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Abstract

This thesis describes a calculus intended for the relinement of expressions, in particular
the calculus provides a [ramework for the formal derivation of executable expressions [rom
initial specifications. The approach taken follows and extends the work of Back, Morris
and Morgan on the refinement caleulus for imperative style programs. We contribute to the
area by providing a refinement calculus of expressions with a sirmple semantics and support
for the formulation and development of ¢pecifications in parts.

We vake Lhe view that a refinement calculus consists of & specilication language, which
usually includes constructs which are non-executable, but is a “super-language” of a pro-
gramming language; a refinement relation between specifications, which possesses particular
properties necessary for the refinement of specifications in a stepwise and piccewise manner;

and a set of laws determining how such refinements may procecd.

We describe a simple functional language of expressions which includes features for unde-
finedness, non-determinism and partiality. The added constructs allow the casy formulation

of expressive and abstract specifications, giving maximum freedom to the implementor.

The issue of methods to structure large specifications is addressed throngh the concept of
partiality. We provide support for the construction of specifications in parts, together with
operations to vompose partial specifications to formn the whole. We also consider how the
state and exception monads, used to hide imperative features in pure functional programs,

might be used similarly to structure specifications,

A refinement relation between specifications is defined. A sel of laws suitable for the

manipulation and refincmnent of cxpressions is proposed.

The expression language is given a simple denolational semantics, using powerdomalin struc-
tures to capiure non-determuusm. This scmantics allows the easy and intuitive formal
definition of refinement. using the Smyih ordering for powordomains, and facilitates the
construction of the proofs of the proposed laws for the calculus.
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Chapter 1
Introduction and Background

FFormal methods for the development of reliable software is an ambitious goal, but we
take the view that it is ultimately worthwhile. Rescarch into the area has resulted in
many useful methods, for example: tools for the writing of unambiguous specifications of
software systems; methods of verifying that a program meets its specification; semantics of
programming languages which help us to understand the meaning of a program; laws which
encapsulale the process ol program development. That a program should be derived from
its formal specification, so developing program and proof of correctness together, seems
intuitively obviouns. This is exactly the alm of research jnto formal program development,
particularly refinement calculi. At the very least, it provides us with an understanding
of the concepts and issues involved, and defines a common framework within which both

specifications and programs can be discusscd.

QOur aim is to describe a refinement calculus of expressions, so extending the imperative re-
finement calculus and providing a theoretical basis for the formal development of [unctional
programs. In this chapter we give a brief account of the background areas of specification,
formal program development and refinement, and attempt to indicate how the refinernent

caleulus of expressions fits into this context.

1.1 Specification

A gpecification ol a software system is a deseription of the desired behaviour of thal system.
It can be thought of as a contract between a customer and a programumer. It must be
written in such a way that it can be understood by the customer, but is rigorous enough to
exclude ambiguities. Natural language is not suitable as a specification language because
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it allows too many ambiguitics. However, a programming language is too restrictive as a

specification language since it gives too much detail about how a task is to be accomplished.

We expeet a specification to be more abstract and less machine-oriented than a program
which implements it. Formal specificalions are written using languages which are based
on mathematical principles, and are therefore rigorous, but have a notation rich enongh to

express properties of a system in a way which iy easily understood by the customer.

The existence of a formal specification also allows us to establish that a program implemoents
thal specification. A statement concerning the correctness of a program presupposes the
existence of an external frame of rcference. The formal specification may be used either
to prove the correctness ol a program, or in the developinent process to derive a program
which satisfies the specification.

1.1.1  Approaches to Specification
Model-Oriented Spceification

The specification languages % [27, 75, 44] and VDM [10, 11] are both examples of a model-
oriented approach to specification. This involves the construction of a model of the concept
to be described, taking advantage of available mathematical tools. The associated opera-
tions of the concept are then specified with respect to the particular mode] which has been
used.

The 7 specification language follows an approach to specification which is state-based. It
has as its mathematical basis familiar mathematical concepts and notalions such as set
theory and first order predicate logic. It uscs the set operations such as union, intersection,
set difference, set membership ete. , and operations on mappings between scts to build a
conceptual model of the system to be specilied. Operations from predicate logic are used

to build sets and to make assertions concerning the components of the specifications.

The knowu properties of the underlying mathematical concepts used for specification in
the modcl-oriented approach can be used (o reasun about specifications in a formal setting.
The Logic of Partial Functions (LPF) provides a logical framework for proofs about VDM

specifications [43].

Algebraic Specification Technigues

The algebraic style of specification, as found for example in [70], is theoretically based on

the notion of algebraic tvpes. In contrast to the model-oriented approach ol Z or VDM,




1.1. Specification 3

concepts are specified implicitly by describing their construction, modification and access
operations using sets of axioms. Thus the internal structure of the concept is not explicitly

revealed.

The advantage of an algebraic specification is that a more abstract description of the system
is obtained. Although no explicit model of the concept is formulated, there may be many
models which satisfy the specification. A programmer is not restricted to any particular

model and may choose hetween possible reodels during the program development process.

However, the axiomatic equations to describe the system are difficnlt to construct. Io
addition, it is often the case that a particular implementation for a data type suggests itself

and it 13 then easier tn specify the data type in terms of that model.

1.1.2 Undefined terms

In the spectfication and development of software systems undefined expressions arise quite
vaturally. usually in the application of functions to arguments where the function is not
defined, or termination is not guaranteed. Simple examples of this are integer division by
zero, or the integer square root of a negative number. This necessitates a methnd for dealing
with fornnilac which involve undefined terms. Many examples illustrating the need [or such
methods may be found in the literature, for example {9, 22, 40, 41}, It is clear that classical

logic is unable to deal with such terms.

There are various ways of forming proofs about undelined expressions. Some of these at-
tempt to keep to classical logic by making functions everywhere defined over a restricted
domain, or by using relations to avoid function application, as in the Z specification lan-
guage. Other methods use conditional forms of the familiar conjunction and disjunction
operators, as in many programming languages, resulting in non-syminetric operators. An-
other method is to use a logic which has (he ability to deal with terms which are not
well-defined, a 3-valued logic such as LPF of VDM. An overview of various methods of

dealing with the problem of undefined terms may be found in [22] and more recently in [42).

Qur approach, as developed in chapter 2, is to admit to the existence of undefined terms

and to use a logic, distinct from LPF, which accomodates them.

1.1.3 Non-Determinisin

An expression is deterministic il separate evaluations of that expression, in the same en-

vironment, always give the same result. An expression is non-deterministic if separate
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evaluations may give different results. Constructs for non-determinism are used in specifi-
cations to increase abstractuess, when there may be a number of design optiens which are
cqually suitable. During program development, this allows [reedom for design decisions to
be made. We take the view that, ultimately, programs must be deterministic,

Non-determinism may be used as a specification tool for under-specification of a problem.
An often used example is that of searching. Find the index of some occurrence of © in the
fist L. This gives the implementor freedom to search for the first, last or any occurrence of
the given z.

Non-determinism in specifications is usually obtained through the introduction of a choice
operator [], such that for expressions I and F', the expression £ [| # may evaluake to cithor
the value of E or the value of . We take the view that, from a specification I [ F, the
customer will be happy with a program implementing £ or a program implementing F or
some combination of the two.

In [84] three sorts of non-deterministic choice operator for expressions are distingnished by
the way choices are made in the presence of undefineduness. With angelic non-determinism.
all choices are made in favour of termination, ie. If {| F is undefined only when bosh E
and F are undefined. With dermonic non-determinism, all choices are made in favour of
non-termination, i.e. E[| F is undefined if either of £ or I is undelined. With erratic choice,
nothing is done to favour or avoid non-termination. The terms engelic and demonic are
attributed to C.A.R. Hoare, while the teran erratic is due to M. Broy.

Although erratic non-determinisma can be described operationally as being similar to the
tossing of a coin, notice thal it cannot be nsed to specify such a process. This is because, for
example, the specification Aeads | {uils may be Lnplemented by the program heads, which
always gives the same resuls.

In chapter 2, we introduce a specification language of expressions which includes a choice op-
erator. In order not to limit the properties of the language un-necessarily, this choice opera-
tor is crratic. Our Jogic, which handles undefined ferms, also accomodates non-dleterministic
values.

1.2 Program Development and Refinement

Given the lormal specification of a program, the programmer’s objective is to develop a pro-
gram which satisfies the specification. The task of verilyiug a program after its construction

is a laborious oue, and it is well recognised that a program and the proof of its correciness
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should be developed together. This may be dene in an informal manner, however in order
to build programs which are correct with respect to their specifications, il is necessary to

validate rigorously each step of the process.

In {24] Dijkstra describes a simple imperative programming language, the language of
guarded commands. A methodology is presented in {24, 31, 38, 45] which allows the program
and proof of its correctness to be developed together, from a specification consisting of a
pre- and post-condition. A program development methodology [or Z specifications is de-
scribed in [75]. This uses a notion of refinement of both data and opevations. The weakness
of these, and other programming methodologies, is that while both the specification and
the program arc formal objects, in refining from specification to program, the intermcdi-
ate objects are not necessarily formal, since they may be considercd as hybrids, a mixture

between specification and program.

The problem of having informal aspects in the development process is addressed by using a
specification language which is a “superlanguage” of a programming language. The advan-
tage of this is that both program and specification may be reasoned ahout using the same
semantic framcwork. This is the case with the Extended ML specification language, which
has, as its excculable sublangnage, the Standard ML programming language [78, 79]. I
[79] a formal program development methodology is presented which describes how a spec-
ification may be developed in stages by replacing non-algorithmic elements by execulable
code. Each step of the developmeul is associated with certain proof obligations. The de-
velopment process effectively describes the refinement of a specilication such that the final

specification is executable, i.c. a program.

Expressions are much casier to manipulate than statements, because we are no longer
concerned with possible side-cffects or changes to the state. This can be seen very clearly
in reasoning about pure functional programs [12] and in the work of Bird and Mecertens
{13, 5] on manipulating lists. More recently, Bird has used notations [rom category theory
(8] to specify concisely and very elegantly certain classcs of problewms {14, 15, 16]. Using
mathematics of category theory these specifications can be transtformed to equivalent but
more efficient expressions of a functional programming language. Some work is involved in
formulating the initial specifications and the nolation could not be considered suitable for a

naive user to rcad. The approach is also limited to a certain class of optimisation problems.

1.2.1 Refinement Calculi

The main aim of a refinement calculus is to allow the stepwise development of programs from
specifications in a formal manner, ensuring a correct transformation. One approach to such

X
%

S ean At v

Tooadetaie o
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a calculus is achieved by describing a specification language which coulains as sublanguage a
programuning language. The specification language will, in general, contain sume constructs
which are very expressive but are non-executable or expensive to implement. This is usually
obtained by extending a programming langunge with additional expressive, but possibly
non-algorithmic, constructs. An example of this is the Extended ML specification langnage,

mentioned above.

The calculus will also include a refinement relation between specificatious, usually written
X C Y {or specifications X and Y. This expresses the fact that whenever specification X
is acceptable (to a customer) so also is specification Y, but Y is generally more algorithmic
than X. We usc the term algorithmic looscly here, to mean that Y is closer to being a
program than X.

‘The purpose of a refinement. calenlus is to allow the stepwise calculation of a program [rom
an initial specification, Sy. Lhig means the devclopment of a scquence of specifications,
Sg L& Z...C 5, where each §;, for 0 < ¢ < n, ig refined by 5;;;, and S, is a program.
In order to conclude that S, is a correct implementation of initial specification 8§y, it is
necessary that refinement is transitive. In {act, the refinement relation should be a preorder,
so that if any of the T is replaced by = (equivalence) in Lhe above sequence, we can still

concluce that Sy T .5,.

It is also important that refinement can progress in a piecewisc manner, so that refinement
of part of a specification results in refinement of the whole specification. To facilitate piece-
wise refinement, it should be the case that the constructs of the specification language are
monotonic with respect to refinement of subterms. So, if S[X] is a specification containing
X as subspecificationu, and it can be shown that X £ Y, then it should be the case that
SIX] C S[Y].

The final part of the calculus is a set of refinciment laws, In deriving a program from its
specification, it is nol necessary o use the definition of refinement directly. Instead. the
definition is used to form a set of refinement laws, which can be used to justify each step of

the derivation.

The Refinement Calculus for Tmperative Programs

A refinement calculus for imperative programs was first inspired by Back [4, 4], and further
devcloped, independently, by Morris [59, 62] and Morgan [55, 56]. Dijkstra’s guarded com-
mand language |24], whose semantics is given in terms of predicate transformers, is extended
by adding expressive but non-executable constructs, including a specification statement con-

sisting of a pre- and a postcondition. The added constructs are also given a formal semantics




1.2. Program Development and Refinement 7

in terms of predicate transformers. The refinement relation between specifications is for-
malised, and inluitive notions of program development are described formally, resulling in

a set of refinement laws.

Non-determinisim, which s an important aspect of specification, 1s permitted in the imper-
ative refinement calculus a6 (he level of statements only. Non-deterministic expressions are
not permitted. Morris [63] argnes that expressicns which are undefined or non-deterministic
can fit into the refinement caleulus for imperative programs by defining a suitable seman-
tics. His approach results in an elegant form ol assignment, but does not accommodate

expressions which arc of function tvpe.

Data Refinement

In extending the guarded command language of Dijkstra to form a specification language,
a richer set of data types is added along with richer operations on data. This facilitates
specification using the model-oriented approach. During the refinement process, these richer
types must he replaced with simupler and more easily implementable types. This process is
known as data refinement.

Replacement of abstract data types by more concrete types using coordinate transformations
was snggested by Dijkstra in [24]. A formal notion of data refinement with laws governing
its application has been developed by Morris {60, 61] and Morgan [58] to cowpliment the
imperative refinement calculus.

1.2.2 Refinement of Expressions

It is recognised that expressions are easier to manipulate than statements, and we have
already muentioned the use of functional programming languages, and the work of Bird
and Meertens. Relfinement of expressions was excluded from the work on the imperalive
refinement. caleulus, although Morris [64, 65] has since done some research in the area. The
ability to wrile non-deterministic, more abstract expressions at the specification stage, and
to allow these be refined along with the refinement of statements would greatly extend the
power of the imperative calculus.

It is also possible to consider writing an inicial specification as an expression and, by refine-
ment, calenlate an imperative program to implemens it. This would involve a special form
of expression refinement since it would mean transforming from one type, the type of the

specification expression, to the type of statements.
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In pure functional programming {12] a program is essentially an cxpression which is evalu-
ated by the computer. The task of a programmer ig to build a function to solve a particular
problems. A notion of refinement of expressions thercfore could be used not only o iu-
crease the power of the imperative refinement caleulus, hut algo as the hasis of a refinement

calculus for functional programs.

Logical Specifications for Functional Programs

In [68] Norvell and Hehner present au approach to expression refinement, with the aim of
deriving functional programs. As with the approach used for the imperalive refinement
calculus, they take a simple programiming language of expressions, and extend it by adding
non-cxccutable constructs. Non-determinism is achieved through the use of bunches {38, 39],
resulting in an erratic form of choice. Bunches are similar to sets, but without the bracket

notation, without nesting, and with distribution of vperations over the elements.

Function abstraction, in the specification langnage of [68], disiributes over bunch union, re-
sulting in functions which are under-determined rather than non-deterministic. Essentially,
what this means is that a function with a non-deterministic body is exactly equivalent to a
choice between functions with deterministic hodies. Therefore it can be assumed that cvery
function has a deterministic body.

The identity of bunch union is the null specification which refines all specifications, bug
cannol be implemented. The zero of bunch union is the all specification which is refined
by all specifications. There is uo explicil treatment of undefinedness, although o/l may be

used fo represent exrors. The notion of refineruent is based on the superbunch operator.

The semantics for the language is axiomatic, but there is no satisfactory treatment of recur-
sion. In particular, examples ol refinements are given which introduce recursive functions

withont any theoretical basis for doing so.

The approach of Norvell and Hehner results in a simple treatment of expression refinement
at a syntactic level, but it does not address the problems which exist at a deeper level. The
specification language is concise, but the notation is somewhat difficult to read, and the
examples given are all small examples, of the searching aud sorting variety. Tt is not clear
how the language would be used to describe bigser problems, or how refinement in parts

would be achieved.

<1
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A Refinement Calculus for Nondeterministic Exproessions

In his PhD thesis [90], Ward gives a {uller account of a refinement calculus of expressions
with a view to deriving functional programs. As in the work of Norvell and IIehner, he takes
a simple functional programming language and extends it with non-executable construets.

Interesting additions include constructs for both demonic and angelic non-determinism.

‘T'he inclusion of angelic non-determinism means that backtracking problems can be ex-
pressed quite elegantly. ‘L'his is because the cvaluation of an expression involving angelic
non-determinism in soine sense looks whead and chooses the correct value to give the desired

result.

Ward gives a semantics to the specification language based on a notion of weakest precondi-
tions for expressions. While in the imperative refinemnent calculus statements are regarded
ay functions from output states to input states, Ward treats expressions as functions from
sets of values (evalnatious) to sets of environments. We consider that the resulting seman-
tics is unnecessarily complicated. The weakest precondition semantics is very suitable for

a state-basced language, but is not required to give a meaning to expressious.

Based on the semantics of the specification language, Ward gives a definition of the refine-
ment relation between expressions and proposes a set of refinement laws, most of which are
intuitively reasonahble. However, because of the overcomplicated semantics, the proofs of

these laws seem more involved than expected.

Although this work results in an expressive speciflicalion language, and a formal notion of
refinement with associated laws, it is not clear how it would be used to vackle large problems.
Ward does not address the issucs of structuring large specifications, which is essential for

any apecification language.

Refinement of Imperative Expressions

In his Ph.T). thesis [18], Bunkenburg describes a calculus of expressions which has as target
language an expression language with imperative threads. Althongh the aim of the calculus,
to derive imperative style programs from functional specifications, is different from that of

Ward or Norvell and Hehner, some of the approaches and techniques are similar.

Bunkenburg begins by laying out a language of expressions which includes a choice oper-
ator M for demonic non-determinism. Non-terminating, or undelined, expressions ave also
considered, with lazy function application. Bunkenburg claims that a lazy language is more

gxpressive.

ol et d
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Tmperative programming techniques are permitted in the language through the inclusion of
the stale mounad (sce chapter 4). The algebraic laws asociated with the monad are inclided

with the laws governing the expression language.

Informally, Bunkenburg treats non-deterministic expressions as sets of outcomes which are
upward closed (with respect to definedness). An upward closed set is such that, if the
sct contains an outcome v, then it also containsg all outcomes better (more defined) than v.
The refinement relation is then treated as superset between upward closed sets of outcomes.
Bunkenburg provides many axioms describing the behavious ol the relinement relation.

A denolational semantics is given to the language, again using upward closed sets, but this
time in a formal manner. Bunkenburg stales that a programmer needs the semantics to
write the initial speeificaiton but not for the derivation of a program. The scmantics are
needed Lo decide what to prove, bt not in ovder 1o complete the proof.

The resulting semantics (for the non-imperative features of the language) is reasonably
stralghtforward, using notations aud theory from powerdomain theory. Tt is also possible,
by extending the notation and imposing some restrictions, to give a denotational semantics
to the state monad within the same framework,

Bunkenburg demonstrates the use of his calculus in a number of interesting examples
from various problem domains. These are all concerned with the wse of state threads in
imperative-style expressions, rather than with basic expressions themselves, Consequently,
it is difficult to compare the usc of the calculus with that of the pure expression refinement
approach of Ward.

1.3 Structuring Large Specifications

For large, or even medinm sized, specifications and programs it becomes essential to have
some method of structuring the specification into individual units. One of the most impor-
tant features of Z is that it supports the decomposition of large specifications into manage-
able uuits, called schemas. Each schema shounid model a conceptual unit of the specification
so that it is rclatively self-contained, and can be reasoned about individually. This process
may be described as “separation of concerns”. A number of operators, such as conjuuc-
fion and disjunction, are defined for combining schemas, in a sensible manner, to form the
complete specification.

In the algebraic approach, type definitions may be structured so that each type declaration
represents a conceptual unit of the specification. Specifications are built in an hierarchical

fashion, allowing object classes to be defined in a structured way.

