the soma” and “outward steady-state attennation” (see also Agmon-Snir and Segev,
1993) to determine step size. The different cables, and original tree, generally have slightiy
different steady-state input conductances.

When compared to full branching multi-cylinder passive tree models of real motoneu-
rons (e.g. Burke ef al., 1994; Burke 1997), it has been found that these cables reproduce
a reasonably accurate transient voltage response (for late times, where the largest time
constants dominates) at the soma when it {the soma) is subject to an exogenous current
pulse, thus justifying their use in parameter estimation for (hese neurons.

There are no geometrical restrictions on trees that may be reduced using the empirical
constraction procedures, although their acceptability is in question when branches termi-
nate at distinctly different electrotonic lengths. Although it does not seem to have been
made explicit previously, all terminals must be agsumed scaled. This is essential, otherwise
the surface area need not be preserved. Recall that s cut terminal, for example, acts like
a sudden diamcter step to infinity. The important influence ol bhoundary conditions on
gquivalent cable structure, and in particular on what trec properties one can expect to be
preserved, becomes clearer in later chapters.

Brapirical cables are of practical use in parameter estimation (Rall ef al., 1992} and
because of their flexibility have replaced the restrictive equivalent cylinder; they have
also been nsed in computer simulations (Manor et al. 1991) to dynamically reduce trees
during compnter simulation to improve efficiency of calculations on tree segraents subject
to low activity. Hmpirical cables are olten more practical in these situations than fully
equivalent cables since they can be constructed and simulated very quickly, while producing
results of a suitable accuracy (Burke and Ogden, unpublished observationa). This can be
an important consideration when one runs repeated simulations with varying electrical
parameters, or if one ig repeatedly reducing and expanding portions of a btree during
simulation. It should be noted, however, that parameter estimation can be done using
the original tree model, and the only advantage an empirical equivalent cable model offers
is efficiency in construction and simulation. In fact, simplified “equivalent” tree models
(“cartoon representations”) have also been used (Stratford ct al., 1989).

The principles of parameter estimation are similar to those for the equivalent cylinder.
Experimentally recorded voltage transients arve analysed, allowing estimation of time con-
stants, specific electrical parameters, and elfective electrotonic lengths. Holmes and Rall
(1992a, 1992b} and Holmes ¢f af. (1992) discuss the problem of estimating electrotonic
Jeugth for trees where branches terminate st different electrotonic lengths. This problem

is also considered in Chapter 8, in light of fully equivalent cable resnults.
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An up-to-date exposition of cable theory lor parameter estimation, the underlying
assumptions, and the limitations of empirical cable models can be found in Rall et ol
(1992).

3.6 Fully Equivalent Cables

3.6.1 A Definition of Equivalence

Mathematically, equivalence is really about information preservation. For dendritic trees,
this involves retaining all information about clectrical activity and geometrical structure
at every point within the tree. The ability of the equivalent model to reproduce, exactly,
gomatic transienis generated by the full tree model, is a natural consequence of such
eguivalence, not the goal.

Two models of a dendrilic tree are equivalent provided there exists a transformation
that allows one to identify every possible configuration of electrical activity over one model
with a unique configuration over the other model. All geometrical and electro-chemical
information described by a tree model is preserved, in some form, in the cquivalent struc-
ture. Thus, all electrical phenomens permitted by the tree model must be reproducible,
in some form. in the equivalent structure.

Note the generality of this definition (this is, in part, optimism that the equivalent
cables of this thesis can be generalised to active models in some way); we do not restrict
ourselves to one dimensional cable models, linear or otherwise, nor do we insist equivalent,
structure is necessarily unbranched. The important point is that a bijective relationship
{an electrical mapping) can be ostablished between equivalent structures. Determining
whether or not this is possible for any pazticular model is the difficult part.

This definition of equivalence is certainly demanding and until Whitehead and Rosen-
berg (1993) introduced a new type of equivalent cable, full mathematical equivalence had
not been considered. Rather than attempting to satisfy this mwore abstract definition,
physical or somal equivalence has been the main concern. However, now these new cables
have been established, a range of new applications and insights follow dircctly from their
existence.

By giving the above definition of equivalence, there is no implication that structures
not meeting tts requirements arc not useful. Clearly this is not the case, given the success of
Rall’s equivalent cylinder and iis empirical extensions over the past three decades. Tt just
seems more natural that, since our analytical ool of choice is the language of mathematics,
when one talks of equivalence one should use the termy in its strict mathematical sense,
which brings with it notions of exactness, uniqueness, and completeness; the benefits of

doing so are many fold.
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Figure 3.7: Any point over a tree may be chosen as the origin, provided the appropriatc
conditions for transfoxmation to an equivalent cable are satisfied with respect to this point.
{a) A Rall tree is equivalent to & cylinder when the soma is chosen as origin; the terminal
condition is denoted T. (b) when a non-soma origin is chosen, the Rall conditions do not

hald and the tree is not equivalent to a cylinder.

3.6.2 The Cable Origin

An equivalent cable must be equivalent with respect to some reference point, referred to
here as the origin. In all previous cables, the origin has been taken as the point where
the dendritic tree copnects to ihe soma. The soma makes sense from a physiological point
of view as it the central region of the nceuron where dendritic trees exert their combined
influence, and where cxperimental access for parameter estimation is usually gained.

The nature of the ovigin boundary condition doesn’t affect the fully equivalent cable
construction process. This is mastly true of previous cable madels, though attenuation
and delay cables are cxeeptions since the nature of the soma influences the measure of
electrotonic architecturc. In previous cable models, any point on the dendritic tree could
have been chosen as origin, provided the appropriate geometrical and electrical conditions
hold with respect to this point. For example, given a point on a Rall tree, the tree viewed
[rom this point is not {(in general) an idealised Rall tree, thus not equivalent to a cylinder,
as Fignre 3.7 illustrates.

The main problem when moving to a non-soma origin i8 that the boundary condition
at the soma must now be accounted for in any cquivalent cable. For empirical cables, this
strictly means that an unrealistic sealed condition must be applied. A fully equivalent
cable can only be constructed for a non-soma origin provided a cut or general current
injection boundary condition is applied at the soma. Thus, the soma, is usually chosen as

origi.

3.6.3 Introduction to Fully Equivalent cables
The theoretical foundation of equivalent cable construction follows from passive linear

cable theory, as presented in Chapter 2. A dendritic trec is represented by the homogeneous
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multi-cylinder passive tree model. ‘To summarise, each cylinder, 7, is described by the
dimensionlesy cable squation

24y, .

F*v; Oy

952 Ot +’”j~9ﬁ, 0 <z <y, t >0, (3.25)

G

where v; is the membrane potential, 7; represents exogenous currents, ¢; is the c-value of
the cylinder, {; is ils length, and z and ¢ arc, respectively, electrotonic space and timc.
Specific electrical parameters gy, (membranc conductance per unit area), C'ys (membrane
capacitance per unit area) and p; (intracellular resistivity) are constant for the tree, and
so is (2.

Current conservation and voltage continuity conditions are irnposed where eylinders
meet, while current injection (specified potential gradient) or cut (zero potential} condi-
flone may be imposed at ferminals. Except for certain tree geometries, these are the only
non-origin boundary conditions valid for equivalent cable construction. (In certain special
cases, the cut boundary condition may be generalised to a non-zero voltage condifion, but
care must be taken when doing so. This usually involves a transformation of the potentials
in the cable equations.)

Construction procedurcs ensure that current is conserved and voltage is continuous
in an equivalent cable, and also ensure that any terminating dendritic sub-structure may
be transformed in isolation from the rest of the tree. The latter is essential for allowing
reduction of dendritic sub-trees. These elements of cable consiruction are made explicit
in the analylical theory given in Chapters 5, 6 and 7, but are implicit in the matrix
procedures of Chapter 4.

The fully equivalent cable is formed [rom passive dendritic cylinders, is generally non-
uniform and has total electrotonic length equal to the total electrotonic length of all
cylinders that form the original tree. 1t may consist of several disjoint sections, only one
of which, the connected section is attached to the origin; the remaining are disconnecied
sections, which are isolated from the origin, each end being properly terminated. Figuve 3.8
illustrates some simple artificial trees and their equivalent cables. Observe that electrotonic
lengths have been expressed as integral numbers of some basic length. The physical shape
of au equivalent cable section, ie. its length and diameter profile in physical space, is
completely independent of specific electrical paramelers p;, gar and Cis. In electrotonic '
space, a change in gps or p; for example, forces a corresponding change in the actual
electrotonic length. of each tree and cable cylinder. However the basic shape of the cable,
i.e. relative electrotonic lengths and actual diameters, is unchanged.

Coustruction procedures generate a bijective (thus invertible) electrical mapping that
identifies every configuration of electrical activity (transmembranc voltage distribution,

i.e. depolarisations and hyperpolarisations, and also applied currents) over the tree with a
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Figure 3.8: A selection of simple trees and their equivalent cables. Each tree-cable pair is

shown in both electrotonic and physical space. Electrotonic lengths are integral mulsiples
of some basic unit of electrotonic length. (a) A simple degenerate Y-junction with sealed
ends. (b) Another simple Y-junction with sealed ends, this time non-degenerate, with
significant length asymmetry. (c) A 2-order lree with sealed ends. Only one sub-tree is
degencrate. (d) a non-uniform Y-junction with one cut terminal. The equivaleni; cable
experiences a large increase in diameter (indicated by dotted lines).
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unique configuration over the cable, and vice versa. Denote the voltage mapping by My,

and fthe mapping that relates applied currents by My, thus
ve = My (vr) and  vp = M (ve), (3.26)

ic = Miip) and  ip = M;Yig), (3.27)

where vg and v are vectors of cylimder potentials and i¢ and 4 are vectors of cylinder
applicd currents for the entive tree and ecable respectively. Mappings My and M; arc
intimately linked. By reducing trees to equivalent cables, physical complexity is simply
traded for complexity in the electrical mapping. Generally, electrical activily al one point
in the free is mapped to activity at many points on the cable, and vice versa.

Like the cable shape, the electrical mapping is independent of the specific whole-
cell electrical parameters representative of the passive model — it always maps between
the same physical points on tree and calile, while between the same relative points in
electrotonic space; a cable can be constructed just by knowing the physical lenglhs and
diameters of the tree cylinders. Altering electrical parameters merely requires a rescaling
of the cable’s electrotonic length and/or the membrane time constant.

Cable diameter profiles are typically discontinuous, which is inevitable for trees which

do not satisfy Rall's 3/2 power law for impedance malching at branch points,

3.6.4 EIEquivalent Cables for Basic Branching Structure

I"ully equivalent cables are best understood by considering initially the basic unit of branch-
ing structure, the general Y-junclion (Figure 3.9a), comprising two limbs, with arbitrary
lengths and diameter profiles, that meet at a branch point and satisfy appropriate hound-
ary conditions at their respective terminals.

The equivalent cable for a general Y-junction containg a connected section plus at most
one disconnected scction. A Y-junction iy classified as degenerate if its cable contains a
disconnected scction, otherwise it is non-degenerate. Figures 3.9b,c illustrate the two types

schematically.

The Connected Section

The connected scetion always defines, via the electrical mappings M, Yand M 2 ! electrical
activity over the Y-junction that will influence the membrane potential at the branch point
and in attached structure.

For example, a positive input current at some point along the connected section will
be meapped (M, Y to a distribution of input currents over the Y-junction Hmbs that, as

far as the branch peint and attached sfructure is concerned, acts like a single focussed
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Figure 3.9: The general Y-junction and its equivalent cable. (a) Y-junctions are either non-
degenerate or degenerate. {(b) Non-depenerate trees are transformed to an equivalent cable
consisting ol just a connccted section. (¢) degenerate trees are transformed to equivalent

cables with a connected section plus a single disconnecied section.

mput on an unbranched structure. 1I'he mapped activity may be a mixture of positive and
negative inputs. Similarly, a depolarisation over the connecied section will be mapped
(My1) to a distribution of depolarisation and/or hyperpolarisation over the tree that
will disperse passively producing the same effect at the branch point and in attached
structure. A non-zero configuration of activity on a connected section must exert some
influence on the electrical activity in structure connected to the Y-junction. The actual
stremgth and shape of the voltage response at the branch point will, of conrse, depend
on trec structure, boundary conditions and specific electrical pavametors. Figure 3.10a,
illustrates the mapping of a current input from a Y-junction to ils connected section.

As one moves along the connected section, from the cylinder that is attached o the
origin (juuction), to the final terminal cylinder, the corresponding electrical mappings
define configurations of electrical activity over the tree that produce weaker and more
graded responses at the origin (assuming the same current is injected as onc moves from
cylinder to cylinder}).

Taking a diflerenl point of view, another aspect of connected section activity can be
understood. Suppose that there is no aclivily initiated in the Y-junction itself, but it is
still influenced by activity initiated in the structure to which it is connected, i.¢c. axial

charge dispersal induces voltage changes in the Y-junction. This V-junction activity, when




mapped to the cable, must be represented only in the connected section since the two are
electrically identical with respect to the branch point. "Chis activity cannot infiuence any
disconneeted section since it is not attached to the branch point. Basically, the connected
section can be used to define the Y-junction voitage distributions that can be induced by

activity in structure connected to the Y-junction.

The Disconnected Section

Over a degenerate Y-junction, many dilferent configurations of electrical activity can exert
the same influence on the membrane potential at the branch point, or in tree structure
to which the Y-junction is sttached. A disconnected section defines, via Mr;l and M}'l,
configurations of electrical activity that interact entirely locally, within the Y-junction,
independent of the tree structure vo which it is attached. For example, a configuration of
current inputs over the disconnected section is mapped (M, Y to enrrent inputs over the
Y-junction limbs which cxcrt absolutely no influence on the potential af the branch point
and in attached tree structure. Apain, a similar effect s observed if one maps (IVI‘?I) a
distribution of depolarisation and hyperpolarisation over the disconnected section. The
corresponding distribution of depolarisation and hyperpolarisation over the Y-junction
will decay passively in a way that generates no effect at the branch point and in attached

structure. Figure 3.10b illustrates a mapping between a disconnected section and a Y-

Jjunction.

Now consider electrical activity mapped from both connected and disconnected sec-
tions. Suppose an arbitrary set of input currents were simultaneously applied over the
Y-junction, giving risc to a voltage transient at the Y-junction branch point. Il the same
configuration is re-applied, together with inputs mapped to the Y-junction from its dis-
connected scction (not necessarily simultaneously), exactly the same response is observed
— hence the degeneracy. Fignre 3.10c¢ illustrates the mappings from Figures 3.10a and
3.10b combined.

Disconnected sections are not uncommeon; relative clectrotonic lengths of Y-junction
lunbs and their terminal boundary condition types are the primary determinants of Y-
junction degencracy, end also dominate in determining the fine structure of the cable
sections. 1'he analytical results of Chapters 6 and 7 show how degeneracy can be predicted.
Approximate degeneracy is also a valid concept and will be discussed later. As structure
becomes more complicated, the boundaries between exact degeneracy and approximate
degeneracy become more blurred, especially when one considers real newron morpholopical

data, and the inherent uncertainty associated with it.
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Figure 3.10: Mapping electrical activity between a dendritic tree and its fully equivalent
cable. (a) Mapping electrical activity from a connected section. (b) Mapping electrical
activity from a disconnecied scetion to the original Y-junction gives a distribution of tree
activity that has no effect outside the two limbs. (¢} Map both previous {ree inpuls, and

the same response is observed as for input distribution (a).
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Figure 3.11: Passive coincidence detection in dendritic trees, The voltage response due to
two subsets of tree activity mapped from a disconnecied section. (a) Mapping electrical
activity from a disconnecied seetion to the original Y-junction gives a distribution of tree
activity that has no effect outside the two limbs. (b), (¢) Subsets of this activity will

influence membrane outside the Y-junction, but not when applied simultaneously.

Coincidence Detection in a Y-junction

Implicit in the existence of disconnected sectiong is a mechanism for comcidence detection
in pasgive {rees. Activity mapped from a disconnected section to degenerate Y-junction
can be divided into a number of subsets of activity, each of which could be activaied by
a separate source. If these subsets are aclivated simultaneously in the Y-junction, then
their influence on attached structurc is rendered ineffective. If applied asynchronously,
the delay between subset activation would determine the strengih of the influence of Y-
Jjunction activity.

Taking the mapped disconnected gection activity from Figures 3.10, Figures 3.11c,d
illnstrates the voltage disturbance due to two subsets of the activity. If hoth configurations
ave applied coincidentally, no voltage disturbance is observed, Figure 3.11(a).

A degenerate Y-junciion can thus act as a passive cotncidence detector for many differ-
cnt subscts of activity, all defined by activity mapped from the disconnected section, which
in furn is determined entirely by tree geometry and is independent of specific electrical
parvameters of the modcl. ,

The role of neurons as coincidence detectors has often been discussed {e.g. Abeles,
1982; Softky and Koch, 1994; Softky, 1993), but usnally in terms of coincident activity
increasing chances of the neuron generating an output, and not ag a local operation that

is a consequence of tree geometry.
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General Properties of Y-junction Bquivalent Cables

It is usetul to summarise properties exhibited by the fully cquivalent cables of general Y-
junctions. Many of these featnre wili be explained in more detail in later chapiers, either
through mathematical or physical arguments, or both. Where we mention sealed end
boundary conditions, the result is equally relevant for the more general current injection

boundary condition.

e Total clectrotonic length is preserved — the total electrotonic of all cable sections
equals the combined electrotonic length of the Y-junction limbs. A (electrotonic)

Iength-preserving transform is essential for the existence of a bijective mapping.
s The equivalent cable conlains at most onc discomnected section.

¢ Only Y-junction structure up to distance x from the branch point origin influences
cable structure up to distance ¢ from the origin. Thus if two Y-junctions have
identical structure up to distance o from the origin, then so will their connected
sections. If ¢ is preater than the maximum origin-to-tip electrotonic lengih then the

whole Y-junction influences the cable structure at this point.

» A comnected section is at least as long as the longest Y-junction lirnb; consequently,
a disconnected section is never longer than the connceted section. Only in special
cases (Rall Y-junctions, a slight generalisation, and a few other exceptions) will

connected and disconnected sections be the same length.

e [For both degenerate and non-degenerate Y-junetions, if both limbs are sealed then
the connected section is sealed. If either limb is cut then the connected section is

cut.

e For degenerate Y-junctions, the equivalent cable’s disconnected section has at least
one cut terminal. If both Y-junction limbs are sealed, so is the second disconnected
section terminal. 1f one Y-junction terminal is cut while the other is sealed, the dis-
connected section is cut at one end and sealed at the other. If both Y-junction imbs
are cut, so arc both the disconnected section terminals. There is thus a conservation

of sealed terminals for degenerate Y-junctions.

» Steady-state input conductance of the connecled secltion equals the steady-state

input conductance of the original Y-junction (with respect to the origin).

s Provided both terminals are sealed, counected section surface area equals tree surtace
arca. Also, the total exogenous current injected into the connected section equals

the total mapped exogenous cwrrent injected into the Y-junction, and vice versa.
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Figure 3.12: The Y-junction by Y-junclion reduction of a dendritic tree to its fully equiva-
lent cable. {(a) A complex tree is reduced to its equivalent cable Y-junction by Y-junction;
branch points are labelled (A)—(E). (b) The equivalent cables [or each sub-tree marked by
braneh points {A) {E). Disconnected sections associated with a specific free are labelled
with the same letter as the corresponding branch point. The fine structure of diameter
profiles 18 not illustrated.

Note that a disconnected section may be regarded as an cxtension of the connected sec-
tion. The two sections can be joined at their common boundary condition. From the point
of view of the connected section, however, the disconnected sections cHective diameier is

either zero or infinity (depending on the connected scetion’s terminal condition),

3.6.5 Complicated Branching Structure

The results and concepts described above for the general Y-junction extend naturally to
trees that exhibit higher orders of branching. The iree is collapsed, Y-junction by Y-
junction, removing branch points by successive reductions until the Tully equivalent cable
for the whole tree is obtained. Fach Y-junction is either degenerate or non-degencrate (in
which case it may be approximately degeneratc — sce below). A sub-tree may thus be
classified as degencrate if any degencrate Y-junctions are cncountercd during its collapse.
Initially, cable sections are associated with distal Y-junctions and define configurations of
eleclrical activity over reasonable small, localised regions of a tree. As more structure of
a complicated tree is transformed, cable seciions are associated with activity distributed
over wider regions of the tree — disconnected sections associated with larger sub-trecs will
define ineflective {(at the soma) elecirical activity over significant portions of the tree.

Coinciding activity in one degenerale sub-tree emphasizes Lhe influence of activity in
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the rest of the tree simply by removing the combined effect of a number of inputs. Figure
3.12 illustrates (without fine structural detail) a tree with just five branch points, and
the fully equivalent cubles associated with the sub-iree at each branch point. Differing
geometries will exhibit different levels of degenevacy and different electrical mapupings,
and thus varying local processing capability. The complexity of the electrical mapping
associated with a disconnected secltion will depend on the complexity of the Y-junction.

This notion of local signal processing — as geometry determined coincident activity
associated with specilic sub-structure — contrasts with other definitions (Koch et al,
1982; Woolf et al 1991) in which dendritic sub-units arc physical regions that are elec-
trically isclated from the soma, according to some subjective measure of isolation based
on voltage attenuation between points. However, these sub-units are insensitive ¢o subtle
morphological features, and dependent on specific electrical parameters — change g, for
example, and the whole sub-unit structure may change.

Disconnected sections could be regarded as alternative, robust, and well-defined electri-
cal sub-units that are independent of specific clectrical parameters and determined eutirely
by geometry.

The results specific to each Y-junction listed above are either immediately valid for

the general tree or can be extended naturally.

e "Lotal clectrotonic length is proscrved

» The equivalent cable contains no more disconnected sections than the total mumber

of Y-junctions that must be transformed to generate it.

o Only trce structure up to distance x from the branch point origin influences cable
structure up to distance = from the origin. Thus if two trees have identical structure
up to distance a from the origin, then so will their connected sections; if o is greater
than the maximmm origin-to-tip electrotonic length then the whole tree influences

the cable structure,

s Jf all tree terminals ave sealed then so is the connected section texminal. If one or

more terminals is cut, so is the connected section terminal.

e Steady-state input conductance of the connected section equals the steady-state

input conductance of the original tree.

e Provided all terminals are sealed (or of general injected current type), connectled sec-
tion surface area equals tree surface area. Also, the total exogenous current injected
into the connected section cquals the total mapped exogenaus current injected into
the tree.
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Figure 3.13: Equivalent cable structure is robust. 1 — deviations from completely symn-

metric sealed Rall Y-junction. The length of ane limb is extended by the specified amount.

3.6.6 Iquivalent Cable Structure is Robust

The discussion so far has concentrated on cables that have been constructed exactly, i.e.
with algebraic preeision. While equivalent cable construction procedures can be performed
algebraically, computer implementations arc the only practical approach in general, and
there will be error associated with round-off effects, in addition to any uncertainty in
measurements of the original tree data. However, equivalent cables, in particnlar their
disconneeted sections and electrical mappings, are quite robust objects, dominated by
electrotonic tree symmetries (most of which are not obvious) which permit the introduction
of the concept of approrimate degeneracy.

When moving from a continuous real dendritic tree Lo an abstract multi-cylinder repre-
gentation, one automatically imposes dimensional constraints — if the difference between
two diameters is below a prescribed bound, they arve essentially identical in the avail-
able model representation. Narrow cable sections within this bound can be regarded as
easentially disconnected.

While exact degeneracy of a tree may disappear and reappear as one moves between
slightly different model representations of the same tree data, the overall propertics of the
cable and electrical mapping do not change significantly.

Suppose both limbs of a degenerate Y-junction have sealed terminals. The connected
sechion terminates with a sealed terminal, while the disconnected section has one sealed and
one cub terminal. One can think of the disconnected section asg atfached to the connected
section by joining Lhe two sealed terminals. The disconnected section is essentially aun
extension, with zero diameter, to the connected section (though the disconnected section

way have its own. fine structure of cylinders). If the electrotonic length of one Y-junction
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limb is now altered very slightly so that the new Y-junction is non-degencrate, then the
equivalent cable is very similar to that previously, except that the structure at the end of
the connected section narrows very rapidly, rather completely disconnecting immediately.
The effect of clectrical activity on such narrow sections is negligible at the soma compared
to similar activity on other segments. One can make a rough measure of the significance
of the change in tree structure by noting whether the change in surface area due (o the
change in brauch length is much less than the total surface arca of the Y-junction.

Consider the simple Rall Y-junction. The equivalent cable is shown in Figure 3.13. In
electrotonic space the disconnected section is drawn as a thin extension to the equivalent
cylinder, while in physical spacc it disappears (since finite zero diameter electrotonic length
equal zero physical length). Also illustrated are the equivalent cables for trvees which
deviate [roin the ideal Rall situation. The electrotonic length of one branch is increascd
by 2%, 10% and 20%, showing how the cable structure very gradually shitts from the
Rall case. At 2% deviation, the cable rapidly shrinks to very small diameters. There is
very little change in overall cable structure Lhowever, with the extra surface area being
accounted for in a negligible extension to the cable. ‘The narrow section is essentially
disconnected. The electrical mapping will have changed very slightly, but the slrongest
components form a mapping that is practically identical to that from the disconnected
sectiom.

A similar argument can be made for depencrale trees where the connected seclion
terminates with a cut terminal. Again, the disconnccted section can be regarded as at-
lached to the connected section, except this tiine it represents an extension of infinite
diameter. A slight alteration in the length of a Y-junction limb can be made so that a
non-degenerate tree is produced. The counected section, vather than terminating early as
before, will suddenly jump in diameter by an extreme amount. The increase in diameter
is large enough to be regarded as approximate cut end, and the tree can be regarded as
approximately degenerate.

Pigure 3.14 llustrates this for the Rall Y-junction, again, this time for 2% and 20%
deviatious [rom the Rall situation. At 2% deviation, the jump is particularly massive,

with the cable having a correspondingly huge physical length (indicated by arrows).

3.6.7 Trees With Identical Connected Sections

Once a tree has been reduced to ifis fully equivalent cable, the connected gection’s suitabil-
ity as a kool for comparing and classifving passive trees becomes apparent. Consider the
two trees illustrated in Figures 3.15a-h. Despite their obviously dissimilar morphologies,
their fully equivalent cables {¢) have identical connected sections. The two frees therefore

have identical global properties (the soma cannot distinguish them), but different local
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Figure 3.14: Equivalent cable structure is robust. 2 — deviations from cut Rall Y-junction.

Figure 3.15: Identical fully equivalent cable connected sections implies electrical équiva~
lence, with respect to the soma, of different trees. Two trees (a) and (b) have the same
equivalent cable connected section (c¢), and thus global passive properties. Trce {a) has

three exactly disconnected sections, while tree (b) has one. The tree has different local

processing properiies.
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properties. A configuration of electrical activity over tree (a) may be mapped to its equiv-
alenl cable. Activity on free (a) that will not influence the response at the soma can he
mapped from cable (a)’s disconnected sections. Now map the conmected section activity
to tree (b) — the same response will still be obscerved. Again, tree (b)’s activiiy can be
modified without effect on the soma by mapping any activity from tree (b)’s disconnected
sections. Thus we can define, exhaustively, all configurations of activity on tree (a) and
tree (b) that give the same response at the soma.

If two equivaleni t(rees both have no disconnected sections, there is a unique configu-

ration of activily on each tree that gencrates any specific response.

3.6.8 Methods of Construction

There are three methods described in this thesis for constructing lully equivalent cables for
trees of arbitrary multi-segment geometry: two matrix procedures (Lanczos and IHouse-
holder) are given in Chapter 4, and onc analytical procedure is given in Chapter 6. Chapter
7 gives the opfimal method for transforming simple Y-junctions.

Tor the Lanczos and Householder procedures, discretised cable equations are used to
formulate a matrix representation of a dendritic tree (Whitehead and Rosenberg, 1993;
Ogden ef of., 1997: Ogden et ol 1999; Lindsay el of., in press), to implement what is
essentially & algebraic transform (there is no discretisation error in the matrix procedures).
Degeneracy of a Y-junction corresponds to depeneracy in the eigenvalues of the tree matrix.
The analy tical procednre follows from the theoretical basis of cable construction. The three
procedures are inbimnately linked, and gonerate the same fully equivalent cable (within
the bounds of numerical error when implemented on computer), The electrical mapping
is discrete for the mairix procedure, but continuous for the analytical procedurc. The
continuous mapping can be inferred from the discrete mappivg given an understanding of
the analytical constriciion procedure.

The analytical theory presented in Chapter 6 provides most ingight into why the cables
can be constructed. It also allows one to predict exactly which general Y-junclions will
be degencrate. The branch-shifting construction process developed in Chapter 7 can be
used to {ransform simple Y-junctions, and this approach provides very useful insight into
how tree lengths and boundary conditions shape equivalent cable fine structure and the

clectrical mapping.

3.6.9 Construction and Pre-programming of Artificial Dendritic Trees

One possible future application of the fully equivalent cable mode! is in the construction,

in software, or possibly even in hardware, of nelworks of neurons with passive trees that
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perform complicated signal processing operations controlled by coincidence detection of
characteristic input configurations. It is straightlorward to choose degenerate tree geotn-
etry so that certain activity mapped from a disconnected section consists of any specified
aumber (greater than two) of significant inputs over the tree. The usefillness of the passive

tree as a form of programmable analogue processing element needs further invessigation.

3.7 Discussion

Simulation of biophysically detailed model neurons can give great insight into the electro-
chemical processes that underlie locally observed phenomena associated with a series of
inler-related conduelance changes, but are less practical as a tool for investigating the
influence of complicated geometry, given the vast number of possible configurations of
activity. Dven passive structures have been poorly understood in this regard, as the
results presented in this thesis show.

If one regards the previous quasi-equivalent cable models as representing degrees of
equivalence, then they are, in one way or another, certainly less cquivalent than fully
equivalent cables (it is difficult to decide how onc would organisc previous cables in order
of increasing equivalence, however). In a mathematical sense they are not equivalent at
all.

For the limited geometrical structure for which it is valid, a Rall tree and its equivalent
cylinder are identical electrical loads. A mapping relates tree activity to cylinder activity,
but the mapping is not unique. As was shown, a disconnected section 18 required o
complete the eyunivalent structure, The equivalent cylinder represents a very restriched
subset of equivalent cables, with the soma taken as origin, and disconnected sections (of
which there will be at least one) ignored. In fact the number of disconnected sections,
as well as their electrotonic length, is very much dependent upon a Rall tree’s branching
structurc. In addition to being unphysiological, the continuous tapering extensions to
Rall’s result suffer most of the limitations of the original equivalent cylinder. Interestingly,
of all the previous modsls, the empirical cables could be regarded as the least equivalent,
yet they have proven the most practical in application. There is no electrical mapping,
just a rclationship between somatic voltage responses for the tree and cable model that is
generally approximate,

In principle, fully equivalent cables can replace previous models in all capacities in
which they are used. In practice, computational considerations mean this is not always
worthwhile. The ncw cables have many applications beyond this, however, and this is their
strength. Previonsly unknown features of passive dendritic trees have been revealed, with

significant insights gained concerning local and global processing capabilities of passive
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trees. More detailed discussion of equivalent cable fine structure, and general implications
of the equivalent cable result, is included in Chapter 8.

In the rest of this thesis, the terms “cable” and “equivalent cablc” are gencrally em-

ployed as shorthand meanings for “fully equivalent cable”.
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Chapter 4

Matrix Methods for Constructing
Fully Equivalent Cables

4.1 Introduction

IT the physical and electrical structure of a passive dendritic tree model is cxpressed in a
suitable mairix form, its equivalent cable can be constructed nsing matrix transformation
procedures. In this chapter discretised cable equations are derived from the dimensionless
linear cable equation. They can be collected together to form a matriz cguetion. The
number of discrete cable equations required to represent a tree depends on its geometry,
terminal boundary conditions, and the degree of accuracy required in the model. The
accuracy is embodied in the basic electrotonic length, of which all cylinder lengths are
an integral multiple, as discussed in section 2.5.2. The primary component of the matrix
representation is the tree matriz, denoted Ap, which exhibits significant and exploitable
structural features.

The equivalent cable construction process involves three stages: the tree matrix must
first be syminetrised, the symmetric matrix then iri-diagonalised, and finally the tri-
diagonal matrix must be de-symumetrised. Each step must be carried out, using gimilarity
lranglormations, in a way that preserves cssential matrix structure. In practice, this
determinesg the specific tri-diagonalisation algorithms that may be employed in the second
stage. The symmetrisation and de-symmetrisation transformations are independent of
the tri-diagonalisation algorithm and critically dependent ou the nature of discrete cable
equations. In fact, the matrix structure conveniently lends itself to the eificient application
of each transformation.

Two methods of tri-diagonalisation, namely Lencsos iri-diagonalisation and House-

holder tri-diagonalisation have Leeu found suitable, but there may be others. The two
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algorithms both work effectively, although their nnmerical nature limits any insight they
may give into the biophysics underlying the cable construction process. The analytical
rules of Chapters 5, 6 and 7 are much more revealing.

Both T:anczos and Householder procedures are presented in this chapter. The Lanczos
method was introduced by Whitehead and Rosenberg (1993), and full details, extended to
Incorporate exogenous applied currents, have subsequentlty been given by Ogden, Rosen-
berg and Whitehead (1999). 'The Householder method was originally illuslrated by Ogden,
Lindsay and Rosenberg (1997), with full details given in Lindsay et al. (in press).

Although the algorithms central to the matrix methods are commonly employed in
numerical computation applications (see Golub and Van Loan, 1990, for an overview of
the Houscholder and Lanczos methods), it should be noted that the matrix formalism and
the reduction procedures implement the appropriate algebraic operations with no discreti-
sation etror; performed algebraically, they will yield the same results as the analytical
algorithm presented in Chapter 6 ~- the linear mapping between tree and cable is essen-
tially identical in each case. For the purposes of equivalent cable construction {(though not
numerical simulation), the tree matrix is an exact representation of the physical structure
of the passive tree model. Standard results that follow from the analytical method allow
one to predict the number of cable sections, their length, and whether or not a discon-
nected section is associated with any particular sub-tree. Matrix procedures' will generate
the same connected and disconnected sections, but without any guidance as to what to
expect.

Technicalities of implementing the algorithms in a compuier program are also dis-
cussed. Agpects such as storage, speed, and numerical stability are briefly covered. Practi-
cal computer algorithms are given, and the mechanics of the matrix methods are illustrated

nsing simple algebraic examples.

4.2 The Mairix Representation of a Dendritic Tree

We now develop a set of discretised cable equations that describe branching dendritic
structure in terms of electrical activity at a sct of spatially distributed points over the
tree. The objective is to form a matrix equation of the forin

?—i? = Av + g, (4.1}

where v and g are vectors describing potentials and applied currents at points over the

trce, and A is a matrix determived by the spatial structure of the trec.

YWhen implernented computationally {essential for any dendritic tree other than the simplest singly
branched structures or those with high levels of electrotonic syrumetry), the Lanczos and Householder

procedures exhibit markedly different nwinerical properties.
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4.2.1 Discretisation Nodes and Terminology

Recall that, for the purpose of equivalent cable construction, all cylinder electrotouic
lengths must be integral multiples of some basic, or quantum, electrotonic length, here
denoted H. Suppose a tree is represented, to arbitrary accuracy, by »n cylinders. In terms
of II, the length of cylinder § is k;H, where the integers k|, kg, ..., k, have no common
factor. A tree can be rcpresented by a number of nodes by subdividing the quantum

length into z intervals of length i, so that
o = zh. (4.2)

Nodes are antomatically placed at cach end of a cylinder to cmphasize points of disconti-
nuity, and internally so that the internodal electrotonic length is always k and the distance
spanncd by z+4 1 nodes i3 .

A node is connected fo its nearest neighbouring node(s) and twa connected nodes are
always located on the same cylinder (though are not necessarily unique o that cylinder).
A node common to multiple cylinders is referved to as a shared node, for example a branch
point or diaxeter step; a node connceted to two other nodes in the same cylinder is called
(and must be) an iniernal node; a terminal node is connected to cxactly one other node.
‘T'here is one node that descrves special treatment, uvamely the soma node which marks
the soma-lo-tree connection point. It is useful (and essential in light of the tree matrix
structure) to regard this node as a terminal node, yet it may also be shared between the
trunk cylinders of several dendrites (consider multiple dendritic trees connected to a single
soma treated as a point-like structure). The possibility of a shared soma node is discussed
briefly, and the appropriate discrete cable equation is given?.

A multi-cylinder tree model will be discretised by a minimal number of nodes when
H = h (# = 1, L.e. two nodes spanning cach quantum length). However, when this level
of discretisation is used, ambiguities can arise concerning the correct interpretation of an
equivaleni cable from the mairix representation that iz eventually generated. Situations
can arise where Lhere are not enough nodes to adequately describe cable structure in terms
of finite difference equations. An internal node is really required to properly convey the
existence of a cable. Without one, any equation, not just the cable equation, could be
operating in the cylinder.

fu anticipation of this, a finer discretisation will be required, with each length I
represented by at least three nodes so that z > 2. This guarantees the existence of an

internal node for even the shortest possible cylinder. We rely on the fact thai if the

*While it is nseful ta know that such a configuration is valid, such steuctures don’t provide any additional
insight when deriving and illustrating the construction procedures, which can naturally accommaodate any

terminal! node provided boundary conditions are suitable.

100




dendritic cylinders have a common basic unit of length H = zh, then the same must be
true of the equivalent cable cylinders. This [ach is clearer from the analytical construction
procedure in Chapter 6. When moving, for example, from H = h to H = 2h in the same
multi-cylinder dendritic tree, no new structure is represented by the the extra nodes, and
consequently no new structure will appear in the equivalent cable — each cable cylinder ig
also guaranteed af least one internal node. Figure 4.1 illustrates the discretisalion scheme
for 2 =1 and z = 2 on the same tree model.

Since the discretisation is merely a tool for describing an algebraic transformation of
the tree model, different discretisation levels (different 2} on the same tree will only in-
fluence round-off error in a computational implementation. If intended solely for cable
construction purposes, there is no error associated with the discretisation itself. A dis-
cretisalion level of z = 2 is therelore oplimal. The mabrix construction procedures only
generate a discontinuous electrical mapping, from dendritic tree nodes to equivalent cable
nodes. However, provided z > 2, it is possible to infer a continuous mapping® from the
discrete one, though this requires some knowledge of the analytical methodology given in
Chapter 6.

Node Numbering

The discretisation nodes must now be numbered. Any well-ordered numbering system may
be used, however the scheme outlined next will be nsed in examples. This scheme simplifies
the matrix representation of the tree and thc equivalent cable construction process (as
well as the description of it), and thus is implemented both for reasons of efficiency and
of clarity. (The compustational advantages of careful branch numbering are already well
established in compartmental modelling, e.g. Hines, 1984.)

Node “0" will always mark the tree-to-soma connection point. Each cylinder has a
node nearest the soma (its prozimel or neer-end node) and a node furthest from the soma
(distal or fer-end made). Tt is an inevitable consequence of branching structure that if
a node, n say, is common to more than twoe cylinders (e.g. a binary branch point) then
it 1s impossible to guaraniee consecutive numbering of the nodes on each cylinder that
shares node n. Ilowever it is certainly possible to number, consecutively and increasing
away from the soma, all nodes on a cylinder ezcept the one closest to the soma. So, node
numbers increase from near-end node to far-end node, except where a node has already
been numbered (this may occur at a branch point) or must not be numbered {a cut end

terminal, since, as will be seen later, nodes where the potential is known need not be

It is practical in many situations to use z = 1 and generate the correel cable structure, however the
corresponding discrete electrical mapping does nat provide enough information to infer the continuous

mapping.
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IMgure 4.1: Discretisation of a dendritic tree. All nodes are equally spaced {electrotoni-
cally). Node numbering starts from 0 at the soma. The node at the cut terminal is not

numbered. (A) discretisation level z = 1; (B) discretisation level z = 2.
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represcented).

Step through the individual cylinders in the following manner, starting with the cylin-
der {or one of the cylinders) that is (are) connected to the cell bady. Once the nodes of a
cylinder have been numbered, examine the tree structure at the far end. If any cylinders
connect, choose one and continue the numbering. If none connect, step back through the
cylinders that have already beenr numbered (in reverse order) until a cylinder is found that
conneets at its far end to an as yet unnumbered cylinder or group of cylinders — now
choose one of these eylinder to continue the numbering. The numbering is complete when
no cylinders with unnumbered nodes can be found.

Figure 4.1 illustrates a simple discretised tree, and some of the terminology introduced
above. Note that a tree terminal which has been assigned a cut end boundary condifion
is represented by an unnumbered node gince cut ends are not incorporated directly info

the matrix vepresentation. This is clarified later.

4.2.2 Discrete Cable Equations

Once a tree has been discretised, only the physical structure and electrical activity at
nodes is of concern. A discrete cable equation can be associated with each numbered tree
node, its complexity depending on tree structure at that node. Construction of eguivalent
cables is time-independent,

Start with the dimensionless cable equation for uniform passive cylinder 7, as derived

in Chapter 2,
oz, t) vl 1)

) - Qéj(mat)

Frommiais vk CHEN o 0 << (4.3)
Axial current is givon by
du;(w, !
ta,i(Z, 1) = —ch—%—). (4.4)

Finite Difference Formulae

Now consider how the continuous spatial derivatives are approximated in a discrete system.

The forward and backward ‘Laylor serics for a sufficiently differentiable function f of 2 are

2 3 )
Flo ) = £(0) + @) + (@) + T ) + oY (45)
and
. ton o P2 e R 4
Jlw =) = f(z) - hf'{z)+ x4 () — & (=) + O(%). (4.6)

Here O(h®) represenls terms involving the ¢*, and higher, powers of of h. It can be

defined properly by
C{h)

he

0< ‘ < B. (4.7)
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Basically, we can find a finite value 23, independent of @, that can be used to define an
upper bound for the additional terms.
Using these expansions, it is stple to obtain expressions for f'(x) and f”(z) which
are correclt (o second order in A,
fl@+h)— flz—h)

filz) = 5 + O(h?), (4.8)

flz+h) —2f(z)+ f(e—h)
hZ

()

+ O(R%). (4.9)

These are the cenitral difference approzirations for first and second order derivatives.

Internal Nodes

Denote the transmembrane potential at node n by w,(t). Since the potential is continuous
(as is jts time derivative), this is well defined (as is dv,/dt), whatever the {ree structure
al node n.

Consider first the internal node n connected to node p (nearer the soma) and node ¢
(further from the soma)}. Using the given numbering scheme, p < » < g and in fact ¢ =
714 1. The second order spatial derivative of the potential at node n can be approximated,

using (4.9), as
agvn 'Up - 21)11 + 'va

G = T HOR). (4.10)

Substituting this for the second order derivative in the cable equation for cylinder 7 (4.3)

vields, afler a slight rearrangement,
UP - 2‘0” + vq d’b‘g;, '\J: .
TgET TV T %, (4.11)
correct to O(h?), where in(t) = 1j{node n, ¢}, the applied electrotonic current density at
node n (it will soon be shown how the discrete current density relates to an actnal applied
current at the node). This is the discrete ceble equation for internal node n. Note that
the time-dependence of the potentials and applied currents has been suppressed.
Since each cable equation only describes electrical activity within a uniforie dendritic
segment, a direct substitution of the finite difference for the second order derivative can
only be performed where n is an internal node. Greater care must be taken when treating -

shared nodes.

The Potential Gradient at Shared and Terminal Nodes

Changes in dendritic structure must be taken into account when constructing discrete cable

equations for shared nodes that link two (diameter step), three (binary branch point) or
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more (general branch point) cylinders, and also lerminal nodes connected to only one
other node. These changoes are embodied in the terminal and joining boundary conditions.

Iu order to deal with the boundary conditions, we require an expression for the voltage
gradieut in terms of nodes that all lic on the same cylinder. There are several ways this
may be done, yielding expressions correct to differing orders of h. The approach used
here, which involves introducing “virtual” nodes, and subsequently removing them, gives
an cxpression saitable for equivalent cable construction.

'The first derivative of the potential at node n is, from the finite difference formula
(4.8), )

%% =2 5 h”” + O(h2). (4.12)
Unfortunately, n could be connected to any number of nodes, so nodes ¢ and p don’t have
an immediate interpretation.

It is necessary to introduce some additional notation when dealing with voltage gradi-
ents becanse they may be discontinuous. If » is a shared node, for example, the gradient
may take different values depending on the cylinder under consideration. The electrotonic
space derivative of the potential at node n, in cylinder 7, is therefore written as

Avy, (t) _ v (z,t)
Oz ar

(4.13)

node n.
Basically, node 7 is approached from a point on cylinder j.

