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Abstract

Functional languages are mathematically pure, and easier to reason about than their 
imperative rivals. Because of this, they are an attractive paradigm of programming. They 
allow programmers to express complex algorithms in a declarative manner, resulting in 
powerful programs that are also well written.

Good interaction with users is important for programs which are to be used for 
real applications. This normally involves creating a user interface using devices such 
as menus, buttons and scrollbars. It is now increasingly common for the interface of 
programs to be developed using specialised tools allowing a faster development cycle, 
with less programming involved.

In the past, pure functional languages have been poor at creating graphical user 
interfaces resulting in good applications with poor interfaces. This is due to the mixing 
of the user's world which involves complex multi-level interactions, with the functional 
world which has a single threaded state. This is not a very good abstraction of the world 
to interact with. Wlien the traits of the user's world are introduced into the functional 
world it is found that the purity of the functional world is compromised, and the clean 
declarative style of functional programming is lost. If the user interaction is separated 
from the functional program, allowing users to communicate with functional programs 
using external interface programs, it is possible to preserve the natural simplicity of the 
functional world. This would also allow programmers to take advantage of user interface 
development tools.

I look at current solutions for performing input and output from functional languages, 
with particular reference to the Monadic I/O  style which is currently gaining popularity. I 
then present a scheme where I have deliberately separated interaction from functionality, 
allowing functional programmers to build programs that interact with the "Real World", 
with less interference of the real world into the pure environment within the functional 
program.
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Preface

Reader's Notes

This thesis can be seen as having two audiences — one in functional programming 

research, the other in HCI research. My own background is in functional programming, 

therefore much of the writing is addressed towards other functional programmers. In 

particular, the sections on HCI research have been written for an FP audience, and so may 

appear over-simplified to HCI researchers. On the other hand, I have tried to address the 

sections on functional programming to both functional programmers and HCI researchers 

wishing to know more about functional programming.

Source code given in the appendices is available on selected FTP archive sites, or by 

e-mailing the author, at Duncan Sinclair <sinclair@dis . strath, ac .uk>.

Contribution

The basic contribution of this thesis is to show that using separate interfaces to functional 

programs is a good solution, and that as user interface development tools improve, it will 

become increasingly difficult for functional solutions to user interaction to meet users' 

expectations. I further claim that most external interaction which is not functional in 

nature is better done outside of the functional environment.

My key goal was to try to meet a list of requirements generated by examination of a 

number of areas of study outside functional programming while creating a system to allow 

graphical user interfaces to be created for functional programs. In particular, I wanted to 

enable the programs created using my system to have a high level of modularity, with 

relative ease of design and programming. I also regard the extensibility of the resulting 

system to be very important.

V
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Chapter 1

Introduction

Computing has come a long way since the time when most programs were written in 

languages such as COBOL or FORTRAN, submitted on paper tapes or cards and run 

in batches — the output being collected from the computer centre the next day. Now 

we all have our own personal computer on our desk, and we expect it to 'interact' with 

us. At the same time, programming languages have developed and there are now many 

paradigms of programming languages. One such is the functional paradigm, which 

is based upon mathematical foundations, and allows a greater expressive power than 

previous paradigms.

Unfortunately, the interactive power of these functional languages has found it diffi

cult to keep up with the interactive systems in common use. They tend not to offer input 

and output features even as advanced as the dinosaur languages mentioned above.

The functional programming community now needs to find a way to enable functional 

languages to be used to build interactive programs that can communicate with users 

in a way with which they are comfortable. Furthermore, the programmer's task of 

creating these interactive programs must not be any greater than in any other language — 

otherwise the programmer may choose to stay with non-functional languages, and lose 

all the advantages of the functional style.

The introduction begins by examining functional languages, aspects of good interac

tive systems, and the requirements that will be used to build a better system to provide 

good interactive interfaces. The chapter concludes with a statement of goals and a 

sketched outline of the remainder of the thesis.
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1.1 Functional Languages

Functional languages are mathematically pure. This means that programs written in a 

functional language can be manipulated and reasoned about in the same way as math

ematical functions. The particular property of functional languages which allows such 

equational reasoning is called referential transparency, and guarantees that any partic

ular function when called with identical arguments will always return the same value. 

Although this may not appear immediately useful to all programmers, it is extremely 

useful when they come to compile their programs — the compiler can perform mathe

matical transformations knowing that it will not change the meaning of the program. A 

more obvious direct benefit for programmers is that if they wish to show that particular 

portions of their code are correct according to some higher-level specification, they can 

use equational reasoning to prove properties of their program.

Functional languages are declarative. This means that rather than specifying a pro

gram as a sequence of operations to be performed, as is usual in 'imperative' program

ming, the program is written as a description of the result desired. This can be illustrated 

with a simple example. In a non-declarative, imperative language, in order to sum a list 

of numbers it is necessary to explicitly keep a running total, accumulating a sum as each 

element of the list is examined. In the declarative style, the program would express the 

sum of a list in a mathematical way which might imply the same operations as for the 

imperative code, but without the programmer having to think at that lower level. Put 

succinctly, declarative programming means you program 'what', rather than 'how'.

There are a number of particular features that tend to be found in all modern functional 

languages. The most obvious is the Hindley-Milner type system [19] which provides 

a powerful, flexible type system, with sum (similar to variant records in Pascal) and 

product (tuple) types, and flexible polymorphism. It also makes explicit typing optional, 

as normally the types of all functions can be inferred from the context by automated 

analysis. This rigorous type system is extremely powerful and flexible, and will guarantee 

that all programs that are type-checked cannot fail due to a run-time type mis-matches, 

a problem that is too commonly found in programs written using languages with less 

rigorous type systems.

A good case for the importance of functional languages was made by Hughes [17]. In
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his paper, Hughes puts forward two compelling reasons why functional languages are 

interesting and useful. Firstly, he shows how functional programs have compositional 

properties based on simple function composition that allow large scale code re-use by 

allowing major sub-programs to be bolted together in a flexible manner. Secondly, he 

points out that, by writing small functions which are not specific to a particular data type, 

i.e. they are polymorphic, these functions can be re-used with lots of different types. 

Simple examples of this include list map, fold, and filter, all of which take a function and 

list as arguments, and will apply the function to elements of the list in different styles.

Functional languages by their nature are particularly good in applications which 

involve some process of transformation of input data into output data [30]. Compilers 

are an obvious and well exercised example of this [3,12].

1.1.1 Functional Languages and User Interfaces

This thesis is about providing user interfaces for programs written in functional languages, 

and whether functional languages make this easy. Unfortunately functional languages 

do not seem especially well suited to the task. Currently creating good user interfaces for 

functional programs is a difficult task, harder than it is for unsophisticated imperative 

languages like C. I intend to find out why, and to put forward a system which will allow 

good user interfaces to be used for functional programs.

Why do I want to do this? With all the features and benefits made available by 

choosing to program in a functional language, it would also be advantageous to be able 

to interact with programs written in functional languages in the ways programmers are 

used to. Compromising the interface for the sake of being able to write in a nicer language 

is not a viable option for real applications.

Writing traditional interactive functional programs has always been a problem; in 

1985 William Stoye gave a brief discussion of this [34]. Over the years there have been 

two main contenders for how to do input and output from functional languages which 

allow interaction, first the 'streams' or 'dialogues' approach outlined by Stoye. In this 

system the result of the functional program, instead of being a conventional type such as 

a number or a list of characters, is a list of commands which would perform various input 

or output operations. Results of these actions, including user input, are supplied in a list
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as an argument to the function.

The second approach is that of 'continuations.' This works by providing functions 

which will carry out input and output requests and then ensuring that these functions 

are evaluated in a particular order. The order is defined by setting down that the result 

of each continuation function is supplied as an input to a subsequent continuation. This 

ensures a linear execution of I/O  operations, which keeps the program free of side-effects 

that can affect referential transparency.

Both continuations and dialogues create a definite sequence of interaction so as to 

ensure that referential transparency is not compromised. If I /O  actions were to be al

lowed to be performed in an undefined order, then functions could give varying results 

depending on what I/O  actions had preceded their evaluation.

Hudak and Sundaresh [16] provide some good arguments in favour of continuations 

over the dialogues approach, but still manage to make simple interaction appear awk

ward. Examples of simple interaction programmed in these two styles are presented in 

full in Chapter 2. However, as soon as they are applied to graphical interaction, both 

styles of programmed interaction just break down. I consider this point also in Chapter 2.

Laziness increases the chances that you will not know if one particular section of 

program will be evaluated before another. This will lead to problems in programming 

interaction. There are some functional languages, e.g. Scheme and SML, for which 

interaction is not a problem. This is because they use side effects within a strict evaluation 

framework. This makes most of the difficulties go away, but at the expense of referential 

transparency.

Lisp must also be mentioned here. There are many good toolkits and user interface 

development environments built round dialects of Lisp. However, Lisp is only marginally 

a functional language and in this particular area it is not very pure in its functions. It does 

make a good model for what is possible in a non-procedural language.

So I shall restrict my attention mostly to pure, non-strict functional languages where 

interaction remains a problem. The most obvious instance of these is Haskell[15] with 

some reference to a similar, but older language. Lazy ML[3]. I shall not investigate 

languages which have had their type system extended, a potentially expensive option, 

which buys little over what can be achieved with some clever programming as described 

in Section 2.4. I shall survey the I/O  techniques with which Haskell is supposed to be
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able to achieve user interaction in Chapter 2,

Within the context of Haskell some new solutions to the interaction problem have 

appeared in recent years, notably the monadic approach to I/O  [27], a refinement of 

continuations, and the Fudgets functional interactive toolkit [5], a system based around 

an enhanced dialogues scheme. Unfortunately both suffer from the basic dilemma which 

functional programmers face when programming interaction — the functional language 

has to sequentialise all I/O , while interaction is not naturally sequentialised in the user's 

mind. As lazy languages are not especially sequential in their execution, it is no wonder 

that programming in sequentiality is difficult.

1.1.2 What Functional Programming is Missing

Why should I take notice of work outside functional programming on user interaction? 

Early indications show that functional languages on their own aren't doing so well. So 

much of the current work on user interaction for functional programs is coming from a 

functional programming point of view. It is typically mathematical, with a high theoretical 

content and little regard to research in other areas.

While it is fine that monadic I/O  has good theoretical under-pinnings, did anyone 

stop to think if it helped in user interface programming? If all that it is is a means somehow 

to construct interactive programs, then it succeeds, but that is not enough. A programmer 

chooses a language based not on only on ability, but also usability.

Wlien the Fudgets system was created, some HCI user interface research was consulted 

and as a result good interfaces can be constructed using the toolkit. Unfortunately some 

software engineering and HCI principles were missed, leading to a poor programming 

style which lacked the flexibility required to allow easy iterative design of interfaces.

Clearly these new approaches have not delivered large interactive programs yet, and 

as shall be seen in Chapter 2, there is some doubt that they will. Therefore I shall present an 

alternative approach that draws some basic concepts from software engineering, human 

computer interaction, and user interface design.
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1.2 Approaching Interactive Systems

When creating interactive systems there are three areas of computing science research from 

which programmers might learn something; Software Engineering, on how programs 

should be constructed; Human-Computer Interaction (HCI): on how an interface should 

be adapted to the user; and User Interface Software Technology (UIST), on how an 

interface should be programmed.

1.2.1 Software Engineering

I shall address two prominent aspects of software engineering. The first is that it is 

difficult to write large and complex programs. The second, by far the more important, is 

that the programs, once written, have to be maintained. As functional languages mature, 

and programs written using them grow older, the ability to adapt functional programs to 

work with the latest technology or requirements will be very important.

In civil engineering terms, in order to maintain any newly built bridges, it is important 

that the correct construction teclmiques have been used, or else they will fall down. It is 

no different when a programmer sets out to build a new program.

Modularity

The number one principle of software engineering is modularity, which involves the 

concepts of coupling and cohesion.

Coupling is how much any particular module depends upon the implementation or 

services of another. By reducing coupling to a minimum, it is possible to change particular 

implementation techniques within a program without affecting the behaviour of other 

parts that need not be concerned with such detail.

Cohesion relates to how specific any particular code section is to one particular task. 

When maintenance time comes around, it is easier to modify a section of code which does 

only one thing, rather than a number of related or even unrelated things.

Separation has always been an important principle in HCI, which advocates reducing 

coupling between the user interface and the 'functional core' of a program — that is, the 

part of the program which takes no part in communicating with the user, but which is
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responsible for all of its functionality. To avoid confusion with functional languages, I 

shall term this the 'application core' or, more simply, the 'application.'

Whether this separation is possible in practice is a matter of debate but as a general 

principle of design it is difficult to argue with. By separating the interface from the 

application a number of benefits are immediately to be found. Portability and isolation 

of change are two principal examples. Further discussion on separation follows below in 

the discussion on UIST issues.

HCI has learnt from software engineering, and the functional programmer wishing to 

write user interfaces must do so also.

Extensibility

As there are new and better ways of doing things always being found, there is a need to 

program in a certain amount of extensibility into programs, to allow them to grow and 

keep up with the rest of the world. Therefore system designers should not limit the scope 

of their programming systems, but instead build in a certain amount of flexibility which 

can be taken up later.

To achieve a good level of extensibility there are no simple concepts such as cohesion 

as a guide. It is more a principle to keep in mind during the design of any system, that 

features may be required to be added to the original design at a later date.

Extensibility is also very important in the design of a language. The original designers 

of the Haskell language did not allow for programmer extension to the I/O  system, and 

so many of the things that were required of the language were just not possible. This was 

one of the motivations for the monadic I/O  system that I discuss later on.

Portability

It is sometimes necessary that programs have to be moved to new operating systems and 

computers. It is desirable that this can be done with as little re-programming as possible 

— at least, no more than for similar code written in an imperative language. Also, as 

current fashions change, the style of user interface required will change — functional 

programming needs to keep up with this.

In the discussion of modularity above, I gave one example of how portability can be
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increased — by separating system-dependent (user interface) code away from system- 

independent (application) code.

In designing the I/O  system of a language, it is important that the designers choose 

a set of primitives which can be supported on different architectures but which, at the 

same time, can exploit particular features of whatever architecture is in use at the time. 

This brings back the discussion on extensibility — that designers must plan for features 

which are not currently available on one particular architecture.

So portability is again all about an attitude of programming. It is something to be 

borne in mind during the design and implementation of any program.

Summary

The programs written today may be in use many years from now. If they cannot be 

maintained, then when change comes, new programs will need to be written. As this is 

an expensive job, it is essential that programs are easy to build upon.

1.2.2 Human Computer Interaction

HCI research is still an inexact science. There are major limits to current knowledge of 

how humans interact with computers and how this knowledge should affect the design 

of user interfaces.

Study has shown that in order to cope with this problem, development of user inter

faces needs to be experimental, with prototypes being constructed and tested, leading to 

a iterative design strategy.

There are three important issues here, for design must be:

• Iterative.

Construction of user interfaces is normally an iterative process. An initial interface 

is created and then evaluated by its designer. Based on the testing it can be enhanced 

or changed as required until it is satisfactory. This can be a time-consuming process. 

If the interface is written in a compiled language, it has to be re-compiled on each 

iteration. If a small portion of the interface is under test, quitting and restarting, 

and then re-navigating the interface to get to the area under test will take time if
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this is what is required. Once its designer is happy, more expensive user evaluation 

would be required which will cause yet more iteration.

• Participative.

As the design of a user interface develops, it is important that the eventual users 

of the system, or representatives of them, are able to try out the system and make 

suggestions for possible improvement. During this time the aims of a particular 

interface may be changed dramatically as user-feedback could result in a complete 

re-design, or re-engineering of a design. Limitations in a programmer's toolkit 

cannot impede this. For example, it will not be a sufficient reason for why a button 

cannot be moved from where it currently is situated, why it cannot be part of a 

menu, or why it cannot be based on some other style of interaction.

• Exploratory.

As an interface develops, during iterative user evaluation, it becomes apparent that 

the space of possible interfaces to a particular program is huge, and that there is 

always more than one way to meet required features. Thus this space of possi

bilities must be attacked in a exploratory manner, with the ability to retract and 

try other avenues of design. Again, this needs a certain inherent flexibility in the 

programming system used to create the interface.

Generally this is simply requiring some of the same things I stated as good software 

engineering — modularity and extensibility. Because of the participative aspect, it is 

difficult to formalise the design of interfaces, as users tend not to think along logical lines 

of specification and refinement.

1.2.3 User Interface Software Technology

By taking current thoughts from HCI research and using these to create tools to help build 

user interfaces, this is UIST. UIST may be thought of as an applied branch of HCI; where 

HCI concerns how it should be, UIST reveals how it really is for current technology.

UIST is built upon established HCI principles. From UIST a number of assumptions 

about computer users can be made.

• They are opportunistic.
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Users have a habit of trying to do more than one thing at a time. When given a 

system flexible enough to allow multiple tasks to be tackled at the same time, users 

will often advance more than once task concurrently.

• Users vary in the way they like to do things.

There is a great variation in the preferred means to achieving any particular aim. 

Programs should not constrain users to doing a particular task in one way when 

there are other ways possible. A simple example is the order buttons are pressed or 

text fields are filled in in a dialog box. Therefore my system should be 'user-driven,' 

where tasks are advanced under the control of the user.

• Users make mistakes.

This is obvious. Users must be allowed to go back and correct mistakes, especially 

if they are critical and subsequently would be irreversible.

• Multiple views of objects aid user understanding.

Allowing users to examine data in more than one way, perhaps even allowing com

plete display rearrangement, will help them control and understand the information 

they are manipulating. An obvious example of this is the Macintosh Finder, where 

icon positions may be moved around to taste, or different styles of listings of files 

are allowed.

• Users like to be in charge.

The user should be in charge — the interface should act for them rather than for 

the program. If the interface seems hostile or sluggish as a result of the program 

taking control away from the interface, then this will result in user frustration. The 

interface is allowed to take charge if it needs to ask pertinent questions at appropriate 

moments. Interfaces must also allow some amount of tailoring for the user — this 

must be immediate, allowing experimentation by the user on a completed program.

Overall, these aspects of interface design make one thing clear — graphical user 

interfaces cannot be programmed in the same way as batch or older interactive paradigms, 

such as command line interfaces or menus. The most important aspect is that graphical 

interfaces require non-linear control; there is not a single thread of control that runs
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through the program, but instead control moves around very quickly, in short threads of 

interaction which intertwine.

Separation

An important theme which has already been touched on and will appear frequently 

through this thesis is separation. This is quite a simple concept — that systems doing 

different tasks should be kept apart. In UIST this means that the user interface component 

of a program should be a separate part of the application and not intermixed with other 

functional parts of the program. In software engineering separation is expressed as a 

lack of coupling between modules, as discussed in Section 1.2.1. The need for separation 

is made in many other places in this introduction, but more general reasons involve the 

limitation of user influence within the core application, allowing easier data checking, 

and the ability to alter the interface without reference to the core functionality.

The UIST literature has much in the way of discussion about separation. Edmonds' 

survey[9] is to be noted in particular, with the collection edited by Pfaff[28] essential 

reading for UIST researchers. Cockton's thesis[7] has a whole chapter addressing many 

aspects of separation in the context of user interface management, which contain many 

useful references.

One point to note is the degree of separation. Whether it is possible to achieve complete 

separation, where different user interfaces may sit on top of the same back end without 

changes, is a current area of research. For the purposes of this work, it is accepted that in 

the systems presented the separation will not be complete in this sense.

The dilemma is that, for the user interface to be completely separate, it must be totally 

ignorant about the particular style of implementation for a particular functionality, but at 

the same time this can be essential knowledge for the interface to be able to communicate 

with the application. This also works the other way around. The application should not 

be aware of the mode of interaction that the interface presents to the user. However some 

aspects of the functionality may be required to be structured in a particular compatible 

style.

The solution is that either the separation is compromised, or else a third agent is 

required which is allowed to be knowledgeable of the interface and application, while
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the latter two are ignorant of each other.

Some further exploration of this area can be found in the conclusions to this work.

Non-linearity

In order to program the non-linear interaction model which graphical interfaces produce, 

new styles of programming have been developed.

• The Main Event Loop

In this scheme the complete program is controlled by a single loop which dispatches 

control to various sub-routines based upon user events such as button clicks or key 

presses.

The major benefit of this approach over localised handling of events is the ability 

to support the opportunistic approach outlined above. If there is specialised event- 

handling code for each part of the interface then, as the user switched their attention 

around, control would be transferred between the various event-handier s. This, 

however, would be difficult in practice and, without extra code, would be required 

to handle the switches in context and ensure consistency.

Having the event control in one place enforces a certain amount of consistency in 

event handling, ensuring that controls work in the same way between different 

parts of the program. The down-side is the programming bottleneck that the main 

loop becomes. As new user interface components are added to a program, the 

handling of them all must be added to the main event loop. This is an issue for team 

programming and in later maintenance of the code.

• Callbacks

The callback scheme is an abstraction over the main event loop — the main event 

loop still exists, but it is not directly programmed by the interface creator. This goes 

some way to removing some of the problems of the main event loop. A callback is 

a function associated with a particular event.

As new user controls are added, callbacks can be registered for particular events 

happening in that particular area of the screen. Then when event loop receives 

an event, by determining where on the screen it happened, it can go to a table of
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callbacks and pass control back to the interface component which registered the 

event for handling.

This results in an overall increase in modularity, as the main event loop can be 

programmed without any knowledge of the structure of the rest of the program, 

and so there is looser coupling in the final program. The only possible negative 

aspect of this is the lack of intimate control over the main event loop which may be 

required in a particular application but usually there are hooks to help cover this.

Both these schemes give a crude form of multi-threaded program execution as different 

parts of the program are able to do their own independent actions without conflict from 

other parts of the program.

Window Systems

Modern interfaces on conventional computers now tend to rely on high resolution dis

plays, typically sub-divided into "windows", controlled by the user using a standard 

keyboard, plus a mouse, allowing direct manipulation of the display.

Typical abstractions used with this type of display are buttons which trigger specific 

actions, or act as flags; scrollbars which allow the display of large windows within smaller 

windows, allowing the area in view to be changed; pop-up menus which allow grouping 

of functions; and icons which allow objects to be manipulated by the user directly.

Of course interacting through windows and with a mouse is by no means the only 

way, with pen and voice based input increasing in popularity but, as it is currently the 

only common style, I shall concentrate my efforts here. Any user interface system built 

for functional languages should be sufficiently extensible to allow work to be carried over 

to new paradigms of interaction.

Toolkits

It is normal to build toolkits to harness the raw functionality of windows and graphics 

primitives to be used to construct interfaces and manage callbacks.

As with many parts of computing, toolkits are concerned with providing abstraction 

to make the power given more controllable. Typically, a set of "widgets" will be provided
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which supply a bundle of functionality in a window on the screen and will employ 

callbacks to allow the programmer to assign specific functions to them.

Widget sets usually include buttons, menus, scrollbars, and text entry boxes, plus 

higher-level widgets used to structure on-screen appearance.

Review of UIST Techniques

UIST is all about making key programming tasks for user interface creation easier. The 

most important aspect of this is the user interface separation principle, but there are other 

specific tasks frequently expected of a UIST tool.

• Multiple Active Threads

The program should be able to give the impression of being able to do more than 

one thing at a time, as this is what the user will require.

As mentioned above, this is normally done by structuring the program into small 

independent units — widgets, running from call-backs from the main loop of the 

program, and suspended as other threads run. Naturally, this requires each indi

vidual widget to manage its own state between calls.

• Imperative Control Structures

When there are particular sequences of dialog or interaction, these would be con

trolled by the UIST framework. Thus standard imperative control structures of 

looping, branching, conditionals and sub-routines for particular interactions when 

required, must be available.

In some cases a tight loop of communication between the interface and application 

is required to ensure that user inputs conform to program-set requirements. This is 

called 'semantic feedback', as the interface itself only understands user syntax and 

requires the application to decide on the validity of the input.

• Multiple Views of Data

An important feature of many interactive programs is that the program is able to 

present multiple views of the same data; for example, a text editor might allow 

multiple windows to be open on the one file, with updates in one window would
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be mirrored in the other. Another example is the 'fat-bits' bitmap editing available 

in various graphics packages, where fine pixel editing is also reflected immediately 

in the normal size image, perhaps in another window.

Such features tend to be implemented either with a centralised abstraction on the 

data, which then controls the multiple views from inside, or by a distributed system 

in which the multiple views are kept in tune with each other by broadcasting events 

from one view to all other views.

Naturally different toolkits and UIST tools will implement these tasks to different 

degrees, with simple toolkits doing much less than a full user interface management 

system but, for complete flexibility and simplicity in small productions, it can be better 

to use a simple toolkit, rather than committing to a all-encompassing UIST framework.

1.2.4 An Example Toolkit— Tcl/Tk

I shall now present briefly one particular toolkit to show how toolkits in general work, 

and what sort of features they provide. This toolkit — Tcl/Tk [25] — will be used in 

Chapter 3 to provide interfaces for functional programs.

John Ousterhout's Tel [23], which stands for "Tool command language", is a simple 

interpreted language, intended to be extended and embedded within an application. 

Its purpose is to provide a means by which systems may be controlled by users and 

programmed by the application writer.

Tk [24], also by John Ousterhout, is a toolkit for the X Window System [29], based 

around the Tel language. It allows the creation of user interfaces built out of components 

such as buttons, menus, and dialogs.

The Tel Language

Tel has a clean and simple syntax. It is designed to be able to be used as a user-centred 

shell for graphical programs. Tel has strings as its only base type. It can arrange these 

into lists and lists of lists, etc. Numeric strings can be regarded as numbers.
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Here is a small example program to calculate the factorial of 10:

proc fac X {
if $x==l {return 1}
return [expr {$x * [fac [expr $x-l]] }]

}

set a 10
puts stdout "The factorial of $a is [fac $a] "

Square brackets cause in-line evaluation. Braces are a form of quoting, usually used 

to build lists — especially lists representing fragments of Tel code, which can then be 

interpreted in a recursive manner. In these respects Tel is very similar to Lisp, with a nicer 

syntax. It is even possible to program a system of anonymous higher-order functions, 

using the standard ways available to the user of the language for extending it.

The Tk Toolkit

Tk can be programmed either from a compiled language, such as C, or more usually in 

Tel, extended with commands for Tk. This makes it possible to write complete programs 

in Tel, using Tk for the interface.

Here is a very trivial Tk program, written in Tel:

label .hello -text "Hello, World!" 
pack append . .hello {}

Without going into too much detail, this creates a small label which says "Hello, World!", 

and displays it in a window.

This two-line script is at least an order of magnitude shorter than the equivalent 

in C and another popular toolkit, OSF/Motif (see Appendix A.l). This makes writing 

user interfaces much easier than before and, with the full functionality of Tel at hand, 

no expressive power is lost. As one might expect, there are user interface builders for 

Tk which allow user interface creation using direct manipulation, in the style of other 

toolkits.

Tk interface builders, written in Tcl/Tk, have two advantages over other toolkits. 