SO O RN U S
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In [30], Frappier, Mili and Desharnais preseul a method to promote program coustruction
by parts. Given a number of user requirements in the form of partial specifications, a partial
program is derived for cach one. Thesc are comhined to form a program which satisties all
the requircments simultaneously. Specifications are represented by binary relations, and

the derivation process is a stepwise transformation of relations.

Back and Butler, in [2], examine various summaltion and product operators in a higher
order logic approach to the imperative refinement calculus, nsing category theory. At a
more abstract level than [30], the summation and product operators can be applied to the

composition of partial specifications.

1.4 Thesis Proposal and Plan

The aim of this thesis ig to provide a refinement calculus suitable for the refinement of
expressions. The calculus could be used in a munber of ways: to extend the imperative re-
finement caleulus by allowing specification and refinement using more abstract expressions;
to provide the basis for a calculus to allow the development of imperative programs {rom
specification expressions; or to provide the basis of a framework for the formal development
of funectional programs from specifications. The approach will parallel the work of Back,

Morris and Morgan on the refinement calenlns for imperative programs.

The firgt stage is to describe formally a simple specification language of expressions. This
is based upon familiar expressions of well-understood types, such as hooleans, integers,
functions etc. Additional, less familiar construets will allow the easy formulation of expres-
sive and abstract specifications, giving maximum [reedom to the implementor. Tn ovder to
achieve more abstract specifications we allow non-determinism in cxpressions by providiag a
choice aperator. We also aim to enable formal reasoning about and with expressions which

may contain undefined terms.

So that the exiended language can be used to specify real problems it is vital that we
provide support for the construction of specifications in parts, together with operations to
compose partial specifications to form the whole. We will show that it is possible to reasoun

about and refine these partial expressions individually.

A refinement relation between expressions will be defined. As described in section 1.2, this
is a preorder, allowing ihe refinement process to progress in a stepwise manner. We will
show that constructs of the expression language are, with a fow exceptions, monotonic with

respect to refinement, allowing piecewise refinement to occur.
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The last part of defining a refinement calculus involves the compilation of a set of laws
which may be used in the derivation of an executable expression, without requiring the use
of the definition of the refincwent relation at each step. We aim to provide both equivalence
laws, used in the manipulation of specifications, and refinement laws, which describe how

expressions way be refined.

The expression language will be given a denotational semantics, with powerdomain struc-
tures to captiure non-determinism. The aim of the semantics is to provide a model of the
language which can be used to justify the axioms and rules of inference, and so demonstrat-
ing that the theory is consistent.

In general, we expect our specification language to look similar to that of Norvell and I1ehner
ancl that of Ward, although there will be some different constructs which we have found
usclul and more expressive in formulating specifications. In particular, the support of partial
specifications extends both of these spproaches. We feel that the denotational approach. to
the semantics of the language is more suitable than the wealest precondition approach of
Ward. Although our semantics is similar to that of Bunkenburg, we discuss powerdomains
only at the semantic level, and so the user is not required to have any knowledge of a model
ol upward closed scts. The simple semantics and ease with which refinement laws are proved
will support the claim that the denotational approach using powerdomains is most suitable
for a language of this form.

We hape to contribute to the area of formal prograin development by providiug a refine-
ment calculus of expressions with a simple scmantics and support for the formulation and
development of specifications in parts.

1.4.1 Plan of Thesis

In this chapier we have given some background to the area of formal methods for spece
ification and developineni of software. We assume that the reader is familiar with the
various approachies to formal specification, formal programming in the style of Dijkstra
[24, 31, 38, 45], and the reflinement calculus for imperative programs, as developed by Back,
Morris and Morgan [3, 4, 59, 62, 55, 56..

In chapter 2 we will introduce the specification language of expressions, based on familiar
mathematical expressions, bt including constructs to handle undefinedness, and a choice
operator to provide for nondeterministic expressions. We will also deseribe the logic which
forms part of the language, and give an argument that it is sufficiently axiomatised. In
addition we describe what it means for an expression to be partial and introduce operators

for forming and totalising such expressions, so excluding miraculous specifications.

U
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Chapter 3 describes how expressions are used to form specifications. The syntax of a
specilication, as a colloction of expressions, is described informally; and a number of small

examples is given to illustrate this.

In chapter 4 we address the issue of how to structure large specifications. In particular, the
formation, use and combination of partial functions as the units of partial specifications is
examined. This is accompanied by a larger example to illustrate these new idcas. We also
look at how certain monads, already used generally to structure functional programs, might
be used to structure specifications.

Chapter 5 examines how to reason about expressions, including how to prove properties
of, how to transform, and how to refine specifications. A proof system, based on the logic
system of the language, is described. In order to support more high level manipulations
than those suggested hy the axioms of chapler 2, a collection of transformation laws is
provided. The relinement operator [ is introdnced into the language, with a set of axioms
and a vollection of refinement laws to support the process of stepwise refinement. Examples
are used to illustrate the various concepts introduced, including an example showing the

derivation of an imperative-style expression from a simple specification.

‘The formal semantics of the language ig described in chapter 6. This is a denotational
semantics using powerdomains to capture non-determinism, In particular, we tackle the
problem of giving a meaning to recursive function definitions which might contain non-
deterministic terms. The reflinement relation is given a meaning based upon the Smyth
ordering for powerdomaing. We show how the semantic delinitions support the axioms ancd
laws provided in chapters 2 and 5. We also consider how a semantics might be give to the

informal concept of specification modules introduced in chapter 3.

Chapter 7 concludes the thesis, A sumimary of the main points is given, along with some
discussion of the contributions made. We compare the approach taken to other work in the
arvea of refinement caleuli for expressions. Finally, some suggestions for future directions of

research arve given.

L




Chapter 2
The Expression Language

In this chapter we aim to define a specification langnage of expressions, This language is

to form one of the components of the refinement calculus.

A programning language is not, in general, useful [or specification, since specifications are
usually more abstract than programs. This is because a specification should be concerned
with expressing whot is to be achieved, while the prograun implementing it will dictate how
the goal will be achieved.

As in the approach taken by Morris and Morgan in the imperative refinement calcu-
lus [62, 59, 57, 56], we extend a simple language of expressions with operations and facilities
for constructing expressions which are more expressive and less algorithmic in nature. In
particular, we add operations for the manipulation of undefined terms, and introduce non-
deterministic constructs. Both of these add abstractness (o specifications while allowing an

implementor to make certain decisions regarding the implementation of a specilication.

Various concepts such as undefinedness, non-determinism, equivalence and refinemoent are
cxplored informally in section 2.1, as well as an overview ol the methodology to be employed
in the description of the expression language. Section 2.2 gives a formal treatinent of
undefinedness and non-determinism. The logic of the exprossion language is sct out formally
in section 2.3, includiug an argument for sufficient axiowatisation. The types of expressions
are set out in section 2.4 using type rules and axioms. Additional language constructs for
specification are described in section 2.5.

Finally, section 2.6 trcats the topic of partiality which, in (his context, has a different
meaning to the usual mathematical interpretation. Tn fact, ns we shall sce in chapter 4,

partial cxpressions, and partial functions in particular, are necessary for the construction

14




2.1. General Overview 15

of specifications in parts. The introduction of partial expressions, however, also means the
introduction of possibly miraculous specifications. We show how this may be dealt with
syntactically.

2.1  General Overview

In this section we give an informal overview of the various important aspects of the speci-
fication language.

2.1.1 Scope of the Language

The language of expressions we use in this thesls has a very broad scope. It is a specification
language, with a programming sub-language as well as other non-algorithmic constructs;
it contains a logic, both for specification and also [orming a reasoning mechanism for the
lanpuage; it has a module system which is suitable for the construction of large specifications;
il has relations for equivalence and refinement, used for comparing expressions; and it is
also a calculus, a framework for the rigorous construction of programs from specifications.
All of this will become elear in this and the next three chapters.

The basic specification langnage, which is treated in this chapter, 15 made up of expressions.
FEach expression has a unique type, according Lo the type system described in section 2.4,
We do not say exactly which expressions form the programming sub-lanpguage. TIn fact,
this will depend on a given problem. For some applications of the calculus, the aim may
be to find a deterministic, well-defined specilication. For other applications a more low-
level expression might be the goal. Indeed, it might be the aim stmply to refine an inigial
specification to a particular form which can be easily tranformed into e.g. an imperative
expression. Elements which are certainly not present in the programming language are the

non-monotonic elements, such as the equivalence and refinement relations.
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2.1.2 Undeflinedness

Undefined values necessarily occeur in any mathematical language of expressions. Simple

examples, with explanations, include

4/0 division by zero

0/0 =1 division by zero

v—5 when complex numbers are not considered

e {} trying to return the first element of the empty sequence

Although it is clear that such simple oxpressions do not result in a well-defined value, it is
not so clear what should be the outcome of such expressions as

(Von:Z|en=0Vn/n=1)

(VS :8eqg T |eS=0VSE=hdS 1S

where, if the frst disjunct is true, the second must be undefined. "Lhe first expression states
the property thal for any integer n, either n is zero, or n/n = 1. The second states a
property of sequences, thal either a sequence is empry, or it is composed of its head and its

tail. Undelined expressions are unaveidable, the problem lies in how to handle them.

We malke the decision to handle undefinedness explicitly. In order to allow reasoning about
such expressions, we augreenl each type T with a special value ‘L7, nsnally pronounced
“bottom”, which represents the undefined value of type 7. For exawple, we say that the
resull ol the evaluation of the expression 4/0 15 Lz. We shall drop the subscript in 17’
if the type T is clear from the context, or is irrelevaut. The nndefined expression Lo will
also be used to represent a “don’t care” value. where the specifier doesn’t care aboul Lhe
regult. This is in keeping with the treatments of [68, 90].

We now need to consider how expressions behave when their constitucnts are possibly
undefined. In most cases it is appropriate to enforce strictuess, i.e. an operator will yield
L when applied 1o L. So, for examnple, the expression (4/0 + 3) is undefined, as is the
expression (0/0 — 1). As we introduce each aperator of the language in turn, we will stale

whether or not that operator is stricl.

However, we do want to have the ability to reason about undefined expressions. For example,
it iy desirable that the two quantified expressions above should hold. Enforcing strictness of

the boolean operators would result in these being undefined. This leads us 1o new versions
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of the disjunction and conjunction operators which are symmetric and which satisfy the

equivalences:

X A False = False

XV True = True

for arbitrary (possibly undelined) logical expression X. Formal rules defining these opera-
tors will appear in section 2.3, As well as these booclean opcerators, we will also introduce
other non-strict operators, including equivalence = and refinement C. As cach such operator

is introduced we will describe its behaviour in the presence of undefined terms.

One issue which arises when considering possibly undefined expressions is that of mono-
tonicity. An operation op is monotonic with respect to an ordering C if, for any expressions
E and F with ¥ € F, we have E' C F’, where F’ and F’ are the results of applying op to
F and #' respectively. The new versions of conjunction and disjunction retain monotonicity
(with respect to Lhe definedness ordering) and are equivalent to their 2-valued counterparts
when terms are well-defined. Other non-strict operaiors may be non-monotonic, including
equivalence, csscntial for reasoning within the language. This operator allows us to asseri,
such equivalences as (4/0 = L1gz).

In order to distinguish undefined terms in specifications, a non-strict, non-monotonic oper-
ator § will be introduced. For any cxpression E of any type, § E is True if £ is well-delined,
and False otherwise. Clearly —§ L holds for any type 7'. Formal rules for § will be

provided in section 2.2 aud as each type of the langnage is introduced.

2.1.3 Non-Determinism and Partiality

To allow greater fexibility and to increase abstractness in specifications, we introduce the
possibility of non-determinism in expressions. In a non-deterministic expression, any one
of a number of possible cutcomes is acceptable. For example, a familiar non-deterministic
specification is to search a sequence [or the index of a particular value, Tf the value occurs
more than once in the sequence, it docsi’t matter whether the first, the last, or any other

occurrence of that value is found.,

We admit non-determinism by introducing the choice operator ‘['. For £ and F expressions
of the samc type T, Lhe expression E || F, also of type T, denotes the non-deterministic

choice between the two expressions. Evaluation of £ [| F' could result in the evaluation of




2.1. General Qverview i8

F or the evaluation of F, but we don’t know or care which. Choice ¢njoys the properties

of commutalivity, associativity and idempotency.

Non-determinism is often modelled in terms of sets of possible outcomes. For example, the
expression 3 has one possible outcome, namely the value 3. The expression v/4, on the
other hand, has two possible outcomes, the elements of the set {—2,2}. The set of possible
outcomes of an expression F {| £, then, contains the possible outcomes of expression £ and
the possible outcomes of expression F'.

Facilitating non-determinism in the expression language is not a simple matter of just
introducing the choice operator [. We also necd to constder how other operators of the
language behave in the presence of von-deterministic operands. Most operators, such as
integer addition, distribute over ehiovice. So, for example, (3[]4)4+7 = 10]11. A few operators,
such as equivalence, refinement and some of the boolean operators, do not distribule. As
each operator is formally introduced in sections 2.3 and 2.4, we will state if that operator
distributes over choice. if it does not, we must show how that operavor is used with choice.

We must also consider the delinedness properties of a possibly non-determinislic expression
E [ F. In terms of sets of possible outcomes, the undefined integer Lz has {Lz} as its set
of possible outcomes, while the expression 3 [ Lz is modelled by {3, Lz}. However, we say
that both cxpressions are undefined. We make the decision that §( || F') should hold only
when both B and #F are well-defined, § £ A § F. This means that ~§(F | F) holds if either
FE or ¥ has L as a possible outcome. So, § L is Fulse, as is §(3 ] 1). In contrast, {3 [|4) is
True, as s § 3.

If an expression F yields a single, well-defined outcome, then we suy that E is proper and
we wrile A E. For example, A3 is True, while A L, A(3] 1) and A(3] 4) are all False.
When all expressions are proper, the specification language reduces to the normal, everyday
expressions involving faniliar types such as integers, booleans, fuples, functions eie. Formal
rules for the A operator will be given in section 2.2 and also as each type of the language
1s introduced. Intuitively, it should be clear that if an expression is proper A F, then it is
well-defined § E.

An expression which has a non-empty set of possible ontcomes is called foial Otherwise,
if it has no possible outcomes, not even e undefined outcome, we say thal it is peréial.
The partial value, which will be introduced in scetion 2.6, is written T (top) and is mirac-
uwlous. This means that there is no program which implements it. We would like all our
specifications to be tolal, so that we can find {or ecaleulate) programs to implement them.
Therefore, we make the deeision thal our language s to contain only tolal expressions, al-

though we allow partial sub-expressions. We will show how to accomplish this by restricting
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the language, in section 2.6.2.

2.1.4 Equivalence and Refinement

We have already mentioned the existence of a non-strict equivalence operator == which does
not distribute over choice. It is distinet from the usual equality operator =, which is strict
and does distribute. Equality will usually be part of the programming language and behaves
as cxpected when its operands are proper. Equivalence, on the other hand, is nol part of
the algorithmic portion of the language. Iis main role in the specification language is for
reasoning about expressions. In terms of our model, it compares scts of possible culcomes
- if twa expressions have the same set of possible outcomes, then they are equivalent.

In sections 2.2, 2.3 and 2.4, the equivalence operator is used to give axioms defining the
expression language. These axioms arc generally of the form £ = F, for & and # arbitrary
expressions of the same type, which says that the set of possible outcomes of B is exactly
the set of passible outcomes of F.

While equivalence = is an equivalence relation over expressions of the language, refinement
is an ordering relation. Tn fact, it is a pre-order. Intwitively, if £ = F, then a customer
asking for F will be happy with F, and vice versa. It £ . #', then a customer asking for I
will be happy with F, but not the other way round. Again, the relinement operator is not
part of the programming language, and is nsed for reasoning about (refining) specifications.

We have that an undefined cxpression can be refined by anything, so Lo [ F for arbi-
trary expression & of type 7. This supports the decision to allow 1. ta be a “don’t care”
specilication, since il cau be replaced (refined) by anything. Thus refinement increases

definedness.

Tn terms of possible outcomes, certainly if the set of possible outcomnes of E is a superset
of the possible outcomes of F, then we must have £ € F'. So, refinement decreases non-
determinism.

Since the set of possihle cuteomes of the miraculous expression T is empty, and so a subset
of every sef, it follows that T refines every expression, i.e. £ C T for arbitrary expression
E. Of course, T cannat be implemented; if it could, the programnmer would have a very

simple job.

Formal axioms describing the refinement relation will be given in chapter 5.
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2.1.5 The T'ype System

Every expression of the specification language has a unique type. This is achicved using
notation from type theory [6, 7, 20, 76, 87] to introduce various cxpression formers for
each type. The basic types of the langnage are booleans, integers, characters, products,
functions, sets, bags and sequences.

The type theoretic approach to defining the syntax of the language serves (wo purposcs.
Tirst, 1t shows how legal expressions of each type are formed, and so we say that valid
expressions of the language are those which are well-typed. For example, (3 [4) + 7 is
well-typed and so a valid expression; while 3 = (4 = 2) is not well-typed and so not part of
our language.

Secondly, the lype theoretic approach also assigns to each expression a unique type. Thus
the language has the property ol type unicity.

We use the symbols 7" and 45, for i any subscript, to represent an arbitrary type. A type
judgement, written « @ T, asserts that value ¢ has type 2', and F : I" asserts that expression
£ has type T. A type rule, consisting of zero or more judgements or conditions over a single
judgement aund separated by a horizontal line, should be interpreted as meaning that, if the
conditions above the line are satisfied, then the judgement below the line may be asserted.
A condition may be of the form 2 : T+ E : 77, where z may occur free in #, meaning that,

under the assumnption that x has type 7, then we can infer that £ has type 77,

As well as providing type rules for cach expression former, we also give axioms describing the
behaviour of such expressions, The expressions introduced here are, essentially, familiar,
and their behaviour is well understood and documented, for cxample in [32, 39]. Owr
main concern ig 10 describe how the expression may be manipulated in the presence of
undcfinedness and non-detertninacy. Many of the familiar axioms may hold only when
constituent terms are proper, or may require sowe subtle changes to allow for improper
terms.

In general, there are not many changes to the standard axioms since most expression con-
structors arve strict and distribute over choice, thereby ouly making it necessary to describe
their behaviowr for proper sub-terms. When all terms arc proper, the expressions behave
exactly as deseribed in any standard treatment.

We will use the idenliliers a, b {or constant valucs; «, y for variables; E, F'. G for arbitrary
expressions; P for Boolcan cxpressions; f, g, A for function expressions; A for sets; B for
bags; S for sequences. For any expression F which may contain subexpression @, B[/ z]

is the same expression, but with # substituled for each free accurrence of .
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2.1.6 ‘Treatment of the Language

In the next section we begin Lhe formal treatment of the expression language. The language
is described using type rules, to give the formal syntax, and axioms to give the behaviour
of the various expressions. Sincc the axioms must necessarily be presented in a linear
fashion, somc operators are used before their axioms appear. For cxample, within the axioms
for 4 and A, the implication operator = is used before implication has been introduced.
Therefore, we assume that all axioms are agserted at once.

We start, in section 2.2 with an initial description of the operators [}, § aud A, since these
are probably new to the reader. The description is initial because more axioms concerning
these operators will appear in sections 2.3 and 2.4.

Section 2.3 describes the logical system of the langnage. This sreatient is unusual in that
seven logical valucs are accomodated. Since most of the logical operators are non-strict
and do not distribute over choice, some attention must be given to the collection of axioms
describing them, We also show that seven distinet values do exist and outline an argument
that every logical operator is fully delined with respect to these seven values.

Section 2.4 then describes the remaining types of the language — integers, characters, prod-
ucts, funclions, sets, bags and seqiiences. These types are well-known and understood and
so it may be swrprising that they are trealed here in such detail. The answer is that, while
the types may be familiar when all terms are proper (well-defined and deterministic), we
need Lo explicity (reat the expressions in the cvent of improper terms. In many cases if;
is not so straightforward what is meant by, c¢.g. applying a function to a non-detcrministic
argument or adding an nndefined value to a set. What we intend to achieve is to provide a
set of axioms which describes exactly this form of behaviour, allowing us to reason about
and manipulate formally such improper expressions.