There are two situations to be considered. Firstly, suppose node n is shared, and an
expression is sought that involves only node 7 and those closer to the soma but also on
the same cylinder. Equations (4.11) and (4.12) can be rearranged to give

dv,
ot

._;2

—up+ (12 + D v+ ORY, vy =uy+ 2&%'"51 + OR®). (4.14)

Yq
The applied current at node n has been set to zero and will be dealt with explicitly Iater.
Here, node ¢ is fictitious, an imaginary extension of the cylinder, 5, on which nodes p and
. lig, such that the differential equations are still valid. It can now be eliminated simply
by equating the two forms of vy, yielding an cxpression for the potential gradient that is
independent of structure beyond node n,

2 Oy, d'un 2 2 |
??.— a:; = dt - (1 -+ hz) - ﬁ'ﬂp -+ O(h). (415}

Similarly, it we want an expression for the potential gradient at node n, but this time

in terms of naodes n and ¢ on cylinder &, then node p can be eliminated to give

200, _ _dug (1 + ;2) Uy + },)?)q + Q(h). {(4.16)

h 8z i
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Note that equations (4.15} and (4.16) differ only in the direction electrotonic distance
x is measured, towards or away from n (i.e. replace z with -2 in one equation to get
the other). They are also correct ouly to O(h), whick is acceptable (in fact desirable,
because these expressions have the exact form we want for the tree matrix representation)

for equivalent cable consiruction, but may not be ideal for numerical simulation purposes.

Shared Node at a General Branch Point

Voltage continuity at a branch point node is already guaranteed by the discrete model.
By imposing conservation of axial and applied currents we may liuk cylinders in a single
discrete cable equation.

It is useful to denote the c-value of the uniform cylinder section between two connected
nodes m and n by Cun. 1f m and n lie ou cylinder § then ey, == ¢;. Clearly ¢pnp = Cpm.
however, where possible, we use the convention that the node closest to the soma is
subscripled first.

Another important geometric quantity, the e-sum at node n, is defined by
Co = s (4.17)
k

where the sum ig taken over all nodes connected to node n. When node n is s binary
branch point (parent cylinder /* connected to left, L, and right, B, child cylinders) this
yields Cp = ¢z + ¢, +cr. If node n marks a step in diameter (parent P meets single child
() then Cn = ¢p + ¢¢. If n is an internal node of cylinder j then Cp = 2¢;. I cylinder
j terminates at node n with a current injection boundary condition thea Cp = ¢;. ‘I'he
c-swm 18 not required for unnumbered cut terminal nodes.

Consider share] node », connected to node p on the parent ¢ylinder and nodes 7 on the
child cylinders. Conventions for the direction of enrrent flow imply that the axial current
flowing info the branch point from the parent cylinder plus any current injected inte the
core at the branch poins$, equals the total axial current flowing eut of the branch point
inte the child eylinders.

Equation (2.96), in conjunction with equation (4.4), gives a form of the current con-

servation law in terms of potential gradients and injected current at node n,

PA, oy, Sy,
B bt =3 enis (4.18)

where i4, (£) is current applied at node 7.
Using Lhe [inite difference formulse for the voltage gradients, equation (4.15) for the

parent cylinder and equation (4.16) for each of the child cylinders, discretise the first order
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derivatives in (4.18) to give

2ig, 2 2 do, ‘ dv
TR +Cpn [(1 -+ h—z) Uy = };5':)3, ] Z Cnj [21;3 (2 + h.z) Uy — B2 dﬂJ -+ O{h).

(4.19)
Rearranging gives the discrele cable equation for a general branch point node,
2, 2 4 3
2wy, s = e — Y= 4.9
h2Ch (1 7" 1) R *7s h2£ Z T Gy’ (4:20)
correct to O(h), and where, taking into account equation (2.99),
TA.T
Uy v 2, 4.21
n h ( )

As can now be secn, in the discrete formalism the current density basically averages the
point current source over the internodal Jength. This is useful because the electrical
mapping that relates electrotonic current densities between a tree and its fully equivalent
cable is an equally valid mapping for the actual applied currents. The 7 appears simply
because the rate of charge flow is measured in clectrotonic rather than physical time.

There are several other unportant properties of the general discrete cable equation to
note: the sum of the node potential coeflicients is --1; the sum of node potential coeflicients
apart from node 7 is 2/h%; the coefficient of v, is —(1 + 2/R%); all these quantities are
independent, of any specific ¢c-values. This equation links all nodes connected to n.

The following particular cases, several illnsirated in Figure 4.2, are of more practical
1ise when representing realistic dendritic geornetry. Any discrete cable cquation can easily

e derived as a special case of the general discrete cable equation (4.20).

Binary Branch Point

Simply set o three the number of cylinders mneeting at node » in equation {4.20). The
shared node is connected to node p on the parent cylinder (P) and nodes ! and 7 on the
left (L) and right (R) child cylinders, so

2cp 2 2cR 2('[, d‘un by,
- 1) vy + -2 —2 2
2c, P (} 7+ )“’“ Te R TR i T Lo 3 (422)

Abrupt Change in Diameter

A node that marks an abrupt step in diameter is shared by only two cylinders. Node n
is connected to node p on the parent cylinder (P) and node g on the child cylinder (C).
From equation (4.20), the discrete cable equation in this case is

2¢cp 2 ?cc du, in
Eaht S PR 1 =" _ 920>
W Uy ( Pl -|- 1) Uy, + = e Gn 7 c (4.23)
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Figure 1.2: Some simple structures illustrating node connectivity in discrete cable cqua-
tions. In each case, node n relates to the discrete cable equation that accounts for the
specific structure iltustrated. (a) Binary branch point. (b) Diameter step. (c) Internal

node. (d) Current injection terminal. (e) Cut terminal.

Only this equation, and certain simplified cases of it, are required to describe unbranch-
ing structure, and thus it is vital in a discrete equivalent cable representation. Note that
the ratio of coefficients of v, and v, cquals the ratio of c-values for the cylinders C and .

The sum of these coefficients mmst of course still be 2/h2.

Internal Node Revisited

Not surprisingly, if c¢ = c¢p then the two adjoining cylinders may be collected together
and replaced with one cylinder, 7 say, that has their combined length — node n then

bevomnes an internal node of this cylinder. For consistency, rewrite equation {(4.11) as

Up 2 ve  duy Ty
- —=+1) —t = — 20—, 4.24
h? (hz + ) S R Ch (4.24)

Since Cp = 2¢;, the earlier choice of 3, (4.21) for the general shared node is now seen to
be consistent with that for the internal node (4.11).
Terminal Nodes -— Current Injection Boundary Coudition

Suppose node n, on cylinder 7, marks the terminal of a dendritic tree (in which case it is
always at the far end of the cylinder). It is connected to a single node, p. If the terminal

is subject Lo a current injection houndary condition, and current ¢4, is injected, then
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equation {2.91) becomes®.

—Kejt = iy, (4.25)

Using the appropriate finite dillerence approximation for the derivative, where n is at the
far end of the cylinder (4.15), produces

I 2 dop, in
= = — — 9202k 1,2
72 (h? N 1) =g e (4.26)

where 4, takes the usual form (4.21). Set ¢4, (t) = 0 to yield the sealed end condition.
Recall that €, = ¢; in this situation. The 4, now represents the boundary condition,
rather (han arbitrary applicd currents.

Recall that node n may be treated as a point where the diameter falls abruptly to zero
(since there is no current leak). Equation (4.26) could also have been derived simply by
setting cc = 0 in the discrete cable equation for a diameter step (4.23).

Terminal Wodes --- Soma-to-Tree Connection Neode

The soma nade, if chosen as origin, may be assigned any boundary condition, since this
node does not interfere with critical elements of the cable construction process. Ii is
convenient then to just assign a cuwrrent injection boundary condition (this need only be
temporary, just for the reduction process). Denote the soma node by s (it is number “0”
nsing the mmbering scheme outlined previously). The equation can be derived in a similar
manner to the current injection boundary condition at a dendritic terminal (4.26), except
that cp rather that cc is set to zero in the equation for a diameter step (4.23), giving

2 2 dre tg
— (m -+ 1) Vy + h?'b‘q = _d_t_ == QQ (jh (4.27)

It has been assiimed here that only one nede, ¢, is connected to the soma node, i.e. we are
deating with a single dendritic tree. If multiple dendritic trees connect to a poind-like soma
representalion subject to a eurrent injection condition, then the appropriate equation can

be found from the general discrete cable equation {4.20) by setting cp = 0, as above,
2 2 dug i
— (-}72- + 1) v, + W ?(235’03‘ — _.C.i..f_. — QQE‘—' . (4-28}

Terminal Nodes — Local Origin

The matrix methods must be applied Y-junction by Y-junction if full information about

disconnected sections is required. This involves isolating the Y-junction, transforming it,

“Recall that charge is constrained to flow in the direction of decreasing «, so positive injected current

irplics 2 negative axial eurrent, and vice versa.
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then attaching the cable connected section at the local origin, keeping aside the discon-
nected section if one has been generated.
The local origin, node 0, is connccted to nodes I and r on the left and right branches,

and can be assigned a temporary scaled cnd. I'rom (4.28)

2 . 2ey, 2cn duvg 0
—(S+1 i O CP L JYo R .
(h.z + ) Wt gt e T a A (429)

Terminal Nodes — Cut End Boundary coundition

The potential at terminal node ¢ on cylinder 7 is fixed at zero (membrane polential is
tixed at rest), so

vg = (. (4.30)

The ent condition musl be incorporated into the discrete cable equation describing

the single node, n, to which it is connected. Assuming z > 2, then n must be internal ta

cylinder 7, so equation (4.24), in conjunction with (4.30), becomces

Uy 2 dup, in .
—= — | = Up = — 20—, 4.31
72 (hg + L) Un n - (4.31)
Il node 1 is internal but connected to two cut terminals, then extending this argnment
vields,
2 dvy, in
— s+ 1y =— —20—-. .32
(h? + ) T C (1.32)

Thus, terminal nodes with eut boundary conditions® are skipped during node

numbering,.

It was noted previously that equivalent cable structure (though not the full electrical
mapping) could usually be determined even when z = 1. This may be desirable for reasons
of efficiency when the cable structure, but not the clectrical mapping, is required.

As a warning, however, it is nsefitl at this point to Hllustrate some of the anbignities and
limitations of discrete cable equalions associated with certain dendritic structures when
H = h. The main problem involves short structures, i.e. of length I or 277. Dendritic
trees models are highly unlikely to be represented so simply, but these arve typical lengths
for disconnected seclions. '

The wost striking example is the cylinder represented by two nodes, each assigned

a cut end condition, as illustrated in Figure 4.3a. No discrete cable equations describe

5For trees exhibiting certain geometrical propertics, it is acceptable to wse mora general time-varying
voltage boundary conditions. A constant non-zerc boundary voltage condition is gencrally valid, provided
all voitage terminals on the tree satisfy exactly the same constant condition. Ii was originally thought that
a general voltage condition was acceptable in all situations, (Ogden et al,, 1999), bus analytical resubts in
Chapter 6 show this is not actually the case.
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Figure 4.3: Problems encountered with disereie cable equations if describing short cable
gtructure when z = 1. (a} A quantumn length cable with two cut ends contains no numbered
nodes. (b) A quanfum length cable with onc cut and one current injection terminal is
represented by one numbered node. {c) A cable of two gquantum lengths, but subject at

each end to a cut terminal, is also represented by just one numbered node.

this structure! However, it is always passible fo infer its existence by checking whether
clectrotonic length has been preserved by the cable sections that are actually produced.
Consider also the following two situations: (1) a node that has been assigned a cul
condition connected to a node, n, that has been assigned a current injection condition;
(2) a node, n, marking a diamecter step connected to two nodes that have been assigned
cuf conditions. By making the appropriaie simplifications to equations (4.23) and (4.26),
it turns out that the same discrete cable equation deseribes both structures, 1.e. equation
(4.32}. The two cables, illustrated in Figures 4.3b and 4.3¢, have different lengths bus

cannol be distinguished by their discrete cable equations, hence the ambiguity.

4,2.3 The Matrix Representation of a Dendritic Tree

Once a dendritic tree is represented by k nodes, numhbered from zero to £ —1 (by the given
procedure) a matbrix representation for the entire tree may be formulated.
We first introdnce some additional notation. The k-length vector of node potentials

is denoted wvp; similarly, the &-length vector 4 vepresents applied cnrrents at each nade.
So,

i £()
vy 7
v = . N 'ET = . . (4.3 3)
(- -2
Vg1 ir1
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The diagonal matrix of the tree node c-sums is
Dy = diag {Co,Ch,...... s Ck—2, Cp1} . {4.34)

Fach discrete cable equation may be written in the form

dvp

1 .
~ QQDj . (4.35)

Here, A; is the 7% row of a conncctivity matrix, Ar. The entries in this row are all zero
except the 5% and those corresponding to nodes conmected to 7. Similarly, I, is the 5%t
row of the kxk identity malrix, with only one non-zero element, i.e. a “1” in location j.
Likewise, D;l is the 7*"* row of D;;], with a single non-zero element, Ca_ L in the 7% slot.
For example, an internal node n conmected to nodes p and ¢ has non-zero entries in the
ptfonth und g™ slots of A,. A binary branch node, n connected to nodes p, I and r has
non-zero entries in the p* n* [ and rt* slots of A,. A current injection Lerminal node
n, connected to node p, has non-zero eniries in only the p™ and n®* slots. An internal
node n connected to node p and an unnumbered cut terminal node has non-zero elements
in just the pth and n™ slots of A,,. Specific examples are illustrated in the next section.

The discrete cable equations are collected together to form the matrix equation,

d
Agvp = %‘5 ~ 20D (4.36)

Proportics of the Tree Matrix

The kxk squarc connmechivity matrix Ax is referred to as the tree mafriz, and represents
the geometry and boundary condition types (cut or current injection) of the Lree model.
Denote the element in row ¢ and column j of Aq by ;. Since the coefficient of v, in
discrete cable equation n is always non-zero, the diagonal elements are all non-zero, and

in fact identicalS,

2
a,ﬁ:_(”ﬁ), 0<ig<k—1 (4.37)

The row and column numbers of each non-zero off-diagonal element define two nodes that

are directly connected, so the tree matrix strucfure mimics the connectivity of ihe lres,

The tree matrix is not symmetric since a;; # aj;, however it is structurally symmetric in

the sense that
ai; # 0 <= a; # 0. (4.38)

SThis is not actually a requirement for the origin node (usually the soma node) but, for cable con-
gtruction, the origin type is irrelevant and may as well be assumed scaled so that the constant diagonal is

maintained.
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This follows trivially from the reflexive property of node connectivity, i.e. if node 7 is
connected to j, then node 7 must also be connected to ¢. Trom the discree cable equations,
it can be seen that all off-diagonal elements are non-negative.

The node numbering scherne used, in conjunction with the structure of the second order
difference equations, ensures that the tree matrix is almost tri-diagonal, i.e. elements are
concentrated on the diagonal, sub-diagonal and super-diagonal. Off-tri-diagonal elements
only arise because the presence of branch points prevents consecutive numbering of all
the nodes on each cylinder. Branching also gives rise to congecutively nurnbered nodes
that are not connected, since numbering must proceed directly from a terminal node to
another cylinder.

A counting argument will show how for cach pair of non-zero off-tri-diagonal elements
there exists a pair of zero element on the sub- and super-diagonals. Also, the tree matrix
for a dendritic tres represented by & nodes contains 3k — 2 non-gero elements, enough, in
fact, to Gl just the cenbral-, sub- and super-diagonals.

It should first be noted however that an unbranched structure is represented by a purely
fri-diagonal tree matrix, as illustrated schematically in Figure 4.4a. In fact, it is possible
to place several unbranching structures together in the same matrix?| as illustrated for two
cables in Figure 4.4c. A pair of zero elements on the sub- and super-diagonals indicate that
they are separate. Singly branched structure (Y-junctions) have very similar structure,
with two tri-diagonal portions of the mairix divided by a pair of zero elements but linked
by a pair of off-tri-diagonal clements, Figure 4.4b.

Any tree with N terminals can be divided into a set of IV paths, each consisting of
consecutively nurnbered nodes. Therxe is one path, the soma path, where numbering starts
fromn *0” and ends en a dendritic terminal, plus & — 1 additional paths each starting
with a node connected to a branch point and ending on a dendritic torminal (or a node
connected to a terminal in the case of a voltage boundary condition). Observe that these
paths are uniquely determined by the vurbering scheme and have the property that cvery
tree node lies on exactly one path. Fach path must contribute a tri-diagonal portion to
the tree matrix, plus additional off-tri-diagonal elements arising from the connection of
that path to the rest of the tree.

Now consider any path starting with node p and connected to another paih at the
branch point deseribed by node 5. The numbering scheme ensures that p > j 4 1. Tree
connectivity cnsures that elements aj;, and ay; of the matrix Ap arc nen-zero and off-

tri-diagonal, while elements oy 1y = ap_1)p = 0 since node p — 1, which must be a

"These siructures hint at the pracedure for generating an cquivalent cable — tri-diagonalisation of a
Lree matrix to generate a cable matrix. Furthermore, it is clear how a trea matrix can repregent multiple

disjoint scctions (connected and disconnceled sections).
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dendritic terminal, and therefore cannot be connccted to node p. Since the soma path

does not connect to ancther path, each non-somal path contributes a pair of non-zero

off-tri-diagonal entries and a pair of zero clements on the sub- an super-diagonals of Ay,
in total N — 1 pairs of non-zera off-tri-diagonal elements and N -- 1 pairs of zero elements
on the sub- and super-diagonals of Ar.

If the tree is represented by & nodes then there are k& — 2N nodes that lie within
paths. Each such element, ;j say, must counect to nodes 5 — 1 and j + 1 and so contributes
two off-diagonal elements to the j** row of A, giving a total of 2(k — 2N) off-diagonal
clements. ‘L'he off-tri-dingonal clements due to connections between paths have already
been determined as 2(N — 1). Since the starting node, p say, of each path (including
the soma path) must also be connected to node p + 1, there are a further N oft-diagonal
elements, one ecach in row p. Finally, each of the N terminal nodes wmust connect to
Jjust one other node, yiclding a. further N off-diagonal elements. In total, then, there are
2(k — 2N) + 2(N — 1) + N + N = 2(k — 1) off-diagonal elements. Add the k diagonal

elements, and the argument is complcte.

Tree Matrix Examples

Tree matrix examples one, two aud three belaw represent the dendritic trees in Wigure 4.5.
To simplify the matrices D = (2 + 42} is used.

Example Onc

The tree matrix for the trec in Figure 4.5a is

(D 2 0 0 o 0 0 0
1T P 1 0 0 0 0 0 0
0 %2 D Zr 9 0 % 0
10 0 1 D 1 0 0 0 0

Ap = % 0 0 0 1 D 1L 0 0 © (4.39)

0 0 0 0 1 D 1 0 U
0 0 0 0 0 2 D 0 0
0 0 1L 0 ¢ 0 0 D 1

0 0 0 0 ¢ 0 0 2 D]

The soma node “0” is sealed and described by equation {4.27). The two dendritic

tips are sealed, so nodes “6” and “8” are described by eyuation (4.26) Internal nodes “17,

€37, 47, 957 and “7" are described by equation (4.24). Node 2 is a binary branch point
described by equation (4.22).
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Figure 4.4: Branched trees, unbranched cahles and their tree matrix representation. (a)
Any single unbranched structure has a perfectly tri-diagonal tree matrix. (b) A singly
branched tree has ncarly tri-diagonal structure. (c) Placing two unbranched cables in
the same matrix representation gives a tri-diagonal malrix, however the sub-matrices

representing each cable are scparated by two zero elements along the diagonal.
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- Smealed

Figure 4.5: Simple examples of discretised dendrilic trevs. (a} Dendritic tree for Example

One, consisting of cylinders P, R, and L. (b) Dendritic tree for Fxample Two, consisting

of cylinders P, R, L, F. (¢) Nendritic tree for Example Three, consisting of cylinders P,

R, L, F, and @G,

Example Two

The tree matrix for the tree in Figure 4.5b is

o

b
Dc:c::@]{;

0
0

=
ES
fouw B e T e T v B o B R

0
1
D
1
0
0
1
0

oo o

[
A

o o O

o c =g~ o2 0o o

o o o O

b
o
e

c <o 98

O~ o o o o oo

(4.40)

Again the soma node i3 assigned a scaled end condition. Node “5” is an internal node

connected to a cut terminal, so is described by equation (4.31) Node “4” is a pbint of

abrupt diameter change described by cquation (4.23).
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Example Three

The tree matrix for the tree in Figure 4.5¢ is

D 2 0 0 0 0 0 0 0 0 0
L D1 0 0O 0O ¢ 0 0 0 O
0 % D % oo X o 0 0o 0 o0
0 0 1 D 1 0 0 0 0 0 o0
10 0 0 2 P 0o 0 0 0 0 o0
Ar=hi2 0 0 L 0o 0 B 1L 0 o 0 0 (4.41)
00 0 0 0 1 D L © 0 0
0 0 0 6 0 0 1 D 1 0 o0
00 0 0 0 0 0 % p X
0 0 0 © 0 0 0 0 1 D 0
L0 0 0 0 0 0 0 0 1 0 D |

Algebraic structure of the Y-junction Tree Matrix

Consider the gencral Y-junction illustrated in Fignre 4.6. The left branch is formed from
m cylinders each of length H, while the right branch is formed from n cylinders also of
length H. Cylinders, and nodes, are labelled from 1 to m on the left branch, chen from
m + 1 to m + n on the right branch. Both terminals are scaled, as is the junction node.
A discretisation level of z = 1 is used simply to avoid including the internal nodes (two
connected cylinders can easily be given the same c-value to produce the sppropriate matrix
for z = 2J.

The algebraic structure of the corresponding tree matrix is very simple, with a single

pair of off-tri-diagonal clements due to the single binary branch point; there is a corre-
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Figure 4.6: Schematic of a general Y-junction.

sponding pair of zero elements, one on the super- and one on the sub-diagonal,

D o0 0 0 ... Zen g o - 0 ]
¥ D & oo 0 - 0 0 0 0
2ep 2
60 ¥ D o0 .. 0 0 0 0
2¢ t.
0 0 Za D 0 0 0 0
- __?.Cm.._
1 melL
| 0 0 0 2 D 0 0 0 -« 0 (4.42)
Zmtl g @ 0 0 D FmBop .
2Cm 204
0 0 0 0 0 F=2 D FmE o
0 0 o 00 0 FTmE2 oD .0
2 "lj:'ll.
. Cvi-{-u—i
. 0 0 0 -~ 0 0 0 0 a2 D

Eigenvalues and Eigenvectors

A non-zero vector v is an eigenvector of a kxk squarc matrix A provided there exists a

scalar y, called an eigenvelue, such ihat

Ap = pp. (4.43)

Suppose & is a nonsingular matrix of the same order as A, then
BAB Y (Bv)=u(Bv). (4.44)

Matrix BAB™! therefore has the same eigenvalues as A, but dilferent eigenvectors,
namely Br. Matrix B is a similarity transform, and malrix BAB ™ is similar to A.
If Av = uv, then for (0 <4 < k-1, 1t follows that
k1
Ja,z»juj = g, (445)
7=0
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where 5 is the 5% element of . This may be rewritten

k=1
{ag — plvy = ~ Z ai;vy. {4.46)
j=07j7&'i

It 1; 18 Lhe largest component of & then

k- fi—1
., Vi -
o —pl < D agl H < leg] - (4.47)
§=0,574 o gm0,g4

This result, known as Gershgorun's circle theorem, sitoply says that the magnilude of the
difference between an eigenvalue and the central diagonal element in row 7 is less than the
sum of the magnitudes of the off-diagonal elements in row 4.

For the parficular case of the tree matrix, the central diagonal element is always
—(1 + 2/h*%), whatever node we are dealing with. For internal nodes, diameter steps,

branch points, and current injection terminals, the sum of the off-diagonal elemoents is

2/h?. For internal nodes connected to cut terminals, the sum is 1/k%. It follows from

equation (4.47) that
2 2
il < 2.
L+ h? +M) - A’

Consider the complex planc. Any circle centred on —(1 + 2/h?) with radius |[p| must lie

(4.48)

in the left half-plane (negative real part). No circle may contain the origin, thus g = 0 is
not an eigenvalue.

It will be shown shortly that a tree matrix may be syminetrised by a similarity trans-
form. T'he cigenvalues of any symmctric matrix aze real, and consequently the tree matrix
has real eigenvalues. Tt follows from (4.48) that

4 .
— (1+7L-2') <p <~ (4.49)

so bounds for the matrix eigenvalues can be determined. The significance of Lhis result is

discnssed further in the next section.

4.3 Transforming a Tree Matrix to a Cable Matrix —

Equivalent Cable Construction

4.3.1 Introduction and Outline Theory

In overview, three matrix transformations (similarity transformations), denoted §, T and =
X, are applied to the tree matrix equation as follows: first the tree matrix is symumetrised
(8}, the result is tri-diagonalised (T'), followed by de-symmetrisation (X). This sequence

of transtormations generates a matrix equation that deseribes an equivalent cable. The
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new equation carries a form similar to the tree matrix equation, i.e. the matrix clements
are coeflicients of node potentials in discrete cable equations. Matrices 5, T and X are
all nonsingular square matrices of the same size as Ag.

A lree matrix, though not symmetric, has just the right form that it can be easily

symunetrised using o simple scale transformation. Fquation (4.36) then becomes

d(sﬁl - 20(S D7y, (4.50)

(SA7S™ ") (Svr) =
where Apg = SApS1 is called the Symmetric Tree Matriz.
The tri-diagonalisation collapses the branching dendritic structure into an unbranching

cable slruclure (from one symmetric matrix form to another), so that (4.50) becomes
(TSAp S T (T Svy) = -¥-= —L — XUTSDF ir), (4.51)

where Agg = TS ApS~ T is the tri-dingonal Symmetric Cable Matria.
The de-symmetrisation of Agg has much in common with the symmeirisation process.
Using another scale transformation, a matrix equation is generated that is a collection of

discrete cable equations representing an equivalent cable. Equation (4.51) becomes

(X T Svy)

(XTSA7S 'T''X ')(XT8vr) = 7 - 20U X TS Dy i), (4.52)

or

Acve = %“_ — 20D e, (4.53)

where Ac = XTSArpS T 'X !, vo = XTSvp, and i = -DCXTSD;I;I?IT. These
three quantities are, respectively, the Cable Matriz, a vector of cable node potentials, and
a, vector of injected currents over the cable nodes. As with Dz, we have defined a diagonal

matrix of equivalent cable c-sums,
D¢ = diag {C5,C1,.. ., Crn,Crat}, (4.54)

where (U is the c-sum at cable node j.

The cable matrix is determined entirely by the tree matrix and the node chosen as
origin {usually “0”) and, like the tree matrix, defines cable shape and boundary condition
types. When mapped from free to cable, tree vectors v4 and ép together determine
electrical activity on the equivalent cable - - they do not influence its shape.

The Laneszos and Householder procedures may be applied to any tree matrix, however
complicaterd the tree might be. However, since disconnected sections are associated with
a specific sub-tree, it is usually only practical to generate them using a Y-junction by Y-

junction approach, wheoreby a Y-junction is isolated, discretised, numbered, transformed
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to its equivalent cable, with the branch point chosen as a local origin and assigned a tem-
porary sealed boundary condition. Its connected section is reattached to the local origin
while, if the Y-junetion is degenerate, the disconnected section is kept aside and marked as
associated with the sub-tree. On completion of the cycle, the final conuvected section and
any disconnected scctions may be collected together in one matrix, provided one makes

sure the electrical mapping and equivalent cable nodes have been made consistent.

4.5.2 Some Properties of Tree and Cable Mairices
The Electrical Mapping

It is convenient {o define the elecirical mapping from dendritic tree nodoes to eguivalent
cable nodes by
M = XTS5, (4.55)

The inverse, which defines the electrical mapping from cable to tree, is easily oblained from
its component matrices. Both & and X are diagonal, while T is orthogonal (4~ = Ty,
therefore

M~ - gipTx—1 (4.56)

In practice M directly maps potentials hetween the egnivalent cable nodes and the
tree nodes, that is,

vo = Murp, and vp = Moo, (4.57)

To map applied currents (including non-zero current boundary conditions) belween lree

and cable, situply use the modified mappings
Mjy=DcMD7!  and M7'=DpMT'DZ (4.58)

so that

1 = Mrip, and g JW;’L’éc. (4.59)

Disconnected Sections

The structure of A has been thoroughly described in section 4.2.3. It is useful at this
point to describe some general properties of Aeqg and A, before actually showiﬁg how
o generate them.

The whole point of generaling Aeg is that it is tri-diagonal, and represents an un-
branched dendrite. Ilowever, it is possible that the symmetric cable matrix actually con-
gigts of a sel ol distinct tri-diagonal sguare submatrices located along the block disgonal;
adjacent matrices are separated by a pair of scros, onc on the sub-diagonal and one on

the super-diagonal. This possible matrix structure has aiready been illustrated in Figure
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4.4. and may be interpreted as voultiple digjoint cable sections, provided the discrete cable
equations are acceptable, t.e. they describe properly terminated unbranched structure.
Exact conditions under which this can occur (essentially electrical symmetries implicit
in the free geometry) are discussed in more detail in section 4.3.4 (in mathematical terms)
and in Chapter 6 (in terms of the physical structure of the iree).
Consider the lmportant case of the general Y-junction. Denote the kX%, connected
gection sub-matrix by Acon, and, if it exists, the kzx %y disconnected section sub-matrix

by Agis. For degenerate Y-junctions, k = k. 4+ &4 and, in block form,

Acon 0
Ags = [ @ ] : (4.60)
0 Ags

in which case the tri-diagonalisation operation for the Y-junction matrix may be written

in block form as

T
T | (4.61)
T ais
where Teon 18 a ke Xk matrix and 2'g, is a kg Xk matrix.
For non-degencrate Y-junctions, & = &, and
ACS = Acon: T = Tean. (4'62)

Once a complete tree has been reduced, the full equivalent cable sub-matrix may be

Al
built up. The leading snb-matrix, now denoted A‘(;gﬁ describes the connected section,
while additional square k;xk; sub-maftrices are denoted Ag?s where 1 <4 < r, [oxm the

set of v disconnected sections. So, in block notation,

A%, o o o o 0 ]
0 4% o o o 0
o o A% o o 0 .
Acg = (4.63)
6 0 o 0 0
o ¢ o o AV o
[ 0 0 0 0o o0 Ag]
where .
h=ke+ > ki (4.64)
i=1
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The tri-diagonalisation operation may be written

(0)

con

T = _ (4.65)

(0)

where Tean Is a ke xk matrix that relates tree node potentials to cable connected section
(i)

node polentials; similavly, T\ is a k; x5 matrix that relates trec node potentials to cable

disconnected section ’s node potentials. Thus,

) ) @ 3 ;
Af;is/cou - ‘Fdais/conA'TS (Tt;iu/(:(m) . (4“6())

"The rows of T" are essentially a set of hasis vectors spanning n-dimensional space. Any
distribution of clecirical activity (scaled appropriately by § and X)) over a tree can be
writfen as a linear cornbination of these vectors. In general, some activity is mapped to
the connected section, while the rest maps to the disconnected scetions.

Associated with cach sub-mairix A®

can/dis is a subspace oy (closed under multiplication
by Arg), with

¢; = span {zr: : where & is o row of T((;ll’, . On} . (4.67)

Subspace og describes activity that the origin can detect, and remaining subspaces describe
activity thal the origin cannot detect.

Note that, when applied Y-junction by Y-junction, the Householder tri-diagonalisation

will aulomatically generate the invariant subspaces and their corresponding sub-mafrices,

l.e. it generates the disconnected section if a Y-junction is degenerate; the Lancyos pro-

cedure will only do so after some effort to restart the process after carly termination.

Spectral Properties of the Tree and Cable Matrices

For most of this thesis, we will not be concerned directly with the temporal properties ‘
of the cable equation, however it is useful to consider some important propertics of the
tree matrix eigenvalues. Tt has already been shown (4.49) that the eigenvalues of a tree
matrix are negative, and lie in the range —1 to —(1 -+ 4/%%). Clearly, the smaller the
internodal interval the greater the range of eigenvalues. The tree matrix eigenvalues
have an important physical interpretation, and arc relaled to the decay time constants

of characteristic voltage distributions over the tree mode! nodes.
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Suppose that ig is zero. If v; is an eigenvector of Aq and y; is the corresponding real
eigenvaluc then,

Ay, = piv;. (4.68)

I'rom equation (4.36), regarding the eigenvectors as distributions of potentials ol the tree

nodes, we may then write

dy;
pili = ==, (4.69)
‘T'his egquation has solutions of the form
vi = ket {4.70)

Eigenvector v; is cssenfially a characteristic distribution of node potentials (whose initial
distribution is given by k;) which decays exponentially over the whole tree with time
constant 7; = —1/p; (given in units of the membrane time constant, 7) of the tree matrix
A, Importantly, time consianls can never be greater than 7.

Since M is a shuilarity transform (a product of three similarity transforms) the eigen-
values of A are the samc as those of Ap. The corresponding eigenvectors, or charac-
teristic voltage distributions, arc given by My;. Thus, a tree eigenvector potential is
mapped by M to the equivalent cable eigenvector potential that will decay at the same
characteristic rate. This is an important feature for the equivalence of a dendritic tree
and its equivalent cable.

It is vital that one distinguishes between time consianis determnined by matrix eigen-
values {of which there are finitely many®) and the time constants that are characteristic
of the original spatially coutinuous model {denoted 7], and of which there are infinifely
many, see Rall, 1969a). For example, the voltage response al the soma due to a configu-
ration of inputs at ¢ = 0 somewhere on the tree can oflen be expressed as an infinite sum

of decay time consbants, that is

vs(t) =Y B W (4.71)
=0

where the B; are coefficients defermined by initial conditions.

Typically only a very small proportion of the largest matrix eigenvalues will give rea-
sonable approximations to actual time constants. This is an unavoidable consequence of
approximating a continuous model by a discrete model. A finer discretisation (smaller
., more nodes) can improve the aceuracy of the larger matrix time constants, buy still

only a swmall proportion usually are acceptable. For the purposes of simulations, the Jarger

Skor a kxk tree matrix, there are at most k eigenvalues. Therc are less than k if the tree matrix
has repeated eigenvalues. ‘U'he existence of disconnected sections, i.e. electrical degeneracy in the tree, is
associated with the existence of repeatred (dogenerate) eigenvalues in the tree matrix.
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tirne constants dominate the structure of voltage transients since the eflects of the smallex

(faster) constants can only be significant at initiation of the transient.

Sealed Trees in Particular

If all terminals on a tree are sealed, then the sum of non-zero elements in any row of the

tree matrix must be —1. Therefore, the potential distribution
v=[1,1,...,1,17 (4.72)
is an eigenvector of Ay, with corresponding eigenvalue —1, i.e.
Apv = —v. (4.73)

This uniform distribution therefore decays with characteristic time constant 7, the mem-
branc time constant.

Mapping this uniform potential Lo the equivalent cable always give a uniform distri-
bution over the connecled cable section. This is explained in more detail in Chapter 6
{(conservation of cocfficients), however, it follows because, for sealed trees, the sum of each
row of A associated with a cable connected section node is unity., Alternatively, a physi-
cal argument demands that the cable origin must also observe the same uniform decay of
voltage. The connected seclion of the equivalent cable must also be sealed, otherwise this

is not possible, and so

AD vy = -2, (1.74)
where
7= Myv =[1,1,...,1,1]* (4.75)

is a k.-length vector.

Partial Generation of the Cable

Under some circumstances, the complete equivalent cable may not be required, or it may
not be practical to generate the full cable because of numerical considerations. Tor ex-
ample, the connected section rmay be all that is of interest. Tn such situations the tri-
diagonalisation and de-syminetrisation need only be partially completed.

Let Iy, be the mxn matrix that gencrates the mxm leading sub-matrix of the full
symmetric cable matrix. Only this sub-matrix need be de-symmetrised so let X,;, denote
the leading mxm sub-matrix of X. This partial cable matrix equation can be written

(m), () &

d {m,
Ayl ‘;—‘é’ +i, (4.76)
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where superscripted maftrices and vectors describe m nodes of the equivalent cable, and

the partial cable matrix is
AP — X, T, 8Ar ST XL (4.77)
The mappings from tree to partial cable and from partial cable to tree are then
M, = XTS5, M} =8-t1T x 1 (4.78)

though there ig information missing, and the full space of electrical activity over the tree

will not be accounted for in the mapping.

4.3.3 The Symmetric Tree Matrix

There is a non-singular kxk diagonal matrix § such that the &xk trce matrix, A, can
be symmetrised,
SArS™! = Arpg. (4.79)

Transformation S consists of non-zero scaling factors,
S = diag {sp,81,...... 2 Sk 2,8k 1) 5 (4.80)

where

‘ 1 i=0

s 5’\/% 1<i<k—1" (481)
Each scaling factor fixes two off-tri-diagonal elements. After initialising one scaling fac-
tor (sp), there are just the right number of off-diagonal elements, i.e. 2(k — 1) to be
symmetrised by a finther & — 1 scaling factors.

Denoting the elements of Arg by a4, it is easy to check that, lor § # 7,
=

- b?: 7 [ <3
Ty = Gjj — Q3 é-- az (I.j.,;: = \/&Tja-,; {4.82)
F ;

t

and the central diagonal is unaltered. It fact, there is a clear structure fo the s;. Suppose
4 > i. Since ay; = 205 /R2C;, then from (4.81),

C; . .
5= 5 \/; (4.83)

By recursive substitution for 8; so that s; is expressed in terms of lower and lower numbered

scaling factors, there is repeated cancellation of the denominator, and we obtain

since sp = 1.

126




Also, non-zero off-diagonal elements of Apg may be written
s 204
N Tk
h, O;- (/ j
where ¢;; is the c-value of the cylinder section linking connected nodes ¢ and j.

Matrix § is trivially nonsingular, and its inverse is easily obtained,

~% . -1 1 1 -}
87t = diag {sgls75,. ..., ) Spooy Spoy )

As an example, the symmetric form of the tree matrix in example two (4.40), is

[ v 2

0 0 0 0 0 0
v2 D 2 0 0 0 0 0
0 JE D o o J& o
A 1{ 0 i \/ Zmo po ”2";:‘):1 6 0 0
T8 = 75 - ]
lg o 0 o p S g
0 0 0 0 m D 0 0
0 0 JE o0 0 0 D V2
il 0 0 0 0 0 v2 D |
with
8 = diag { 1,7, & 1/2““ JE 1/2010 Zop fer
Nep Ve cr’'V oep ep Vep |

Algebraic Structure of Ayg and S.

Tf we write

Wi = /CiCy 1, and Wy = /G0y,
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then the symmetric form of the general Y-junction tree matrix given in equation (4.42) is

D %% 0 0 0 ﬁ%ﬁlﬁ? 0 0 o
w 2o 0 . 0 0 0 0
0O @ D @ 0 0 0 0 0
0 0 § D 0 0 0 0
1 Wan—1 ]
i 0 0 0 pfos D 0 0 0 0
ﬁ;—; g 0 0 0 wEs 0 0
0 0 0 0 L~ 0
0 0 0 0 0 0 yE D 0
|0 o o - 0 ¢ 0 0 0 W(;f}i-,r:‘—_‘l D
(4.90)
with o /(v_s —
8 = diang {1, o 5_;’\’ Fo\[%fﬁ} (4.91)

4.3.4 Lanczos Tri-diagonalisation

This method of tri-diagonalisation was introduced by Lanczos (1950). General discussion
of Lanczos tri-diagonalisation and its startling convergence properties can be found in
Golub and Van Loan (1990) and Paige (1976, 1980). It has been used exlensively in
nuclear physics (Whitehead ef al., 1977), and it is via this field that the method found
its way to neuronal modelling. Previously, an outline of the general ideas underlying the
process, with specific application to equivalent cables, and in particular the connected
section, has been given in Whitehead and Rosenberg (1993). Further details are presented
in Ogden ef al. (1999), and expanded upon even further here.

Lanczos tri-diagonalisation does not naturally generate disconnected sections since the
algorithm terminates after generating the connected section, however, with a little effort,
it is often possible (o restart the algorithm if necessary.

When using the Lanczos procedure, we set T = L.

General Theory

The Lanczos method is normally associated with solving the eigenproblem,

Az = pw, (4.92)
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where A is generally large, symmetric, and sparsely filled”.

First, choose an initial, normalised Lanczos vector, wg. The choice is very significant
for the progress of the algorithm, but may depend on the reasons for using the process
in the first place (in the case of equivalent cable construction the initial vector has an
important physical meaning). After pre-multiplying o by A, the result may be expressed
as a linear combination of the first Launczos vector (up) and a new normalised Lanczos
vector (1), orthogonal to the first. This action is then repeated with the newly generated
Lanczos vector, again pre-multiplying by A, and chaosing yet another normalised Lanczos
vector, which will be orthogonal to all previous Lanczos vectors. In this manner, the

following tri-diagonal structure is huilt up.

Aug = agug + Sy

Awy = foug + o1uw; + Brue

Auy = fruy + opuy  + Faus

Aug = Gauz +  aguz +  Pauy

The coeflicients of the 2; are the elements of the new tri-diagonal matrix. Observe

that, orthopgonality of the w; implies
o = ut Au,, (4.93}

and
0; = vl Argu. (4.94)

After one iteration, enough elements have been generated to construct a Ix1 matrix,
AW =T o ] . (4.95)

After a second iteration, a 2% 2 matrix,

(&

AQ = | 0 Aol (1.96)
By w1

may be constructed, and so on. Thus, the jth iteration of the algoriilun produces énough

elements to construct a §xj matrix, denoted AY), whose diagonal is given by ag o Qj1

and super- and sub-diagonals given by Go to 5_s.

*While the method may be extended to unsymmetric matrices, this is at the cost of introducing bi-
ovthogonal gets of Lancsos vectors. For tree matricss, it is much more convenient to take sdvantage of
structure and symmetrisc Hirst — a very quick process. In fact, it is more eflicient to generate Ars directly
from tree data, bypassing Ar altogether.
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Extraordinary convergence properties of the method mean that information ahout A’s
cxtremal cigenvalnes emerge long belore (ri-diagonalisation is complete. Essentially, as §
increases, the extremal eigenvalues (largest and smallest) of AY) are better and better
approximations to the extremal cigenvalues of A.

This is not, however, the reason we use Lanczos tri-diagonalisation. For our purpose,
the mosl important property of the Lanczos tri-diagonalisation is that it preserves essential
matrix structure, allowing eventual interpretation as an equivalent cable.

Provided the convergence properties and extremal eigenvalues are the poinls of interest,
the Lanczos’ advantages over a more stable Householder method are storage and speed.
These have been vital consideration for the massive sparse matrices commonly found in
nuclear shell model calculations (Whitehead ef al., 1977). Highly complicated dendritic
trees ave also likely to require huge sparse matrices for a reasonable representation. Lhe
major pitfall when using the Lanczos procedure is that roundoff errors, and a loss of
orthogonality among the Lanczos vectors, can be troublesome.

It can happen that after some iteration, j < k, clement 851 is zevo, at which point
the algorithm terminates prematurely, with the construction of a subspace. This happens
when the initial vector, g, is deficient in some of the eigenvectors of A4, ie. ugy can
be expressed as a linear combination ol j < & eigeuvectors. In this situation, A has
repeated, or degenerate, eigenvalues, The 74 tri-diagonal matrix that has been produced

is non-degencrate, i.e. contains exactly one copy of each of the eigenvalues of A.

Application to the Tree Matrix

For the specific case of a kxk symmetric tree matrix, there ave several factors in our favour
that sitnplify T.ancros tri-diagonalisation: the central diagonal is a known constant and
the choice of initial Lanczos vector is fixed by the node chosen as origin,

The standard unit vectors, e;, are useful, where

¢
0 1
0 0 :
o= . | er= 1| . 1: € = s _(4-97}
| O 0 0

It is usetul to think of e; as representing node ¢ on the dendritic tree. The set of
orthonormal Lanczos vectors play a similar role for equivalent cable, with w; representing

node 7 on the cable.
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The initial, normalised Lanczos vectior, ugy, must represent the node chosen as origin.

For cxample, it the soma node is taken as origin, as would normally be the case, then
Uy = €. (498)

Lanczos Vector Structure

When tri-diagonalising the syrametric tree matrix, the resulting tridiagonal matrix must
of an acceptable form. The central diagonal elements of Agg must be constant and equal
to that in Apg if it is to be eventually interpreted as a set of discrete cable equations. The
general Lanczos procedure does not produce this constant diagonal, so we now prove the
following result which shows how tree matrix connectivily can impose interesting struciure

on the Lanczos vectors, and thereby ensure the cable matrix sleuchure we require.