Firstly, the Tk system is creating and manipulating the interface by programming the
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widgets with code which will allow them to tailor their own behaviour. This code 

becomes part of the output of the interface builder and can be used at any time to modify 

the interface created. Secondly because of the ability of Tcl/Tk to take commands from 

other input sources, it becomes possible to manipulate the running program, even when 

it is fully implemented. Therefore, interface experimentation and manipulation can be 

combined with interface evaluation.

Summary

Tel is a simple clean interpreted language. Tk, designed to be used with Tel, is a powerful 

toolkit which is easy to program. I shall be looking at other aspects of Tel and Tk in 

Chapter 3.

On the basis of what can be expected from UIST, Tcl/Tk is not a complete solution. 

However it does provide many of the features and it can be built upon to come closer to 

a full UIST design.

Add-on tools for Tcl/Tk include extensions to the Tel language to make it object 

oriented. There is also a sophisticated user interface design environment which, by using 

features in Tcl/Tk, can edit the interface of an application it created live, while the program 

is running. With the power of interpreted Tel, it is possible to run the interface, while the 

design program allows simple programming tasks such as menus and pop-up windows 

to be automated, at the touch of a button.

1.3 Implied Requirements

I wish to take the techniques of software engineering, HCI and UIST, and apply these to 

functional programming. To build a user interface system for functional languages, I will 

use the implied requirements covered above, and use them to judge the result.

1.3.1 Functional Programming Requirements

First of all, it is important that I am able to take advantage of the features of functional 

languages. In particular, I want my systems to preserve referential transparency. This is 

perhaps the most important feature of functional languages, and without this, much of 

the efficiency and elegance of the language would be lost.
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On a more pragmatic level, the compositional style of functional programming makes 

some programming tasks easier. If I were to adopt a style which prevented easy compo

sition of sections of code, then again I would have lost much of the beauty of functional 

languages.

1.3.2 Software Engineering Requirements

Software engineering presents three areas which I need to address.

The most obvious aspect of software engineering concerns modularity. The two basic 

measures of modularity are cohesion — how much a procedure or function focuses on a 

single task— which should be maximised, and coupling— how much one section of code 

depends on another's implementation — which should be minimised. Functions should 

be written to do exactly one task and sub-dividing this with local functions is appropriate. 

Requiring code to be written in one section of a program to maintain incidental data used 

in another part of the program is a good example of poor modularity.

In addition the maintainability of a program can be affected by how easy it is to extend 

the program to handle areas not originally considered when the program was designed 

and written. Obviously if any of the tools which have been used in the program's 

construction are extensible this will help.

Finally, I might wish to move my program to different systems, perhaps to different 

operating systems, with different capabilities. Problems here can be guarded against by 

keeping the design of the program as independent as possible from particular system 

features, and also isolating interaction with external systems into a module which can be 

rewritten without requiring the rest of the program to be adapted.

1.3.3 HCI Requirements

The processes involved in creating good interactive programs tend not to be formal, but 

more experimental. I must allow interfaces to be built in this way also.

The most important aspect of interface design is that it is iterative, and will not be 

correct first time. Prototype interfaces must be created, and evaluated, and the evaluation 

used to create further prototypes. This process can cycle for many iterations.

The design process is iterative, participatory and exploratory. It is essential that
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whatever system I devise for user interface creation can support this style of design.

If the interface is tightly coupled to the application code, then adapting it during 

design would be difficult. Plus, it must be possible to adapt the user interface rapidly, to 

allow users to try out different styles. An interface which required major programming 

to be done during each iteration would not permit this kind of exploratory design.

1.3.4 UIST Requirements

The requirements suggested by UIST are more demanding but, as such, help me find a 

working solution to the interaction problem with functional languages. Without these 

strict requirements, I would not know if I were solving the problem or not.

The UIST framework, being tied up in the programming of the system, has many 

requirements in common with what is demanded for good software engineering. There 

are, however, some specific features that are required.

The interface must run as a logically separate component of the program so that it 

can be developed and maintained separately. There must be, however, a high level of 

communication between the interface and the rest of the program so that the user gets 

a realistic notion of what the program is actually doing. If the interface is too loosely 

coupled to the main program, it becomes difficult to transmit a complete picture of the 

state of the program to the user, semantic feedback becomes difficult, and the user would 

lose control over the execution of the program.

I must be able to build up sequences, with loops and jumps in them, to correspond 

to particular dialogues with the user. This level of dialogue sequencing belongs com

pletely in the interface component of the system, and should not appear at all within the 

application core.

As most interfaces give the user multiple choices as to which task to pursue at any 

one moment, while still allowing rapid task switches, it is important that some form of 

multiple threading of execution takes place. It should be possible for one part of the 

display to be updating, while the user is still able to interact with another.

Error recovery is very important. The user must be able to cancel a dialogue or 

recover from inconsistent data with the program state being recoverable. At the same 

time, undoing critical actions is an important feature if it can be achieved.
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1.3.5 Overall Requirements

I shall now review some of the notions that have come up in the discussion of require

ments, framing them as overall requirements as they are demanded by more than one 

aspect of my investigation, and so might be regarded as principle requirements.

• Ease of Design

The framework used to build interfaces must make the design process during inter

face creation easy. So the toolkit I use needs to be well designed, with the appropriate 

level of functionality, without being overly complex. Also the connection between 

the interface and the application requires a high level of flexibility to cope with 

whatever information the interface design will require.

• Ease of Construction

It is important that the task of programming the applications for the interfaces 

designed is made as simple as possible. Without this, people will not be motivated 

to use functional languages, preferring approaches with which they are familiar. 

One way to help ensure success is to make interface manipulation as easy and 

as similar to existing systems as possible with, of course, improvements on this 

desirable.

• Portability

I wish to make my interactive programs easy to move between different systems. 

Interface separation helps in this. Also, the design of the interface system should 

avoid making assumptions about the target environment.

• Extensibility

I have emphasised how important it is to build programs so that they may be main

tained easily. This requires not only rigorous design and implementation methods, 

but also that the tools with which I build are able to grow with requirements.

With respect to interface creation, this might imply a toolkit approach allowing the 

basic system to be built upon with new widgets, and so allowing the most features 

for the least programming effort, but the toolkit must be powerful enough to supply 

enough functionality to create the programs programmers wish to write.
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1.4 Goals of Work

The main goal of this work is to explore the synthesis possible between functional pro

gramming research, and HCI/UIST research. To this end I have been experimenting with 

the Tcl/Tk system as a tool to create user interfaces for programs written in Haskell.

This work follows on from a series of similar experiments, all of which involved 

creating separate interfaces for functional programs.

1.4.1 Early Work

In the past I have built a number of systems which are meant to help create user interfaces 

for functional programs. These started at the very basic level of a simple widget which 

would allow simple drawing controlled by a Lazy ML program. The widget would also 

return user input back to the functional program. The complete interface was built and 

controlled from the functional language [32].

The interface ran as a separate process, but there was no intelligence in it. It was 

separated mainly for convenience, but also to allow the interface to respond to events 

while the main program was active.

A later system improved on this, using the freely available system Wafe [20]. Wafe 

uses the language Tel, as I have here, but gives a different interface style to that used by 

Tcl/Tk. Its purpose is to allow scripting languages, without the ability to access normal 

library routines, to create user interfaces.

This system allowed a programmed agent to control the interface, rather than having 

it controlled only by the application side of the program. This is what I had wanted for 

my earlier system, and it was the addition of a scripting language to build and manipulate 

the interface which made the difference.

1.5 Thesis Outline

This thesis continues with a study of current 1/O solutions available in functional lan

guages in Chapter 2. This includes an examination of a number of proposed systems 

which try to solve the same problem as I am addressing.
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Chapter 3 describes my solution to solving the problem of interaction, with examples 

of the techniques described.

A full assessment of this work is made in Chapter 4, with a measure of how well I 

meet the requirements given above.

I follow this with a summary and conclusions in Chapter 5. Source code for the 

programs discussed in the thesis is given in the Appendices, after the Bibliography.



Chapter 2

Functional I/O

This chapter examines the particular styles of I/O  in functional languages, with particular 

reference to the three major styles of I/O  used in the language Haskell. These are Dialogues, 

Continuations and Monads. Dialogues and continuations are standard in the language. 

Monadic I/O  is a extension in the Glasgow Haskell Compiler, but is likely to be adopted 

as standard in a later version of the language.

Following is an examination into why none of these systems are particularly helpful 

when it comes to writing interactive programs.

The chapter concludes with a look at some of the current techniques for building 

graphical interactive interfaces, concentrating on the Budgets system [5] and Concurrent 

Clean [1].

2.1 I/o Styles

Communication with external systems in functional languages is typically encapsulated 

within the I/O  system so that information can be passed between the internal world of the 

functional program and the impure world which the external systems inhabit, without 

referential transparency being compromised.

There are a number of ways of achieving this [16]. Those covered are the two popular 

systems, dialogues and continuations, plus a newer rival, monadic I/O  [27].

23
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2.1.1 Equivalence

In his thesis [11], Andrew Gordon shows that these three systems are fundamentally 

equivalent, in that any one can be implemented using another as a basis without needing 

any extensions to the language. However, the programming style adopted for each system 

is very different.

Indeed, in the Glasgow Haskell Compiler system [12], a continuations implementation 

is built upon a dialogues implementation, which in turn is built upon a monadic I/O  

system.

2.1.2 Haskell Channels

In this thesis, Haskell [15] will be used to demonstrate the 1 /0  systems, as there are 

implementations of all three I/O  systems in Haskell.

Much of interactive I/O  in Haskell revolves around the concept of a "channel". A 

section of the Haskell Report explains this:

The channel system consists of a collection of channels, examples of which 

include standard input ( s td in )  and standard output ( s td o u t)  channels. A 

channel is a one-way communication medium—it either consumes values 

from the program or produces values for the program. Channels communicate 

to and from agents. Examples of agents include line printers, disk controllers, 

networks, and human beings. As an example of the latter, the user is normally 

the consumer of standard output and the producer of standard input. [15]

2.1.3 Examples used in this Chapter

Two simple examples will be used in this Chapter to help demonstrate the strengths and 

weaknesses of each I/O  system.

The first is a 'minimal interactive program'. The computer queries the user, who 

will either reply in the affirmative or negative. The computer will then respond with an 

appropriate reply. Thus there are basically only two possible traces of interaction in this 

program. Computer output is shown in t h i s  fo n t, while user input is shown in this 

font.
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1. Do you feel all right?
Yes.

Great i

2 . Do you feel all right?
No.

Sorry to hear that.

These example programs will be written in the style of a relatively unsophisticated 

functional programmer. In each of the programs, further work could be done to improve 

them, but that would not reflect the sort of program that might be written in real life. An 

obscure heavily optimised program will reveal little about just how difficult programming 

in each I /O  style can be.

A further example, taken from Cockton's thesis [7], is a simple simulation of the 

interactions involved with an Automatic Teller Machine. In Figure 2.1 is the slightly 

modified version of his CSP  ̂ description, which I will use as the specification of the 

dialogue.

Programs implementing the ATM dialogue will be of a more sophisticated nature 

than the first example, reflecting the fact that larger programs require greater effort of 

programming for elegance. As such, these programs try to represent the particular style 

in their best light.

It should be possible to implement this example in a staged manner, starting with the 

event sequencing, introducing the system output, then the user input, without the actual 

'application' code of a bank system being present. This order is not fixed, but it appears 

in practice to have worked well.

2.2 Dialogues

A popular system of I/O  is that of dialogues [21], which is the primary I/O  system specified 

for Haskell. The basic concept is of the program and the system engaging in a sequence 

of dialogues, the program making requests, and the system responding to them.

 ̂CSP (C om m u nicating  Sequential Processes) is a form alism  for sp ec ify in g  concurrent system s. See H oare's  
b o o k  o f  the sam e nam e [13].
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ATM

CUSTOMER

InsertCardMessage -> Cardin -> 
EnterPinMessage -> CUSTOMER

PinNo -> ValidatePinNo ->
Thief -> KeepCardMessage -> ATM 

] Wally "> LearnNuinberMessage -> 
EjectCard ~> ATM 

] Retry -> RetryMessage -> CUSTOMER 
] PinOK -> ServicePrompt -> SERVICES

SERVICES

CASH

RequestChequeBook -> AcknowledgeChequeBook ->
MORE

~> ShowBalance ~> MORE 
-> PrintAndProfferStatement -> 

TakeStatement ~> MORE 
-> CASH

] RequestBalance 
] RequestStatement

MORE

] RequestCash

AmountPrompt -> Amount ->
AmountHopeful -> SorryButMessage -> CASH 

] AraountOK -> ConfirmPrompt ->
( Confirm -> ProfferCard -> TakeCard ->

ProfferCash -> TakeCash -> ATM 
[] Cancel -> MORE 
)

= EjectCard AnotherServiceMessage ->
( Continue -> ServicePrompt -> SERVICES 
[] CardOut -> ATM

Figure 2.1: CSP specification of an ATM.

The two halves of the sequence of dialogues can be represented within the functional 

program as two lazy lists, one being constructed by the program and executed by the run

time system of the language, and the other having the opposite property of being created 

by the run-time system and interpreted by the functional program. The run-time system 

is the agent responsible for constructing replies to the functional program's request, based 

upon the response of the user and other systems external to the functional program, such 

as the operating system.
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2.2.1 How Dialogues Work

In Haskell, the idea of a pair of lazy lists appears clearly since the type of the main 

program, a function called m ain, is Dialogue, which is defined as:

> type Dialogue = [Response] -> [Request]
> main : : Dialogue

where the result of the function is the list of "Requests" to the run-time system, for which 

an equal number of "Responses" are generated and returned in a lazy list as the first 

argument to the program.

Request and Response are algebraic data types; this basically means that they are 

tagged union types. The tags are called constructors as they behave like functions which 

construct values in the type. In Haskell, constructors usually appear named with a capital 

letter — this is also the case with names of types.

So, the types Request and Response describe, by their constructors, all the available 

operations available from the I/O  system and the various possible results from these

requests. These types are fixed and cannot not be extended by the programmer and so

should be flexible enough to meet all possible demands. This is hard to guarantee and it 

should be noted that in actual implementations of Haskell additional requests have been 

added to provide previously unforeseen facilities.

Constructions available from the Request type include AppendChan and Read- 
Chan, for appending to the end of or reading from the front of, the data in a channel. 

The Response constructors returned from these requests would be one of Success, 
Str string or Failure ioerror, success and failure being self-evident and the Str 
construct returning the "string" contents of the channel as a lazy list.

Note that a different approach has been taken for handling input than for output — a 

difference that can unnecessarily complicate programs. The program can incrementally 

add to the end of a channel, but can only gain access to the user input as a single list 

which then has to be maintained in addition to the response and request lists.

2.2.2 Example of Dialogues

Figure 2.2 shows a dialogues implementation of the first example. It can be seen that 

the two lists in p u t  and r e s  have to be carried around between functions, cluttering the
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code. Two ancillary functions are used; d ie , which reports an error, and returns an empty 

list, which terminates the output list and thus the program, and also l i n e s ,  a standard 

function which is used to split the input list into a list of lines of input.

module Main(main) where 
main = setup

setup res = ReadChan stdin : getinput res

getinput ((Str input):res) = how (lines input) res 
getinput ((Failure err):res) = die err

how input res = AppendChan stdout "Do you feel alright?\n" 
: okhow input res

okhow input (Success : res) = getanswer input res
okhow input ((Failure err):res) = die err
getanswer [] res = []
getanswer (1:input) res =

case 1 of
'y':xs -> good input res 
'Y':xs “> good input res 
_ -> bad input res

good input res = AppendChan stdout "Great!\n"
: okgoodbad input res

bad input res = AppendChan stdout "Sorry to hear that.\n" 
: okgoodbad input res

okgoodbad input {Success : res) = how input res
okgoodbad input ({Failure err):res) = die err

Figure 2.2: Interaction with dialogues.

This program is very hard to read. Replies from requests are handled in different 

functions from where the request was made, meaning that there is no obvious indication 

that the two things are at all related. Program flow is not obvious from the program 

structure and, to make a change to any function within the dialogue, would require 

changing a number of apparently unrelated functions in order for the dialogue to succeed.

Writing the program was also non-trivial. Too much time was spent on managing 

the various success/failure results, rather than on the actual dialogue. Various ancillary 

functions, such as the d ie  function, also had to be written.
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Counting the number of lines in the complete program, including functions not shown 

in the figure, leads to the relatively high 39. This is especially high as an equivalent 

program in C takes 10 fewer lines! It is surprising that the higher expressive power of 

Haskell does not lead to a more concise program than C.

2.2,3 Assessment

The dialogues scheme seems to be universally condemned these days [26,27]. Just trying 

to manipulate these lists in a straightforward manner, and at the same time getting a well 

written program working, can be quite a trial.

Other serious problems are:

» Modularity.

The example shows much constructing and taking apart of lists. It does not show 

what happens when you wish to call a number of larger functions which wish to 

communicate through the dialogues scheme. This requires intricate passing around 

of versions of lists, which can easily lead to typographical mistakes in the code, or 

space leaks if the programmer is not paying attention. This is an obvious case of 

increased coupling, as functions depend on each other to handle the dialogues lists 

correctly.

In the example, care is taken to separate functions which pattern match on either the 

input list or the responses list from functions that request output. This is to ensure 

the output will happen before the input is required. This leads to a great number 

of small functions in the code, all doing a small part of a larger task. This is poor 

cohesion, where each function is not addressing one whole task. Extra care would 

have to be taken if these functions were to be combined to make sure that pattern 

matching happens lazily or else space leaks could easily occur.

• Flexibility.

The types of Response and Request are not extensible, and so programmers 

wishing to do more either have to modify the compiler, or else implement the 

required functionality outside of the functional system, and then somehow link it 

together with the program.
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• Effort.

Every request returns a response — no matter whether it is needed or not. This 

response has to be checked explicitly for failure. The okhow function in the program 

is a good example of this, its sole purpose being to check for an error response before 

continuing interaction. In the next section it will be seen that continuations provide 

an elegant method for dealing with errors.

Due to the style in which dialogues programs are written, and the shortcomings 

listed above, anything more than superficial error handling is difficult.

2.2.4 Summary

Even in short programs, the unnecessary complexity of dialogues can be troublesome. 

For this reason a dialogues version of the second example was not attempted.

2.3 Continuations

The continuation style of I/O  is a similar scheme [16] and can be implemented on top of 

the dialogue system, as in Haskell, where the explicit request output and response input 

lists are concealed within higher-order functions. This removes many of the problems 

listed above for dialogues.

The basic notion behind continuations is that each I/O  function takes an extra argu

ment which is the next function to be executed. This is why this I /O  system and these 

functions are normally called continuations — they specify what function will be exe

cuted next in an operational sense. This gives a sequential model of I /O  which directly 

parallels the sequential lists in the dialogues model.

2.3.1 How Continuations Work

Higher-order functions make the implementation and understanding of continuations 

more difficult than the simple scheme of lists seen in the dialogues approach, but once 

understood, continuations can be quite pleasing in their operation.

A continuation is a function which is used as an argument to another function, and is 

usually 'tail-called' by that function, passing working data. This continuation in turn will
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probably have been given at least one continuation which will then be used to continue the 

path of execution. If a continuation does not take another continuation as an argument, 

then it must be a terminating continuation. If it takes more than one argument, then it 

implements a conditional operation, and will choose which continuation to use as a result 

of the conditional test.

All continuations will have the same result type, which is the type of the main program, 

and is typically an algebraic or abstract data type. In Haskell, however, it is the type 

Dialogue, the type of the main program, as it was for dialogue-style I/O .

So, the type of a continuation would be something like this.

> line : : String -> StrList -> StrListCont -> Dialogue

The function line takes two arguments, and then a continuation. The function returns a 

Dialogue.
At this point the reader may be wondering what continuations are doing with the 

result and responses list embedded in the Dialogue type, and made visible by the 

dialogues style of I/O.^ This is due to the fact that in Haskell continuations are built on 

top of dialogues, where each primitive continuation is manipulating the responses and 

results lists concealed within the type of the continuation.

Internal choice can be given to a continuation by supplying more than one continuation 

as an argument and allowing it to choose which one to follow. This is a better solution than 

the programmer having to investigate the result of each operation and build a conditional 

expression for each action. This solves some of the problems in dealing with errors in 

the dialogues scheme, in that a continuation may be given a 'success' continuation and a 

'failure' continuation, and the appropriate one is followed without further programming.

For each of the requests in the dialogues style, Haskell provides an equivalent con

tinuation. The Response type is not seen at all by the continuations programmer, the 

responses being automatically interpreted by the continuations to return only useful 

information.

The programmer can then build their own continuations around the primitive oper

ations with their own code encapsulating more primitive functionality, giving a higher

^It b eco m es v ery  o b v iou s at this p o in t that d ia lo g u es sty le  I /O  is prim itive  to H askell, and that continua
tions are bu ilt o n  top o f it. It is a p ity  that the type D i a l o g u e  could  initia lly  lead  to co n fu sio n  for contin u ation  
program m ers w h o  sh o u ld  not be th ink ing in  term s o f the d ia lo g u es I /O  style.
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level of abstraction to their I/O  routines.

2.3.2 Example of Continuations

Figure 2.3 shows the example expressed in the continuations style. It can immediately 

be seen to be more concise and easier to read than the dialogues example in the previous 

section. This section of code also uses the l i n e s  function seen in the dialogues example. 

The continuations e x i t  and done are both terminating continuations, which return and 

report, as appropriate, either failure or success.

Slightly more obscure is the $ function, which can be seen at the far right of the code. 

This is simply function application, but at a different level of precedence. This allows what 

would otherwise have to be written as ( f  x { g y  (h z ) ) a s f  x $ g y $ h  z.

module Main(main) where
main = getinput

getinput = readChan stdin exit $
\input -> how (lines input)

how input = appendChan stdout "Do you feel alright?\n" exit $
case input of
(1 : input) -> case 1 of

'y' :xs -> good input
'Y' :xs -> good input

-> bad input
- “> done

good input - appendChan stdout "Great!\n" exit $
how input

bad input = appendChan stdout "Sorry to hear that.\n" exit $
how input

Figure 2.3: Interaction using continuations.

In contrast to dialogues, continuations can be very readable. If the $ function is read 

as a sequencing operator, which it effectively is, then it is easy to see the flow of control, 

with the results of operations being handled within the same function as asked for them. 

The structure of the program is good, split into the simple chunks of interaction.

Writing it was not so easy. Given that it was easier to write than the same program 

in the dialogues style, it was harder to hold in mind the more abstract concepts involved
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in continuations. Working out the types involved in sequencing continuations using 

the ubiquitous $ operator can be quite difficult without practice. On the other hand 

modifying this code would be a lot easier than dialogues code. As continuations combine 

so easily adding extra actions into a function poses no problem: it is not necessary to 

worry about affecting the global correctness of the rest of the program.

This program is half the length of the version for dialogues. It is also shorter than 

the C version. This is more in keeping with what would be expected from the highly 

declarative style of programming.

2.3.3 Assessment

Continuations seem to be easier to use, but can be troublesome to understand as the 

number and level of higher-order functions tend to grow at an alarming rate. Passing 

and applying continuations in some cases can easily be forgotten about, leading to type 

conflicts.

The key to writing continuations-based programs lies in understanding the types. 

It was found that, when writing a complex continuation which might take a number 

of continuations as arguments, it is easy to become confused about which arguments a 

particular continuation needs. Getting this wrong invariably leads to a type error during 

compilation, often involving functions not immediately associated with the erroneous 

continuation use, but sometimes in the function which calls it. However, being more 

explicit with types of continuations tended to both make error reporting from the compiler 

easier to understand, and actually helped understanding of the use of the continuations.

The following are some of the problems with the continuations style, some of which 

it shares with the dialogues style.

• Modularity.

Except for the input stream which, once a handle has been created for it using the 

readChan function, can be thought of as living outside the I/O  system, the lazy 

request and response streams are done away with. They actually still exist, but are 

handled implicitly by the built-in continuations.

As the sequential ordering of operations is made more explicit, problems of inter

leaving input with output is not a problem. Input actions are given as continuations
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of the output actions, and so must happen after them.

So, in fact, continuations can produce relatively good modular code.

• Flexibility

The continuations style has no improvement over dialogues in this area. Although 

requests now appear as functions, these functions still map onto the same limited 

set of requests. In principle, continuations have a high degree of flexibility — they 

are let down only by their Haskell implementation.

• Effort.

Here continuations do splendidly over dialogues. By being able to specify a failure 

continuation as well as a success continuation, the clutter of explicit error checking 

has been removed. This is the main reason why the continuations style results in a 

more concise program.

So, error handling is much improved. Error handling can be moved to a different 

part of the program where greater attention can be given to it.

2.3.4 Formalised Interaction using Continuations

Turning now to the second example of the ATM. This program turned out very clean.^ 

The program was initially constructed by taking each CSP event and turning it into a 

continuation. System events became continuations producing output, while user events 

became input continuations, returning a value selected from a data type which corre

sponds to all the possible user input at that time. The CSP choice operator became a 

case expression over the data type. User input without choice was naturally handled 

internally to the appropriate continuation. After the basic structure was in place, the 

actual (minimal) functionality of each continuation was then coded.

This scheme of programming results in a main section of code which is very similar 

to the CSP version and has no traces of the primitive functions used to achieve the 

interaction. In fact this code was written and debugged before the low level input and 

output code was written. Simple stubs of each continuation were used to test the structure 

of the program and ensure the types were correct before working on the interaction.

^The program  lis tin g  appears in  A p p en d ix  B .l.
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Next came the output. This was very simple. For each system event a call to ap
pendChan was used to output the appropriate message. Again, this was written and 

debugged without any input code being written.

Programming the input was more difficult. As already noted, input is inexplicably 

separated from the I/O  system once 'retrieved' using a readChan request returning a 

list representing the input stream. If this is to be used within a program it must be 

passed as an argument to, and handled by, each continuation within the program. This 

lack of inclusion of input lists within the rest of the I/O  system can result in code being 

unnecessarily cluttered.

A different solution was used. Continuations are flexible and easily extended or 

encapsulated. Normally the result type of the continuations is Dialogue. Anew Result 
type was created, encapsulating Dialogue:

> type Result = [String] -> [Response] -> [Request]

As well as each continuation getting a hidden 'response' list, it will first get a list of 

strings. This is the input list split into lines. This can be used and then passed onto the 

next continuation. Standard system continuations are passed the response list only.

Once this was done and the initial call of the ATM was modified to pass the input 

list, no other modification of the main program was required. Continuations dealing 

with input can then use this input list. Output continuations required modifications to 

deal with the extra argument, but, with the appropriate abstractions, this modification of 

output code on a global scale could hopefully be kept to a minimum.

These modifications are needed because in a functional language if you want a global 

state it must be all-pervasive. Rather than being used in only one location, the state must 

be carried along the path of execution. The lists managed by the continuation functions 

are an example of a global state and thus when the structure of the global state is modified, 

all functions manipulating this global state must also be modified.