For each of the basic types {booleans, integers and characters) we will introduce the proper
values. These correspond to the usual values of each type, e.g. True and Fulse for the
booleans. The terms £, #, , P, Q. R. [, ¢, h, 4, B and S all denote total expressions
unless otherwise stated.

Finally, section 2.6 will treat partial expressions.

b
«
3
v,




2.2. Undefinedness and Non-Determinism Formally 22

2.2 Undefinedness and Non-Determinism Formally

We first give the type rules for statements aboul equivalence and equality of expressions.

For any typc T, non-strict cquivalence and strict equality exist

E.:T F:T E:T F:7T
(B = F): Bool (# — ) Bool

The type Bool will be described in the nexl section.

Now, we introduce nndefinedness into the expression language using the type rule:

Lg: T
This rule states that for any type £, Ly has type 7. This is the L-introduction rule,
Naon-determinism is introduced into the language using the choice operalor:

E.:T F: T
Efjr:T

So, if 7 and F are both cxpressions of type T, then the expression E [} F also has type 7.
This is the [-introduction rule.

We introduce the operators 8, which determines the definedness of an expression, and A,

whicll determines proper expressions.

BT E:.T
d £ : Bool AFE : Bool

Now the following axioms describe some of the properties of the above operators. Other
axioms will follow in sections 2.3 and 2.4. We assume that £, I and G are arbitrary

expressions of an appropriate type and v is any proper value of appropriate fype.

Axioms for § and A

A
Ag
=g Lp
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AE=480F
A(3 E)
A(A B)

These axioms state that: all proper values and all variable expressions are proper (and
hence well-defined); for every type T, Ly is not delined; every expression that is proper
is necessarily well-defined; and it is always determined whether an expression is propev ar

well-delined.

Axioms for |

E|E=E

E|F=F|E
EN(FIG)=(BE[F)]G
AME[F)=AEAAFA(E=F)
HE[|FY=3EAST

These axioms state that: choice is idempotent, symmetric and associative; the cxpression
E || F is proper whenever E and F are proper and equivalenl expressions; the cxpression

E [ F is well-defined exactly when both & and F are well-defined.

Equivalence

E=Ek

(F=F)y=(F=F)
(E=F)= True)=(E=F)
(F=MA(Fz@)=(E=Q0)
(E=F)= (GE/z] = G[I'/z])
(B # #) = (8 = F)

The first four axioms give the usual properties of equivalence. The fifth axiom is the axiom
of Liebniz, which enables substitution of equivalent subterms in an expression G. Clearly,

z must have the same type as I and F. The last axiom defines non-cquivalence.

et a,
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Equality We let », v and w range over proper values of vype 2"

0(E—-—F)=dEAJF
AME=F)=ZAEANAF
AE=F)={(E=F)=(E=F))
(E=F)=(F=E)

(u =)

{(u=v)Av=w)= (u=w)
(=)= (u=1)

(EQF) =6 =(E=6)](F=G)
(BE#AF)=—(E=F)

The first three axioms statc definedness and determinedness properties of equality. The
next five axioms state the usual properties of equality for proper values. The cighth axiom

shows how equality distributes over choice. The last axiom defines non-equality.

2.3 The Logic

The type of Booleans is represented by Bool and has two proper values, Trne and False.

True : Bool False . Bool

From thesc type rules, and the _-introduction and [-introduction rules, it follows that
we can form seven values of type Bool: True, False, | poor, rue{] #olse, True || Lpooi,
False || 1. gyat, True [| False [ pgo;. We will show, after the presentation of the axioms for

logical expressions, that these values are distinct.

The usual disjunction and negation operators exist

P : Bool @ : Bool P: Bool
PN @}« Bool -~ : Bool

The negation operalor ig styict and distributes over choice. Disjunction is non-strict, but
does distribute over choice. The axjoms for the propesitional logic follow. We assume Lhat
the symbals P, ¢ and R represent arbitrary expressions of type Hool.

LRV EL S ey
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Disjunction
PyvQQ=gve
PV(QVRE)=(PVQ)VR
PYP=P

PV True = True
PLQVE=(PVR](QVE)
((PV Q)= True) = (I’ = True} Vv (Q = True)

The first four axioms give the usual propertics of symietry, associativity, idempotency and
True as a zero of disjunction. The next axiom breats the behaviour of disjunction with

non-deterministic operands. The last axiom shows distributive properties of = over V.

Negation

False = —True
(~P=Q)=(P=-0Q)
_‘J—Buol = | Boot

~(Pl@)= P-Q

The first two axioms define negation for proper values. The third axioms describes the
strictness property of ncpation. The last axiom treats the behaviour of negation with a

non-determinisiic operand.

We now define conjunction and implication in terms of disjunction and negation. The

definition of conjinction is standard, but the definition of implication is a little unusual.

Conjunction

PAQ=—A-PV-0)
(PAQ=P)=(PVQ=(Q)
PAQVR)=(PAQ)V(PAR)

({PAQ)= True) = (P = True) A (@ = True)

The first axiom defines conjunction. The second axiom is the consistency axiom. The last

two sxioms show how conjuuction distributes over disjunction, and a distribution property




2.3. The Logic 26

of equivalence over conjunction.

Implication

P=@g=-Pvy-APVQ
P=(Q=R)=(P=Q="=DR)
(P=Q)=(P=0q)

The fivst axiom defines implication. This is different from the usual definition, and is hased
on a definition by Avron given in [1]. When P is proper, this definition rednces to the
usual definition of implication. 'T'he next two axioms show distribution of implication over
ecuivalence to the right, and the weakening of = to =,

Finally, we give an axiom concerning A for logical expressions.

A-Definition
AP =((P=1drue)=P)

This delines A for logical values.

2.3.1 Predicate Logic

We now treat quantification in our logical system. Prediate caleulus introduces universal
and existential quantification over variables in a logical expression. In the current context
we need to consider what values the variables can range over; and what happens when the

logical expression may be improper.
We make the decision that the quantified variables range only over proper values of the
appropriate type. This means that, for example, the expression

(Va : Bool | ex = z)

is Truc, since x can take only the values True and Folse, This decision is further supported
by the axiom already given in section 2.2 which stated that any variahle identifier z is
proper, A .

The second consideration concerns the interpretation of quantification with cxpressions
which may be improper. We make the decision that waiversal quaniification is to be treated




2.3. The Logic 27

as generalised conjunction and existential quantification as generalised disjunction. This has

the advantage that de Morgan's laws for the quantifiers are retained and that the classical

logic holds when all terms are proper.

Other possible treatments might make the quantifiers strict and distribute over non-deterministic
expressions. We find that our versiou is better in that the relationghip with the disjunction
and conjunction operators is retained, which means that most of the familiar axioms for
predicate logic can be asserted in our gystemn:.

We now iutroduce quantified expressions and list the axioms which describe them. The
rcader will be familiar with most of these axioms. Further theorems are listed in appendix A.
The most noticeable difference from classical theory is the ‘Drading law for existential
quantification. The difference arises because of the new definition of implication. This will

be discussed further in the section,

For @ one of ¥, 4, we have the type rule for introduction of quantified expressions

w:THEP:Bool 2:TFQ: Bonl
(®z: T | Pe@Q): Bool

We also allow quantified expressions of the lorn (62 : Z' | @) which is simply a shorthand:

(@a:T|eQ)={(®r: T Tuece Q)

The meaning of quantified expressions is given by the following set of axioms. The symbol

& represents cither ¥V or 3 throughout the axiom in which it occurs. In the following P,

@, @' and R represent arbitrary expressions of type Bool which may contain free variable 3

identificrs © or y; and F is an arbitrary expression of appropriate type.

One-Point Provided 2 is not frec in # and A E,

(©z:. T z=EeQ)= Q[E/z]

Distribution Provided z is not free in R

(da:T{PeQANz:T|PeQ Y=z :T|Pe}AQ)
RV(‘TJ':L-':T|_P0Q)E(Va;;T|P.R\/Q)
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Interchange of Dumimies Provided g is not free in P and z is not [ree in @

(z : T | Po(®y: 1’

QeRN=(CQy:T' | Qe{Dx: T} PeR))

Nestling Provided y is not free in P

@2,y T, 7" PAQeRY=(bz:T|Pe(zy: T |QeR)

Dummy Renaming Provided y is not free in P or @

(Gw: 1 [ Pe@)=(Dy: T|Ply/z]e Qy/z])

Trading

(WVe: T|PeQ)=(NVz:T|el = Q)

Generalised DeMorgan

Bz . T|PeQ)=-Vr:T|Pe-Q)
(Fz:T|eQ)=-Nz:T|eaQ)

Distribulion of =

(Vo : T |Pe))=True)=(Vz: T |Pe@ = "lrue)
Vz: T | lPeQ=Q )= (Va1 |PeQ)=(Vz: 7| PeQ))
((Ba:T|PeQ)=True) = (Az: T |’ Q = True)

Iurther theorems derived from the axioms appear in appendix A. One noticeable Ltheorem
is that of Trading for existential quantification. From the Generalised DeMorgan,
Trading for universal quantification and the =-Definition, we get

Be:T|PeQ)=Tz:T| (P =>-Q))

This is equivalent to the usual 2-valued version when all terms are proper.
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2.3.2 Theorems

The set of theorems of the specification language is the smallest set of expressions of type
Dool such that: every axiom is a theorem; a theoremn follows from other theorems by an

application of one of the inference rules

P =
"--‘-{)—*——Q Modus Poneuns
G
P
- Generalisation
(Vz: 1 |eP)

A proof of theorem P proceeds as expected, by supplying a sequence of theorems ending with
P, where each member is an axiom, a known theorem, or follows [rom previous elements by
an application of an inference rule. Chapter 5 shows how we may reason about expressions
of the language using equational reasoning, similar to the style emploved by Gries and
Schneider in [32).

2.3.3 Sufficient Axiomatisation

The purpose of this section is two-fold., Tirst, we attempt to show that the seven values
of type Bool are distinct and that thig is fixed by the axioms presented. Secondly we will
outline an argument that every operator introduced is fully defined with respect to these

seven values.

Distinct Values

We have seen that the type DBool contains the two proper values, True and False, the
bottom value, 1 ., and the various combinations of these with the choice operator, giv-
ing True || Felse, True [| Lpoor, Feise ||| poor and True [ Folse | L jon. In many cases, the

digtinctness of any two values is shown using the operators A and 4.

We first show that True and False are distinct values, with the following short proof. Notice

that we are employing cguational rcasoning, to be justified in chapter 5.

False = True

“True an idenlity for A (See appendix A)”




2.3. The Logic 30

(false = True) A True

“Substitution rule for A (See appendix A)”
(False = True) A Lalse

“False a 7ero for A (See appendix A)”
False

and so we conclude that False Z True.

The distinctness of any two values X and Y can be shown by finding a function f such Lhat
FX#FY. It follows that X £ Y.

Consider the function A. From the axioms we note that A True and A False, but A L gaur.
And so we now have three distinct values.

Now consider the value True [} False. Irom the axiom

AE|F)=AEBENAFA(E=F) (2.1}
it follows that

A(True || False) = False

since (True = False) = False. So True || False is distinct from botl True and False. Tt is

also distinet from 1 gy since, from the axiom

ME|F)Y=OEASF (2.2)
it follows that

§(True [ Folse) = True

since both ¢ True and 4 Fulse hold, but =6 L 5,0, We now have four disvinct values.

Now we consider the three values X {| L gon for X one of True, False or True | False. Using
the axiom for A, (2.1) above, we conclude that

A(X [] J—Br:ml/ = Ialse

and s0 X [| L gee i3 distinet from True and Fulse. Now, using the axiom for §, (2.2) above,
we conclude thag

(X [ L) = Fulse
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and s0 X [| L peor Is distinet from True [ False.

We now need Lo distinguish between the undefined values L goor, True || L ooty False | L gooi
and True || False | L oo, Unfortunately this is not possible rows the axioms as they stand.
Tt would be necessary to introduce a new operator which would distinguish the value L g
from the other undefined values. Although this is possible, it would mean providing a
large number of axioms for the new operator to describe its behaviour with each form of

CXPLession.

So, we cannot distinguish the undelined values Lgar, 2Yue [| Lpos. False || | poo and
True 1] False | L gy, from each ather. Equally, we cannol prove that they ave the same
value. This means & certain incompleteness in our axioms. Il also demonstrates how casily
the choice operator conld be made demonic by simply asserting that all undefined values

are equivalent.

Note that, if we could distinguish Loy from X [| Ly, for arbitrary defined X, then it
would be a simple matter to show scven distinet values. Using the disjunction operator we

would have

L ppget V (True [l Luoet) — True I] L Beot

L Boot V (1;"3"!33 [l J-Uaad) = 1 Boot

Since we could show that 1 gey is distinct from True || Lo, we would conclude that
True || L gogs 18 distinet from False [| 1 oor- Now, using the expression template (X = -X)
we wotlld have that the expression is True when X is True | Folse [| L goor, and False when
X is cither of Truc [| L goo or False || L poot.

We conclude [rom all of the above that seven possible logical values exist and that at least

four are distinct. Figure 2.1 shows how the operators A and § distinguish logical values.

Sufficiecnt Axioms

The second abjective of this section is (o outline an argument that every logical operator
is fully defined with respect to the axioms. In the above argument we illustrated sufficient
axiomatisation for the operators A and 4. We have also seen thal = is not sufficiently
axiomatised since we cannot find a value for c.g.

(T”w [ J—Bwl] = J—B‘na!
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True False A

True || False

True || Lgost  False || g True ] Folse || 1 oot

J-Bool

TFigure 2.1 Using A and J to distinguish logical values

Other logical operators are -, V, A and =. Conjunction and Implication are defined in
terms of negation, disjunction and A, so our task now is to show sufficient axiomatisation
= and V.

Tn the case of negation, the following facts are immediate {rom the axioms:

rue = False
—Fualse = True

iR oot = L Boot

For the other four logical values, each of which is of the form (£ [] ), the axiom concerning

Distribution of - over [ is sufficient to yield a value.

In the case of disjunction, there is an axiom describing Zrue as a zero of V, a theorem
describing False as an identity of V (see appendix A), and an axiom describing the
idempotency of V. These laws, together with Lhe axiom [or distribution of vV over [|,

are sullicient to yield a value for PV ), for logical values P and Q. "Lo illustrate:

(True | Lpeot) V (False || L Boot)
“Distribute V over [, Associativity of [|”

(True V False) [| (True V Lpoot) [| (Lpoat V False) | (1 poot V L Boot)
“Trye a zero for Vv, Idempotency of [|”

fll
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True [| (L poar V False) [| (Lpoot V L1aot)
“False an identity for V"

True |] False |] (_J_B,mg V L Booi)
“Idempotency of V»

True || False || L o

I

i

Now, conjunction and implication are defined in terms of disjunction, negation and A. It
follows that, for logical values P and @, it is possible to find the values of PAQ and P = @
from the definitions of A and =, and {rom the sufficient axiomatisation of =, V and A,

2.4 The Type System

In this section we describe the types of the language and how to form expressions of each
type.

The basic types arc Boolcans (as already described), Integers, Characters, as well as other
user-defined types to be deseribed in chapter 3. Type constructors include products, func-
tions, sels, bags and sequences. We treat each of these in turn. We also give the axioms
governing the behaviour of expressions of each type. Tt is not claimed that this set of axioms
is minimal.

2.4.1 Integers

The type of intepers is represented by Z, and we assume the usual proper values.

oy =2,~1,0,1,2,...: %

From the axioms for A in section 2.3, each of these is propoer, and thus well-defined.

The usual operators over inlegers are included. For & one of +,—, %, /,mod, 1 {min),Lt
(max), we have the type rile

E,F:7
LoF.Z

We assume the usual conventions for precedence of operators and the use of bracketing.

D I e,
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‘Ihe integers are ordered by the ‘< operator

EF.Z
E < F: Bool

which has the usual interpretation, and similarly for other comparison operators >, <, 2.

We assume the usual axioms of arithmetic for proper terms, e.g. [32], or a different approach
is given in [39]. in particular, we have induction over the natural numbers N, the subset of

the integers containing the non-negative clemnents of Z.

(Vo:Z|nz0e(¥Vi:Z|0K<i<nel)= Plnfi)) = (Vn:Z|n20ePn/i)

For impraoper terms, all of the operators over integers are strict and distribute over choice.
For @ one of +, —, %, /, mod, ML, <

Ea(F|G)=(EoF)|(EeG)
(EiMeG=EBsG)(FPed)
SE®F)= (JEASR

The last axiom is au equivalence when € 18 one of 4+, — #, [,1,<.
Attempts to divide by zero result in undefined terms. For @ oue of /, mod, and with A £,

HE@FY=6EANSF A(F #£0)

These axiows, together with the usuwal axiomatisation for proper integers, describe the

integers of our expression languape.

2.4.2 Characters

The tyvpe of characters is represented by Char. We assume the proper values of the type
Char to include letters, ‘a’,... ‘2" and ‘A’ .. Z', digits, ‘0,...*0’, punctuation characters

[

asl other symbols, eg. *$ %' '#’, as well as the space character, ¢ * and the end of line

character © ¢ '. As with the integers, these also are proper, and hence well-defined.

Apart from comparison of characters, using cquality, there arc no other operations over
characters. The main use for characters is to form strings, which are seguences ol charac-
ters.
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2.4.3 Products

For T1 and Ty types, so also is T) x Ty a type.

A member of type T % T4 consists of the pairing of an element of 7' and an element of
Ty. We have the type rule

P

E:Tl F:Tg
(F;,FJ : T] X 7'2

Components of a pair can be retrieved using the (family of) functions fst and snd. The
type rules are

E:T]_XTQ E:T;[XTQ
fst £ T4 snd 7 . Ts

The axioms concerning A are that a pair is proper iff its components are proper; and if a

palr is proper then retrieving its first or second component will result in a proper expression.

AE,FY=AEANAF
Allst EYANA(nd B)=AE

Product formation and the functions fst and snd are strict,

and distribute over choice
(F]F.Gy=(E,G)}(F G)
(E,F[ Q) =(EF)](EG)
fst(E|F)=tEBLF
snd (B[] F)=snd F [ sud F

This deals with non-deterministic product expressions and expressions with subterms which

are not well-defined. For proper expressions we have the usual axioms, where A F and A F

st(E, F) = &
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snd(E,F)= F
(ExoF)={(fst £ = st ') A (snd F = snd F)

An example of where these axioms would fail with improper terms is the following:

(3,4) [ (5,6) # (3] 5,4 6)

Both pairs have 3 | & as the first component, and 4 [ 6 as the second, but the pairs are not
cquivalent.

In general we allow product types of the form 7 x To x ... %X Ty, for n 2 2. Values of this
type look like (Ey, Ea, ..., £y) for #; : Ty Associated projection functions are written w7
of type 4y x Lo ... x Ty > Ty, forcach 1 €4 < n.

2.4.4 Functions
For 1) and Ts types, so also is Ty — Ty a lype.
Elements of a function type are formed using the type rule

z: DTy
(fuan T1:E):T1—>T2

Function application, written using juxtaposivion, has the following type rule.

fT_—>T2 E:T
fE: 1y

We take function composition as a basic operation over functious, with the type rule

f:Tg-—)T3 g!Tl'—)TQ
fog:1y — Ty

The following axioms hold for A

Alffunz ¢ Ty : E)
Alfeg)=AfFAAY

S0, a function abstraction is always proper, i.e. well-defined and deterministic, even though
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its body ® might not be, It follows that function abstraction is not strict and does not

distribute over choice.

Function application and composition are strict, giving the axioms
S(fEY=0fNIE
Sfog)=d0fndyg

and distribute over choice
[EIR) =[E]fF
Jlpe=rfEBlgFR
folglhy=(fog)l{foh)
(Flygloh=(fch){goh)

This deals with function expressions which are improper. For proper expressious, with A F,

Af and A g, we have the usual axioms for functions

(fun x C 7 : E) F = B|F /]
(fog)E=[(yE)
f=g=Fa:Ti|efz=gux)

The last axiom docs not hold when either f or ¢ is improper. Examples ave

A T+ Ty ?é (fl_lll ol T1 ’ J_T:,_)

(funze T:3)[(fune e T:4)Z(funzx e T:3]4)
In both cases the lelt function expression is improper while the right funciion expression is

proper. The functions may also be distinguished when higher-order functions are applied

to them.