Let A be a symmetric tree connectivity malriz with constant diagondl elemeni D. If A
18 tri-diagonalised by the Lanczos method, laking indlial veclor wg (o be o standard umnit
vectar, then the diagonal elements of the resulting tri-diegonel matriz are also oll the some

and egual to D.

Proof: Pirst, observe that «; = ul Awu; may be written

fi—-1k—1
=SS il 2
p=0 g=0

where u;*;i} denotes the p** element of ;. The central diagonal of Apg is constant, u; is
normaliscd, and ap, = 0 unless node p is connected to node ¢, so equation (4.94) may be
simplified to ot
o =D+ Z Z a.pqug’}ugi}, (4.100)
p=0g—p
where g—p means that the sum is over all nodes connected to p. It remaing to show that
if nodes p and g are connected then one of u}',i) and ugi} must be zevo, in other words two
connected nodes do not both contribute to the same Lanczos vector'®. (nce this has been
shown, it follows immediately that o; = I, for all . Cleaxly, this is the case for the initial
unit Lanczos vector (i = 0}, so o = 7.
Suppose now that Lanczos vector w;_) only has non-zero elements contributed by nodes
that are either (1) all an even number (or zero) of A from the origin, called even-distant
nodes, or (2) all an odd number of £ from the origin, called odd-distant nodes. Tn eitber

case, no two nodes that contribute to this Lanczos vector are connected.

19%We say a tree node, i, contributes to vector u; if the i elemenl of w2 i nan-wero.
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Trom the general Lanczos vector/tri-diagonal matrix structure above we can write
ﬁé...z'ﬂ:—; + ﬁg'_.._:gug. 9 = Aui_l — K1 Ui—1, 1< 4 < ko~ 1, (4.101)

provided we set 3_; = 0 and w_1 = 0. Now observe that the p*” element of the right hand

side of this expression can be rewritten

(A — o1 d) wia), = Z apgul ™Y (4.102)
J=03%p

Restricting the sum to the non-zero elements, i.e. where 7 is connected to p, gives

(A -0y 1D wial, =Y apus (4.103)
jon

Consider first situation (1), where non-zero elements of ;.4 are contributed by even-
distant nodes. If p is odd-distant then those nodes connected to p must be even-distant,
50 when p is odd-distant (4.103) may be non-zero. If p is even-distant then those nodes
connected to node p are odd-distant, and (4.103) must be zero. Consequently, if only
even-distant nodes contribnte to w;_4 then it mmst be true that only odd-distant nodes
contribute to Fi_ u; + Fi_2u;_o (the left hand side of 4.101).

A similar argument for situation (2) shows shat if only odd-distant nodes contribute
to u;~: then it must be true that only even-distant nodes contribute to 8;_1u; - Bi_0u;..0.

Now, we can establish initially that since w¢ has one contribution from the origin node
(counted as even-distant), then w; has contributions from odd-distant nodes. It then
follows that 2o has contributions from even-distant nodes.

Now, suppose u;.. has contributions from odd-distant (even-distant) nodes and
wui—1 has conbribulions {rom even-distant {odd-distant). The latter ensures that
Aiiu; + Pimoui—g has contributions from odd-distant (cven-distant) nodes, while the
former now ensures that w; on its own must have contributions only from odd-distardt
(even-distant) nodes. This argument holds trne for ¢ = 1 and ¢ = 2, and so by induction

holds for all 2. Thus, only unconnected nodes contribute $o «;, and the result follows.

This result gives some ingight into how the Lanczos vectors develop, and conseciuenL]y '
how the electrical mapping is built up.

Further consideration of equation {4.103), and a similar induction argument to that
above show that only nodes connected to those nodes that contribute to w;_y may actually
contribute to w;—1. This leads to an evolution of the Lanc#os vectors which ensures that
the equivaleni cable structure that is j internodal lengths from the origin depends only

on dendritic tree structure up to j internodal lenpths from the origin. Furthermore, there
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must be an even number of internodal electrotonic lengths (h) between any two nodes
contributing to a particular Lanczos vector.

Since ug is always a standard unit vector, orthogonality ensures that the origin never
actually contributes to any other vector. This may be taken as an indication that equiva-
lent cable structure is independent of the nature of the origin boundary condition (though
of course it will depend on the location of the origin). The physical structure of a dendritic
tree determines whether or not a node that mey contribute actually does contribute o a
Lanczos veclor.

The Lanczos algorithm applied to the symmetric tree matrix therefore yields

Apguy = Dug + Boteq

Agsu; = fug + Duy + [Fius

Arsuy = Biuy + Dus +  frug

Ayguy = fottg + Duz +  Fyug

The coefficients of the u; are the elements of the tri-diagonal symmetric cable matrix.
Without loss of generality, the 8; are chosen to be positive. 'I'he tri-diagonalisation is
complete when & orthonermal Lanczos vectors {(ug to w,_1) have been generated, spanning
the complete k-dimensional vector space.

Transformation I is a row-partitioned matrix of transposed orthonormal Lanczos vec-

tors (ul), so

L= . . (4.104)

ul
- uk“‘l =
Orthonormality of the Lanczos vectors implies that I is an orthogonal matrix, and so

L* = 71, allowing simple inversion of L.

The algorithm will terminate when a vector «m, has been generated such that 1o new
vector ;-1 1s required to represent Apgtty,, 1.e. 3, = 0. Af this point, the connected
section (Aé‘é}l) has been generated. lf, when applied to a Xk symmetric tree matrix, the
algorithm terminates when m = (k — 1), so that & Lanczos vectors have been produced,
then we are finished; the entire space of electrical activity over the dendritic tree is rep-
resented on the equivalent cable connected section. If instead the algorithm terminates
prematurely after producing 7 < & Lanczos vectors, a subspace has been generated: this

subspace describes electrical activity that camn be observed and distinguished by the origin.
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Any additional subspaces and sub-maftrices that are associated with disconnected sec-
{ions can be generated provided suilable new initial normalised Lanczos vectors, orthog-
onal to all previous Lanczos vectors, can be found. However, if a coinplex branched
dendritic tree is treated as a single unit, it is noé clear exactly how to choose a new vector
(unlike 1o for the connected section). For a tree with several orders of branching, there
are usually many possible new choices of orthonormal veetor, most of which will not allow
a proper physical interpretation of the resulting sub-malrix as a disconnected section. As
stated previously, since a disconnected section is associated with a specific sub-tree, it
is usually only practical to generate the new vector if the Lanczos algorithm is applied
in a Y-junction by Y-junction manner. For cach Y-junction there is a maximum of one
additional subspace to defermine. A method, bascd on analytical results and observations
presented in Chapier 6, is available {or {inding the new Lanczos vector, and is discussed
in Section 4.3.4.

Once a new Lanczos vector has been found, the tri-diagonalisation process can be
restarted and continued as before.

Partial Generation of the Cable

Denote the madrix of the first m transposed Lanczos vectors by Ly, so

Ly = . . (4.105)

e
m—1

L. ’u’
'lis is obtained once the leading mXm symmetrie cable sub-matrix is obtained, repre-
senting the connected section of the equivalent cable. So,

Al = X L SApSTLT XL, (4.106)

b1 v

Y-junctions and Disconnected Sections

Tor a Y-junction by Y-junction reduction of a free, the complete Lancsos procednre must -
be applied to each Y-junction. Before transformation, the Y-junction’s nodes must be
renumbered from zero (using the standard scheme). When the connected seclion is re-
attached, the nodes that form the intermediate dendritic structure must be renumbered
to ensure consecutive numbering. lt is essential that we keep track of the correct electrical
mapping from original tree to final equivalent cable. This is merely a record keeping task,

ensuring that we can relate the nodes involved in each electrical mapping through all the




inlermediate structures. Eventually the matrices X, T, Acg and A for the complete
equivalent cable and the mapping from the original tree can be constructed from the
matrices generated for each Y-junction.

The Y-junction approach is acceptable because the branch point nature of the tempo-
rary origin (like any origin) does not influence construction of the Y-junction’s equivalent
cable. The local origin can be temporarily assigned at sealed boundary condition. The
intermediate dendritic structurcs generated by the process are, as seen by the origin,
electrically equivalent.

In fact, any terminating substructure may be isolated, transformed and re-attached in
this way. IIowever, the Y-junction is the basic unit of branching dendritic structure and
is the key to choosing new Lanczos vectors to restart the tri-diagonalisation and gencrate
disconnected seclions.

If a Y-junction is degenerale, we need to re-initialise construction of its equivalent
cable with a new orthonormal Lanczos vector, If was clear for the connected section which
node the initial vector should represent (the origin). We need to choose a new Lanczos
vector that will also represent a terminal node on the equivalent cable. An approach
that has been effective, and is based on analytically derived results, is to restart where
the connected section finished, at the only {non-origin) equivaleni cable terminal node we
hiave knowlaedge of at this stage. 1t is possible to constiuct a new Lanczos vector which,
In a sense, also represents this node — it incorporates the same boundary condition, but
represents structure on the far side of the node, i.e. beyond the connected section.

If a connected section terminated prematurely with cable node {m — 1), represented
by Lanczos vector |, choose a new vector uy, where the only possible non-zero el-
ements are al the same locations as non-zero elements in wy,-1 but adjusted to ensurc

orthogonality with w,_y as well as ug t0 1y, 2. So, if

FLi qo
™ qQ
Uppml = . and Uy = ) : (4.107)
Pr—2 qe—2
| Pr—1 | | @k—1

then p; = 0 implies ¢; = 0. Solving for the g; using
LUy, = 0 (4108)

allows one to generate a new vector %,,. The tri-diagonalisation of the Y-junction’s sym-

metric tree matrix can now be restarted.
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Computational Lanczos Tri-diagonalisation

Lanczos lri-diagonalisation is a powerful tool for finding extremal eigenvalues of large
spaise symmetric matrices (Paige, 1980; Golub and Van Loaxn, 1990), although, due to in-
herent instability, it is not the preferred choice as a general method of tri-diagonalisation.
Other techuiques (sece Golub and Van Loan, 1990) offer more favourable numerical prop-
erties.

Round-off errors and loss of orthoponality among the Lanczos veclors are the major
concerns. The complexity of a dendritic tree, its boundary conditions, and the number
of nodes by which it is represented, as well as the working significance of floating poiut
arithunetic, will determine how much of an equivalent cable can be constructed before
arithmetic errors begin o manifest thewmselves unacceplably. Double foating point arith-
metic, at least, should be used when working with complicated structures.

When transforming a complicated tree there may be a loss of acceplable accuracy at
distances far (greater than the maximum origin-to-ferminal electrotonic distance)} from
the origin along the connected section. Similar problems can arise for the Y-junction
approach after several orders of branching have been transformed. Disconnected sections
associated with the simpler substructures can often be penerated, but errors may make
it impossible to complete a connected section and thus choose a new Lanczos vector if a
Y-junction is highly irregular and represented by a large numbers of nodes. Note that it
is possible to use analytical results from Chapter 6 at each stage of the Y-by-Y reduction
to ensurc that cable scction lengths are correct. If correct degeneracy is ensured for each
Y-junction transtormed, the final equivalent cable sections must inevitably exhibit the
right electrotomic lengths.

Four subtly different algorithms, along with an ervor analysis, are fully discussed by
Paige (1972, 1976). In a limited test of complex trees, we have found ne single algorithm
to give significant advantage over the others when generating equivalent cables. A version
of the algorithm Paige calls A(1,7) is given helow. Tt is modified, to our advantage, for
cquivalent cable generation since the central diagonal cloment is always known and need
not be computed each iteration.

The initial Lanczos voctor is ug, and let g = Aqpgug. The repeated central diagonal

element is D. For j = 0 to termination, repeat steps (4.109) to (4.113) :

aj = D (=u]Apguy) (4.109)
wyj = g — Uy (4.110)
Biry = -y wi'w; (4.111)
Ui = Wil (4.112)
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i1 = Arsujpl — Gy (4.113)

IF a Y-junction is degenerate, the process is restarted.

Calculating the centrul diagonal using equasion (4.109) and comparing to the known
value, D, is a useful indicator of where the algorithm loses stability.

Rounding etrrors can become significant when w; becomes swall due to cancellation.
Element £;41 is then small, indicating a sudden narrowing of the cable. This could be
considered an approximate termisation point if errors are significant enough.

It may be possible to improve the process by re-orthogonalisation, i.e. to cambat loss of
orthogonality, after each iteration the new Lanczos vector, w41, is forced to be orthogonal

to all previous vectors 12p to a; (details in Golub and Van Loan, 1990).

4.3.5 Householder Tri-diagonalisation
Householder Reflections

A Householder reflection H takes the form
H =T - 2vv” jv¥v, {4.114}

where I is the identity matrix and v is a. Householder nector. Matrix H is square, orthog-

onal, and idempotent, i.e. it i8 its own inverse, so
H=H" =g (4.115)

When a vector @« is pre-multiplied by H, then @ is reflected in a k-dimensicnal hy-
perplane defined by the orthogonal complement!! of span{). The idea extends simply to
matrices: pre-multiplication of an nxm matrix by H reflecis cach column vector of the
matrix in the hyperplane; post-multiplication of an mXxn matrix reflects each raw-vector
of the mafrix in the hyperplane.

Householder reflections are typically used to zero a sclected portion of a matrix row
or column. The conventional melhod of doing this involves coustructing the Householder
vector using the matrix clements one wishes to zero, moving progressively from the baottom-
right to the top-left of the matrix (details can be found in Golub and van Loan,-1990).
On application of $his method to tree matrices, the resulting symmetric matrix does not
have a direct interpretation as an equivalent cable, and thus seerus to fail. It is therefore

necessary to implement another Householder strategy.

11I'he orthogonal complement of a vector space, & is the space spanned by vectors y where ¢%e = 0 for
allz € S.
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The Householder Operation

To summarise, Householder reflections will be used to zero a siuple element st a time.
Repeated post- and pre-muléiplication of the symmetric tree matrix by a series of suibable
Aouseholder reflections generates the symmetric cable matrix!2. A custom implementation
of the new algorithm alsc makes il possibie ta take advantage of the high level of sparsity
that is maintained in intermediate full matrices, and store them elliciently. This is not
usually possible using “off the shelf” Householder implementations which typically store
full intermediate matrices.

Consider a kxk symmetric matrix A, and denote its elements by a;;. The Householder

reflection required to zero element Gy 18, iu block matrix form,

Im O 0 0 0
0 o 0 Jé] 0
Hopn = 0 0 I,y O 0 ) (4.116)
0 g 0 - 0
Lo 0o o 0 Tynl
where n > m + 1, I; is the jxj identity matrix, and
al . *
= : m{m+-1) ' and )6 - Qopn (4.117)
so that
ol 4B =1. (4.118)
The corresponding Houscholder vector is

though it is not used explicitly.

It is casy to show that post-multiplication of A by Hpn will zero off-tri-diagonal
elemenl .., while pre-multiplication of A by H,, will zero off-tri-diagonal element a;),,,.
Tndividually, the reflections distupt matrix symmetry and destroy the coustant diagonal.
Combined, however, pre- and post-multiplication by Hy, referred to as a Householder
operation, &.g.

B — -HmnAHvum (4120]

will zero a pair of elements while maintaining matrix symmetry and the constant diagonal

{a proof of the latter is given later).

12The process is similar to the application of Civen’s robations {Gelub and van Loan, 1990), except that
thiz methad destroys essential matrix structure. The Hauselolder reflection employed does however share

some structural similavities with Given's rotations.
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Figure 4.7: Schematic of the Householder tri-diagonalisation procedure applied to the tree
matrix for a general Y-junction. {a) The symmetric tree has one pair of off-tri-diagonal
elements. (h) zereing this clement produccs new off-tri-diagonal clement forther towards
the lower-right corner of the matrix. (¢}—{(d) repeat until tri-diagonality is achieved. Lhe
resulting cable matrix will represent cither (e) two sections {one connected, vne discon-

nected) or (f} one section (connected).

Denoting elements of B by b;;, this pair of reflections essentially map the unwanted
off-tri-diagonal elements oy, aud gy, into locations b1y aud bgppaym, while modilying
or producing additional off-tri-diagonal elements. Note that operation H,,, ensures that

element by, 1.1) = g 1) 18 positive.

The Tri-diagonalisation Procedure

Flement seroing must be done in a controlied manner. Unstructured application of House-
holder reflections to zero off-tri-diagonal elements is not effective becanse the reflection
can spawn many new off-tri-diagonal elements in the resulting matrix.

The structure of the Householder operation H,, guarantees that only rows and
columns m+ 1 and n will be modified. Furthermore, provided the leading (m—1)x(m —1)
sub-matrix is already tri-diagonal then new non-zero elements are introduced on].y'm row
me+ 1 or higher (and colurmn s+ 1 or higher). All that happens in row m and column e is
that a pair of elements are zeroed. These facts are eagily verified. Starting with the lowest
numbered row which contains a non-zero off-tri-diagonal elemens, it is possible to funncl
off-tri-diagonal elements towards to bottom-right of the maftrix until they must disappear
entirely.

Denote the matrix produced after application of the 7% reflection by A", with ele-
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ments as-;). Denote the 7 reflection by H,, so
A I ATV (4.121)
‘T'he procedure starts of course with the symmetric tree matrix, so writc
A = Apg (4.122)
A tri-diagonal matrix will be generated after p such operations, so
Apg = (HpH, (- HyH;) Agps (HIIHEI Ik H;_llff,,'l) . (4.123)

The superseript * simply indicates that the matrix generated may not yet be the symmetric
cable matrix. Very occasionally negative element on the sub- and super-diagonals will
appear in Axg. This can happen where structure is automatically tri-diagonal withoul
the need to apply a Householder operation which would ensure that the elements are
non-negative. In practice, this seems to only happen in mairix structure representing
disconnecled sections.

Suppose that afzzm,l 1 and aéfr)l_kl)m are two such negative elements. By pre- and post-
multiplying with the maltrix

I, O 0
R™=19 -1 0o |, (4.124)
O 0 I,

the sign of each entry in row -1 and column m -1 are inverted, except the (m+1,m+1)
diagonal entry (the sigu of which is aclually inverted twice). Negative elements may be
introduced on sub- and super-diagonals further down the matrix, so a series of correction
matrices will chase the negatives to the boltom-right of the matrix until they disappear.

Thus, if ¢ such operations are required,
—1 - gp~1 gp—
Acs = (RyRy-1 -+ RyRy) Abg (RTR; - BIAR). (4.125)

We write
T=H=~0R, - - RoR I, ITy 1 Hol (4.126)

It may be more efficient 1o correct any negative elements during the (ri-diagonalisstion,

rather than after. When moving from one row, a say, where off-tri-diagonal elements have

been zeroed, lo a new row, b, where off-Lri-diagonal elements must still be zeroed, then if
b > a+1 check intermediate rows for negative elements on the super-diagonal, and correct
them if necessary.

The Houscholder process assumes that node 0 is origin. If a tree node other that the
soma node is to be used as origin, then number it “0” ingtead and nummber the rest of the

tree using the usual scheme, bhut with respect to the origin vather than the soma node.
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A Constant Central Diagonal is Guaranteed

As with the Lanczos method, it is the structure of Agg, this time on conjunction with
the structure of the Householder operation, thai guarantees the central diagonal elemeut
is the required constant. Again, an induction argument is used.

Let A be a iree connec tivity matrix or any full intermediate matrix generated during
the Householder tri-diagonalisation as described above. Suppese that the matrix structure
satisfies two conditions, namely (1) the diagonal elements are identical and equal to D,
and (2) the row and column number of any off-tri-diagonal element correspond to tree
nodes that are separated by an odd number of A.

We now show that application of a Ilouseholder operation to a matrix of this form
guarantees that the resulting matrix has a similar structure, i.e. it also satisfies conditions
(1) and (2).

The simple structure of Houscholder operatiou H oy, where n > 1+ 1, ensures thal,
when it is applied to a matrix A% only rows m + I and = plus columns m + 1 and n are

operated upon. The only diagonal elements that can possibly be modified are thercfore

aE:i F1)(mt) and a;(fg Simple algebraic expansion of Altt) — g A H, . show that
G'E::H}(m-j--l) =D+ 20001 1m (4.127)
and
V) = D — 20Bapmq13n (4.128)
Clearly, the constant diagonal is maintained if aEi 1) = 0 Condition (2) guarantees this

since nodes m + 1 and n mwust be separated by an even number of 7, so il remains Lo show
that condition (2) always holds.

Again, without going into full details, it may be shown that the Householder operation

produces
attlly, = aald o+ pal),  m+2<i<h—1, i#n (4.129)
st = —aald + ﬁ’a-EEfn___l), m+2<i<k—1, i#n (4.130)
(e+1) o 2 9 3 . .
”’(m-{-il)n - (ﬁ T )G'E;C-.-L+1)n =0. (4131}

Off-tri-diagonal elements in the lower tri-angle must maintain the symmetry so do not
need to be considered.

Since rows m + 1 and n in A correspond to nodes separated by an even number
of h, condition (2) ensures that the same element positions in each row may he occupied
by non-zero elements. Kssentially, equation (4.129) says that row m in ALt g a Fin-

ear combination of these two rows and so maintains condition (2) type structure in this

141




row. Similarly equation {4.129) ensures that condition (2) fype struckure is maintained in
columm n of AETY,

Since the initial symmetric tree matrix satisfies conditions (1) and (2), it follows that
all intermediate matrices and the final symmetric cable matrix must also satisfy conditions

(1) and (2). Therefore the central diagonal is maintained.

Computational Householder Algorithm

Symmetry allows us to concentrate on the upper triangular section of the matrix. The
following discussion of rows applics cqnally to columns.
Initially, go to row zero of the symmetric tree matrix. Let 7, denote the current row

and A indicate the current matrix of interest. Initially, r, = 0 and A = Apg = A0,

1. Move down the rows of matrix A(“], starting with row r., checking the elements in

ovr 4 for ~ 1O (e} |, ()
each row j for non-zera elements other than a i(i-1)0 %5 and o504y
For eac ceaticfuing the Eriediasonalii cr cherde ¢ i€ o (e
For each row j satisfying the tri-dlagonality, also check if elemenls a TG40 and 1)

are non-negative; if negative, they must be made positive using a correction opera-

tion.

Asg soon as we find a row j that does not satisfy tri-diagonal structure, stap, and set

ve = f. I no such row is found, we are finished.

2. Select an ofi-tri-diagonal elements in row j. To zero if, construct the appropriate
Householder reflection, and pre- and post-multiply AL by it. Now increment the
current matrix (i.c. e—e¢ -+ 1). Repeat {2) until there are no more off-tridiagonal
elements in row r.. After each operation a full intermediate symmelric matrix is

produced.

3. Repeal stages (1) and (2) unti] a tri-diagonal symmetric cable matrix has been

penerated.

Figurs 4.7 illustrates the procedure schematically for a general Y-junction symmetrie
tree malrix. .

The simple structure of Iouseholder reflection I, ensures that each zeroing opera~
tion will ouly maedify rows m+1 and n and columns m+1 and » of the current intermediate
matrix. Furthermore, since only clements in rows/columns m or greater are actually al-
tered, and the structure of intermediate matrices {as highlighted in the prior subsection)

anggests that approximately at least half of the elements in any one row are zero, then
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Householder operation H ,, may be applied efficiently, involving & maximum of roughly
(k — m — 1} element modifications.

The Householder operations by which the symmetric tree matrix is manipulated into
the symmetric cable matrix maintain a high level of sparsity in intermcdiate matrices.
The temporary off-tri-diagonal elements are small in pumber and way be stored in (riplet
form.

The electrical mapping hetween tree and fully equivalent cable can be stored in terms
of the sequence ol individual Houscholder reflections, each of which may he stored as a
triplet. For example, Hp,y is the triplet (m,n, ) (o and the struclure of Hy,, follow
from equation (4.118). Of course, to appreciate the connection between dendritic tree and
fully equivalent cable, o full electrical mapping matrix M is required. Since H is not
generally sparse, it it is built up during each step of the tri-diagonalisation then a large

armount of storage space may be required.

4.3.6 Extracting the Eqnivalent Cable
De-symmetrising the Symmetric Cable Matrix

Matrix A¢rg is assumed Lo be the symumetrised form of a tri-diagonal connectivity matrix,
Ao, ie.
Acs = X TAcX. (4.132)
where
X = diag {To.T1,...... s B2y Thoni |+ (1.133)
This is similar to the symmetrisation of the tree matrix, The elemenis of Aqg, which are
kuown, arc denoted b5, while the elements of A¢; are denoted b;;. Equation (4.82) implies

that
s T —
Digirty = brig1y = bigi+r) = = b(z-{-])z'—“_z-H = ¢/ b+ )by {4.134)

T
The task now is to determine the fiy; a.nd T4

The de-symmetrisation procedure may be partitioned into three distinct stages. Stage
(A) describes how to start the equivalen$ cable connected section, stage {B) describes a
recursive procedure that simply produces the main hody of the cable section, and stage
(C) describes how cables terminate, and how to restart if additional sub-matrices need to

be de-symmetrised.

Stage A. We require knowledge of the bhoundary condition at cable node 0. We have

assumed a general current injection condition, so the cable origin is deseribed by equation
(4.27),

2 2 dv
(hg - 1) v+ vy = L — 29(1—0. (4.135)
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Consequently the first row of the cable matrix must be

Doz

v

(4.136)

Stage B. Given the super-diagonal element b;(;4.1), equation (4.134) allows us to determine
the lower diagonal element b1y, using
72
ba'{i—!—l)
Digi+1)

b(i-l--l]i = (’1137]‘

The fact that the sum of the two off-diagonals in each row is always 2/h° (except possibly
when a terminal is reached) ensures that

blityfita) = 2~ bit1yis (4.138)

h2
An iterative procedure that cycles through (4.137) and (4.138) can be initialised with ¢ ==
since hyy is known. Since z3 = 1, the scaling factors can be determined, again drawing
parallels with the symmetrisation,
bi(i1)

Bigl = X3 . (4.139)
1»‘[1‘4—1);:

Note however, that if 5(.;_+.1}|:,;+2) = 0, then it must be the case that by 1)42) = 0, and
the process terminates because the end of the cable connected section has heen reached,
whatever value equation (4.138) might yield. The terminal boundary condition of the
connected section falls out naturally from the desymmetrisation procedure. In fact, if the
terminal is sealed, then equation {4.26) demands that b1y = 2/ h? and equation (4.138)

produces biy1)42) = 0 anyway. If the terminal is cut, however, then equation (4.31)

is actually an internal node connected to an unnumbered cut terminal) so that equation
(4.138} will not produce the expected zero element. In either case, it iy necessary to move
onto stage (C) and restart the de-symmetrisation, unless of course i = k— 2, in which case

the full matrix has been de-symmetrised and there are are no disconnected sections.

Stage C. Suppose the de-symunetrisation has terminated at row p. Scaling factors iy,
Ty, -.-, ¥y have been determined. It is necessary to restart the de-symmetrisation with
row p + 1. The scaling factors must also be reinitialised since there are two less non-zero
off-diagonal elemenis with which to specily the ;. We therefore choose @y = 1.

It ig at this stage that a discretisation level of z > 2 becomes very useful. This allows

to look examine symmetric cable matrix structure in rows p+ 1 and p + 2 and defermine
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the boundary condition with which the disconnected section starts. There are several
situations that must be considered.

If the terminal is sealed and connected to an internal node then equation equations
(1.24) and (4.26) ensure the unsymmetrised and unsymmetrised forms of the first two rows

of the sub-matrix are, respectively

D R '
L D & ], Y2 p (4.140)

=
e T

If the terminal is cut, in which case node (p + 1) is internal then, from equation 4.31,
and assuming nade p 4+ 1 is connected to a diameter step node, then the unsymmetrised

and symmetrised {orins of the first two rows are, respectively,

1 1 2

-~

2e 2 L _a/2¢ )
erteqh? P Gz o | il oy D (4.147)

where ¢p is the c-value of the cylinder on which the cut terminal lies, and ¢g is the
connecting cylinder.

Do, if the disconnected section is represented by more than two numbered nodes, el-
ement '5(p+1)[p+2) in equation (4.141) is less than that in equation (4.140), and the two
terminal types can be distinguished in their symmelrised form. The first row is easily
delermined, and one can return to stage (B) to complete the disconuected section,

However, if the structure is vepresented by just two numbered nodes, then two slightly
different configurations may be produced. Either the leading node p + 1 is sealed, but
connected {o an internal node that then connects to a cut terminal, giving, respectively,

unsyietric and symmetric matrix structure

D % D Yz
[ N ’; I , [ 3 "5 (4.142)
he . WE

Otherwise the leading node is the internal node, and, setting cg = 0 in (4.141), the

unsymnetric and symmefric forms are

D L l D V2 } _
o " (4.143)
[ '11.22 D }:? D

Clearly, the symumetric forms are identical, while the unsymmetric forms differ. One might
think that the choice of unsymmetric matrix then doesn’t matter, however the order of
boundary conditions must be chosen so that the electrical mapping is correct — only one

form is actually corrcct.
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The key is to look at the clectrical mapping associated with node p+ 1, t.e. row p+1
of tri-diagonalising matrix T'. Tf the location of non-zero elements in this row correspond
to internal nodes then node p + 1 i3 internal, otherwise it is sealed.

Finally, it is possiblc that an internal node conmects to twu cut terminals. From
equation {4.32), the matrix form is,

[p]. (4.144)

Note that, similarly to the s;, the @; may be expressed

(4.145)

.
,z_va_

where C; is the c-sum for cable node 7, and g is the cable ¢-sum of the initial cylinder of

the cable section the boundary of which is represented by node q.

Liguivalent Cable Structure

Discrete cable equation (4.23) for a diameter step implies thak c-value ratios are given by

ratios of super- and sub-diagonal elements in the same row, so

Cigit1) _ _T‘_‘bé‘(ﬂ-l] . {4.146)

. 2
C(g--1)¢ T be‘(z‘-rl)

Given the c-value of the cylinder on which node 0 lies, the remaining connected section
c-values follow. For each disconnected section, choose an initial non-zero ¢-value for one
section amd the c-values of remaining sections follow.

It is possible to extract cable c¢-values direct {rom the symmetric cable matrix by
following an algorithm similar to the de-symmetrisation, but discarding elements of Acs

once used.

The Blectrical Mapping

After symmetrisation, tri-diagonalisation, and de-symmetrisation, the matrix cquation for
the tree (4.36) becomes a matrix equakion for the cable,
3'00 —1 .

where

A= MAp M, vo = Muvy,  ic=DcMD7 ir. (4.148)
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The elecirical mapping, M is given by
M=X7T5. (4.149;

To map electrical guantities froin cable to free, the inverse of M is reguired. It can be
obtained quite simple from its compounent transformations. Matrices 8 and X are easily

inverted, and, since T' is a product of orthogonal transformations, T~ =TT, Thus,

Mt =57ty x -l (4.150)

4.3.7 Further Computational Considerations

The tree and cable matrices can be efficiently stored since they are sparse and nearly
tri-diagonal. It has already been explained that a tree matrix based on & numbered nodes
coulaing 3% — 2 non-zero entries. The clements of the main diagonal can be stored as
one clement, which suffices for all all {ree and cable matrices (and intermediate matrices
generated during ITouseholder tri-diagonalisation). The 2k — 2 elements are respectively
the row and column of the elemeni while the last 1s the element valne.

However, it i3 more practical to build the symmetric tree matrix directly from tree data.
Diagonal matrix 8§ (k elements) is straightforwardly constructed (equation 4.85), while the
symmetric cable malrix iy constructed using equation (4.85). The symmetrisation matrix
S is stored in a k-length vector, while the off-diagonal elements of syminetric matrix Agpg
can be stored as & — 1 row-columns-value triplets.

Specific computational considerations for the Lanczos and Houscholder procedures are
given i their respective sections earlier in this chapter.

After completing the tri-diagonalisation operation, the symmetric cable matrix may
be stored as a single (k£ — 1)-length vector; it can be built up element by element during
the tri-diagonalisation. T'he cable matrix, supexr- and sub-diagonals, can be stored as two
(k — 1)-lenglh vectors. The de-syminetrisation mairix, X is just another k-length vector.

It should be noted, however, that it is not actually necessary to store the cable matrix.
The equivalent cable structure is easily extracted from the symietric cable matrix using
a modified de-symmetrisation algorithm, while matrix X is given by equation (4.145).

In conclusion, the passage from dendritic tree to fully equivalent cable can be achieved
with high speed and efficient mernory ntilisation in view of the sparse nature of dendritic
gtructure matrices, However, the elcctrical mapping, heing an agsociation between points
on the dendritic tree and fully equivaleni. eahle, requires calenlations on full matrices for

a complete specification and therefore is inevitably slow and memory intensive.
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4.4 Algebraic Examples of the Matrix Methods

4.4.1 The Lanczos Method

We illustrate the Lanczos procedure with a simple algebraic example. Consider the Y-
Jjunction in Figure 4.5b. Bet b = 1 for convenience. The branches have a total electrotonic
length of 8, and so the equivalent cable must have electrotonic length 8.

The tree matrix is

[ B )

j
3]
S

&

(4.151)

H\
oob_@igoc:oo

- D
1
0
0
0
0

o

0
0

<
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0
0
0
o |
0
1
D

D = O = o= oo
o}
[\~
N-Uooo@igc;o

0
0
0
1
Zr p
1
0
0

c oo oD O O

<

After symmetrisation, using equations (4.82) and (4.84), the tree matrix hecomes

D /2 0 0 0 0 0 )
Vi D \/ e 0 0 0 @
2 -T 2 2ey.
0 ¥ D %J} 0 0 B0
0 0 2= b JfE o 0 o0
Ars = * 5 ¢ - ) {4.152)
I e
0 0 0  JE D B0 0
200

0 0 0_ 0 % D 0 0
0 0 25—,; 0 0 0 D V2
0 4] 0 0 0 0 V2 D

with symmetrising scale transformation

8= diag{1,v3, gz—,,/g-cii, G !/gc_;.«, j2en ezl (4.1563)
Cp cp \ Cp V ¢y

cp cp

The Lanczos wethod can now be applied. Recall that Cy = ¢g + ¢p. 'Fake the soma,
node 0, as the origin. The initial Lanczos vector is uy = eg, and so, apply the first cycle

of the procedure

Agsug = Dug + vV2e; {4.154)

Set %1 = ey to satisfy the tri-diagonal structure and orthonormality of the w;, so

Agguy = V2uy + Dug + \f} -‘-?é’,iez. {4.155)
‘2
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In this case, sel up = e3 since the tri-diagonal structure and orthonormality of the wu; is

already ensured. Non-tri-diagonal structure is now encouutered in the matrix, so

2ep 2cp \/2(:1,
A_ 0 — ————— A4 - H . ) 3
TSUW2 = 4 f o wy + Daug \/ Cs es + ren e5 {4.1566)

Choosing
CRr Cr,
= 5 4.1
3 \/CR + ¢y, €s + tr+ ey €6 (4.157)
ensures that _
2cp 2(c
Arguy = \/ F -+ Dug + 1| CR L), (4.158)
Cy Co

Now, the next iteration yields

[2(cgp +cL) f 2(:%Z 2¢r,Cy
== e R 40 D K - v
Argus A wy 4+ Dug 4 C—*——Q(CR + CL) ey + C,l(C“ T CL} c7 (’l 159)

Choosing
— —
Ch er,Cy .
Uy = 4] ey + 4 | 5y 4,160
! \/c% + ¢, Cy 4 c%i -5y “7 ( )

allows this stage to be rewritien in tri-diagonul form,

2 - [2(2 + erCy)
Apgus = \/ Eﬁéﬁug + Dug + —C(,Zl(ia?-%;?)-)-uzl. (4.161)

After some algebraic effort to ensure syminetry, the next cycle produces,

Z(C?E +erCly)

Apguy = Culont c) g - Dg
+[—epep/Cres + crep/eres + crler + cp)/cres)
1
% / 2 (4.162)

cRr +CL v Ca(cd, +cpCa)

This can be rewritien

2% + er.C. " 2cre
Apgiig = \/ {611#1]",3 + Dy + ‘\[_,_EEE.F__).“S’ (4.1()'3)

Cylenr +cp) Cilcr +cr
where
us = of ! .
b \ crep (e, + epCa)(er -+ cp)
[crerv/eres + crerv/eres + caler + cp)v/eres.| (4.164)

It is easy to check that us.us = 0.
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At the next iteration the algorithm terminates, since Apgus can be exprossed in terms

of uy and usg,

A = 165
TEUs \/04 (on + ) ug + Duy, (4.165)

The counceted section sub-matrix is complete, but two vectors have yet to be found.
Another Lanczos vector, orthogonal to all the previous six, must be found so we may
initialise construction of the discomnected scction sub-matrix. Choose vector ug to be
similar to us, with coefficients of e3 and e having the same relative size (i.e. ~M)
to ensure orthogonality with g to wq. Just change the value of the cocfficient of es, so

that ug can be made orthogonal to wy. If N is a normalisation factor and K is a constant

ug = N (63 -4 /%66 + K'es) . (4.166)

The dot product of uz and g must be zero so K = \/cp/eg, and, after normalisation,

then

/ CLCR f CR CLCRp

e — L L 4.167
6 CR - cLC'4 cR + CLC‘4 C?ﬁ 4+ ¢1.Cy ( )
Now, the Lanczos method may be continued as before
Amsug = Dug — | --2L04 e ‘L%e (4.168)
Tste = ¢ v (C%t -~ CLO4_) 1 v CR+('L(Y4 & .
and s0 we must toke
CLCq jz
- . 4,169
(c%: - CLC4 e \/(‘R + ¢ Cy s ( )
so that
Aggsug = Dug + v2uy. (4.170)
Finally, the Lanczos method can be completed,
Apsur = x/2_uﬁ + Duy. {1.17 71)
The symmetric cable matrix is, from the expressions for Argu;,
n Ve 0 0 0 0 0 0 |
vioD o g o o 0o
o /& p Ao 0 0 00
2(entoy) [2(ch+erCa)
ek +enCy) ! Sepep
0 0 0 \/ C1Em+:£)' D \ Ca(ep-ter) 0 0
2epen
0 0 0 mﬁ—pr) D 0 Q0
0 0 0 0 0 0 D V2
| © 0 0 0 0 0 v2 D
(4.172)
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Figure 4.8: The equivalent cable for the Lanczos example in section 4.4. Al lengths are
clectratonic. The first cylinder, connected to the origin, is the same in both structures
and has electrotonic length 2 and c-value cp. The diameter of the disconnected section
doesn’t matter — set it to 1. See text for more details.

Note that the disconnected section submairix begins with an internal node connected to
a cut terminal, since eletnents of ug are contributed by internal nodes of the tree. It is
easy to check that all the Lanczos vectors are orthonormal, as is expected.

The cable matrix can be extracted using the procedure given in section 4.3.6. The
first super-diagonal element is 2, from equation {4.26) for the sealed end at node 0. The
lirst three nodes on the counected section form the same cylinder as those on the origi-
nal dendritic tree. Cable nodes 2-4 are described by discrete cable equation (4.23), The
connected section terminates at node 5, with & cub terminal, equation (4.31). Recall that
bhis equation represents an internal node connected to the ent terminal node. The dis-
connected section must have length 2 for the cqnivalent cable to have total length 8. The
disconnected section symmetric submatrix is characteristic of a 2f length structure repre-
sented by 2 nodes, one at a sealed terminal and the other at an internal node connected
to hoth terminals.

The cable matrix is

D 2 0 0 0 0 0]
1 D 1 0 0 0 0
0 Ze p Zemre) g 0 0 0
2 )
0 0 1 D 1 0 0 0 .
AC - 0 0 0 ((‘ -=€, CaLJ D 2eperp 0 0 ! (4173}
C’a(ﬂzﬁ-c—T Calcpter)
0 0 0 0 1 D 0 O
0 0 0 0 0 0 Do
| 0 0 0 0 0 0 2 D |

with de-symmetrising scale transformation

1 CP - cp CR+({F4) ( +(LC4) i
X = diag Wi —=
\/ﬁ Cy’ 2(cr + er,) \ Cyler +cz)? ZLRCF(CR - CL) "2
(4.174)
The c-value ratio for cylinders either side of a non-terminal equivalent cable node, n, is

given by the ratio of elements in row n of the cable matrix, either side of the diagonal. Not
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surprisingly, the first cylinder (length 2) must have c-valuc ep to imitialise the c-values.
‘T'he second (length 2) has c-value cg + ¢z. The third and final connected section cylinder
has c-value crer(ep + en}/{ch + er.Cy)-

The electrical mapping is

[1 00 0 0 0 0 0o ]
¢ 10 ( 0 0 0
0 01 0 0 0 0 0
¢q eL
Moxps=|200 gfg 0 0 ZF 0 (4.175)
g [
eoe 0 gl 0 0
000 %y 0 1 om0
0 0 0 —pCr 0 —~pPCE  PCR 0
0 0 0 0 —pCy 0 0 PLR
‘I'he total surface area of the original tree is (scaled by a constant)
Stree = Cp +cp +cp + P (4.176)

Note that, since the tree had a cul terminal, total surface area need not be preserved in
the connected section, and in fact, in this particular case, it is less than the tree surface
area,

c‘é + creg
% + crep <+ cpeg,

crep{cn - cr)

Seon = cp -+ (cp+ep) +
con Cp - (('R'!"L‘L) (C%"l‘ CLOtL)

=cp+ (CR-l-CL) +ecp < Stree.

(4.177}
When trees have cnt terminals, it is more common for surface area to be greater in the
connected section than in the tree.
Figure 4.8 shows the original dendritic tree and the equivalent cable that has just been
generated.

4.4.2 The Householder Method

To illustrate the construction process, consider a very simple singly branched Rall tree,
with a parent limb () and two child limbs (L and R}, each of quantum length, 7, with
a. discretisation level of z = 2 sa there are three nodes per cylinder. Trees with higher '
Jevels of complexity generally exhibit a much more elaborate algebraic structure, and are

luss practical for demongtration purposes.




The Tree Matrix

2 0 0 0 0 0
L 2 1 0 0 0 0
2 . 2n
nE 2 D o0 Z=op
r=m|0 0 1 D 1 0 0 (4.178)
0 0 0 2 D 0 0
o 0o 1 0 0 n 1
b0 0 0 0 2 D
The Symmetric Tree Matrix
D V30 0 0 0 0
v2 D 0 0 0 0
Gep 2 %
) 0 /¥ D VEE 0 Z00
A" = Apg — =0 o X.op V3 0 0 (4.179)
0 0 0 vZ2 D 0 0
0 0 2 0 0 D V2
B 0 0 0 Vv D |
wilh
U
. '(}2 /ECL ?CR
S = diac {12 478 jH (0L (4.180)
e { YRy t:p\/ CP’\/;’ op CP} ' g

Tri-diagonalisatinn

We want to zero elements a. ‘( ) and aw) The first Householder reflection takes the form

0

Hy=Hy= (4.181)

=== =]
c oD o o o

O o o o o o =
(o= e B B o B L= ]
DD O O O

oD oo o o
O, o R O @ O
o o
= |

)

where

cr, CRr
=, f T _ =./- — 4.182
MC[{,"}‘CL and 3 p—— (4.182)
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yielding

=

A =

Pl
o

D
V2
0
0
0
0
0

1
Now elements aéﬁ an

where again o and B take the same form as in cquation (4.182). Note that this is only
because of the simplicity and symmetry of the example. In general, much more algebraic

complexity is observed in the intermediate mafrices, and cxpressions for « and 8.

]SS

&

o o o D

)

Hy=Hy =

d a((i:l;), must be zeroed with Houscholder reflection

0 0 0 0 0 f
e 0 0 0 0

LIVECEED 0 0
Hogedd D fEae 0 [Ra

0 Vars D &m0

0 R A

0 Tten 0 & D

(4.183)

[ |

00000 0
010000 0
0010006 0
060010606 0 {, (4.184)
0000att 8
000001 0
00008 06 -

After application of this reflection, the symmetric cable matrix is generated.

| D

V3 0 0 0 0 0

D NED 0 0 0 0

zé,; D 2 _C:z 0 0 0

0 Hogge] . I o o (4.185)
0 0 V2 D 0 0

0 0 0 0 D V2

0 0 0 0 v2 D |
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De-gyrmmetrisation

Simply apply the de-symmetrisation algorithm yields

D % 0 0 0 0 0
1 D 1 0 0 0 0
0 %2 p Hatem 4 g
Ac=10 06 1 D 1 0 O (4.186)
¢ 0 0 2 D 0 0
0 0 ¢ 0 0 D 1
|0 0 0 0 0 2 D |

with

) 1 s = a1
XN =4d 1, s i f =, [T e 4.187
18 { \/§ V Cy \/2(61_, + CR) \/(CL 4+ ¢ ] \/L"} ( )

Cable C-values

With the parent cylinder, length H, unaltered by the transformation, it has c-value cp.
By cxamining rasios of off-diagonal elements in row 2, the diameter changes at node 2 to
cr, -+ cg (the simple Rall swm), and the cable terminates with a sealed end at node 4 after
a further length H. The disconnected section is of length H, starts with a cut Lerminal
(examining row 5 of the mapping below tells us node 5 is an internal node connected to a.
cut terminal), and ends with a sealed terminal.