2.3.5 Summary

Continuations, although potentially confusing to begin with, are easier to use in real 

programs than dialogues. They have a clean nature which results in tidy programs, 

which are easy to read and debug once the types of the functions are understood. The
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ability of continuations to be extended and encapsulated allows programs to be built up 

in phases without requiring redesign of existing code.

2.4 Monads

A new refinement to this system comes with the application of monads to I/O  [27]. 

Trivially the monad system can be seen as a refinement of the continuations mechanism, 

but with a greater level of encapsulation of control. Monads work with a token which 

represents the current world and all I/O  operations are based on this token. This token 

is the basis of the monad.

Monads are a categorical concept. Category theory is an advanced branch of math

ematics, discussion of which is outside the scope of this thesis. Interested readers are 

referred to Barr & Wells' introductory text [4]. Further good references concerning mon

ads are the papers by Wadler [37,38].

2.4,1 Theory of Monadic Programming

Here is a brief description of what a monad means to the programmer. In the I/O  world 

the general monad used is called the state monad, but in this thesis the term monad will 

usually be used.'*

The idea behind the state monad is that it contains all global state that the programmer 

wishes to manipulate — including the 'world' outside of the functional program. The 

programmer will then define a number of primitive operations which will create a new 

world, manipulate it or, more practically, modify it to some desired end. Referential 

transparency must not be compromised however — for example, by being able to modify 

part of the global state in one place and having a corresponding effect elsewhere in an 

unrelated part of the program. In order to preserve referential transparency it is sufficient 

to ensure that there is only one current state available to the program, i.e. that the state 

monad is not duplicated, but remains unique through the execution of the program. Tliis 

implies a single thread of operations on the state monad, each modifying the state it 

contains in turn.

A nother m on ad  the program m er w o u ld  use, bu t not im m ed ia te ly  recogn ise  as a m on ad , is the list m onad , 
w h ic h  defines h o w  lists are constructed , and prov id es m any o f the prim itive fun ctions o n  lists.
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This aim is achieved by ensuring that all monad operations are linear, i.e. that they 

use the monad only once (they are passed exactly one monad as an argument) and return 

it only once (their result type must contain exactly one monad type). Primitives are 

programmed to do this and other functions cannot break this rule because they do not 

have access to the actual monad except via the defined primitives.

2.4.2 Practical Monadic Programming

At the theoretical level, a monad is defined strictly by two functions, b in d  and u n i t ,  

with types:

bind : : M a ”> (a -> M b) -> M b 
unit : : a -> M a

Exactly what these types mean is not especially important to this discussion — M is the 

monad type and bind and uni t are functions which operate of values of this type. These 

functions are the basis of the principal operations on any monad.

The b in d  function is normally used for sequencing monad operations. It takes the 

result of one monadic operation then passes it as an argument to the next operation. Often 

an analogous operation th e n  is used. It is strict in its first argument and thus forces the 

first operation to fully return its result before the second operation is started.

The u n i t  function is used as a constructive monad operator. It is often used as a 

r e t u r n  function at the end of sequences of monadic operations to encapsulate a result 

into a monad to return it to the calling function. In Haskell the function is usually called 

r e tu r n .

These then are the basic functions used to build together a particular sequence of 

monad operations. For any specific monad, new bind, then, and return functions 

need to be defined. In the case of Haskell I/O , the state monad is called 10 and so the 

functions are called bindIO, thenlO, and returnlO.
As noted, bindiO and thenlO will pass the result of the previous operation as an 

argument to the next operation; often this will be seen being taken by a lambda abstraction, 

which in Haskell is written thus \x -> <expression>. For use when the previous 

result is to be discarded, variants on bindiO and thenlO are provided: bindlO„ and
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thenlO_. The underline character is a reminder that each operator is dropping the result 

normally passed to the right.

These operators just encapsulate the basic structure of monadic I/O . Beyond that is 

needed some monadic operations which perform specific I/O  actions. Quite logically 

each of the standard dialogue requests has a corresponding monadic operation, which 

has the same name except with TO' appended to it. Thus the examples will be using 

readChanlO and appendChan 10 for file operations.

2.4.3 Monads by Example

In Figure 2.4 is the monadic style version of the example.

module Main (mainlO) where

import PreludeGlalO
mainlO = getinput

getinput =
readChanlO stdin 'thenlO'
\input -> how (lines input)

how input =
appendChanlO stdout "Do you feel alright?\n" 'thenIO_'
case input of
(1:input) -> case 1 of

'y';xs -> good input
'Y':xs -> good input
_ -> bad input

_ -> returnlO ()

good input =
appendChanlO stdout "Great!\n 'thenIO_'
how input

bad input =
appendChanlO stdout "Sorry to hear that.\n" 'thenIO_'
how input

Figure 2.4: Interaction using monadic I/O .

The monadic style shows its colours as a child of continuations here. Indeed the 

differences between this code and the continuations version appear mainly syntactic and 

so most of the comments about the continuations example can be carried forward to here.
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The general readability is similar to continuations. The program is slightly more ver

bose with the th e n  10 operations perhaps being more mnemonic than $, but in imperative 

languages where ' ; ' tends to suffice, this is an arguable point. Writability is improved 

over continuations. One reason is that each monad operation stands on its own, without 

complex high-order function to confuse issues, and so it is much clearer exactly what 

arguments each operation takes, and where they should be.

2.4.4 Assessment

Again the problems that the other systems have are used to assess how good the monadic 

I/O  system is for the programmer.

• Modularity.

The previous problems with lists are not so much an issue in the monadic style. The 

request and responses lists simply don't make any visible appearance. Whether 

they actually exist or not is up to the implementation of monads and whether 

monadic 1/O is primitive or built on top of one of the other systems. The input list 

is still a problem, still being separated from the main I/O  system after its creation, 

introducing coupling between functions as it is passed around. Fortunately, as a 

result of the extensibility of the monad style this is not a major problem.

• Flexibility.

As shall be seen in Section 2.5, the monadic style lends itself to being extended by 

the programmer, in a safe and convenient manner. So a programmer can build up 

compound monad operations from the simple atomic ones and use them in their 

programs without extra effort.

• Effort.

The way in which monads work guarantees that in a expression "o p l ' th e n io  ' 

op2 " opl must return a result before op2 can happen. This means that it is easier 

to write a program knowing that prompts will appear before input is needed.

With dialogues, every request has a response which will be handled in a different 

part of the program. Often these responses are simply a report that no error had



Functional I/O  40

happened. Continuations correct this problem, catching any important responses 

and passing them as arguments on to the next continuation. Monadic I/O  works in 

a similar way to the continuations style, but with a tighter discipline. All monadic 

operations return a value which is to be used by the next operation or else discarded 

by using a th e n lO . operator.

Unfortunately, the current design of error handling for monadic I/O  is not as elegant 

as for continuations. Presently, the programmer can either ignore errors, which will 

lead to program termination when an error happens, or else can choose to use an 

extended monad which also carries error information. This extended monad system 

allows a monad operation to be specified to handle the error in a similar way to 

continuations, but in making this choice the programmer then has to change all 

existing monadic coding to use this extended monad.

The monadic system does not lead to as many type problems as seen with continua

tions and, as a result, user functions tend to be of simpler types, at least on the surface. 

In Section 2.5 there is some discussion on some other problems which may surface.

2,4.5 A Further Example

The ATM example using monadic I/O  turns out to be very similar to the continuations 

solution. In the same way that continuations needed to have its return type extended, a 

new monad was required which would allow user input to be carried along with the rest 

of the program state. It would have been possible to avoid this by using the extended 

choice of primitives available with monadic I/O , but it was decided to use only the 

facilities available in continuations to ensure a fair comparison.

There was some initial difficulty building the new extended monad operations, the 

style being unfamiliar. As with continuations, confusing type errors from the compiler 

did not help in tracking down these problems, but again, explicit typing brought out the 

problems more clearly.

Once the new monad was working, implementing the ATM operations in terms of 

this monad was remarkably straightforward, with only the previous complexity of con

tinuations leading to problems when similar implementation were attempted. Instead, 

the monadic functions tended to be simpler, with easy types. Unfortunately, the monadic
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program does not look as nice as the continuations version, as it has so many ugly infix 

th en lO  functions which obscure the code.

The program listing appears in Appendix B.2.

2.4.6 Summary

Monads come out very similar to continuations. Their unique feature is the high level of 

encapsulation which means that all the passing of data between continuations is inter

nalised and the amount of effort required to build monadic programs can be less than for 

continuations. However, this bundling up of state in the one token introduces a coupling 

where state is shared between many functions.

2.5 Glasgow Monads

As just seen, monadic I/O  is very similar to continuations. But their property of encapsu

lation enables the Glasgow Haskell Compiler designers do some interesting things with 

them.

2.5.1 The Glasgow Style of I/O

The Glasgow compiler uses the monadic scheme as its primitive I/O  system, in that 

when you use the standard dialogues scheme, its lazy lists are interpreted and created by 

a library function which was programmed using the monadic I/O  system.

Glasgow's Haskell compiler implements its I/O  system by direct "C-calls" to external 

libraries, potentially causing side-effects in evaluation, but allowing direct access to all 

external systems. With this ability, it would be possible to implement dialogues directly 

within the run-time library so why does it use monads?

The answer is because with monads there is a discipline of evaluation which would 

not be guaranteed otherwise. The single-threaded nature of monads means that it is not 

possible for dialogue requests to be evaluated out of turn or for a response to be made 

available before the corresponding request is processed.

The monadic I/O  system is also made available as an alternative to dialogues and 

continuations to the normal Haskell programmer, who can now receive its immediate
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benefits. Instead of being limited to the small number of primitives provided by the 

dialogue system, the programmer can use either a (currently limited) standard library of 

external calls, or write his own C-calls to external systems. As external calls can cause 

side-effects, it is first necessary that these be sequenced by the monadic I/O  systems, 

and that the programmer has made sure that referential transparency is not lost by any 

resulting side-effects. If this is not done, the results of executing the resulting programs 

cannot be predicted.

The library of external functions made available is based upon a subset of what is 

available from the standard C library, rather than the limited requests from the dialogues 

system. This has an immediate benefit, that user input can be requested a bit at a time 

using monadic C-calls to the C functions f g e ts ,  etc., rather than using the readChan 
request and having a lazy list of characters which would have to be passed around and 

maintained, even in a monadic framework.

So the functional programmer now has a way of calling external functions which can 

cause side-effects, while retaining referential transparency.

2.5.2 Benefits

There are a number of more direct benefits, both to the compiler author, for whom the 

monad system was first intended, and to the end user, to whom it is a bonus.

For the implementer, the C-call system means that it is possible to create the whole 

1 /O system using Haskell itself. If it is easier to write parts of it directly in C, then they 

can still be called from the functional language.

For the programmer, a highly imperative style can be used within a functional frame

work. This means that translating from C into monadic C-call is fairly straightforward, 

and could almost be done automatically. This can give you an interesting mix of functional 

and imperative code.

A more tangible benefit comes from the efficiency of the C-call mechanism. If the 

compiler is able to unfold the definitions of the monad operations, then the functional 

program will be compiled down to highly efficient code. In long sequences of C-call 

operations, the code generated will basically be these C function calls, with none of the 

standard list-manipulation overhead seen in the dialogues example.
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2.5.3 Limitations

The monadic system is by no means perfect and there is much research to be done on 

problems such as the difficulty in handling more than one monadic world in a program 

[18]. If, using monads, there is a single thread of interaction and a single thread of state 

transforming functions, it may be desirable for these two threads of operation to work 

together in sections of the program. Currently this is not possible.

It was noted earlier that C-calls, with monadic control, can lead to greater efficiency, 

but this system still has difficulty implementing such standard requests as readChan, 
which creates a Haskell channel supplying input in a lazy manner, as it appears. In order 

to be able to implement this request it is necessary to go below the level of monadic 

control of the thread of execution and have a concurrent branch of execution involving 

C-calls which is not governed by the safety mechanisms builtin to the monadic style. This 

mechanism is also available to the regular programmer, who would be expected to use it 

with the utmost care as there are no controls on what is allowed at this level.

The need to leave the clean monadic world now and then arises because the monadic 

scheme tries to hold a complete representation of the outside world within a single token, 

rather than actually hold the complete state of the world — an impossible task. What is 

actually required in the case of readChan is for the current state of every open channel to 

be held in the monad. This would lead to implementation problems, and experimentation 

also shows it to be very inefficient.

Earlier it was asserted that converting from C into monadic C-calls can be fairly trivial. 

This is at least for straight sequences of function calls, with semi-colons between them. It 

is hard to match the flexibility of control flow possible in imperative languages even using 

Monads. For example, all conditionals and "loops" needed to control basic interactions 

must be performed in the functional language, causing an unfortunate mixing of language 

styles.

2.5.4 Dangers of C-Calls

The "imperative within functional" style can be deceptively attractive and can lead to 

some ghastly hybrid programs. A common result is a functional program which is mostly 

imperative code. Out of frustration with the non-global state of functional programming.
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mainlO =
malloc 4 'thenlO' ( \ state ->
malloc 4 'thenlO' ( \ flag ->
assign state normal 'thenIO_'
assign flag false 'thenIO_'

<<application code deleted>>

free state ' tlienIO„'
free flag ) )

Figure 2.5: Example of embedded C in a functional language

the imperative code will have its own global memory management system, rather than 

passing small amounts of data back and forward with a state monad, because this has a 

high overhead.

Figure 2.5 contains a section of code from an application written as a student project- 

showing heavy use of monadic I/O  with C-calls, and acts as a good example of how the 

C-call system can be abused when writing "imperative" code.

This code does explicit memory allocation and assignment of two variables so that 

they may be used efficiently in other C-calls within the application. It looks a lot like 

the code which the programmer would write in C, except that in C local variables get 

memory allocated on the stack automatically. The corresponding C code consists of two 

lines declaring and initialising the variables.

This functional code uses none of the features of functional languages, instead it 

is using the functional language as a meta-language to hold sections of imperative code 

together. Its programmer is battling against the clean semantics of the functional language 

to generate state transforming semantics.

Further, the code produced is hard to maintain, because it is hard to read® and more 

prone to errors in programmer-controlled memory management.

'T he section  o f cod e  in c lu d ed  is rem arkably readable com pared to other cod e  in  this application .
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2.5.5 Two Way Communication

Monadic I/O  provides a convenient way for a functional program to call out to external 

systems using the C-call facility. But while control of execution is held by an external 

system, it is difficult for the external system to do the reverse and call code back inside 

the functional program. Being able to do this would allow an external system to directly 

control the execution of portions of functional code. The functions called may even jump 

back out of the functional world via further C-calls, leading to a mixing of calls back and 

forward between the two languages.

These features would be useful to allow common operations such as mapping external 

user events into actions on the part of the functional program, or to handle exceptional 

conditions, such as signals, occurring during the execution of the program. In the Unix 

process model, signals are a form of interrupt and are used to inform processes of excep

tional conditions. They are handled by the operating system calling a program-registered 

section of code, which would then modify the global state in order to influence the exe

cution of the program. One proposed solution would be to allow the functional program 

to poll for signals, but often such signals require immediate attention which cannot wait 

for the program to get round to checking whether there has been a signal, while it was 

engaged in other activity.

To allow external code to call into functional code, the run-time system of the functional 

language which would manage this would first have to overcome a number of obstacles.

1. Heap Consistency.

Functional code cannot be executed if the heap is in an inconsistent state, such as in 

the middle of a garbage collection. Much of the operation of a functional program 

is not re-entrant, unless special care has been taken in the compiler to allow this. 

This means that it is very difficult, if not impossible, to have Haskell code executing 

during signals. It is only possible when you know that the heap is in a consistent 

state, perhaps during a C-call, but signals can interrupt execution at any time.

2. Types.

Haskell types tend to be arranged in memory differently to the types found in 

non-functional languages. As such, converting between functional representation
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of values and non-functional representation can be difficult. Obvious examples of 

this are representing large record structures, often found in C libraries, in a Haskell 

data-type. The easiest way to achieve this would be to make the data type abstract 

inside the functional language, and provide selection functions to manipulate the 

fields of the record via further C-calls. This is hardly an ideal solution, however.

3. Referential Transparency.

It is important, when a call from outside the functional language causes parts of the 

functional program to be executed, that referential transparency is not lost. Thus the 

functional code called must not directly influence the state of the currently running 

program. This might imply that such a call is a totally pointless operation; however, 

the monadic I/O  system allows state to be carried along implicitly, allowing mod

ifications of state which can be seen in the rest of the program, but which do not 

compromise referentiality. So, as long as changes of state occur through monadic 

operations, referential transparency should be maintained.

Thus there is a limited way for outside code to call back into functional code. External 

systems, such as window and operating systems, commonly wish to call code supplied by 

the programmer to handle exceptional conditions (such as operating system signals) and 

user input (such as window system callbacks, triggered by user events, or from non-user 

driven external communications), but there is only limited scope within the functional 

monadic world to cater for this. Exceptional conditions which arrive asynchronously 

cannot be handled by the operating system calling an arbitrary section of the functional 

program, as the compiled functional code is rarely re-entrant, and has limited scope if the 

code cannot modify the global state to reflect its actions. It is only in the case when the 

functional program has already surrendered control to the imperative world that it could 

call sections of functional code, passing the global monadic state, without fear of failure 

due to inconsistent state within the functional world.

2.5.6 Summary

The monadic style of I /O  is only especially useful because of the C-call feature that comes 

with it. It gains little over continuations when seen with its disadvantages. Its major
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contribution is of controlling the way that C-calls work, to sequentialise them, ensuring 

that referential transparency is not compromised.

The overall system is very powerful, but the use of low-level calls to C can still 

be questioned. It is very good at providing a C-style language by which functional 

programmers may access features of a system not normally available, but if functional 

programming is to convince people that it really is a step above imperative programming, 

then such regression is worrying.

2.6 Why is it Hard to Interact with Functional Languages?

Functional languages have a problem with external communication. Although dialogues 

and continuations provide a method of communication, they are rather limiting. Monadic 

1/O certainly extends the power of functional 1/O, but there is a compromise in readability 

and the solution is not total.

What are some of the problems found when trying to write functional programs 

that are interactive? I feel that there is something fundamental about the applicative, 

declarative style of functional languages that makes them poor at creating interactive 

programs.

In this section I shall review a number of features of functional language, starting first 

with simple problems, to see what the root causes of this problem are.

2,6.1 Modularity

An important concept in software engineering is separation of low-level code, dealing 

with operating systems, etc, from the higher-level "application" code, which is more con

cerned with functionality. This allows the low-level code to be modified and rearranged 

in porting it between systems, without any modification of the higher-level application 

code.

Currently, there is nothing in the way that any of the standard I/O  schemes work to 

encourage modular programming. The fact that lists, continuations, or monads have to 

be threaded around a program, introducing couplings, makes it hard to structure code 

without dependencies between high-level and low-level code.
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At the same time, if there is any global state in your program, this needs to be passed 

around between many functions that are not interested in the contents of the state. Further, 

this pseudo-global value has be declared in one place and is visible within all functions 

through which it is passed. This makes it difficult to create truly modular programs.

2.6.2 Multithreaded Input/Output

Continuations and monadic I/O  have at their heart the idea of a single thread of oper

ation: the reason for this is mainly to ensure that state changes do not break referential 

transparency. Single threadedness is unfortunate, in that interaction tends to be a multi

threaded activity, with users likely to be switching their attention between various parts 

of an interface. If the functional program can be carrying out only one piece of dialogue 

at a time, as in the ATM example, then the user is tied into a single thread of interaction. 

Either the single threaded nature of functional I/O  has to be multiplexed (as in the Bud

gets system presented later, in Section 2.8.2), or perhaps HaskelFs I/O  system needs to 

develop some way of achieving multithreadedness, perhaps using the ideas that Holyer 

and Carter propose [14]. Their proposals are discussed more fully in Section 3.1.2.

2.6.3 State in Functional Languages

As noted in the introduction, there are some non-pure functional languages for which 

interaction with external systems is not a problem. Could it be that there is some inherent 

property of pure functional languages which means that interaction will always be a 

problem? The very nature of interaction is based around the modification of shared state 

through an interface. Unless the language is tolerant of these side-effects in some way, 

then state changes as a result of external systems will always be hard to control.

In current systems, in order to control the handling of state, lists or tokens need to be 

managed or, in the case of primitive continuations, it is necessary to work in an awkward 

higher-order style, where program readability can be compromised. Certainly, writing 

programs in any of these styles can be a trial.

The clean management of state in functional languages is difficult, while in imperative 

languages it is simple. The imperative language's semantics are concerned with a global 

environment, with some scoping rules and, as such, directly addresses state changes.
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The functional language's semantics is based more on manipulating values, and does not 

address global state well at all.

2.6.4 Summary

There are a number of specific reasons why functional languages are poor at interaction. 

Firstly, functional languages do not encourage modular programming, which makes some 

aspects of interaction difficult. Secondly, the single-threaded nature of I/O  in functional 

languages is at odds with the multi-threaded nature of the external world. Thirdly, as 

interaction tends to be based on modifications to an interface shared between the user 

and the program, the apparent statelessness of functional languages does not help in 

programming interaction. Lastly, functional programming has not yet found a good way 

in which to separate application code functionality from interface functionality, making 

it difficult to produce well-written interactive programs.

2.7 Further Requirements

By investigating limitations in current solutions for simple I/O  in functional languages 

some more specific requirements are found which any solution to the problem of inter

action with functional languages needs to address. Some of these come directly from the 

discussion of the monadic style.

2.7.1 Modularity

It is common for interaction code to become entangled with application code. I should 

avoid this in any system I build.

This requirement links back to the original requirement that the interface be separate 

from the application, but with an added fact that doing so will make programs more 

modular.

2.7.2 Flexibility

The traditional dialogues and continuations schemes are non-extensible, meaning that 

only the operations determined by the language designers are available. Monadic I /O
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does not suffer from this problem, nor should any future solution.

2.7.3 Effort

Some of the programming required to achieve the most basic interaction is quite detailed. 

More so, a lot of it is fluff, dealing with verbosity of the I/O  system, or awkward error 

handling. Often it is hard to see the useful code amongst all the bits of irrelevant code 

holding it all together. I want a more direct style of coding. Notice that the monadic 

style has its own limitations, and it is not a complete solution to interfacing functional 

languages to external systems.

2.7.4 Multi-threading

User interaction can have a high level of concurrency, and it is apparent that, currently, 

functional languages make it difficult for different logical parts of a program to be able to 

take part in interaction without a great deal of cooperation between the various parts, as 

they pass around a monad or manipulate the lists of the dialogues system. I wish to be 

able to manage interaction within independent threads of a program.

2.8 Other Proposed Solutions

As user interaction within functional languages is not a new problem, there have been 

many solutions proposed. In the introduction I covered some of the history of my own 

work and now I shall cover some of the solutions proposed by others.

Many people have written of the problems functional languages have with user inter

faces and have proposed various solutions. These solutions range from some of my own 

simplistic solutions [32] to the more powerful systems that Singh has produced [33], with 

some truly innovative possibilities explored by Carlsson and Hallgren [5] and by Dwelly 

[8].

Because I wish to develop a system for building interfaces outside the functional 

language, it is not necessary to examine every system which allows the building of user 

interfaces inside the functional language, but will concentrate instead on two currently 

popular schemes. The investigation begins by looking at the research area in general, 

examining in particular schemes which also employ separation.
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2.8.1 Overview

All systems built to allow a functional language to interact with the user have, at some 

level, the functional program communicating with an external agent, receiving events 

from the user and replying with requests telling the agent what to do next. This can 

be done either by low-level calls embedded within the run-time system of the language, 

or by an external process, connected to the input and output streams of the language. 

This difference of technique is of no concern; what matters is that at some level there is 

a protocol between the program written in the functional language and another system 

which acts as its agent, creating and manipulating the interface.

Where designers have used a separate program to build and control the interface 

of a functional program, it has always been that this process had no intelligence of its 

own. The functional program was, in effect, controlling a robot which would create the 

interface, but could only chamiel user feedback directly to its controller, not being able to 

decide for itself how to react. This means that although there is a physical separation of 

interface and application, there is no separation of control, everything being managed in 

the functional program. This solution works, but is certainly not elegant.

To my knowledge, no one else has proposed using an programmable agent to control 

the interface for functional programs, taking away the effort of programming interaction 

functionally. However, the idea of a programmed agent is not new, its use outside the 

functional world implies that there must be some merit to the idea.

2.8.2 Fudgets

A recent innovation in the field of graphical interaction and functional languages is 

the Fudgets system, by Magnus Carlsson and Thomas Hallgren [5]. This is a complete 

window system toolkit written in a lazy functional language, making heavy use of higher- 

order functions to provide its power. This is the first full implementation of a graphical 

interactive toolkit in a lazy functional language.

Review

The Fudgets system is very impressive. It allows some very complex programs to be 

created without leaving the functional language. Its authors have created a number of
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relatively large demonstration programs, showing the flexibility of the system.

The key concept is a so-called 'functional widget', or 'fudget'. Fudgets correspond 

to the widgets of imperative toolkits, providing buttons or simple dialogs which, when 

combined, build into a complete program. Functionality is provided either directly in 

the semantics of each fudget, or else by non-display fudgets used to build other fudgets 

together.

The authors acknowledge the desire to separate the actions generated by user interac

tion and the resultant processing of those interactions. Indeed, they achieve this aim quite 

well, but it appears that the structure of the application is tightly bound to the structure of 

the high-level interaction. This means that it would be difficult to redesign the interface 

to one of their programs without some alteration to the structure of the application.

There are some other, less fundamental, problems with the current Fudgets scheme 

which I summarise below.

• Error handling.

Currently there is no discussion of how errors returned from the window system 

may be handled. I can only assume that the system always take the common route of 

exiting when such a fundamental error occurs. This is forgivable in an experimental 

system, but is unacceptable in a production system.

• Run-time tailoring.

It is possible to set "resources" (configuration options) for individual fudgets when 

they are created, but there is no obvious way of modifying these resources during 

the lifetime of the fudget. This makes it impossible to manipulate the interface 

during execution, and also limits the over-all flexibility of the system.

• Information flow.

There is a limited path of information between the application and the interface. 

All control and information paths between application and interface have to be ex

plicitly programmed. To modify an already programmed application could require 

extensive rewriting of the interface, when the current paths of information flow 

need to be altered.
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• Efficiency.

The Fudgets scheme makes heavy use of lists. The threads of I/O  that the fudgets 

process are initially sourced from the Haskell I/O  replies stream, which has to be 

split up and routed appropriately, and channeled into the requests stream in an elab

orate multiplexing scheme. Thus, there is a lot of list construction and destruction 

within any fudgets program. This could be addressed by a deforestation optimisa

tion, but such optimisations are not common in real compiler implementations.

• Program Structure.

As discussed in Section 1.2.3, there is a multi-threaded nature to user interaction and, 

indeed, fudgets reflect this in some sense by having each 'fudget' as an individual 

thread, which is run independently of other fudgets. These fudgets then need to be 

connected by making explicit the dataflow between the program and its interface. 