2.4.5 Sets

For T atype, so also is P T a type.

A set of type P 7 is an unordered, possibly infinite collection of elements of type T'. BEach
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type T is itself a set of type * T

T-FrT

Sets can also be formed using a predicate.

x: T Bool

{zeT P} PT

38

A sel of type P 7' can be obtained hy taking the generalised union of a sct of sets, of type

PET.

A:PPT
U/APT

Set membership is denoted by the ‘€ operator.

E.:T A:PT
FE e A: Bool

A for set expressions has the axiomns, with T any type
AT
AMeeT: P}
A(UFA) = A4
AMEcA)=AFBAANA

Generalised union U/ is strict and distributes over choice

s(U/A)y=4d4
U/(A, |: Ag) = (U/4y) [; (U/.‘l'_))

Membership € is strict and distributes over choice to its right.

MR eA)=0AAN0E
Ee(d || A)= (B e A)](EcAy)
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This deals with improper sets. For the case where 4,4, WP, A': PP T,z : T+ P : Bool
and E : T, we have the axioms for proper set expressions A A, A Ay, A A’

Ec{zeT :Pt=(funzecT:P)L
AePd =Vz: Tlex€e A=z e 4y)
BeU/A'=CA:Pr|eEcAnAc )
(A=AY=(Va:Tiezecd=2c A}

A result of the axioms is that an expression E [| F is in a set 4 only if both E and F are in

A. For oxample, we have

(203 ef{ec?:z=2}= True

We define the empty sct, and the usual operations for sets, where A, 4" : PT, a : T,
s T+FP:Dool,z: THE T, 4,3:Z,f:7 T p:T - Bool,

¢y = Az e 1 : False}

AU 4! =2 {zeT :ae€eAvVued}
An A = fzcT :zeAnazed}
A\A! = {zel :xcAnz g A}
AC A = AcP4A

Ac A = ACANAAZ AN

{a} = [ze€?:5=qa)

{zec A: P} = {eeT:zec AN}

{eeT P:E} = {yeT' :3e:TePAE=y)}
{ze T :: E} = {xe€T: Trve: E}

f*A = {zxc€d::fz}

pad = {zeT:px}

{i.} {e e Z i< u}

(.5} (we:nsi)

{i.g} g}

N BTN

>

.{)

II>

A set A is finete if there exists a one-to-one, onto mapping f from {0..n — 1} to A for some

natural number n; in that case its cardinality # 4 is defined to be equal to n. Otherwise A
is snfinite. Tinile sets may be described by listing the clements of the set, which is just a
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notational shorthand. For example

{2,4,8} = {ze€Z :z=2Ve=4Vva—8}

We also introduce reduce over sots, where § which is associalive, commutative and idewn-

potent, i.e. one of U, M, U or M.

S:TxT—>T
D/APT =

For any such @, ¢/ is a function which is strict and distributes over choice in its arguments.
So it is suflicient to give axioms [or the behaviour of £/ when applied to proper arguments.

When A, and A, are proper set expressions, with A F,
¢/{E}=FE
/(AU Adg) = E/A) UD/As
And when 0 has an idenlity g,
®/D = 1g
These axioms [ix &/ {or finite sets only.
We say that reduce distributes to the lefl over non-deterministic operators.
@2/ =a/lle/
It is sometimes uselul to consider only finite sets in a specification. For any type 7', we
use F %' to denote the set of finite sets of elements from T, with the expected operators

inherited from the type IF 2, In addition, we use IY; T to denote the set of finite, nou-emply

sets of elements from 7. Both I 7" and IF, T can be defined within the expression langnage:

FPr={AePT:(dn:N|efS=n)}
F. T =F T\l7

2.4.6 Bags

I T is a type, then so also is BT a type.

Elements of the type IBT are unordered, possibly infinite collections of elements of type 1.

PRy




2.4. The Type System 41

A bag is described using a function giving the number of occurrences of each element in the

bag. We have the type rule

z:THE:Z
[z »x £]: BT

[or a bag & of elements from T and E : 7', the expression B.E denotes the number of

occurrences of £ in B.

B:BT E:T
B.E:7Z

A bag expression using bag formation is always proper.

Afflz : T s E]

Bag application is strict and distributes over choice to its lelt.

§(B.EYy=>3BAJE
(Bl ” BE)E = B]_.E [] BQ.E

This accounts for bags which are improper. For proper bags we have the axioms
le: T x E).F=E[F/z]U0
(B=B)=(Nz:T|eB.u= DBz

it I is undefined or non-deterministic at /', then this is reflected in the result of applying
the bag to F. So, although the bag [z : T » F] and F may be proper, the result of the

bag application might not be.

The empty bag, bag membership, bag union, bag subtraction, the subbag relation aud filter

!
K
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lor bags are defined, for B, B': BT, a: T,p: T — Bool,z: T+ P : Bool,

e 2 fo: 7 x 0]

o €8 E (B.a > 0= True)

Bu B = [#:7T % B.x+ B'.z]

B - B £ a4 % Ba— Br]

BCPHB = (Vz:T|eB.z < B2 = True)
pap = [z: T » if pa then B.z else O

flzeB:P| = (funzeT:0)«B

Finite bags may be described by listing the elements ol the bag, but this is just a shorthand

notation. So, for example

[1, -2, —2,0]

1

[z:Z »x if £ = 1 then 1 else
if ¢ — —2 then 2 else
it 2 = 0 then 1 else 0]
[z : Choer xx if ¢ =‘a’ then 1 else (]

[e’)

We have map and reduce for bags. With @ an associative and commutative operator, we

have the type rules

f:T = 79 G:TxT T
J«: BTy =BT, Gﬂ/lBT—)'T

With the axiorns

Alf+) = Af
Alef) =A o
S(f+)=4df

s(of)=6 @
(hlfa)e=fi=]fox
(Gal}@)/ﬁ@/u(a/

It is now sufficient to deseribe the properties of f+ and €3/ over proper bags.
Fall=11

Fel&] =[fE]
f*(BiwWBy) = (f+B)d(f » By)

i
EY
:
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o/l =
&/(Byw By) = (&/B) & (&/52)

When @ has an identity, 14

o/l = 1g

‘T'hese axioms fix f= and &/ for finite bags only.

The set of non-empty bags of elements from type T is denoted by I3, 7.

2.4.7 Sequences

For T a type, then so also is Seq 1' a type.

Elements of Seq T ate ordered, possibly infinite collections of elements of type T. A
sequence is described using a function mapping the natural numbers N or an initial subsct

of the natural numbers {0..n} to elements of 7.

n:Z A N I VIR ol
(1t : {0.n} > E): Seq T (i:N > E):Seq I

The domain of the sequence is the sel over which the sequence is defined.

§:8qT
dom S:IPZ

The expression #5, where § : Seq 2', denotes the size (or length) of the sequence .

S:8eq T
#9:Z

For j : 7, the element of type 1" at position § in S is denoted by S[7].

S5:8qT 7:2Z
Sy - 7

Axioms for A are

Ali:{0.n}  EY=AnAAE
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Ali:Nx EY=AFE

Aldom 5Y <= A S

A(# S) < A8 A (dom § % N)
A(Si) = ASAAFAjE€dom S

The functions dom, # and sequence application distribute over choice

dom (5 [| $2) = dom ) || dom Sy
#S [ 52) =#5[#5

(51 [ 52)l5] = 81l [ S2l5]

Sl [ 72) = ST] 1 Sz

For proper S and 7, f.c. AS and Ag

S(#8) =65 A (dom § £ )
5(SlF]) — 7 € dom S

Now, the axicms for proper sequence expressions, with A7 and I : PZ such that 7 = N or
there is some » : Z such that I = {0..n}

(1 ] ow By = #7

dom{s : I >»x Ey=1{

G:T w E)j] = E[j/i]ifj el

(§ =8 = ((dom & =dom §YAN(Vj:Z|j € dom S e S[j] = S[i']})

We define the empty sequence, sequence membership and map for sequences, with1: Z - £ T,
2: T, 5:8eq T, f:T— 1,
Gp = {(i:{0... -1} x E)
z€S = (Fi:Z|i<€ dom5S e S[i]=2)
f+8 = {(i:dom S x [{5i]))
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Coucatenation ol sequences, § — &', for §,8": Seq T is delined as follows

S8 = (51 {0,..., (#5 +#8 + 1)} w if i < #85 then S[i] else i — #5])
if S finite

S aotherwise

Finite sequences, as for baps, may be described by listing the clements of the sequence.

Again, this is a notational shorthand. For example

{1,—2, =2, (i:{6,...,3} x if i =0thenl else
if ¢ = 1 then —2 else

if § = 2 then —2 eise

if « = 3 then 0 else n)
{*a) = {i:{0,...,0} x ifi=0then ‘s else ¢)

where n may be any integer, and ¢ is any characier.

We introduce reduce for sequences. With & an associative operator, we have the type rule

G: x4t =T
&/ 8eqT = T

With the axiowms

A/ =A D
de)=6 o
o)/ =a/la/

1t is now sufficient to describe the properties of @/ over proper sequences.

/(B =
®/(51 7 52) = (©/5) T (1/S2)

When € has an identity, lg

®/{) = 1g

Now, filter for sequences and scquence comprehensions are defined, with §: SeqT, p: T —
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Bool,z: THE: T, 2:TF P: Boul,
pal8 = Tj{i:dom S »x if p §|i] then (S[i]) else (})
laeS P E) =& (funzeT : E)s((lunzeT:P)<85)
We identify the set of strings, Striny, with sequences of characters.
Siring = Seq Char
Instead of wriling strings using the sequence notation, as in
G A 'R LT LRLI LA TR P SR T S S (LAY SRR
they can be wrillen using double guotes, as in *This is a string.”.

We deline the set ol injective sequences of elements from a type 7', ISeg T' contains sequences

of elements in which any a in T occwrs at mosh once.

Seq T = {Sc8eq?: (¥Vi,j:Z|0<i,j <#5eS[i]=5[]=1i=3)]}

The set ol non-empry sequences of elements from type T is denoted by Seq T,

2.4.8 1’artial Mappiugs

We could also include the set of partial mappings from a domain type 7) to a range type
To, written 7| - Ty. This uses the Z notation and uperations for partial functions, as

given in [75, 44}, and can be defined in terms of sets of pairs of type Ty x Th.
For example, we can define the set of partial mappings Th + T3 as
T+ Ty, = {f EIP(Y.I X 1'2) :
Ve D |e(Vy, € Tl (2.n) €FA (2, 12) € f oy = )}

For f a partial mapping in T -+ Ty, instead of writing elements ol [ using product notation
(z,y), we may use the standard maplet notation z — y. Override and application can be

defined as in [44]. The set of tolal mappings 17 -+ 1% can be defined as

T+ 45 = {f e w» Uy : {.’I.' e (:iy €Ty | 8L Y G:f)} = Tl}

Since the notation for partial and total mappings is defined in terms of products, which

"
4
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have already been treated for undefinedness and partiality, there is po need to give an

axiomatisation for Lhem. 'hey may be considered as useful syntactic definitions only.

2.4.9 Simple Types
We define the collection of simple types to be the smallest such which includes

s the types Bool, Z and Char;

o the types T\ x Ty, P 7, BT and Seq T for 1", 4| and T, simple.

2.5 Language Constructs

i this section we describe the expression formers of the language. Again we use type theory
to introduce the new concepts.

2.5.1 Conditional Expressions

We introduce the constructor for conditional expressions, if P then £ else F'. We have
the type rule

P Bool Er.T
if Pthen F else F: T

In fact, we take the view that there is an if constructor for cach type T, and that these
form a family of such constructors. The conditional expression is strict in its first argument.

Axioms for conditional expressions are

if True then K else F — F
if False then I else FF = F
AP — (if P then F else F = 1)

The last axiom may seem a little odd, particularly for the case where P is True || False.
This derives fromn the fact that a conditional expression is considered to be part of the
programining language, rather than a specification constructor. As such, its firsl argument
is expected to be deterministic. Il it is not deterministic, then the expression is treated as
undefined. We note that the if constructor described by these axioms is monotonic in each
argument.,

T T
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2.5.2 Local Definitions

We intraoduce the let expression for local definitions. If B : Iy and z : Ty F F' 1 I5, then
the expregsion

let 2 = F in F
has type T3 and is defined by
letz=Einl = (funzeTh:F)FE

There is a let constructor for each pair of types {7}, T9).

More generally, several local definitions ean be introduced in parallel using a single let

b

construct, successive delinitions separated by ‘|, Tf 7Z; + 7% and we have the judgement

2T, eeydn: Ty b= F 2 T, then the expression

let. $1:E1]|

l2p — Bp in F
has type 77 and may be defined as

letoy =0...|Jep=E,in F = (funz € T,...,2, € Tn: FY(E,....E,)

Clearly the order of writing the definitions of the z;°s in the let expression makes no differ-

ence to the expression.

To avoid having expressions with lots of nesied let delinitions we introduce a syntactically
nicer form

letmy =B &... &z, =E, in I
where z; may oceur in I provided ¢ < 7. This form is equivalent to
let oy = By in (let @y = By in (... (Jet 2, = By in F)..)))
which, in turn, denotes

(fanz e T :(funay € Yo ... (funa, € Ty : F)E, .. )E)) By

B
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2.5.3 Recursive Functions

Recursive function definitions are included in the specification language using a let expres-
sion where the free variable f may occur free in its defining expression E.f.

let f = (fun z € T : E[f]) in F[/f]

The nolation £[J] means thal f i3 a free variable of expression 7. We limit recursive

definitions to function types only. For example, we could have the cxpression
tet foc = (fun z € Z: if z € 1 then 1 else z x fac(z — 1)) in fac3

which we expect should result in the value 6.

The behaviour of such a recursive definition may be described by unfolding its definition,

so we assert the axiom
let f — E|f| in IP{f] = F[E[let f = E[f] in f)]]

Applying this a number of times to the above example gives the desired result. This axiom
states that f is a fixpoint of some functional. In fact, as will be seen in the seinantics
presented in chapter 6, f is a least fixpoint of the functional, with respect to a definedness
ardering.

2.5.4 Specification Kxpressions

We introduce a new operation on sets called generalised choice and write this [[/. Clearly,
it is based on using the choice operator [| with reduce for sets. 1f § is a non-cmpty, possibly
infinite set of type P T, then the expression [[/S has type T and can be interpreted as

‘choose any element of §°. For example

[/{3,4,5,6} =3[4]576

The type rule is

S:ET
I/s:r

Expressions of the form [|/.S are termed specificalion ewpressions [90].

P T
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We have the following axioms for [}/
all/s)=#s=1)
S/Ss)y=468
/(5 1 S2) = (1/50) [ {1/ 52)

and for A S, AS and A 89
[/H{v}=w

0708 U 8) = ([/5) [ (1/52)
{1/S51=[/52) = (51 = %)

The expressive power of the generalised choice operator is realised when it is used with set
comprehensions. We have the axiom

(ZeeTelP)y= P(ij{ze? : Pz}

An initial specification can be given by defining the propettics required of a solution using a
predicate P say, forming the set of all elements which saiisfy that property {z € T : Pa},
and then using [/ to choose any one of those elements. Provided it can be proven that
there is a solution, i.e. (Jz € 7' » P), then the set {z € T : Pz} is non-emply, and the

specification is given as

Vizer: Pz}

which may, of course, be a non-deterministic expression. For example

[/{z €Z : 0K z: 242} Any even natural
U/ {s ePZ : #s5 =10} Any integer set with exactly 10 elements

More interesting examples uwsing this form of specification can be found in the following
chapter.

2.6.5 Assumptions and Partially Defined Functlions

We introduce a new expression constructor, ‘>--', with the type rule

P:Bool E:T
P>FE.T
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The boolean expression £ is called the assnmption. The intuitive meaning of P >- £ is
such that, if P = True then P >~ ¥ = E, and otherwise P >~ F = L.

The assumption constructor >— is strict in ivs left argument aud distributes over choice to
the right. Axioms for assumptions are, with £ : T,

P>=E|F=(P>E)[{P>F)
True>—E=F

talse > K= 1 ¢

AP = (P> F= 1y)

This last axiom may appear unusual for the case when P is True || False, although we
notice that > is monotonic in hoth arguments. The above axiomatisation is useful for case
based reasoning about expressions of the form P > FE. There are three cases to consider,
P = True, P = False and A P.

We sometimes want to specify a function which will only ever be applied to elements of a
restricted set, and we don’t care what happens if it is applicd to something outside that set.
For example, the integer square root function should only ever be applied to the natural
nuwmbers, N. Having assumptions gives us an easy way to write such functions which are
only partially defined. For A a set of type P T, we define

funz €A FE) = (funz e T (a2 € 4)>E)
Now the function (fun z € 4 : E)} acts like the function (fun ¢ € 7' : £) whenever it is

applied to something in A. For any a ¢ A, the result of the application will be equivalent
to L.

For example, the square root function can be specified as
Sart = (funnelN:[/{z€Z:2?<n<(z+ 1))}

1t can be proven that the set comprehension will not be emply, and so [/ will pick one of

the clements which satisfy the predicate used to describe the set.
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2.5.6 Inversc Functions

For any [unction f : Ty — To, we define the inverse of f, called f ! as follows. For externally

nondeterministic functions, we asserl, thal inverse distributes over choice,

Fhay =5 g
For f proper we define
SV (funye Ty (yefr D) >—[/{z €T fa=y))

So, for any y € 1y, f! y i defined if there is some & € T, not necessarily unique, with
f# =y, e yisin the range of f. If there is more than one such &, in the case where [ is

internally noudeterministic, the result of f71 ¢ is a choice between them.

2.5.7 CGeneric Functions

A generic function definition actually defines a family of functions. The notation we use is
function_name[T), which represents a [amily of functious, one for each type T. In actual

use, the index 4 can usually be inferred [rom the context, and so the index will be dropped.

A peneric [unction is defined using a type parameter, as in
function_name[T] = fr

where f is a function expression containing the type index 7. For cxample, we could define

a generic search [unction as follows
search:T) = (fun 2 € T,A € Seq T : (3N | ed[i] —z)>—[/{i €N : A[{] = z})

This actually specilies a family of search functious, one for each possible type 7.
More generic fuuctions will be described in chapter 3.

A polymorphic function is one whose actual paramelers can have more than one type.
Literature in the arca of type theory, ¢.g. [20, 21, 29, 76|, identifies at least two forms of
polymorphism: parametric polymorphism, where a function works uniformly on a range
ol types; and ad-hoc polymorphism, where a function works on several different types and

may behave differently for cach Lype.

Our generic functions, defined using a type paraweter, are similar to parameterised tem-

plates. They must be instantiated with actual types before use. But cach instantiated

-3
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lunciion behaves in the same way, independent of the type instantiation. Thus we claim

that our generic tunctions provide a weak form of parametric polymorphism.

Tn most cases, this weak form of polymorphism is sullicient. Whalt ig missing is the possibility
of having higher-order functions that accept polymorphic functions as arguments. For

example, although we can define
td[T] = (fu ¢ € 7' : x)

which, for a given type I, has type T — T'; we are not allowed to deline the function
tlegal[T] = (fun f € T — T : (f 3. f True))

becanse it cannot he typed for a given T,

The reason we are using the weaker form of polymorphism for our expression language is
because of the simplicity of the type system. In order to allow highcr-order functions ac-
cepting polymorphic functions as arguments, we would require a second-order type systen.
Although we have not fully investigated such an approach, Reynolds [76] suggests that type
deduction in such a system might be problematic, and that the language could present
semantic difficulties. On the other hand, he also presents some examples illustrating the

possible benelits arising from the more expressive langauge.

2.6 Partiality

Experience with the Z specification language has shown that it is a useful feature to allow
a gpecilication to be constructed in parts. Such partiality is distinct from undefinedness as
described in section 2.1. Partial specifications mean that a single aspect of the problem can
be focussed upon in isolation, and the complete specification obtained by assernbling the

parts.

We obtain partiality by introducing an identity for choice, which we give the fictitious value
T, pronounced “top”. So, we have that T | £ = E for any expression E. We assert that T
is distinct from L., and so it must be well-defined § T. But T is not a proper value, so we
assert ~AT.