Electrical Mapping

The electrical mapping is

(100 o 0 0 0

010 o0 0 0 0

001 0 0 0 0
M=XHH18=100 0 % 0 z%& 0 (4-188)

000 0 = ¢ e

000 1 0 -1 0

000 0 1 0 -1

4.5 Observations and Discussion of Matrix Methods

The Householder and Lanczos methods have hoth been found to work effectively, producing
the same cable structnure with the same boundary conditions when applied to the sare

matrix representation of a discretised dendritic tree model (numerical crrors aside). These




metliods do not constitute a proof that equivalenl cables exisl ag concrele mathematical
objects (they could feasibly, though i is unlikely, be a strange facet of the matrix method
itself). We develop an analytical theory for cable construction in the remaining chapters
of this ¢hesis.

The tree malrix developed in this section is designed primarily for the purpose of
equivalent cable construction. However, the discretisation may be extended to the time
derivative and the system of equations may be solved by soine appropriate numerical
scheme. If not nsed for cable construction, boundary conditions other than cut or cur-
rent injection 1ay be incorporated into the diseretisation scheme. Lindsay et al. (in
press) outline the relevant extensions and why this not the ideal approach to numerical
simulation.

For either the Laneros or Householder method, any disconnected sections are gener-
ated using a Y-junction by Y-junction approach. It is possible to apply the Householder
method to any tree matrix and generate the connected section matrix plus a set of ad-
ditional sub-xnatrices. IHowever, although there seems to often be the right number of
sub~-matrices representing scctions that are correetly terminated, these matrices do not
always correspond to the expected disconmected sections, Egsentially, the subspaces of
electrical activity described by a group of disconmected sections are wmixed up and the
clectrical mappings, though describing activity not seen by the soma, do not correspond
0 the expected mappings for a specific Y-junction. Recovering the desired mappings and
disconnected sections from these matrices may not strictly be necessary, but a method for
doing 50 has not yet been found for a general tree.

It has already been noted that the Householder method preserves a high level of spar-
sity. Exactly why has not yet been fully investigated, but it is undoubtably a consequence
of the structure of the symmetric connectivity matrix and the Householder operation em-
ployed. This is, however, a move general linear algebra problem, and may be of benefit
in areas other than neuronal modelling. For large matrices, and where possible, a sparse
Honscholder algorithm is always preferable to the general Householder which stores a full

intermediate matrix.
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Chapter 5

Foundations of Equivalent Cable

Construction

5.1 Introduction

Results gencrated by the matrix methods described in Chaptler 4 suggest very strongly
that fully equivalent cables exist as well defined, concrefe mathematical objects (though
the matrix methods do not constitute a proof of their existence). Tt seems that dendritic
trees of arbitrary geometry (represented by the multi-cylinder passive model described in
Chapter 2) may be transformed to their equivalent cables straightforwardly and cfficiently
using the Lanczos and Householder procedures. Questions now arise concerning why
the reduction procedures work at all. What features docs the general system of linear
cable equations exhibit that permnit this interesting and surprising result? What is the
theoretical foundation for the construction of fully equivalont cables?

If the matrix methods of equivalent cable construetion are applied algebraically, one
can observe, even for some fairly simple tree structwres, an incredible level of cornplexity
in the resulting expressions for the cquivalent cable potentials and ¢-values, in terms of
the corresponding tree potentials and c-values. How does this process always guarantee
that connected and disconnected cable sections lerminate with appropriate boundary con-
ditions? When and why should disconnected sections be expected? Is it possible to.clarify
why the equivalent cable for a. general Y-junction contains at most one disconnected sec-
tion? There ave further results {described later} that are particular to certain trees and
their cables and which are also not clearly explained. The natural progression ai this stage
is 1o lry and determine the underlying rules of cable construction that are implemented
by the matrix methods.

The Lanczos and Householder procedures on their own do not give enough insight to
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determine these rules easily, if at all, but some general features of equivalent cable shape
and clectrical mapping structure observed in results generated by these methods hint at
equivalent cable features that must be guaranteed during cable construction (for example,
the first cable cylinder is always Rall-like, and Lhe elecirical mwapping is always seen to
exhibit structure consistent with a vitally important construction rule -~ the “isolation
condition”, which will be formally developed later). These features have heen key factors
for the development and testing of the analytical theory.

The formulation of the analytical construction procedure eventually reveals a reason-
ably straightforward sel of underlying principles and construction rules which can form
the basis of an effective cable construction algorithm. The algorithm involves repeated
application of a sct of rules, producing one cable cylinder after each cycle through the
rules. This repetition can lead to the expected rapid accumulation of algebraic complexity
in expressions [or the electrical mapping and cable c-values. Fortunately these expressions
need not be dealt with directly.

The analytical theory of cquivalent cable construction is developed in Chapters 5, 6 and
7. The analytical rules are derived for, and applied to, the multi-cylinder representation of
a passive dendritic trev, with the only trees explicitly considered being Y-junctions (singly
branched trees). Any tree may then be fransformed by successive reductions (the validity
of this Y-junction by Y-junction approach is also confirmed by the analytical rules). All
cylinder electrotonic lengihs are a multiple of some basic electrotonic length. A cable
equation is associated with each uniform cylinder, acceptable boundary conditions are
imposed at terminals, and joining conditions apply where cylinders meet.

To introduce some of the most impoartant ideas that are employed in cable construction,
in this chapter we will concentrate of the fundamental principles from. which the rules will
eventually follow. This is most easily done by considering specific examples. A fairly
loosely defined first-principles acheme for cable construction is described and then used to
construct fully equivalent cables for fwo specific Y-junctions. This will allow us to observe

how the construeciion procedure naturally consists of two distinet sets of rules,

e Flectrical continwity rules: These rules guarantee valtage continuity and current
conservation between adjacent equivalent cable cylinders, but in a way thai does not

uniguely determine cable structure.

o Isolation—termination rules: These rules ensure that any dendritic sub-tree may be
transformed in isolation from structure it is comnected to. These rules simultane-
ously guarantee eventual tormination of the equivalent cable. The cable struciure is

mniquely defined in the process,

‘This chapfer will be concerned mainly with the electrical continuity construction rules.
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The most important special cases will be listed, and it is shown that they do what is
claimed. We then describe the isolation condition, the simplest and most fundamenial
of the isolation—termination rules. Chapter 6 contains full tochnical details, showing how
general forms for each set of rules follow from the first-principles approach and other
considerations.

As would be expected from the matrix results, the analytical rules depend entirely on
the c-values and relative electrotonic lengths of dendritic cylinders. Specific electrical pa-
rameters {membrane conductance per unit area, internal resistivity, membrane capacitance
per wnit area) that describe the passive {ree need not be known. The shape and electricat
mapping of an equivalent cable is entirely dependent on geometry. The applicalion of
the analytical rules does not reqnire one to actually solve the system of cable equations,
although the derivation of some analytical rules does involve the use of Laplace tranglorms

(however, the manner in which they are used may be regarded as unconventional).

5.2 The Multi-cylinder Tree Model in the Laplace Domain

Laplace transforms are commonly employed where they can simplify the task of obtaining
solutions to dilferential equations — one solves the transformed equation, then determines
the inverse, either analytically (there are many well know pairs of function and their inverse
transform) or by nnmerical means (e.g. contour integration and residue calculus), The
novelty of their use when generating equivalent cables lies in the fact that the information
sought is not the solutions themselves but rather how they are combined to give the correct
electrical mapping. ‘L'he electrical continuity rules ave derived in the Laplace domain, that
is, the electrical mapping they produce relales Laplace fransformed cable potentials to
Laplace trausformed tree potentials. Linearity guarantees that the electrical mapping is
equally valid for the untransformed tree and cable potentials.

Throughoul lhis chapter, as in Chapter 4, it is understood that lower case letters
are used to denote quantities expressed in terms of electrotonic length and time. Also,

“electrotonic length” will often be referred to simply as “lenpth”.

5.2.1 The Laplace Transform

The Laplace transform of a function f{t), where £ > 0, is defined by
- . . =< _s .
Fla) = £(fys = [~ sy ae (5.1)

Gliven f(s), the iuverse Laplace transform allows us to find f(¢) such that f{s) = £[f{¢t); s].
We write

F@) =L [F(s);¢] . (5.2)
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Properties of the Laplace Transform and the Inverse Laplace Transform

I the Laplace transforms of two functions f and ¢ exist then

Llaf(t) + Bo(t); s] = L [f(#); s] + BL[g(E); ] . (5.8)

where « and § arce constants. Also,

L7 [aef(s) + Ba(s); €] = oL [F(s);t] + BL7 [G(s); 8] = of (£} + Bg(t). (5.4)
If f is e diflerentiable function of £ then

‘ [Qfé(—fl s] = sf(s) - 1(0). (5.5)

5.2.2 “Fhe Cable Equation

From Chapter 2, the dimensionless cable equasion for a uniform cylinder with electrotonic

length { and c-value ¢ is,

v Hw P .
97 E-l—‘v—ﬂg, <z <l (5.6)

where x and ¢ are electrotonic length and time respectively, v(x, ) is the cylinder potential,
#(z,t) represents applied currents, and §2 is a constant..

The Laplace transform of the cable equation, with respect to electrotonic time t, is

0%z, 8) _ i(z, s) .
——— = (1l +s}(z,s) —ulr,0) - Q—>t, 0 <<l s >0, (6.7}
Sz? c
or )
vz, « ~
% = ?%(z,8) + Flz,8), O<z<l, s3>0, (5.8)
where -
w? = (1 + s) and fz,5) = —Q-M — o{z,0). (3.9)
C
Axial Current
I'vom equation (2.98), the Laplace transformed axial curvent is
To(2, 8) = g 28] (5.10)

Ox
5.2.3 Boundary Conditions

't'he boundary conditions listed inn Chapler 2 as being acceptable for equivalent cable
construction are almost identical in the Laplace domain, since temporal, rather than spa-
tial, dependence is being transformed. Conditions (2.91), (2.93), (2.94}, (2.95) and (2.86)

boecome:
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Current Injection Condition

The time-varying axial current is specified at boundary @ = ! on a cylinder,

0.9
dz

Recall that £ = I may be regarded as a point where the eylinder diameter falls abruptly

=~

io(l,8) = - K = i(s). (5.11)

to zero. The sealed end special case is
du(l, s)
ox

=0. (5.12)

Cut End Condition

The potential at © = [ is set to zero, i.e. the transmembrane potential is fixed at $he
resting potential,

B(l,8) = 0. (5.13)
Recall that & = ! may be regarded as a point where the diamcter jumps abruptly to
infinity.

Joining Condition

Suppose a. parent cylinder (p) meets n child eylinders (e, ez, ..., €,) at a junction. Voltage

continuity may be expressed

Gp(zprs) = Z_)Ck (0'.\3)) (5'14)
for all & where 1 < & < n. The current conservation condition may be expressed
™
Eaf:}? (?’F) 8) ay EA (3) = Zza,C& (01 3)1 (5-1 6)
k=1

where 74(s) is the Taplace transform of an applied current source at the junction.

5.2.4 Solutions of the Laplace Transformed Cable Equation

Tyom here onwards, the s-dependence in the Laplace domain will be suppressed, by writing

{z) = v(z,s) and  7a(2) = i.(z, s). (5.16)

General Solutiou
The Laplace transformed cable equation (5.8) has general solution
L
#(z) = asinhwz + feoshwe + — / f(y) sinhw(z — y) dy. (5.17)
W Jo

The integral term represents Lhe contribution to the potential due to the initial state
of the mewbranc and input currents along the cylinder, while the coefficients « and 3 are

determined by boundary conditions.
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Cylinder with a Sealed End

If a cylinder terminates at m = I with a sealed end bonndary condition, then
7]

i 0. (5.18)

Suppose there are also no external current sources (except at ¢ = 0), and the membrane
potentisl is initially zero, so that f(z) = 0. If 9 is the potential at & = 0 then the
coefficients in the general solution {5.17) become

_ sinhed
o= —p

vy awd A=, (5.19)

which yields, using standard identities for hyperbolic trigonometric functions,

_ coshw(l — )

5{(z) = Ty (5.20)

cosh wl
Cylinder with a Cut End

Similarly, if the cylinder terminates at & = [ with a cut end boundary condition then
a(l) — 0. (6.21)

Again 7y is the potential at = 0. The coeflicients in the general solution (5.17) are

_ coshw! N ‘
o = ---’E.[]—Si—nl—l';';—l- cLIld ﬁ =Y, (522)
which yields

5() = o ﬂhfu“m) (5.23)

5.3 The Strategy for Equivalent Cable Construction

Consider a cylinder with length ! and c-value e. If the potential and axial current at end
x = 0 arc given by ¥(0) = vy and ,{0) = 47, then o and @ in equation (5.17) can be
replaced to give

_ B} B [ ST -
) = oshwr — —— r -+ — h - . “(5.24)
#(z) = 9y coshwr e sinhwz + ” /0 Fly) sinhw(z —y) dy (5.24)

TFor reasons that will hecome apparent this solution will be referred to as the generator
equation.

Thus if the potential and axial current at one end of a cylinder are known, an expression
for the potential throughout the cylinder is obtained, provided fhe distribution of applicd
currents in the cable cylinder can also be specified (this is easily done, following from the

linearity of the system). Once the equivalent cable origin has been chosen, it is possible Lo
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b

{c)

{0

Figure 5.1 Fully equivalent cable construction [rom f{irst principles for a peneral Y-
junction. Cable construction is based on voltage continuity and current conservation.
(a) A general Y-junction formed from cylinders (of arbitrary diamcters, but represcented
here as identical segments). Tnitialise the procedure with the voltage at the junction ()
and current flowing into left (I;) and right (I;) child branches. (b) Construct the first
cable cylinder using this information then determine the axial current (Z5) and potential
(V2) at the end of this first cylinder. (c¢) Use these two new gquantitics to generate the
second cable cylinder. (d) Repeat this procedure until the equivalent cable is comstructed.
The cylinder determined at each stage is shaded. Note that cable c¢ylinder diameters ave

also different, in general.
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take advantage of this in the Iollowing way. Given the potential at the origin, and the axial
current flowing from the origin into the tree structure that is the target of the procedure,
we can write down an EXpression far the potential throughout the first equivalent cable
cylinder, using the gencrator eguation. Consequently, expressions for the potential and
axial current at the end of the first cylinder can be obtained. Voltage continuity and
current conservation in the cable cnsure that the posential and axial current at £ = 0
i the second equivalent cable cylinder (i.e. where the second cylinder connects to the
first) are kuown; agsin using the generator equation, an expression for the potential in the
second cable cylinder can now be obtained.

In principle, this process, illustrated in Figurc 5.1, can be repeated to generate an
expression for the potentisl in each cable cylinder. However, the algorithm above is rather
looscly specified. Several queslions must still be answered, such as how are the c-value
and lengths of the cable segments determined, and how does the procedure terminate?

So far, we simply have the basis of a consétructive mechanism for fully equivalent cable
generation. The algorithm can be used as a first principles approach (the technigue is
illustrated in examples in the next section). TFor more practical purposes, the algorithm
is used in Chapter 6 to generate the general construction rules. The electrical continuity
rules follow directly, while the isolation-termination rules follow from the need o impose
a cerlain structure on the electrical mapping.

It should be clear that the construclion mechanism automatically ensures that the
steady-state input conductance of the cable connected section will equal that of the tree
since we initialise the cable potential and axial current with the tree origin potentjal and

axial current.

5.4 Examples of Cable Construction from First Principles

5.4.1 Example One

Consider the simple Y-junction in Figure 5.2a. The left cylinder (£) has electrotonic length
I, c-value ¢, and terminates with a sealed end. The right cylinder (&) has electrotonic
fength 31, c-value ¢®, and also torminates with a sealed end. The two cylinders meet at
« = 0. For simplicity suppose that there are no input current termms. The poteﬁtia.l in
equivalent cable cylinder & will be denoted ¢, its axial current 45, and its ¢-value is ¢g-

The potentials in the left and right branches are, from equation (5.20),

_ coshw(l —z)

oyla) = 22 <<l (5.25)
cash wi
n _ coshw(3l — %)
A - b e S S 5 < o 3] R
p(x} oshisal 0<z<3 (5.26)
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The potential at the junction ig 95(0) = 9x(0) = ¥, and only at this point are the left
and right potentials related. Choose the junction point as origin. The total axial current

flowing into the two cylinders is z;. Using equation (5.10),

iy = —Kc 9uL(0) KR dtp(0)
oz 9z
- _ | ,sinhwl g Sinh 3wl r
= whiy [C coshwl ¢ Goshawi | (5.27)

Cable Cylinder One

Apply the generator equation (5.24) using vy and iy to try and generate Lhe first cable

cylinder,

¢“ sinhwlsinhwa " sinh 3w! sinh wx B
(5.28)

b1 () == 3 coshwz — 07 |~ e -
¢1(e) [c‘f cosh wl ¢ cosh 3wl

Using standard identities for the hyperbolic functions,

- _ g" ot el coshw({l—x) ¢ coshw(3l — )
= ¥ cosl leos = =y ——— 4+ Zig—————=
#1(=) J 1(03:( e ci) cf coshwi e " cosh3wl
~ ol 4 R ot ct
= ¥ycoshwe (1 - -(—Hj?—l) -+ 36"_’1'("“') + E{_’E‘R(T) {5.29)
] [ 1

Note that ¢ has not been specified at this stage (we regard ¢;, in the form above, as a
framework potential function). Nevertheless, voltage continuity and current conservation
are guaranficed at the origin, whatever structure the Y-junction is connected to, and
whatever value ¢f may eventually take.

Of course, it is well established from the Rall equivalent cylinder result given in Chaptoer
3 that
o =+~ (5.30)

This value removes the spurious term 7y coshwz (which cannot be interpreted as a cable
solution}, leaving a linear combination of Y-junction potentials.

The c-value of the first cable cylinder has now been found, as has its potential tunction.
What, then, is its electrotonic length? Note that vr(z) is only valid for length I since the
left branch has length {. Choose the length of cylinder one to be {, otherwise the right-

branch contribution to the pofential function is partially invalid. Thus,

B o o
drix) = E—C—Q':L(a;) + Z:‘c?"_’R(w)’ 0<z <. (6.31)
1 1

Now that cable cylinder c-value ¢f has been specified, we regard ¢ as a fully specified
potential function, i.e. no longer a framework potential. More gencrally, ¢ is regarded as
a framework potential until ¢f has been determined, at which point it can be substituted

for and the unigue potential function has heen determined.
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The construction procedure has suceeeded for the first cable cylinder. Perhaps this is
not too surprising though, since the first cylinder is almost identical to Rall’s equivalent
cylinder, the difference being that, at = = I, ¢1 cannot terminate since #;(t) and dvg(1) /0=

arc both unconstrained. We must proceed with the construction.

Cable Cylinder Two

From continuity of voltage and conservation of current,

’ n
$2(0) = @(l) = %f’"&ﬁm + ",13 v%;—;i;—zg, (5.32)
T0) = 0= —Kcﬁ?g-Sl - ch“ﬁ;%. (5.33)
The generator equation (5.24) gives an expression for the potential in the second cable
cylinder,
c" _coshwz  cf  cosh2wlcoshwr ¢ sinh2wlsinhwe “
Pole) = qw coshwl Ew cosh 3wl B ’UJC_‘Z" cosh 3wl (5:34)

Rearranging gives

Folz) — ii coshwz ¥ c’f_ 1 feoshw{2l -z} coshw(2l — z)
nE cf 7 coshwl e "y cosh 3wl cosh 3w(
e¢® 1 fcoshw(2l+=z) coshw(2l—mx)
— 1} — —
c§ 2 | cosh 3wl cosh 3wl
cR1 ( ci”) _coshw(2l +2) "1 ( , c,c') _ coshw (2l — )
= Go\l- gt asr tegil T e
e 2 S cosh 3wl «f 2 5 cosh w3l
¢ _ coshwz
T»—-:'{J D
cf T coshwl
JR l (o R 1 C’
= g?ﬁ(l—z—:z-)ﬁﬂ(l—x)-l— 2(1 - - )UR(aH— L)—{——w,(t—r)
(5.35)

The second cable cylinder, like the first, must have length I since Lhis i3 the maximuin
range for which the three components of the expression are valid. At this point, there is no
clear choice for ef, but it is insightful to check for the possibility of termination at x = 1.

Clearly, 5,(21) and 99r(20)/0x are unrestricted, however, observe that if the sum of the

coefficients of ¥r(l — %) and 4z(I — ) is zero (i.e. coefficients have the same magnitude

but opposite sign), then

¢l c¢ ck o
Si(1-2)+ 5~ (5.36)

c5 e
and at £ = ! in cable cylinder two, voltage continuily at the tree junction ensures these
two terms will cancel giving

Fa(l) = &5 (1 + 25) on(2). (5.37)
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if the rvight hand cylinder were actually length 27, and satisfed a cut end conditiou at the

terminal, then ¢o(1) = 0, and the cable terminates, Bear this in mind, as we proceed now

to the next cable cylinder, without specifying ¢§ in potential ¢g.

Cable Cylinder Three

Once more, voltage continuity and current conservation give the required information for

the proximal end cf the next cylinder,

. - _ [e?1 cf & o ° hwl
Fa(0) = oll) =y [%_ ( — _lc) n ic] n z_cﬁ (1 + ."_1___) Lostlw (5.38)

1 c§ } cosh 3wl

. 08(0)
:"'n-‘l’l([]) (Z) . G O
L crysishdel L/ of) sinhwl | o sinhuwl
c§ / cosh3wl  cf2\ ¢f/ cosh3wl  f coshwl
(5.39)

Il

|
=

£
%
)

The generator equation (5.24) gives
Fa(2) _ [l ef + c* cosh w4 1 + ef \ eoshwl coshwz
o) = wr|lzf{1-%L | coshws 4 o= f 1 4 L) COEH W CORAWE
B\ e o] & 52 < cosh 3wl
5 el 1 cf \ _ sinh3wisinhwz ¢§ ¢®1 1+ ef \ .. sinhwlsinhwe
= cn =1 - ol R A N T
cosh 3wl c§ ef 2 ¢ } " cosh 3wl

Ry

1]
_ sinhwl sinh wz

v h ot
ef of cosh w

cs ekl & ok
= 7 5cosh w: 1 L2 —— l__l i
hrce “""”[( ) 5) (ci’ﬁ( 2) +c‘f)}

g ¥l ( (,f) _ sinbw(3l --x) cf ¥ sinhw(l —x)

" cosh 3wl c§ of T coshwl
1 CN ef 1 Y _ cosholl 4 x
+; ' -"'EZE <o J.~3—-—1F ’UJ———'—"—-m(' )
2 5§/ cf2 5 cosh 3wl
24 ] f
z 1

2

¢ _.V_
| e\ _ coshw(l -x) i
1+ e €

( <5 ) Y Cosh 3ol

It is easy to check that voltage continuity and current conservation have been guar-

anteed at the point where the second and third cable cylinders meet, even though ¢§ and
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¢§ are both still unspecified. Potential $3 is valid for length {. Again, an unwanted term
proportional to ¥y coshwz has been produced. This time, it can be set to zexo by ensuring
that cf satisfies the condition {5.36) for the cancellation of 8g{l —x) and 3({ —z) at z = !
in potential ¢g(xz). 'The second cylinder potential {5.35) then simplifies to

Palz) = % (Br(t —z) —Bp(l - 2)) -+ 5r(l -+ z), 0<x <. (5.41)

and equatsion (5.36) itself gives up the c-value,

O LR
e B cie =
iy (5.42)

The third cylinder potential {5.40) can be rewritten

- S ot 1 4 1 o .
Falz) = E— zi (51(x) - Tn(e)) +5 (1 - ?—%) Sr(2l-o)+5 (1 + Sg—) Br(2+x). (5.43)

Now investigate termination of the third cable cylinder. Since 7z (l) does not satisty a
cut condition, it is irnpossible for cable cylinder three to satisly a cut condition. However,
065, (1)/0z = 0 and 0UR(3l)/0x = 0 because of the left and right sealed terminals. Is it
possible to choose ¢§ such that the cable can terminate with a sealed end at this stage?

The axial current at @ = I on cable cylinder three is

- O (1
) = o2l
CIL, EE_\RU) 1 . R .':;:'a,ﬂ (l:}
= C%'Ei?““ar -3 (c§ —<5) e (5.44)

Therefore, if (1) is zero provided

S — g -ef).
(0 S

Conseguently, the third eable cylinder potential (5.43) can now be written in its fully

determined form,

. ok i )
¢3 (5) = —-w (UL(.T) - TJR(:II))
ok B et 2ek ‘ '
R ReL T2~ z) + 13 (2 4+ z), 0<z <, (5.46)

with (5.45) giving
o _ c?{c® + 3e)
T Ter gl
1'hus, after length 3, it is possible to force fermivabion of the cable by carefully

choosing c§ such that ¢3(z) satisfies a sealed condition at z = [.
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(&2 [27] Cj
.
Sealed cﬁ"

Figure 5.2: A simple Y-junction and its equivalent cable, determined from first priuciples.
(a) The Y-junction has one limb with electrotonic length I, c-value v, another with clec-
trotonic length 31, c-value c¢”; both terminals are sealed. (b) The equivaient cable bas a
connected section, length 3, with a sealed terminal, and a disconnected section of length
I. The connected section is formed from three cylinders each with length I, and c-values
ef to ef. The disconnected section consists of one cylinder with ent and sealed terminals,
See text for full details.

Cable Cylinder Four — The Disconnected Section

The total electrotonic length of left and right Y-junction limbs was 4¢, so the fully cquiva-
lent cable is incomplete. There musl. be & disconnected section of length I. Without going
into great detail (disconnected sections are discussed in Chapter 6), we cau only write one
function which satisfics a sealed end condition at £ — 0 and a cul condition at 2 = [,
nainely

{%4 (zy=4 ['UL(IT —z) — TRl — z) —~ ol + z) - V(31 — .'l;)] . (5.48)

where A4 is a non-zerc real constant. There is no other acceptable form. Also choose
¢§ =1 (though it may take any valne — the equivalent cable and clectrical mapping will

be correct whatever).

Summary of Cable Potential Functions and C-values

It is a trivial step now to take the inverse Laplace transform of the cable cylinder potential
functions, simply by replacing barred potentials with nnbarred potentials. So, in the

physical domain, the Y-junction potentials are mapped ta the fully equivalent cable by

ct c®
pi{z) = —orlz)+ Svr(z).
€1 €1
CL
P2(e) = 5 (vpll— =) —vr(l —2)) +orll +2).
g1
¢3(x) — al (vp{z) —vg(z)) 4 o vp(2l —z) + M'v (2 + 2)
BV T ger R TR e ST A a
¢pa{z) = wpll — @) —vp(l —2) —ve(l + ) +oR(3l — 2). (5.49)
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The potential functions ¢y, ..., ¢4 form a set of four linear independent homogeneous
equations. It is simple to invert the mappiug and write the tree potentials in terms of

cable potentials,

(@ = b+ :2 - [l = 9) = by (2)] + gl — )
oale) = 1(0) = o [hall — ) — dolo)] - %w )
w2 =2) = S+ {ﬁrx)s(cs) el — )
oR(+3) = do(s) ~ momdall ~ ). (5.50)
The c-values of the cable cylinders are
ef =c" +c7, e = %, e = %ﬁi_‘jw—g—l, =1 (5.51)

Figure 5.2 illustrates the original simple Y-junction and its equivalent cable.

Discussion of Example One

This very simple example provides no clear sef of rules to follow when evaluating cable
cylinder potential functions and c-values, though it does hint at a distinct division of labour
between constructing a cylinder’s potential funciion (a framework potential funclion) and
subsequently determining its c-value. There are some indications of rules which must be

applied to one potential to gencrate the next framework potential -— note the terms

¢ c
L 1+ gk and E 1-— % , {(5.52)
2 “h+1 2 Ch+1

in ¢y (5.35) where &k = 1, and in ¢y (5.43) where k = 2. Furthermore, the choice of c-values

appear geared towards arranging termination of part (a local termination) or all of the

potential function.
‘I'’he first principles construction algorithm seems to preserve volitage continuity and
current conservation independently of the cable c-values that are eventually chosen. There-

fore, it is not directly responsible for determining c-values.

5.4.2 Example Two

Now consider the Y-junction in Figure &.3a. The right branch consists of one cylinder
which has length ! and terminates with a cut end. The left branch has electrotonic length
2L, but consists of two cylinders, each of length {. One cylinder, denoted i, meets the right
branch at the junction. The other, denoled @, meets L at one end and terminates with a

scaled terminal at the other. Again, we suppose that there are no input current terms.
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The potential at the junction is denoted ;. The polential where cylinders £ and @
meet is denoted 7ix . The axial curvent flowing into cylinder £ is denoted 47,. From equation
(5.20} (for cylinder @), (5.23) (for cylinder r), and (5.24) (for cylinder r), the potentials
in the left and right branches can be expressed

L . w
ir(z) = ©jcoshwz — oo gsinh wz, 0<z<i (5.53)
N __ coshw(l —x) _o .
’UQ(Z:) = ’L}(—W, 0<z2 < . (bx}fl)
P _ sinhw( - )

] = L < x <. 5.55
Ir(z) Dy 0<a<i (5.55)

Since voltage continuity requires that 7,,(I) = 44(0), we may solve for 5, to obtain

sinh wz

0 =7 hwo Uy — Uy cosk l .
or(z) = Uy coshwx + (Tx — ¥y cos lw)sinhwl

Choose the junction point as ovigin. The totul axial current flowing into the two

cylinders is 77. Using aquation {5.10),

- - 0vL(0) 0vx(0)
w =Kt 0t — KRt
¢ ¢ 0z ¢ oz
= wi |,enthet e s 0yt 5
= wkK |9¢ L (x — By COShM)Sinhwl]' (5.57)

Cable Cylinder One

Apply the generator equation (5.24) using vy and iy to try and gencrate the first cable

cylinder,
- ¢® coshwlsinhwzs ¢ sinh wz
by (x) = vycoshwe — |Tj————-——— + —{Uyx ~ 0y coshwi)— 5.58
#i(e) =B [ ch sinh i | c;{ X )smhwl} (5.58)
Using standard identities for the hyperbolic functions,
- Lot ct sinhwa
¢1(z) = ycoshwy (1 — z_§ — E?) + E Bycoshwz + (Dx — Dy coshwl)m
c® _ sinhw(l — x)
byl
c§ sinh
Np R f. ]
= %¥jcoshwz (1 _Le -1;0_)) + f?‘ﬁ[,(."l?) + C—GﬂR(m). - (5.59)
ﬁ]: .,]j f:]

T'his is exactly the same framework form for the first potential obtained in the previous
example. For the same rcasons, we must choose ¢f = ¢* + ¢®, the “Rall-like” sum of

diameters. Thus, as befors,

- ck ¥
h@) = Sonle) + i),  0<e<l (5.60)
1 1
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Cable Cylinder Two

From contimuity of voltage and conservation of current,

. L
$(0) = )= ['v,; coshwl + (ox — vy coshwl)] (5.61}
- . - Ol
52(0) = 75,0 =~k 200
= —Kuwe" [u,y sivhw! + (Ox — 95 cosh wl) goen w!]
sinh w!
+Kwe™ 1 (5.62)

‘ sinhool’
The generator equation (5.24) gives an expression for the potential in the second cable
cylinder.
L

Polz) =~ z—c |Ts coshwl + (Tx — T coshwl)] coshwe
1

5 coshwl
By sinhwl - (Bx — 8y coshwl ) ——————— :I sinhwaz
W

_ sinhwm (5.63)
VI .

e§  sinhwl
After some algebraic elfort, this can be rewritton as

€ ¢®_ sinhwz

dolz) — — T y—
bala) S of 7 sintiool

L L
_ Ce?\ ¢
t i (l - _fc,_’) = |:'UJ coshw(l — z) + (#ix — Uy coshwl)

c? ( cﬁ") e coshw(l — =)
Pyt WA T T

cosh wz

sinh w(l — z)

sinh wi

(5.64)

£ R iz Q L
f f c .oef e et

= ——ﬂ—“T.'Rl‘“‘fL' + 1-— s "“‘ULJ“".’E
c5 ( ) ek +¢ ( <§ e foof ( )

c? c§y et
_I-CL Y] (1 + ;g_) “E (T) (565)

The individual contributions from the tree cylinder potentials are each valid only for

length {, and so restrict the second cable cylindet to leugth . At this point, as in the
previous example, there is no clear choice for ¢f. Observe again, however, that if the sum

of the coefficients of vg(l — z) and #,(l — =) is zero, then

ef ef n c* : AN 0 (5.66)
Fef ot +e? " et ) f ’ ’

This vields

oY (e +cfet)

()2 (5.67)
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Sealed

Figure §.3: The Y-junction and its fully equivalent cable for [irst-principles example two.
See text for full details.

and

(e%)2eR et

(7)2(.'1.’) = CE" (c('fc‘? T C‘r’c”-) ('EL(E e .'EJ — ﬁR(g — ."ﬂ)) + m’j‘ﬂ@((ﬂ),

D<= <l
(5.68)
This peotential wounld immediately satisfy a cut terminal et 2 = ¢ if the lonper branch

satistied a cut terminal. 1t does not however, so the process continnes.

Cable Cylinder Three

Once more, voltage continuity and current conservation give the required information for

the proximal end of the next cylinder,

ek 1

$3(0) = ¢o(l) = ix (5.69)

(efe? - eteR) ™ coshwl

i52(0) = 5.0 = chdéz(?)

. ({JL)ch B 1
= Kuwel —— c .
2 (e ¥ cﬁcﬂ)w‘ sinh wi

After even more algebraic effort, the generator equation (5.24) gives

= el _ coshwz  ¢f ()2 R _ sinhwr
(c§e? +ctct) 7 coshwl — ¢f ¢f (cFe? + cPeR) 7~ sinhwl
cg (CI‘ }2 oft el ol

(7(z) —~ Tr(2)) + Bo(l — =), (5.71)

oS of (e5c@ I cbek) (cfe@ | cEcR)
As usual, it is easy to check that vollage contimity and current conservation have been
guaranteed at the point where the second and third cable cylinders meet, even though c§
is still unspecified. Potential ¢y is valid for length I,
We now look once more to see if we can ferminate the equivalent cable at thig stage
(in fact if the cable is going to terminate, it has to terminate here since we have reached

the maximum cable length).
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At @ = {, vp({) satisfies a cut terminal condition. Can we choose ¢f so that the other
two contributions to the potential satisfy a cut terminal where they meet at x = {? This

requircs
¢ CL)QCR Bel
"_i .G S‘ oy T e LRy 0, (5.72)
Ca ('1 (Clcq-i'cc) (Ll(:Q’*'C C)

which yields
¢ cgcte® R (cfe? + chet)

0 —— — r-
3 el cbeR (5-73)
The third cable cylinder potential can therefore be rewritten
- et ~ _ o
¢3(@) = D) [Or(z) — p(z) + Bl — z)]. (5.74)

Summary of Cable Potential Functions and C-values

As in the first example, take inverse Laplace transforms of the potential functions to abtain

ok ek
$i{z) = v {z)+ zvr(z).
cj cy
N (c¥)?ck ' . cRct
(/)2 (I‘) - C%‘ (CfCQ T CLCH') {’LL(& (B) ‘UR(I 'B)) T {CfCQ 0 CI'CR)'UQ(:C).
clct
C/):j (.’L) = m [‘UR(-’L') — ‘U}_‘,(.’U) + 'UQ (l = .’L‘)] .

The inverse mapping can be obtained quite easily by analysing (hese three linearly

independent; equations,

or(z) = ¢i(x) — o2l — ) + ¢alz)

wle) = hile)+ S ol = 2) — do(e)]

e cRet

valz) = ——————h(n — L hafl — ).
a(@) c@c§ + et dale) + e?cs |- cteh fall =)

The equivalent cable c-values are

5 (eBc§ + et
C? e 4 R, Cg — _i._(__.._(il_)._.z... L ), Cg —

CR CGCQ""GLCR
(¢] - ), (5.75)

che®

Discussion of Example Two

The second example has progressed rouch as the hrst, with framework potential functions
determined from the first-principles construction algorithm, and then additional agsurnp-
tions being made to determine c-values in a way that ensures termination is possible. Note

the coefficients

L o @ Q <
c ¢ ¢ ¢
—_— 1= A and 1 o 2k {(5.76)
I Q < Lt L. £ ?
ek + o ( oy © ck - c® Cpyt
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from equation (5.65), where & = L. For the specific sitnation where e = 9, these simplify
to the coefficients highlighted from the previous example, equation (5.52).

A general mechanism for choosing c-values is stil} not clear, but again sesms to be
assoclaled with ensuring termination of the cable. In particular, the two contributions $o
potential ¢, (5.68) arve again arranged so that they satisfy a local cut condition. Even in

this simple example, algebraic complexity rapidly accumulates.

5.5 An Introduction to the Construction Rules

5.5.1 Potential Function Components and Component Diagrams

A potential function, ¢y, for a cable cylinder with length I, is a linear combination of
contributions from tree cylinder potentials. Fach contributions is referred to as a “com-
ponent”. A component is a directed segment of a tree cylinder potential. A component
has a coefficient which determines its strength compared to other components; a source
point, which is the point on the tree it describes when z = 0; a destznation point, which
is the point an the tree it describes when = [; a direction that is etther inward, towards
the origin (if the destination is closer than the source to the origin) or outwards, away
from the origin (if the destination is further than the source from the origin).

For example, consider example one. Paiential ¢; (5.49) contains two outward compo-
nents; one lics on the left branch, one on the right, both with the origin as source. The left
component has the sealed end at z = { as destination while the right component has an
internal point z = [ as destination. The lett cocfficient is c*/cf and the right coefficient is
et fef. Potential ¢4 (5.49) has four components. Three lie on the right cylinder, and one
lies on the left. There are three inward components, and one outward component.

Component diagrams are useful for illustrating the contributions a Y-junction’s left and
vight limb potentials make to each cable polential. Figure 5.4 shows component diagrams

for the four cable cylinder potentials determined in example one, and summarised in (5.49).

5.5.2 The Electrical Continuity Rales

The electrical continuity rules are applied to potential function ¢y to generate ¢y 1 in a
framework potential fortu, i.e. withont specilying cable cylinder c-value cf_ ;.

Consider now two connected tree cylinders, denoted P and @, each with length I,
Voltage continuity ensures that vp(l) = vp(0). Suppose potential ¢y contains a component
vp{z). The electrical continuity rules determine coniributions to ¢g,.; that arise entirely

because of the exisience of vp(x) in ¢. In fact, two components are introduced by vp(x),
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Figure 5.4: Component diagrams for the cablc potential functions generated for a sim-

ple Y-junction with both terminals sealed. Top — a schematic of a simple Y-junction.
The left branch is one basic length; the right branch s thwee quantum lengths. Boxes
1-4 — component diagrams showing the direction and location of the components of the
four potential functions. Rach arrow represents one component, showing its length, di-

rection, source and destination. Branch segments that do not contribute components to

the potential function are represenled as lines. In 1-3, the circled components are those s’
whose coefficients arc matched up to determine c-values and/or arvange partial or full
fermination of the function.

176




and we usc the notation “~” to indicate this, like so

e’ cg ¥ c _ cp
vp(r) — @ (1 — & —P) wp(l —x) + A (_I SE "'.E;-f'b") volz). (5.77)

g1 © Ch1,

This is the electrical continuity rule lor reflection—transmission of a tree potential at &
diameter step. Dotential vp in ¢ has introduced two new component in ¢y, One is
transmitted along cylinder @, i.e. in the same direction as the original component. The
other new componeni is reflected in the opposite direction, back along cylinder ». At
@ = (0, the two new components meet at the diameter step, while at z = [ they describe
structure that is length 21 apart.

It is easy to confirm that voltage continuity between the original component and those

it generates has been guaranteed, irrespective of the actual equivalent cable c-values, since
cf e @ cs
1= . yp(D = {1 J (0
c? - @ ( it CP) pl)+ P - % + oy o(0)

o : ¢f c® } e? i+ oy (0
—— - | v
ef +c? o ¢F 4% i il

= wp(l). (5.78)

Noting that current conservalion in the tree ensures

dup(l) _ o0vq(0)
o 8z

then it can be shown that current conscrvation is guarantecd between component vp(z)

CP

(in ¢) and the components it generates in ¢y | 1, i.e.

& dup(l) I c? Lo ¢ 2\ dup(l)
k8 L [P SR o ¥ oz
. o? . ey Ovug(0)
e [—c}, e (.L + Cg;l):l A (5.80)

Internal TPoint

lLinportant special cases include reflection~transmission at an internal point of a cylinder.
Set ¢” = ¢? in (5.77) to obtain.

vp(r) — % (1 —_ Sf ) vp(l —x) -lﬂ% (]_ + zf ) vo{x) (5.81)

Cr+1 Crp,

Sealed Terminal

A single component is reflected from a sealed {or current injection) terminal. Set ¢ =D
in (5.77) to obtain
vp(z) — wp(l—x) (5.82)
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Cut Terminal

A single component is also refiected from a cut terminal. Letting 2 — oo in (5.77) gives

c
'Up(x) — ~-%’-“l-vp(l - :B) (583)
Cr+1

Reflection from the Origin — The Isolation Condition

Reflection from the origin is only acceptable (i.e. independent of structure connected
to the Y-junction) when the two coefficients of the components that meet at the origin
sum to zero — this is the “isolation condition”. Consider twe cylinders, denoted £ and
r, cach with length {, and suppose a potential function contains the pair of components
v (l—x) —uvg(l—z). Because of voltage continuity, v5,(0) = 24(0) and so this combination
satisfies a cut condition at £ = [. The component pair is therefore reflected from the origin
Just like a single component reflected from a cut terminal,

v} —vplz) — —ng fvr,(t — =) — vg(l — 2))] (5.84)
k+1

Since a potential function is simply a sum of componenis, then voltage continuity and
current conservatlion are gnaranteed bebween a potential function ¢y and framework po-
tential function ¢pqq. Additional properties of the electrical continuity rules are described

in detail in Chapter 6.

5.6 Example One Using the Analytical Construction Rules

We can repeat exampie one, though much more rapidly, using the analytical construction

rules directly. Recall Figure 5.2a. Fxample two could be repeated in a similar manner.

Cuable Cylinder One

Cable construction is always initialised with the “Rall-like” potential function,

ct ch .
#1(2) = “gop(@) +zer(), O0<z<l (5.85)
1 1
and c-value
¢ = et 4 R {5.86)
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Cable Cylinder Two

The left cylinder componeni in ¢y reaches a sealed terminal at » = [, and so, using
(5.82), it produces a single reflected component, with the same coefficient, in ¢s. The
other component of ¢; reaches an internal point of the right cylinder, and so, using (5.81)
contributes two new components to ¢a, a reflected component where the coefficient is mul-
tiplied by 0.5(1 — ¢ /c§), and a transmitted component where the coefficient is multiplied
by 0.5(1 + ¢f/c§). Thus,

. (.R 1 C R 1 c _ CL _ )
Pa(z) = 3 (1 — ;) p{l — %) + 53 (1 + & ) TRl +x) c—?v;,(l —z).  (5.87)

We must apply the isolation condition to ensure that any additional structure con-
nected to the Y-junction does not interfere with the procedurs, so

et 1 cf e .
sz( C§)+C‘f_0’ {5.88)
yiclding ) o |
2 2¢" 4 R’ (5'89}
and i
- ¢
$2(0) = 5 (Bl — x) — Bpll — @) +Br(l + ). (5.90)
L

Cable Cylinders Three and Four

The isclation condition has linked the two contributions that meet at the junction. When
x =1 in ¢y, they arc reflected together using (5.84), as if from a cut terminal, contributing
two linked componenls (o ¢»3. The remaining component of ¢;, on the right branch, again
reaches an internal point at x = {, and again using (5.81) contributes two new components
to ¢3, one reflected and one transmitted. And so,

c

dole) = —Z[ir(a) — a(o)]
‘3
e S
+% ( — %) r(2l — x) +§ (L -4 Zé) D2 + x). (5.91)

The more complicated isolation-termination rules developed in Chapter 6 could be -
brought into play here (they will produce an identical result), but we have to choose

© (e + 3ch)

i 0
3 CR 'i' ZCL (5"‘;2)

anyway, it termination of the cable connected section (with a cut end) is to be forced at
this stage, as was dome when using the first-principles algorithm. Again, discussion of

diseconnected sections will be left until Chapter 6.
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5.7 Discussion

The first-principles algorithm for cable construction in the Laplace domain generates equiv-
alent cables effectively for simple structures of the type considered in the two examples.
Tedious algebra males the process generally impractical. Fortunately, the {ivat~principles
approach yields a much more efficient method for generating potential functions, i.e. the
electrical continuity rules. These rules remove a whole layer of complexity in the construc-
tion process since they embody the algebraic manipulation used in the Laplace domain,
and therefore allow us to bypass it altogether. However, the first-principles method does
not directly indicate a general method, i.e. a set of rules, for determining cable cylinder
c-values. It only suggests that they are evaluated by arranging some or all contributions
to a potential function in a way that allows them to satisfy local eut or sealed boundary
conditions. A key feature of these additional rules is that when two components meet at
the origin, they must have cocfficionts of the same magnitude but opposite sign — this is
the “isolation condition”, discussed in full in Chapter 6. The isolation condition is just
one of the isolation—termination rules, whose dual funetion is to cnsure that the isolation

condition is always satisfied, and that termination is eventually guaranteed.
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Chapter 6

The General Analytical

Construction Rules

6.1 Introduction

Tn this chapter we derive a complete set of equivaleni cable coustruction rules for the

general Y-junction. The analytical method is an iterative two-stage process, and two

distinct scts of construction rules are developed,

o [lectrical Continuity Rules: These first stage rules generate a framecwork potential
funiction for each cable cylinder. The framework potential function is a linear com-
bination of tree cylinder potentials, with coofficients expressed in terms of tree and
cable c-values. it guaraniees voltage continuity and curreni conservation between
equivalent cable cylinders, but in a manner that leaves their ¢-values undetermined.
Cable cylinder lengths are found straightforwardly at this stage. These vules will at
times also be called reflection and transmission rules — a reference to the way in

which one cable cylinder potential is used to generate the next.