This can impose an inelegant style of programming within the application core. If 

the flow of data in the interface differs greatly from the dataflow of the application 

then coding can become difficult. Further, changing layout may require major 

changes to the structure of the application. This is very poor in modularity terms, as 

there is a very tight coupling between interface structure and application structure.

• Locality

Each fudget, unless specifically controlling a number of sub-fudgets, has no access 

to the state and resources of other windows. This makes cooperation between 

fudgets difficult, such as a fudget controlling a palette of tools which needs to be in 

a separate window from the fudget where the tools operate.

A Different Implementation

Alastair Reid and Satnam Singh have developed an implementation of Fudgets based 

upon the OSF/Motif widget set [22], using the monadic I/O  system. This system has an 

efficiency gain over the original fudgets system since much of the tedious list construction 

and destruction has been replaced by direct calls using monadic I/O .
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Summary

The Fudgets system is a good way of structuring applications, given that application 

dataflow is unlikely to change especially radically during the life of a program. However, 

building an interface above this structure is not always good because there is too tight 

a coupling between application structure and interface structure which can affect future 

maintenance.

2,8.3 Concurrent Clean

Concurrent Clean [10] is a lazy functional programming language which runs on a num

ber of different platforms and features concurrency operators and extensive 1 /O abilities. 

To ensure good portability between platforms. Clean implements its own abstraction of 

the various I/O  facilities, avoiding the need to call outside the functional world and thus 

the problems such calls create. A detailed description of how Clean I/O  works is in [2].

Review

Like Fudgets, Concurrent Clean does its graphical interaction by imposing a particular 

style of coding. In Fudgets the code is structured by the dataflow of the application. In 

Clean the structure is by a hierarchy of event types.

Windows and menus are registered as interested in particular types of events with 

a main event dispatcher, so that the appropriate block of code is called when particular 

events happen. These functions can then do output operations by using the built-in 

abstract functionality of Clean.

The Clean I/O  system, because it uses built-in datatypes and functions to achieve its 

aims is, unfortunately, hard to extend in comparison with the monadic system. Unless a 

rich enough set of I/O  primitives have been provided, there will be programs which just 

cannot be written in Clean. As the authors of Clean claim their I /O  system to be at a very 

high level of abstraction, it is questionable whether enough low-level systems to ensure 

flexibility is provided.

Clean provides functions for all output operations. In order to achieve this without 

compromising referential transparency. Clean requires a system which achieves the same 

as monadic I/O ; i.e. which avoids side-effects to shared data. Monadic I /O  does this by
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encapsulating all mutable values in an abstract token which cannot be shared. Clean does 

this by extending the type system, introducing values with "unique" types, which the type 

system then ensures that these values are only used linearly, i.e. that they are not shared. 

In practice, the restrictions imposed on the Clean programmer are not especially different 

from those imposed upon the monadic programmer, with the type system implementing 

the discipline for both regimes.

Alas, Clean does not live up to its name. Either its syntax, or the coding style 

required by the I/O  system, renders programs written in Clean as rather opaque. This 

is unfortunate as it is becomes hard to compare programs written in Clean with those 

written using either Monadic I/O  or the Fudgets system.

2.8.4 Summary

There are no complete solutions to the problem of creating interactive programs with 

functional languages. Both Fudgets and Concurrent Clean attempt to solve the problem 

from within the functional language. In both cases the result is extra effort in program

ming, with reduced efficiency, reduced clarity and reduced extensibility being related 

problems which affect one or both of the systems.

2.9 Summary

I have looked at the current standard techniques for programming input/output within 

Flaskell. This comes down to a choice between dialogues, continuations or monadic I/O . 

Monadic I/O  is currently gaining favour, and has removed some of the limitations in the 

other systems. Dialogues-style I/O  has been shown to have little value beyond very short 

programs, and its use is not recommended. Continuation-based 1/O is, at its heart, very 

similar to monadic 1/O and could achieve similar results if it were given the same level 

of consideration as is given to the monadic style.

With all this said, I still find that functional programming language, complete with 

their modern I/O  systems, are still quite inadequate for writing interactive programs. In 

systems such as Fudgets, or Clean, where the language has been extended, a solution has 

been searched for within the functional language and the result has been compromises 

and complexities. There are fundamental problems in the functional style which limit its
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usability in interactive systems.



Chapter 3

Making Interaction Easier

It is now clear that there are problems when functional programs are asked to communi

cate with the non-functional systems which allow interaction with users, and that none 

of the systems considered so far solve these problems. In this chapter I shall explore these 

problems further, proposing a solution based on ideas seen in Section 1.2, taken from 

software engineering, HCI and UIST research.

A valuable principle of UIST is that the user interface should be separated from the 

application core. I shall show see how this can be achieved in functional systems, using 

the Tcl/Tk toolkit introduced in Section 1.2.4, and how this solves some of the problems 

listed in Section 2.6.

By extending Tcl/Tk, I shall show how it is possible to reduce the effort required to 

produce good user interfaces from fimctional languages, providing greater ease-of-use 

than given by the monadic 1/O system. The resulting system will be extensible, so that 

it can grow with the programmer's needs, and which will integrate smoothly with the 

functional language, not disturbing the smooth functional programming style.

To illustrate my solution I present four example programs — two new ones written to 

demonstrate the practicality and functions of my design and a further two based on the 

examples from the previous chapter. I shall also examine possible further developments, 

and different approaches to the development of my system.

The interfaces are written using the Tcl/Tk toolkit introduced in Section 1.2.4. By 

moving interaction with external systems from the functional program into a separate 

process which communicates with the program at a high level of abstraction, I improve

57
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maintainability by increasing modularity, portability and coherence of software design. 

The interface and the functional program communicate by means of a high-level protocol, 

defined by the program designer. A good choice of protocol should reduce coupling 

between interface and application core.

I have gained an immediate improvement on effort required to build interfaces by 

using Tcl/Tk. Its efficient, clean syntax makes interface design, creation and modification 

a pleasure, since it is easier to program than even the normal imperative languages, and 

also more straightforward than the use of the C-call feature of monadic I/O .

I start by reviewing Tcl/Tk, considering how it should be extended.

3.1 Modifications to Tcl/Tk

In Section 1.2.4 Tel and Tk were introduced. Tel is a simple embeddable language for 

which a graphics user interface toolkit called Tk has been created which uses the Tel 

language as its core. Using Tel, scripts are written to control the actions of the toolkit.

The Tel interpreter used by Tk is made available in a program called w ish , standing 

for windowing shell. It is common to extend the Tcl/Tk system with new features, and 

create an enhanced version of w ish  with a different name. I have followed this lead, 

creating an enlianced w ish  called sw ish.

I have extended the Tel language with commands to allow communication between 

Tcl/Tk and an external system which, in this case, is a Haskell program. This allows 

programs written in functional languages to communicate with users through interfaces 

written in Tcl/Tk. The design and implementation of this is discussed below.

3.1.1 Design Background

There is a long history of grafting user interfaces onto the front of less interactive programs. 

These normally work by creating 'pipes' of input and output for the core program to which 

the user interface is attached.

This approach has also been used to create user interfaces for programs written in 

functional languages [32]. However, this approach lacks something in that either the 

interface has to be tailored for the individual program or an elaborate protocol has to be 

created which allows the functional program to control the creation and running of the
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interface that the front-end program creates [33]. Again, the mechanism, which allows 

complete control of the interface to be dictated by a separate communicating process, has 

been implemented in the non-functional world to permit programs, written in languages 

without the flexibility to call C functions, to have graphical user interfaces. A good 

example of this is a small program called 'dox' which is designed to allow Unix shell- 

scripts access to Xlib functions. Naturally, the programming language used with a system 

like 'dox' could just as easily be functional.

Another program in a similar vein is 'Wafe' [20], whose purpose was to allow graphical 

user interfaces to be created for programs which cannot interact for themselves. The 

major difference between Wafe and 'dox' is that with Wafe the interface is programmed 

in Tel. This allowed interfaces to be designed in Tel, a language well suited to interface 

creation and management, allowing whatever program it attaches to, to concentrate on 

the application functionality.

Wafe can be used to create user interfaces for programs written in a functional lan

guage. In [31] I created a couple of examples of functional programs using Wafe for their 

user interfaces. However, Wafe has a number of limitations (e.g. no ability to do direct 

graphics) and, in my opinion, design flaws (its method of attaching the two processes 

together is limiting). This led me to an alternative tack.

Being impressed with the Tel language that Wafe used, I decided to investigate Tcl/Tk, 

the Tk toolkit having features lacking in the Athena toolkit used by Wafe.

It was at this point that I chose to use Tcl/Tk, but any other toolkit or UIMS could 

have been used. One particular reason for my choice was its nature as both a language 

and a toolkit. Using a toolkit with a built-in high-level interpreted language allows a 

programmer to adapt the interface at run-time from the functional programs if desired. 

This allows tailored code to be loaded into the interface, and thus ensures that it is always 

running at its most efficient.

3.1,2 Process Communication Design

In current systems functional programs have to communicate with external systems at 

a relatively low level of abstraction, directly using whatever I/O  system the language 

provides. I want instead to have the functional program communicate with a interface



Making Interaction Easier 60

broken off into a separate system, and communicated with at a much higher level Such an 

interface would need to be specially written for each particular application, and it would 

be programmed to do all the low-level interaction that the functional program would 

have had to do otherwise, communicating with the functional program at a high-level

Getting the communications right is essential A poor choice of design for the con

nection of interface to application, risks making it difficult or impossible to code some 

interactions. If the wrong level of abstraction is chosen for the communication, then there 

is the risk of over-loading the channels and creating a bottle-neck or, at the other extreme, 

limiting the expressive power of the communications.

The interface and the application communicate using the standard I /O  system of 

the functional language, and whatever I/O  system is available in the interface's coding 

language. The two parts of the program do not have to be separate processes in operating 

system terms. It is possible for the two parts of the program to exist as cooperating threads 

of execution, where this can be implemented within the language. It is then possible to use 

call-backs to channel information from the interface to different parts of the application. 

Also possible is true concurrent threading, if the operating system supports it within the 

same process.

Assuming that the interface runs as a separate process from the application, it is neces

sary to look at how the interface and the application will communicate. An obvious first 

idea is to have two communication channels between the interface and the application; 

this is how 'dox' and Wafe work. Then all messages the interface generates may be passed 

on to the application, and any responses can be sent back in the other direction from the 

application. User events will also be sent along this channel, asynchronously, to ensure 

they get timely processing. This system is illustrated in Figure 3.1.

I reject this model for the following reason: if the application has to make a query to 

the interface, it then has to find the reply to the query within the input stream arriving 

from the interface, while ensuring that incoming events are not lost. How hard this is to 

achieve in functional languages can be seen in the implementation of Fudgets [5] where 

special handlers are required to queue events while searching for replies awaited. The 

same queuing and filtering process can be seen in the protocol of the X Window System 

[29], where replies to X protocol requests and user events are multiplexed on the same 

connection and must be carefully separated and requeued as appropriate.
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Figure 3.1: Two-way communication between Interface and Application.

Ideally there would be four channels, so that each system has both an asynchronous 

and a synchronous coimection to its peer. This would allow easier handling of incoming 

communication, but with the overhead of twice the number of channels of the two-way 

system. Is there a real need for this amount of bandwidth to be maintained and controlled? 

If X can work, albeit with some effort, with only one bidirectional connection, perhaps 

four unidirectional channels is more than required.

Between these two extremes I favour a three channel solution, as illustrated in Fig

ure 3.2. From the interface to the application there is firstly an asynchronous channel 

for events. Events can be sent on this channel at any time. From the application to the 

interface is a command channel. A second chamiel from the interface to the applica

tion then allows synchronised replies to commands sent on the command channel. The 

Haskell application can handle concurrent reading from more than one incoming channel, 

if necessary, using the ReadChannels primitive, rather than the simple ReadChan.
Some early results have shown this model to be much easier to program than the 

previous norm of two chamiels, which led to an almost synchronous protocol between 

the cooperating processes to ensure that events did not get intermixed with other com

munications.
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Haskell program.

ReadChannels AppendChan

Replies CommandsEvents

User Interface

Figure 3.2: Three-way communication between Interface and Application.

This three-way system bears some similarity to the system of communications de

vised for Toolds Presenter system [36]. Presenter is a "surface interaction" system, which, 

in place of a simple window system, provides an abstraction of windows, frames and 

other interactive objects with which interfaces can be built. As in my system, the presen

ter system is a separate program which communicates with the application to provide 

its services. Between the presenter system and the application it is serving, there are 

three communication channels established, which correspond almost directly to the three 

channels I employ.

High level interaction

Naturally, the functional program will still have to communicate with the outside world, 

but via the separated interface. This will have to be managed using the traditional 

I /O  system of the language. The difference is that that the functional program will 

now take part in the interaction at a much higher level and so more information can be 

communicated, thus increasing the bandwidth. Instead of passing the complete dialogue 

needed to achieve a particular aim, the functional program only has to communicate the 

intention, with any necessary data, and the interface can look after all the details. Equally,
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the information returned from the interface to the program could be at a much higher 

level than that found in typical I/O  systems.

For example, if the user wanted to save a current document, the discrete events 

generated by the user would not be seen by the application. Instead it would be handed 

a high-level event conveying the user's wish to save the document. At this point the 

application would pass a copy of the document to the interface for it to save to disk, 

without the application needing to go through the step-by-step processes involved.

So there is now a separation of the low-level processes which happen in both the 

interface and application and the high-level dialogue which the two sides enter into. 

At the lower level is key presses and mouse click in the interface and calculations and 

manipulations in the application. The high-level dialogue does not deal with such details.

Protocol Format

Communication protocols tend to be based on low-level byte formats for efficiency. For 

the purposes of this exercise, however, efficiency is not a major requirement and the desire 

for an easy interpretation of the communication streams leads me to choose a flexible text 

based protocol, where each line of text (terminated by a new-line) is the basic packet.

This allows the functional program to communicate with the Tcl/Tk process on the 

command channel using simple Tel commands which can be handled directly by the Tel 

interpreter. For communication in the other direction, Haskell has flexible routines for 

handling streams of text, and will allow direct pattern matching of words. An additional 

benefit is that a textual protocol is easier to debug by inspection or mimicking that a 

byte-stream.

So events sent from the interface to the application will be simple strings representing 

actions on the part of the user. Examples might be "quit," to terminate the program, or 

"font 12," to set a particular piece of text to a different font size.

In reply the application will send strings to the interface. Examples of this might be 

"about," which would produce an 'About' window for the program, or "change old-string 

new-string," for application-led manipulation of some data used in the interface.
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The Application Core

I have specified how I would like to construct the interfaces, using Tel as a high-level proto

col to afford communication with the interface. Now I consider the remaining application 

core of the program. What particular features are required within the application, and 

how the application is structured must now be considered.

The monadic system of embedding C code inside the functional language, as shown 

previously, can lead to ugly code. By having a separate interface which will contain the 

previously embedded imperative code, the purity and coherence of the functional code 

can be improved. It certainly makes more sense to write imperative code in an imperative 

language, and functional code in a functional language.

M ultithreaded Application

To allow complete user freedom, components of the interface should behave in an in

dependent manner with a dialogue in one window not interfering with a dialogue in 

another. For this reason I choose to have a system of processes, rather than the sequential 

solutions normally made available by functional languages.

Even though functional languages are intrinsically parallel in nature, there is little 

notion of threading seen within their design. Again imperative languages come to the 

rescue. It is now normal for languages, or the operating systems they run on, to offer 

some sort of threading support [35].

More recently, Hoylier and Carter have proposed an extension to Haskell which 

allows easier threading by permitting multiple output streams using a new I/O  request 

'WriteChan' which would split off a separately evaluated stream of output, in the same 

way as it is currently possible to have multiple input streams with the 'ReadChan' request 

[14].

3.1.3 Process Communication Implementation

Implementation of the process communication system required two pieces of code to 

be written. Firstly, Tcl/Tk was extended to allow it to set up the two processes of the 

interface and application. This produced the extended w ish  shell, sw ish . Secondly, the 

Haskell run-time system had to be adapted to allow it to communicate on the channels
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created by the Tcl/Tk system.

Overview

For simplicity I chose to implement the process communication using the p ip e  system 

call, as opposed to the more powerful but more complex s o c k e t  operations. Whereas 

sockets allow bidirectional communication between independent processes anywhere on 

a network, pipes provide only unidirectional communication and only between processes 

which share a common ancestry — the pipe is created by and inherited from a common 

ancestor.

I use three pipes, corresponding to the three data paths in the design. In order to 

arrange "common ancestry" I have the Tcl/Tk interface create the pipes and then spawn 

the Haskell program. The spawning is done using the f o r k  and exec  system calls.

This is all coded as an extension to the Tcl/Tk system rather than the Haskell system, 

as the Tcl/Tk system is smaller and simpler. Doing this also allows me to use the same 

Tcl/Tk system with different Haskell compilers, or indeed different languages.

The additions to Tcl/Tk are covered below in more detail. The code can be inspected 

in Appendix C.l. The processes required to create extensions to Tel and Tk are covered 

in detail in Ousterhout's book on the Tel and Tk system [25].

The Spawnchannels command

The spaw n ch an n e ls  command is the main extension to Tcl/Tk. All process and channel 

setup is done by this command. It has a very simple syntax.

spawnchannels program [arguments]

The command takes a single argument which is the name of the Haskell program to 

spawn, plus optionally any arguments to pass to the program when it is executed.

The implementation of the command is fairly straightforward. Ignoring error check

ing, it simply creates the pipes for the communication chamiels, then forks. At this point 

there are now two processes running. One will stay as a Tcl/Tk process, the parent pro

cess, the other, its child, will become the Haskell program. These two processes are now 

covered in detail below, separately.
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The parent process after the fork has a simple task. By using the dup2 system call, it 

arranges its end of the pipes to be at file descriptors 13,14 and 15 and closes all its original 

references to the pipes. It does this to ensure that the processes exit cleanly when either 

side closes a pipe; it is the last close on a pipe which causes it to shutdown, and so it can 

only exist in one place. The parent then sets these new descriptors to non-blocking mode 

to guarantee that the interface will never block while waiting for the Haskell program. It 

finally sets up the handlers for each of the channels as will be described later.

The child process follows a similar path, using dup2 and closing the original pipes. 

It does not set its ends of the pipes to non-blocking as the Haskell program it is about 

to execute may not be able to cope with this, and it is not a problem if it blocks anyway. 

Finally, before execing the Haskell program, it closes the connection to the window 

system that it inherited from its parent, but which cannot be used in any other process.

Figure 3.3 shows the arrangement of pipes set up by the two processes, showing the 

number of each file descriptor, and the direction of each pipe.

H3
Tcl/Tk
User Interface

Haskell
program Events

Replies

Commands

Figure 3.3: Communication between Tcl/Tk and Haskell

At this point, the Tcl/Tk process — the parent process — is ready to run its inter

face, accepting commands from the user and from the functional program through the 

command channel.
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The Command channel

The command channel is implemented by the ComProc procedure in the swi sh program. 

It is based upon the standard input handling function, but with more error handling, and 

some changes of behaviour in exceptional circumstances.

Lines of text incoming on the command channel are assembled into complete Tel 

commands — employing the parser to decide if the command is complete or not — then 

executed. Making use of functions supplied by the Tel parser to determine whether a 

command is complete or not avoids the additional complexity that would otherwise be 

involved in supporting multiline commands.

The ComProc procedure is registered with the Tcl/Tk system so that it is called 

whenever any input appears on the command channel. This ensures that the input is 

handled in a timely manner, and that the program will not 'hang', waiting for input from 

the functional program.

The Event and Reply commands

The e v e n t and r e p ly  commands are further extensions to Tel. These commands send 

tokens of information from the interface off to the functional language. The danger of 

blocking is a greater problem. If the functional language is busy processing other data, 

then the interface must not be delayed.

This is a very real problem when the functional program is acting as a computational 

engine, and thus would not normally be very responsive. Of course, on the occasions 

where this problem can be expected, care should be taken within the interface and program 

to slow or stop communication while the application is busy. The easiest way to achieve 

this is to lock-out certain parts of the interface while processing continues.

I solve the problem by having a simple queuing system, where any data that the 

application is not ready to receive from the interface is appended to a queue. Two 

queues are arranged, one for each of the event and reply channels. Both are important 

as the functional program may not be processing events when it is in the middle of a 

command/reply dialogue with the interface. At the same time, unexpected replies will 

not be read by the program until it is looking for a particular reply to a particular query. 

(It is for this reason that I would suggest that replies are tagged in order to ensure that
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the correct reply is identified.)

Special care is taken to ensure robustness in the face of extra long messages, where 

dynamically allocated data structures used to hold the messages are extended as needed. 

Likewise, the queue can grow to effectively infinite length, limited only by memory. It 

is hoped that the queue would not need to be particularly large and, as security against 

programs with bugs in them, it might perhaps be better to limit the lengths of the queues 

to stop large amounts of data from building up in a queue.

When either queue contains data to be sent, Tcl/Tk is instructed to call a function to 

transfer the data when the channel is ready, similar to the way in which Tcl/Tk calls a 

function to manage incoming data on the command channel. This ensures that data is 

sent at the earliest possible opportunity, while ensuring that the interface can never hang, 

waiting for the functional program.

Interprocess Communication with Haskell

The sp aw nchannels  command in the Tel program is responsible for starting execution 

of the Haskell program. It inherits from its parent — the interface — three pipe ends 

on which it will communicate. These are found on file descriptors 13, which is used 

for sending commands to the Tel program; 14, which is for receiving events sent by the 

e v e n t command in the interface; and 15, which receives replies to commands sent on the 

command channel generated by the r e p ly  command in the interface.

In order to be able to read from the event channel, the reply channel, standard input, 

or any other channels the programmer may be interested in, it is a good choice to use 

the ReadChannels request (or continuation equivalent) to read from multiple channels 

simultaneously, if the particular Haskell implementation provides it. This is especially 

useful with the Haskell B implementation, which has two pseudo-channels called TICK 
and TIMEOUT. These allow you to use ReadChannels and, at the same time, be able to 

perform other actions if user input is not received between ticks or before a timeout has 

been reached.

The ReadChannels request takes a list of channel names which it uses to associate 

Haskell channels with operating system channels. In most Haskell implementations, the 

only recognised channels are "stdin", "stdout", "stderr" and "stdtty". Haskell
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B originally interpreted any other string as a filename to open.

To open actual Unix file descriptors it was necessary to modify the Haskell B run-time 

to recognise the small positive integer values of file descriptors, and use them when 

possible. These modifications were fairly trivial.

Thus, using ReadChannels, the Haskell programmer can set up a high-level event 

loop, in the style of any other interactive program, but at a higher level, which can call 

into functions which can communicate using the command and reply chamiels. As an 

output chamiel, the command channel would be accessed via AppendChan requests, 

while the reply channel, as it is not relevant inside the event loop, would be attached to 

by a ReadChan request.

3.2 Two Examples

I present two example programs written in Haskell, using Tcl/Tk as the interface system. 

The first, a simple clock, demonstrates how it is possible to write programs that can 

both respond to user input, and update the display at regular intervals of one second. I 

then present a larger example of a three dimensional maze simulation. The Haskell code 

involved in this program is quite complex, but very little of it is concerned with dealing 

with user interface actions.

In this section I only describe the external design of these programs; in the section 

following their internal construction is examined.

A later section will examine the examples from Chapter 2, where I have written new 

graphical interfaces for these textual interactive programs. The first of these is relatively 

small, so is the only one which will have sections of its code presented in the text, rather 

than in Appendix app:easier.

3.2.1 An Alarm Clock

For the first example, a simple alarm clock program, the Haskell program keeps note 

of what the time is and when it should activate an alarm. Every second it advises Tel 

what the time is, using a procedure defined in the script that the sw ish  interpreter has 

executed. The Tcl/Tk process then updates the display, without the Haskell program 

knowing whether it is rumiing an analogue or digital clock. When the user sets the alarm.
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the dialog is conducted exclusively within the Tcl/Tk process. When this is concluded, 

the Haskell program receives an 'alarm set' event, telling it when to activate the alarm.

When the alarm is activated, the Haskell program sends a command to the Tcl/Tk 

process to display a flashing window. This window is then completely managed by the 

Tcl/Tk process, flashing it every second until the user acknowledges it. Meanwhile, the 

Haskell process continues counting time.

This shows how a greater degree of separation between the interface and application 

can be reached using this method, compared with other methods where the distinction 

tends to be blurred.

3.2.2 A Maze Game

As a more substantial example, I created a three dimensional maze game, written in 

Haskell, using Tcl/Tk for its interface. The general idea is for the player to completely 

navigate the maze, using simple commands such as turn left, turn right and move forward 

(crawling up walls or over precipices as they are met.) An indication of the separation 

between the interface and the program is that the two halves were written by different 

people in different countries.

The Haskell program is responsible for looking after the creation of the maze, keeping 

track of where the player is in the maze, and the current view of the maze. It takes events 

such as 'left', 'right', and 'forward' and causes the display to be updated by sending to 

the Tcl/Tk process a list of where there are walls visible.

The Tcl/Tk program sets up the display, which includes buttons that the player uses 

to navigate the maze, plus a perspective view of the maze as 'seen' in the direction the 

player is facing. When a button is pressed by the player, the program passes on the 

appropriate event to the Haskell process. The Tcl/Tk program also receives the list of 

visible walls, and updates the display accordingly.

Neither process 'knows' what the other does with messages sent, and either could be 

implemented totally differently, without affecting the other. The only constant factor is 

the protocol between them.

Figure 3.4 shows what the maze program's user interface looks like. A complete copy 

of the source may be requested from the author using electronic mail. Highlights of the
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Figure 3.4: Functional Maze in X
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Tel interface code are in Appendix C.4. Listings of the Haskell modules are given in 

Appendix C.5.

3.2.3 Summary

I have shown that it is possible to create useful interactive programs in Haskell, using 

Tcl/Tk to create the interface. The resulting programs are flexible and responsive. It is 

interesting to note that the maze application and its interface were developed completely 

independently.

3.3 The Protocols, Interfaces and Programs

The most important part of the creating of these programs was in the design of the protocol 

used by the application and interface to communicate. The interface builds high-level 

events to send to the application, while the application will send commands to query or 

update the display.

As explained above, the interface is responsible for all communication with the user 

and translates task-specific user actions into high-level events for communication to the 

application core. These are then sent textually to the core using the e v e n t channel.

In turn, the interface makes available a number of procedures which the functional 

core is expected to call using its c ommand channel to the interface. Of course, the core may 

also use any other standard Tel command, even creating new procedures, or re-writing 

existing ones if required. This could be useful in a highly interactive interface where 

display parameters can be computed on the fly using core-supplied functions while still 

in the context of the interface. A good example of this might be a program which displays 

mathematical functions selected by the user. Another example is when a data structure 

controlled by the core also has to be displayed by the interface. The core would mirror 

the relevant parts of the structure within the interface for rapid display.