Now that [| has an identity, it follows that the generalised choice operator [|/ is also defined
for empty sets. I'rom the properties of reduce we must have that /@ = T.
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As defined in section 2.1.3, we say that an expression F is ftofal if F cannot evaluate to T.

Otherwise E is partial. All the expressions we have seen so [ar have heen total.

2.6.1 Potentially Partial Expressions

We now introduce the concept of a guarded expression. We have the lype rule

P:Beid E:T
PoE.T

where the boolean expression P is called the guard. The intuitive meaning of a guarded
expression P — F is such that: if P is Yrve then P — E = E; if P is False then
P - FE=T,; and otherwise P ~— It = L.

The expression constructor — is strict in its left argument and distributes over choice to

the right. The axioms ave, with £ : T,

True - E = F
False - =T
“AP= (P> E=14)

As for assumptions, these axioms have been formed to facilitate case-based reasoning. To
prove something about an expression P — I¥ it is convenient to consider three cases,
P o= drue, P = False and A P,

Since an cxpression of the form P — I may ‘evaluate’ to 1, we say that guarded expressions
are potentially partial. This means that cxpressions of the form [[/S are also potentially
partial, in the case where S might be cmpty. We note the following law, for any set S with
AS,

[/S=(520) »[/S

An alternation cxpression is of the form Py — By ] ... [| P, -+ En. Any guard P; which
evaluates to Folse has the result that the guarded expression £; — E; effectively disappears
from the alternation. If all the guards are proper, then the alternation is such that somec
expression [; for which the rorresponding guard P; evaluates to Zrue will be chosen and
evalnated. For example, the alternation

20 2+l €0
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o
&

will evaluate to ‘4’ if the integer & is pasitive, to ‘=’ if  is negative, and to either ‘+’ or

‘~?if 2 is 0. An alternation expression is polentially partial, since all guards may be Fualse.

The conditional expression, introduced in section 2.3, i1 o special form of the alternation
cxpression. We have

ifPthenPFelse ¥ = P I[P+ F

It should be clear that A conditional expression is (otal, provided E and F are total.

Partial expressions, on their own, are not useful as specifications, since no program can
satisfy such a spccification. The intention in introducing potentially partial expressions is
that they may be combined, using choice, to form total specifications. In order to control
occurrences of potentially partial expressions in specifications, we restrict the syulax of the
langnage, as described in the next section.

2.6.2 Managing Miracles

Although the introduction of 1" brings great expressive pawer to the language and, as we will
sce in chapter 5, greatly [acilitates the piecewise relinemeut of expressions, it is nonetheless
a very dangerous expression.

No program can satisfy the specification T. IL is the miraculous specification which solves
all our problems, but cannot be implemented. We will sce, in chapter 5, that it is the
most refined specification, since it refines every expression. Therefore, we have a problem,
Given an initial specification expression £, there is nothing to stop the developer [rom over-
refining E, perhaps in a sequence of steps, to the miraculous specilication. thereby resulting
inn something which is unimplemeniable.  Although this is not desirable on the part of
the developer, it is possible that he may inadvertantly introduce partial, and therefore

problematic, subexpressions during the refinement.

We intend to control occurrences of potentially partial expressions so that every specifica-
tion of the language, whether an initial specification or one calculated by refinement from
a, previous specification, is total. We find that it is possible to impose simple syntactic

restrictions which will ensure that every specification is a total expression.

Recognising Potentially Partial Expressions

Trom the language description in this chapter, and from earlier comnments in this section,

we see that potentially partial expressions can aceur in exactly 2 possible ways:

S e e Aot e
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s from a generalised choice, [J/5

e from a guarded expression, P — F

In the first case. the expression [|/5 is partial when 9 is the empty set; in the secoud
case, the expression £ — F is partial when P is Felse. There are no other constructs
where partiality might be created. All other language constructs are total. So, it is only
in the cases of generalised choice and guarding where we need to be concerned about the

possible introduction of the miraculous expression T. Both of these cases are recognisable

syntactically.

Potentially partial expressions are delined as the smallest subset of expressions satisfying

» Lxpressions of the form [|/S are potentially partial.
¢ Expressions of the form # — £ are potentially partial.

o If I7 is potentially partial then so is F || ¥, for arbitrary #'.

Restricting the Syntax

We don’t want to eliminate potentially partial cxpressions completely. We've seen that
guarded expressions are very useful when used with choice to form alternation cxpressions.
Generalised choice expressions are also extremely useful specification tools. We do, however,
intend to ensure thal potentially partial expressions arve never used directly with opcrators
{(other than choice}, constructors or function application. None of these can create partiality,
bul they would propogate it.

What is required is a way of ‘tolalising’ poteutially partial expressions, Le. transform them
into total expressions, scz_t;hat; they can be used freely in specifications. We introduce a new

operalor, biased choice [, which always chooses its left operand if possible. The type rule

is
EF:T

E|F:T

o~ —
Intuitively, E [} F is equivalent to & if ¥ is total, otherwise E || ¥ is equivalent to F.
Biased choice is associative and idempotent, but clearly not symmetric. It is strict in its
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lelv argurnent and distributes over choice to the right. We have the axioms

(F=TY)=(E [ F=F)

s
(EET)=(HEJF=E)
“ (-“ . . . -

Most importantly, the expression I [| I is guaranteed to be total if 7' is. This means that
given & poteuntially partial expression, such as P — E, it can be ‘totatli_sed’ by combining it
with a total ‘alternative’ F, giving an expresson of the form P — E [| F.

We now give the extra restrictions placed on expressions of the specification language. The
use of potentially partial expressions is such that they may only be:

¢ operands of | - thus forming a new potentially partial expression;
‘_ -
e the left opcrand of || - thus forming a total expression;

e operands of =, C, A and J§ - thus forming tolal expressions.

Biased Choice and Conditionals

.
The specification form E [ L is used frequently in specifications. Iutuitively it means that
if E is total then choose an outcome of £ and otherwise we don’ care abant the value of
the expression. We define the shorthand

—

wefi = F]L
which allows us to write nicer alternation expressions, for example
(lunaeeZ:ifxz20-—2“"la0 " fi)

instead of

—
(funaz€Z: (e 20>+l <0~ ] L)

There is a connection between expressions based on biased choice and the conditional ex-
pression which we met at the end of section 2.5.1. We have that

—
if Pthen Eelse L=("—> F) || L
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Further, if AP

.F
if Pthen Felse P=(P S E) | F

A Relaxation of the Rules

There 15 one case where we would like to relax the special syntax rules given above. In
general, we are uol permilted to wrile P > [|/§, sinee /S is potentially partial and so
cannot be an operand of the assumption operator >—. However, il P guarantees thal S is
not ecmpty, and A S, then we allow such expressions. In particular, we allow

§#0 > /§
(JzeTePa) > [[{lzcCcT:Pz}

We claim that such a form is very usetul {or specifications, aud we have in fact already used

this style of specification in the definition of function inverse in section 2.5.86.

"I'he justilicalion for this relaxation is based ou the theorem, which will be given in chapter 5,

(570> [/8)=[/5] L

when A §. Since L is total, the expression on the right is total, and so the cxpression on

the lefl musi also be total.

2.7 Conclusions

In this chapter we have delined a specification language of expressions, based on ordinary
mathematical expressions, but including facilities for the formation and wanipulation of

expressions which are undefined or nondeterministic.

The language has been described using type rules and axioms. The type rules ensure that
every expression has a unique type. The axioms describe how the various constructs behave
with non-proper terms, which is usually based on strictuess and distribution over choice.

Axioms arc also provided for proper terms.

The syntax of specilication modules will be described in the next chapter, where we give a
number of small example specifications, illustraling the use of the various concepts of the

expression languape.
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A prool system governing the manipulation and refinement of expressions using these axioms

will be discussed in chapter 5.

Section 2.6 introduced the concept of a partial expression. Such potentially partial expres-
sions cannot be implemented and so can be dangerous in a specification. However, they are
uscful in the process of constructing specifications hy parts. This method of constructing
specifications will be further devetoped in chapter 4 when we describe how the language
can be used for large specifications. Ou a bigeer scale, considering specifications in parts is
vital.

Luckily, potentially partial expressious may be recogniscd syutactically. They may arise in
only a limited number of ways. This means that it is possible to control their use and, by
always totalising such expressions, to ensure that complete specifications are always total.

>
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Chapter 3
Making Specifications

In this chapter we show how to use the specification langnage of chapler 2 to make specifi-

cations.

First we deline some gencric functions which, though not part ol the language definition
itself, are used frequently in specifications. Rather than replicating their definitions at each
point of use, they are defined in section 3.1, with the understanding that the function names
are replaced by their definitions wherever the names occur. The act of replacing a name by

its delinition is sometimes referred to as unfolding the definition.

The concept of a specification module is described in section 3.2, Although each expression
of the language is a specification, it is generally the case that a specification will require
a number of expressions, together with user defined types, collected together to form a
module. We describe methods by which user defined types, e.g. Book, Person, Colour
ete. , can be introduced into a specification, and give an informal syntax for specification
modules.

Finally, to illnstrate the expression langnage and how it is used in specification, we give four
substantial examples. A larger example illustrating the problow of structuring specifications
will be developed 1n chapter 4.

3.1 Uselul Functions

In this section we define some generic functions which are useful in specifications.

60
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Ran

The range of a function is the sel of its possible outcomes. The function ren[T), Ty] is

applied to a function f of type Ty — T% and returns its range, formally

The range of a sequence is simply the set of values that appear in it. In this case, the

function ran[T] is applied to a sequence S of type Seg T and returns its range, {ormally

ran{T) = (fun § € Seqg I': {i € {0... 485 =1} :: S[z]})

Conversions to Sets

It is sometimes necossary to convert a bag or a sequence to a set. For a bag, this mcans
losing frequency informaiion, and for a sequence, both duplication and order are lost. The
function BugToSel[T] converts a bag & of type BT to a set of tvpe P T, and is defined by

BagToSet|T, = (fun B € BT : {z € T : B.x > 0})

Similarly, the function SegToSet[T] converts a sequence S of type Seqg 1" to a set of type
P 7, defined by

SegToSet[T] = run[T
This is the same as just using ran[7] buy, in a specification, it may be desirable to make
explicit the intention of converting a sequence to a set.
Maximising/Minimising Functions

A very useful generic function is min WRT[T] which, when applied to a function f of type
T — Z and a sct S of type P77, resulis in the set of elements of § which minimise f. For

example

min WRT fo {{1,2). (1), (2>} {(1)) (2}
mimWRT f. {{2,4),(8,8),(4.7),8. 1)} = {(2,4)}
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where

fp = {(fun 5 ¢ Seq?. : #S)
Ju = {(Pump e Z x Z: fst p U snd p)

and U is the max operator introduced for the base type of integers. The definition for
min WRT[T)] is given as

minWRT[T)=(funf €T = Z: (fun SePT:{nec8: (VyeSefa iy}
Similarly, the ez WRT[T] function is defined as
meWRII" = fe To>Z: (fun SePT:{z €85 : VyeSefauxfy})

and results in the set of clements of § which maximise f. From the above examples,

maz WRT [ ((1,2), (1}, (2)} = {{1,2)}
mazWRT f,{(2.4), (8,8}, (4,7),(8,1}} = {(8,8),(8.1}}
mesWRT f1{(2,4),(8,8),(4,7),(8, 1)} = {(88)}

with U (max) and M (min) as before.

We also allow min WRT[T] to be applied to bags and sequences, with implicit usc of the
BagToSet[T] or SeqToSet|T] functions. Thus, for 8 a bag

minWRT [ B = munWRT f (BagToSet B)

and similarly for sequences. Notice that the result is still a sel and not a bag or sequence.
This implicit conversion is merely a shorthand in the case of maximising/minimising func-

tions, and is not a general rule.

3.2 The Form of a Specification

In this section we consider what is a specilication. In its simplest form, a specification is
1 p
just an expression with no free variables, with the special property that it is total. So, many

of the expressions we've already seen are specifications,

In general, an expression which is a useful specification will probably be large in size,
containing a nunber of local definitions. In such cases a clearer presentation would be to

list. the local definitions as named specifications, intervened with explanatory text. So, wo
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may write a long specification, of the [orm
let 51 =E1&32=E2&... in Eﬂ,

where the F; arve typically long expressions, as

5 = B
& = B
Sﬂ = E’Tl

The convention is that $; can appear in the specification named 5; provided i < j. In the
above example the final specification has been given the name §,,, but the name of the final
gpecification can be omitted.

Writing a specification in this way, ag a list of sub-specifications, is simnply a convenience
for clear presentation. We still have a specification as a single expression. However, we fre-
quently need to specify more than one operation in a specification document. For example,
a library system will require specifications for adding a book, horrowing a book, adding a
new member efc. Each one of these is a separate specification or expression.

Tn this case, we say that a specification is a collection of named specifications, and we may
reler to the collection as a specification module. The collection is nof, ordered since, for
example, it is not possible to say whether the operation to add & book to the library should
come belore the operalion to add a new member. However, & named expresston may be used
by name within the definition of another. In this case, the defining oecnrence ol the named
expression should be presented before the expression in which it occurs, and it should be
treated as a local definition for the later expression.

Within a specification expression we may need to introcduce new types. For example, i
would be impossible to give a library specification without referring to books, members,
penple etc. We now describe how such types may be introduced and used.

3.2.1 Types in Specification Modules

As well as the known types, and those which can be constructed using the type constructors
described previously, it is also possible to introduce now types in specifications. Since we
give type rules lor these types, they can, in turn, be used with type constructors to form

more complex types.
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CGiven Types

These arc the types which can be assumed in a specification. I'or example, in the library
specification, we would like fo use the given types Beok and Persen without having to
explicitly say what those fypes are. A given type is mtroduced into a specification by the
expression

[typename]

We do not know what the members of such a type are.

Although the declaration of & given type, such as
[Person)

mearns that we can now use that type in a specification, we cannol couclude any information
about the elements of that type. We can ensure that the type is not empty, by using global
constants (sce below}, but we cannot make any assumptions as to the size of the given type
(as a sct}, or whether it contains an infinite number of values. Since, [rom section 2.4, each
expression of the language must have a unique type, it follows that clements of the type

Person are distinet from clements of any other type.

Gilobal Constants

These are values of o type which are constant within a specification module. A global
constant. conld alse be handled as a paramneter to each expression in the module. A global

constant g is introduced into a specification module by the expression:

1

g

where 7" is a type. For each expression of this form there is a corresponding introduction

rule

g: T

Thus we can introduce values of given types. described above. 'Lhe introduction of two
global constants, of the same tyvpe, does not guarantee that they arc distinet vakues.

§
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Datatype Definitions

These are new types with enumerated elernents. For example, the type of rainbow colours
Rainbow ::— red | orange | yellow | green | blue | indigo | viclet

A data type definition of the form
typename == v | vg | ... | vn

makes typename a type, and gives the introduction rules

v : lypename Vg ! typename

Such a type is finite and contains exactly n clements, v, va, ... v,. It [ollows that each v;
is distinct,

3.2.2 Syntax of Specifications

We give an informal syntax for specifications.

A specification may be a single expression as described previously. This may involve writing

the specification as a list of subspecifications, which is purely for clarity in presentation.

A specification module begins wilh any munber of user defined type declarations and global
constants, as discussed above. This is followed by a list of expressions, separated by bhlauk
lines. The list must contain at least one expression, and the elements of the list are named,

as 1n

name = erpression

We use the convention that, within a specification module, 2 named expression may be
subsequently used by name in a later expression. In this case the defining occurrence of the
expregsion should be treated as a local definition for the later expression.

The notion of specification modules and named expressions is very informal. Our interesi
lies mainly in the use of expressions for specification, and in how such expressions may
be refined. An informal treatment of specification modules allows us to group together
such expressions and we shall see, in chapter 4, further notation allowing us to structure
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large specifications. However, if we wore {0 provide a theory of modules and refinement
of modules, it would be necessary to treat such spocification structures in a more formal

manner (see chapter 7).

In chapter 6 we will indicate how it might be possible to provide a semantics for specification
modules. Since the syntax of specification modules is informal, it follows that the semantics

will also be informal.

3.3 Examples

Tn this section we use the specification lanpuage to make some more interesting specifications

than have already been given. A larger specification will be described in chapter 4.

We define the set FiSeg T for any type T, to be the set of finite sequences of elements from

T. Then FFSeq, T is the set of non-empty, finite sequences of elements [rom 7.

The multiplication problem is suggested by an exawple [rom {12].

Example : The Multiplication Problem Given two positive inlegers = and g cach

represented as a list of digits, multiply them together to form another list of digits.

We first define Digit, the set of all valid digits

Digit = {z €% : 0< 2z A2 <9}

Then a valid number is a finite, nov-empty sequence of digits not starting with ‘0
Number = {s € 'Seq Digit : s[0] # 0}

The conversion from a Number to a positive integer is made in a standard fashion
Convert = (fun 5 € Number : (+)/{i : dom s » 10#5—0+1) 4 5[i]})

Then to find a Number z which is (he result of multiplying Numbers z and 4 is casily

specified

Mulkiply = (fun z,y € Number : |/{z € Number :

Convert z = Convert ¢ = Convert y })

PO
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It should be clear that the set comprehension above will result in a singleton set. We will

show how to prove such a property in chapler 5.4,

Using the same style, it is possible to define other functions over positive integers represented

as lists of digits, such as division and remainder

Divide = (fun z,y € Number : [|/{ (z,r) € Number x Number :

Convert z = Convert ¢ div Convert y

A Convert » = Convert 2 mod Convert ¢ })

A familiar example is thal of the N-Queens. The specification expression is also used in
this specification.

Example : The N-Queens Problem To place N guecns on an N x N chess board such

that no queen can take any of the others.

We assume that N 2 4. The chess board can be represented by an N x N malrix, so any

position on the board can be given by its co-ordinate.

Position = {1.¥} x {L.N}

A proposed placing of the N queens will be given by a set of N positions.

PR oy

Placing = { Pl < ®Position : #P — N}
For queens in any two positions, py, p» € Position, one queen can take the other if

e pi and py are in the same row, Ist p; = fst py;
s 1 and pg are in the same column, snd p; = snd pa;

e p1 and pp arc on tle same diagonal, | fst py — It po |=| snd p; —snd pg |.

From this we describe the property that two gqueens cannot take each other,
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CantTake = {fun p,, p; € Position :

(fst p) = L pp Vesnd py = snd paV | fst p) — fst p2 |=| snd p; — snd p, {)
= p1 = pa2)

For any placing of N queens on the N x N board, the property that no queen can take any
other is given by

SalePlacing = (fun Pl € Placing : (Vv py, po : Pl | #CantTake p; po)})
Now a solution to the problem is given as any safe placing.

Solution = [}/{P! € Placing : Safellacing P}

This specification will be refined in chapter 5.4

Another example uses the specification expression, assumptions, the min WRT function

and exploitation of the higher-order function map[?, 15]. ‘Lhis example is based on onc
suggesied by J. Morris,

Example : The Tiling Problem A tile is a shapc that can be assembled from unit
squares. A rectangular tiling is a placament of tiles, without any gaps or overlappings, on
a Hat surface so that they form a rectangle. Given a particular shape ol lile and uwsing as i

many tiles as necessary, can we form a rectangular tiling?

We have an inlinite grid of cells upon which all tilings are constructed. A tile placed on the

grid is represented by the (finite) set of cells it occupies. A paving is a set of tiles.
Cell =7 x 7
Tile = I, Cell
Paving = PTile

We define a function to test if a given area of the grid is a rectangle:

isrectangle = (fun arca € F; Cell: 32,y : Z, m,n € N:
area == {x..x + m} x {y..y + n}))
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Then a paving is rectangular if the arca it covers is a rectangle.

rectangular Z isrectangle o { ]/

Twao tiles overlap if their intersection is non-empty.

overlap = (fun #,# ¢ Tile: & N £ 0)

The eondition that a paving contains no overlapping tiles may now be expressed.
noOverlap = (fun p € Paving : (Vi,, %@ p | soverlap ) &y = & = &))

Now, a given tile may be oriented in any way in order to form a paving. Any position of

that tile on the grid is obtained from a combinalion ol reflection, rotation and trauslation.