Isolation—Termination Riles: These second stage rules ensure that, when trans-
forming a Y-junction (or auvy sub-tree}, the structure of its equivalent cable depends
only on the local tree structure being transformed, i.e. any structure connected o
the Y-junction (or sub-tree} does not influence the cable construction process. To
achieve this, these rules uniquely determine equivalent cable c-values m terms of
tree c-values; consequently the framework potential function becomes a uniguely de-
fined potential function. The choice of c-value simultaneously guarantees that cable

scetions will eventually terminate with an appropriate boundary condition.

The rules are applied repeatedly, “ensuring continuity” then “preparing for termi-

nation”, one after the other, generating an equivalent cable cylinder and its associated
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portion of the electrical mapping (its potential function) at each siep, starting with the
cylinder connected to the origin. The full electrical mapping between tree and cable is the
complete set of cable cylinder potential functions (i.e. those that describe all connected
and disconnected sections).

The electrical continuity rules follow directly from a generalised application of the first-
principles approach introduced in Chapter 5. Consecuently, this involves a consideration
of tree cylinder potentials in the Laplace domain, so recall, from section 5.2, the form
of the boundary conditions, the dimensionless cable equation, and its general solution in
the Laplace domain. The resulting electrical continuity rules (which generate framework
potential functions) are straightforwardly also valid in the physical (electrotonic) domain.
Rules are given for velating potentials, current densities, and injected currents between a
tree and its fully equivalent cable.

To derive the isolation—termination rules, we consider the conditions that must be sat-
isfied if we insist that it must be possible to transform dendritic sub-trees in isolation from
structure they are connected fo. This consideration leads directly to the isolation condi-
tion, from which the full set of self-reinforcing isolation—terminalion rules will eventually
tollow.

As the isolation--termination rules are developed, there are hints that there may be an

even deeper mathemalical structure which is not revealed divectly by the approach used.

6.2 Notation and Terminology for the General Y-junction

This gection gives notation and terminology for describing the general Y-junctiong and

equivalent cables used to determine the general rules of cable construction.

6.2.1 HElectrical and Physical Properties of Tree and Cable Cylinders
Geometry

A general Y-junction is illnstrated in Figure 6.1. It consists of a left branch {(z), formed
from m,), cylinders, and a right branch (R), formed {vom sy cylinders. Tach of the (sny, +
myg) cylinders has electrotonic length , so the total electrotonic length of the two branches
is (m;, + mp)l. As discussed in Chapter 3, ! is an arbifrarily small quantum electrotonic
length which allows for the required resolution of the model. 'Without loss of generality,
we set my<mp — the left branch is always the shorter of the two, though of course the
choice iz immaterial when m), = my.

The n** cylinder (counting from origin to tip} of branch § has c-value ch. The c-value

sutn, or ¢-sum, of cylinders n and n -+ 1 (the two cyliuders that meet at lengih nl from
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Figure 6.1: The peneral Y-junction. See text for details of notation.

the origin) on branch j is

C.:“;ﬂ = {‘:.:‘? + cn-rj_' (61)

Terminal Conditions

The left and right branch terminal boundary conditions are denoted Tp and T,. Branch j
(£ or R) may terminate with either a current injection condition (generalised (S)ealed) or

a (C}ut condition, represented, vespectively

1;=5 and  Ty=C. (6.2}

Membrane Potentials and Voltage Continuity

The potential in the »** cylinder of branch 7 is denoted

vl (2, 1), G<az <l (6.3)

Since the potential is continuous, then

ng(ziﬁ) = Ii:a';,-{_]_(onz’): i (6.4)
and at the junction, ’
o1 (0, ) = vy (0,1). (6.5)

It is sometimes useful to represent the potential in each branch by one function vahd lor
the length of the branch. The potential in the left branch is

‘Ub(:ﬁ, t)a 0<z < ?RLE, (66)
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and in the right branch,
vz, i), 0 <@ <mpl, (6.7)

so that, at the origin, x = 0,
vr,(0,t) = vr(0,1). (6.8)

The whole-branch potential and individual cylinder poteuntials are related by
wh (o, 1) = oy ((n— L1 2, 8). (6.9)

Axial Current and Current Conscrvation

The axial current in the n** cylinder of branch 7 is denoted

i, t) = — B, 22D ) (6.10)
’ dw
Since current is conserved,
i)+ (8 =i 1 (0,1), (6.11)

where iii’n(t) is an external source injecting current at z = wnl along cylinder 7. This uay

also be written as

. Ol 1J; () 90l
ol Aam = n-li 12
o) Ox K 1 6-‘71 H (6 )
Tl =0
or cquivalently )
. O 231 H’) ;i S |
o L _ lAn 1| i 6.13
"o a=(nl)~- K "t oz irc=[nl)+ ( )

whaere (n)” denotes poiut nl approached from a point closer to the origin, and (ni)*

denotes point »l approached from a point further from the junction.

Fully Equivalent Cables

Ag will become clear, the equivalent cahle for the general Y-junction will also consist of

(my, +rmg) cylinders, each of length I The potential in the &% cable cylinder is
b(r),  0<z <l (614)

while its c-value is denoted ¢f . Axial current is denoted 5, .
All the time-dependent expressions above, for the electrotonic domwain, have their

Laplace transformed equivalents with s replacing ¢ (though suppressed for most of this

chapter); polentials and currents are replaced with their transformed (barred) quantities.
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6.2.2 Framework Potentials and Uniguely Defined Potentials

The two stages of fully equivalent cable consfxuction have the result that after the electrical
conblnuity rules are applied, an infermediale expression for a cable cylinder’s potential is
obtained - it is expressed in terms of the corresponding cylinder’s e-value, which has not
actually heen determined. The isolation-termination rules then determine the c-value and
the potential is uniquely defined. Although both forms of the potential are written using
the ¢y notation, the difference is always very clear.

6.2.3 Potential Function Components and Component Diagrams

Potential function components and component diagrams were introduced in in Chapter
5. The potential function for a cable cylinder, & (with length {) is a linear combinations
of tree potentials. A component of a cable potential function is a weighted tree potential,
valid over a specific range of a lree cylinder. The following propertics can be associated

with a component:

1. A coefficient, or weight, indicating the significance ol the contribution this component
makes Lo the potential function. The relative significance of components can be

measured by comparing their coefficients.

2. A source point, which is the position on the tree associated with the component

when 2 = 0 on the cable cylinder.

3. A destination point, or end point, which is the position on the tree associated with

the component when z ={ on the cable ¢ylinder.

4. A direction, which is determined by rtelative positions of source and destination
points, A component is an inward component when the destination is closer to the
junction than the source; a component is an outward component when the destination

is further from the junction than the source.

5. A lenglh, which is the range of validity of the componeut, i.e. the distance from
source to destination. All components of the same potential fimetion necessarily

have the same length.

There is in fact a great deal of structure {determined primarily by the clectrical con-
$inuity rules) to the components of a potential function. Components never overlap, and
often many source or destination points are common to pairs of components.

For the specific case where all cylinders are ol the same length, ¢, (as in the represen-

tation used for the general Y-junction), components exhibif a simple structure and will
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have either the form
wvd (), (6.15)

or

wol (I — z), (6.16}
where w 18 the weight. The first form is the outward component since as & increases alony
the cable cylinder, v;’i(m) represents the potential moving outwards away from the junction.
The second form is the inward component since as x increases, 'uf;(l — x} represents the
potential moving inwards towards the junction.

Component diagrams will be used cxtensively to illustrate the nature of the geneval

analytical construction procedure.

6.3 The Electrical Continuity Rules

Although we shall eventually specislise to the binary Y-junction, we consider initially a
general junction point, where an arbitrary number of eylinders mect, as illustrated in
Figure 6.2.

The rules, which will relate transinembrane potential, electrotonic current density, and
applied currents belween a tree and its fully equivalent cable are derived by considering
the effect the generator equation,
iy
we

(z) = vy coshwx —

T .
sinhwr + % / Fly) sinhw(z — vy) dy, (6.17)
Q

(which we restatie here for convenience) has on a single component that ends on the branch

point.

6.3.1 Derivation of General Reflection—Transmission Rules

At a branch point, suppose there are n + 1 cylinders of interest, that is, one primary
cylinder (numbered “0") that conncets to n secondary cylinders (numbered “1” to “n”},
cach of length {. For convenience, the direction of z in the cylinders is specified as follows:
in each of the secondary cylinders, z increases away from the juneiion, and point @ = (
marks the junction; for the primary cylinder, z increases towards the junction and z = {
marks the location of the junction. {Note that the primary cylinder need not be a_parent '
cylinder, though conventions lor current flow differ from those specified in Chapter 2,
and used until now, when this is not the case. L'his does not matter, as long as voltage
continuity holds and the current conservation condition is correctly specified.)
Denote the potential in cylinder 7 by #;(z), and the potential at Lhe junction by ¥,,
80 that
oy = Bo(l) = 9;(0), (6.18)
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for any secondary cylinder 1 < § < n. Depote the axial current in cylinder j by 4g ().
Taking account of the above conventions for the direction of current flow, current conser-
vakion demands that, .
Tao(l) iz = ias{0), (6.19)
3=1
where i represents a. point current source at the junction.

From equation (6.17), the potential in the primery cylinder, valid for 0 < z <1, is

T
Dp(z) == Oy coshw{l — z) + Iao( ) sinhw({l — z) é [ Joly)sinhw(l — 2 ~ y) dy. (6.20)
Ji

The potential in secondary cylinder 3, also valid for 0 < ¢ <1, is

vj(z) = iy coshwz — 'j( ) smhwx + = / Fi(y) sinhw(z — v) dy. (6.21)

Now, suppose the k% equivalent cable cylinder has been constructed, Tt has length /
and c-value cff. Suppose also that cylinder &’s potential function, a linear combination
of tree cylinder potentials, is known, and assume that a component is contributed by the

primary cylinder, so the potential function can he written
Pz} = Dgglx) 1 ..., (6.22)

where I' is the component coefficient and the dots simply indicate the remaining compo-
nents of the potential function, The axial current in cable cylinder % is

- d¢k( ) _ Dty (z)
Zo] ) — e 1 C'
B2 4(0) = ~Kf TR = KT

where, again, the dots indicate the contribution from all other companents of cable po-

(6.23)

tential function k. Current conservation between cable cylinders k& and k& + 1 requires
that

to5(D) +10 = 15 542(0), (6.24)

where %¢ is a current source injecting into the point where the two cylinders meet.
At the distal end of cable cylinder &,

Pe(l) =TBs+... (6.25)

and
B o g (1) % | < 9%(1) s . o
w1} = —TKc 5T _1(:63 —Kcf~ i _+... —I"cgza,g(l)l... . {6.26)

Expressions for the potential and axial curvent at » = [ on cable cylinder & have been

obtained. Now take advantage of volfage continuity and cwrrent conservation where cable
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cylinders & and %k + 1 meet. It is possible to use the generator equation {6.17) to write
down an expression for the the potential function in cable cylinder & -+ 1,

Pr+1(®) = ¢p () coshwez — Kwd,,

¥
sinhw:r;‘—i—vl-] Frs1(y) sivhw(e — ¥y dy, (6.27)
@ Jo

which can be expanded using cquations (6.25) and {6.26),

Pry{z) = T |5;coshwz — ian,{]_(l) sinhwz — i sinhwz
kL 7 ’ g1 Kweo Kwef
1% .
'l';_/(; fivi(y)sinhw(z —y) dy] — (6.28)

where fi,; is the portion of the input current dewsity term confribubed bo the eable
cylinder k 4 1 on application of the generator equation to component vo(). Also, ¢ is
the portion of i¢ iujected into the cable diameter step due to the current injected at the
general junction point. The dots in this expression represent the contributions due fo
other components in ¢g.

For the moment we are only inlerested in how the generator equation affects the
component coniributed by the primary cylinder, so, without loss of generality (because of

linearity) ignore the coefficient I, and just consider the term

- 2 ol b
&i oz} = T,coshws — 2 -2 sinhwg —~ —S— sinhwa
P (@) ! gy Kweg Kweg.
1 §° .
—i—; / Fra1(y) sinhw(z — y) dy, {6.29)
0

which is obtained by just applying the generator equation to initial component
ér = Bo(w)- (6.30)
With a little algebraic effort, equation (6.29) can be rewritien as a linear combination
of the potentials in the primary and sccondary cylinders. Introduce into the right hand

side of equation (6.29) several new terms whose sum is zero, like so

_ vy R IR i
23=0 Y7 _ Cr 1 . (] .
gio(x) = 705 coshws — —F a0 (1) ginhwa — —— % sinhwa
kel t €y e Kuwe Kwcf
4=0%7 k|1 A kil
+ ¢ Dh=16 ig0(l) sinhwe e 21 G Tg a{l) sinh we
g, St nei Kuwe e ST e Kwe
k41 Laj=0Cd 0 k-1 2ag=0Ci 0
n sinhwe ool +7 i__ (0)
o | tay0 ir— ) tagr
Kwd = =
g e _ ¢ ¢
Tl Z 0 coshwr | — — Z - 27 coshwa
Chy1 of \ 2oj=0Ci k1 g 2 =0
I
s [ Fentsinhoe —y) dy (6:31)
0
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The hyperbolic sine and cosine terms ecan be collected together into the following form,

. ¢ , ¢ Yi=16 _ g N
be () = e [ 1 — 7"-- LY} 5y coshws + Z L -ck— By coshwa
2 2j==0 Ci Ckt1 Co Zj 0" % Cha1

r=1

co 1 cy D e G 720,0 (1) sinhwz

3=0Cj ‘b1 €O weg
_ e 10,0(l) sinhwz { )_, =16 Cg 7u » (0 sinh wE
+ ?T iy, | sinhowx

1__0 c; cg i Kw
1 e . ,

+- fo a1 (y) sinhw(z — y) dy. (6.32)

The final form is starting to emerge. Once more using current conservation at the tree

2% o (6.33)
TR S -

equation (6.32) can be rearranged to give

junction, as well as

o] X3 . g
; C ¢ i=1¢ ginh
Ppr(r) = s R — {‘5‘; coshwz + b U(M]
=0 €3 Chp G kwep
L ' = .

~|~Z —— 14 ~§E~— By coshwz — %-—n'w’r(o) sinh b

r=1 Z; 0% Cg+1 ‘!‘;wcf
- iy oS it | sinhwz
- 7 A

J=0Ci  Chip E_?::u ¢ Chpy| Bw

I . )

+ /0 Frp1{y) sinhw(z — y) dy. (6.34)

Now, carefully organise the elecirotonic current densities by choosing

e D1 ¢
f;cn(”))—-:]—c:(l—?’“ ch )fo(f*m)“!-f - o (1+%41) Fr(z).

Cka1 7—0 €
‘Then, zero the contribution due to applied current terms by setting

i cfip I
T = 0. (6.36)
[Z;Lo € Chyy Z,_o CJ ck I 1}

1'hig may be rewritten

- ck + "k+1
I
4=0<j

iy =tr
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These choices allow the potential in cable cylinder £ + 1 to be wrillen as a linear

combination of the potentials in the cylinders that meet at the junction,

n T
&3] . Cg 23=1 Cj _ .\ Cp C -
() = = [V~ =22 N Gl —2) + Y e | 1+ 2 | 5 (2).
ol z C) C}C‘-f‘l CO ?gi ;l 0 CJ (‘k_i_l 4
(6.38)
The relationships (6.35), (6.37), and (6.38), must also be valid for the original
untransformed potentials and applied currents, so we can now summarise the general

electrical continuity rules.

The Electrical Continuity Rules — A. The Membrane Potential

Simply taking the inverse Laplace transform of equation (6.38) gives

. ¢ .
Bt (m8) = ZJCUO - (1 _ L:p; -JJL L J) ol — z,1) + 7 E? = (1 + (Eﬁ) vy (2, t).
(6.39)

Expression (6.39) encapsulates the electrical continuity riles entively, Tt basically says
that, it a tree cylinder, § say, contributes a component v;{z) to cable cylinder &’s potential
function, then, on application of the generator equation, this component introduces a
number of components in cable cylinder (k + 1)'s potential function. '['he number of new
componenks will depend on the lree structure at poink 2 ~ 1 ou cylinder j. It should be
clear now why these rules may also be referred to as reflection and transmission rules:
if there are n + 1 paths away from component v;'s destination, then equation (6.39)
generabes v -+ 1 terms in the new potential fumction. A single component may be reflected
from the junction back down the primary cylinder {its direction is opposite to that of the
original component), while all other components are {ransmitted along all the connecting
cylinders {their directions are the same as that of the original component). Of all the new
components, only the single rellected one can possible be zero, in which case there is a
total of n new components, all transmitted.

Figurc 6.2 shows a component diagram illustrating the original component in ¢y and
those it generates in ¢z 1, for both the geveral and the zero-reflection situation. Note
that if multiple components of cable potential ¢y have the same destination, they must
cach generate contributions to the same components in potential ¢pry. It i3 also possible

that multiple contributions to the same new component may cancel.

The Electrical Continuity Rules — B. Electrotonic Current Density

Consider equation (6.35), in conjunction with the expression for f (5.9). Since the initial

potential distribution in the cable is related to that in the tree by the polenlial mapping,
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(b)

Figure 6.2: Component diagrams illustrating the electrical continuity rules at the general
branch point, where 7 + 1 cylinders meet. (a) A single component of potential function &
is directed towards the branch point. (b) In general, this single component gonerates n+1
components in potential function k4 1. Bach commponent emanates from the branch point.
There atc n transmitted components, on cylinders 1 to n, plus one rellected component:
on cylinder 0. {c¢) Under certain conditions, there is no reflected component, so just n

transmitted components are generated.
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we can use the electrical continuity rules for potentials (6.39) to give (after taking the

inverse Laplace lransform)

Gy1(2,1) i ch 2?_:__1‘?3; Etl(l“i il — ) 7 . cg \ ir(z,t)
.1 ?:o Cj Chp1 €0 " Zn 0 Ci ":c+1 Cr

r=1
(6.40)
and so
. 1 g cg Z?‘l:l Gy - .
"/Z+1(’”’ [)) = ==m— o {(CE:_H_ — —--CL—--{- 4 (l — t) - (CL+1 + (’k) Z'LT("BD]:) )
707 0 r=1
(6.41)

which defines the relationship between current densities on {ree and cable.

The Electrical Continuity Rules — C. Applied Current Sources

Taking the inverse Laplace transform of equation (6.37) gives the relationship between

applied current sources on the tree and those on the equivalent cable,

cf + Cht l-l
7.._(! f

ig(t) = ir(t) (6.42)

The contribution to applied current at the cable discontinuily is thus equal to the current
injected at the branch point multiplied by the ratio of cabie c-sum to tree branch point
c-sam.

The Use of Laplace Transforms

We have seen how powerful the Laplace approach has been. By considering general so-
lutions of the Laplace transformed cable equation, we have formed a set of reflection
transmission rules that are valid for solutions of the untransformed cable equation. Now
that these rules have been developed, we can return to, and remain in, the physical (elec-
trotonic) domain.

6.3.2 General Observations Concerning the Electrical Continuity Rules

For convenience, from now on the time-dependence in expressions for potentials and cur-

rents will be suppressed. We wrile
v(z) = v{z, 1), ia(T) = 1a(z, T}, and {zx) = i(w, ). (6.43)

Voltage Continuity and Current Conservation

Voltage continuity and current conservation have been guaranteed between a component

of cable cylinder & and those it generates in cylinder & + 1, without the need to specily
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51, thus
vp(l) = @y1(0), (6.44)
and

CC a’UU(I) - i — c(,' 8(]52—1-5_(_9)_
L T "G Y

Since this will be true for all components that contribute to potential function ¢y, it must
hold that

(6.45)

P (L) = Pr11(0), (6.46)

and also, ‘
of d¢k (l) o < 8¢k+1 (0)

e an K — “EBR1 o (0‘47)

Coetflicient Conservation in a Potential Function

Significantly, the sum of the coefficients of the components in #7,; (6.39) is equal to the

coeflicient of the single component in ¢, i.e. one,
o n .. 12 o]
cn . cf D1 G Z Cr . C :
7=0 cj Lk-l‘]. co ol A i==0 ('J ck-{-l

Again, this result is independent of cable c-values. We refer to this condition as conserva-
tion of coefficients. It is always valid, except for reflection from a cut end, as will be seen.

(This result is particularly significant for trees with all terminals sealed?.)

Zero Reflected Component

Note that the reflected component in equation (6.39) has zero magnitude when

e

[# i

b 0
= (6.49)
‘o1 £ =1 C)

Figure 6.2¢ illustrates the component diagram in this case.

The Relationship Between Applied Currents and Electrotonic Current Density

Consider the situation in equation (6.42) when applied current is injected at an internal
point of a cylinder, and mapped to an internal point of & cable eylinder so that ¢ff = cf 4, -
n = 1 and ¢y == ¢;. The relationship (6.42) between i and 73 may then be expressed

= . 6.5
£ = % (6.50)

! As noted in Chapter 4 ragarding cable matrix eigenvectors.
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From the relationship between electrotonic current densities (6.41), under the same

conditions we obtain ) )
?'E (5[—') — ?'0(‘1:) . (6.51]

ef <y

Clearly, the mapping belween internal points of tree cylinder and cable cylinder is identical
for applicd currents and electrotonic current density. However, they will not be identical
when mapping from a point of disconfinuity. The current densities are not strictly valid
at these points (the boundary conditions describe electrical activity at the boundaries),
however they can be given a useful interpretatiox.

Suppose that a current injected at a branch point can be regarded as divided among the
connecting cylinders. A portion of the current is injected into each, though the injecting
point ig still the branch point. This is simply a useful abstraction. We introduce the
quantity {gp, where ’

14
isr = ig(1) + 3 ir(0). (6.52)
r=t
The individual current densities are then expressed
, Colsy . Crigy
() = = and () = =, (6.53)
2 =0 G §=0Ci
50 the portion of current associated with a cylinder is determined by its c-value.

Now, from equation {6.41), observe that, if # = 0 marks a diameter step on cable

cylinder &+ 1,

C\\n . n .
%k g o c;’,’: L}:l Cj ’LO(Z) Cyp o o 'Lv-(U)
i) = e { - +3° et (i +
im0 i t o 0 ; e (ks ) e
Y . HY .
Cy Cc Cf Eg:l Cj tgm Zj;.]_ Cj ((,'c | Cc) Lgv
= D) . k41 . T = n ANkl T b 5 _
=0 Ci o 22506 3=0CJ 40 C7
Cht1
et (6.54)
5=0 Cj
We infroduce the quantity 5o, where

Now, summing the two cable contributions given by equations (6.51) and (6.54) gives

Cg -+ C/E”-l-l ( )
tge = ter | —m—— 6.56
Z}‘—u €y

In conclusion, the sum of the contributions to the current density ak a point are mapped

belween cable and tree in the same way as the actual applied currents at the point.
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Figure 6.3: Reflection and Transmission at (a) binary branch point and (b) diameter step.
The elecirical continuity rules generate components directed along all paths away from

the point of discontinuity. It is possible that the reflected componeut (that directed away

from the discontinuity along cylinder 0) in cach case has zero coefficient.
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6.3.3 Reflection and Transmission at Specific Geometrical Structure
Reflection and Transmission at a Binary Branch Point

1f, as in Figure 6.3a, # = { marks a binary branch point where the primary cylinder (“0”)

meets two secondary cylinders (“1” and “27), then

Fra@) = — 2 (1« M) vl - )
Ck+1

{(en +c1 + ) co

e _ g
+ L+ vy (=
(CO +c -+ C‘Z) ( Cg.{q ) l( )

e ¢ ,
+(Ce e +co) (] k+1) (). (657

Reflection and Transmigsion at a Diameter Step

In Figure 6.3b, z = [ marks a point where the primary cylinder (“0”) meets a single

sceondary cylinder (“17), so

(co + 1) Cfp1 Co (Co-i- c1)

P () = (1— % CI)un(z_m) o

g
i
x—ﬁq|“a
+ T
-~
\M—"/
<
=
—~~
8
N
——

o

<

o
T’

Reflection and Transmission at an Interior Point of a Cylinder

If z = ! marks an interior point of the primary cylinder (“0”) then ¢p = ¢; in equation
(6.58) and

9’k+1(‘1') ‘12 (1 - 0 ) wy(l — 2} + -é‘ (1 =+ - % ) wo(l + :x). (6.59)
lb 1

i1 +

Amother interesting result occurs when ¢y = Z;-":l ¢; in the general equation {6.39}, so

that
d)z+1<w>=%(' c““)ﬂo(l"w) +Z ( '*) vi@).  (660)

Cha1

The reflected component behaves as if the primary branch is uniformly extended at the

branch point. This condition is essentially Rall’s 3/2 power law for impedance malching.

Reflection at Terminals

At terminals subject to current injection or cut conditions, there are no secondary cylin-

ders, and so no transmifted compoenents.
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Isolaion

Condition

E)] )

Figure 6.4: Component diagram illustrating reflection of origin bound components in a
Y-junction, provided the isolation condition holds. No components are transmitted into
structure connected to the Y-junction.

Consider the diameter step, equation (6.58), and let ¢; = 0 to obtain the reflection
rule {or a current condition.

biin(2) = woll ). (6.61)
Thus the reflected component retains the same coeflicient.

Let ¢; — oo in (6.58) to obtain the reflection rule for a cut end condition,

Pra{z) = s vy(l -~ ). (6.62)
-1

(These rules are easily checked by applying the generator equation directly to a component
that reaches a cut terminal at & = [.) Clearly coefficient conservation is violated in this
situation.

Here, it becomes clear why non-zero voltage conditions are generally invalid for equiv-
alent cable construction — the assumption of voltage continuity between cable cylinders
would be broken, i.c.,

CC‘

Pr41(0) # — Ci" 1—-90(5) unless ¢, 1(0) = wp(l) = 0. (6.83)
i+

Reflection at a Local Origin — The Isolation Condition

Consider the situation in which a single Y-junetion is being transformed. The junction
point has been chosen as a local origin. Denote the two branches £ (left) and # (right).

Suppose the potential [unction for cable cylinder &, of length I, contains two compo-
nents, one from cach tree branch, directed towards the origin, and both with the origin as
destination, so

¢ =pop{l —z) +qur(l — 2} + ..., 0<w <, (6.64)

where p and ¢ are constant coefficients. A number of other cylinders , numbered “0” to

“n” may be connected to the origin, but are not part of the Y-junction that we wish to
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trangform. Only the left and right branches contribute additional components, represented
in this equation by the dots. (for convenience, just assumc « increases away from the junc-
tion for all cylinders, and = 0 marks the junction} Applying the reflection/transmission
rules (6.39) to each component yields

broa(z) = [______ kL (1 _ ::f {cr + E?—o Cj)) oi(z)

(er +er + Xm0 ) i1 er

CcRr ef
+ [ vR{L
(cr + o + 30 g ¢)) ( 41 ) 7
+ i.: -l T 14 f.g Y {"Z")
o lern+ o X0 65) Cr11
en ¢ (eL+3aa
{ (1 L ACRD: >) wrle)

{er ler + 350 ¢) el CcR

- “L i+ % v (x)
T o Cc

+ - (IR RN I R 6.65)
EO:(CR+CL—>4,-OCJ)( C§+1) ' )} (

This can be rearranged into a more illuminating form,

. | p )
“ crv(e) |- crur(x)
brri{x) = (pta) ve(w) +
e ; (er+ep+ X jopcy) c,m @ et e+ S o5

of pler + Zil;_.o cj) — qey, aley, -+ ZJ_U i) — pCn ()
T VR
(cr+er 2050 ¢) (er +er 2250 ¢5)

- a1 ve(z) +

(6.66)
If no restrictions are imposed on the values of p and g, then the equivalent cable poten-
tials depend, in general, on structure connected fo the Y-junction. ™, however, we can
guarantee that

p+g=0, (6.67)

then eguation (6.64) becomes

dr =p{vp(z) -vp(z)) +... (6.68)

and equation (6.66) simplifies substantially to

e

—cff" plop(z) —op(z)) +... . (6.69)
k—1

Grr1(z) =

To understand the appearance of the reflection coefficient in eguation (6.69), note that

voltage conlinuity ai the junction (origin) ensures that components of the form
E(z) =vp(l — z) —vg(l — =) (6.70)
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behave as if z =1 is a cut end, since
(1) = 0. {6.71)

14 is significant that coefficient conservation still holds, unlike when a single component
reflects from a real cut terminal.

To guarantee lhat Y-junctions or any sub-tree may be transformed in isolation from
the rest of the {ree, we must ensure that components contributed by tree cylinders that
meet at the origin are always equal in magnitude and opposite in sign, i.e. their sum is
zero. This requirement will subsequently be referred to as the isolation condilion, and is
a critical link between the clectrical continuity rules and the isolation—termination rules,
which follow from the need to maintain this condition in all cable potential functions.
Figure 6.4 illustrates reflection of components from the local origin when the isclation

condition holds.

6.3.4 Electrical Continnity Rules in the General Y-junction
Initialisation of the Construction Procedure

Enough information is now available to generate the framework potential function for a
cable cylinder, given the potential function for the prior cylinder. The process must be
initialised with the potential function for the eylinder connected to the origin. The initial
cable potential function, ¢ (x), is essentially the same for any Y-junction -— the simple

Rall combination of the left and right cylinders connected at the origin junction,

of o .
¢z} = m‘”n(-’ﬂ) + E—"&"C—?Uft(ﬂa) (6.72)
The Rall-like c-value is
of =] +of. (6.73)

Components

Only a limited subget of the full range of possible electrical continmity rules need be
considered: reflection and transmission at a diameter step, reflection at cut terminals,
rellection at currenf ferminals, and reflection at the origin {junction) when the isolation
condition holds.

Since all tree cylinders have length {, all components, and consequently all cable eylin-
ders, will have length 1. This is an inevitable consequence of the electrical continuity rules,
which need only be applied where cylinders connect {and not internally).

The notation “—" is used to indicate the contribution a component (with unit coefli-
cient) of equivalent cable cylinder k makes, when the electrical continuity rules are applied

at =, to generate the [ramework potential for cable eylinder & - 1.
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For the general Y-junction, components can be directed away from the origin (hranch

point), in which case,

¥ e (J i c .

¥ i G Gyl j Crti Ck J

vi{z) — - l1-——C-" -2y + 21+ o {x). (6.74)
Cg‘n ( cf.’:’:—}- I d‘b ) " C.:; i C}?—f-l e

They may also be directed towards the origin,

. ) e\ é . < ; _
o (-2) - T"(l + -k )v;‘z(z—xw i (1* T )vimﬂ:)- (6.75)

c
Csn. Crpi Cyn Cotl Una1

Components with a terminal ag destination will gither be reflected from a sealed end,

vi(x) = vl —n), (6.76)
or reflected from a cut end,
. <
iz — -l —x). (6.77)
Cit1

Puairs of components satisfying the isolation may be reflected from the local origin,

o
vl —z)~ovf(l~2z) — —Cg,k (v (z) — »{{(2)) - (6.78)
1

It i3 common for two components, v, («) and v/ +1({—x) to appear in the same potential
function. ¢p(z) say. Since they have the same destination, at z = I, both contribute to

the sarme two new components {see Figure 6.5),

, ) ] c o G )
awd (@) + vl | (1 — 2) - «-C%— al|ll-— E—kn—?ﬂ +81{1+ gk vl (l — z)
Chn i1 Cn Crya
c; L o . & 1
Sl L Bl I e el R LAWY C)
Csn Cit1 Cht1 Cat1
= pol(l — 2} + qvl, 14 (). (6.79)
Conservation of coefficients means that
a+fB=p+q. (6.80)

6.4 The Isolation—Termination Rules

The iscolation—termination rules follow primarily from the requirement that the isolation
condition is always satisfied, whatever the struciure of tree or cable. Tirst, to illustrate

the strategy for deriving these rules, consider the initial three cylinders of the equivalent
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Figure 6.5: Component diagrams for component structure relevant to the general Y-
junction. {a) Reflection of component (%) at = = [ generates a origin-directed reflected
component and a terminal-directed transmitted component. (b) Reflection of component

Uf; 1(l==) at » = [ generates a terminal-directed reflected component and a origin-directed

transmitted component. (¢) Components avi (z) and ﬂvf;_ 11({I — z) contribute to the same

two components on application of the electrical continuity rules.
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cable for a genmeral Y-junction. The ideas introduced can then be generalised to give the
rule for the &** cable cylinder — first assuming no terminals have been encountered in the
process, then taking into account termination of both left and right branches. Only cylin-
der potentials are considered. The mapping of applied currents follows straightforwardly
{replace the potential at a point with the current divided by c-sum at that point).

6.4.1 Cable Cylinders “1” to “3”
Cable Cylinder “1”

The initial cable cylinder must have the Rall-like potential fanction

.[ CR
dn () = T (@) + ;%va(w), o<z, (6.81)
where
cf =cf +ef. (6.82)

The sum of the two component coefficients is one,

f,l_ + E';t_ =1. (6.83)
of  of

This condition will be referred to as rule one, or the Rell-like condition. The immedi-
ate implication of this rule, combined with coecflicient conservation, is that the sum of
component coeflicients in any subseguent cable potential function is always one unless at

some point a component is reflected from a cut terminal. A component diagram for this
potential is illustrated in Figure 6.6

Cable Cylinder “27”

Application of electrical continuity rules (6.74) to each of the two components of ¢, gives

a framework potential function,

AL AL
) = —|(I- v [—um +-~ 1—-—=—= 1 —=vg(l—2
bie) = S(1-5%) Sue-a =033 ol - 2)

e\ el
vr{l + z) + c—-« (1 + —1:) C—l;vR(l -+ x), 0<z<l,
il

—-‘%}I-—g‘- "'b

L (o

& C
+-2 (1 + %)

L ]

where ¢§ must be chosen so that the coefficients of vr(l — z} and vgr({ — %) satisfy the

isolation condition, i.e. their sum is zero,
et e E\ ek CF ef ef\ of .
S \l-==s)s+=zll-%53%)s=0 (6-85)
Cs1 € e/ G i/ ¢
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Origln

Origin

Figure 6.6: Component diagrams for the first three equivalent cable cylinders {1-3) for

the general Y-junction.

Simply rearranging gives
G nD ki R L0 (N
o _ crlefefed 4 cfefely)

& = 6.86
((ch)Pch, + ()2 (6.80)
and so
CLCR(CLCR - CLCR)
dolp) = —2A112 21 (vr.(1 — ) — v — )
ef (efezeg + efcfely)
ekt
! s ol +w), 0<z<l.
(cheke® + cfc’fcil)w‘( ta)t (cFekeR + cfelel) or(t+e), O<wsl
(6.87)

Note the left-right symmetry in equations (6.84) through (6.87) — swap around the
L and R, and the expressions are unaltered. This is expected, given the generalify of the

structure being transformed. The isolation condition will alse be referved to as rule fwo.

Cable Cylinder “3”

The second potential function may be regarded as consisting of essentially three compo-
nents — two directed away from the origin, the other towards. Applying the electrical
continuity rules (6.74) to the outward componeuts and (6.78) to the inward compouents

of ¢ gives a framework potential function,

C L aR{aL R _ oLk
& _cref(erey — ey

thy(x) = O Ol Ak E AR R iy n(@) — vr())

cf cf (efchel + cfefcly)
9 .C L L, L, R
€3 €2 G €320

+{,L_ (1_ _C—f) ( LeboB L pleBol )'UL(QJ-':R)
%22 C3 €3 / \CTCy € + €1 CyCyy
R C ,.R R AL

+2 (.2 A% o021 — z)
¢t e c& | (chckeR + cRckct R '
52 12 1%~2%31 i72%s1
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ol C«O ol .LCR
2 (1 —f,) 1020 v, (2 + )

Ciy a5 / (efogedy -+ efcfel)
X
+ C;: (1 s 2 ) of CZ L“l wr(2l + =), O0<zi.  (6.88)
Coy (£1 cycgy +efegen)

At this point, where two components have the origin as source, the requirement for
isolation is not of immediate relevance. We still need to determine cz somehow. Fhe
Lrick is to choose c3 so that, whatever the tree structure beyond the third cylinder of each
branch (i.e. structure that is not represented in potential functions so far), components of
$a{2z) will satisfy the isolation condition (a similar idea leads to the &% rule).

Writing equation {6.88} as

¢a(z) = Avr(@) —vr(z)) + Bor (2l — &} + Cop(2l — x)
+Dwr (2 + ) + Bvp(21 + ), 0<z<l, (6.89)

the electrical continuity rules can be applied to give

ez} = A—Li 1- & c£)+3 1+ vl — )
) ef cf °s1 ‘

B CR CC' CR cii CO
+|-A-L (1 — _Z_i - Cv-}g- 1+ 235 vr{l — z)
N sl ¢ Ce1 4
[ ok c§ ck of ef
+ |4A-% (1-#%) + B4 (1~ =L :tv;,(l+:c)
L s 4 C1 ¢f €3
B n L R C RN
) Y. & a4
+ | —A— 1~i—-- +C==(1=-==|vg(l+=z
g (14 )+ (1- G )| ea 2
cl, CC’ CL (, c
+D=2 (1 - ii) v (31 — ©) + B> & ( -2 ;;) vr(3l - z)
Cs3 ¢4 €3 e )

l/}‘Il' Cg B ) l','4 ﬂa‘ [ « ,<z
(6.90)
The isolation condition will only be satisfied if

L &L < R n C
E}»(l—%%)ﬂ+ (1+ )B+ (1~%%)(_A)+%(14—CZ)C:O.
Csy €4 € ¢ f ch €{ €] Cs1 Cq

(6.91)

Rewriting this in the form M + (c§/c§)N gives

F ia I
T (A+B)+ 1( ~A- C) + 4[ C1A+ +—C—§(—A)+—“;—c]=0. (6.92)
&

sl Cs .s']. Cg) €51

it can easily be shown that M = N by the following argument.

cl R c{i -~y
N = —-«-/1—|— B+-L-a)+3c
C.“ 01 sl Cs1
- ——~A A+C£B+Cl( A A "10
sl Cs1 € sl
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L L
(.'-1 Cl C-l Cl
NI O S WO W W
At e P A o
= M, (6.93)

s0 that equation (6.92) can be rewritten

Ci Cii 3\
Foasmegearol(+g) -0 (694
or
%] cf cy ef c3 .
I - S RO S L8y o 05
[ o) ) €51 | C.fl( A Cﬁc H C4 0 (6.95)

Cable ¢-values must be non-negative (and anyway, this condition must be independent

of structure beyond the third eylinder of each Y-junction limb tree), sa

of er ,
o, A+ B+ o (mA+0) =0, (6.96)
8 s

which is referred to as the woltage-fike form of rule three, or equivalently

L et ey cf 5
_%_4+C_L13_PT2(—A)+E—%-030, (6.97)
g1 51 ~51 sl

which is referred to as the current-like form of rule three. Note that M contributes the
voltage-like rule, while N contributes the current-like rule.

To understand the nomenclature, consider the component diagram in Figure 6.6. For
the voltage-like rule, note in equation (6.89) that if A = —B, then (6.96) requires that

A =, and the fonr associated components cancel at z = I, leaving
P3(l) = Dup,(31) + Bug(31). {6.08)

For the enrrent-lile rule, now consider the spatial derivative of ¢z,

ddsi . Bup dvr,
% |, = | P ar

Jvr
bt

Sv n

1+ 8’3‘

dvy, Bug
ve—— .

+C .
31— Oz

-

+D -
1+ dfﬂ

. (6.99)
3

If ¢5A = ¢} B, then (6.97) requires that cf(—A) = cfC, and, from equation {6.13), the
two pairs of associated components satisfy a current injection condition at # = [, with the

derivatives cancelling, leaving

A3 g _ Oug B4 C %y .
AR 3 5 Bk, Cifa |
d |- Bz |y Oy &K T FK (6.100)

When peneralising to rule &, both voltage- and current-like rule forms exist, which is
significant for termination of the cable.
In either version of the rule, put in expressions for A, B, and ¢ given by the clecirical

continuity rules in equation (6.88), and a unique expression for ¢§ is obtained. Using the
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voltage form of rule three (6.96),

o (_Egﬂi‘c{‘ {ctcf —cdef) + 9 (1 B C_zﬁ) ciefeg )
{ 1)

cii \ ca o (efched +ofefel) o es eg ) {elezefy + cfcfe]
g (add _lddodd) 4 (1_ _2_3) e ) o
cii \e e (eresey +efegen) o escf ) (efeseqy +efefeq) ’
(6.101)
which gives,
5§ = 5 | ciciencg (cred - exer) 7+ (o) 2chch{(ef) e + (ef) e cf(ch) cly) of
ef ((ef)2(c)2(cf )2 ey + (cf )2 (c5)2 (e ) eka) ’
(6.102

and the third potential function, valid for 0 < ¢ <,

11Qs da{z) =
cief (cfef — csef) [(ef)? () (e ely + () (e§)*(chy Veh] (wnlz) — vilw))

efcfeef | (cR)Peflel ek

)2 (chef — cjef) + cfefich (efef — cie]) J v (2 — )
; )2 (chick — cfe§) + ciefieh (cfek — chef)*] on(2 - )

+ (cf)2eh(ck)?) o1 + chef (chef — chef)?] un(2l +2)

- (el 2e (k%) o1 + ebe (o ef — chef)?] w2l + 2),

+efelicfely [(eh)2ch (el
+efegeiedich [(( i)2e 5 (e

+efcfcfelich {(( LYok (e

)?
)*

(6.103)
where
Q1 = cfehcl + cftefcl
Qy = chelelyek, (chef — chel)” + (b)Y ehek (R 2edy + (R ek (eh)2e) of .
(6.104)

The left-right symmetry is still maintained, as expected.

Clearly, at this point the level of complexity involved in the expressions for the cable
potential functions and c-values is increasing rapidly. In fact, the expressions for ¢§ and
¢1{z)} exhibit a similar increase in complexity over ¢§ and ¢3{z) as they themselves over c§
and ¢2(z). Fortunately, we can derive general rules for the k-th cable section by extending

slightly the ideas used ahove.