In this section I shall examine the construction of the interfaces of the two example 

applications, and examine the communication which occurs between each and its appli

cation core. I hope to demonstrate that the designs meet the requirements laid down in 

Section 1.3. This will be discussed further in Section 3.5.
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3,3.1 The Alarm Clock Program

The alarm clock has a simple design with a resulting simple protocol, interface and 

program. The majority of this program is presentation: not much programming is 

required to know what time it is.

The Alarm Clock Protocol

The protocol used by the alarm clock program is very simple in design.

There is only one event the interface can send to the application.

• HH:MM:SS

A specification of when the user wishes the alarm to be activated, in a strict 24-hour 

format, using 2 digits to express each of the hour, minute and second. An example 

would be "2 3 : 5 9 : 5 9".

There are two commands which the application will use in the interface.

• d is p  time-string

This command should be called periodically to update the displayed time to that 

given by the time-string.

• a la rm

This command should be called when a previously set alarm time has arrived.

The replies channel is not used and the information flow across the event and com

mand channels is very simple in form and content.

The Alarm Clock Interface

The interface, despite the simplicity of its task, has very little knowledge of its purpose. 

It is limited to the fact that the dialogues have titles to say it is an alarm clock program 

written using Haskell and that, within the alarm-setting dialogue, the user should type a 

time of day. These are the only two strings in the interface of any substance. There is also 

the flashing alarm dialogue, but this could be used by the application to display urgent 

error conditions, and again is in no way tied to the operation of an alarm clock.
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There is only one event which the interface will send to the main program; this 

communicates what the user has asked the alarm to be set to. This format of the event is 

a string strictly of the form "HH:MM:SS", with each component being two digits. This is 

basically the string that the user types in, with first a validity check to ensure it conforms 

to the correct syntax. It is important that the interface implements this check as, by the 

time the application is in the position to check its syntax, the dialogue will have been 

dismissed.

The code for the interface is in Appendix C.2.

The Alarm Clock Application

The main program of the alarm clock has two main roles. Firstly, to update the time 

display every second and, secondly, to store the alarm clock setting and activate the 

alarm when the appointed time arrives. The code for the application is in Appendix C.3.

Control of the interface by the program is through two simple commands. The first, 

d is p , sets the display of the clock and will be called once a second to keep the clock 

display correct. The second, a larm , is used when the alarm is to be triggered. Once 

triggered, the application program takes no further interest in it.

The initial implementation of the clock used the dialogues style of input/output but, 

as I developed it adding the alarm feature as an extension to the original code, I found 

dialogues difficult to work with, requiring non-localised changes in the program to add 

the new feature. It was for this reason that I re-wrote the program in the continuations 

style, again developing the clock portion of the code before adding in the alarm feature. 

This time the alarm was easily integrated, requiring only one new function, and one other 

function to be changed to call the new function at each tick.

3.3.2 The Maze Program

The maze game was an idea by Cars ten Kehler Holst, and he agreed to write the main 

program. As he was in Sweden at the time the program was written, it was vitally 

important the the communication protocol between the application and interface was 

clearly specified. After this was done, a certain amount of experimentation was possible 

to get the best design of interface, and the most efficient application.
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The Maze Protocol

The construction of the protocol for the 3D maze game was substantial task. The first part 

was an investigation of the topology of the mazes it is trying to describe. There is naturally 

a large difference between a three dimensional representation of a flat two-dimensional 

maze, and the three dimensional representation of a truly three-dimensional maze. The 

protocol designer needs to take such factors into account.

The maze can be visualised as a cube made up of smaller cubes. Where the cubes join 

there is either a wall, or no wall. There is the guarantee that all locations can be reached 

by navigating the passages created by the missing walls.

So, in order to visualise this maze for the user, the interface needs to know which walls 

are absent from the user's point of view. This is achieved by the application core telling 

the interface which walls in front of the game player are there, and which are absent — 

or in simpler terms, which walls are "on" and which are "off". You could imagine a 

textual interface describing what paths are available from the user's position, given this 

information.

The complete protocol specification written by the interface designer and shared 

with the core program author is presented in Figure 3.5. In it the protocol designer's 

comment can be seen, that, of the walls potentially visible (twenty-one), only nine will be 

implemented initially. In a character interface perhaps fewer walls would be implemented 

or, in a more sophisticed graphical version, perhaps more.

As well as the maze display there is a 'status' line displayed. This is used to relay 

information from the application to the player, reporting the player's progress.

So there are a total of three commands which an interface has to provide to the core.

• on i j

The on command simply turns 'on' a wall at distance i away from the user, wall 

number), so that the player may not move there.

• o f f  i j

The o f f  command is the inverse of the on command, making passages available 

for the player to navigate.
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For each level i, there are 
21 walls, but only the firs t 9 
have been implemented, 
numbered as j, 0 to 8.

To turn a wall on, use "on I j"  

To turn a wall off, use "off i j"

'HIMinNIII

18 m

Figure 3.5: Specification of Wall Display
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• s t a t u s  c [i]

This informs the interface of the current status of play. The particular message is 

encoded into the character c, with any extra data required given in optional integer 

i. An example would be "status f 45" updates the message to indicate that the player 

has finished the maze, and that it took 45 moves.

It is important to notice that the actual 'status' message to be shown is generated by the 

interface, based on the code letter sent from the application. This allows easy adaptation 

of the program, for example when translating the program into a different language. In 

this case only the interface needs to be changed, and the application remains constant.

In the opposite direction, the most important user events are the movement com

mands. There are four possible moves understood by the application core, which the 

interface may wish to employ. These are 'move forward', 'turn right', 'turn left', and 

'move backwards.' At all times, the interface can assume these commands are valid.

Two other user commands affect the application program; the user may restart the 

same maze from the beginning, or can choose to play on a new, different maze.

So there are six high-level events that the interface can send to the application.

• in

• o u t

• l e f t

• r i g h t

These four events signal player movement and will be triggered either by the player 

pressing buttons or typing keys.

• init

Sets the player back to the start of the current maze.

• new

Creates a new maze.

Once the protocol had been specified, the interface and application were then written 

completely separately.
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The Maze Interface

The maze is represented in the interface I have constructed by a three dimensional display 

of the walls, as seen from the game player's point of view. The walls have been created 

using the Tk canvas widget, and each wall has been drawn explicitly. Walls are turned on 

and off by altering the colours of these walls, making absent walls transparent. Directly 

below the walls is the status information.

To the right side of the main display is a panel of buttons to control movement. This 

area is the main source of user events.

The four events signaling player movement are triggered either by the player pressing 

on the directional buttons in the panel, or else using the keys 'h ', 'j', 'k ', and T  to control 

movement, in the Unix tradition.

In response to these events the application is expected to send a sequence of commands 

which will update the displayed scene in the maze, as explained above. There is, however, 

no knowledge within the interface of what a particular directional command means.

The two major sections of code in the interface are for building the interface and 

display. All other code is fairly trivial. Parts of the program which implement the 

interface can be seen in Appendix C.4.

The Maze Application

The maze program is written as two Haskell modules. The most crucial is the module 

of functions which implement the maze, creating it, manipulating it and determining 

movement around it.

The maze is structured as a three dimensional array of boxes, where the size of each 

dimension is arbitrary. Each box has between 3 and 6 neighbours, with which it shares a 

wall. Paths are then cut through the maze by removing walls until all boxes are reachable 

from each other, creating a fully navigable maze.

The other module is almost exclusively concerned with the interface, translating 

user commands into maze operations and then passing back display information to the 

interface. This code is perhaps only a quarter of the complete program. Only a small 

part of this, perhaps one third, is involved with communication with the interface, the 

rest being the mechanics of the game, keeping track of where the player has been and
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determining whether the maze has been completed yet or not.

This module might be seen as being a 'linkage' between the interface for the user, 

and the raw functionality of the maze manipulation code. The maze functionality is not 

written for the specific application and could be used in any exploration of a maze. It is 

this linkage portion which is the key to how the functionality is presented to the interface.

Interpreting the commands is fairly straightforward. The commands which turn the 

player around to face different directions are implemented by rotating the view in the 

maze about a point. The motion commands have to be handled specially. The program 

must ensure that the player is standing on a solid wall after the move. When faced with 

a solid wall directly in front of the player, the program allows the user to 'climb' the wall, 

in the way a spider might. When faced with a hole, the player is moved onto the side wall 

of the hole or, if that does not exist, the player will actually end up on the other side of 

the wall they had previously been standing on. Imagine the spider walking off the edge 

of a table to understand what happens.

The maze manipulation code is very rich in good functional programming techniques, 

using a great deal of composition of higher order functions, and applying mathematical 

theory for the construction of mazes. It may be studied further in Appendix C.5.

3.3.3 Summary

I have presented details of the workings of the interface for the two example programs. 

The dialogue that occurs between each interface and their application cores have been 

presented to show that I have achieved a high level of separation between application 

and interface in my programs.

3.4 Running Examples

In this section I present the examples from Chapter 2, showing how I have modified them 

and given them graphical user interfaces. The purpose behind this is to demonstrate what 

modifications are required to give an existing functional program a better user interface.

Both examples lack any real functionality, as they both exist as simple examples of 

interaction within functional languages. For this reason, the particular design and imple

mentation of each application will not be considered a great deal in this investigation. To
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IB B D
This is a minimal |

Q u i t  I  I  Do you feel alright?

Great!!!

Figure 3.6: Minimally Interactive Program

get the best design would involve re-writing the program, which would not show how  

easy it was to adapt them.

3.4.1 Minimally Interactive Program

Figure 3.6 is a screen-shot of the graphical version of the 'minimally interactive program'. 

The user has just been asked ''Do you feel alright?'' and has answered by clicking on the 

'Yes' button. The program's response is displayed below while the program waits for 

another response. At any point the user can exit from the program by pressing the 'Quit' 

button of the main window.

This program repeatedly asks how the user is. This is a natural "main loop", so 

no major changes were required in the structure of the code to make it suitable for 

graphical interaction. I used the continuations based version from Page 32 to build the 

new graphical version. The modified code is presented in Figure 3.7.

In fact the most obvious changes are three simple 'global substitutions', the first being 

a terminology change of 'input' for 'events', abbreviated as 'evs'. The other two are 

changes of the input channel from 'stdin' to 'epipe', the stream on which events arrive, 

and of the output channel from 'stdout' to 'cpipe', the command stream to the interface.

The other major change is that, instead of outputting questions directly to the user, 

we must encapsulate them into commands — the 'ask' and 'answer' commands.

The only addition to the code is definitions of 'cpipe' and 'epipe', as file descriptors 

which we are using as streams. A simplification to the code has also been made. As 

programmed, the interface will always give a lowercase 'y' response for 'yes', and so we
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module Main(main) where 
main = getevents
getevents = readChan epipe exit $

\evs -> how (lines evs)

how evs = appendChan
cpipe "ask \"Do you feel alright?\"\n" exit $ 
case evs of 
(1 :evs) -> case 1 of

'y':xs -> good evs 
_ -> bad evs

_ -> done
good evs = appendChan

cpipe "answer \"Great!!!\"\n" exit $
how evs

bad evs = appendChan
cpipe "answer \"Sorry to hear that.\"\n" exit $ 
how evs

cpipe = "/dev/fdl3" 
epipe = "/dev/fdl4"

Figure 3.7: Minimally graphical interactive application program.

do not need to deal with uppercase at all.

The interface needs to be custom written for each new application. Portions of the 

interface code are presented in Figure 3.8, the full code is presented in Appendix C.6. It 

would make no sense to go through the code for the interface line by line, as this thesis 

is not a tutorial for Tcl/Tk, but the creation of the 'Yes' and 'No' buttons should be clear. 

Pressing either of these buttons will cause either an ''event yes" or "event no" command 

to be executed, which will in turn send the appropriate event back to the application.

At the foot of the interface code is the call to the 'spawnchannels' command which 

I added to Tcl/Tk. This call has the effect of starting up the main application once the 

interface's main window has been created.

So, the changes to the actual functional program were very small and it retains its 

structure and general appearance. The resulting program is as readable as the textual 

version and adds no complexity for the functional programmer to understand.

I would argue further that the interface is relatively simple, requiring no great level
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proc inainwindow {} {
# code for main window creation removed
button .bot.death -text "Quit" -command (destroy ,} 
pack append .bot .bot.death {left expand padx 20 pady 20}

}

proc ask {text} { 
toplevel .ask

# code for construction of query window removed...

button .ask.mid.yes -text "Yes -command "event yes"
button .ask.mid.no -text "No -command "event no"

# further code removed...

}

proc answer {text} {
.ask.bot.answer configure -text $text

}

# create main window... 
mainwindow

# run main program... 
spawnchannels how

Figure 3.8: Minimally graphical interactive interface, 

of understanding over the basic commands which are used in Tk to build interfaces.

3.4.2 Bank Machine

Porting the ATM was quite a different task to the one before. The ATM was programmed 

to simulate the trace of interactions possible in a bank machine, but it was not intended 

as an example of a useful program. For this reason the structure of the program is the 

same as the interaction presented by the bank machine. In real life this structure would 

only occur in the interface and not the application.

It was thus necessary to build an interface which could interact with the very fixed 

modes of interaction in the application, rather than with a structure like an event loop or 

similar. The original version of the program does no checking of input, and will terminate 

with an error if it has trouble with user input. The same is true of the graphical interface.
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Sinclair Bank ATM

Select:
Cash «- 1 2 3

Check Book *- 4 S 6

Balance *- 7 8 9

Statement <- Cont 0 Enter

Card m/Out .....J
Money _J

Statement 1
Quit .. ... J

Figure 3.9: Interacting with a Bank Machine

which is merely layered on top of the textual interface. Figure 3.9 contains a screen-shot 

of the interface in action.

The interface was programmed to communicate with the application at approximately 

the same level as the user would in the textual version. Textual output from the application 

was encapsulated into commands for the interface, while user input was passed by the 

interface as entered.

All input to the program is numerical or simply to confirm an action, and so a simple 

numeric key-pad was provided on the display, with an "enter" button to feed numbers 

and confirmations into the program. For actions, such as taking money or entering a card, 

special buttons were provided, but these were, in effect, the same as the "enter" button. 

In addition, a column of buttons forming a menu beside the display was provided, but 

again, these buttons were simply short-cuts for numerical input.

Output was tricky for the simple reason that the textual version assumed that all 

messages written out to the screen could be read and that there was no limit to what 

could be displayed at one time. However, in the graphical version, we provided a small 

viewing screen which could only hold a small amount of text at a time.

This was solved by classing the messages into 4 different variations:

1. A message which could simply be written to the display.
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2. A message which should be written to the screen after it is first cleared — that is, 

that nothing was written before it which the user has not had a chance to read.

3. A message which must be acknowledged before the program will continue.

4. A message which forms a menu, and makes use of the menu buttons placed along

side the display.

Again, the changes to the application are fairly limited. The code changes for the 

application are in Appendix C.8. Excepting the changes of the communication channels 

to use the pipes connecting to the interface, the only other changes were in the code which 

managed the messages output. This was changed to match the 4 different styles of output 

which we had decided upon above. Instead of all output messages being handled by the 

output function 'message', there is now also 'nmessage' which clears the screen first; 'ack' 

which presents a message and waits for a confirmation; and 'messages' which supplies a 

menu choice to the user.

The interface has been custom-written for the application. The complete code of the 

interface is given in Appendix C.7. The basic elements of the interface are an input panel 

with a numeric key-pad and other buttons, and the output area where messages are 

presented to the user and feedback from the numeric keypad is displayed.

The buttons are either wired to send an event string or, for the numeric key-pad, to 

add a digit to the number to send. The 'Enter' key then sends the stored number to the 

application.

The display area is managed by three commands, one of which clears the display, 

another displays a message, and the last one formats a menu for a choice to be made 

using the menu buttons.

So, we have a graphical version of a textual program, built with very few changes to 

the original program. The key part of the program — the description of the interaction 

of an ATM was completely unchanged. The changes required were mainly due to the 

problem that in the original ATM specification timings considerations were abstracted 

away.

The modifications to the program to give it a graphical interface took less than two 

hours, with the required modifications to the output functions adding around another 

hour.
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3.4.3 Summary

I adapted two existing textual functional programs to give them graphical interfaces with 

Tcl/Tk. The changes to the program were minimal, with no major alterations required. 

The major tasks were designing the interface and the protocol of communication used 

between the interface and application.

3.5 Discussion

I wish to highlight a number of particular features in my design which add to its merits 

as a workable solution to user interface creation for functional languages, beyond what 

has been specified in the requirements from Chapter 1.

One important aspect is the simplicity of my solution. Its design and implementation 

were very straightforward, most effort going into ensuring that the resulting sw ish  

program is robust in the face of bugs in other programs. The evolutionary design of the 

system made the implementation easier, because I was already familiar with the operating 

system features I needed to use.

The evolution from previous solutions involved using a programmable system to 

manage the interfaces. I could have implemented such a system from scratch but, instead, 

minimised effort by using tools already in existence, and already proved able to do the 

job. If I had built my own programmable interface system, there would have been 

no guarantee that it would have worked and, if it had, it would have been a case of 

reinventing the wheel.

As a result of choosing to use Tcl/Tk, I have also gained the use of a more powerful 

interface creation system than if I were to build my own. Tcl/Tk was expertly designed, 

and this shows in the simplicity of programming notation required to build large, pow

erful interfaces. I am also able to use interface building tools to build interfaces, making 

it even easier to construct interfaces for functional programs.

It is important to repeat that all the interface construction, layout and management 

happens within the Tcl/Tk programs. This takes all this out of the scope of the functional 

program, where it can obstruct good programming techniques.

This means that there is more time and scope to use the features of functional lan

guages, such as laziness and compositionality. The Haskell portion of the maze game is
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especially rich in functional techniques.

Finally, as the interface is being written in the imperative languages Tel, all the usual 

interaction with external systems not possible in a functional language can now be man

aged. For example, signals from operating systems can be programmed in standard 

ways. These can be handled within the Tcl/Tk system without affecting the operation 

of the functional program. If a signal requires some action on the part of the functional 

program, then it can be turned into a high-level event and handled in the normal manner.

3.6 Summary

I have presented a system whereby a functional program may be connected with a separate 

interface process, thus providing a means of user interaction for the functional program.

This external system is written using the Tcl/Tk system, a language and toolkit com

bination. Using Tel the interface designer can create a fully functioning interface which 

may then be connected, by way of simple communication channels, to any other program 

which understands the communication protocol.

In my case, I was interested in providing this interface for functional programs, written 

in Haskell. Using the standard 1/O mechanisms in the functional language, the interface 

and application program communicate, commands being sent to the interface in the Tel 

language for direct interpretation by its interpreter. Events and replies coming from the 

interface are coded as simple strings, which may be parsed by the functional program.

The first two examples show how easy it is to build interfaces for functional programs 

in Tcl/Tk, and how easy it is to communicate with these interfaces using simple commands 

to instruct the interface.

The examples taken from Chapter 2 show how easy it is to adapt existing programs 

to put a graphical interface on top of its textual one.

In the next chapter I shall discuss to what extent my solution meets the requirements 

set out in the Introduction.



Chapter 4

Assessment

In this chapter I review my system to see if it meets the requirements as I have laid them 

out. I will also highlight any strengths or weaknesses in the system, which can lead to 

improvements in the overall system.

4.1 Requirements

I have set a number of requirements over the course of this thesis, initially set out in the 

introduction, then extended further in Chapter 2. I shall now review them quickly.

• Requirements from Functional Programming

The programs written to use my system must be programmed in a functional manner 

and it is not acceptable to modify the language in a way that would compromise 

referential transparency.

• Software Engineering

The system I create must be capable of creating good modular programs. Mainte

nance and portability of these programs are very important.

• HCI

The process of interface creation is iterative, participatory and exploratory. I must 

ensure these elements of interface design are properly supported.

87
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• UIST

The first aspect of UIST requirements demands that the interfaces are separated 

from the application core. This helps make possible the demands of the HCI issues.

The other key area is that of supporting multiple concurrent threads of operation. 

Within each thread a programmer may wish to impose some sequencing, but sep

arate dialogue threads in different areas of the interface must be able to operate 

independently of each other, without interference.

• Overall Requirements

There are requirements which all of the above areas demand.

The first is that of effort, both in design and construction of the program and 

its interface. There is no point in creating a system which meets all the other 

requirements if it is impossible to design and implement useful programs with it. 

The system I produce must be easy to use.

Portability is always a desirable element. I should avoid making choices which lock 

programmers into one environment.

Lastly, I should plan for the future, and allow the system I build to grow with 

people's requirements. I should also be aware that a flexible approach is required 

to allow for new developments. Whatever system I devise should have good 

extensibility.

• Further Requirements

After my investigation of Functional I/O  in Chapter 2 ,1 enhanced my requirements

i
1

Î
with some specific points which would apply to the functional programs that would 

be written.

I need to ensure modularity within the functional program. The code which man

ages the interface cannot get entangled with the actual application code.

I found that some I/O  solutions were not immediately extensible to allow for future 

flexibility. I should ensure this does not happen.

It is important that the programming effort within the functional program of I/O  is 

not too high. It is important that a simple I/O  system is used.
.1;

Ï
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I wish to support a multi-threaded style of functional programming, which would 

match the multi-threaded nature of interaction.

4.2 Do I meet the Requirements?

I believe that my system meets all the requirements outlined above. While the addi

tional functional programming requirements are not perfectly matched, I feel that there 

is nothing inherent in my design which would prevent further work in this area to move 

it nearer the actual requirements. In all other areas, I believe that I meet or exceed the 

requirements.

For each of the requirements, I shall now discuss below whether my solution matches 

them and, if a particularly good match, any additional benefits accrued from my system.

4.2.1 R equ irem en ts from  Functional Program m ing

It is important that programmers are allowed to use the particular features of functional 

languages when they write their programs and are not forced to compromise their design 

to fit in with the interaction style. I believe that I accomplished this.

By programming the interface in a separate system, the only interaction that the 

functional program would have to take part in would be at a very high level with the 

interface. This allows the functional programmer to concentrate his programming efforts 

on the main task and not have to worry about the complexities of interacting with users. I 

argued in Chapter 2 that functional languages were not well suited to programming user 

interaction.

My second example program, the maze game, uses functional features, such as com

position and laziness, a great deal. When handling the interaction, continuation-style 

I /O  was employed which is very compositional and is well suited to small amounts of 

interaction.

I also stated that I should not compromise referential transparency within the func

tional framework but, as I have not needed to adapt the functional language at all, I easily 

meet this requirement.
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4.2.2 Software Engineering

Programs written using my system must be modular. Maintainability and portability are 

very important. Unfortunately, these concepts are very hard to measure.

My example interfaces were too small to get a good idea of how modular their code 

was, but I have a clear distinction between code which is used to create the interface, the 

code which is used to maintain it, and the code used to communicate between interface 

and application. Their maintainability can only be guessed at, but their typically small 

size must help here. Portability rests on Tk/Tcl and I have avoided using any particular 

system-dependent features.

Inside the application code, I have separated code which deals with the interface and 

interaction from code which deals with application data, and its manipulation. Because 

of this, maintainability is kept high and portability is limited only by the way in which the 

functional 1 /O system interacts with the operating system the program is running upon.

4.2.3 HCI

Tel, as an interpreted language, cuts out the compilation phase, leading to faster turn

around of interface design. This leads to a fast loop in an iterative design loop.

Much more important is that Tk will allow external processes to communicate with 

the running program; for example, to up-load revised versions of procedures or to change 

the values of variables. This allows the interface to be created interactively, textually or 

using a combination of the two techniques. It is possible to actually adapt the interface 

while a user is working with it, allowing high levels of participation in the design of the 

interface and making exploration easy and fast.

4.2.4 UIST

The key area which needs to be addressed from UIST is separation. I look at this first, 

discussing other aspects of UIST afterwards.

Separation

My complete system was built upon the concept of separation, so it is no surprise that I 

do particularly well here. I have complete divorce of control between the interface and
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the application program.

The discussion in Section 2.6.1 explained how it is easy to break software engineering 

guidelines by unnecessary coupling between user interface code and application code. 

I want such interaction to be minimised in my implementation. My separate interface 

provides this.

By operating the interface of a program as a separate process it is more difficult to 

compromise the modularity of the code by having too much coupling. The interface 

communicates with the application, but as separately written bodies of code, and so the 

coupling is minimised. An especially useful consequence of this is that it becomes much 

easier to modify the interface without requiring much, if any, restructuring of the rest of 

the program.

This does not go as far as the complete separation put forward by some HCI re

searchers [6] where it would be possible to completely change the structure and style of 

the interface without modifying the application— separation of representation. However, 

taking the initial small step of having the interface constructed separately is a sufficient 

goal for which to aim. For complete separation a greater abstraction would be required 

between the interface and the application program. Currently, the application needs to 

have some knowledge of aspects of the interface and, likewise, the interface needs to 

know things about the structure of the application, such as requiring that the application 

works in an event style of programming. A third component of the system could manage 

communication between the interface and application, coordinating their interaction and 

removing assumptions they have to make about each other.

I have demonstrated that the functional application can be developed separately from 

the interface, with the example of the maze game which was developed in two different 

countries.

Other aspects of UIST

Tel provides a sequencing within its language. Concurrent interaction is achieved by 

running the interface as a separate process from the application, so user input will continue 

to be handled while the application is busy.

I have not addressed threading directly, but some amount of threading is natural in
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Tcl/Tk programs. Within the functional language, threading is not done.

An important area I have also failed to address fully is error-handling, both in terms 

of system errors and the user's mistakes. This should be addressed in any further 

explorations on the interface side of this work.

4.2.5 Overall Requirements

These were the requirements common to all the above areas.

Ease of Design

Designing interfaces in Tcl/Tk is easy. First there exist tools which make it easy, allowing 

interaction lay-out of an interface, with simple programmatic tasks being written for you.

Designing the communication protocol between the interface and application is a 

matter of deciding the semantics and functionality available in the interface. It should be 

possible to express all this in a concise format within the protocol.

As for the design of the application, it is easier than before, where all the interface had 

to be included in the design or the program, along with all the functionality.

By separating the design into these three areas, it becomes easier to modularise the 

design phase and the difference between interface and functionality becomes clearer.

Ease of Construction

The Tk toolkit is very easy to use, allowing people with no experience of programming 

for the X Window System to create simple programs after only hours of experience with 

Tel and Tk. Of course, to get the most out of Tk requires careful study, but remarkable 

complexity of design can be achieved with relative ease.

The functional programmer's interface to the user interface, being via the standard I /O  

system of the functional language, is no worse than any other current way of programming 

user interfaces from a functional language. Any user interface system implemented 

within a functional language that does not communicate via the I/O  system could be 

used to control a Tk interface. Any new abstraction over the I/O  system could also be 

employed to communicate with the interface.

JS
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I argue that, just as Tcl/Tk makes creating graphical interfaces for programs written 

in C easier than just using C on its own, the same benefits are to be found by using 

Tcl/Tk rather than a functional language for interface creation. I feel it is important 

to acknowledge that special-purpose languages can produce better results, easier than 

general purpose languages, either imperative or functional.