A translation is a combination of any number of movements up, down, lelt or right:

veflect = (fun (2,y) € Cell : (z,—y))*

rotate = (fun (x,y) € Cell : (y, —a))* :
up = (fun (z,y) € Cell : (z,y + 1))+
down = (fun {(z,y) € Cell : (z,y — 1))*
left = (fun {.c _,r} € Cell : (z —1,y))* :
right = (fun (z,y) € Cell : (z + 1,y))=* .

Minally, given a particular shape of tile, we first form the set ol all possible positions for
that tile. The set of all pavings contains all the linite pavings for that shapc. We then filter
out all the pavings which are non-overlapping and rectangular, and test that the set is not
empty:

(fun shaepe € Tile:
let alltiles =nN/H{S ePTile:
S = {shape} U (reflect * 5) U (rotate * §) U (up = S}
U (down * §) U {left = §) U (right + S)}
& allpevings — V| alltiles

& rectpavings = rectangular < (noOverlap < ellpevings) in
rectpavings 7 §)

To find a smallest rectangular paving we need to minimise with respect to the area of the

paving. We first define a function to find the size of a rectangular paving:
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size = (fun p € Paving : rectangular p>—
l/{m,neN: (SBe,yeZ : U/p—{z.a+m} x{y.y+n}):msn})

Then, assuming that a rectangular paving exists, we can find a smallest one:

(fun shape € Tile:
let alitiles = [/{S € P'lile:
S = {shape} U (reflect = §) U (rolate x §) U (up * S)
U (dowr s+ §) U (left  .8§) U (right % §)}
& allpawvings = I, alltiles
&  rectpevings = rectangular < (noQOverlap < allpavings} in
rectpavings # O > ||/ (min WRT size rectpavings))

Q

Finally, we have an example which uses the biased choice operator. This is based on an

example from Dijkstra 725].

Example : Collinear Points Given a finite non-collinear set of integer-valued points in

the Euclidean plane, find a line that passcs through exactly two of them.
We say that a point is a pair of integers:

Point = Z x 7

A line is given by two integer points.

Line = Point x Point

Now given a line represented by the points (zy, y1) and (@, 32), the point (2, y) is on that
line if (y — )% (2 —a) = (y — y2) *(» —ay), though we must treat separately the case
where any of these terms evaluates to zero.

online = (fun p € Point, ! £ Line :

let ((z1, ) (22, ) =1 (z,9) = p in
T =5 Vi pg - o =T
Y=y Vy =y =y =i

[
[y =y * (2 —m) ={y — )+ (z —n))
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A given set of points s collinear if there is some line on which every point of the set occurs:
collinear = (fun § € PPoint : (31 € Line: (Vp € S : online(p, [})))

For the specificalion we need to consider only those sets which have more than one element,
and whose elements are non-collinear.

(ftun § € I Point :
78 = 2 A —collinear S>—
0/{! € Linc : #{p € § : anlinep {} = 2})

From Sylvester’s theorem, stated in [25] as

Consider a finite number of distinct points in the Real Euclidean plane; these
points arc collinear or there exists a straight line through exactly 2 of them.
the assumption in the above specification, # S = 2 A —collincar 5, is sufficient to ensure

that the set {{ € Line : #{p € S : onlinep{} = 2} is non-empty.

3.4 Conclusions

In this chapter we have demonstrated the use of the expression languusge for specifications of
a functional style. Some functions which appear often in specifications were identified and
defined so that they can be used withoutl definition in larger specifications. The concept
of a specification module was introduced and this style of specification, as a collection of
expressions with user-given types, was used in a number of cxamples. A possible semantics
for specification modules will be suggested in section 6.6. A formal weatment of modules
ig discussed in chapter 7.

The examples illustrate the power of the specificaton language and, in particular the use of
the specification expression, where the solution to a problem is expressed using a predicate,
Agsumptions and partial expressions weve also used to formulate the example specifications,
along with some of the functions from section 3.1. However, the examples given in this
chapter are small examples. We need to address the problem of using the language to
build larger, inore useful specifications. In particular, the issue of using partiality to build
specifications piecewise, on a larger scale than in section 2.8, should be examined. This

issue is examined in chapter 4.
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Chapter 4
Structuring Specifications

The language introduced in chapter 2 is snfficient to describe small problems, as demon-
strated in chapter 3, but when altention is lLuruned to bigger problems, the specification
quickly becomes out of hand. In this chapter we examine the important, but often over-

looked, issue of methods to structure large specifications,

In section 2.6 it was described how partial expressions, describing particular aspects of
a specification, could be combined using choice to form a total specification. We will
build on this notion and examine how partial functions, which are usually more substantial
than partial expressions, can be used to construct bigger specifications in parts, and then
combined using new union operators to form large specifications. In section 4.1 we examine
the formation of partial functions, where and how they may be used and definitions of union
operators. Similar to the situation for partial expressions, occurrences of partial functions
are synlactically controlled. Seetion 4.1.3 snggests ways of manipulating partial functions
using a special class of higher-order functions.

To illustrate the use of partial funclions in larger specificalions, in section 4.2 we deseribe
a printing control systein using the speeification language of chapter 2. Some notation is
first introduced which is used as a shorthand Lo make Lhe specilicalion more readable. We
then show how the specification is built up, explaining why certain decisions were made,
and ending with a full specification of the system in a pure functional style.

Finally, in section 4.3, we look at how the state and exception monads, used to structure
functional programs, mighl be used to structure specifications. We describe the various
monads and show how the printing control example of section 4.2 can be rewritten to take
advantage ol these. 'The resulting specification, in which details of state and error handling
are hidden, is neater and more readable. In section 4.3.4 we give sugpestions as to how the
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monads could be expressed in the specification language.

4.1 Partial Specifications

In section 2.6 we locked at potentially partial expressions and how they can be used to
specify a problem in parts which are then combined to form the complete specification.
Because partial expressions are potentially miraculous, the syutax of the languuge has been
restricted so that potentially partial expressions may be direct arguments of choice || and
biased choice {H only. Such a restriction is possible because potentially partial expressions
can arise in exactly two ways, from a guarded expression or from a specification expression.
Such exlzuf_essions may be ‘totalised’, as discussed in section 2.6.2, using the biased choice

operator [|.

In this scetion we examine how partial functions can be used to structure large specifications.
During the construction of a specification we claim that it is useful to allow an abstraction
over a non-total expression, i.e. the formation of a partial function, with the intention that
it be combined with other, possibly partial, functions at a later stage. In the same way that
partial expressions are used for small specifications, partial functions are a useful concept
in the language because they permit large specifications to be constructed in parts, with

separation of concerns a major issne.

The intention is that a specification is written describing a result in a certain, perhaps error-
free, case, generally of the form (fun 2 € T : B — E) where I is typically a large expres-
sion. The “error” case is described separately, perhaps of the form (funz € 7: -8B — F).
'‘Fhese two partial [unctions should be combined to (ot a new specification given by
(funze T:8B — E| ~B — F). For example, the searching function for sequences of type

Seqg?' could be written as
(fun $ &€ SeqT,w € T: [[/{i € {0..3#S ~ L} : §[{] = =}) (4.1)

This is a partial function since it yields T if the given 2 does not occur in the sequence.
It could be made into a total function by combining it, for example, with a function which

returns a delault error value if the given value £ does not occur in the sequence.

The Z specification langnage {75] permits the construction of specifications by combining
schemas, which can he compared to partial functions. In a Z specification it is usual to
combine schemas for partial specifications using schema disjunction. We will propose a

similar method for combining partial functions.
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Note the distinction between a total function and a total expression. A function expression
can be total, while still being a partial function, i.e. its body is potentially partial. An

example of this phenomenon is the search function {4.1).

4.1.1 TUsing Partial Functions

With the syntax rules given so far, we cannot construct partial functions, since all possible
veeurrences of possibly non-total expressions must be totalised before being used with the
language constructors such as pairing, function application and, in particular, abstraction.
We consider what happens when this rule is relaxed to allow abstraction over non-total

expressions to form partial [unctions, as deseribed above.

These functions arc total expressions and, as such, there is no restriction on where they may
occur, subject to typing conditions. This causes some problems, particularly with function

application.

We consider the application of a partial function to some argument for which a result has not
been specified in the function hody. According to the axioms the result of the application

18 the value T. So, for example, the result of the application
funze€Z:z220—4+")(~7)

is T and thus the expression is not total. From the example it is clear thai, although in
order to form the expression (f e) both f and e must be total, it is possible that the new

expression (f ) is not total.

The result of allowing such applications is that a new form of potentially partial expression
has been admitied, that of a function application. Rather than complicating specifications
by requiring that all expressions of the form {f e} are totaliscd, we insltead insist that all
functions occurring within an expression arc total functions.

The admission of partial functions 1s intended only as a structuring agent for large specifi-
cations. This means that they should only be used in certain ways and ctherwise must he

totalised, just as partial expressions require to be totalised before being used.

Similax to the syntactic restyictions for partial expressions, we now require that potentially
partial functions occur only as direct arguments of choice ] and the syntactic union operalors
. « - . . s P . . . .
IJ and L which will be defined in section 4.1.2. Since the test for total functions is a syntactic

one, this restriction can be iinposed as a syntax rule.
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4.1.2 Combining Partial Functions

Allowing the formation of partial functions results in the ability to build a specification in
parts. This promotes the ‘separation of concerns’ approach to specification. Its intended
use s in the specification of 4 result in a certain, perhaps exrvor-free case, generally of the
form:

(funze T: 8B » F)

which we would like to make total by combining it with the specification describing the

result in the “error” case:
(finz € T:-0 = £)

Our aim in this section is to define an operator U which will take two partial functions and
combinc them such that

funz2e T E)U(lunze T: ) = (Panaz € T: B[ F)

Since the formation and combination of partial functions appears to he a purely syntactic
notion, it makes sense that the definilion of U should also be syntactic. Restrictions to
occurrences of U arve that it is used only with [unction types. From the discussion in sec-
tion 4.1.1, the finctions must be of the form (fun z € 1" F), or a choice between functions

of this form. The iwo delining rules for \J are, therelore

funz € T E)U(funz e T:F) & (funzeT:E[F)
FO@ g = U FYUgm)
Since choice is comnmutative, so also is U,

Taking the union of two partial functions yields another partial [unction. We define another
version of union, a biased union, which can be used to obtain a total function. A function
(f U ¢} when applied to an argument ¢ will result in (f ¢) if it is total and otherwise (g ¢).
The definition is purely syntactic, with the defining rules given by

(func € T:E)U(funz C T:F) = (funzeT:E | F)
— . — {
fUlmle) = (FUa)Ug)

.. . .= &= T
Commutativity does not hold, in general, for U. Moreover, U does not lelt-discribute over

. . . . ) = . . ey
choice, which is why the left argument of U may not be a choice between functions. We see
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{ .
that a function f U g is guaranteed Lo be a total function if g is. Thus, the biased union

can be used $o form total functions.

4.1.3 Manipulating PPartial 'unctions

We have suggested the use of partial functions as a mcans to construct a specification
piecewise, so that the partial functions can be combined to form a complete specification.
However, we may also want to manipulate partial functions. This means allowing certain
higher-order functions to be applied to potentially parcial functions.

In gencral, partial functions are not permitted as arguments to higher-order functions, for
the reason that this might introduce partiality into a specification. For example, if f is a
partial function, then it is not clear exactly what should be the meuning of f+ applied to a
set, or whether such an expression is useful.

However, we propose a class of higher-order functions which may be applied to partial
functions, and lor which the resulting application is guaranteed to be total. Consider a
higher-order function which takes two arguments, a possibly partial function f of type
Z — 7 and a string (sequence of characters) s. The result is a total function of type
Z — (Z x Siring) which behaves in the following way: when applied to an argument =,
if {f =) is votal then it rveturns the pair consisting of the value (f ) and the string ‘ok’,
otherwise it veturns the pair {0, s). Without the possibility of having partial functions, we
could not specify this higher-order function. The specification can be expressed by

Lotalise = (fun f €Z — Z,s C String :
— —
(fun @ € Z: ((f Jzero)z, (z € dom f — "0k’ || $)))
where zcro = (fun z € Z: 0), and the [unction dom, when applied to a partial function f,

returns the sct of values for which f has been specified. Notice that the ‘totalise’ [uaction,
being a total function, can now be used to totalise a partial function.

There is no syntactic method to recognise higher-order funceions that can be applied safely
to partial functions. They will be usec only to add clarity to specifications and when it s

clear that the evaluation of their application would give a syntactically correct specification.

4.2 A Printing Control Example

In this scction we use the example of a printing control system to show how we can use partial

functions to help structurc large specifications. We also introduce some notation which
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helps to make the specification more readable. The complete specification is reproduced in
appendix B. In the next section (4.3) we will nse the same example but with monads to
help hide the details of state and error handling,

4.2.1 Notation

In the following example, of a printing control system, we use some nobtation which is
introduced in this scetion.

In most specifications of any size a concept of state is required. In a functional world,
the state can be passed as an argument from function to function. but this can make for
unnecessarily cluttered specifications. We use a simple, though naive, notation to unclutter
such specifications.

Record delinitions are simply a syntactic shorthand for the specification of tuples with
associated retrieval functions. They are used to make specifications shorter while increasing
clarity and readability.

Detached Parameters

We may sometimes wish o delach, or make less explicit the parameters to a specification,
in order to make the specification more readable. In the printer control system, we make
the variable representing the state less explicit so that the main elements of the specification

can be more evident.

A list of vartables with their type information, 2, : 74, ..., 20 Ty, which we write z : T for

convenience, is detached from an cxpression E using the notation
z: T F name =LK (4.2)
where ¢ may occur [ree in F. This specification is exactly the same as the definition
nome = (funz ¢ T: E) (4.3)

It should be clear thaf, in specification (4.2), the argument z has simply been moved (o a
position where it may be less intrusive to the rcading of expression E.

Having given a definition for name we expect that it will be used elsewhere in the speci-

fication. Since, from (4.3), name represents a function, we expect it to be applied to an




4.2, A Printing Control Example 78

argument. 5o, subsequent appearances of name are likely to be of the form

Flname c]

where e is an expression of type ¥'. Unfolding the definition of name, this is the same as

Fl(fun ¢ € T : E)ei

as expected.

More generally, we can have a list of specifications of the form

T+ nemey ™~ Ey, -

nameg = By,

name,, = Iv,

which is just shorthand for

z: T b+ neme = B

w: T + neme L I

#: T F noeme, =F,

and so any F; may contain name; provided § < 4.

Record Definitions

In conjunction with the introduction of detached parameters, we have a sharthand notation

for the specification of tuples with associated retrieval functions. For example, in the

specification to follow we have the notion of a CurrentJob which is made up of the Jobld
and the number of pages printed so far. For every possible CurrentJob we want the ability

to refrieve either of its components. We write the following specification
CurnreENTJOB = JOBID X N
¢ : CURRENTJORB + Cwirentld = 7 ¢,

PagesPrinted = m; ¢

Instead of writing this specification out in full, we use the shorthand
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¢ : CURRENTJOB = [Currentld € JOBID, PagesPrinted € N,

5}(:'3 S Tn]

In general, a specification of the form
r:RI[X,eT,.
where the X; are names and the T are sets (or typces), is shorthand for the specification

R=Ty x. - x T,
r:R F Xy =m0,

" X?l)

:Xn oy T
Often it is required that not all possible tuples arve included in the sel &, but rather just those
S0, a specification of the form
o Xn € Tul: P(Xy,.
, X, 18 shorthand [or the specilicalion

which satisfy some requirement. In this case we add a predicate to the record definition.

reR=[X, €Ty,
where P is a predicate over Xq,.
Ré{(xlv 1‘}{73}&flx"'XTn:P(Xlu 7Xn)}
r:R F Xy =m0,
JYn £ ﬂ'n T
This form of record definition can be used, for example, to specify tuples consisting of a
printer quota and the number of pages printed by a specific person.
r: R = [Quota € N, PagesPrinted € N : (Quota > PagesPrinted)

In this case, the mumnber of pages printed should be less ihan ithe gquota.
The following specification, of a printing control system, demonstrates the use of bolh

detached parameters and record definitions.
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4.2.2 Problem Description

Example : Printing Control System A printing control system manages the allocation

of page quotas to users, and provides such operations as:

» Allocate a page quota to a user.
e Add a print job to a print queue with a given priority.

e Give the print job that is active, the number of pages printed for this job so far, and

the number of pages still to be printed.

s “Print” the next page of the active job, moving on to the next job (with the highest
priorily) il the active job iz finished. :

& Remove a print job {rom the pring queue.

ete.

1.2.3 Building the Specification
We assume two sets, PERSON and PacL
[Prrson] , [PAGE]

We define the following sets:

Jouio =N

FlLE = SegPAGRE
PRrIORITY = N
BUFFER = PaGr

We have a mapping for information about specific jobs, with corresponding retrieval fimc-
tions

inf : JoBs = [KnownJobs € P JOBID
FileOf € KnownJobhs +, FiLE,
OwnerQf € KnownJobs -»; PERSON,
PriorityOf ¢ KnownJobs -+, PRIORITY]
inf 1 JoBs F SizeOf = # o FileOf
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where ++, denotes a total mapping from the domain set, in this case the set KnownJobs.

"The current job {being printed)} is identificd by its JOrIN, but we also need to know how

many pages have been printed so far
¢ : CURRENTJOB = [Currentld € JoBID, PagesPrinted € §|

‘The jobs waiting to be printed go into the PRINTQUEUE. We use an injective sequence for

the queune, to ensure that no two jobs in the Jobqueue can have the same JoBID.

PRINTQUEUE = ISeq(JoOBIN\{0})
g : PRINTQUEUL - JobsWaltiug = ran g,
RemQueue = (fun id € JOBID : Remove(y, id))

where an operation to Remove some occurence of a given element from a sequence, or
the occnrence of an element from an injective sequence, can be added to the collection of

operations over sequences. Its definition may be given as

Remove(e, §) = [|/45 € SeqT : (F1 € {0... 45} :
S=800...4 " {z) " S'[i... #8)}

s

for z : T and § : SeqT for some type 4. 'Lhe sequence is left unchanged if it doces not

contain the given element,

The current state of the printer queue is given by the PRINTQUELUE and the CURRENTJOB.
The state queue is empty whenever the JOBID ol the CURRENT.JOB is zero.

g : PRINTQUEUE, ¢ : CURRENTJOB F JoubslnQueue = JobsWaiting U CurrentId,
EmptyQuene = (Currentld = 0)

We have a mapping for known nsers of the printing system to their quota and the number
of pages usedl zo far. Clearly, the quota should exceed the number of pages used.

w : USERS < [KnownUscrs € P PERSON,
QotaOf € KnownUsers +; N,
PagesUsedBy € KnownUsers -+, N} :
(¥ p € PRRSON.QuotaQfp > PapesUsedBy p)
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Now the state of the system is made up of five components, the PRINTQUEUL, t(he Cur-
RENTJORB,; a BUFFER for printing, information about the JOBS, and information about the
USERS. Such a state must satisfy certain constraints, such as the number of pages printed
of the current job cannot exceed the size of the job, the domain of the job information must
be the same as the set of JoBIbs in the queue, and the owner of cvery job in the quene
must be a known user.

a: % = [g € PRINDQUEUE, ¢ € CURRENTJOEB, b € BUFFER, inf € JOBS, ¥ € USERS] :
(PagesPrinted € SizeOf o Currentld
A KnownlJobs = JobsInQueue
A KnownUsers 2 OwnerOf * JohsTnQueue
A Currentld ¢ JobsWaiting
A (Curventld = 0 = g = {})

We now specify one of the operations described above, to add a print job Lo a print queue
with a given priority. This is done in twao stages, one where the owner of the file is known to
the system, and the sccond in the error case where the owner is not known. If the job-owner
is known, then we need to get a new job number and record the new job information. If the
printer queue is empty, then the new job should become current immediately, otherwise it
is added to the jobqueue

g2k AddOk = (fun p € PRRSON, [ € FILE, n € PRIORITY :

7 € KnownUsers —
let newld = [[/(N\ ({0} U KnownJobs)}

& newyg = (-EmptyQueue — ¢ 7 (newld) ‘ﬁ ¢)

& newe = (CEmptyQuene — ¢ <[]_ (newld,0))

& newInf = (FileOf B {newld — f},
OwnerOf & {newld — p},
PriorityOf & {newld — n})

in {newq, newe, b, newinf, u))

Tor the error case it is probable that we would want to report some error, but this hasn’t

heen given in the informal specification. We simply have:

o : X F AddError = (fun p € PERSON, [ € FILE, » € PRIORITY :
UNKNOWX._Uskr_ERROR)

E:
<
P
»
k

25
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We have not said what UNKNOWN_USER.JERROR is, but we shall see more exataples of this
form of expression in the rest of the specification. It can be regarded as a special sort of
expression, of the appropriate type, highlighting a part of the specification which has not
vet been fully specified. But this explanation is not entirely satisfactory. Error-handling in
a functional setting is a known problem and there do exist techniques to deal with it. One

such approach will be considered in section 4.3.2.