Special cases of the first three cable cylinders

Consider potential ¢ again {equation 6.87), and suppose the reflected components are

%CLO, SO

clell —chel =0, (6.105)
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On rearranging, clearly this condition simply says that the ratio of first to second tree
cylinder ¢-values is the same in cach hranch,
ey cf

L AR

(6.106)

Bquivalently, the ratio of left to right c-valucs is the same for the first two tree cylinder

in each hranch. Write

e €3 s 5

It is also clear from the framework potential (6.84) that both reflected components are
zero oaly il
es o ef
= =1= (6.108)
1 2 2
so the same c-value ratio is exhibited by the first two cable cylinders. The cable potentials
generated so far may be rewrilien

;
14+

d1lz) = vr(x) + vr(x). (6.109)

L+7

and
r

1
i1+7 147
Similarly, consider cable potential ¢z (equation 6.103). If the above zero reflection
condition (6.106) still holds true then the coeflicients of v, (27 — x) and vy (2! — z) (which

are the closest components to the origin that are also directed towards the origin) sum to

bo(w) = vp (I + ) + vr(é + z). (6.110)

zero (similarly to the original isolation condition). This follows directly from rule three
(6.96).
In addition, the coefficients of reflected components vz (2! — z) and vg(2l — z) In @3

can only be zero if the condition

L A
2o (6.111)
ez cf o}
also holds. Thus, . 5 ,
& _ &% _ &
=0 _ 9 5 6.112
! e o ( )
and
1
bow) = {7 (@) § g oon(2+ ). (6.113)

Ii can now be shown thai the condilions for zero reflection are easily extended to the

k" tree cylinder in each branch.
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6.4.2 The Piecewise Generalisation of Rall’s Equivalent Cylinder

Consider a, Y-junction where the left and right branches have the same electrotonic length,
and terminate with the same boundary condition (we are not actnally restricted to just
cut and current injection conditions for the special case under consideration). A slight
generalisation of Rall’s equivalent cylinder is obtained if the 3/2 power law for diameters
is relaxed so that

?"ﬁchcgl’ 1 SkSmLsz. (6114]
Suppose the &' cable cylinder potential is of the form
drlx} = Avp((k — VI + 2} + Bog((k - 1} + ), 0<xs<l (6.115)

Now apply the electrical continuity rules at =z = I to generate the (k -+ 1)% framework

potential,

cp oy cf i
dpg1(x) = :'j ! (1 + C'l” ) Aop (Kl + ) + lel (l + z—k) Bop(kl + )

sk Cht1 Cak Ol
o o Cry ol 2 ey
sk (- TR Ay (Rl —m) (1 — L) Bayp (k] — ).
sk Ck+1 Gk Csis Ci+1 Gk
(6.116)
Note that the two reflected components are only both zero provided
N L o 4
o B (6.117)
%1 Gk G
which follows automatically from the relaxed Rall condition so
dra1(z) = Avp{kl + z) + Bup(kl = ). (6.118)

Notie that this is independent of the actual values taken by A and B.

Since ¢ () takes the torm of equation {6,115}, with A =r/(1++) and B = 1/(1 + ),
and since the relaxed Rall condition holds for all &, then through mathematical induction
it follows that

1 .
e — + < .
rrooR((E=i+a), 0Kz sl (6.119)

de =1 L‘m((k — ) + ) +

for all &.
Equivalently, describing the left and right c-values by functions ey {x} and eg{z), which

are stepwise uniforin, then

=7, 0 <z <mgl. (6.120)
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The potential in the cable is now represented by one function, ¢¢, so we can write

pow) = ; T

vr(z) + vr(z), 0 < o< mgl. (6.121)

I1+7r
At & = m,;! the cable (connected section) will terminate with the same type of condition
as the Y-junction limbs.

1t now remains to construct the discounected seetion. Consider a cylinder with c-value

¢p, described by the potential
e =vr{(k— )+ 2) —op(lk ~ )+ 2), 0<z <1 (6.122)

Again, note that this takes the form of equation (6.115), this time with A = —B = 1. Since
the left and right branches satisfy condition (6.120), there must also be zero reflection on
application of the electrical continuity rules to &g, yielding

Cpr = vp{kl - x) — vp{kl + x), {(6.123)

It is trivial to repeat the argument used for the connected section, starting this time
with

& =wr(x) — vp(z), (6.124)

which satisfies a cut condition at 2 = 0. Thereforc, the disconnected section c-valucs

(superscripted by 1) satisfy
G _ %%k .

- =k (6.125)
Copl Chal Chal

[t is necessary to choose a c-value for one disconnected section cylinder so that the rest

may be extracted from the ratios. It is convenient ta chovse ¢f =1,

The potential in the disconnected section can be written as
¢ppla) = vp(z) —up(x), 0 <z <mygl. {6.1286)

which must satisfy the same type of boundary condition at & = m,l as the connected
section. ‘I'he disconnected and connected seclions therefore have identical shape.

Figure 6.7 illustrates a few cxamples of piecewise cabies. ‘I'his is a very important
special case. When tree structure deviates from the relaxed Rall conditions, there must
at some point he reflected components, and the general analytical rules that follow must
be used.

Note that the connected sections of such cables are identical to the lambda cables

{Burke, 1997) obtained simply by moving from junction to Y-junction tips summing c-
values (scc Chapter 3). Rall’s equivalent cylinder is the special case where ¢f/cf , = 1
for all .

This resuli is the discontinnous version of the continuous non-uniform cables mentioned

in Chapler 3. A combination of both srguments allows for e-value profiles that arc a

mixture of continuously varying and discontinuous segments.
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T j::_r-.___‘_L T
éx 1

Figure 6.7: Examples of non-uniform generalised Rall trees. (a)-{c) Three examples of
the piecewise generalisation of Rall’s equivalent cylinder. Tree terminals satisfy the same
boundary condition 7. The ratio of the branch c-values is a constant. In each case
the connected and disconnected sections have the same electrotonic length and diameter
profile.
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6.4.3 Cable Cylinder & —
Prior to Left and Right Branch Termination

Consider equivalent cable cylinder & where & < m,, mp, i.e. for the moment we avoid the
additional complexities introduced when terminals must be taken into account. (feneral
expressions for the current-like and voltage-like forms of rule & (for determining c-value ¢,
and consequently potential ¢) will be stated. A proof by mathematical induction will be
given showing that these rules are correct il we require that the isolation condition st
always be satisfied by any (even numbered) potential function. First, however, consider

the general structure of cable potential function ¢y.

Part One: Potential Function & and Framework Potential & + 1

The electrical continuity rules ensurc that the potential function for the &% equivalent
cable cylinder for the general Y-junction can be expressed as a linear combination of
components each with lengéh { and lying along an entire Y-junction cylinder. The k-odd

and k-even cases must be considered separately.

If k is odd and k > 1, then ¢ (z) can be expressed in a compact form,

k41
2 . .
dr(2) = Y 3 Fapui(2n— DI+ 2) + Fv (20l — @), (6.127)
=L Ru=1
where
ks =0, (6.128)

Tigurc 6.8a illustrates component diagrams for the potentials ¢ and ¢r., when % is odd.

Constants o, and %8 are, respectively, the coefficients of the »®* outward and n®*
inward components contributed by branch ¢ to the &% cable potentisl function. It is
convenient to pair components that have the same destination. On each branch, numbering
starts at n = 1 for the pair of components nearest the origin, increasing towards (but not
yet reaching) the terminals.

Note thal component o v;(2(r.— 1)] + =) lies on odd numbered cylinder (2r — 1) while
component * 3 v;(2nl — ) lies on even numbered cylinder 2r {on branch 7). |

On each branch, there is one outward component that cannot be paired, i.e. that
furthest from the origin, lying on the &** cylinder. For notational convenience, cach is
paired with o zere component, i.e. a component with zero coeficient, honce condition
(6.128).
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If & is even and & > 2 then,

ﬁ
2
dele) = D > Fpbui((@n - DI o) - Bghu((@n + 1)1 - ), (6.129)
i=L.Rn=0
where
Fpb=0 and  F¢L =0. (6.130)

2

Figure 6.8b illustrates component diagrams for the potentials ¢y and ¢4 when % is even..

Constants Fp, and #¢i are, respectively, coefficients of the n™ outward and n'* inward
compaonents contributed by branch 4 to the k™ cable potential function. Components
with the same destination are paired. Numbering in this case starts at n = 0 for the
two components that meet at the origin. These are paired with zero components for
notational convenience, as, again, arc those two terminal-directed componcnts furthest
from the origin (contributed by the k left and right branch cylinder), hence conditions
(6.130).

Note that component *piv;(2(n — 1)I + 2) lies on even numbered cylinder 2n while

component *¢fv;(2nl — ) lies on odd numbered cylinder 2n + 1.

The electrical continuity rules are now applied Lo hoth lorms of ¢r. The isclation

condition (rule two) is assumed to hold.

If k is odd, then applying the electrical continuity rules to equation (6.127) generates

Lot ]

’ o — - cén—l 1 (’,%:r can k. i
hnt) = 3 Y| (e (1 e Yo
i=1,Rn=1 §(2n--1) ‘k+1 “2n—1
X) c
Cop 1 c i
+ Lt L REL ) oi((2n — 1) — @)
C.fa(?‘n.—i ) Cr1
i c
C ; I .
+ (_;_ﬁ‘_m_ (J_ - CL ) ka;‘
Cs(?n—l) Gl

+ %_"’3“ (1— z’f Con- 1) kgt )fui((Zn—-l)l-l-a:)] . (6.131)

cs(?’n- 1) Ch41 C?n

Since k 4+ 1 is even, this must take the form of equation (8.129) with & 4+ 1 replacing %,

and so may be expressed as

brar(z) = ZZ’““M ((2n — 1)+ 2) +*H k(20 + 1)1 - @), (6.132)

#=L, it ne=0
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where

- U n = ()
A B P 6.133
=Y e K1 + —6—) o, + (1 . l) kg 1 1<ngiz (0139
#{in—1) .'C-!— “K-l-1 2n '

and

Gé}u— 1 k c‘? Cizn k=1
B4l g ol G A 14 S 1<ng®5s
1= 5(2—1} CE41 Can-y Cit

0 — k=3
(6.134)
Be sure to remember that "ﬁ‘%_l =0, so ¥lgi_, and Flpi, take a slightly simplified
2 2

form.

If % is even, then applying the electrical continuity rules to equation {6.129) generates

E

2 i o
¢ . ¢ o
deal@) = 3. |>. ((E—QL (1 - c—gi“—%ﬂ) Fph, + 2 02“ (l + L—L) ) vi(2nl ~ z)
FEEY I R 8(2n) k41 2n :.{27:,) k4-1

c e \is e c ;
- En"'l I ck f"p,_fl + ———.?}H’] i— ———‘G"‘ - 2n kq,; v;i(2nd 4 x)
“s(2n) Ch+1 Co(an) Cr+tt Con+t1

i ki o
- ghvi(z)| . (6.135)
k41

Since £ + 1 is odd, this may be expressed in the form of equation (6.127), with & + 1
replacing k,

Btz
2 N
Prrafm) = Y z 2(n — DI+ x) + FH B (20l — z), (6.136)
i=L,Rn=l
where
— kg n =1
Rl i Ch+l o &
T " i . :
sl [(1 + T'L) Py + (]- e hesl ) k@:z—l] 2<n< B2 )
(":a[n 1) Ce41 Coan—1
(6.137) &
and
) .__(_‘:Zn_a 1 — _,_L.Eﬁs_tm 1 ) % i] i< <3_ﬁ d
Mg, = G [( &y chn ) ( * TL oo =Tz (6.138)
0 n = &2 E

In this case, remember that *¢% = 0, so that **1 8% and o), s2 lake slightly simnplified
2 z
forms.
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Figure 6.8: Component diagrams for the k™ and {(k4-1)** cable cylinder potential functions,

prior to termination of either left or right branch. Dotted lines represent extended portions

of each branch, with components following the given pattern. {(a) %k is odd. {b) & is even.
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Part Two: Valtage and Current Forms of Rule &

Now, suppoge that the k** rule takes the following voltage-like and current-like forms.

If & is odd and & > 3, then assume the voltage-like form of rule & is

rl
2 . .
> 2 (ka;- + kﬁl) ‘B, =0, (6.139)
t—L Rn=1

while the current-like form of rule & is

f= L e e=1 (’3(2:11—1} cs(2n—L)
where
By =0 and  FFL, =0, (6.141)
2 2

so that the final term in each sum over » is always zero. The 2% and ¥£] are constants,
referred to as the wvoltage-rule coefficients and current-rule coefficients respectively.
Although the sum is over (k- 1)/2 pairs of component coefficients for each branch, only
(k —1)/2 have a non-zero current-rule or voltage-rule coefficient. The rules are written

this way for notational convenience.

If & is even and & > 4, then the voltage-like form of rule % is

k
2 . .
5 3 (k) o o

3=L,Rn=1

while the current-like form of tule £ is

- &

3 p . i , . .
> Z(-—?‘“%h—f?“ ) b bE =0 e
i=L,R {n=sl (‘s(z-n} cs(En)
where
’“E’%:O and "‘F% =0. (6.144)

Agaim, although zero, the final term in each sum is included for notational convenience.

Observe the additional termn involving the coefficients of the two components with the

destination as origin.

Note also that the isolation condition (rule two) may be written

3 25 o, (6.145)

i—L,R
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so that
iFE = 1. (6.146)
Though similar to the k-even curreni-like furr, this condition is regarded as voltage-like
since the isolation condition arranges these inward components so that they can satisfy a
cut condition when they meet at the junction. One of the main points of the remaining
rules is to ensure that this is always the case, i.e. that
ki _ '
S kg =u (6.147)
i=L,R

From equations (6.96) and (6.97), the voltage and current rules (k-odd) are known to

take these forms for rule three (k = 3), with

3t =L and 3 =1 (6.148)
51

The “voltage-like” and “current-like” nomenclature can be explained quite situply, just
as for rule three.

Consider first the voltage-like rules for rule &, If ’"ah 1 ‘O',

,=0for 1 <n<(k-1)/2,
then, fromn potential function (6.127),

(1) = Fadpvy () +Falpop(kl), (6.149)

for k odd. All the paired components have cancelled at this point since voltage continuity
allows them to0 satisfy a cut condition.
Similarly, if *p, + *q,, = 0 for | < n < (k — 2)/2, then from potential function (6.129),

(1) = *plvr (ki) + *pion(kD), (6.150)
for k even, since at « = [ all other components cancel due to voltage continuity.
For the current-like rules, differentiate potential function (6.127) to give

K 7 51}5

(6.151}

dqﬁ;ﬁ(i Z Z \:k P d'Ug
ixml Rﬂ."‘ n aT

(2r--1)i- " 0% |y 1]!+‘

Observe thal, if ¢ Fay = c%n__lk,ﬁf, for 1 € n £ {k—1)/2, the currenl conservalion law

{6.13) can be used for cach pair of components to give

; ; T2 gt gl
by g L Oug kR Ovg Lﬁn t4.0m—1 -
w2 Neypan + Vv ka1 + B . 6.152
d."l" - 2 8$ k- 2 83;‘ Lt~ E Z C?é_ I{ ! ( )
=L, Rn=) L




for k& odd. Again, at & = {, ali other terms involving derivatives have cancelled, contribut-
ing simply an applied current term since they satisfy a carrent injection condibion.

The final case is slightly different. If cgﬂ_,_lkp; = cgnkqi for 1 < n < (k—2)/2, then
differentiating potential function (6.129) gives

B T N T L Oy o i Ovg N Fg Taon
7 Ml T W O~ W £y B B 2 D DD Dl sl o
T - P o+ T lo+ L k- T lki- D7 pne1 Gl

(6.153)
for & even. In this case, as well as the two most digtal components, two terms are con-
tributed by the two components whose destination is the origin.

It is clear, from cxpressions (6.149), (6.150), (6.152), and {(6.153), that cable cylinder
k cannot terminate with either a cut or a current injection condition until & > m,, my.
Otherwise, there are components that don’t end on a terminal, and are nol paired with
another component (zero components don’t count since they are just a notational device).
Components must bhave at least reached both terminals, though, except in special cases,
termination doesn’t actuaily occur until after this. Furthermore, when & is even, it will
not be possible for a cable cylinder to satisfy a enrrent injection condition nuless the kqf,

are Zero.

Part Three: Ensuring ¢, Satisfies Rule k&~

Now that the rules have been given, it is necessary to show that, under specific conditions,
all rules must actually take these forms.

Recall that rule & = 3 was found by ensuring that component coeflicients from ¢y ()
would satisly rule lwo {the isolation condition), whatever Y-junction structure might be
encountered beyond the third cylinder of each branch.

Assume that rule (k — 1) (k odd or & even) takes the voltage-like {6.139 and 6.142)
and currcnt-like (6.140 and 6.143) forms. We can now prove that rule & must also take
Lhese forms il we want to guaraniee that rule (£ — 1) holds for the component coeflicients
of the (k + 1)** potential function, whatever structure is encountered beyond the k¥ left

and right branch cylinders.

If & is odd and & > 3, then (K — 1) > 2 is even. We want rule {k — 1) to hold true for
the ¥lp. and *lg in ¢y (6.132), so, from equations (6.142) and (6.143), we require
that

(k1)
3 . .
Sy (kﬂp; + k—qu“;&) blp =, (6.154)

i=i,R n=1
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or

2 C 7 ; ST R
Z ( Zﬂ.—H k‘+1p; + cZn k+1f ) k—-]F;}.' + k+lqEA"—1}'8 =0, (6155)

i=v. | n=1 5{271) 3{271.)

It & is even and & > 4, then (kK — 1) is odd and (k — 1) > 3. We wanl rule (k — 1) to
hold true for the #~le;, and ¥4, in ¢pyq (equation 6.136). From equations {6.139) and
(6.140), we require that the voltage-like rule

k
> Z?: (k_:lcui + FH ﬁ;) -l =0, (6.156)

i=L,Rn=1

and the current-like rnle,

;. LA -
53 (g S eng)enao e

pren, =1 s(zn 1) ‘s(2n~1)

arc satisfied.

At this point, just the voltage-like forms of rule (£ — 1) will be used, with the
appropriate component coefficients substituted from framework pofential ¢g ;. The
current-like forms of rule (k — 1) could be used instead, however in the next section it is

shown that the two expressions are in fact equivalent.

If k is odd, then use the voltage-like form of rule (k—1) (6.154) and substitute tor k"'lpi
and #+lg’ using equations (6.133) and (6.134), (the coefficients of framework potential
dxy1, 6.132) gives

k-1
2 % e} )
CN N cl ¢ e ¢ ¢
L L 1:(4_ on (1 + CG}‘G ) h(]:;' + . 278 (l . (.Ok 27: 1 ) kﬂn
t==L,R n=1 s(2n 1) k-1 c s(2n—1) k1 an
¢ o ¢
C '8 %n--1 . . 3
o2 (1 _ Ck {( )) oy + & 1+ —k kﬁi_!_l k 1}3?.1 —0,
C s{2n+1) Cr4+1 Con (3n| 1) C.’H—l
(6.158)
which may be rewritten as
(& ...... 1
2n ik zn[l ki kpgi kL i
2—' Z l: a” + ‘Bﬂ) ( n+1 ﬁn-{-l)] By,
t=L.R n=1 s(2n 1) 3(21; 1)
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{k-1)
-1

Xa 2 '
L % % ki 2n “on—1 k
o A % ﬂ;I'
kbl j—r R m=1 ‘s(2n—-1) s(2n-1)

(’?(nll i1 kg —1 pi
+< 7——") Fad, 1 + r; kg | P B =0

(21L+1) s(2n+l‘
(6.159)
Of course, & LE% b = (, so the final term in each sum over n does not contribute.
Note that thxs equation has the form
cC
M+ | -E Y N=0. (6.160)
Ck+1

If k is even, then using the voltage-like form of rule k — 1 (6.156), and substituting for
k! and #+14] using equations (6.137) and {6.138), gives

&

. Cl?fn.— G C?nml 1 Ck ”2(77,—1)
Z Z 'i < pn 1 l_ - ¢ ot q'n,_l
i=L e | n=2 bi[? ~1) k-1 2(??, 1) "' +1 “2ne-1
b, c? ck G’ s
2n : e 91?,+I i 2 k fe=- ot
;\5_'_ (i - e pe; p'n, + _,L 14— < q:? E*u
(2n) k+1 Con Cs(2n) kel

PR} ) C,'
L ki T 3 02 ki \ ke gi
+ |- @ + b3 kgt 2 {1 a1 k| =0,
( cféﬂ :.2( o1 C'E) : ‘zz Ck+]

(6.161)

-}~

which may be rewritten as
i , . .
- Con_ (ki o ki Con-1 ik ki k—lpmi , C2 ik i .k _iyk—1 i
L b ('(':i' "= ("p}, -+ ") + ‘c,-n—( Pn 1+ Gn1) By + —("p1 + "q)" T B
i=n.r [n=2 \s(2n) s(2(n—1)) Co2
&

c(" 3 ci _ Y g 271 A -1 i
e 3 E{( Sotiay ¢ ﬁq?a)+("z-?-’f-—1-‘p;.l— Setkg )| e
E+) s=p |n=2 Ci(2n) Cy(an) Cs2(r—1) Coa(n—1)

e A : o
+(— 2t kel —h) ] o, (6.162)
Caz Cea -
Note that ""_IE = 0, and again thig equation has the form M + (ef /cf )N = 0.

Part Four: Equivalence of Voltage and Current Forms of Rule &

It may now be shown that A = N for both the k-odd and k-even cases.




When k is odd and & > 3, begin with the expression for N from equation (6.159),
(E=1)
5

Ci . l"
Z Z [(ci 2 han_ “2n—1 kﬁ;)
i=L,n ne=l #{(2n—1) 3(2n— )

~gn|1 k Zu-il ki k—1 i
( 'n+ + ?1—].)] -En

s(2n+l) a(2n+1)

N

H

(k—1)

t—i, 8 n—1 ﬁ‘(?ﬂ—’l)

L.‘i'n . _ i
+ (Tz“iL ( t"~‘n+1 + ﬁwl) :H—l)] R 74

Co(2nt1)
(=1} .
- )
_ o (ki o ki), o+l (ko k i k-1
= Z Z Ci Q‘n_'_ ﬁn ' {‘\i_ - un—l—l+ ﬂBu-i-l "’n
i=L.k n=l s{2n—1) s(2nF1)
(E-1)
-3 S‘ ( g+ ) =350 (6.163)
t=L,R n=t

Since coefficient conservation ensures that

! k”f:.:l-%] + kﬁﬂ, = k- lpizl + k- 1(}':1 (6164)

the last term may be written

(k—1)
2
Z Z (k,...]__p; + k—l‘q;!.) k—lﬁf;":’:’ (6.165)
i=L,R n=]1

which is the voltage-like form of the (¥ — 1)* rule applied to potential function & — 1
{equation 6.142), which must hold according to assumptions we have made, and so this
term is 2ero. The remaining ferm is simply M, hence M = NN and the voltage- and

current-like forms of the rule are seen to impose the same conditions on the component

coellicients of ¢y.

If % is even and & > 4, then starting with N in equation (6.162),

VA y d, i
N = Z Z “‘"?zﬂHk?’;“'“ tZ’n, kq; + zm -1 5p;“1__ z(ﬂ quq;.? . Jk—lE;
=L | n=2 Ls(?n) S(Zn) s‘2(n-1) 052(?1—1)
Gri Sri o ki)ioied
+ (—T“pi + =i - ’*95) ¢ 11‘31]
Csa Cen
i )
| Gy fni kg Con—1) (k. i ki ki ki k=1 pi
= > 2|7 ( Pt qﬂ) o ( Doy + q;_l) - ("pn + ”q'n.-1) L
iz |ne2 |.Cs(on) Cozn-1)
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G R
+ LTz ("p‘l | ’“qi) - (’“Q?; + ’“pl)} § lEa‘]
82
&

Z Z( an (kp;+qu) o Sl (Pn l+ Qn 1))k~1E771r.

i=L.R |n=2 %(Zu) Ca(2(n- 1))

+ :i ( o qL)k iﬂz] Z Z(}'Pn*‘ ‘In—l) B-lggi (6.166)

52 t=L, R n=l

In this case, coetlicient conservation ensures that

icpf) T k‘)f:.—l _ k—lan 4k 1(1 (6.167)

8o that the second sum may be rewritten as

safe

Z Z (;h Lo 4 ke lﬁn) h-lgi (6.168)
1--——: nn=1
which is the voliage-like form of the (k — 1} mie applied ta potential function & — 1.
This rule already holds true according to assuinptious we have made, and so this term is
zcro. The remaining term is simply the voltage-like form of rule k-even, thus N = M.

Again, the two rule forms arve essentially the same condition.

Equations (6.159) and (6.162) can be rewritten as M (1 - (cf /cf,,)} = 0 or
N1+ (¢f/cf 1)) = 0. 1t is therefore necessary that M = N = 0, since cable c-values
ghould be non-negative (and anyway the rule should be independent of more distal cable
structure).

By re-ordering the sums, one can extract from (6.159) and (6.162) the voltage-like
and current-like forms of rule k. The expressions for M give the voltage-like rides, while
the expressions for ¥V give the current-like rules. They take the forms given in part two,
and are now summarised below with the voitage-rule and current-rule coefficients for rule
& expressed in terms of the voltage-rule coefficients for rule £ — 1, so that they may be

determined iterafively.

Part Five: Summary of Pre-terminal Voltage-like and Current-like Rules
koddand k> 3

The voltage-like rule is

v Z( o, + 58 )"E‘ =0 (6.169)

i=p,Aun=1
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Ik =3 then

i

Bi=2  and PBj=0. (6.170)
Csy
Otherwise & > 5 and
[ m) % n=1
ki i _ch e ; 1
o )l S ], el O ) Elq,-- —
B, =< [*1Ei] E”(f:) + [*-1EL ] ;ﬁj 2<ngit (6.171)
0 n = 'I‘"%
The current-like Tule 4
Z Z (_ c%n A:a_i + CE?L—'l kﬁi ) kFi =0 (ﬁ 172)
{:i' n r.{ n 7 b ol
=t in=1 B(?.ﬂ.-—'i:] ‘s(?n—l)
if k= 3 then
=1 and SEL =0, (6.173)
Otherwise k& > 5 and
e m=1
= ~[E]+[FELL] 2B (6-174)
0 n = -—%—1

Remember that k“lEi.;l =
2

keven and k > 4

The voltage-like rule is

I
2 . .
5050 s+ ) b =, (6.175)
i=L R n=]
where . ‘
i k—lE‘ﬁ c%lnj:l + kulEi F‘Zrl 1<n<_"£‘:‘::_
kpi = [ ] Catam) ) 5am) T (6.176)
0 n = -%—

Note that the coefficients of the two components that meet at the origin are not involved -
in this expression. The isolation condition has already ensured that kgﬁ‘ = mkq,:'f go these

two components will automatically satisfy a cut terminal at z = [

The current-like rule is
b

2 5 . i i . a s
> Z(_%le??:ﬁ E‘“—-’“qn) k1 Ryt | =0, (6.177)

ct c
i=p,R |n=1 . s(2n) s(2n)
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Figure 6.9: Interaction between voltage rule coefficients. Sec text for discussion.

where
~FE] neo
Fpi [e-1Ei] — [b=1HE ] 1<ng &2 . (6.178)
0 n==5%

Note that the coefficients of the two camponents that meet at the origin do contribute
to this expression. Since these two components can only satisty a cut terminal at @ =,
the only way in which a current injection condition could bhe satisfied when k& is even is il
gt = *g& = 0. Remember that *~1EL = 0.

The iterative procedure by which ?:he voltage rule coeflicients *E?, arc determined can
be visualised in Figwre 6.9. Each uew coeflicient is some combination of two previons
coefficients, except near the origin and furthest from the origin. At the origin, odd num-
bered voltage rule coeificients and even numbered current rule coellicients are determined
hy just one previous coefficient. The coefficients associated with the group of comnponents
[urthesl from the origin are determined by the furthest coeflicient in the previous potential
function.

Part Six: Rule Reinforcement

The rales of this form guarantee that the isolation condition will always be satisfied.
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It was proven in parts three fo five that if potential ¢y satisfies rule &, then potential
¢p+1 must satisfy rule & — 1. Suppose now that z is a non-negative integer with z <
(k —2)/2. Using an tdentical argument to that in part three, but this time to ensure that
potential ¢pyo,41 satisfies rule & — 1, reveals that the required condition is for rule k& to
be satisfied by component coefficients of potential ¢pyn,. Simply replace the coeflicients
kph, ®qt Fod, and *8% with coefficients Ft22pt | E+4egt k2201  and £+2261  and the result
follows straightforwardly because the relevant structure of potential function ¢yyo., ie.
those components lying on the fitst & — 1 cylinders of each Y-junction hranch, is like that
of ¢y, whatever value is taken for z. This can be seen by considering the component
diagrams in Fignre 6.8. If & is odd, then % + 22 is odd. If & is even, then % + 2z is even.

As the cable is constructed, and more rules are applied, this leads to a cascading effect,
with each new rule reinforcing previous rules. Consider step k, for example. Rule k& will
guarantee that ¢p.pq satisfles rule & — 1. Inevitably, then, the coefhoients of ¢pys mush
satisfy rule & — 2. Potential ¢, 3 must then satisfy rule & — 3, and so on, with dpyr
satistying rule & — v for all v < k — 1. Eventually even-numbered potential function ¢op_o
must satisfy the isclation condition.

Of course, when one then moves (o step £ -+ 1, rule & + 1 ensures that potential ¢ry»
satisfies rule &, which in turn ensures that ¢y, 3 satisfies rule k—1, snd o on with potential
P2y satisiying rule & — .

There is continual reinforeement Lo ensure that the latest potential function satisfies all
previous relevant rules. Component coefficients in odd numbered cable potential function
¢ will satisfy all odd numbered rules from 3 to k. For even numbered potential functions,
the coefficients will satisfy all rules from 2 to k.

Basically, whatever the tree structure that might be encountered as one progresses
with the cable construction, rule & ensures that the isolation condition is satisfied in a
later potential. Figure 6.10 ilustrates the reinforcement process. Further analysis of the

rules will be given once terminals have been considered.

Part Seven: Conclusion and Application of Rule %

Given the results of parts onc to six, the proof can now be completed.
First, assume rule (¢ — 1) is valid. Potential ¢ must satisty rule & if potential ;,15;;4_1 is
to satisfy rule £ — 1. As discussed in part six, this is sufficient to cnsure that all previous
rules are satisfied in later potential {functions and that the isclation condition is always
satisfied by even numbered potential functions.
It was explicitly shown that the third voltage- and current-like rules were of the form
given above. Now consider & = 4. Rule four must take the given form if the component

cocflicients of ¢y arve to satisfy rule three. The validity of the remaining rules follow by
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Figure 6.10: Rule reinforcerpent in potential functions. The circle surrounding a group

of four components corresponds to the rule for which these components are the furthest

from the origin, e.g. in potential function %, rule k involves the group of four components

{two on each branch) that meet at a point {k -~ 2)! from the junction, plus all components

nearer to the origin. Arrows indicate the backward moving nature of rule reinforcement

so that the isolation condition is always guaranteed.
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induction.

'To actually apply rule £ and generate cable cylinder c-value cf, it is necessary Lo replace
the component coefficients in rule & (""@uiL and ¥4 if & is odd; ’“pil and kq:'l if & is cven)
with the coefficients from the &% [ramework potential function, obtained by applying the
electrical continuity rules to the (k-1)% potential function, which musi have already been
fully detcrmined. The current-rule or voltage-rule coeffictents are determined iteratively,
initialised with those for & = 3.

Once ¢f has been obtained, potential function ¢ can then be fully determined by
substituting ¢f into the framework potential function.

Left-right symmetry is maintained in all rules and expressions for e~values and potential
functions.

Simplified Notation

Once boundary conditions are incorporated, the lelt-righl syminetry in all previous rules
and potential tunetions will disappear. In anticipation of this, write potential function %

as a pair of separate lelt and right contribusions.
dp(z) = ®p{z) + OF(x), (6.179)

The isolation—termination rules can also be divided into left and right portions. Wiite

the voltage-like form of rule % as
Fpr g Fym =, (6.180)
and the current-like form of rule & as

ki + ETR _ (). (6.1.81)

6.4.4 Cable cylinder & —-

Approaching the Left Branch Termination: & =m, and £k =m -1

When & =my or k£ =my + 1, the pre-terminal rules can still be applied.

When & = m,, at last a component on the left branch reaches a terminal. Examination
of the pre-terminal rules (6.169, 6.172, 6.175 or 6.177) at this stage reveals that they arc
completely independent of the boundary condition (remember that conditions (6.141) and
(6.144) ensure the final term in each sum over n is zero anyway). No left branch c-values
from non-existent structure beyond the terminal appear in either the rules, or the current-
rule and voltage-rule coefficients. Also, of the component coefficients that would be used

to generate the c-value, none have been influenced by the boundary condition. There has
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Figure 6.11: Component diagraws for the cable cylinder potential function & = 7, and

k=m,; + 1. (a) m;, is odd. (b) m,, is even.
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been no opportunity for the clectrical continuity rules to reflect a component from the
terminal.

The situation changes slighfly when & = m; + 1. Again, no c-values beyond the
terminal are explicitly involved in the rules. However, a component is now reflected from
the left terminal, and its coefficient will indicate this fact. Thus, the form of the rule to be
applied is identical to that where no terminals have been encountered, with only a single
coellicient containing information aboul the ferminal.

Moving to & = m; + 2 and beyond, the rules themselves must now be adapted to

account for the terminal.

6.4.5 Cable cylinder & —

Including the Left Branch Termination

It is possible to derive the rules that account for termination by adapting the proof for
the pre-terminal rules and applying it to slightly altered forms of the potential functions
and rules (which will be given below) with components restricted to the first m,, cylinders
on the left branch and my cylinders on the right branch. General forms for the potential
functions and rules are given in parts one and two, but parts three to seven follow those
of the pre-lterminal rules and it is unnecessary to repeat most of the detail.

Consider the situation where & > m, and k¥ < my. We only cousider one terminal
at the moment. The treatment of the second terminal, i.e. k& > myp, will follow almost
immediately. For convenience, we write m = my.

Note that rule one (The Rall-like condition) and rule two (isolation coundition) are
always the same no matter what value m, takes.

It is essential that the boundary conditions are treated property. The m!” left cylinder
can be regarded ag connected to cylinder (mn -+ 1) (beyond the terminal) which has zero
¢-value if the terminal is sealed, and infinite ¢-value if the terminal is cut. It is then

possible to write

L 1 Ty, =5 L 0 Ty =8
Cm :{ » and  SmEl - { S (6.182)

SL . - A . .
c G 1,=C Com 1 1y =C

5N

Part One: Potential Function & and Framework Potential Function &+ 1

It is necessary to take into account whether m is odd or even, as well as if &k is odd or
even. The potential functions now take four distinct forms, which can be extracted irom
the pre-terminal potential functions (6.127) and (6.129) with the sum over the left branch
cut short because of the terminal. The right branch contribution to cach potential is

identical to thal in pre-lerminal pofenthials.
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Figures 6.12a,b illustrate component diagrams for each of the four cases.

Ifm > 1is odd and k& > m is odd, then ¢x(z) has the following general structure,
=
dp{z) = O (z) + Z Bopvr(2(n — 1)+ 2) + 5 vp (20l — ). (6.183)

n=1
wherce
’ﬂﬁ?:n_;_l_ == Q. (6.184)
In this case, there is one compaonent with the terminal as destination, and, as wsual, it

has been paired with a zero component for convenience,
I{m > 1isodd and & > m +1 is even, then ¢x(x) has the following peneral structure,

() = PF z bpbup((2n — 1)1+ a) + Pglop ((2n + 1) — z). (6.185)

where
Fpy w0, (6.186)

Here, no components end on the terminal, but two components mect as the origin and

are paired with zero components.

Ifm > 2 is even and k& > m + 1 is odd, then ¢, (x) has the following general structure,

FLi 3

(@) = B () -+ > Papvr (2(n — 1)+ ) + F G (2nl - ). (6.187)

=1

In this case, there are no components with the junction or terminal as destination.
Ifyn > 2 is even and k > is even, then ¢ (x) has the following general structure,

b () = BE(z) + Z’“ Lup{(2n — DI+ 2) + Falagp((2n 4 1) — ). (6.188)

n==(}
where

Fpk =0 and kg% = Q. (6.189)

In this final case, two components meet at the origin, and a component also reaches the

terminal, so there are three zero components.

Now apply the electrical coutimmity rules Lo generale ¢g..; and observe the situations

in which there is refiection from the terminal. The isolation condition is always assumed
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Figure 6.12: Cowponent diagrams for the cable cylinder potential functions with & > my.

(a) myp odd; (b) m,. even.

to hold.

If . is odd and k is odd, then k-1 is even and ¢y..1 takes the form of equation (6.185)
with & + 1 replacing £,

drpr(c) = B, (@) 1 Z’*Hp vr((2n -~ D b2y + 5 g (@n + D — ),  (6.190)

=0
where
{ =20
bkl 2 __. - :
Dy = L e ) - (6.191)
™ o5 [(l + E: ) + (l ~ - e i“.._ ) kﬁ{l 1ingjm2 1}
a(én 1) t+1 “%n
and
Gt Eoch Yk k -1
oo [(1- gl Y ratr (10 4L ) ] 25m
s(Zr\_ 1) k-{l 2n—1 k41
41 .
Ty = Foh o B, =S
2
Cc k . m+l N
'—"ZE:“ 0: | = =5, P=C
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Tf m is odd and k is even, then k-1 is odd and ¢g4; takes the form of equation (6.183)
with & + L replacing k&,

N
Prpr(z) = OR (@) + > T opor (2(n — D+ 2) + 8w (20l — @), (6.193)
n=1
where
qu n=1
gt = ¢, £ o (6.194)
T K] + “5’“) oo+ (1 - 2= fif“ , ) quLa,—l] 2<n<igt
Caa(n--1) A1 CEn—1
and
Chn_ 1““6‘*"?‘“621‘ 1 1+%§’— kgl 1<n<msl
g = § Sy k) PRt (L) ] Tsnsy (6.195)

— e+l
0 ' 'm.2

If m is even and & is odd, then &+ 1 is even and ¢y, takes the form of equation
(6.188) with k-1 replacing k,

br1{z) = 4 (z +Z;+1Pnﬂa (@n — DI+ ) + *Mgpup((n + 1)l — 2),  (6.196)

i=()
whare
o 0 n=>0
1,5 1t
Pr = cf _ Zu-1 ) kgL < (6.197)
Cs(2n—1) [(l * _&_) + (1 %ﬁ: Con. ) ﬁ tsns »
and
Chn_y 1— _g;;_, ok ko L 1+ ‘Z.A_ kﬁ 1<n<it
BHlgl = Caneny [\ i G CE+1 " - (6.198)
0 n = 242

If m is even and £ is even, then &+ | is odd and ¢y takes the form of equation
(6.183) with &k + 1 aubstituting %,

m

Prt1(z) = L (=) + Z ki 1&31);-,(2(?1, — 1)+ zy+ ’“Hﬁf;m,(%z.{ —z). (6.199)
n=1
where
(o]
—=bgp n=1
A1 r ko)1

@, = ok ) g 5 el ann_ . (6_2{](})
Tl K + —2:1) Sph i+ (1 - —é”—-’ir-‘l) ’“cﬁ;_l] 2<n< g

c.s‘z{n—l)

CEy1 TZn-1




and

Y AL
i [(1 - G:- _L_-;-_Cz;; L) *pl 4 (1 o+ ) kqf’] 1-<ﬂ,<£-~——)-"'n2 2
a(4n) wera n
k41 i
i 74 kp‘:i To = %, Ty == (6 201)
2

- Bf—k z n= 2 Tp=C
Crr1 b3 2>

The terminal type only has a direct influnence on framework potential ¢y, when & and

e are bhoth odd or hoth even.

Part Two: Voltage and Current Forms of Rule %

We now suppose the voltape- and current-like versions of rule & take the forms given
below. They can be obtained from the pre-terminal rules (6.169), (6.172), (6.175) and
(6.177) with the left sum cut short due to the terminal. The right branch contribution ig
written below in simplified form. We shall only consider the cagse where m, > 2. When
m,;, = 1, exira care must be made to fit the rules nto the general framework. 't'his
situation is dealt with much more easily in Chapter 7 concerning the branch-shifting

method of cable construction.

If m is odd and m > 3, & i3 odd and & > m, then the voltage-like form of rule % is

Z
by S (B + 4pE) FBE = 0. (6.202)
The current-like rule is
.__i 3
s

ffli? + Z ( Uc;; + 12‘?1 1 kﬁu") k}f-;{, - 01 (6203)

n=1 o(?Tl. 13 0{2‘1 -1)
Remember that ¥4% = 0. For the case k& = m, where the boundary condilion is not yei

relevant, kg L = =0 and f“mel = 0, as wilh the pre-terminal rules. These conditions will

not, mcessan]y hold when k > m+ 2.

It is uscful to take into account condition {6.182) and rewrite the current-like rule,

N 5 0 Tp=5
ket _ Cin k.1 Coin—1 kar | ke z
AR E i ity < = IS Dl S (6.204)
o F Ty =0
=l i
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If m is odd and m = 3, k is even and & > m + 1, then the voliage-like form of rule & is

m—1
-
RLEDS (’c 2 qn) kRL =, (6.205)
ro—=l
The current-like rule is
ke Z ( 2n+1'a L Con L) bh q hgtkpr g, (6.206)
s?n CsEn

If m is even and m > 2, & is odd and k > v+ 1, then the voltage-like form of rule % is

.

2
by 37 (Rar + ) R <0, (6.207)
n=1
while the current-like form is
AR (——-——2n Fay, + w.j“ LEgl ) iy 0, (6.208)
n—1 cs(?n—l) ('5(2?1—1_)

If m is even and m 2> 2, k is even and % > m then the voltage-like form of rule & is

kyr 4 i ("‘p; + “"'g;;;) BE =0, (6.209)

=1

while the current-like form is

k_LR_i_Z( {'2n—ilk L .?nk z)kFL 4 hgkkpr = p, (6.210)

=1 Cion Cin

Remember that gk = 0. For the case & = m, where the boundary condition is not yet

relevant, *E%, = 0 z:nd kpE == (), These conditions don’t necessarily hold when & > m+ 2.
Once mof‘e, the currentilike rule can be rewritten by taking into account the terminal

conditions (6.182). If m = 2 then

. - 0 TL=5 .
nzLIL — kqé.k_z\«(f' — A . (6211)
p" P Ti=C
Otherwise m > 4 and
m—2
L C .- 0 Tr =S
kgL _ Z ( 2n+l!cp;t; i r«q:&.) icF?;; yhghkpms b L  (6212)
¢ CsZn Fm =
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Observe how, in each of the rules above, coefficients of components that end on a
cut terminal, or have the origin as destination, are not involved in the voltage-like rules.
Similarly, coefficient of components that end on a sealed terminal are not involved in the
current-like rules.

It remwaing now to show that the rules must always lake the form set out above, and
to find expressions that relate the current-rule and voitage-rule coefficients so they may
be determined iteratively.

Part Three to Part Seven

The remaining derivation of the post-terminal rules follows the same pattern as the deriva-
tion of the pre-terminal rules.

As before, all forms of rule & are found by requiring that potential function dgg
salislies rule & — 1. Again, only the voltage-like forms of rule & -- 1 need be used. This will
generate an expression for rule k in the form M - (cf /¢, )N, where M is the voltage-like
rule and &V is the current-like rule.

Once more, it can be shown that M == N by taking advantage of coeflicient conservation
and the fact that rule & — 1 has been satisfied by potential ¢..1. The procedure works for
for bolh current injection and cut terminal boundary conditions.

Yet again, re-order the sums in the resulting expressions aund extract the voltage-like
(from M) and current-like (from N) rules. These rules can be found in the full isolation—
termination rules summary of section 6.4.7.

Hach new rule still reinforces previous rules in later potential functions so that potential
function ¢ where % is odd satisfies all odd numbered rules from 3 to %k, and where k is
even satisfles all even numbered rules from 2 to k.