Portability

Tel creates a slight layer of abstraction over the normal operating system functions, al

lowing the same Tel program to run unchanged on different versions of the same (Unix) 

operating systems and with little change between different operating systems.

Likewise, Tk abstracts from features of the X Window System, making it possible 

to move between versions of X and different displays with different features, without 

requiring special handling within the program. In the future it is expected that versions 

of Tk will exist which will run on Macintosh and Microsoft Windows, allowing easy 

porting, i.e. with very little modification required, of Tk/Tcl programs between very 

different operating systems.

By handling all these issues outside of the functional language and programs, porting 

the functional language between different machines is made easier. Also, because the 

functional programs do not use an embedded interface to a window system in my system, 

no modifications are needed if extensions of the system are required. If I used an extension 

to the language, then incompatibilities could be introduced when the devised interface 

does not abstract sufficiently from the implementation.

Flexibility

My system gains all its interface flexibility from Tk. Tk has been used to create many 

diverse programs, from simple games to complex presentation creation systems. Plus, 

if Tk is found to be lacking in any particular feature, then it is easily extended: many 

extensions already exist for Tk, proving how simple this is.

Often Tel and Tk are used to create graphical interfaces for programs which are not 

interactive or not so sophisticated in their interaction. This is basically what my system 

does, except that the unsophisticated interactive programs in this case have been written
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in a functional language and a discipline of communication has been specified.

As I am not changing the functional language, I do not affect its inlierent flexibility. It 

must be pointed out, however, that unlike other systems, I do not put any restrictions on 

the I/O  system in use in the functional language.

4.2.6 Further Requirements

I had some further requirements specifically from the point of view of the functional 

program, and the use of its I/O  system. Some of these points are simply lending extra 

weight to the requirements already given. The main emphasis, however, is that I do not 

restrict the way functional programmers goes about their task.

M odularity of FP

With respect to modularity of the functional programs, my system does not impose a 

particular style of functional programming that inhibits intrinsic modularity within a 

program. This can be seen as meeting the requirement.

At the same time, the application has an overall benefit by having the interaction code 

removed into a separate system. The removal of interface code will make the functional 

code cleaner in design, with less management of interaction, which can be troublesome 

in functional languages.

Flexibility in I/O system

It is important that the way users communicate with the functional programs through 

the interfaces is not restricted to current ideas, but that the environment can grow to meet 

future requirements. I have been using the continuations I/O  system to communicate 

with the interface. As this communication is simple text, there is no danger of unknown 

features being unavailable due to lack of power in the functional I /O  system. However, 

there is the possibility that more structured communication is required some time in the 

future.
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Effort

By taking the handling of the interface out of the functional program, I have simplified the 

programming task. The functional programmer still has to deal with high-level events, 

but these are by nature well specified and do not need the careful handling that low-level 

events require in order to achieve good interaction.

The communication between the interface and application core is purely textual. This 

is very easy for the functional programmer to deal with, splitting the input up into lines, 

which can be easily pattern matched. Output is, again, line-based and is made very easy 

for the functional programmer using the standard 1/O system of the language.

M ultiple threads in FP

Multi-threaded execution of the functional program is an area I have not addressed at all. 

I have taken an event-loop structure for my functional programs and this, to an extent, 

gives an illusion of multi-threading, but multiple threads of state are what is missing, and 

so my programs are still fixed to a sequential evaluation model, with the programming 

overhead of current state being passed arotmd all parts of the program. This is an area of 

current research, and I will come back to it in the conclusions in Chapter 5.

4.2.7 Summary

With its clean interpreted style. Tel makes a good language with which to build user 

interfaces. The Tk toolkit built on top of Tel provides a complete system for creating 

interactive programs. Its ability to multiplex multiple input and output streams allows 

it to build responsive interfaces which can interact with the user and application at the 

same time.

4.3 Strengths and Weaknesses

There are places where my system does not match up with the ideal. There are also places 

where my system excels, simply because of some of the decisions made in its design.

Perhaps the most obvious flaw is that functional programmers, in order to create 

interfaces using Tk and Tel, need to learn the imperative Tel language, which can surely
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not be as powerful as the functional languages they are used to. The answer to this is 

simple: user interface creation is not the same as programming. Interface creation is 

becoming a more specialised job, not involving as much programming but, instead, it 

involves tools tailored for the creation of user interfaces. Many of these tools require the 

use of their own language for specifying aspects of interaction which are not necessarily 

programmatic in nature. Tel has full programmability, making it more powerful than 

many other languages used in such applications, while its use is normally limited to 

quite a simple subset of its facilities. At a more pragmatic level, learning to use the Tk 

toolkit will be no harder than any other way of communicating with a window system to 

implement an interface.

I have a very strong reliance on Tk and Tel. As a result, I am limited to what they 

offer, although I could resort to programming, in a different language, to enhance Tk 

and Tel, incorporating any features I might need. For existing applications, few other 

authors have needed to extend either Tk or Tel, although some require one or more of 

the readily available extensions, which are also available to the functional programmer, if 

needed. Often the key reason why people are forced to program extensions to Tel/T k is to 

speed up the application's processing. As the applications are already in a fast compiled 

language, this should not be a concern.

I run the interface as a separate process from the functional program. Some operating 

systems are not able to do this and so I have limited the ability to port my system. 

Flowever, any operating system, with some form of multi-threading, will be able to 

use the same basic techniques. Without some form of concurrency, any system which 

provides graphical interfaces to functional languages would have to be careful about lack 

of response from the interface when the functional program is executing. It is for this 

reason that I have used separate processes, and so I avoid this problem.

My biggest strength is the simplicity of Tk. Tk is far simpler to learn to program than 

the raw programmer's interface to the window system. It is also much simpler than most 

toolkits. Tk interfaces are easy to write. Tk sits at a relatively high level of abstraction, 

and Tel creates such a clean programming environment that Tk programs can be a tenth 

of the size of competing systems. The ubiquitous "Hello World" program in standard 

OSF/Motif is 38 lines long, while in Tk/Tcl it is only 2 lines long.

Despite my current reliance on Unix discussed above, my approach, although per
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haps not my particular implementation, is highly portable and could allow a functional 

program to be moved between different machines with only a recompilation. To port 

the interface, assuming that Tk exists on the target system, would require little work. 

Without having Tk on the remote system, as long as some similar system exists, such as 

Visual Basic on Microsoft Windows, it would be possible to re-write the interface in that 

language, without needing to re-work the functional code.

My biggest feature is that the interface is created and exists separately from the 

application. This allows rapid prototyping and testing of interfaces while functional code 

is incomplete. Tk is an ideal tool for rapid prototyping. The interface creator can directly 

work with the interface, while it is running, using the Tel language, both testing the 

application's programmatic interface, and modifying and customising the user interface 

directly. Using a user interface creation tool allows the programmer to test-drive the 

interface, and to modify it seemlessly.

Separation of interface allows programs to be developed separately, the application 

code being written by one person, the interface by another. Once there is a high-level 

protocol defined between the application and its interface, the two programmers can 

work totally independently, only bringing the two parts together when complete.

Tk with Tel is powerful. The interfaces created using Tk do not lack features compared 

to other systems which might appear better due to their greater complexity. While the 

Motif toolkit has features that Tk lacks, the reverse is also true.

4.4 Summary

I believe that my system of using Tcl/Tk to create user interfaces meets the require

ments laid out. I have found an especially useful facility in Tcl/Tk, to create interfaces, 

simplifying the job of the functional programmer, who is saved the trouble of complex 

programming of user interfaces in a functional language.
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Chapter 5

Conclusions

i;

i

I conclude with summaries of the background to my work and what I have done, followed 

by a list of my achievements and how my work could be further exploited. I then set out 

a number of areas where this research could be extended.

5.1 Summary of Background

I set out to tackle the problem of creating good user interfaces for programs written in 

functional languages. I shall review why this is an interesting problem. Firstly, why 

bother with functional languages?

Functional languages take a very high level approach to programming, where they de

scribe mathematically the solution to a problem, thus implying a computational method, 

rather than explicitly specifying what operations are required, as is needed in the more 

traditional imperative languages. This gives the programmer a much more expressive 

language to work with, making shorter, more powerful programs.

During the time functional languages have been developed, user interaction tech

niques have developed, allowing users to interact with programs in a simple and easy 

fashion, typically through a window-based interface, controlled by a mouse. These in- -!

terfaces have brought more power to the user by providing easy ways to do complex 

things.

Unfortunately, programming graphical user interfaces has always been done in a 

very imperative style, reflecting current techniques. Until recently, little work had been
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done to adapt either functional languages or user interface toolkits, to allow them to 

work together. Functional languages have not been able to exploit current teclinology 

from Human-Computer Interaction (HCI) and User Interface Software Technology (UIST) 

research.

By adopting principles from other branches of computer science, I set out to find 

a solution to this problem. I took with me principles of program design from software 

engineering, rules of interface creation from HCI and, finally, techniques for programming 

user interfaces from UIST.

5.2 Summary of Work

I have surveyed existing methods of simple textual I/O  in the language Haskell, as a 

representative of functional programming languages. It is currently rich in I/O  tech

niques, with the well-tried traditional dialogue style; its cousin, continuations; and the 

new technique, monadic I/O . I concluded that continuations were much easier to use for 

simple tasks than the other two, but monadic I/O  wins out in the end due to its greater 

over-all flexibility.

Moving on from textual I/O , I examined two systems which allow user interfaces to 

be created from within a functional program. The first. Budgets, is a totally functional 

solution, developed on top of the existing dialogue I /O  system from Haskell, with some 

simple extensions to allow the language to communicate at a low-level with the window 

system. The second was built into the language Concurrent Clean, which provided 

primitives and a novel type system to allow the programmer to invoke user interface 

functions in a functionally pure style. Both these approaches I found to be awkward, 

requiring a difficult programming style which is alien in the clean world of functional 

languages. Neither allows programmers to exploit user interfaces designed by UIST tools.

With all this behind me, I set out to create a powerful system for creating user interfaces 

for functional languages, while retaining the purity and style of the functional language. 

I did this by creating the user interface outside of the functional world, but tied the 

interface to the functional program through a high-level dialogue, which the functional 

program would interact in using conventional I/O  methods. This was a key point from 

UIST, which showed that interfaces should be highly separated from their application
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programs.

The interfaces for my programs are created using a language called Tel, a simple 

interpreted imperative language, and the user interface toolkit, Tk. Together, they allow 

highly complex interfaces to be built with remarkable ease. By using the Tel language to 

allow the interface to be controlled by the functional program, I was also able to give a 

very high level of interaction between program and interface. The Tcl/Tk system, by its 

nature, allowed a highly flexible interface development style, as guided by HCI research.

I implemented this by extending the Tel language to allow it to spawn a new process, 

a functional program, with which it can communicate via three channels. These are used 

by the functional program to communicate with, and control, the interface. Because 

the interface existed as a separate process to the application, many of my requirements, 

involving modularity and interactive response, were easily met.

Experiments with the system involved creating two sample applications — a very 

simple clock, and a more complex three-dimensional maze game. I found it to be easy 

to create interfaces to the functional applications which had been written. The maze 

application program and the interface were written separately by two people, showing 

that the interface was created through a separate design process from the application.

Further trials involved taking the examples developed in Chapter 2, and giving them 

new interfaces using my system. This shows how my system is a relatively uncomplicated 

addition on top of the existing I/O  system of a functional language.

The four example programs show my system to be workable, meeting all my early 

requirements in full. Particular requirements concerning how the functional program 

should be written, and how I/O  within functional programming might be improved, 

were not examined especially closely, as they would inevitably require development and 

modification to the basic language, but I believe that I have made some improvement by 

removing interaction code from the functional program, where it obscures the clarity of 

the functional computation.

5.3 Achievements and Possible Developments

My achievements are as follows:



5.3. Achievements and Possible Developments 101

• I have developed a system for building graphical interfaces to functional programs. 

This uses an external program to provide the interface, which communicates with 

the functional program using a high level of abstraction. This allows the functional 

programmer to devise functional programs with less worry of how it will interact 

with the user.

• I have enabled principles of program and interface design to be applied to the 

construction of interfaces for functional programs.

From software engineering, I have used the concept of cohesion and coupling to 

guide programmers in producing modular programs.

From HCI, I have applied principles of interface design to guide my choice of 

interface creation system, ensuring that interfaces for functional programs are easy 

to design.

From UIST, I have employed guidelines which mean that the interfaces created with 

my system are flexible and usable, while being easy to program.

• Technically, I have extended the Tcl/Tk system, and so created a means of build

ing communication links from the Tcl/Tk system to programs written in other 

languages. The modifications required to the run-time system of the Haskell B 

compiler system I was using were minimal, and were subsequently adapted and 

adopted by the compiler's author.

• I have shown that this system is usable in both small and larger applications.

I created a small interactive alarm clock program which, by necessity, has a periodi

cally updated display. This display remains active no matter what other interactions 

are also happening, showing that programs which must respond attentively to the 

user are possible.

A larger program, a maze game showed that more complex interaction is possible, 

where large graphical displays could be managed by my interfaces, controlled by a 

functional program.

• I have shown how existing programs can be adapted to give them a graphical 

interface, rather that a textual one. This involved taking the examples developed



Conclusions 102

in the discussion of I/O  systems for functional languages and adapting them to my 

system.

It is possible for others to apply this work in further ways. A number of people have 

experimented using the same system to allow better interfaces to be created for non

functional languages which also have suffered problems with interaction. It would be 

interesting to see how suited the system is to large-scale applications, involving multiple 

windows and a greater level of interaction.

5.4 Further Work

Further investigation should be given to ways of structuring the development of func

tional programs, to find a natural way to codify such things as event loops or callbacks 

or to find better abstractions which are more suited to the functional style. This would 

allow functional languages to be structured in ways better suited for interaction.

Multi-threading should be investigated in the context of functional languages. Cur

rently, laziness gives a natural form of multi-threading based upon data demand, but I 

would like to investigate ways of running co-operating threads of execution which do 

not, or rarely need to, communicate. Chapter 2 referred to a scheme which would allow 

multiple output threads, involving the creation of new demand-driven output channels. 

I believe this to be a poor choice, for the same reasons that I believe the lazy inputs 

channels, as currently implemented by Haskell, to be a poor feature. Instead, if the idea 

were to be extended, to have multiple I/O  worlds which could rendezvous to exchange 

data, this might be one way of introducing threading.

In this work I have only considered interaction with users. This can be seen as a 

specialisation of other types of interaction, such as the interaction a program would 

have with an operating system. For portability reasons, it does not make sense to define 

specific operating system interfaces in a functional language. This would result in reduced 

portability to different operating systems which might not support the same feature set, 

or could require a different style of interaction to achieve equal results. Instead, for the 

same reason as I prefer to deal with user interaction outside of the functional language, 

I would like to take all operating system interaction out of the functional language, and 

into a system like Tcl/Tk. In fact, there are extensions to Tel which allow for large amounts



5.4. Further Work 103

of system interaction which could be pursued further.

HCI research goes very much further than I have along the road of separation between 

user interface and application core. Cockton [7], for example, separates the complete 

program into interface, application and, between them, a 'linkage'. It is the linkage 

component that maps between what the application expects of the interface, and the 

interface expects of the application. The linkage is allowed to have knowledge about 

interface and application, permitting them in turn to be totally ignorant about each other. 

This gives even higher portability of interfaces and application, which can be created 

using specialist tools which would not need the extra weight of requiring tailoring to a 

particular mode of interaction. I would like to investigate what effects this would have 

on ease of creating interactive functional programs.
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Appendix A

Example from Introduction

A .l Graphical Interface Hello World in C

/*
* xhello.c - simple program to put up a banner on the display 
*/

/* Header files required for all Toolkit programs */
#include <X11/Intrinsic.h> / *  Intrinsics definitions * /

#include <Xm/Xm.h> /* standard Motif definitions */

/* Public header file for widgets actually used in this file. */
#include <Xm/Label.h> /* Motif Label Widget */

main(argc, argv) 
int argc; 
char * * argv;
{

XtAppContext app_context;
Widget topLevel, hello;

topLevel = XtVaAppInitialize(
&app_context, /* Application context * /

"XHello", / *  Application class */
NULL, 0, /* command line option list */
&argc, argv, /* command line args */
NULL, /* for missing app-defaults file */
NULL); /* terminate varargs list */

hello = XtVaCreateManagedWidget(
"hello", /* arbitrary widget name * /

xmLabelWidgetClass, /* widget class from Label.h * /

topLevel, /* parent widget */
NULL); /* terminate varargs list */

/* Create windows for widgets and map them. */
XtRealizeWidget(topLevel);

/* Loop for events. */
XtAppMainLoop(app„context);
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Examples from Chapter 2

B.l Continuation-style ATM

module Main where 

{-
The "bank" program... A simple auto-teller. 

We're going to use continuations for this one.

= readChan stdin exit $
\input -> atm (lines input)

The behaviour of an atm specified in continuations.

atm
atm

customer
customer

services
services

Result
insert_card_message
card_in
enter_pin_message
customer

: ; Result

pin_no $
\pin -> 
\valid_pin

Pin_OK

Retry

Thief

Wally

: : Result

service $

validate_pin_no pin $
“> case valid_pin of
-> service_prompt $

services
-> retry_message $

customer
-> keep_card_message $

atm
-> learn_number_message $

eject_card $
atm

-> mydone

108
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\which -> case which of

cash
cash

more
more

Reguest_Cash -> cash
Request„Check„Book -> ack_check_book $

more
Request_Balance -> show_balance $

more
Request_Statement -> do_statement $

more
-> mydone

Result
amount_prompt $ 
amount $
\amount__guery ->

Amount_Hopeful

Amount_OK

\doit

case amount„query of 
-> sorry_but_message

cash
-> conf irm_prompt

confirm $
-> case doit of
Confirm ->

Cancel

Result
ej ect_card $
another_servic0_message $ 
eject $
\answer -> case answer of

Continue ->

Card_Out ->

- >
- >

mydone

prof fer__card
take_card
proffer„cash
take_cash
atm
more
mydone

service_prompt
services
atm
mydone

messages.. .

insert_card_message
message

enter_pin_message
message

keep„card_message
message

learn_number_message
message

retry_message
message

servi ce_pirompt 

ack_check_book 

show_balance 

do_statement

message

message

message

message

amount_pirompt
message

sorry_but„message
message

confirm_prompt

"Please insert your card for service,.. 

"Please type your PIN."

"Sorry, too many tries. I'm keeping it! 

"Sorry, wrong number!"

"Incorrect PIN, please try again."

"Please select a service 1-4."

"A cheque-book will be sent out to you. 

"Your balance is <some-amount>"

"Please take your statement."

"Please type an amount of cash."

"You'll be lucky!"
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message "1 to continue, 2 to cancel" 
proffer_card =

message "Please take your card."
proffer_cash =

message "Please take your money, have a nice day!"
eject_card =

message "Here's your card."
another„service_message =

message "take it with 1, put it in again with 2."

hit return...

card_in 
take_card 
take cash

hit_return
hit_return
hit_return

functions for the "Reply" types...

data
data

data
data
data

Valid__Replys
Service_Replys

Amount_R eplys 
Confirm_Replys 
Eject_Replys

int2valid
int2valid
int2valid
int2valid

int2service
int2service
int2service
int2service

int2amount

int2confirm 
int2confirm

int2eject
int2eject

Pin_OK I Retry | Thief | Wally
Reques t_Cash
Reguest_Check_Book
Request^Balance
Request_Statement
Amount„Hopeful | Amount_OK
Confirm | Cancel
Continue | Card_Out

Pin_OK
Retry
Thief
Wally

Request_Cash 
Request_Check_Book 
Request_Balance 
Request_Statement

] n < 30 
otherwise

Amount_OK 
Amount_Hopeful

Confirm
Cancel

Continue 
Card Out

functions to take user input into various types...

validate_pin„no : : 
validate_pin_.no =

Int -> (Valid_Replys -> Result) -> Result 
continuation int2valid

pin_no = number_input id

service = number_input int2service

amount = number_input int2amount

confirm = nuraber_input int2confirm

eject = number_input int2eject

continuation (b -> a) -> b -> (a -> Result) -> Result
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continuation x y z = z (x y)

noop X = X

difficult stuff...

type Result = [String] -> [Response] > [Request]

type NumCont = Int -> Result

message ; : String -> Result -> Result
message mess xx =

\input > appendchan stdout ("\n"++mess++"\n") exit (xx input)

mydone input = done

hit_return : : Result > Result
hit_return cont =

\input -> case input of
(1:1s) -> cont Is
[ ] -> done

number_input (Int -> a) -> (a ~> Result) -> Result
number_1nput f cont =

\input -> case input of
(1:1s) -> cont (f (read 1)) Is
[ ] -> done



Examples from Chapter 2 112

B.2 Monadic I/O ATM

module Main (mainlO) where 

import PreludeGlalO 

{~
-- The "bank" program... A simple auto-teller. 

-- This time using Monads.

-}
mainlO : ; 10 ()
mainlO = readChanlO stdin

\input -> atm (lines input) 
\a -> done10

'thenio’ 
'thenlO’

The behaviour of an atm specified in monadic operations...

atm : : B ()
atm = insert_card_message 

card_in
enter_pin_message
customer

' thenB„ 
‘thenB_ 
'thenB

customer ; : B () 
customer =

pin„no
\pin -> validate_pin_no pin

‘ thenB' 
'thenB'

\valid_pin -> case valid_pin of 
Pin_OK -> service_pirompt 
Retry -> retry_message 
Thief

'thenB_' services 
'thenB_' customer 

keep_card_message 'thenB_' atm
Wally -> learn_number_message 'thenB_' eject_card
„ -> doneB

'thenB atm

services : : B () 
services =

service 'thenB'
\which -> case which of 
Request_Cash -> cash
Request_Check_Book -> acknowledge_check_book 'thenB_' more
Request_Balance -> show_balance 'thenB__' more
Request_Statement -> print_and_proffer„statement 'thenB_' more
_ -> doneB

cash
cash

: : B {)

amount_prompt 'thenB_'
amount 'thenB'
\amount_query -> case amount„query of 
Amount_Hopeful > sorry_but_message 'thenB_' cash 
Amount_OK -> confirm_prompt 'thenB_'

confirm 'thenB'
\doit -> case doit of 
Confirm -> proffer_card 'thenB_' take_card 

proffer_cash ' thenB_' take__cash
' thenB_ 
'thenB

Cancel

-> doneB

more
doneB

more : ; 
more =

B {)

eject„card ‘ thenB_
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another_service„message
eject
\answer -> case answer of 
Continue -> service_prompt 
Card_Out -> atm 
_ -> doneB

'thenB_ 
'thenB’

thenB_' services

-- messages...

insert_card_message = message "Please insert your card for service..." 

= message "Please type your PIN."

= message "Sorry, too many tries. I'm keeping it!"

learn_number_message = message "Sorry, wrong number!"

retry_message = message "Incorrect PIN, please try again."

service_prompt = message "Please select a service 1-4."

enter_pin_message

keep_card_message

acknowledge_check_book = message "A cheque-book will be sent out to you." 

show_balance = message "Your balance is <some-amount>"

print_and_proffer_statement = message "Please take your statement."

amount_prompt = message "Please type an amount of cash."

sorry_but_message = message "You'll be lucky!"

confirm_prompt = message "1 to continue, 2 to cancel"

proffer_card = message "Please take your card."

proffer_cash = message "Please take your money, have a nice day!"

eject_card = message "here's yer card."

another_service_message = message "take it with 1, shove it in again with 2,

-- hit return,..

card_in = hit_return

take__card = hit_return

take_cash - hit_return

-- functions for the "Reply" types...

data Valid_Replys = Pin_OK | Retry | Thief | Wally 
data Service_Replys = Request_Cash

I Request_Check_Book 
I Request_Balance 
I Reques t__Statement 

data Amount_Replys = Amount„Hopeful j Amount_OK 
data Confirm_Replys = Confirm | Cancel 
data Eject_Replys = Continue | Card_Out

int2valid 1 = P i n O K
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int2valid 2 = Retry 
int2valid 3 = Thief 
int2valid 4 = Wally

int2service 1 = Request_Cash 
int2service 2 = Request_Check_Book 
int2service 3 = Request_Balance 
int2service 4 = Request„Statement

int2amount n | n < 30 = Amount_OK
I otherwise = Amount„Hopeful

int2confirm 1 = Confirm 
int2confirm 2 = Cancel

int2eject 2 = Continue 
int2eject 1 = Card_Out

-- functions to take user input into various types,..

validate_pin_no : : Int > B (Valid_Replys) 
validate_pin_no x = returns (int2valid x)

pin_no = number__input id

service = numtaer_input int2service

amount = number_input int2amount

confirm = number_input int2confirm

eject = number„input int2eject

-- some monadic operations...

message String -> B () 
message mess -

appendChanB stdout ("\n"++mess++"\n")

hit_return :: B () 
hit_return =

getLinesB 'thenB'
\input > case input of 

Just 1 -> returnB {)
Nothing -> doneB

number_input : : (Int -> a) -> B (a)
number_input f -

getLinesB 'thenB'
\input -> case input of

Just 1 -> returnB (f (read 1))
Nothing -> doneB

-- Lower-level monad hackery.

type Lines = [String]
data Maybe a = Nothing | Just a

type B a = Lines -> 10 (a,Lines]

thenB : : B a - >  ( a - > B b )  - > B b  
thenB a k lines =
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a lines 'thenlO' \(b,linesl) -> 
k b lines1

thenB„ : : B a -> B b -> B b 
thenB_ a k lines =

a lines 'thenlO' \ l i n e s l )  -> 
k linesl

getLinesB : : B (Maybe String) 
getLinesB [] = returnlO (Nothing,[]) 
getLinesB (1:lines) = returnlO (Just 1,lines)

returnB : : a -> B a
returnB a lines = returnlO (a,lines)

promoteB : : 10 a ~> B a 
promoteB io lines

= io 'thenlO' \a -> 
returnlO (a,lines)

appendChanB x y = promoteB (appendChanlO x y)

doneB = promoteB done10

"done" in continuations will exit the program.

done10 = ccall exit 0# 'thenIO_Inttt' \ a -> returnlO (error "exit failed?"

f
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Code and Examples from Chapter 3

C.l Swish.c — Extension to Tk

/*
* Copyright 1992-1994 Duncan Sinclair

* Portions Copyright 1990-1994 Regents of the University of California.

* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted, provided
* that the above copyright notice appear in all copies. The author make no
* representation about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty,
*/

/*
* An extension to allow concurrent communication with an external process.
* e.g. a Haskell program.

* Created September 1992

* Renamed January 1993.

* Ported to tk 3.1 Feb 1993.