The complete specification to add a job to the queue is then
o: T F Add = AddOk U AddError

Another operation required ol the queue system is to allocate a page quota to a person. We
assume two possibilities. Either the pcrson is a new user, ot the person i3 already known
as a user and is getting a new quota, with the number of pages used being reset to zero. In
the first case we have

o: T I- NewUser & (fun p € PERSON, ¢ € N :
» & Knownllsers —let newr — (QuotaOf @ {p — ¢},
PagesUsedBy ¢ {p — 0})

in (91 c, ba ?:nf-, ﬂﬁ'i'.t',"b!.))
In the sccond case, we give a new gquota and reset the number ol pages printed

o : X F ResetQuota = (fun p € PERSON, g € N :
p € KnownUscrs —let newu = (QuotaOf ® {p — ¢},
: PagesUsedBy & {p — 0})

in {q,c, b,inf, newu))
The complete specification to allocate a guota is then
o: 2+ Alloc = NewUser U ResetQuota

Further examination reveals that the two specifications Newuser and Hesetquota are almost

exactly the samc. The Alloc specification is, in fact, equivalent to

7:%F Alloc = (fun p € PERSON, g € N ¢
let newv = (QuotaOf ® {p > ¢},
PagesUsedBy @ {p = 0})

in (g, ¢, b, inf, newu))
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A proof of this equivalence will be given in section 5.4.2.

The operation which returns the priut job that is active, the number of pages printed so far

and the number still to be printed is given as

o : B F Active = (mEmptyQueuc > let 4d = Currentld || n = PagesPrinted
& size = SineOf id
in (¢d, n, size — n})

<._~
| QUEUE_EMPTY_ERROR)

We now consider the ‘print’ operation, which puts the next page of the current document
into the buffer to be printed, and moving on to the next job, with the highest priority, if
the active job is finished. We first specify the case where the queuc is not empty and the
owner of the current job has enough quota left to print the next page

I F PrintOk = (—EmptyQuene —
let id = Currentld || » = Pagesrinted
& p = QwnerOfid || f = FileOfid
&  guota = QuotaOf p || pages == PagesUsedBy p in
quote. > pages —

We ‘print’ the next page and adjust the number of pages printed for the owner of Lhe job

let newd = fln]
&  newwy — ChangeUser(guota, pages + 1) in

Now there are two cases. For the first possibility there is more of the currenl doenment still

to print, so we jusk record that one more page has printed of the job

{n <8izeOfid —
let newe = (id, n + 1)

in (q, newe, inf, newn, newb)
I'or the second possibility the next job with the highest priority is made eurrent

T]— let newid = GetNextld
& newe = (newid,0)
& newqg = remone newid
& newlnf = RemlInfid

in (newy, newe, neuinf , newu, newd)))
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where GetNextld gives the JOBRID of the fust job in the PRINITQUEUE with the highest

priority, or zero if the queue is empty
¢ : PRINTQUELUE, inf : JOBS I GetNextld = {g #£() —
let pr == (fun i € N : PriovityOl ¢[4])
in 1 /(mazWRT pr{0.#¢ — 1}))
I o

The PrintOk function does not handle the cases when the user doesn’t have enough quota

or the printer queue is empty. ‘FThese arc treated separately
a2 Quotakirror = (~Empty Queue — QUOTA_TIRROR)
And if the queue is empty, we already have the function from the Active specification
o X QFEmpty = ERROR_QUEUR_EMPTY
The complete specilication to print a page is
. - <
o : 31 F Printpage = Printok || QuotaError [| QEmpty

Our final specification is, given a JorIn, remove that job from the printer queue. This can

only happen if the job is in the queue, and it is not the active job

o 5 F RemoveOk = (Fun id € JoBID:
il €JobsInQuene A 4d % Currentld —
let newg = RemQueue id
& newinf = (FileOf\id,
OwnerON\id,
Priority O\ id)

in (newgq, ¢, b, newinf, u))
Amn crror is reported if either the job to be killed is the current job

a: % RemoveCmrrent = (fun id ¢ JorID:
1d = Currentld — CURRENT._.JOB_ERROR)

or if it isn’t in the quene
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7 : ¥ F RemoveFail = (fun id € JOBID : JOB_NOT_IN_QURUF ERROR)
The complete specification to remove a job from the queue ig piven as

. . — — .
o : X F Removelob = (RemoveOk U RemoveCwrrent) U Removelail

The full specification for the printer control system can be found in Appendix B.

4.3 Using Monads

The concept of a monad, which is simply a form of abstraction with certain properties,
comes {rom category theory [8]. Monads have been used in computer science, for example,
to structure the denotational semantics of programming languages [53, 52, 54] with the aim
of providing a unified approach. Another application of monads is in the structuring of pure
functional programs that mimic impure features such as state, exceptions and continuations
(88, 89, 72, 48". In this section we apply the same theory to structure the printer control
specification of section {4.2). We use a monad to help hide the explicit printer state and to

control error handling.

We lake a very simple definition of a monad, where no knowledge of category theory is
assnmed. From [89], a monad is a triple (M, unif,x} where M is a type constructor, and

unidt and + are polymorphic functions with types

unit it a > Ma

(#) = Ma s (a— Mby— Mb

for @ and b types. These operations must satisfy three laws

wila*xAb.n = nfa/l] (Left unit)
mo A aounth o -~ m (Right unit)
mi(Aenxibo) = {mxdan)xAbo (Associative)

‘I'he third law is valid ouly when a does not appcar free in 0. These laws are only the basic
laws, and can lcad to a list of other laws uselul [or equational reasoning, as described in

(8]
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4.3.1 The State Monad

In pure functional languages, state may be handled explicitly by passing around a value
representing the current state, as in the printer control example of the previous section {4.2).
Descriptions of the monad to help hide this explicit state can be found in [88, 89, 72, 48].
The key idea is that of a state transformer.

A state transformer is an object of type STg A, for S the type of states and arbitrary type A4,
where ST 4 is defined to be the function type § — (A x §). So, a state transformer trans-
forms a state and produces something of type A. Useful functions over state transformers,
with their types, which are described in [88], include

unit @ A — STeA

unit = (mn o &€ 4:(fun s e S:(e,9)))

which, given a value a, returns that value without tronsforming the state. This function is
called returmnST in [18];

fetch = S§TsS
fetch = (funse€ §: (s, 4))

which simply returns the siate as the value without transforming the state;

assign. = 8 = 5Ts()
asgignn. = (fun s’ € §5: (fun se€ §:{(),s))

where () is the type containiug only the value (). Given a state s, assign changes the state

to 8’ and refurns no vahie.
The important function for plueing together state transtormers is the infix function ()

(*) : STSA — (,’1 —7 STSB} -y 8Ty B

mxk = (funscS:let (g,s)=msinkas)

Together undt and (x), with the constructor ST, form a monad, satislying the laws given

above, which can be used in equational reasoning, [88, 89].

A state transformer may have additional arguments, or other inputs, when its type will be
a function type, returning a state transformer. For example, a state transflormer of type
B — 5715 A takes something in B, transforms the state and produces something in 4. We

can examiue the specification of the printer control system in this light.
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The Printer Control System using the State Monad

Assume the given sets, initial definitions and definitions for state are as before, but in their
unfolded form. Qur state type S for the state transformers is X.

The Add function now has the type
PERSON % I'ILE X PRIORITY — STx()

since, given a PERSON, FILE and PRIORITY, it will transform the state without producing

any value. The specification becomes

AddOk = (fun p € PERSON, f € 1113, n € PRIORITY :
fetch » (fun (g, ¢, b,inf,u) € ¥ . p € KnownUsersu —
tet. newld = [/(N\({0} U KnownJobs inf))
& newq = (~EmptyQueue(q, ¢) — ¢ = {newld) iﬁ q)
&  newe = (—EmptyQuene(q, ¢) — ci (newid,0))
& newlnf = (FileOfinf @ {newld 1+ f},
OwnerOf inf @ {newid ~ p},
PriovityOlinf & {newld — n})
in assign(newq. newe, b, newinf,u)))

2l

The initial fefch returns the state as a value, and is used to make the state explicit. This
‘value’ is then passed to a [funciion, of type £ — §7'5(), which uses the assign function to

replace the input state by a new updated state, and produces the empty result ().

Unlortunately, the expression for AddOk given above is not correct according to our syntax
rules. A potentially partial expression, here of the form (P ~ [F') is permitted only at
the top level of a function body, with the intention that the resulting partial function is
to be combined immediately, using U or tl, with other partial functions to form a total
specification. In the above, a partial function is correctly formed but immediately used as

an arguinent to +, which is not allowed according to this rule,

Instead, we must write the Add specilication in one, as follows

Add = (fun p € PERSON, f € FILE, n € PRIORITY :
fetch « (fun (g, ¢, b,inf,u) € &
(p € KnownUsers . —
let newld = [}/ (N\({0} U KnownJobs inf))
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¢
& newq = (~EmptyQueue(q, ) = ¢ 7 {newld) | q)

& newe = ("EmptyQuene(q, ¢) — ¢ (I]f (reewld, 0))

& newinf = (FileOf inf © {newld - f},
OwnerOfinf $ {newld — p},
PriorityOfinf @ {newld r n})

in assign(newq, newc, b, newlnf,u))

{_
[ assign{UNkNOWN_USER_JERROR)))

We assume, as in the origial example, that UNKNOWN_USER_ERROR is of type %. Unfold-
ing this Add specification will result in {almost) the unfolded specification we already had.
The only difference is the empty result {} which docsn’t appear in the original specification,

4.3.2 The Exception Monad

In an impure functional language, exceptions provide a way to handle errors easily. In a
pure language, a similar effect can be achieved by making the result type of a function
into a sum type. So, a [unction will either return a sensible result, or a striug represeuting
an error message. However, the code or specification can become complicated since tests
must be included to decide whether an input to a function is a value or an crror to be
propagated. The details of these ‘exceptions’ can be hidden using the exception monad os
described in [89].

We define the type £ A, for arhitrary type 4, to be the sum type Raise String | Return A.
A value of this type is either a Séring prefixed by the keyword Raise or a value of type

A prefixed by the keyword Return. The unity of the exception monad simply returns the

argurnent,
unilg @ A - B A
unity  — (fun a € A : Return a)

while (xg) tests the result of the fivst function, passing it on if it is a scnsible result and
otherwise propagating the crror message.

(k) + BHA- (A EB)—»HED
mxg k = casem of

Raise ¢ — Ruise e

Returna — & o
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The case-expression is used with values of the sum type to test, in this case, whether it is

an exception or something from type 4.

4.3.3 Combining State and Exceptions

In order to handle both state and exceptions in our priuter control cxample we need to
combine the two monads described in sections 4.3.1 and 4.3.2. Unfortunatcly, there is
no automatic method to combine meonads. Instead, we build a new monad, exhibiting
properties of both [486].

We take as our type of state transformers STs A, for S the (ype of states and 4 an arbi-
trary type, defined to be the functiou type § —» (Reise String | Return(A % §)). So, a state
transformer in 5Tg A takes a state and either transforms it, returning a value of type A, or

else produces an error.

We find that unit, fetch and assign are almost unchanged from the definitions given in
section 4.3.1.

unit . A — STgA
unit = (fun a C A: (fun s € 5 : Return(a, s)))

fetch . STg8
fetech = (fun s € §: Return(s, s))

assign 8§ = S¥'%s()
assign. = {fun ' € S : (fun 5 C S : Return((),s')))

Only («) is changed so that exceptions, if encountered, are propagated.

() : STsA - (A — STgRBY — STsR
mxk = (fun s € 5:case ms of
Ruise e = Roise e

Retwrn{a,s') > kas)
We can also define a function raise

raise 1 String = STs()

ratse = (fun ¢ & Siring : (fun s € 5 : Raise e))
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so that STgA is like an abstract dala type with only these five operations defined for it.

The Printer Control System using the Combined Monad

Using this combined monad for state and exceptions, and with the same assumption that
the state type X is defined as before, we vewrite the specification for adding a file to the
printer queue. The new Add specification lhas type PERSON X FILE X PRIORITY — ST'%().

Add = (fun p € PERSON, f € FILE, » € PRIORITY :
fetch = (fun (g, ¢, b,inf,u) € £
{(p € KnownUsers # —

let newid = [[/(N\({0} U KnownJobs in/})

& newq = (~EmptyQueue(q, ¢) = ¢ = {newld) E q)

& mnewc = (-EmptyQueuc{q, ¢} ~» ¢ i (newld,0)}

& newinf = (F'ileOfinf & {newld — f1,
OwnerQfinf @ {newld — p},
PriovityOf inf @& {newld 1 > n})

in assign(newq, newe, b, newlnf, i)

{_
[| radse “User not known”))

This looks almost exactly like the last specification we had in section (4.3.1). However, with
the new definitions of feleh, cssign and (%}, we now have that both state and errors are
being handled correctly. Moreover, the details of haudling state and errors are completely

hidden in the specification.

4.3.4 Monads in the Specification Language

So far we have used the monads for state and exceptions simply as a structuring device for
the printer specification. We are aware that, if the delinilious are unfolded, we would get
back to a purely functional specification similar to the one of section 4.2. The only difference
being that functions which only change the state would also produce an empty result, as
highlighted in section 4.3.1. But can we actually define the state/exception monad and
associated functions within our specification language, and then include the monad laws in
our list of equivalence laws?

In its current form, the specification language does not provide any mechanism to allow

user defined types. Instead we have uset-defined sets which allow us to define type-like sets,
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such as . However, we cannot usc this method to define the set of ‘state transformeoers
with exceptions’, because they depend on two types, § the type of states, and 4 the type of
results. Although § is known, in this case, to be the set ¥, A is completely arbitrary. We
would have to define a set of ‘state transformers with exceptions’ for every possible type 4,

and we have no method for making such families of definitions,

A possible solution might be to anticipate the use of the ‘state transformer monad with
exceptions’ in structuring a certain clags of large specifications. In the saxe way that bags
and sequences are defined as data types, it is possible to make Sy 4 a data type of the
language, dependent on the types S and A. The five operations unit, feich, assign, raise
and (%) also require type rules and axioms to describe their behaviour, including the monad
laws. The expression language is rich enough to allow these rules and axioms to be stated.

More generally, it would be uscful to allow user defined types, in addition to the enumerated
types we have alveady introduced, which were of the form

TypeName v= o |vg|...| vy

As well as defining a type by listing its values, it should be possible to define a type whose
values depend on other types. These could be introduced in the torm

TypeName 1=~ TypeEzpression

so that every member of the set TypeFapression is now a value of TypeNaeme. To a cer-
tain extent, we already have this possibility, where user-defined sets are used in type-like
situations.

Now we want the ability to define a type using a Typelirpression which may be parame-
terised by type varlables. Definitions would be of the form

UypeName A = TypeErpression[A) (4.4}
where A is a type variable, or more generally, a list of type variables. We consider such a
definition as introducing a family of types, one for each type A. Yor any type A, Lhe values
of type TypeName A are identified with the elements of the set given hy TypeBrpression[A],
and as such may have associated operations performed on them.

One problem with allowing such user defined types is that the principle of unicity of types
is destroyed, i.e. it is no longer the case that every expression has exactly one type. It is not
clear whether, for a type definition of the form (4.4) abave, the elements of TypeName A
and TypeFapression[A] should be cxactly identified for any A. Operatious over elements of

TypeEBupression[A] are now applicable to clements of TypeName A, but can functions defined
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over the new type TypeName A be equally applied to elements of TypeEzpression{A]? These

are issucs which would require to be addressed.

Assuming that such user defined types are permisted, the state monad with exceptions can
now be defined for the printer control example, using the specification language, as

ST A == X — (Raise String | Return{4 x L))

and the {ive associated operations, wnit, fefch, assign, raise and (%) defined as previously.

Unfortunately, with this approach the monad laws woukd require proof.

Comments

The first solution, of anticipating the use of the particular ‘state transformer monad with
exceptions’ has the advantage that the type STg A, for each § and A, is an abstract data
type with only the five operations provided. The monad laws, now axioms, can be used for
reasoning about specifications. Buf, while this monad is very useful lor the printer control
specification, and for other specifications which usec a concept of state and require ervor
handling, another class of specification might need something different again, This solution

does nol offer a generic way of handling the problem.

However, it is reasonable to assume that the class of problems requiring state and error
handling is large. Therefore the approach of simply including the ‘state transformer monad
with exceptions’ as a facility built into the language may be considered as practical, without

being universal.

The provision of type delinitions, which may be parameterised, does provide an extra tool
for specification. The state transformer type can now be defined entirely in the language,
but so also can types for other monads, or other types uselul for a given specification.
However, with this approach, the monad laws need to be proved. In addition, the type
STy A is not an abstract type, since the type expression must be made explicit. While this
18 not necessarily a problem, it would be considerably more elegant to be able to package a

type with the allowed operations over that type.

4.4 Conclusions

In this chapter we have tackled the important issue of writing large specifications. As well

as the syntax introduced in chapter 2 and the informal specification modules of chapter 3,
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we have now provided machinery to allow the construction of specifications from partial
functions. This facility promotes the separafion of concerns approach to making specifi-
cations. The infroduction of the union operations permits these partial functious to be
combined to form complete specifications.

In practice, as in the example of the printing control system of section 4.2, we have found
that partial funciions are a good way to construct large specifications. This specification
has been written entirely using the specification Janguage, and partial functions have played
an important role in the construction. We also found it. useful to introduce some notational
conveniences to make the specification more readable and to concentrate on the more im-
portant aspects of the problem.

In developing the example, we found a need for methods to control state and error handling
in a less cxplicit manner. Following approaches used in structuring functional programs,
we examined, in seclion 4.3, the use of certain monads in structuring the specification.
The resulting specification is more readable, with certain details hidden, but still pirely
functional.

As the specification language is currently defined, there is no mechanism to allow user de-
fined types, which would permit the definition of a particular monad in a specification. In
section 4.3.4, we addressed ways ol incorporating the monads for state and exceptions for-
mally into the specification language. Some suggestions were made including approaches to

allow user defined types or to add the “grate transformer monad with exceptions” explicitly.
¥p

We have seen a description of the syntax of the specilication language in chapter 2 with some
small examples. In this chapter we saw how larger specifications can be made, including a
substantial example in section 4.2. The language gives a rich and expressive way to writc
specifications, but we also require the ability to reason about specifications, and a method of
refining such specifications. We now turn our attention to the prool theory of the calculus,
describing how properties of specifications can be proved, including refinement properties,

which is the subject of chapter 5.




Chapter 5

Proofs and Refinement

In chapter 2, an expression language was defined which includes the usual mathematical
expressions associated with integers, booleans, fuuctions, sets, etc. , but also incorporates
undefined expressions, non-determinism and partiality, which are used for the formulation
of expressive and abstract specifications. In chapters 3 and 4 we showed how the expression
langnage may be used to form such specifications.

We have stated that our aim is to provide a refinement caleulus for this expression language.
This means that we must provide a refinement relation for specifications, 1.e. define what it
means for one specification to rcfine another; and we must show how surch refinements can

be calculated.

In this chapter we address a number of aspects of this problem. First we describe what it
means to prove a theorem of the language. Already, in chapter 2, we have deseribed the
expression language using axioms. In section 5.1 we give an overview of a proof theory
based on the axioms for boolean expressions and show how theorems of the langnage are

proved,

In general, in manipulating specificalions [or either the purpose of refinetnent or in ordesr to
prove a property of a specification, we need to use higher-level theorems than the axioms
of chapter 2. So, in section 5.2, a number of such theorems, o fransformation laws of the

language, arc provided.