Note that the pre-terminal version of rule 7w -- 1 is identical fo the posé-ferminal
version of rule m + 1 in every case. At this point, either can be used. The transition
from pre-terminal to post-terminal is smooth, and the mathematical induction progresses

straightforwardly, initialised for post-terminal rules by rule m + L.
6.4.6 Cable Cylinder & —
Beyond Both Left and Right Terminals

The left and right Y-junction branches coulribute independently to the voltage- and
cwirent-like rules, i.e. the form of the left branch contribution does not depend on struc-

ture in the right branch. If one derived the riles for & > my using the same approacl as

234




sy, odd

(&) Left branch
Srog L 1 ] L 1] 1 Lnf Teminai . odd
rgnl it 1 C | ] [ JZCIIIDIL ] "H. 1 Right Terminai
Right branch
ongn” T T ATy,
g —_— o e s - Ll e — — - . e e D Ty
k odd
k even
Origin ™ T T .
g et Al i 1 P % e 44 4 . e f— —r T——u 7 s ¥ 4 1 i el il [,

) left hranch my. even
Or‘lginl [ 1C 1C [ 1 Left Terminal mae even
[ 1L I | 10 IIIIlIiAim=sar=m Right Terminal
Alight branch
., e e ——y = s s - v et alprverl] 7
Origin z
—r — T p—— - e e g == == o . Ty
k odd
k even
Origln ] e, e tl—— - = = - ey -q—-——-—-—l']"b
B . e D —— —r—in. etfr———— ——— . — = = i -.-—--——a--"r‘R
() Lol branch
[ wesrwas | ey [
Crgil Mn CVEN
g, 1 ] I -1 Right Terminal
Righl branch
. ol e— p—
Onlgin
—p— et i el 'y
k odd
k even
; —— — - i ~—f)",
Origin -
e rif— et — - - - - ——ccr e "."'""""_"'HTR
(@ 1.cft branch My even
[ i [ L [ 1 Left Terminal
orgin mg odd _
— { oy | st boffoibalboiboibel mvesvsmors | e AT TIn TN T T It T ——ic——1  Righl Terminat
Alght branch
UL et s e~ AT
_ Origin L
{0 et e ——m e e e e et = 2y e it irsadpe 1
k odd
k even
ol in.‘.__..__... [P T —- v ..-—...—......—...Th
gin_ - e e oo e e -t Ty

TFigure 6.13: Component diagrams for the cable cylinder potential functions with & >

My, Mg (&) My, odd, mg 0dd; (b) m,, even, mnp even. (¢} m,, odd, my even, (d) i, even,

mp odd.




ahave, it would emerge that the right branch post-terminal coniribution is similar to the
left branch post-terminal contribution, of course with r replacing £, and so m; replacing
™y,

The purpose of all rules, both pre- and post-terminal is to ensure rule reinforcement is
maintained, even though when & > m, 41 enough rules are already satisficd to ensure thai
the isolation condition will always hold. Since rule k& cnsures that potential gor—o satisfies
the isolation condition, if k > my; + 1 then 2k — 2 > 2m,, > m; + my. The reinforcement
procedure is now ensuring isolation in cable cylinders that will never actually exist. If the
isolation condition were the only condition we wished to maintain, then perhaps alternative
rules could be employed now. However, it is the rule-reinforcement structure that is
necessary to ensure eventual termination, and subsequent construction of disconnected
sections, rather than just one specific rule. i is vital that all odd rules are satisfied in odd
potentials and all even rules arc satisfied in even potentials, otherwise there is no way to
guarantee termination.

6.4.7 TFull Isolation—Termination Rules Sumasry (m,, my > 2)

In general, the voltage-like form of rule & can be expressed
3 Ri=, (6.213)
i::L,R.

and the curreni-tike form of rule k£ can be expressed
S Ari=o. (6.214)
t=L R

Rule & is applied to the framework potential ¢ to generate the c-value ¢f. To understand
termination and construction ot the disconnected sections, the rule structure is considered
in greater detall m following subscctions. For my,m, > 2, the rules are divided into the
following categories. (For m; = 1 or my = 1, the branch shifting method described in

Chapter 7 can be used.)

A. Universal Conditions: k— 1, k=2, k=3

The first three rules always take the same form, whatever the structure of the Y-junction.

Trivially, rule one is the Rall-like condition, while rule two is the isolation condition,
=248, (6.215)

Rule three is of the general form summarised below, and is used to initialise the

voltage-rule and currcnt-rile coefficients.
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B. Pre-terminal Conditions: & <m; + 1 and % is odd

The contribution from branch ¢ to the voltage-like form of rule 4 is

bt
Y - Z (kn{;_l_kﬁ;) kﬂi_
==l
If & = 3 then )
. 1 .
K = E}— and SEL =0.
€1
Otherwise, & > 5 and
[k—-lEl] ‘~2 =1
ey .
ki 28 Chy k=1
Eﬂ-“‘ [k lt‘] }_[L 1‘511 1]—;_(2;:_1; 2Sn§T
0 L= ‘l“"z'l

The contribution from branch 7 to the current-like form of rule k is

- i i Cz 1 k
k h
Z oy, + LA gl ) bt

K
-:(2':1— ) Ls(?nul_,:

If £ = 3 then
Spt =1 and S = 0.

Otherwise, & > 5 and

- [ n=t
= - [E] L) 2<n <y
0 = %‘i

Remember that "“ﬁtkj =0.

C. Pre-terminal Conditions: k <m;+ 1 and k is even

The contribution trom branch ¢ to the voltage-like form of rule & is

&
2
kl)%-_Z(.pn_l_ qn)kEz
el
If & > 4, then

k--1 e Chn k1 r:‘-_ o kD
kEL = [ E““]mi [ 1 En] & am) 1sns%

" k

0 n=*%
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Nole that the coefficients of the two components that meef af the origin are not involved
in this expression. The isolation condition has already ensured that #gf = —%gf so these

two compounents will automatically salisfy a cut terminal at & = .

The contribution from hranch ¢ to the current-like form of rule % is

k
2
in :Z( Czn+lkp:' 4 2 ('213 k )kFr + 1’1'_ (6'224)
ct
n=1 s(2n) (2”)
If & > 4, then
N n=0
FE =0 [l -l ] 1<n< k2 {6.225)
0 = !E

Note that the coefficients of the two components that mect at the origin do contribute
to this expression. The isolation condition has already ensured that #gf = —%g & so that
these two components can only satisty a cut termninal at © = [. The only way in which a
current injection condition could be satisfied when % is even is if kqé’ = kqé‘ =0},

Remember that "’q% = 0.

D. Post-terminal Conditions: m; is odd and % is odd, %k > my; +- 2

‘1'he contribution from branch ¢ to the voltage-like form of rule % is

mi-}-l
E
kpi = 30 (&'(_u;—}-kﬁ;) o8 (6.226)
H m; = 3 then
[+ iE‘] =
. cl
*Br=< B n=2, mes (6.227)
0 = 2, Ti==C
QOtherwise, m; > 5 and
( [k—I B Ec;_ n=1
_ [k; 1@ ] + ,k 1gi 1] _.‘?2:%;“, 2<n< mjg_n.
b, = ] , “ane) . (6.228)
k 1E‘m]----1:l n= m,-z-}-l} T;=S
2
\ 0 no= ML g

T'he coniribution from branch 7 to the current-like form of rule & is

N ¢ . ol ko -
=3 (—%‘“aﬁ + ;ﬁ"-‘—JJﬁ) pad (6.229)
=1 s{2n—1) “s(2n—1)
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If my; = 3, then

- Bl =
kpi = (-1 B =2, Tp=C
0 n=2, 7T.=S
Otherwise, m; > 5 and
(- w1
I L R S
B _1] n= mg’t—, Ti=C
\ 0 n= "t nog

Remember that * ,Biu;_—l-_l_ = 0,
2

E. Post-terminal Conditions: wn; is odd and & is even, &k > ;-1

The contribution from branch ¢ to the voltage-like rule is

m.f_z—.'l
o S (b ) B
n=1
If m > 3 then
e i c m; — 1
k- {k ! Jw+1} 2:;41 +FlEi] l<n<g 22
5(271} 9[27}.]

The contribution from branch ¢ to the current-like rule is

...J -

! ki — 7 ( an-i—lk t."i" f?'n. k t) Fz A k %kFa
|

*:{Z'n) .G(an
Ifm,; > 3, then
sz:{ ol 1 n=0
n - i - 7 mi—lL
[fiEa] - [FELL] lsn<mes
F. Post-terminal Conditions: m; is even and & is odd, &£ > m; 41

The contribution from branch 1 to the voltage-like rule is

iy
2
Byt _ N k2 Bai \ kg
V= ( an—l_ ﬂ.) Eﬂ'
n=1
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(6.232)

(5.233)

(6.234)

(6.235)

(6.236)




Il m; = 2, then
. 1. ¢
b= [E] 2 (6.237)
1
Otherwise, m; > 4 and
% i [Ic L ] n=1 :
E! = ; n i (6.238)
keo1gm o k—1g5n Con. .1 g
oy B S ) < < T
[ ] Ce(2n—1) [ n~—1] Cien-1) ALns

The contribution from branch ¢ to the current-like form of rule k is

o F i _ |
=N (__Z_ Cin kgl 4 ?2“"1 kﬂﬂ) kg (6.239)
Lot ¢
=1 s{2n—1) .s(?n -1}
Ifm: = 2, then
i [”}J:] . (6.240)

Otherwise, m; > 4 and

- — |b-LEd n=1
L= { et il kl_], . . (6.241)
—[El e L] 250
G. Pogt-terminal Conditions: m; is even and k is even, & > m; + 2
The contribution fromn branch 4 to the voltage-like form of rule % is
?‘%i
FPRLY ( FORE q") kBL =0, (6.242)
n=]
fm; = 2, then
. k_IE"‘ n=1 7=
bR = (7] S (6.243)
0 n=1, T=C
Otherwise, mn; > 4 and
[k—lEi'._ ] c21:t 4 [Ic IEZ] 1< < m~(2—2
. 5(27 ) (s 2n) - -
kE‘:b = [k -1 F""i] o= 7%", 1i=8 ' (6244)
m 2
0 n="T, T=c
The current-like rule is
el C‘ g 3 lo et
TR+ ( Gnithg | G ‘q,.) R+ Rk E = 0, (6.245)
n=1 >{2’ﬂ) s(Zu\
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it m; = 2, then
“PE] =0

fri={ B  n=1, me=c . (6.246)
0 =1, 7.=5
Otherwise, m > 4 and
- [’““lEi] n =0
. k=1 g | _ [k—1gn 1< g < Mi=2
[ ﬂl%i n="50 T=C
0 n = l’é:i’ =5

Remwember that kqﬁze = 0.

6.4.8 Termination and Disconnected Secticus

With the rules that have been developed so far one can construct, cylinder by cylinder,
the fully eguivalent cable for a general Y-junction. Apply the electrical continuity rules to
generate a framework potential, then apply the isolation-termination rules fo determine
cylinder c-vaiues and fix the potential function.

If one does this, then cventually the process terminates at the end of a cable cylinder,
n say, and the connected section is produced, simply because eventually the component
weights [or potential funciion ¢, turn out to be just right for termination. Basically, for
cach componeut pair, the two components will have the same magnitude but opposite
sign (for satisfying an overall cut end) or their ratio will cqual the ratio of their respective
cylinder c-values {so that an overall current condition can be satisfed). Of course, an
additional requirement for proper overall termination is that non-zero single components
cannol end on a cut terminal when the overall {erminal condition is sealed, and vice-versa;
1t has previously been noted that a sealed terminal could never be achieved when £ is even
unless the two components ending at the origin have zero coefficient,

How, though, do the isolation-termination rules guarantee this termination, and how
are disconnected sections determined for degenerate Y-junctions. The key lies in a further

examination of the structure of the voliage-like and current-like rules.

Counting Rules and Components — Cable Predictions

As the number, & say, of gencrated potential functions increases, then for both the odd-
numbered and even-uumbered rules the number of companents involved in potential A

increases unbil both leth and right terminals have been reached. Once the terminals have
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been reached (when & = mpg in fact), however, subsequent potentials cannot involve any
more thau iy + mp components. Consequently, the nuruber of components involved in
ihe voltage- and current-like rules must reach a maximum. Consider the structure of
post-terminal potential functions, as already illustrated in Figure 6.13. For a specific m,
and myg, all even-numbered potential functions will have the same general component
structure, as will all odd-numbered potential functions. Of couise, component weights
will vary between two structurally similar, but different nnmbered, potential functions.

Meanwhile, as k increases beyond mp, the number of rules that describe the structure
ol the components will still increase. Recall that all odd-numbered rules from 3 to & apply
to the component coefficients of odd-numbered potential %, while all even-numbered rules
from 2 to & apply to the component cocfficients of even-numhered potential k. Tt is simple
enough to count them, revealing that k-odd potential functions satisfy {k — 1)/2 riles,
while k-even potential functions satisfy &/2 rules, including the isolation condition.

Now consider once again the form of the voltage-like (6.226, 6.232, 6.236, 6.242) and
current-like rules (6.229, 6.234, 6.239, 6.245). Each voltage-like rule is essentially a linear
combination of component pairs sums plus the oecasional single component (or two). Bach
current-like rule takes a similar form, but is a linear combination of weighted component
differences, again with the occasional single component {ox two), and also possibly a pair
of components that meet at the origin. (In the forms given for the rules, the terminal
components are actually paired with sero componcents for convenience. )

It is straightforward to determine from the construction rules (voltage and current),

that for euch branch i the following number of components pairs and singles arc involved
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in the rules for post-terminal potential function %,

) %2_—1 m; odd, & odd or even
compornent pairs (voltage) .
) = B m; even, k odd
or component differences (current) 2
== my; even, k even
origin components
. . 0 k odd
for current-like rules =
. 1 k even,
(always zero for voltage-like)
0 =
nunber of 1 Ty=8,m; odd, k odd
terminal components = (¢ 1 Ti=S8,1M; even, k even
in voltage-like rules 0 Ti=5, M even, k odd
. 0 =5, 7n; odd, k& even
4
0 =9
mimber of 1 Ti=C,m; odd, &k odd
ferminal components = ¢ 1 T:=C,m; even, k cven
in current-like rules 0 T;=C,m; even, k odd

{ 0 7=C,m; odd, £ even
(6.248)

Note that only the number of origin and terminal compounents diflers between voltage-
like and current-like rules.

Each rule can be regarded as a linear equation in a number of unknowns. Each com-
ponent pair; single lermiual component, and single origin component iy regarded as an
unknown, while the *E% and ®F} are the linear coefficients. The set of odd rules and the
set of even rules may each be regarded as a set of linear homogeneous equations.

Using cquation (6.248), Table 6.1 summarise the total manbers of paired components
and single components {referred to collectively as unknowns) on the left and right Y-
junction branches for all configurations of m; odd/even, mg odd/even, and &£ odd/even.
Note that the results for m,, even and my odd are cssentially the same as for m;, odd, my
even, since it does not matter really which hranch is longer, and so they are not included
to avoid repetition. It must be emphasized thai different sets of rules apply depending
on whether & is odd or even, For convenience, the total nurber of left and righl branch
cylinders is denoted mip, so

Mip == 1712, |- My (6.24:9)

TFor cach combination of my, Mg, 10, Tw, & odd and & cven, and for both voltage-like
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o o my 0dd and mp odd ” mr, even and mp even my odd and mg even
% k odd k even £ odd k even k odd & even
| rules — (k—1)/2 | /2 (& -1)/2 | /2 (k~1)/2 | k/2
Ty =0, Te=C e -2 ey mp mp —~ 2 g — 1 my —1
unkuowny --» 2 2 2 2 2 2
voltare cale TR
( & ) Ymp — | e yiep ol 1 Yrpp - 2 Ty *ge — 1
maich & =
mp +2 mp -+ 2 my mop +4 my + 1 ™My + 3
unknowns — 2 2 2 2 2 2
(current rule)
me + 3 mr -2 mg - 1 My + 4 My +2 g+ 3
match k =
Ty =8, Ip=s mep 2 mr Ty g -2 my + 1 mye -1
unknowns — 2 2 2 2 2 2
voltage rule |
(voliage sule) ) s | g metkl | med2 || met2 | metl
match & = i
mpe —2 3 wne 2 TR My my — 1 mep + 1
unknowns ) 2 2 2 2 2 2
{current rule)
; *mgp — 1 mr + 2 mr 4+ 1 e ey i 4 1
H match k =
L wy=8, th=C my my e mr ma + 1 me — 1
unknowus — 2 2 2 2 ; 2 2
voltage rule :
( & ) My + L *ry i A 1 *v mrp + 2 Ay — 1
match &k =
mr mr + 2 T Mep + 2 mp — nrp -F3
unknowns — 2 2 2 2 2 2
(current rule) )
mr + L mr -+ 2 my +1 Mep 4 2 e mq +3
malcl k=
T,=C, Tu=S Wy My mr : mo mr —1 my +1
unknowns — 2 2 2 2 2 2
{voltage rule) ]
e |1 *rrp mypy+1 *vnp *map g bt
match k =
| mr wmr -2 me my + 2 mr + 1 mr
unknowns — |2 2 2 2 2 2 ;
{current rule) i )
mp | 1 Mep 4 2 yitp + 1 me 42 mep 2 me +1
match & =

Table 6.1: Predictions for fully equivalent cable structure for the general Y-junction.
Notation: e =myp+my. A * indicates at what length and with what boundary condition
the connected section terminates. A T indicates where a nnit-length disconnected section
occurs. A T indicates where a two-length disconnected section occurs. See text for more
details.
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and current-like rules, the total number of unknowns is tallied, and we determine the value
of k for which the total number of rules that are valid for the componeuts of ¢ equals
the total number of unknowns in rule £. Using the resulting information, it 1s possible to
predict the lengths of connected and disconnected sections for all possible combinations
of branch lengths and terminal conditions.

Suppose the odd rules and even rules each form a set of linearly independent homo-
geneous equations. If we have n such equations (the rules) in » unknowns (component
pairs or weighted differences, and singles) then therc is no non-trivial solution and the
unknowns must therefore be zero. For voltage-like rules, this leads to every pair of compo-
nent coefficients summing to zero, i.e. (he two coefficients have the same magnitude but
opposite sign and so can satisfy a cut condition; in addition, any component that might
end on a sealed terminal would have #o be zero. On the other hand, for current-like rules
this leads to each weighted difference of two componcnts being equal to zero, i.e. the ratio
of the two coclficients equalg the ratio of the corresponding c-values, and so the component
pair can satisfy a sealed condition where they meet; in addition, the coellicients of any

components ending at the origin or at a cut terminal must become zero.

Connected Sections

To predict cable structure for each combination of my. my, 11, and 1 (there are twelve
distinet possibilities given in the ‘l'able 6.1), search for acceptable values of k, i.e. & must
be less than or equal to m;, + mg, since total Y-junction electrotonic length is preserved
in the cable. The lowest value of k, t.c. the fivst instance, for which equations match
unknowns is indicated by a . If this value is k& = mq = m;, + mp then the Y-junction is
non-degenerate and the connected section is the full eguivalent cable.

Note that, although there arve apparently seven types of non-degenerate Y-junction
from the Table 6.1, there are really only five actual fundamentally different situations.
There are two pairs of equivalent situations due to the fact that when both branches have
odd length or even-length, the same result applies if one swaps around the two difforent
terminal conditions.

An example of this situation occurs when 7y is odd, my is even, and bolh terminals
are sealed. Only one of the four pessible combinations of rnle-type (voltage or Cﬁrrent)
and & odd/even is acceptable (all the other evaluate to k > my +my). It is the current-
like rule/k odd combination, i.e. the number of current-like rules equals the number of
unknowns involved in the current-like rules when & = my, + mp (k odd). The connected
section therelore terminates with a sealed terminal.

Figure 6.14 illustrates one component diagram for each of the five non-degenerate

cases. Each component diagram describes the potential function structure in the final
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terminating cylinder.

It is also possible that equations and unknowns are matched when & < m; + my (the
rcmaining five situations from Table 6.1). In such cases the connected section is less than
the total equivalent cable length, and a disconnected section remains to be found. For
example when m; and mp arc both odd, and both ferminals are cut. The nuinber of

voltage-like rules matches the number of unknowns involved in the voltage-like rules when
k=my+myz— 1 {kodd).

Disconnected Sections

From the predictions made in Table 6.1, there are five classes of degenerate Y-junctions.
The cables for four of these have a unit length disconnected section, i.e. k =m +mz—1
(one off maximum) is the lowest value of k& where equations match unknowns. In each
of these four cases, there also happens to be o rule-unknown match when & = my + mp
(indicated by a 1), i.e. if the connected section ends with a k-odd rule then the k-even
rules can subsequently be satisfied by the disconnected section. Similarly, if the connected
section ends with a k-even rule then the k-odd rules can subsequently be satisfied by the
disconnected section,

Proceeding as before, we would just apply the electrical continuity rules once more
to get the appropriate framework potential fuuction. Unfortunately this cannot be done
in the conventional manner because c-value ratios between connected and disconnected
cylinders are effectively eithor zero or infinity.

Consider first the case where the connected section terminates with a cut end, and
consider the final potential function, k say (less than g +my}, of the counected section.
Two components on the saine branch which meet {o salisly a cut terminal must have the
form

Afw((§ — 1 +2) —v((7 + 1l — ). (6.250)

The are similarities here to the isolation condition, i.e. the two component coefficients

sum to zero. Applying the clectrical continuity rales now produces,

“j (vi(jl — z) — ({5l -+ z)) - (6.251)
k41 .

Since the c-value cl,‘;"_I‘]_ is effectively infinity as far as the connected section is concerned,
this expression is nof acceptable as it stands.

Similarly, consider the final potential function, &, of a connected section terminated
with a sealed end. Qbserve that two components on the same branch which meet to satisfy

a scaled terminal have the form
A (dag((G — DL+ 3) + i+ 1) — =) (6.252)
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Lefl branch: even {ength, sealed terminal

{a)

Right branch: even length, sealed terminal

Origln

e gmene anspn-y Soaled

Cablr has even lenath and final cylinder satisfies a sealad larminal

Left branch: even lenglh, sealed terminal
Hight branch: even length, cut terminal

{b)

. o ————1 Segled
Origin

Cabie has aven length and final eylinder salisfles a cut temming)

Left hranch: odd length, sealed terminat
Right branch: odd langth, cut terminal

©

- ittt Segllod
Crigin

Cable has even length and linal cylinder satlsfies a cut terminal

Lelt branch: odd length, sealed terminal

(d) Right branch: even fength, sealed terminal

» et et Sealect
Origin
e ———— = e e i g nmeipe ~op—f SEAlEJ

Cable has odd tength and final cylinder satisfies a sealed taminal

Left branch: odd langth, cut 1arminal
Righl brarch: sven fangth, soalet terminal

{e)

Origin

i Sealed

Cable has odd length andinal cyiinder satislles a cil termina

Figurc 6.14: The component structure for the final cylinder of the connected section for
all nou-degenerate Y-junctions. The right branch weed be the longer branch. (a) Left
and right branches both have even lengths and sealed terminals, ''he connected section
has even length, and ferminates with a sealed end, so the two components thut meet at
the origin must each have »ero coefficient, as must the two that end at the cut terminals.
(b} Left and right branches both have even lengths, one with a sealed terminal and one
with a cut terminal. The connected section has even length, and ferminates with a cut
end end, so only the component that reaches the sealed end must be zero. (e) Lefl and
right branches bath have odd lengths, one with a sealed terminal and one with a cut
terminal. The commected section has even length and terminates with a cut end, so no
compouents need be zero. (d) Left branch has odd length, right branch has even length.
Both termninate with o sealed end. The connected section has odd length and terminates
with a sealed end. No components need be zero. (d) Left branch has odd length, with a
sealed end. Right branch has even length, with a cut end. The connected section has odd

length and terminates with a cut end. No components need he zero.
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Applying the electrical continuity rules to this prodnces
A (oiil — o) + o uilil +2)) (6.253)

so the components coefficicnts have clearly been conserved. There is no obvious problem
with cable ¢-values at this point since the zero c-value ¢, representing the boundary
coudition doesn’t appear, however, applying the normal reflection rule simply doesn’t
produce fhe correct result.

Componends in ¢ that end on a cut or a sealed end are not actually involved in
the voltage-like and current-like rules respectively. They do not nced to be because they
automatically satisfy the appropriate terminal condition. When they are next reflected to
praduce a contribution to the next cable potential, the reflected component may take any
value and still satisfy the same condition at z = (0. We therefore have some flexibility in
our choice of such reflected components.

So, if the connected section ig cut, we apply the the reflection rules ta all pairs of
components, except those ending at the origin or at cut terminals. "Fhis will ensure a
cut terminal is satisfied at x = 0 in the new potensial. The components must be divided
through by the reflection coefficient to remove the problem of an infinite cable diameter,
and then we can fix any “Iree” components so that the next rule (& = mg) ix satisfied
(there will be only one choice for each reflected component if the entire poteniial is to
satisfy a terminal condition at # = [). The process is similar if the connected section. is
scaled, except that no rescaling is necessary, and the new potential satisfies a sealed (or
current injection) condition at z = 0.

Although this approach works, fortunately, in all circumstances where the disconnected
has unit length, the structure of the potential is easily determined without having to make
any effort to re-apply the electrical continmity rnles. There is actually little choice over
the potential function for a unit length cable segment which is terminated at each end.
Only two boundary condition configurations arise — either both ends arve cut, or one is
cut and one is sealed.

If both terminals are cut then the components for the disconnected scction potential
($rn,.) must all have coeflicients of the same magnitude but arranged such that compo-
nents on adjacent cylinder have opposite sign. Figure 6.15a illustrates the conﬂgm’:at.ion.
One simply chooses one component at random and assigns il a non-zero coefficient; the
remaining component coefficients arc therefore fixed automatically.

If one terminal is sealed and the other is cut, the arrangernent is only slightly more
complicated. All cornponent pairs that meet with a cut terminal must have coefficients
with the samc magnitude but different sign. The different component pairs which mcet

at a the sealed terminal roust have a coefficient ratio equal to the corresponding cylinder
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Figure 6.15: Unit length disconnected section component structure. (a) A wnit length
disconnected section with two cui terminals. (b) A unitl length disconnecled seckion wilh

one cut and one sealed terminal. See text far details.

c-value ratio. This configuration is illustrated in Figure 6.15b,

Both types of component structure trivially satisfy the relevant {(k-odd or k-even,
voltage-like or current-like} construction rule.

There is one final degenerate Y-junction to be considered, i.e. thal indicated in Table
6.1 by a {. Here, both m; and m,, are even, and a voltage condition can be satisfied when
k=m, +my—2 (k even), i.e. two unit lengths short of the full equivalent cable. There
doesn’t appear, however, to be a larger & for which equation and unknowns are matched.
This is because the disconnected section has a length of two units and satisfies another
cut condition when k =m; + my (k even again).

Simply use the method described above to reflect the components of the final connected
section potiential, and rescale by the ent reflection factor (—cf. ,/ef ;| in this case-)‘ The
k =m, -+ mp -- 1 current-like and voltage-like rules {(as well as all previous odd nmmbered
rules) must be satisfied hy the first cylinder of the disconnected section, and this fixes
the coellicients ol the components rellected {rom the origin and ferminals. The elecirical
continuity rules and the isolation—termination yules then determine the final cylinder.

The full set of predictions are illustrated in Figures 6.16, 6.17 and 6.18. There are ten

in total. These predictions don’t actually depend on which branch is the longer, just on
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{a) Left branch:  even length 2a units, cut terminal
Qrigin

Right branch:  even length 2k units, cut terminal

] Cornected section:  even [ength 2 {g4:b-1) ualts, cut terminal
Origin T ) LN T TTT T TTIIO IO I LIT T IO ot
i cot 17 _IC”"—/1 Cut

Disvonnectod Seclion:  even [ength 2, two cut terminale

L)

taft branch:  even length 2a unils, sealzd terminal
Ok A AZZZIT000 I ] Sealed
s e | s Jnfebubsbuubu gt AU | E—— | w—— -\ %

Right branch:  even length 2b units, sealed terminal

Connected seclion:  even |ength 2 {a+b) units, szaled terminal

Origin 2 C )72 20T IITTITITTITITIIT SO T T Sealed

(c}

Leftbranch: even fangth 2a units, cut f sealed terminal

Qrigin

Right brench:  even lenglh 2b units, sealad / cul terminal

Connocted sectlon:  even length 2 (a+b) units, aut terminal

Figure 6.16: Predicted Equivalent cable structure when each Y-junction limb is an even

numher of basic length units.
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(@ Leftbranch: odd length 2a+1t units, cut terminal

rigin

Right branch:  odd length 2b+1 unils, cut terminal

Connected section:  odd length 2 {a+b) +1 unlts, cut terminal
Qrlyin C T T T NI LI LI Il o
Cut____] Cut
Disconnected section:  length 1, two cut termingls

() Left branch:  odd lenglh 2a:-1 units, sealed terminal
- TSSO ICIIIIIIIIITITT Sealed
I
P s e Seated

Rightbranch:  odd lengih 2b+1 units, sealad terminal

Connected section:  odd iangth 2 (a+b) +1 units, sealed terminal

Sealed C."7 Cut
Disconnected secllon:  length 1, one cut terminal, one sealed terminal

(c)
Leftbranch: odd length 2a+1 units, cut/ sealed tarminat
ol COCTTAZZ222 222227 Gut/ Sealed
rigin
4 COAC T AZIZI 22— Sealed / Cut

Right branclr  odd lunglh 2b41 units, seated / cut torminal

Connected section:  aven lsnglh 2 {a+b+1) units, cut terminal

Origh 30— 17 TOTITTIIIITITIIIINITI I CCC O Cut

Figure 6.17: Predicted Equivalent cable structure when each Y-junction limb is an odd

number of basic length units.
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(@) Left branch:  odd length 2a+1 units, cut terminal
[N | I
Origin
: | A E—
|
Right branch:  even lzngth 2b units, cut terminat
Connacted section:  even length 2 (a+b) units, cut terminal
| @] (o[ s—— St e uiuuuhniubububu i uutu e uhuuel M | — i T
! Cutf——] Cut
Disconnected section:  isngth 1, two cut terminals
]

Left branch:  odd length 2a+1 unlts, sealed terminal

—.a
Origin
| I—

Right branch:  sven lenglh 2b units, sealed 1arminal

Connected section:  odd length 2 (a+b) 1 units, sealed terminal

[ """ Scalod

{c)

Left branch:  odd iength 2a+1 unils, cut tarminal

(SN s | e ey s e
Origin

|

Right branch:  even fangth 2b unlts, sealed tenninag

Connected secliors  add lzngth 2 (a+h) +1 unlts, cut terminat

Orlgin LA IO T TIIIITTIIIIIIIIIIII T Gt

{d)

Origin

Origin

Right branch:  vven length 2b units, cut lerminal

Connected sectlon:  even length 2 (a+b) units, cut terminal

Cut [2_"""] Sealed
Disconnectad section;  lengtit 1, une cut terminal, one sealed tarminal

[Figure 6.18: Predicted Equivalent cable structure when one Y-junction lixnb is an cven

number of basic length units, and the other is an odd number of basic length units.
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oddness and evenness, and boundary condition types. The predictions can also be used as
a guide for determining electrical degeneracy and cable section length in advance of using
the matrix methods of cable construction (Chapter 4). ‘This can be an advantage when
numerical errors prevent the generation of the exact subspaces in the matrix methods.
The implications of these results, when constructing fully equivalent cables using real tree
data, arc discussed in Chapter 8.

The only situations in which the predictions are not accurate are when a Y-junction
is a Rall-tree or the generalisation of this result for non-uniform diameter profiles. In
these situations, there are never any reflected components and the conmected section will

terminate as soon as the terminals are reached, as shown in section 6.4.2.

6.5 A Matrix Formalism for Analytical Results

The continuous electrical mapping between a tree and its fully equivalent cable can be

represented in a matrix form. For this purpose, we define vectors ol potential functions,

P

V = [vl(z, ), 05 (1 — z, %), ..., 00z, 1), 05( — z,t),...] (6.254)

and
W= [¢1($1t)a¢2(5 —ﬁ,t),ﬁb;g(:b'?ty ] : (6255)
Note how the even numbered (ree and cable potentials are written so that both odd and

aven cable potentials can be expressed in ferms of the same basic tree potentials. It is also

necessary to define vectors of Y-junction and equivalent cable c-values,

Dy = diag (c‘{‘,cé‘}... ve s Oy ey ,CIT;IL+,7LR) , (6.256)

and
Do = diag (cf: g, -, GﬁlL"‘ﬂlR-—L‘cglL_?RH) . (6.257)
The relationship between Y-junction and cable can then be expressed in the notation

similar to that in Chapter 4.
¥ = MyV, (6.258)

where M is a matrix of potential funciion component coefficients, referred to as the vollage

FEGP-matriz (Electro-Geometric Projection matrix). The initial structure of M fakes the

form
[(1r 0 0 0 © 0'eF 0 0 0 O 0]
¢ 0 000 0 2g% %% €& 0 0 0
M= | %} 3gF 30 0 0 0 3 6% %2k 0 0 0 (6.259)
‘g 't ‘of ‘pf 0 %F ‘of fof w5 O 0
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and it ig fairly ensy to see how it continmes in the same manner.

Along the same lines, there is a current EGP-matriz,
My =DcMyDIL, (6.260)

which relates the current injected along cable and Y-junclion cylinders.

Extracting the Continuous Mapping from the Discrete Mapping

This continuous mapping can be identified with the internal node of a matrix representa-
tion when every tree cylinder is represented by three nodes (z=2). Once a cable has been
constructed using & mafrix method, the continuous mapping can be inferred by observing,
from a simple understanding of the electrical continuity reflection-transmission procedure,

the direction of the corresponding component.

6.6 Future Analytical Work

Although much insight into why and how cables exist has heen gained simply through
deriving the rules, there are still results that have not yet been cxplained. Application of
the analytical rules will produce a cable that properly terminates, along with any discon-
nected sections. Tlowever, it has not been shown explicitly that c-values are guaranteed to
be positive. Also, in the case of a completely sealed tree, how does the procedure ensure
swelface area is preserved, and input current is conserved — these features are undoubtably
related to the coefficient conservation that is always guaronteed in sealed trees. Physical
arguments show that these properties must be conserved.

The rule development hints at much deeper mathematical structure that is not yet fully
understood (though work completed so far suggests approaches to the problem that are
likely to reveal this structure). For example, we had to move to potential function ¢hyp: to
determine the right form of rule k. Yel despile this, the rules are conveniently independent

of tree structure heyond the k¥

cylinder on each branch. There is also the [act that the
rules generally involve component cocfficients that have already been arranged, although
in quite a complex fashion, and the rules as presented don't take direct advantage of
this. 'The branch-shifting operations in Chapter 7 shed some additional light on simple -
Y-junction structure and hint thai a more complicated procedure involving a “folding in”

of branch potentials.

Deriving the Matrix Procedures Using Analytical Results

Work has been done in deriving the mafrix method from the analytical results, but it is

incomplete and requires further investigation. Again, an proper derivation of the matrix




methods will likely follow once the analytical theory is fully understood (the matrix meth-
ods, in particular the scaling/rescaling transformations, are important considerations in
developing the deeper analytical rules). In overview, the odd and even numbered potential
functions are analogous to the odd and even numbered orthogonal vectors that form 7,
the tri-diagonalising matrix. This matrix relates scaled tree and cable potentials. The
potential functions relate the actual potentials. The idea is to derive the orthogonality of
the scaled potential functions, and show how this can lead to a matrix formmlation of the
problem.
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Chapter 7

An Analysis of Cable Structure
Using Branch-shifting

7.1 Introduction

The general analytical rules (Chapter 6) for constructing fully equivalent cables are com-
plicated, and difficult to analyse to determine the decper mathematical structure that we
believe exists. Fortunately, a start can be made with simple Y-junctions since they always
have fairly simple equivalent cables and electrical mappings. This simplicity isn’t immedi-
ately obvions, but manifests itself ag the ability to generate equivalent cables rapidly and
highly elliciently by using a branch-shifting method.

Branch-shifting is a procedure whereby a simple Y-junction may be reduced to its
cquivalent cable by way of a. number of intermediate steps which involve a pariial collapse
of the tree, producing a portion of the equivalent cable connected section to which another,
shorter (in terms of total child limb lengths) Y-junction is attached. Total electrotonic
length is preserved at each stage, and only at the final branch-shifting step is any discon-
nected section produced. IDssentially the method generates an intermediate set of fully
equivalent singly branched ireest.

The results in this chapter include analytical expression for equivalent cable c-values
ond potential functions that clcarly indicate how the clectrotonic lengths of a tree’s
branches, as well as boundary conditions, shape the fine structure of an equivalent ca-

ble. Observalions concerning ihe trends in cable structure obtained {rom these results are

'Tha derivatian of the general analytical rules in Chapter 6 hints at an deeper mathematical framework
for cable construction which has yet fo be determined. Branch-shifting may be a manifestation of this
underlying structure. Thus, the deeper mathematical framework lor general Y-junciions may also be an
iterative collapsing procedure, although mathematical structures generated at intermediate stage may not
always liave a physical interpretation.




equally valid for general Y-junction.

As in previous chapbers, a Y-junction consists of left and right branches, with the left
being the shorter (electrotonically) of the two. For simple Y-junctions, the left and right
branch cylinders have electrotonic lengths mi and (m - n)l vespectively, where m > 1
and n > 0. The total electrotonic length of the Y-junclion is therefore (2m + n)}l. Left
and right boundary conditions are denoted 7. and Ty, and are either cut (¢) or sealed
(s). (Of cowrse, the general current injection condition is also valid, but the additional
applied current is merely mapped to applied currents on the cable without influencing
cable structure. Trom results in Chapter 6, i.e. equation (6.42), the current mapping
follows from a slight modification of the voltage mapping.)

Length and boundary condition configurations can be divided into five dislincl classes

which cover all possible simple Y-junciions.
e Sywmmetric Y-junctions (n = 0).
¢ Short branch has a cul end (Ty=C, n > 0).

s Short branch has a sealed end; long branch is over twice the length of the short

branch {Ty=s, n > m).

« Short branch has a sealed end; long branch has a sealed end; long branch no greater

than twice the length of the short branch (Tp=8. Tp=$, 0 < n < sn).

e Short branch has a sealed end; long branch has a cut end; long branch is no greater

than twice the length of the short branch (vr=g, Te=c, 0 < n < m).

For each case, rules are given for determining cable c-values and an electrical mapping
between the Y-junction and its branch-shifted equivalent. Al any point during the iterative
procedure, the Y-junction in the current equivalent structure will fit into one of these
classes and so, with all five possibilities accounted for, any simple Y-junction can be
branch-ghilled undil the final cquivalent cable is generated. Up to four Y-junction classes
may be encountered when the branch-shifting procedure is applied to a particular simple
Y-junciion. As usual, time dependence in all expressions will be suppressed. _

ATl branch-shifting results follow straightforwardly from the analytical construction
rules. The fact that voltage contivuity and current conservation holds in the each new
Y-junction structure, electrotonic length is preserved, and a bijective electrical mapping is
established, may be regarded as proof of the validity of the results. However, to indicate
the methods by which these results were originally oblained, full derivations are given for
the two Y-junction classes listed second and third.
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(a)

Sealed
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Sealed ml
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- o~ ---
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Tigure 7.1: The branch-shifting operations for symmetric Y-junctions. Cylinder lengths
and c-valucs arc given. (a) Rall Y-junction with two sealed terminals. (b) Rall Y-junction

with two cut terminals. {¢) Non-Rall Y-junction with on cut and onc scaled terminal.

7.2 The Symmetric Y-junction

The Y-junction is regarded as electrotonically symmetric when n = 0. This very simple
condition cncapsulates three of the situations that can mark the final stage in a branch-
shifting sequence. These junctions collapse directly to unbranched structures, and are
tlustrated in Figure 7.1.

7.2.1  Rall Symmetric Y-junction

Provided T,=Tg, the Y-junction is a simple, degenerate Rall tree and collapses to a equiv-

alent cable consisting of the cylinder (connected section) with c-value

(1T — CL + CR, (7.1)
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and potential

ct c?
d1(x) = mi}b(ﬂﬂ) -+ o CR'UR{:B), 0 <z <, (7.2)
plus a disconnected section,
dafz) =vp{l — ) —wvr(l — ), 0 <z <mi, (7.3)

which may be arbitrarily assigned a non-zero c-value.

If both Y-junction cylinders are sealed, the connected section is sealed, while the
disconnected sectiom has a sealed terminal at z = 0 and a cut terminal at z = {. If both
Y-junction cylinders are cut, the connected section is cut, while the disconnccted scetion
has a cut terminal at both x = 0 and 2z = I. The form of the first cylinder in any reduced
structure is Rall-like (its c-value is the sum of the connecting Y-junction cylinders), so

equations (7.1) and (7.2) are repeatedly encountered.

7.2.2 Non-Rall Symmetric Y-junction

Now suppose that the Y-junction has one cut limb {(assumed to be the left cylinder) while
the other (the right cylinder) is sealed. ‘I'he connected section has length 2ml, terminates
with a et end, and is the complete equivalent cable, i.e. such Y-junctions are non-
degenerate. 'L'his time the second cylinder is not disconnected and its potential function

components are obtained by elementary application of the isolation condition, so

i

da{z) = o on (vr(l —x) —oupl —x)), 0<a<ml, (7.4)
while the e-valuc is .
of = 5 (e + 7). (7.5)

The electrical continuity rules ensure that current conservation and voltage continuity are
guaranteed, ie. $((I} = ¢2(0) and cfd¢;(1)/dx = 53¢ (0) /5.

7.3 Short Cylinder has a Cut Terminal

This is the simplest actual branch shifting operation, and involves shifting the short branch
length m! along the right branch by moving the branch point, redefining potentials and
rescaling certain c-values. Despite its simplicity, this case illustrates the general approach
used to determine the new equivalent structure,
Applying the electrical continuity rules to potential function (7.2), and then ensuring
that the isolation condition holds, yields
CR CL (,R

po(2) = —————— (vp(ml — z) —op(ml -z)) + -

- (il 1 ¢ G
S (c” + 2cv) vpiml t z),  (7.6)

(4 267)
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valid for length m!, and
c R Qek
s = _C_l__(_L..—.'____(;l (7.7)

CR

At this point we ask whether it is possible to choose two properly terminated branches
that form a Y-junction which, when connected to the initial cable cylinder, forms a new
tree with the same fotal electrotonic length as the original Y-junction. Voltage continuity
and current conservation must hold af the new branch point, and an clecirical mapping
between the Y-junction and new tree must be produced. If this is possible, the new
gtructure must be equivalent to the original Y-junction.

Denote the potentials in the new left and right branches by &r.(x) and ér(z), and their
c-values by ¢f and cf. The only reasonable choice for the potensials, sinee we must be

prepared for arbitrary structure beyond z = I on the right branch, is to set
ér(a) = a(vr(ml — 2) — vy (ml — x)) and  Ep(x) = Pur(mi + z). (7.8)

where ¢ and § are yet to be determined. The new left potential can only be valid for
length mi, while the new right potential must be valid for #l, i.e. the length of the section
of the right branch which has yet to be collapsed. Since these new limbs connect to the
initial cable segment, which has length mi, total elecirotonic length is preserved. Potential
&1 lerminates properly at @ = ! with a cut terminal, while £ terminates with the right
branch condition at ¥ = nl.

Voltage continuity requires that, at the new branch point,

EL(0) = Ex(0) = & (1), (7.9)

thus @ = g = ¢®/cf, and the potentials may be written

R.
En(z) = = (wr(md —x) —wy(ml — 2)), 0 <z <mi, (7.10)
Cq
and "
{;((’E) 'v;;(ml g :r}, 0 <2 <ni (7.11)

cf
Since the new Y-junction, when collapsed, must have an initial cylinder corresponding

fo the second fully equivalent cable cylinder, the two new branch potentials must be related
o ¢y by the siruple Rall sum,

L

dale) = Stu() + “-Cutia) (7.12)

2

where ¢§ = ¢f 4 cf. It therefore follows that

C CR(’R
pa(z) = 2C (vr{md — z) —vp(ml — 2)) + =—vr(l + ). (7.13)
7 Cy €y ey
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Matching this up with the known expression for ¢y (7.6) gives

chek Rt clich R
EI C  O(aR : ! and fj G T (R ; AN (7'14)
efe§  cF(cR 4 2¢") §ef  (e? + 2ct)
so that oL (52
r_ Ci¢ a _ \C] z
C'f - o N C‘f - R , (7.10)
Checking cnrrent conservation shows that
, O¢ 0 0
f %}1 = ¢f —8@ + ¢ —ag_ . (7.16)
L=t T {2=0 & pr=l)

and the branch-shifting operation illustrated in Figure 7.2, has been established.

Note that the c-value for the new left branch is the same as that for the second cylinder
on thc non-Rall symmetric Y-junction. If n = 0, i.c. the right branch disappears, then
we can obtain two of the symmetric results by observing how the right branch condifion
influences the poinl where {he cable stemn and leff branch mmeet. If the right branch
condition i¢ cut, then the cable stem and left branch must essentially both leak current
into the cut terminal. The fact that they are each connected to the other cylinder of finite
diamcter is irrelevant considering the effectively infinite diameter of the ent terminal. The
two branchies are electrically isolated from each other, hence the disconnection. If the right
branch is sealed, however, no disconnection occurs because current dows between cable
stem and left brauch as if there were no right braunch at all.

Tt is nseful to perform a brief analysis of the magnitudes of the new limb c-values and

the implications of this. Observing that
cg > ¢k, and  ¢f > cf +cf, (7.17)

it is clear that, w1 order to obtain equivalence, the new Y-junction limbs are wider than
those of the original Y-junection. I ihe right branch of the original Y-junction is long
enough, it is possible to repeat this same operation perhaps several times. Using the
above c-values, it is straightforward to determine that, in general, after j such shifting

th

operations, the 7% cable cylindar is given by

o= el it} (e + (7 — 1)eh)
¢ :

o {7.18)
The left and right Y-junction limbs after § such operations are
ct .
ck; = EE(_?CL +c")
et ARy
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(a)

R Cut/ Sealed

el
. - — |

(b)

Figure 7.2: The branch-shifting operation when the short branch has a cuf terminal. {a)
The single operation. (b} Typical structure when three such operations are applied, i.e.
n > 2m.