* Ported to tcl7.3 & tk 3.6 April 1994.
* /

#include "tk.h"

/ *
* Some extra includes...
* /

#include <stdio.h>
#include <ctype.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <errno.h>

extern int errno;

116
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* Global variables used by swish; 
*/

static Tk_Window

static Tcl__Interp *interp; 
static Tcl_DString combuffer;

The main window for the application. If 
NULL then the application no longer 
exists, * /

Interpreter for this application. */
Used to assemble lines of process input 
into Tel commands. * /

/*
* Stuff used by my forking process...
*/

/* #define FIFO */

/* their side */
#define C„OUT 13 
#define E_IN 14 
#define R_IN 15 
/ *  our side * /

#define C„IN 13 
ttdefine E_OUT 14 
#define R O U T  15

#ifdef FIFO
/* names for named pipes ' 
char c [] =
char e [] =
char r [] =

#endif

/
"/tmp/.pipec";
"/tmp/.pipee"; 
"/tmp/.piper";

/* FIFO */

Static int 
static int 
static int 
static int

cpipe[2]; /* Commands in*/
epipe[2]; /* Events out */
rpipe[2]; /* Replies out */
pid; /* pid of child process (also used as flag) */

/* starting size of length of line */ 
#define LINE LEN 200

struct line { 
char 
char 
int
struct line

};

*frep; /* What to free */
*this; /* The line */
len; /* Line length */

*next; / *  Next one */

struct qhead { 
int 
int
struct line 
struct line

};

fd; /* where it's to go */
length; /* Basically is there anything in queue? */

*head; /* First one - remove from here */
*tail; /* Last one - add after here */

static struct qhead equeue, rqueue;

/*
* Forward declarations for procedures defined later in this file: 
* /

extern int Swish_Init();



Code and Examples from Chapter 3 118

static int EventCmd()
static int ReplyCmdO
static int ThingCmd()
static int DummyCmd()
static void ComProc();

/*
* Externally visible init routine, called by TkAppInitO.

*/
int
Swish_Init(intp)

Tcl_Interp *intp;
{

interp = intp; 

w = Tk_MainWindow{interp);

Tcl_CreateCommand{interp, "event", EventCmd, (ClientData) NULL,
(void (*) {)) NULL);

Tcl_CreateCommand(interp, "reply", ReplyCmd, (ClientData) NULL,
(void (*) 0) NULL) ;

Tcl„CreateCommand(interp, "spawnchannels", ThingCmd, (ClientData) NULL, 
(void (*) 0) NULL);

Tcl_CreateCommand(interp, "dummy", DummyCmd, (ClientData) NULL,
(void (*) 0) NULL) ;

Tcl„DStringInit(Scombuffer);

return TCL_OK;

/ *

* ComProc takes input coming from "com" channel, and feeds it to the
* interpreter.

*/

static void
ComProc(ClientData, mask)

ClientData clientData; /* Not used. */
int mask;

{
static int gotPartial = 0;
char line[LINE„LEN];
char * cmd;
int ret, result;
int i ;

if (i(mask & TK_READABLE)) 
return;

for (i = 0; i < 10; i++) {
ret = read(C_IN, line, (LINE_LEN - 1));
if (ret == ~1) {

if (errno -= EINTR) { 
continue;

#if 0

#endif

) else if (errno == EBADF) (
fputs("Something not right !\n", stderr); 
fflush(stderr);
Tk_DeleteFileHandler(C_IN); 
break;

} else if ((errno == EWOULDBLOCK) || (errno == EAGAIN)) {
break;
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} else { / *  something bad's happened... */
Tcl_Eval(interp, “exit"); 
exit(0);

}
/* NOTREACHED */ 
break;

}
if (ret == 0) { /* is it eof, or is it SysV semantics ?? */

Tcl_Eval(interp, "exit"); 
exit(0);

}
line[ret] = '\0';
cmd “ Tcl_DStringAppend(&combuffer, line, ret) ; 
if (ret != 0) {

if {(line [ret - 1] != ' \n' ) &&. (line [ret - 1] != ';')) {
gotPartial = 1; 
continue;

}
if (!Tcl_CommandComplete(cmd)) { 

gotPartial = 1; 
continue;

}
}
Tk_CreateFileHandler(C„IN, 0, ComProc, (ClientData) 0); 
result = Tcl„Eval(interp, cmd);
Tk_CreateFileHandler(C_IN, TK_READABLE, ComProc, (ClientData) 0); 
Tcl„DStringPree(&combuffer);

#if 1
/* Not sure what to do with errors yet... */ 
if (*interp->result i= 0) { 

if ((result != TCL„OK)) {
printf("%s\n", interp->result);

}
)

#endif
)

These functions handled queued events and replys to send to the external 
process.

V
static void
QueueInit(queue, fd)

struct qhead *queue;
int fd;

{
queue->fd = fd; 
queue->length = 0; 
queue->head = NULL; 
queue->tail = NULL;

static int
WriteLine(queue, data)

struct qhead *queue;
struct line *data;

{
int ret, off;
char *p;

p = data->this; 
off = data->len; 
for (; ;) {

ret = write(queue->fd, p, off)
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EWOULDBLOCK)

/* must be eof 
'exit");

(errno == EAGAIN)) {

V

if (ret == -1) {
if (errno == EINTR) { 

continue;
} else if ( (errno =: 

break;
} else {

Tcl„Eval(interp, 
exit(0);

}
/* NOTREACHED */ 
break;

} else if (ret == 0) { 
break;

} else {
p += ret; 
off -= ret; 
if (off) {

/* we'll go round again, rather than break this line up */ 
continue;

} else { 
break;

}
)

}
if

}

(off) {
/* didn't manage to write it all 
data->this = p; 
data->len = off; 
return 0;

return 1;
}

/* holds the queue */

static void
FileQueue(clientData, mask)

ClientData *clientData;
int mask;

{
int ret ;
struct qhead *queue = (struct qhead *) clientData;
struct line *data = (struct line *) NULL;

if (!(mask & TK_WRITABLE)) 
return;

for (data = queue->head; data != (struct line *) NULL;) { 
if ((WriteLine(queue, data)) 

break;
/* Great I Now let's ditch this entry */ 
queue~>head - data->next;
(void) free((char * 
(void) free((char * 
queue->1ength-- ; 
data - queue->head;

data->frep) 
data);

}
if ((data == (struct line *) NULL) 

Tk_DeleteFileHandler(queue->fd)
(queue->length 0 ) ) {

static int
WriteQueue(interp, argc, argv, 

Tcl_Interp *interp;
int argc;
char **argv;
struct qhead *queue;

queue)
/* Current interpreter. 
/* Number of arguments. 
/* Argument strings. */ 
/ *  where to queue it. */
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}
}

int i, off, ret;
char *block, *p, *q, *r;
int siz = LIKE_LEN;

block = (char *) malloc(siz * sizeof(char)); 
if (block == NULL) {

T'cl_AppendResult ( interp, "out of memory in \ ,
argv[0], "\ , (char *) NULL);

return TCL_ERROR;
1p = block; 
r = block + siz;
/* I love this kind of code! */ 
for (i = 1; i < argc; i++) {

for (q - argv[i]; *p++ = *q++;) { 
if ((r - p) < 4) { 

off = p - block;
block = realloc(block, siz += 100); 
p = block + off; 
r = block + siz; 
if (block == NULL) {

Tcl„AppendResult ( interp, " out of memory in \ " ", :•
argv[0], "\ , (char *) NULL);

return TCL_ERROR;
}

}
}
* (p - 1) = ' ' ;

}
* (p - 1) = '\n' ;
*p = '\0';
off = p - block;

/*
* OK, now that block contains all argv[argc] strung together with spaces
* between them, what we going to do with it?
* /

p = block;
/* if the queue is empty, we'll try writing it straight out. */ 
if (queue->length == 0) { 

for (; ;) {
ret = write(queue->fd, p, off); 
if (ret == -1) {

if (errno == EINTR) { 
continue;

} else if ((errno -= EWOULDBLOCK) || (errno == EAGAIN)) {
break;

} else { /* must be eof * /
Tcl_Eval(interp, "exit"); 
exit(0);

}
/* NOTREACHED */ 
break;

} else if (ret == 0) {
break;

} else {
p += ret; 
off -= ret; 
if (off) {

/* we'll go round again, rather than break this line up */ 
continue;

} else { 
break;

}
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}
if (off) {

/* something to be queued */
struct line *data = (struct line *) malloc(sizeof(struct line)

if (data == NULL) {
Tcl_AppendResult(interp, "out of memory in \"", 

argv [ 0 ] , " \ , {char * ) NULL ) ;
return TCL_ERROR;

}
if (!queue->length) {

/* first entry, register file handler */
Tk_CreateFileHandler(queue->fd, TK_WRITABLE,

FileQueue, (ClientData) queue);
}
data->frep = block; 
data->this = p; 
data->len = off;
data->next = (struct line *) NULL;

/* OK, here's the fun bit - add the sucker to the end of the queue 1 */ 
queue->length++;
if (queue->head == (struct line *) NULL) 

queue->head = data ; 
else

queue->tail->next = data ; 
queue->tail = data;

} else {
(void) free((char *) block);

}
return TCL_OK;

}
/*
* EventCmd & ReplyCmd grab their args, stick 'em together, and try to send
* them off to the other side. If this blocks, then we stick 'em on the end
* of a queue, and worry about them another time.
*/

static int
EventCmd(dummy, interp, argc, argv)

ClientData dummy; /* Not used. */
Tcl„Interp *interp; /* Current interpreter. */
int argc; /* Number of arguments. */
char "argv; / *  Argument strings. */

{
if (ipid) {

Tcl„AppendResult(interp, "No co-process currently running, in \ , 
argv[0], "\ , (char *) NULL);

return TCL_.ERROR;
}
return WriteQueue(interp, argc, argv, dequeue);

}

static int
ReplyCmd(dummy, interp, argc, argv)

ClientData dummy; / *  Not used. */
Tcl_Interp *interp; /* Current interpreter. */
int argc; /* Number of arguments. */
char **argv; / *  Argument strings. */

{
if (!pid) {

Tcl_AppendResult(interp, "No co-process currently running, in \"", 
argv[0], "\ , (char *) NULL);

return TCL„ERROR;
}
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return WriteQueue(interp, argc, argv, &rqueue);
}
static int 
makepipes[)
{
#ifdef FIFO 

unlink(c); 
unlink(e); 
uniink(r );
if ((mkfifo(c, 0600) == 

(mkfifo(r, 0600) == 
goto error; 

if ((cpipe[0] = 
goto error; 

if ((epipe[0] - 
goto error; 

if ((rpipe[0] = 
goto error; 

if ((cpipe[1] = 
goto error; 

if ((epipe[1] - 
goto error; 

if ((rpipe[1] = 
goto error;

- 1 )
- 1 )

I ( m k f i f o ( e ,  0600) - - •1 )

open(c , 0_RD0NLY

open(e , 0_RD0NLY

open(r, 

open(c ,

0_RDONLY

0_WR0NLY))

open(e , 0_WR0NLY)

open(r, 0„WR0NLY)) ==

O^NDELAY)) == -1)

0„NDELAY)) == -1 )

0„NDELAY)) == -1)
== -1 )

== -1)

== -1)

return 0; 
error :

unlink(c) 
unlink(e) 
unlink(r) 
return -1

#else
if ((pipe(cpipe) == -1) 

return -1;
}

#endif
}
static void 
CloseEm()
{

if (cpipe[0] > 0) 
close(cpipe[0]) 

if (epipe[0] > 0) 
close(epipe[0]) 

if (rpipe[0] > 0) 
close(rpipe[0]) 

if (cpipe[1] > 0) 
close(cpipe[l]) 

if (epipe[1] > 0) 
close(epipe[1]) 

if (rpipe[1] > 0) 
close(rpipe[1])

}

/* FIFO */ 
(pipe(epipe)

/* FIFO */

:= -1) I I (pipe(rpipe) == -1)) {

* Split, fork, etc...

* The 'spawnchannels' command, (a.k.a 'thing' 
* /

static int
ThingCmd(dummy, interp, argc, argv)

ClientData dummy; /* Not used. */
Tcl_Interp *interp; /* Current interpreter. * /
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int argc; /* Number of arguments. */
char **argv; /* Argument strings. */

int tempfd;

if (argc <= 1) {
Tcl_AppendResult{interp, "wrong # args; should be \"", argv[0],

" program <args>\"", (char *) NULL);
return TCL_ERROR;

}
if (pid) {

Tcl_AppendResult(interp, "co-process currently running, in \"", 
argv[0 j, " \ , (char *) NULL);

return TCL_ERROR;
}
if (makepipes() == -1) {

CloseEm();
Tcl„AppendResult(interp, "couldn't create pipes in \"", 

argv[0], " \ , (char *) NULL);
return TCL_ERROR;

}
if ((pid = fork()) == -1) {

CloseEm();
Tcl_AppendResuit(interp, "couldn't fork in \"", 

argv[0], "\ , (char *) NULL);
return TCL_ERROR;

} else if (pid == 0) { /* child * /

if ((dup2(cpipe[1], C„OUT) == -1) || (dup2(epipe[0], E_IN) == -1) ||
(dup2(rpipe[0], R„IN) == -1)) { 

perror("dups");
_exit(2);

}
CloseEm();
/* if (fileName != NULL) { */ 
close(0);
if ((tempfd = open("/dev/null", 0_RD0NLY)) != 0) { /* Arg! */

close(tempfd); /* give up */
}
/* } * /
if (w 1= NULL)

close(XConnectionNumber(Tk_Display(w))); 
execvp(argv[1], &argv[1]); 
perror("execvp");
_exit(3);

} else { /* parent */
if ((dup2(cpipe[0], C„IN) == -1) || (dup2(epipe[1], E_OUT) == -1) ||

(dup2(rpipe[1], R_OUT) == -1)) {
pid = 0;
CloseEm(); 
close(C_IN); 
close(E_OUT); 
close(R_OUT);
Tcl_AppendResult(interp, "couldn't dup in \"",

argv[0], " \ , (char *) NULL);
return TCL„ERROR;

}
CloseEm();
fcntl(C_IN, F_SETFL, 0_NDELAY); 
fcntl(E_OUT, F_SETFL, 0_NDELAY); 
fcntl(R_OUT, F_SETFL, 0_NDELAY);

}
Tk_CreateFileHandler(C„IN, TK„READABLE, ComProc, (ClientData) 0); 
Queuelnit(dequeue, E_OUT);
Queuelnit(&rqueue, R_OUT);
/* Tcl_DetachPids(1, &pid); */
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* Any other initialisations here...
*/

return TCL_OK;
}

static int
DummyCmd(dummy, interp, argc, argv)

ClientData dummy; /* Not used. * /

Tcl_Interp *interp; /* Current interpreter. */
int argc; /* Number of arguments. */
char **argv; /* Argument strings. */

{
return TCL_OK;

}
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C.2 Alarm Clock — Tel Code

#!/usr/Xll/local/bin/swish -f 
4
# Front-end to a Haskell Clock
#

# Some variables...

set alarmed 0 
set setting 0

proc mainwindow {} {
frame .top -relief raised -border 1 
frame .bot -relief raised -border 1
pack append . .top (top fill expand} .bot (top fill expand}

message .top.info -text "The time sponsored by Haskell is" \
-justify center -aspect 1200 -font -*-1imes-medium-i-*--*-240- 
message .top.time -justify center -aspect 1200 \

-font -*-1imes-medium-i-*--*-240-* 
pack append .top .top.info (top padx 10 pady 10 expand} 
pack append .top .top.time (top padx 10 pady 10 expand}

button .bot.alarm -text "Set Alarm" -command {setalarm}
button .bot.death -text "Out Of Time" -command (destroy .}
pack append .bot .bot.alarm (left expand padx 20 pady 20} 
pack append .bot .bot.death (left expand padx 20 pady 20}

proc alarm (} (
global alarmed

if ($alarmed} (return} 
set alarmed 1

toplevel .alarm

button .alarm.button -text "Alarm!!!" -command "desalarm" \ 
-font -*-charter-bold-r-*--*-240-* 

pack append .alarm .alarm,button (expand padx 30 pady 30} 
after 200 flasher

proc flasher {} { 
global alarmed

if ([expr !$alarmed]} (return}

.alarm.button flash 
after 500 flasher

proc setalarm (} ( 
global setting

if {gsetting} (return} 
set setting 1

desalarm

toplevel .setter
frame .setter.top -relief raised -border 1 
frame .setter.bot -relief raised -border 1 
pack append .setter .setter.top {top fill expand} \
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.setter.bot {top fill expand}

message .setter.top.text -text "Set alarm for HH:MM:SS" -aspect 1200
entry .setter.top.time -relief sunken
bind .setter <Return> "getalarm"
bind .setter.top.time <Return> "getalarm"

pack append .setter.top \
.setter.top.text {top pady 10 fillx} \
.setter.top.time (top padx 10 pady 10 expand}

button .setter.bot.ok -text OK -command "getalarm"
pack append .setter.bot .setter.bot.ok (expand padx 20 pady 20}

}

proc getalarm (} ( 
global setting

if {[expr !$setting]} (return} 
set tim [.setter.top.time get]
if ([regexp ([0-9][0-9]:[0-9][0-9]:[0-9][0-9]} $tim]} ( 

event $tim 
destroy .setter 
set setting 0

}

proc desalarm (} ( 
global alarmed

if {$alarmed} (
destroy .alarm 
set alarmed 0

}
}

proc disp {args} (
.top.time configure -text $args

}
# create main window... 
mainwindow

# run the program... 
spawnchannels hoc
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C.3 Alarm Clock — Haskell Code

module Main(main) where 

import Time

type Chans = [(String,Char)]

main = openevents $
\events ~> openreply $
\reply -> process (cpipe,events,reply,,

process : ; Result 
process = getevent $

\event -> case event of 
(c,x) I c == epipe -> dochar x $ process 
(c,x) I c == ticker -> dotime $ process 
_ -> mydone

type Result - (String,Chans,Chans,String,String) -> [Response] -> [Request]

getevent : : ((String,Char) -> Result) -> Result
getevent cont =

\(chan, (a : events),replys,alrm,new) -> 
cont a (chan,events,replys,alrm,new)

dochar ; : Char -> Result -> Result 
dochar x cont =

\(chan,events,replys,alrm,new) -> 
if (x == chr (-1)) then -- eof

mydone (chan,events,replys,alrm,new) 
else

case X of
'\n' -> (cont (chan,events,replys,new,""))
_ -> (cont (chan,events,replys,alrm,(new ++ [x])))

dotime : : Result -> Result 
dotime cont =

\(chan,events,replys,alrm,new) ~> 
getLocalTime (die "dotime") $
\time -> if ((tss time) == alrm) then

appendChan chan "alarmXn" (die "alarm") $ 
appendChan chan (ts time) (die "dotimea") $ 
cont (chan,events,replys,alrm,new) 

else
appendChan chan (ts time) (die "dotimea") $ 
cont (chan,events,replys,alrm,new)

mydone : : Result 
mydone _ = done

continuation : : (b -> a) -> b -> (a -> Result) > Result
continuation x y z = z (x y)

openevents = readChannels [epipe,ticker] (die "opene" 

openreply = readChannels [rpipe,tmout] (die "openr")

-- bits
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cpipe = "/dev/fdl3" 
epipe = "/dev/fdl4" 
rpipe = "/dev/fdl5''

ticker = "TICK:1" 
tmout = "TIMEOUT:5"

ts num = "disp " ++ ((timeToStr . dblToTime) num) ++ "\n" 

tss = timeTotStr . dblToTime 

show2 : : Int -> String
show2 X = [chr (x 'quot' 10 + ord '0'), chr (x 'rem' 10 + ord '0')]

weekdays = ["Mon","Tue","Wed","Thu","Fri","Sat","Sun"]

months = ["Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","Oct","Nov","Dec"]

th 1 = "St" 
th 2 = "nd" 
th 3 = "rd" 
th 21 = "St" 
th 22 = "nd" 
th 23 = "rd" 
th 31 - "St" 
th X = "th"

timeTotStr ; : Time -> String
timeTotStr (Time year mon day hour min sec sdec wday) =

show2 hour ++ ":" ++ show2 min ++ ":" ++ show2 sec

timeToStr : : Time -> String
timeToStr (Time year mon day hour min sec sdec wday) =

show2 hour ++ ":" ++ show2 min ++ ":" ++ show2 sec ++ " " ++
weekdays!!wday ++ " " ++ months!!mon ++ " " ++ show day ++
th day ++ " " ++ show year

type TagCont = Chans -> Dialogue

readChannels : : [String] -> FailCont > TagCont -> Dialogue
readChannels list fail succ resps =

(ReadChannels list) : tagDispatch fail succ resps

tagDispatch fail succ (resp:resps) - 
case resp of
Tag val -> succ val resps
Failure msg -> fail msg resps

die what ( WriteError foo) =
appendChan stderr (what ': write : " ++ foo ++ "\n") abort done

die what ( ReadError foo) =
appendChan stderr (what ++ '': read: " H-+ foo ++ " \n" ) abort done

die what (SearchError foo) =
appendChan stderr (what ++ '': search : " ++ foo ++ "\n" ) abort done

die what (FormatError foo) =
appendChan stderr (what + + '': format : " ++ foo ++ "\n" ) abort done

die what ( OtherError foo) =
appendChan stderr (what ++ '': error : " ++ foo ++ "\n") abort done
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C.4 Functional Maze in X — Tel Code

#!swish -f 
#
# Copyright 1992,1993 Duncan Sinclair
#

set knotlib "swish"

set amaze "amaze" 
set icon "©maze.icon"

# Large window... 
set area 600 
set block 550 
set eye 1000 
set gap 150

set depth 5

ttlight
set cl #ffa500
#lighter
set c2 #faa200
ttdarker
set c3 #fS9f00
ttdark
set c4 #f09c00

set colO $cl
set colOa ""

set coll $c3
set col2 $c3
set col3 $c3
set col4 $c3

set col5 $c2
set col6 $c2
set col7 $c2
set col8 $c2

set col9 $c4

proc mainwindow {} {
global area depth block

frame .buttons -relief raised -border 2 -width 30 
frame .view -relief raised -border 2
pack append . .view {left fill expand} .buttons {left fill expand}

frame .buttons.gridl 
frame .buttons.grid2 
frame .buttons.grid3 
frame .buttons.grid4 
pack append .buttons \

.buttons.gridl {top fillx} \

.buttons.grid2 {top fillx} \

.buttons.grids {top fillx} \

.buttons.grid4 {top fill expand}

button .buttons.gridl.forw -text "Forward" \
-command "event in" -height 3 

button .buttons.grid2.left -text "Left" \
-command "event left" -height 3
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button .buttons.grid2.righ -text "Right" \
-command "event right" -height 3 

button .buttons.grid3.back -text "Back Up" \
-command "event out" -height 3

pack append .buttons.gridl \
.buttons.gridl.forw {top padx 20 pady 20 fill expand}

pack append .buttons.grid2 \
.buttons.grid2.left {left padx 20 pady 20 fill expand} \
.buttons.grid2.righ {left padx 20 pady 20 fill expand}

pack append .buttons.grid3 \
.buttons.grid3.back {bottom padx 20 pady 20 fill expand}

button .buttons,grid4.start -text "Restart" \
-width 20 -command "event init" 

button .buttons.grid4.new -text "New Game" \
-width 20 -command "event new" 

button .buttons.grid4.quit -text "Quit" \
-width 20 -command "destroy ."

pack append .buttons.grid4 \
.buttons.grid4.quit {bottom padx 2 0 pady 20} \
.buttons.grid4,new {bottom padx 2 0 pady 20} \
.buttons.grid4.start {bottom padx 20 pady 20}

canvas .view.piccy -relief raised -border 1 -height $area -width $area 
message .view.status -text "" -aspect 2000 -relief sunken -border 1

pack append .view .view.piccy {padx 20 pady 20} 
pack append .view .view.status {bottom fill}

bind . h "event lef t "
bind .■ ] " event out"
bind . k "event in"
bind . 1 "event right

}

proc drawrects {} {
global area depth block eye gap 
global colO colOa coll col2 col3 col4 
global col5 col6 col7 col8 col9

set can .view.piccy

$can create rectangle 0 0 $area $area -width 0 -fill $col9 
set centre [expr "$area / 2"] 
set opersp $centre
set opersp [expr "{ $centre * $eye ) / \

( $eye + $gap + ( $depth * $block ) )"] 
set c [expr "$centre - $opersp"] 
set d [expr "$centre + $opersp"]
Scan create rectangle $c $c $d $d -width 0 -fill white
$can create rectangle $c $c $d $d -width 0 -fill black -stipple gray50
set s 0 
set t $area
for (set i $depth} {$i>=0} {set i [expr "$i - 1"]} { 

set persp [expr "($centre * $eye)/ \
($eye + $gap + (($i - 1) * $block))"]

if { [expr "$i == 0"]} { 
set persp $centre 
}

set a [expr "$centre - $persp"]
set b [expr "$centre + $persp“]
set c [expr "$centre - $opersp"]
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set d [expr "$centre + $opersp"

set al [expr "$a + 1"
set a2 [expr "$a + 2"
set bl [expr "$b - 1"
set b2 [expr "$b - 2"
set cl [expr "$c - 1"
set dl [expr "$d + 1"

# back walls
$can create polygon $c $c $c $d $d $d $d $c -fill $colO -tags aO$i

# 4 walls ajoining back wall.
$can create polygon $c $s $C $c $d $c $d $s -fill $coll -tags al$i
$can create polygon $t $c $d $c $d $d $t $d -fill $col2 -tags a2 $i
$can create polygon $d $t $d $d $c $d $c $t -fill $col3 -tags a3$i
$can create polygon $s $d $c $d $c $c $s $c -fill $col4 -tags a4$i

tt border lines of this layer's walls.
$can create line $a $a $c $C $c $s $C $c $d $c $d $s $d $c $b $a
$can create line $b $a $d $C $t $c $d $c $d $d $t $d $d $d $b $b
$can create line $b $b $d $d $d $t $d $d $c $d $c $t $c $d $a $b
$can create line $a $b $c $d $s $d $c $d $c $c $s $c $c $c $a $a

# 4 side walls.
$can create polygon $a2 $al $c $c $d $c $bl $al \

-fill $col5 -tags a5$i
$can create polygon $b $al $dl $c $dl Sd $b $bl \

-fill $col6 -tags a6$i
$can create polygon $b $b $d $d $c $dl $al $b \ 

-fill $col7 -tags a7$i
$can create polygon $a $bl $c $d $c $c $a $a \

-fill $col8 -tags a8$i

set opersp $persp
}

}
tt "public" proceedures...

tt set a wall on... 
proc on {depth wall) {

global colO coll col2 col3 col4 col5 col6 col7 col8 col9

append aa a $wall $depth 
append bb col $wall
.view.piccy itemconfigure $aa -fill [set $bb]

}
ttset a wall off... 
proc off {depth wall} {

append aa a $wall $depth 
.view.piccy itemconfigure $aa -fill ""

}
tt set the walls for a particular depth... 
proc walls {depth args) {

global colO coll col2 col3 col4 col5 col6 col7 col8 col9

set wall 0 
foreach foo $args { 

set aa "" 
set bb ""
append aa a $wall $depth 
case $foo in {

{ 0 }
{.view.piccy itemconfigure $aa -fill ""}
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{1} 
I

append bb col $wall
.view.piccy itemconfigure $aa -fill [set $bb]