Cable cylinder c-values are clearly increasing, i.e. ¢§ > ¢ ;. Note also, that the quantity
(7.20)

is preserved over j. [igure 7.2b illustrates the cquivalent structure after three such op-
erations. Eventually, a point is reached where the new Y-junction must be reassessed to

delermine the class it fallg into.

7.4 Short Cylinder has a Sealed Terminal

When the short cylinder has a sealed terminal, it is necessary to construct length 2l
of the cable before attaching the new Y-junction. There are three distincl cases Lo be
congidered. When n > m, the rules are not much more complicated than those for the
cut short branch. Il n < i, however, the long cylinder boundary condition must also be

taken into account and it is necessary t0 express m in terms of 7,
m = kn+ z, (7.21)

where & > 1 is an integer and 0 < z < n is an integer that makes up any deficit length.

Clearly, if z = 0 then m is an exact multiple of n, and so are both Y-junction cylinders —
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such situations actually lcad to unbranched structure and so are possible final stages of a
branch-shifting process. Together with the symmetric trees, such situations complete the

set of final shifting operations.

7.4.1 Long Branch is ai Least Twice as Long as Short Branch (n > m)

In this case, the electrical continuity rules and the isolation condition, when applied to
potential function (7.2), give
L

Polz) = g-%; (vr.(ml — ) — vr(mi — 2)) + npiml + =), (7.22)

valid for length ml, and
ol = cf c?
27 (R 4 2k

At this point, it turns out that it is not possible to branch shiff just length mi. Voltage

(7.23)

continuity and current conservation simply cannot be achieved at the new branch point.
Applying analytical construction rules once more yields

L cr . e 4 2c*
A 3ch (vr(z) —vr(z)) -+ mﬂ&("-ﬂﬂ —x)+ o 1 3ck

$3(x) = vp(2ml+ 2}, (7.24)

and ]
o _ (e + 3ct)
¢ = )
(e |- 2}

This time we assume there is & new Y-junction connected at the end of the second

(7.25)

cable gection. The new left and right potcentials are again denoted &;, &g, with c-values

cé‘, cg. 1o allow for arbitrary right branch structure, it is necessary to choose
En(x) = elvp(z) —vp () - vg(2ml — a)) and Er(z) — Bup(@mi - x).  (7.26)

where « aud A must again be determined. 'I'he new lelt branch has length /nd and termi-
nates with a scaled end, while the new right branch has length (n — m)! and terminates
with the original right branch condition.

Voltage continuity demands that
Pa(ml) = €L (0) = €r(0V), (7.27)
so w = =1, and the new potentials may be written

() = wgple) —vrlz) + vp(2mi — ), 0<a<ml

(p{z) = vp(@ml + ), 0 <z < (n—m)l (7.28)

Since ¢3 must be a simple Rall combination of the two new potentials, then
et cf
¢3(z) = P—Gﬁi_.(.’r;) + -(-E&{(:r;). (7.29)
3 ‘3
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Consequently,

ek cl
ba(z) = cf? (wp(x) — vr(z) 4 vr(2mi — ) + Eiff“"-(gml - z), (7.30)

and, by matching up coeflicients from potential function (7.24), we obtain

i L
I [Ft &

— 7o A
C{ = m, Cg = cf. (f’dl}

Current conservation at the pew branch point can be checked as hefore, showing

cg % = ’é’ —3—5..2. C? .(:?..g_ff. . (7.32}
O amt Oz =0 Az x=0

Interestingly in this situation, the right branch c-value is not scaled. Since the original
Y-junction structure beyond 2m! on the right branch may take any form, this must be the
case if total surface area is to be preserved — it is easily shown that, of +-c§ +cf = 2¢F+c*
{(recalling that the c-value is effectively a measure of surface area for a unit clectrotonic
length of cylinder). The branch-shifting operations must maintain surface area ungil a
cut terminal is encountered.

Again, an analysis of new cable c-values can be performed, so note initially that

e > e >cf. (7.33)
Also, while the right branch maintains Lthe same c-value, the left c-value narrows, i.e.
cf < ot (7.34)

1o fact, it can be proven using a simple induction argument that, if j is odd then

. ct .
(,j’ =ct [1 -+ m‘g] ) (7.35)
while il § 18 even,
(e it et \
G =c [1 - (,RH,—L] : (7.36)

As j — oo, clearly o — ™.
So, if the right branch is long enough for multiple shifting operations the peneral trend -
for the cable c-values is to tend towards the right branch c-value, but with a castellated
diameter profile oscillating above and below ¢?, as illustrated in Figure 7.3b.
The new left branch limb after o operations is connected to the (2a)® cable cylinder,

and has c-value o
L le.cl..
c£ 20 - ——r———
EeR - (2a)ct

which clearly decreases as a increases.
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Pigure 7.3: The branch-shifting opcration when the short branch has a sealed terminal
and n > m. (a) The single operation, with new c-value. (b) If right branch is long enough,

the operation can be repeated multiple times,

7.4.2 Long Cylinder Has a Sealed End and is Less Than Twice the
Length of the Short Cylinder {n < m).

The c-values and potential funclion expressions now starl to gel more complex, with the
equivalent trees having stems consisting of more than two cylinders. A full derivation is
not given since it is similar to the previous case?.

Recall that m = kn + 2. The part of the cquivalent cable that is generated (i.c. the
stem to which the new Y-junction will be connected) is formed from (& + 2) cylinders.
The first cable segment is the usual one, with length m!{. Connected to this cylinder are
% cylinders each of length ni, and then a final cylinder of length zI, at the end of which
a new Y-junction is connected. One of the two new Y-junction cylinders has length 2i,
while the other has length {n — 2)I.

The first two stem c-values, ¢f and ¢, are identical to those of the previous Y-junction
class, as are the potential functions except that ¢9 is only valid for length nl. The rémain-
ing c-values are given iteratively, for 3 <4 < (k +2) by

= |1- 2 (7.38)
T (4 —1)ef +e*

2Though with an inductive extension to the sargument,
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1t is then easily shown that

LI £ 14
¢ clcc

TG 1)e§ + ][5 —~ 2)c§ + &)’ (7.39)

which is also valid for § = 2. Clearly the c-values decrease as 7 increase.

The new Y-junction cylinders have c-valucs

ke + ¢ k41
Cg = cf.g 17_&{:2;2_] , Ug =g [Mﬁ.{t (7.40)
.G of
which may also be written as
L ,.R L 8
L e r che ,
e e T = 7.41
“T ke e§ + e’ “ kef + et (7-41)

Clearly, for large & at least, the new Y-junction c-values are small, yet they wiil still be
significantly bigger the cf,,. After length 2mi, then, the cable ¢-values are pmnped up
slightly before they continue narrowing when the new Y-junction is reduced.

To stuuplily the corresponding potential functions, it is convenient to write

w(z) = vr(z) —vr(z). (7.42)
Now, if j is odd and 3 < j <k + 2 then
o) =l =G =2+ o) - L L - 2yt )
+ i P{{m — Za+ )l + &) + ((m— (2a + 1))l — )
+ uR((m + n)l - z). {(7.43)

{Note that the sum goes to zero for § = 3.} Otherwise, for j§ even and 2 < j < k + 2,
(j = 2)cf + c*

¢i(x) = mgf—-—m%b((m ~ (7 = 2)n)l - ) +vr((ml + z)
%
+ Z'y’;((m —2(a+ Un)l + =) +p{(m — 2an)] — x). (7.44)
a=1

(This formula also produces the correct potential for 5 = 2).

Fach stem potential from ¢y to ¢py is valid lor 0 < 2 < nl. The final stem potential
Qpqo is valid for 0 < ¢ < zI. Each pair of components with the same destination satisfies
a local sealed condition (i.e. their coefficients have the same sign and magnitude).

If % is odd then the potentials in the new Y-junction are

(r{z} = ¢lz) + 9221 —a)

ks
+ Zi};i(m— L+ 2a)n+ 2} — 2} +¢((m — (1 + 2a)n ~ 2)I 4- z)
n.==(]
+ wgln+m—2) + =), 0<m <zl {7.45)
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Figure 7.4: The branch-shifting operation when both Y-junction terminals are sealed and
7 << m. (a) A new Y-junction is formed when 0 < z < n (b) This is a final shifting
operation when z = U, and the original Y-junction is nor-degenerate. See text for full

detuils of ¢-value expressions.

Er(z) =

_|_.

(22 + 2)

k-3

z>0 3 !\*""I
e et o8 =l _,? Sealed
T T T T A e e n Lo
e — —-—-—————\\\)
A7 Sealed
2ml ‘:'
e {n~2)l
20
R s A A
a2 Zm ===z Sealed
(2. + n)l

(b)

Z (= (14 2a)n + 2} + 2) + Pp((m — (L + 20)n — 2)l — x)

a=0

vrl(n +m — 2)l — ), 0 <z < (n—2)l

{Note that the stm goes to zero when k = 1.) Otherwise & is even and

£n(z)

En(x)

_I_

vr{{m + z)l — z),

vr({m + 2)l + =),

i wl(im — 2(a+ Dn + 2) — %) -+ 1P{((m - 2an —- 2} + z)

0 <z <.

Z P((m — 2(a+ On + 2) + 2} + P{(m ~ 2an — 2){ — z)

0<z < (n-2).

Both child eylinders terminate wilh a sealed condition.

Consider now the special case where 2 = 0. The right cylinder of the new Y-junction
has length nl, while the left disappears. Both terminals, but in particular the lett, are

sealed and so the new right limb becomes the final segment of an cquivalent unbranched
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structure, i.e. there is no disconnected section. Since one Himb of the original Y-junction
has lengih equal to an odd mumber of n! while the other is an even number, analytical
results in Chapter 5 have already predicted this non-degeneracy. We can write ¢, 5 = cg.
Figure 7.4 illustrates this operation for both z % 0 and z = 0.

It is important to note that, as j increases, and cylinder c-values decrease, the potential
funetion component coefficients become large. Basically, the voltage electrical mapping
from tree to naxrow cyhinders is strong. Recalling from Chapter 6 that injected current
divided by c-value is mapped in the same way as the potential, then, since the cable c-
values become much smaller than tree c-value, the current mapping from tree to narrow
cable sections is weak.

7.4.3 Long Cylinder Has a Cut End and is Less Than Twice the Length
of the Short Cylinder (n < m).

This situation is the most complicated encountered when dealing with simple Y-junctions.

The first two cable cylinders and potentials take forms identical to those in the previ-

ous case where the long branch is sealed. This is not surprising since at this stage no

components have reflected from the cut terminal. Again the stem is formed from (% + 2)

cylinders, with the samc lengths as in the previous case (i.e. m, & times n, and 2}, then

the stem splits into a new Y-junction, with one child length zI, the other length (n — 2)I.
When jisoddand 3 <7<k + 2,

% =% 1 - 20‘1:;_ _______ — (7 19)
R N '
Otherwise, for § even and 2 < § < k+ 2,
[ 2§
Cme? 1m0 1__} 7.50
il R RS T (750
Tt can be subsequently be shown quite easily that when j is odd and §>3 then
o e (G = 1)ef et -
4 et (5 —2)ef +ct]’
while if 7 > 2 is even, then
o S [ 752
J e (G —1)ef +er

Clearly, then, the cable ¢-values exhibit a castellated diameter profile, and as § -+ oo, they
tend to c-value c®cf/c”, i.e. the c-value of the second cable cylinder for the symmetric
non-Rall Y-junction. This is because the large j (high k) are only possible when the right
brauch in ouly slightly longer than the short branch, i.e. tree structure does not deviate

too much from the symmetric case.
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The new Y-junction c-values are, for both & cven and k odd,

R S

b "~ .
Cf = CFpa [‘L + } of =Ry [fﬂ 1+ “zja] : (7.53)
f i

The larger the value ol &, the bigger the c-values in the new Y-junetion.
If j is odd and 3 < § < k + 2 the potential functions are

[(J——lzfci_ﬁ] #(z) = —w%fcfiizb((m—(j*z)n)zmx)
+ (-7 V((m (7 — 2n)l +z)
+ (- 1) > (~D[p((m — (L + 2e)n)l + z) — P {{m — (1 + 2a)n)l — z)] (
o=0 s

+ (1) T vg((m 10l - a).

(The sum is zero when § = 3.) Observe that where two components on the same branch

meet their coefficients ensure a local current condition.

Otherwise, if j is even and 2 < 7 < k + 2,

= PO ~9¥i§f—t95w((m—u—2)n)z—m)
+ (—1)? f( 1)* wp((m — 2(a + )n)l + ) — B({m — 2an)i — )]
tc“l)
( i) o ’n‘);{('}nl |- ). (755}

Observe that where two components on the same branch meet their coefficients ensure a
local cut condition.

The new child cylinder potential functions are, if & is odd

[(k+ 1)ef + "
c”

|ecte) = v+ -0 pats +ani o)
a=0

4 Z ( 1% p(2(a + 1)l — )

+ (—1)T-vﬂ(fml + z), 0< <zl -(7.56)

[»’ff_l)cl'_c_]f (2) = > (—1)%p(2(z + an)l + x)

+ 3 (D" pa + Dl — =)
+ (D For((E+Dni—3), 0<z
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In this case, the new left branch satisfies a sealed condition, while the right branch satisfies

a cut condition. Otherwise, k is even and

P 6 = v+ 3 (0 + el -a)
z=0
+ HZ (-0 ep(2(a - )0l -+ 1)
+ (~Divp((m+2)i—2)), O<z<al (7.58)
[ ente) = 3 ot oo

o+ Z 1) e (2(a + Dnl - 2)
a=0

I?"

+ (=1 Zop((m + ) + =), 0<e < (n—2)0 {7.59)

In this case, the new left branch satisfies a cut condition, while the right branch satisfies
a gsealed condition.,

If z — 0, then m ig an integral multiple of i, and the left branch disappears. In this
case we have a final branch-shitting operation. However, the existence of a disconnected
section depends on whether & is odd or even.

Consider % odd, where the left branch has a sealed terminal. When # == 0, this condition
is essentially shifted to the connection between right branch and cahle, but as has been
noted preciously, the sealed fermninal does not interfere with current llow between the right
branch and cable. Thus when k& is odd, the original Y-junction is non-degenerate. The
vight branch simply extends the cable by length n!, and we may write ¢pi3(x) = £n(z).

If & is even, however, the left branch has a cut terminal. Shifting the cut terminal to
the point where right branch and cable meet effectively isolates them electrically, and the
right branch, with length n!, forms a disconnected section.

Figure 7.5 illusirates all cases for this class of Y-junction.

Tn contrast to the situation where both terminals arc scaled, when § increases, and
cylinder c-values increase, the potential function component coefficients become small.
The voltage electrical mapping from tree to wide cylinders is weak. Apain recalling thal
injected current divided by c-value is mapped in the same way as the potential, then the

current mapping from tree to wide cable is strong.
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Figure 7.5: The branch-shifting operation when the short cylinder terminal is sealed, the
long terminal is cut and n < m. (a) A new Y-junction is formed when 0 << z < n. (b) This
is a final shifting operation when z = §, and the original Y-junction is non-degenerate if

k is odd, and degenerate if %k is even. See text for full details of c-value expressions.
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Figure 7.6: Example 1, illustrating the branch-shifting process. (1) The original tree,
consisting of one cylinder length 3/ with a cut terminal, and one cylinder length 4 with
a sealed terminal. (2) The equivalent trce generated after shifting the short eut cylinder
length 31 along the long branch. {3) The cquivalent tree after shifting the new Y-junction’s
short sealed cylinder by length 2/ along the new Y-junction’s long cut terminal. (1) The
non-degenerate fully equivalent cable obtained after collapsing the non-Rall symmetric

Y-jnunetion.
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Figure 7.7: Example 2, illustrating the branch-shifting process. (1) The original tree,
cousisting of one cylinder length 97 and one cylinder length 57, hoth with sealed terminals.
(2) The equivaleut tree penerated after shifting the short sealed cylinder by length 101.
Since H = 1x4 + 1, three cylinders of the equivalent cable are produced, with lengths 5¢,
4! and { in order. The new Y-junction has one branch with length 3/ and one with length
[, both with sealed terminals. (3) The equivalent tree generated after shifting the new
short sealed cylinder by length 2. (4) The fully equivalent cable after collapsing the Rall

syrnmetric 'Y-junction. The original Y-junction is therefore degenerate.
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7.5 Discussion

Branch-shifting operations cau be applied to generate fully equivalent cables for simple
Y-junctions, as illustrated in Figures 7.6 and 7.7. They may also be used to partially
collapse Y-junctions that have suitable (i.e. uniform) structure up to a certain distance
from the junction. For example, $he short branch may consist of one cut cylinder of length
4% while the right branch consists of one cylinder of length 5/ connected to a further two
I-length cylinders the second of which terminates with a sealed condition. The short cut
branch may be shifted once, but none of the given shifting operations are valid after this.

Attempts have been made to extend the branch-shifting process to general Y-junctions,
however, shifting of multi-cylinder short branches has proven problematic. Therefore, it
has not been possible to derive general branch-shifting operations that apply to trees with
order higher orders of branching because the fully equivalent cable for a uniform Y-junetion
is not usunally uniform itsclf. Basically, it scems that in these more complex structures,
the analytical rules don't ensure that simple sub-sets of potential function components
can satisly boundary conditions. However, branch-shifting is possible if the left branch
consists of one cylinder length mi, while the right cylinder congists of a chain of cylinders
of length mi. The derivation of these results takes only a little more effort than for the
simple Y-junction, and is nol repeated.

Despite this current lack of obvious extensibility, the analytical results produced by
the branch-shifting method clearly indicate how cable structure is shaped by length and
boundary conditions, and how the electrical mapping is obtained by a repeated nesting
of simpler polentials. Formulae for equivalent cables c-values for general Y-junctions
are much more complicated, buf this i3 only because the cable fine structure is more
complicated. The general trend is for e-values to (1) increase in size when a cat torminal
is encountered, (2} castellate when a single sealed terminal has been encountered, or
castellate and/or increase when both a cut and sealed terminal have been encountered,
(3) narrow when two sealed ferminals have been encountered, and (4) increase rapidly in
size if two cut terminals have been encountered.

Fuarther discussion, from a physiological point of view, of why ecable structure follows

these lrends is given in Chapter 8.
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Chapter 8

Discussion, Conclusions, and
Future Work

8.1 Introduction

Beyond their general role as imtegrators of distributed eleclrical activity, the full implica~
tions of complicated dendritic morphologies for neuronal signal processing are not known.
Ifully equivalent cables are a novel approach to the geometrical analysis of passive den-
drites that allows one to extract information about their signal processing capabilities that
is otherwise obgcured by physical complexity.

This chapter swmnarises and discusses the main resulis of this thesis. Inciuded is
a brief comparison of the fully equivalent cable construction methods and a thorough
discussion, in physiological terms, of cable structure as revealed through the analytical
results in Chapters 5, 6 and 7. To link the theory with reality, several cables are constructed
lrom morphological data for real moloneuron dendrites. We consider how cquivalent
cable structure is robust under small changes in dendritic structure; this is an imporiant
consideration given inevitable uncertainties in any experimentally obtained data.

The novelty and generality of the approach used makes fully equivalent cables far more
suitable than either numerical simulation or previons cable models as a tool for analysing
passive dendritic tree geometry and signal integration within such structurcs. We discuss
the physiological implications of [ully equivalent cables for understanding the relation-
ship between structure and function in passive bree models, in particular the geometry-
determined local and global signal processing capabilities of complicated dendrites. The
implications for models with active membrane are also considered.

We also consider briefly the subject ol parameter estimation, commonly associated

with the quasi-equivalent cables models that were outlined in Chapter 3. Fully equivalent
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cables have several implications in this aren.
Finally, we consider possible applications of fully equivalent cables, and outline future
waork that might employ or extend the equivalent cable theory.

8.2 Fully Equivalent Cable Construction

The passive trce model (Chapter 2) is formed from linked neuronal cylinders subject
to joining (current conservation, voltage continuity) and terminal boundary conditions.
Terminals may either be of the cut (zcro voltage) or current injection (specified voltage
gradient) types. For simplicity, only the sealed end (zero voltage gradient) special case
of the latter will be considered, since the specific value of the gradiens has no bearing on
cable structure and only enters the problem through the electrical apping.

The existence of fully equivalent cables follows, without restrictions, from the pussive
model, and they are ohtained on application of a suitable mathematical transformation.
Algo formed from linked cylinders, though without branching, a fully equivalent cable
is electrically identical, with respect 0 a point of origin, to its associated tree. A fully
equivalent calile consists of one connected section that is attached to the origin, and pos-
sibly several isolated disconnected sections. The (electrotonic) length-preserving mapping
which relates electrical activity between tree and cable ensures that fully equivalent ca-
bles satisfy the mathematical definition of equivalence given in Chapter 3. None of the
previous restrictive or empirical quasi-equivalent cable models meet the requirements for
mathemaltical equivalence.

Several mathematical procedures for translorming multiple uniform segment (in par-
ticular multi-cylinder) passive dendritic tree models into their fully equivalent cables have
been presented. These comprise two matrix methods (Chapter 4) and an analytically de-
rived method {(Chapters § and 6), each of which is snitable for transforming passive tree
models of arbitrary morphology. In addition, a branch-shifting process (Chapter 7) will
reduce stmple Y-junctions (two uniform limbs) to their equivalent cables via an intcrme-
diate set of equivalent Y-junctions. Figure 8.1 summarises cable construction and general
features of cable structure. Wach construction method can be implemented efleclively as
a computer algorithm.

In order to generate disconuected sections, the construction methods must transform a
free in a Y-junction by Y-junction faghion, gradually removing biranch-points, transforming
more and more structure, and accinmulating any disconnected sections agsociated with
specific sub-trees, until the fully equivalent cable is generated. If a (binary) tree has
N brauch points, a set of N + 1 eguivalent structures (equivalent structures include the

original tree, the intermediate trees with disconnected scetions associated with transformed
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Figure 8.1: Fealures ol fully equivalent cable structure and the construction methods.
(a) An eleclrically passive multi-~cylinder dendritic tree model may be transformed to (b)
its fully equivalent cable, using {c) either a matrix or analytically derived consiruction
algorithm. A connected section is attached to the cell body imstead of the original (ree.
Disconnected scetions (A, B, and C) are associated with local activity over specific den-

dritic sub-trees (stemming from points A, B, and C).

sub-struclure, and also the {inal equivalent cable)} will be generated in the process. This
does not constitute the full sel of equivalent structures, however, since one can usuvally
transform certain Y-junctions in a different order, and additional intermediate trees may
be found if any Y-junetions can be branch-shifted. Note that the order in which its sub-
trees are reduced does not affect the siruciure of the the inal equivalent cable.

The derivation of the analytical method of cable construction (consisting of two sets
of construction rules) gives great insight into why the cables can actually exist at all. The
electrical continuity rales, which follow straightforwardly from a first-principles construc-
tion algorithm (Chapter 5), show that it is possible to guarantee voliage continuity and
currenl conservation in a new unbranched structure, but without uniquely defining this
structure. By imsisting that Y-junctions may be transformed in isolation from the resi
of the tree, a set of isolation-termination rules may be formulated which ensure that the
cable will evenfually terminate, and is wniquely defined. The isolation termination rules
simplify substantially for simple Y-junctions. There are indications that an even 'deepcr
mathematical structure, and a more fundamental set of construction rules probably exists.

The analytically derived construction algorithm is reasonably effective, although, in
the form given, cannot compete with the matrix methods for raw speed. If any simple
Y-junctions are encountered during the transformation of a tree, then by far the most
efficient way to rapidly produce their equivalent cables is to use the analytical expressions
obtained from the branch-shifting method (Chapter 7).
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Of the two matrix methods, the Househiolder is the preferred approach since it naturally
generates disconnected sections, and is established as a highly stable procedure. The
Lanczos method is the fastest and most memory-efficient way to construet fully equivalent
cable structure provided the connected section is all that is required, i.c. information
concerning disconnected sections and the electrical mapping is not retained. It is nof
as numerically stable as the Householder method, but this instability is only likely to
emerge where the tail of a sealed connected section narrows rapidly. Fortunately, analytical
results allow cable structure, and the existence of discunnected sections in particular, to
be predicted prior to construction, and this enables checks to be made as the matrix
algorithms progress.

The construction methads all ensure that important properties of a tree are consorved
in itg fully equivalent cable. The total elecirotonic length of a tree equals the total electro-
tonic length of its fully equivalent cable. The steady-staie iuput conductance of the tree
cquals the steady-state input conductance of the cable connected section. In addition, it
the tree terminals are sealed (or subject to current injection boundary conditions), total
surface area and injected current are preserved in the equivalent cable’s connected section.

The assumptions for Lthe passive multi-cylinder modet ensuxe that cable results arc
independent of specific eleclrical parameters, i.e. membrane capacitance per unit area,
membrane conductance per unit area, and cytoplasmic resistivity, which have been taken

to be constant for the treet.

8.3 Fully Equivalent Cable Structure and Tree Function

Electrical activity on a multi-cylinder passive dendritic tree model cither must (if all Y-
junctions encountered during reduction are non-degenerate) or may (if any Y-junctions ate
degenerate) induce a vesulbant digturbance in the potential at the origin. Fally cquivalent
cable cylinders must have just the right electrotonic lengths, diameters and boundary
conditions such that the corresponding activity over the equivalent cable, as defined by
the clectrical mapping, will generate exactly the same effect at the origin. An input current
(or the membrane potential) at one point on a dendritic tree will typically map to many
inputs (or a distribution of membrane potentials) on the equivaleni cable, and vice-versa.

The analytical results in Chapler § have shown that the electrotonic lengths of each
separate cable section can be defermined prior to construction (see Figures 6.16, 6.17 and

6.18). In addition, the branch-shifting results of Chapter 7 clearly describe trends in the

'Recall from Chapter 2 that there is actually move flexibility than this, i.e. in the choice af cross-suctional
profile (A and P) and the clectrical parameters (ps, gar, Car) in each uniform segment of dendrite, provided
that the ratio Cas fyas is 8 constant throughout the tree.
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connected section fine structure which are determined primarily by boundary conditions,
and also by relative electrolonic lengths of branches. Disconnected sections are generally
short (compared to the total electrotonic length)}, mast often consisting of a single cylinder
of basic unit length. They are long only when the original Y-junction exhibits a high level of
symmetry, i.c. Rall trees and the nom-uniform generalisation given in section 6.4.2 {(where
the left and right branches have the satne electrotonic length and boundary condition,
and a constant c-value ratio from origin to tips). In such cases, the disconnected section
structure is similar to that of the connected section, except that one end terminates with

a cut end rather than being attached to the junction (recall Figure 6.7).

8.3.1 The Influence of Boundary Conditions

Boundary conditions dominate in determining whether there is a tendency for an in-
creasing, decreasing, or roughly uniform (castellating) trend in the diameter profile of an
cquivalent cable’s connected section (moving away from the origin towards the terminal).
These trends are clear from the analytical expressions obtained in Chapter 7 for simpie
Y-junctiond. As one moves fromn junction to branch tips of a Y-junction, constructing a

fully equivalent cable cylinder by cylinder, c-values tend to
1. Increase in size once a single cut terminal is encountered.
2. Castellate, or oscillate, when a single sealed terminal has been encountered.

3. Narrow when two sealed terminals have been encountered, possibly with the occa-

sional distinct jump in diameter.
4. Increase rapidly in size i two cut terminals have been encountered.

5. Castellate, or oscillate, and/or increase in size, once both a cut and sealed terminal

have been encountered.

The connected section terminates with a cut terminal unless both Y-junction terminals
are sesled, in which case it terminates with a sealed end.

Recalling that the current injection boundary condition is equivalent to a sudden drap
in diameter to zero, while a cut boundary condifion is equivalent to a sudden jump to
infinite diameter, then it can be seen that a boundary condition tends to impose itself
on cable structure by shifting c-values towards the particular extrecme diameter that the
terminal condilion represents.

Tree structure at an electrotonic distance z from the origin can only influence cable
structure beyond a distance ¢ from the origin. Although there exist symmetric trees (Rali

tees and the generalisations given in Chapter 3) where boundary conditions don’t have a
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chance to exert their influence on cable structure hefore the connected section terminates
(trce boundary conditions only determine cable boundary conditions), in general the length
of the counected section is longer than the maximum origin-to-tip electrotonic length,
enabling a boundary condition at electrotonic length I to influence subsequent equivalent
cable connecled scetion structure.

Figure 8.2 illustrates a set of equivalent cables for Y-junctions where each branch has
the same c-value, as well as sealed terminals, Total electrotonic length, and consequently
surface area, is the same in each Y-junction — they are distingnished only by the relative
electrotonic lengths of the two branches, indicated to the left of the connected section. The
sealed boundary conditions ensure that cable siructure tends to experience castellating
and/or narrowing, while relative lengths determine how far from the origin siguificant
(if auy) varrowing takes place. Clearly, the smaller the difference in branch lengths (i.e.
the closer the Y-junction is to satisfying conditions for a Rall trec) then the shorter the
connected section longth before either termination or distinct narrowing occura. In fact this
length corresponds to the length of the longer Y-junction limb. In most cases, the narrower
structure is clearly not negligible. Note that the construction methods for empirical cable
models (Chapter 3) would terminate when the long lirub torminal was veached, unable to
approximate important tail sections in the fully egnivalent siructure.

It is not practical to illusirate cables for the same trees but with both terminals cut,
since diameters, from origin to terminal, often range over several orders of magnitude —
c-values are always increasing. Except for the Rall Y-junction, the surface areca of the
connected section is very mich greater than that of the tree.

A selection of cables for Y-junctions, where one terminal is cut and the other is sealed,
are illustrated in Figure 8.3. Ratios of sealed branch length to cut branch length range
from 3%:1 to 3:37. For the length of the sealed branch, the equivalent cables have identical
structure to the corresponding cables in Figure 8.2. Beyond this point, the cub ferminal
comes into play and the diaimeters are generally increasing. The closer the cul terminal
to the junction, the wore dramatic the influence it has on cable structure, increasing
surlace area considerably. The non-Rall symmetric Y-junction (20:20) is merely a uniform

cylinder, but with electrotonic length twice that the origin-to-tip length.

8.3.2 Signal Loss and Signal Reflection

The fact that two boundary condition types have extreme and opposite effects on equiva-
lent cable diameters, can be understood in terms of signal loss and signal reflection at the
dendritic tree terminals. Recall from Chapter 2 that no charge may leak from a sealed
terminal (this is regarded as signal reflection, since charge flow is redirected back towards

the cell body), while charge leaks directly from & cut terminal {this is regarded as signal
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Itigure 8.2: A selection of cables for simple Y-junctions with the same surface area but
different left and right branch lengths; both tree terminals are sealed. Both branches have
the same diameter so that all trees have the same total electrotonic length (40 basic units).
The cable origin is at the left in each case. Moving from top to bottom, the tree branch
length ratio progresses from 20:20 (the Rall Y-junction) to 39:1. The quantum length for
a particular is the largest common factor of the two branch lengths, which in many cases

is larger than 1, in the units given. See text for discussion.
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Figure 8.3: A selection of cables for simple Y-junctions with the same surlace area but
different left and right branch lengths; one tree terminal is sealed, while the other .is cut.
Both branches have the same diameter so that all trees have the same total electrotonic
length (40 basic units). The cable origin is at the left in each case. branch length ratios

are given in the form (scaled branch length):(cut branch length). See text for discussion.
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loss). We raust consider cable structure in conjunction with the nature of the electrical
mapping to this structure.

Ag the analytical expression derived from the branch-shifting method have already
indicated (Chapler 7), there ix a clear relationship between equivalent cable cylinder di-
ameter and the relative magnitude of the electrical mapping from any point on the tree to
that cylinder. Since trends in cable structurc are determined primarily by boundary con-
ditions, then so is mappinyg strength. Basically, sealed terminals promote strong voltage
mappings and weak injected current mappings, while cut terminals promote weak voltage
mappings and strong injected current mappings.

This can now been seen in Figures 8.4a—c. A unit potential is mapping from each tree
to s equivalent cable. The potential at electrotonic distance X on the dendritic tree will
map to a scaled potential at distance X on the cable connected section, plus multiple
positive and negative potentials further down the cable. These additional potentials are
necessary to compensate for the non-Rall nature of the Y-junction, i.e. they account for
the modulation of clectrical activity in unsymmetric dendritic structure.

For a unit potential input on a branch of the dendritic tree, at distance X, say, {rom
the origin, then beyond distance X along the equivalent cable there is generally a large
mapping to cylinders with small diameters and a small mapping onto cylinders with large
diameters. The current mapping follows straightlorwardly — recall that the ratio of
applied current to ¢-value is mapped in the same way as voltage. Where there is a large
membrane surface area (targe diaaneter), a large current will be required to depolarise it a
small amount, while only small currents ave reguired to produce a significant depolarisation
across the membrane of thin cylinders.

'I'he promotion of large diamecters by cut ends is consistent with the fact that accumu-
lated charge leaks from cut terminals. Sinece the greater amount of current flows in the
direction of lower impedance (i.e. larger dinmeters), within these large cylinders a greater
amount of charge is channelled away from the origin towards the cuf end. The large
current mapping describes this lost current. The corresponding small voltage mapping
mimics the fact that there is minimatl signal reflection within the tree.

The promotion of sxuall diameters by a complcetely scaled tree is consistent with the
fact that there is no signal loss from such a terminal. The decreasing cylinder diameters
channel the preater amount of charge back towards the equivalent cable origin, a result
af full refleetion at sealed terminals in the original tree. 'The strong voltage mapping
describes the strong reflected component of the signal, while the corresponding weaker
current mapping mimics the zero current loss from terminals.

Two different boundary conditions on a Y-junction (one cut and one sealed) results in

an equivalent cable connected seclior with a cut terminal. This ensures thati accumulated
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charge may still leak from the system (other than through the memnbrane).

8.3.3 Implications of “Fuzzy™ Tree Data

The trees that are used for cable construction must be formed from cylinders whose lengths
are multiples of a common basic length, however small this might be. As discussed in
Chapter 2, real tree morphological data has some measure of uncertainty associated with
it. For example. it is possible that two Y-junction representations, one degenerate and
one non-degenerate, are equally valid models of real data for a Y-junction. The point is
that fully equivalent cables are equivalent to the tree model, not the data.

It is important to note that, except in the unlikely case of the non-uniform generali-
sations of a Rall tree, the length of a disconnected section is typically one basic unit, but
possibly two units (if both terminals ave cut). Clearly, then, by decreasing the basic unit of
electrotonic length in order to increase model resolution, one ig likely to increase the elec-
trotonic length of the connected section, and decrease the lenglh of disconnected sections
by the corresponding ameount (in certain cases so that disconnected sections may disappear
completely}. Exactly disconnected sections, and therefore exaect elecirical degeneracy, are
features of the multi-cylinder model, not necessarily of the original tree data.

"This is where approximate degeneracy must be considered. It is possible that sections
of the connected section that are near the end of the connected section are so narrow
(in the case of a sealed end), or so wide (in the case of a cut end), as to be regarded as
ellectively disconnected, and having negligible influence at the origin. The corresponding
electrical mappings describe activity that is, for all intents and purposes, ineffective at the
origin in comparison to sirnilar aclivily mapped from eable cylinders that are closer {0 the

origin. Fully equivalent cables are robust objects, as discussed in Chapter 3.

8.3.4 Complicated Dendritic Geometry

Equivalent cable results for Y-junctions generally extend naturally to more complicated
trees -— after all, any tree can be turncd into a Y-junction by successive reduction of
its sub-trees. The major differences are in the number of disconnected sections, and the
subtlety in the fine gtructure of the eable, while the influence of boundarv conditious
is more pronounced, i.e. cut terminals promote cxtremely large diameters, while sealed
terminals promote more significant narrowing of a cable. Of course, these things depend
on the level of complexity in the dendritic tree being transformed.

As more structure is transformed, the ratio of basic electrotonic length to total elee-
trotonic length becomes smaller. This tends to produce cables that are less obviously

discontinnous, and have a smoother diameter profile.
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For example, suppose the Y-junctions at the $ips of a sealed tree (with n orders of
branching) are transformed, producing narrowing cables that are reattached at the corre-
sponding branch points. The Y-junctions at the tips of the new tree (with n — 1 orders of
branching) must then have, in general, distinctly narrowing limbs. These new Y-junctions
arc trapsformed in turn, producing cables that have even more pronounced narrowing.
The process continues uniil the final fully equivalent cable is generated. An even more
striking effect is scen with cut terminals, with extreme increases in diameter, as more and
more Y-junctions ave transformed — large diameters in equivalent cables for sub-trees
promote even larger diameter in the [inal equivalent cable.

Eleven dendrites from an alpha motoneuron (identified as M43/5) have been discretised
and transformed (thanks to Dr. R.E. Burke, NINDS, NIH, for supplying morphological
data for motonenron dendrites. See Burke et al. (1988) and Cullheim et al. {(1987a, 1987h)
for additional details of this cell). The equivalent cables (connected sections) are illustrated
in Figure 8.5 (in physical space). In addition, the eleven irees (regarded as attached to a
point-like lumped soma) are collapsed into one equivalent cable, also illustrated.

All terminals are treated as sealed, and the consequent narrowing of the cables is
clear. Because of the small basic unit of electrotonic length used, the large combined

cable appears as an effectively continucus structure.

8.3.5 Consequences for Parameter Estimation

Fully equivalent cable structure has several implications for parameter estimation methods
that use quasi-equivaleni cable muodels. As well as being a possibie replacement for the
quasi-equivalent cables, fully equivalent cables can serve as guide to interpretation of
results obtained using these previous methods, i.e. to determine when it is reasonable to
use quasi-equivaleul cables, and to warn against their use when it is not appropriate.

Parameter estimation for real neurons is inherently prone o uncertainty, relying on
several geometrical and elecirical assumptions about properties of a neuron's dendritic
trees and cell body. The use of fully equivalent cables instead of, say, lambda cables, may
ool remove wuch of the uncertaintly in estimmates of abtained in this way. However, by
comparing a lambda cable to the fully equivalent cable connected section for the same
tree, one can observe how close 2 match the two are, and consider whether the differences
are significant cnough to cause concern.

One must also beware of interpreting data where the assumption of sealed dendritic
terminals may not be valid. It is possible that experimental conditions under which
transient voltage responses are recorded at the soma. cause some dendritic branches fo be
physically cut, and a cut condifion may be more realistic than a sealed condition because

of significant, current leakage. The assumption of empirical cable models (in particelar the




1-11

11
Tl
6|

10,
9

U UL ]

Figure 8.5: Equivalent cables generated from data for motoneuron ceil M43/5. Eleven

9]

dendrites have been transformed individually, and also combined f{ogether. See text for

discussion.
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lambda cables) that surface area is couserved in the replacement séructure, is no longer
valid. It can be seen from Figures 8.2 and 8.3 that the same tree structure subject to
different boundary conditions yields markedly different fully equivalent cables.

The structure of fully equivalent cables alsc raises questions as to what is meant by
“cffcctive electrotonic length” (Rall, 1969a; see also Iolmes and Rall, 1992a,b; Holmes et
al., 1992) of a tree, which is often used as a measure of the eloctrical compactness of a
tree. While this concept is certainly valid for Rall trees, for less symmetric trees it is a less
well defined quautity. In Figure 8.5, the total electrotonic length of the cable is essentially
the total clectrotonic length of alt the tree Hmbs, and so significantly greater than the
electratonic length of quasi-equivalent cable models. Of course, a tail portion of this is
clearly very narrow. The tapering is gradual, however, and there is often no clear decision
as to where the cut-off point lies. The idea of effective electrotonic length is therefore not
very meaning{ul unless discussed in conjunction with the fully equivalent cable’s geometry
— for example, one mighl define a measure of electrotonic length as that length from the

origin al which the cable diameter has fallen to somce proportion of the initial diameter.

8.3.6 Local and Global Processing

Fully cquivalent cables allow one to completely classify the geometry-dependent signal
processing properties of a passive dendritic tree model with arbitrary geometry.

Electrical activity over a tree is mapped iuto activity over cable c¢ylinders. Hach cable
cylinder can be regarded as representing a characteristic configuration of activity over the
tree — i.e. a configuration that acts like it is gencrated in just one cable cylinder of an
unbranched structure. Any activity over the tree is a combination of such characteristic
“modes” of electrical activity. Disconnected sections define configurations, or modes, of
activity that interact entirely locally. The connected section defines configurations, or
modes, of activity that have global influence on the tree. When considering real trees,
narrow cylinders or exiremely wide cylinders at the end of a conuected section can be
regarded as representing modes of aclivity that are negligible at the origin.

It is interesting that the electrical mapping from specific cable cylinders back to the
tree wsually maps a single input on the cable to many inputs on the tree. It would
be even more intercsting if, for certain neurons, excitatory and inhibitory synapses are
arranged over dendritic sub-trec in such a way that the resulting activity decays passively
in corresponding configurations (though this is possibly overoptimistic). In particular, if
such an input configuration equates to activity mapped from a disconnected section, then
it may be that synapses are arranged to take advaniage of the local processing capabilities
of geometry. Sub-sets of the local configuration may be activated simultancously - - the

passive coincidence of configurations of activity discussed in Chapter 3.
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8.3.7 'Tree Classification

While two different dendritic trees may have entirely different local properties, it is possible
that they have very similar global properties. One implication of fully equivalent cables
is that observably different dendritic trees may transform to equivalent cables that will
have Lhe same, or approxtimately the samne, connected section. Similarities in connected
sections can form the basis for a classification of neuronal types (in terms of their passive
properties). Electrical mappings and disconnected scctions will be different, of course

(unless the two {rees are morphologically identical!). Recall Figure 3.15.

8.4 Concluding Remarks and Future Perspectives

While some areas still need further mathematical clarification, the foundations of equiv-
alent cable construction have now becn laid. However, the [ull iruplications of the fully
equivalent cables has yet to be determined for real neurons. ln the present model the
membrane time constant st be uniform over the tree, a factor which prevents the cur-
rent techniques being used for the construction of dynamic cables with active membrane.
Synaptic inputs must be simulated by current injection (rathor than conductance change),
so transmembrane depolarisations and hyperpolarisations are assuined to interact lincarly.
QObservations made using fully equivalent cables should have significance for classes of neu-
ron where passive electrotonic structure dominates the spread of membrane poteniial (or
where active properties have been pharmacalogically blocked). Sub-threshold voltage dis-
turbances can behave passively, and cquivalent cables describe how geowmelry shapes this
activity.

The present cables will not account for non-linear effects due to active membrane
conductance changes, and so will not naturally reproduce observed phenamena such as
action potentials, or other phenomena involving signal regeneration by the voltage-gated
opening of ion channels.

It has often been recognised that the sitnpler case of passive tree geometry must be fully
nnderstood before one can even begin to understand the interaction between geometry and
active membrane properties (e.g. Rapp ef al., 1994). At this stage, we sacrifice full realism
in an attempt to get a handle on the function of complicated dendritic tree geometr;}. One
cannot hope to understand geometry in the active model beforehand. The passive model
describes a fundamental layer of geometry determined signal processing capability that
is probably enhanced enormously by non-linear effects associated with voltage-dependent
conductance changes.

The apparent power of equivalent cables which satisfy the demands of a rigorous math-

ematical definition of equivalence suggests that, if these techniques can be adapted for tree
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models where the membrane is active, one may gain further insights into the role of geome-
iry in signal processing. Though extensive work has been done to investigate the propertics
of passive geometry, they have almost invariably involved an analysis of solutions, rather
than the describing equations themselves,

If the fully equivalent cable concept cannot be extended to active membrane, then af
least ik may prove useful to investigate configurations of inputs and voltage distributions
mapped from connected and disconnected sections in an attempt fo determine a significant
role for passive coincidence detection in shaping sub-threshold activity.

Significantly, for the first time it is possible to overcome geometrical complexity to
perform a thorough quantitative analysis of the role of passive geometry. Concepss such
as clectrical degeneracy, and layers of coincident configurations of activity associated with
tree sub-structure, show that a neuron can take full advantage of the spatial structure of
{rees to process signals. It is highly likely that more complicated electrical degeneracies, or
redundancies, exist in real nourons — an ability for the same signal processing operation o
be performed by many different input configurations is possibly a highly desirable featwre.
‘I'hesc results also suggest that an understanding of singly branched dendritic trees with
ackive membrane may transfer quite easily to highly branched siructure.

Many analytical and numerical tools are available to solve cable equations. Recorded
transients can be analysed in several ways, electrotonic structure of the tree can be visu-
alised, and paramelers can be estimated. Fully equivalent cables define clear properties of
tree geomctry in a novel and physiologically intuitive way. Together, all these fools allow
a compleie understanding of the properties of the passive tree model. The move to gain

similar insights into the non-linear models can be made more confidently.
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