}
}
set wall [expr {$wall + 1}]

}
ttset info message... 
proc status {a args} { 

set mess "" 
case $a in {
{b}
{append mess "Hey you've been here before. You're still missing " \ 

$args \
" rooms."}

{w}
{append mess "Welcome to the Maze 1"}

{f}
{append mess "You've now seen all the rooms. It took you " \

$args \
" moves."}

{m}
{append mess "You're still missing " $args " rooms."}

}
■view.status configure -text $mess

}

wm iconbitmap . $icon 
mainwindow
status Welcome to the Maze!! 
drawrects

spawnchannels $amaze $argv
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C.5 Functional Maze in X — Haskell Code

Amaze.hs

module Main(main) where 

import Maze 

{ —
  Maze constants

mazeDimenX = 4 
mazeDimenY = 4 
mazeDimenZ = 4 
seed = 987

{--
  Main

main = getArgs exit (\argv ->
let arg = case argv of { [wl -> words w; __ -> []>

[s,x,y,z] = if length arg == 4
then (map read arg : : [Int])
else [seed,mazeDimenX,mazeDimenY,mazeDimenZ]

in
readChan epipe exit

(\inC -> newMaze (davidsRandoms s) x y z ("init": lines inC))

display = displayMaze

newMaze (s :ss) x y z events = 
let maze = malceMaze s x y z

mazeDepth = min 8 (maximum [x,y,z]j

mainLoop h m [] = done
mainLoop h m (i:r) = 

case i of
"new" -> newMaze ss x y z r
"init" ->

toCpipe (display maze mazeDepth)
(toCpipe "status w\n" -- "w"elcome 
(mainLoop (0,[position maze]) maze r))

"in" -> mainLoop' (hsucc h) (m,(walkForward m)) r
"left" -> mainLoop' (hsucc h) (m,(turnLeft m)) r
"right" -> mainLoop' (hsucc h) (m,(turnRight m) ) r
"out" -> mainLoop' (hsucc h) (m,(walkBack m ) ) r
other “>

toErr ("Unknown instruction; "++other++"\n")
(mainLoop h m r)

mainLoop' h (mO,ml ) r
= toCpipe (display ml mazeDepth)

(areWeThere h (mO,ml) r)

areWeThere (moves,seen) (mO,ml) r 
= if position mO == position ml

then {- we are just looking around -} 
mainLoop (moves,seen) ml r 

else {- we are in a new room, Maybe! -} 
if position ml 'elem' seen 
then {- we've been here before -}
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haunt (moves,seen) ml r 
else {- this is new - maybe we are lost : -) -) 

congratulate (moves,seen) ml r

haunt (moves,seen) m r
= toCpipe (hauntstring (x*y*z~(length seen)))

(mainLoop (moves,seen) m r)

congratulate (moves,seen) m r 
= let nseen = position m : seen

next = mainLoop (moves,nseen) m r 
in if (length nseen) == (x*y*z) 

then {- we've seen it all -}
toCpipe (seenAllString moves) next 

else { - w e still missing some rooms -}
toCpipe (gettingThereString (x*y*z-{length nseen))) next

hauntstring n -- "b"een here before.
- "status b " ++ show n ++ "\n"

in

seenAllString n -- "finished the maze 
= "status f " ++ show n ++ "\n"

++ "It took you " ++ show n ++ " moves.\n'

gettingThereString n —  "m"issing rooms 
- "status m " ++ show n ++ "\n"

mainLoop emptyHistory maze ("init": events)

toCpipe s - appendChan cpipe s exit 
toErr s = appendChan stderr s exit 
toOut s = appendChan stdout s exit

emptyHistory = (0,[]) 
hsucc (n,s) = (n+l,s)
position (walls,orienv,oriens,pos,size) = pos 

{--
  Implementation constants

-- these are the correct definitions for hbc v. 0,999.(1,2} 
cpipe = "/dev/fdl3" 
epipe = "/dev/fdl4" 
rpipe = "/dev/fdl5"

Maze.hs

module Maze where 

{ - -
  A maze i represented by three 'arrays' of walls
  (leftWalls,downWalls,backWalls)

  the orientation of the beetle is represented by three
  vector selector functions
  (right,up,front)

  lastly there is the position of the beetle in the array
  and the dimensions of the array
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{—
  Turning in a Maze (haze?)
  we are missing the rollLeft, and rollRight

turnRight (walls , (rv, u v , fv) , (rs ,us fs) , pos , size)
= (walls , (vneg fv, uv. rv) , (fs us,, rs) , pos, size)

turnLeft (’walls. (rv,uv,fv) , (rs. us. f s ) , pos, size)
= (walls , (fv. uv, vneg rv) , (fs us,, rs ), pos. size)

turnUp (wa11s,(rv,uv,fv),(rs,us , fs ), pos, size)
- (walls , (rv. vneg fv. uv) , (rs f s,, us ), pos. size)

turnDown (walls. (rv,uv,fv) , (rs. us. fs) , pos, size)
= (walls , (rv, fv, vneg uv) , (rs fs,, us ), pos. size)

  Let's Move
—}
moveRel (x,y,z) (walls, (rv,uv,fv), (rs,us,fs), pos, size)

= let rpos - (vadd (vsca x rv)
(vadd (vsca y uv)
(vadd (vsca z fv) pos))) 

in (walls, (rv,uv,fv), (rs,us,fs), rpos, size)

moveLeft = moveRel (-1,0,0) 
moveRight = moveRel (1,0,0) 
moveUp = moveRel (0,1,0) 
moveDown = moveRel (0,-1,0) 
movePorward = moveRel (0,0,1) 
moveBack = moveRel (0,0,-1)

( —
  Let's do them Beetle moves.
  Shake 'em, shake 'em.
- - }

walkForward maze =
if frontWall (0,0,0) maze then turnUp maze else
if downWall (0,0,1) maze then movePorward maze else
if backWall (0,-1,1) maze then turnDown (moveDown (movePorward maze) 
else {- that wall has to be there we are standing on it -) 

turnDown (turnDown (moveDown maze))

walkBack = turnLeft . turnLeft . walkForward . turnLeft . turnLeft

  Wall peeping
—}
lookAtFrontWall (walls, (rv, uv, fv), (rs,us,fs), pos, size) 

= let epos = vadd pos (vhalf (vadd (vabs fv) fv)) 
in (fs walls) epos

leftWall r = lookAtFrontWall . turnLeft . moveRel r 
rightWall r - lookAtFrontWall . turnRight . moveRel r 
downWall r = loo)cAtFrontWall . turnDown . moveRel r 
upWall r = lookAtFrontWall . turnUp . moveRel r 
backWall r = loo)cAtFrontWall . turnLeft . turnLeft . moveRel 
frontWall r = loolcAtFrontWall . moveRel r

{--
  Maze Creation.
--}
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makeMaze seed a b c =
let allR = fullMazeRooms a b c

allW = shuffle seed (fullMazeWalls a b c)
demolishedWalls = fst3 (iterate connect ([],allR,allW) ! !(a*b*c-l))

IWA = array ((2,1,1),(a,b,c))
[(x,y,z) := ((x-l,y,z),(x,y,z)) 'notBlera' demolishedWalls |
X <- [2..a], y <“ [l..b], z <- [l..c]] 

dWA = array ((1,2,1),(a,b,c))
[(x,y,z) : = ((x,y-l,z),(x,y,z)) 'notElem' demolishedWalls |
X <- [l..a], y <- [2..b], z <- [l..c]] 

bWA = array ((1,1,2) , (a,b,c))
[(x,y,z) := ((x,y ,z-1),(x,y ,z)) 'notElem' demolishedWalls |
X <- [l..a], y <- [l..b], z <- [2..c]]

IW (x,y,z) j inRange ((2,1,1),(a,b,c)) (x,y,z) = lWA!(x,y,z)
I True = True

dW (x,y,z) j  inRange ((1,2,1),(a,b,c)) (x,y,z) = dWA!(x,y,z)
I True = True

bW (x,y,z) I inRange ((1,1,2),(a,b,c)) (x,y,z) - bWA!(x,y,z)
True = True

posO = (1,1,1)
orienv = ((1,0,0),(0,1,0),(0,0,1)) 
oriens = (fst3,snd3,thd3) 

in ((IW,dW,bW), orienv, oriens, posO, (a,b,c))

connect (ws,rooms,(w:rw)) = 
let (rl,r2) = w

(connected,nrooms) = isConnectedRooms rooms rl r2 
in if not connected

then {- Good Wall -}
(w:ws,nrooms,rw) 

else {- Bad Wall, try again -} 
connect (ws,nrooms,rw)

Connecting equivalence classes

isConnectedRooms rooms rl r2 =
let connected = rooms rl == rooms r2 

nrooms = connectRooms rooms rl r2 
in if connected then (connected,rooms) 

else (connected,nrooms)

{- We start out with all rooms unconnected -}
fullMazeRooms a b c = \(x,y,z) -> ((x-1)*b + (y-l))*c + (z-1)

{- later we connect the rooms one by one -} 
connectRooms rooms a b - 

let ra - rooms a 
rb - rooms b

in (\r -> let rr = rooms r in if rr == ra then rb else rr)

{- lets build some walls -}

fullMazeWalls a b c =
[((x,y,z),(x+dl,y+d2,z+d3))
I (dl,d2,d3) <- [(1,0,0) , (0,1,0) , (0,0,1)],
X <- [1..(a-dl)], 
y <- [1..(b-d2)],
z <- [1..(C“d3)]]

{—
  Shuffle a list so the elements come in random order
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  Make sure that we don't have to be in the same Maze all the time

shuffle : : Int -> [a] -> [a]
shuffle seed =

let leq :: (Int,a} -> (Int,a) -> Bool
leq (x,_) (y,_) = x <= y

in map snd .
quicksort leq .
zip (davidsRandoms seed)

{- David Lesters random numbers -}

davidsRandoms : : Int > [Int] 
davidsRandoms = filter (/= (m-1)) .

iterate (\seed-> (a * seed + c) 'mod' m) 
where m = 65537 

a = 272 
c = 2113

{- The standard Quicksort - or is it more like shell short -}

quicksort leq [] - [] 
quicksort leq (m:xs) =

quicksort leq [x|x<-xs, x 'leq' m]
++ [m] ++
quicksort leq [x|x<-xs, not(x 'leq' m)]

{- -
  Make a nice picture of the maze
—}
printMaze m =

let (w,ov,os,p,(a,b,c)) = m
maze = (w,ov,os,(0,0,0),(a,b,c)) 
frontW y z =

" + " ++
concat[if frontWall (x,y,z) maze then else " +"

I X <- [1..a]]++"\n" 
leftWallAndFloor y z =

concat[ (if leftWall (x,y,z) maze then "|" else " ") ++
(if downWall (x,y,z) maze then " " else "*")

I X <- [l..a]]++(if rightWall (a,y ,z) maze 
then "I\n" else "\n")

layer y =
concat [ frontW y z ++ leftWallAndFloor y z | z <- [c, (c-1)..1]] +n 
"+"++concat[if backWall (x,y,l) maze then else " +"

I X <- [1..a]]++"\n\n" 
in concat [ layer y I y <- [b,(b-1)..1]]

  Set the walls out into the distance.

displayMaze m displayDepth - 
let setOnOff b i j =

(if b then "on " else "off 
++ show i ++ " " ++ show j

")
"\n"

setLevel i 
setOnOff (frontWall (0,0,i) m) i 0 ++
setOnOff (frontWall (0,1,i) m) i 1 + +
setOnOff (frontWall (1,0,i) m) i 2 + +
setOnOff (frontWall (0,-1,i) m) i 3 ++
setOnOff (frontWall (-1,0,1) m) i 4 ++
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setOnOff (upWall (0,0,i) ra) i 5 ++
setOnOff (rightWall (0,0,i) m) i 6 ++
setOnOff (downWall (0,0,i) m) i 7 ++
setOnOff (leftWall (0,0,i) m) 1 8

in concat [ setLevel i | i <- [0..displayDepth]]

}
Change the Walls - save time -

displayDiffMaze (mO,ml) displayDepth = 
let setDiffOnOff w r i j =

if w r mO /= w r ml then setOnOff (w r ml) i j else 
setOnOff b i j =

(if b then "on " else "off ")
++ show i ++ " " ++ show j ++ '" \n"

setLevel i = 
setDiffOnOf f frontWall (0,0,i) 0
setDiffOnOf f frontWall (0,1,i) i 1
setDiffOnOff frontWall (1,0,i) i 2 + +
setDiffOnOff frontWall (0,-1,i) i 3 + +
setDiffOnOff frontWall (-1,0,1) i 4 + +
setDiffOnOff upWall (0,0,i) 5
setDiffOnOff rightWall (0,0,i) i 6
setDiffOnOf f downWall (0,0,i) i 7
setDiffOnOf f leftWall (0,0,i) i 8

in concat [ setLevel i | i ^

displayLevels m displayDepth = 
let setOnOff b = if b then " 

setLevel i =
"walls " ++ show i ++

[0..displayDepth]]

1" else 0 "

setOnOff (frontWall (0,0,i) m)
setOnOff (frontWall (0,1,i) m) ++
setOnOff (frontWall (1,0,i) m) + +
setOnOff (frontWall (0,-1,i) m) 4-4-
setOnOff (frontWall (-1,0,1 ) m) 4-4-
setOnOff (upWall (0,0,1) m) 4-4-
setOnOff (rightWall (0,0,1) m) 4-4-
setOnOff (downWall (0,0,1) m)
setOnOff (leftWall (0,0,1) m) 4-4- " \n"
icat [ setLevel i | i <- [0. .displayDepth]]

amaze seed a b c = printMaze (makeMaze seed a b c)

Primitive operations used.

.1'

Î

{- zipWith -}
v3z p (x,y,z) (a,b,c) = (p x a, p y b, p z c)
{-map-}
v3m p (x,y,z) = (p x, p y, p z)
{-foldr-}
v3f p u (x,y,z )  = p X  (p y (p z u ) )

type Int3 = (Int,Int,Int)

vadd ; : Int3 -> Int3 -> Int3 
vadd = v3 z ( + )
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vsca : : Int -> Int3 -> Int3 
vsca = \s -> v3m (s*)

vabs : ; Int3 > IntB 
vabs = v3m abs

vneg : : Int3 -> Int3 
vneg = v3m (negate)

vhalf : : Int3 -> Int3 
vhalf = v3m ('div' 2)

fst3 (x,_,_) = X  

snd3 (_,x,_) - X 
thd3 (_,_,x) = X

f
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button .bot,death -text "Quit" -command {destroy .} 
pack append .bot .bot.death {left expand padx 20 pady 20}

}

global asked

if {$asked} {return} 
set asked 1

toplevel .ask

frame .ask.top -relief raised -border 1
frame .ask.mid -relief raised -border 1
frame .ask.bot -relief raised -border 1

.ask.bot {top fill expand}

message .ask.bot.answer -text "" \
-justify center -aspect 1200 -font -*-1imes-medium-i-*--*-240-*

proc yes {} { 
event yes

}

proc no {} { 
event no

}

1

C.6 Minimal Interactive Program — IcI Code

1
# Interface for Minimally Interactive Program.

# A single global variable.

set asked 0 !|

proc mainwindow {} {
frame .top -relief raised -border 1
frame .bot -relief raised -border 1 f
pack append , .top {top fill expand} .bot {top fill expand}

message .top.info -text "This is a minimal interactive program." \
-justify center -aspect 1200 -font -*-times-medium-i-*--*-240-* f

pack append .top .top.info {top padx 10 pady 10 expand}

proc ask {text} {

I
3
■Ï

pack append .ask .ask.top {top fill expand} \ a
. ask. mid {top fill expand} \ a;

message .ask.top.question -text $text \ VI
-justify center -aspect 1200 -font “*-times-medium-i-*--*~240-* I

pack append .ask.top .ask.top.question {top padx 10 pady 10 expand} I

■I
button .ask.mid.yes -text "Yes -command "yes" \

■font -*-charter-bold-r-*--*-240-* |
button .ask.mid.no -text "No :-(" -command "no" \ :l

-font -*~charter-bold-r-*--*-240-*

pack append .ask.mid .ask.mid.yes {expand padx 30 pady 30}
pack append .ask.mid . ask.mid.no {expand padx 30 pady 30} "S'

Ipack append .ask.bot .ask.bot.answer {top padx 10 pady 10 expand} v



I
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proc answer {text} {
.ask.hot.answer configure -text $text

Î}

# create main window... 
mainwindow

I-
# run main program... 
spawnchannels how

4
5
%

]
Î

.3
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C 7 ATM — Tel Code

#!/usr/Xll/local/bin/swish -f 
#
# Copyright 1995 Duncan Sinclair
#

# Small window...
#set area 400 
#set block 350 
#set eye 800 
#set gap 150
#
set buffer ""

proc mainwindow {} {

message .title -aspect 2000 \
-text "Sinclair Bank ATM" 
pack append . .title {top fill}

frame .view -relief raised -border 2 -width 200
frame .buttons -relief raised -border 2 -width 100
pack append . .view {left fillx filly expand} .buttons {left fill}

frame .buttons.gridl 
frame .buttons.grid2 
frame .buttons.grid3 
frame .buttons.grid4 
frame .buttons.grids 
pack append .buttons \ 

.buttons.gridl {top fillx} \

.buttons.grid2 {top fillx} \

.buttons,grids {top fillx} \

.buttons.grid4 {top fillx} \

.buttons.grids {top fill expand}

button
button
button
button
button
button
button
button
button
button
button
button
button
button
button
button

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons 

.buttons

.gridl.bx 

.grid2.by 

.grids.bz 

.grid4.bw 

.gridl.bl 

. gridl. b2 

.gridl.bS 

.grids.b4 

.grids.b5 

.grids.b6 

.grid3.b7 

.grids.b8 

.grids.b9 

.grid4.be 

.grid4.bO 

.grid4.be

-text
-text
-text
-text
-text
•text
-text
-text
-text
-text
-text
-text
-text
-text
-text
-text

" 1 "

" 2 "

" 3 "

"4"
"5"
" 6 "

"7"

-command "event 1" -height 
-command "event 2 " -height 
-command "event 3" -height 
-command "event 4" -height
-command 
-command 
-command 
- c ommand 
-command 
-command 
-command 
-command 
-command

"type 
" type 
"type 
" type 
" type 
" type 
" type 
" type 
" type

-height
-height
-height
-height
-height
-height
-height
-height
-height

-width
-width
-width
-width

-width
-width
-width
-width
-width
-width
-width
-width
-width

"Cont" -command "event c" -height 3 -width I 
"0" -command "type 0" -height 3 -width 5 
"Enter" -command "enter" -height 3 -width 5

Î
I .

pack append .buttons.gridl \
.buttons.gridl.bx {left padx 20 pady 15 expand} \ 
.buttons.gridl.bl {left padx 20 pady 15 expand} \
.buttons.gridl.b2 {left padx 20 pady 15 expand} \
.buttons.gridl.b3 {left padx 20 pady 15 expand}

pack append .buttons.gridS \
.buttons.grid2.by {left padx 20 pady 15 expand} \
.buttons.grids.b4 {left padx 2 0 pady 15 expand} \



.buttons.grid2.b5 {left padx 20 pady 15 expand} \

.buttons.grid2.b6 {left padx 20 pady 15 expand}

append .buttons.grid3 '
,buttons.grids.bz {left padx 20 pady 15 expand} \
.buttons.grids.b7 {left padx 20 pady 15 expand} \
,buttons,grids.bB {left padx 20 pady 15 expand} \
.buttons.grids.b9 {left padx 20 pady 15 expand}

append .buttons.grid4 '
.buttons.grid4.bw {left padx 20 pady 15 expand} \
,buttons.grid4.be {left padx 20 pady 15 expand} \
.buttons.grid4.bO {left padx 20 pady 15 expand} \
.buttons.grid4.be {left padx 20 pady 15 expand}
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button .buttons.grids.state -text "Statement" -width 30 -command "event x" 
button .buttons.grids.cash -text "Money" -width 30 -command "event x" 
button .buttons.grids.card -text "Card In/Out" -width 30 -command "event x' 
button .buttons.grids.quit -text "Quit" -width 30 -command "destroy

pack append .buttons.gridS \
• buttons.grids.quit {bottom padx 80 pady 20} \
■buttons.grids.state {bottom padx 80 pady 20} \
.buttons.grids.cash {bottom padx 80 pady 20} \

•buttons.grids.card {bottom padx 80 pady 20}

text .view.textl -border 0 -height 20 
-font "-*-helvetica-bold-r-normal--*-180-^ 
# -justify right -text "a text"

-width 50 -state disabledV 
-*-*-*-iso8859-l"

pack append .view .view.textl {fillx filly}

}

proc type {a args} { 
global buffer 
append buffer $a
.view.textl configure -state normal
.view.textl insert end $a
.view.textl configure -state disabled

}

proc enter {} { 
global buffer

event $buffer 
set buffer ""

}

#proc event {args} {
# puts stdout $args
#}

# "public" proceedures...

proc clear {} {
.view.textl configure -state normal
.view.textl delete 1.0 end
.view.textl configure -state disabled

}

proc out {a args} {
.view.textl configure -state normal 
.view.textl insert end "\n"
.view.textl insert end $a 
.view.textl insert end "\n"
.view.textl configure -state disabled
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proc lout { a b e d  args} {
view.textl configure -state normal
view.textl delete 1.0 end
view.textl insert end "Select :\n"
view.textl insert end
view.textl insert end $a
view.textl insert end "\n\n\n"
view.textl insert end
view.textl insert end $b
view.textl insert end "\n\n\n"
view.textl insert end
view,textl insert end $c
view.textl insert end "\n\n\n"
view.textl insert end
view.textl insert end $d
view.textl insert end " \n"
view.textl configure -state disabled

mainwindow

spawnchannels ./tank $argv 
# enD
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C.8 ATM — Haskell Code

module Main where 

{-
-- The "bank" program... A simple auto-teller.

-- We're going to use continuations for this one.

-- Plus a Tcl/Tk front-end!

-}
main = readchan epipe exit $

\input -> atm {lines input)

-“ The behaviour of an atm specified in continuations...

atm : : Result 
atm = insert_card„message 

card_in
enter_pin_message
customer

customer ; : Result 
customer =

pin_no $
\pin -> validate_pin_no pin $
\valid_pin -> case valid_pin of 
Pin_OK -> service_prompt $ services
Retry -> retry_message $ customer
Thief > keep_card_message $ atm
Wally -> learn„number„message $ eject_card $ atm
_ -> mydone

services : : Result 
services =

service $
\which -> case which of 
Request_Cash -> cash
Reguest_Check_Book ~> acknowledge_check_book 
Request_Balance -> show__balance 
Request_Statement -> print_and_proffer_statement 
_ -> mydone

more
more
more

cash
cash

; : Result

amount_prompt $
amount $
\amount_query -> case amount_query of
Amount_Hopeful 
Amount OK

sorry_but_message $ 
confirm_prompt $
confirm $
\doit ->
Confirm

cash

Cancel

-> mydone

case doit of 
-> proffer_card 

prof fer_.cash 
-> more 
-> mydone

take_card $ 
take_cash $ atm

more : : 
more =

Result

eject_card $
another_service_message $
eject $
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\answer -> case answer of 
Continue ~> service_prompt $ services
Card_Out -> atm
_ -> mydone

-- messages...

insert_card_message = nmessage "Please insert your card for service..."

enter_pin_message = nmessage "Please type your PIN."

keep„card_message = message "Sorry, too many tries, I'm keeping it!"

learn_number_message = message "Sorry, wrong number!"

retry_message = message "Incorrect PIN, please try again."

service_prompt = messages "Cash" "Check Book" "Balance" "Statement"

acknowledge_check_book =ack "A cheque-book will be sent out to you.\nPress Cont' 

show_balance = ack "Your balance is <some-amount>.\nPress Cont"

print_and_proffer_statement = ack "Please take your statement."

amount_prompt = message "Please type an amount of cash."

sorry_but_message = nmessage "You'll be lucky!"

confirm_prompt - messages "Continue" "Cancel" "" ""

proffer_card - nmessage "Please take your card."

proffer_cash = nmessage "Please take your money, have a nice day!"

eject_card - message "here's yer card."

another_service_message = messages "Finish Now" "Further Service..... .

-- hit return...

card_in - hit_return

take_card = hit„return

take_cash = hit_return

-- functions for the "Reply" types...

data Valid_Replys = Pin„OK | Retry | Thief j  Wally 
data Service„Replys = Request_Cash

I Request_Check_Book 
I Request„Balance 
I Request_Statement 

data Amount„Replys = Amount_Hopeful | Amount_OK 
data Confirm_Replys = Confirm | Cancel 
data Eject_Replys = Continue | Card_Out

int2valid 1 = Pin_OK 
int2valid 2 = Retry 
int2valid 3 - Thief
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service = number_input int2service 

amount = number_input int2amount 

confirm = number„input int2confirm 

eject = number_input int2eject

nmessage : : String -> Result -> Result 
nmessage mess xx =

\input -> appendChan cpipe ("clear ; out \""++mess++"\"\n") exit (xx input)

message : : String -> Result -> Result 
message mess xx =

\input -> appendChan cpipe ("out \""++mess++"\"\n") exit (xx input)

messages : : String -> String -> String -> String -> Result -> Result 
messages mx my mz mw xx =

\input -> appendChan cpipe
("lout \""++mx++"\" \""++my++"\" \""++mz++"\" \""++mw++"\"\n") 
exit (xx input)

mydone input = done

hit return : : Result -> Result

1
t
I
4

int2valid 4 = Wally

int2service 1 = Reguest_Cash 
int2service 2 = Reguest„Check_Book 
int2service 3 = Request_Balance 
int2service 4 = Reguest_Statement
,

int2amount n | n < 30 = Amount_OK
I otherwise = Amount_Hopeful

int2confirm 1 = Confirm 
int2confirm 2 = Cancel

int2eject 2 = Continue 
int2eject 1 = Card_Out

v:-.
-- functions to take user input into various types...

■

validate_pin_no : : Int -> (Valid_Replys -> Result) -> Result 
validate_pin_no = continuation int2valid

.pin„no = number_input id

continuation : ; (b -> a) -> b -> (a -> Result) -> Result 
continuation x y z = z (x y)

i
noop X = X

-- difficult stuff...

type Result = [String] -> [Response] -> [Request]

type NumCont = Int -> Result

ack : ; String -> Result -> Result 
ack mess cont =

\input -> appendChan cpipe ("out \""++mess++"\"\n") exit $ 
case input of

(1:1s) -> cont Is
[] -> done ! ̂

I

:

I
j
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hit_return cont =
\input -> case input of 

(1:1s} -> cont Is 
[] -> done

number_input : : (Int -> a) -> (a -> Result]
nuxnber_input f cont =

\input -> case input of
(1:1s) -> cont (f (read 1)) Is 
[] -> done

-> Result

cpipe
epipe
rpipe

"/dev/fdl3 " 
"/dev/fdl4" 
"/dev/fdl5“