In section 5.3 we describe what it means for one specification to refine another, and how a

program may be calculated from a specification by stepwisc and piecewise refinement,

Refinement is handled in our caleculus by the introduction of a refinement operator, - into
the language so that, for £ and I of the same type, the expression £ C f is a boolean

95




5.1. The Proof System 96

expression. In keeping with the treatment in chapter 2. a number of axioms are provided
to govern the behaviour of E.

During the process of stepwise refinement it is not convenicut to justily each siep hy re-
ferring to an axiom, so, just as with the transformations of equivalent expressions, a set of

refinement laws is provided in scetion 5.3.2.

It is inlended that the axioms, transformation laws and refinement laws together with the
proof theory of section 5.1 should allow proofs of refinements and properties of specifications
to be caleulated quite easily. A number of examples, including reasoning with monads, rea-
soning about A, showing the introduction of recursion into a refinement and the refinement
of the ¥N-Queens exaxnple arve given in section 5.4, The refinement from a simple specifica-
tion to an imperative style of expression is demongtrated using the example of Bresenham’s

line drawing algorithm in section 5.5.

5.1 The Proof System

Proofs in the specification language take a clifferent lorm fromn that expressed at the end of

section 2.3. Iustead, equational veasoning, or “substituting equals for equals”, is employed.

A proof that an expression ;. of type Bool is a theorem within our systemn may consist
of u sequence of expressions, heginning with £, and ending with a known theorem £,.
Each member of the sequence (apart from the first) is abtained from its predecessor I7; by

replacing P;, or a sub-term of P;, by an equivalent expression.

Such a proof is laid out as follows.

P
“Reason why P) = Py
Py

“Reason why Py = PR”

i

I}

“Reason why P, = I,”
P,

By transitivity of = we conclude thal, P, = P,. Since P, is a theorem, it follows that so
also is Py, Il any of the = signs in the left column is replaced by <=, with a corresponding
justification, then by transitivity ol implication we have a proof of P, = Py, Again, since

P, is a theorem, it follows from modus ponens that P also holds.

g

4
-3
K
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A proof of a baolcan expression of the form E = F, for £ and # of some type 7', may
proceed as abave, or may consist of a sequence of expressions of type 7 beginning with I7
and ending with #'. Again, each expression in the sequence is obtained from its predecessor

by replacement of cquivalent subexpressions.

A justification that equational reasoning is valid within owr systemn, along with various

strategies for proof, may be found in {64].

When manipulating specifications with delached parameters, such as the printer control
specification of chapter 4, it should be clear that we are actually just manipulating function
bodies. The detached parameters can always be eliminated. However, for convenience, we
willwritc o : ZTFE=0:SF F, tomean (funce L E)=(funce I: F).

5.2 Transformation Laws

In order to provide a simple calculus for the easy manipulation and transformmation of
expressions as specifications, we need to provide sowe trausformation laws which are easily
applicable o specilications. The axioms of chapter 2 form & base for such laws, but it is
not usually convenient to manipulate specifications from first principles. Some higher order
theorems are required. In the following list of laws we assume the following conventions:
E, By, By, F and G ave any expressions, snbject to appropriate syutax constraints; f is
a function expression; P and ) are expressions of fype Bool; v is a value; and S is a set
expression,

We include three laws concerning let expressions, These laws can be proved by unfolding
the meaning of local cxpressions as given in section 2.5.2, however it is useful in proofs

involving long cxpressions to apply these in one step.

Law (Distribution of Function Application inside Jet Expressions) f z does not

occur free in f, but may be free wn F' then

fletz—EinF) = letz=FEinfF

Law (Swapping Local Definitions) Suppose that &) and xy may be free in F. If @y does

nol vecur free in By and 2y does not occur free in L) then

let oy = & —Finl = letup=FE&a=F inF

§
o
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Law (No Occurrence of T.ocal Definition) If ¢ does notl occur free in ¥ then

SE = ((let 2 = E in F) = F)

For deterministic functions, we have a form of ~-recduction.
Law (v-Reduction)

funzeT:Blz=F

We include a law concerning the behaviour of generalised choice with assumptions, as per-
mitled in section 2.6.2.

Law (Properties of Generalised Choice)

AS=((§#0) = /S=[/s ] L)

Information contained in the guard or assumption can be used to manipulate an expression.
Law (Using Context in Assumptions and Guards)
(P= (=)= (P> E=P>E"

[4

where > represents either ~y ' or >~ throughout the formula.

Choice and guarding logether permit the formation of alternation expressions. Thesc can
be introduced into a derivation using the following law.

Law (Alternation Introduction)
AP=(E=P - FE| - — FE)
More generally, for P;, 1 £ i < n, boolean expressions

(Vi:Z|1Ki€<ne APHON{Fi:Z|1<i<neFy))
S (E=P = B]...[ Pa— E)

We saw in scetion 2.6 that there is a relationship between conditionals and alternations.

K

<
E
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Law {Alternation to Conditional)

—
AP P E|-V 2 F=P L[] F)
—
(P—=E)] F=if Pthen E else I

Assumptions and guards both distribute over choice to the right.

Law (Distribution of Assumptions and Guards over Choice)
P> (B M=(F>2E)| (P> F)

where =+’ represents either ‘=7 or ">—7 throughout the formula.

Guarded expressions, being potentially partial, are restricted in where they may occur.
However, expressions with assumptions ave total, and so there are laws determining how
assumnptions distribule over various operatious

Law (Distribution of Assumptions through Product Formation)

(P> E,Q>E)Y=PANQ> (EE

Law (Distribution of Assumptions through Function Application)

(Po~fHQ>E}y=PAN@G>[F

Other laws concerning the behaviour of assumptions include

Law (Double Assumptions)

P> (Q> EY=PAQ> L
(P> Q)~E=PAQ>E

There is also a law for expressions with both a guard and an assumption.
Law (Propagate Guard as Assumption)

(P=Q)>(P=2E=P—>(Q> E)
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An expression with an assumption way be guarded, but the syntactic restrictions of sec-

tion 2.6.2 do not allow expressions of the form P > (P’ — £).

We saw, 1u section 2.6.2, how it is possible to recognise syntactically expressions which
are potentially partial. Such expressions need Lo be lotalised, but all other expressions are

already total. The next law gives the condition under which a totaliser can be removed.

Law (Removal of Totaliser) If E is not potentially partiel then

FIN
E|F=E

The following two laws are concerned with distribulive properties of choice with biased

choice.

Law (Right-Distribution of Biased Choice over Choice)

ETFIe)=@E1NE] e

Law (Choice with Biased Choice)

EJ(E|F)=F]F
EMEEHEEEF
EJ(F|E)=E|F

5.3 Refinement

Giiven a specilicatlion 5 of the expression language, the ultimate goal is to find a specification
P which is executable and which satisfies S, i.e. P implements S. An executable specification
P is made up of expressions from that part of the specification languape which forms the
progranmuning sub-language (see section 2.1). As such, it must be defined and deterministic.
Since the original specilication § may exhibit either of the properties of undefinedness or
non-determinism, it follows that equivalence does not hold hetween § and P. Instead we

need 4 refinement relation, C, so that P refines §. S € P,

Informally, for an expression E to be refined by an expression F, written £ C F, it should be
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the cage that every possible ‘evaluation’ of # is also a possible ‘evaluation’ of ¥, or is better
defined than some possible ‘evaluation’ of &. So, a specification is refined by reducing non-
determinism or by increasing definedness. For example, we expect the following refinements
to hold

203 L 2 (5.1)
/N £ 2]3

(fanz € Z:2+2[|2+3) C {(funececi:z+2)

(funzeN:z+2[lz+3}) C (funz€Z:z+2) (5.2)

The first two examples are simple cases of reducing non-determinacy, while the third ex-
ample reduces non-determinacy within the body of a function. The last example reduces
non-determinacy, bul also increases definedness since the function on the left gives an un-
defined result for any negative integer, while that on the right is defined for every integer.

We advocate the process of program development by stepwise refinement, starting with an
initial specification &y and building a sequence of specifications S £ 5 T ... C S, so that
each §;, for 1 € ¢ < n is an acceptable replacement for S;_y, and 5, 18 a program. Since the
aimt s to derive programs in steps, it is required that the refinement relation is transitive.
T'hen, from a sequence of refinements of the form Sy £ 85, C ... E §,, we can conclude that
Sy s a correcl implementation of the initial specification Sp. In lact, refincrnent is a pre-
order, since every specification refines itself. In general, a refinement relation need not be

anti-symmetric. In fact our relation is not since, for example, we have the refinements

2L T L
i Z 201
In the first case, the refincment is obtained by reducing non-determinism, while in the

secand definedness is increased. However, the $wo expressions are not equivalent.

As well as refinements proceeding stepwise, it is also important that refineinent can oc-
cur piccewise. This means that an expression may be refined by refining one, or more,

subexpressions,
(B = F)= (GE/2] € GIF /x])

Tlis states exactly the property that G must be monotonic (with respect to refinement)
at the position & where the refined subexpression occurs. Refinement can occur only in

monotonic positions.
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Most of the constructs of the expression language, as defined in chapter 2, are monotonic.
But there is a small number of operators which are non-monotonic. These include equiva-
lence E{,_non—equivalence 2, and the two delta operators A and §. Implication => and biased
choice [} are non-monotonic iu the first argnment, and monotonic in the second. Function

abstraction is monotonic only when the abstraction is over a monotonic position.

Subexpressions which occur in non-monotonic pogitions may be replaced only by equivaleut
expressions. This means that some care must be taken when refining expressions with

non-monotonic elements, but in practice this is not a problem.

We now introduce the refinement relalion as au operator of the language:

r.r F:. T

E I Bool
An expression of the form £ C F is always proper, and it should be clear that refinement
does not distribute over choice.
The lollowing axioms describe refinement of expressions.

The refincment relation is transitive

(ECF)A(FCC) = (BEC Q)

The general refinement axiom is
(ECF)&<=(JdEV (F|F=E))

When E and F belong to a simple type, this is an equivalence, and may be used as the
definition of refinement.

For function domains, with A f and A g, :

fC9) =Nz :T|efaCgux)

When refining non-deterministic expressions, with A G, A B and A S we have the axioms

(E[FE@)=(FELGVIT G
/S E)=Qs:T|excSexC L)
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We assert that top T is the unique most-refined specilication,

(TCR)=(E=T)

We define the concept of refinement equivalence for expressions which refine each other,
FEOF = ECFPAEIDOF

where 5 O ' = F C F. Clearly refinement equivalence is weaker than =.

5.3.1 Proving Refinements

Refinements proceed stepwise, as previously indicated, with u similar layout to transforma-
tion proofs as in section 5.1,
There are two additional inference rules to accommaodate refinement:

ECF FCG
ECG

for the transitivity of refinement, and

ECF
GlE/2]C G F/x)

where z is in a monotonic position in &.

A refinement then proceeds as a sequence of specilications, starting with the initial specifi-
cation, cxpression Fy.

b,

C “Reason why By C Ep”
By

c “Reason why E, C Ey”

C “Reason why .. L I,"
By,

and we may conclude that &, € E,. In the above, any of the C in the left margin may be
replaced by equivalence =.
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5.3.2 Refinement Laws

Given a specification, refincinent will proceced stepwise, as indicated above, using the infer-
ence ritles and axioms for refinement. But, in general, it is not convenient (o calculate cach
refinement from first principles. As in Lhe case for simple transformations, a collection of
thcorems, or refinement laws, is required. This is what we now provide.

In the following list of refinement laws we assume the following convenlions: B, &, Fy,
Fy and @ are any expressions, subject to appropriate syntax constrainls; P and @ arc
expressions of type Bool; v is a value; and § and 9’ are set expressions.

The first law says that an cxpression may be refined by reducing non-determinacy. This
could take a number of forms.

Law (Reduce Non-Determinacy)
F|FCE
For generatised choice,

(5'Cc8)=(/S=i/9)
Ve el |»Q=")=(}/[{zeT: PIC]/{zecT: @}
(veS)y=(]/S Cv)

Choice can also be introduced into a specificalion, but note that this does not increase

non-delerminacy.

Law (Introduce Choice)

(ECIHAECE)= (ECF | F)

An expression of the form P >— F may be refined by refining F or by weakening £,

Law (Weaken Assumption)

(P=Q)=(P>ELC Q> F)

By weakening the assumption to True, and so effectively removing it. the next law hne-
diately follows.

O

1% p=p
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Law (Remove Assumption)

P>ECE

Dually, an expression of the form P = E may be refined by vefining F or by strengthening
P,

Law (Strengthen Guard)

FRAQRQ=P)=> (P> FELQ—E)

Now any expression, which may be considered to have an implicit Zrue guard, is refined by
introducing a guard.

Law (Introducc Guard)
§P = (EC P — E)

Care must be taken when applying che previous two laws above since the refined expression
can be considered more partiel. In particular, in the second case, a potentially partial

expression is introduced instead of a total expression.
A useful law allows the use of information in a guard or assuwption to refine an expression.

Law (Using Context in Assumptions and Guards)
(P=ECE)= (P> ELCP>E)
where “>— 7 represents either © 37 or “>—" throughout the formula.

Non-determinacy can be reduced by taking the conjunction or disjunction of assumptions

or guards, as governed by the following laws.

Law (Disjunction and Conjunction of Assumptions)

P>—E[Q>FLPVQ> E
P> BE|Q>FEOPAQ>E

Note the mutual refinement of the second clause.
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Law (Disjunction and Conjunction of Guards)

PoEJQ-ECPVQ-2E
PSEJQ—=ECPAQ—-E

Law (Refine Function) If 2 appears in o monetonic position in E, F gnd P,

(Ma: T e CF)=(funaec T . F)C(funze T: F))
i—
(Va:T P)={funzcT: F[|#)CfunzecT:P-yFE [ F))

To complement the equivalence law concerning right-distribution of biased choice over

choice, we have Lhe relinement laws
Law (Distribution between Choice and Biased Choice)

EInjearialEl o
ENF]GCE]R](E]C)

Finally, we give the law governing the introduction of recursion into a specification.

Law (Recursion Introduction) let I, be an expression which conlains o free oceurrence

of the variable x, and let EY be the same expression bul with value y substituted for x.
(E,CF(fimycT:y<as>El])=>(E;Clet f=(funx € 7 : F[f]) in f 2}

where T iy a well-founded sel with respect to <, and F[X] is monotonic with respect to

refinement of subcapression X .

Proof We use Lhe deducrion theorem, ardd prove the conseguent by assuming the anlecedans.

So, we assume
(By CF{(fun y € T :y < & > EY}))
Since ' is well-founded we can use the principle of induction for well-founded sets,

((VaeC:Pr)=VyeC:y<z:Py)) = (Vzel:Px)
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where < iz a well-founded ordering for €, and P is some property over elements of /. So,

we take as our induction hypothesis:
VyeT:y<z:BlClet f={(funz e T:Ff])infy) (5.3)
"I'he proof proceeds as follows. Let =z € 7.

E.Lletf={funzecd:F[f])infz
“For convenience, detach f ~ (Pun w € T : I{f]}"
E.Cfu
“Unfolding f*
E,C(funs e T: Fifhx
“~-reduction”
£, C Flf]
“Using the assumption, £ is transitive”
Fiffuny € Ty < z > BY)] E F[f]
4= “F{X] is monotonic with respect to refinement of subexpression X
(funveTio<a> BT f
= “Refinement axiom for proper functions, and substitution”
VyeT:y<z>EICfy)
“= “Axioms for assumptions, L least wrt refinement”
VyeT:y<z:EY L fy)
“Induction Hypothesis”
True

it

1

The recursion introduction law now follows by induction and the deduction theorem.

I'he refinement laws all follow quite easily from the axioms for refinement. The laws con-
corning assumptions and guards may be proved by a case analysis on the value ol the
assumption/guard. The laws for biased choice are proved by casc analysis on the totality

of the left argument.

5.4 Examples of Formal Reasoning

In this section we demonstrate the sort of proofs which may be formned using the axioms and
laws of the language, and the properties of = and C. Thesc proofs rapge in complexity from
simplification of expressions to proving properties of specifications and the introduction of

recursion during the refinement of expressions.
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5.4.1 Simple Proofs

We look at some simmple reasoning about specifications by simple manipulation of expres-
sions. For example, to illustrate some of the distributive properties of choice, a function
applied to a non-deterministic argument is simplified. Note that, although the function has

a non-~deterministic body, it is itself determinislic.

{funzecZ z|2z+1)(31]4)
= “Distribute Function Application over Choice” |
(funze€Z:z||lz+1)3f(funzeZ se+1)4
e “Substitution, A3 and A4” :
B3+ E)4+1)
“Axioms for Integers” ;
GI41E15)
“Properties of Choice” 3

30405

i

From a brief example of section 2.6, illustrating the behaviour of guards and totalisers, the

following function application is simplified.

(funzecZ: ifz 201" lz <0 ~"H)0

“Substitution, A ("
f0z20—4+"0<0—~—"1
- “Axioms for ="
if True — ‘4[| True — ‘=" fi

“Axioms for Guarding”
if‘+'[*— 0

“Definition of if ... f”

—

(0L

“Removal of Totaliser”
o ﬂ t_t

Returning to the Multiplication Example of sectiou 3.3 we simnplify

Multiply({4) [} {8}, (2,5))
= “Distribute Product Formation over Choice”
Multiply(((4), (2,5)) [ ({8}, (2,5))) ‘
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It

“Distribute Function Application over Choice”
Multiply({4}, {2, 5}) [| Multiply ({8}, {2,5)})
= “Definition of Multiply, Substitution with proper arguments”
/{7 € Number : Convert z -= Convert{4) = Convert. (2, 5)}
l1/{z € Number : Convert z = Convert{8) + Convert, {2, 5)}
= “Deflinition of Converl, Substitution with proper terms”
1/{z € Number : Convertz = 4 % 253} [ [[/{z ¢ Number : Convert z — 8 # 25}
“Axioms for Evaluations of Sets”
/4L, 0,00} [ 1/4(2,0.0))
= “Properties of /7
(1,0,0) [ (2,0,0)

I\l

These examples illustrate the use of some of the equivalence laws with small specificatious.
In chapter 4 we saw bow the expression language could be used to build bigger specifica-
tions. It is important that the equivalence laws can be used to prove properties about large

specifications also.

5.4.2 A Larger Example

In section 4.2, a purely [unctional specification of a printing control system was detailed.

We now show how the equivalence laws can be used to reason about thns specification.

Tirst we prove an easy equivalence stated in section 4.2, The function Alloe was defined

using two partial [unctions, NewUser and Reset(Quota, in such a way that
o 3 F Alloe = NewUser U ResetQuota
NewUser and ResetQuota were defined as

a: X NewUser = (fun p € PERSON, g € N :
p ¢ KnownUsers — )
o : & F ResetQuota = (fun p € PERSON, ¢ € N :
p € KnownUsers — E)

where E is a shorthand for the more complicaled expression given in the specification. The
details of E arc not required in the following proof however. We said that the function
Alloe, as defined above, is cquivalent to the specification

I S
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g :LF Alloe = (fun p € PERSON, ¢ € N ; )
We reason that

o: 3+ Alloc
“Definition of Alloc¢”
o : % I NewUser U ResetQuota,
= “Definitions of NewUser, ResetQuota and U7
o: L F(fun p ¢ PERSON, ¢ € N:
p ¢ KnownUsers — & [ p € KnownUsers — )
“Alternation Introduction, A(p € KnownUsers)”
a: %k {fun p € PERSON, ¢ € N: I)

as required. The last siep of this proaf assumes that p € KnownUsers is a proper boolean
cxpression for any state o, which is reasonable.

The above is a proof that two specifications are equivalent. We now give an example of a
proof that the specification satislies a certain property. Again, we use the equivalence laws
as tools for reasoning.

Let ¢ = (q,¢.b,inf,u) be any state such that (=EmptyQueueqc). Let p be o PRRSON
such that (p € Knownisersu), then it should be the case that

Active(Add{o,p,f,n)) = Activeo

Rather than tackle the whole expression at once, each side of the equation is simplified in
turn. Using the definition of Active, and the Substitution law, the expression on the right,

(Active o), is equivalent to

SEmptyQueue ¢ ¢ — let 4d = Currentld ¢,
& size = SizeOfid

in (id, n, size — n)

n = PagesPrinted ¢

—
i QUECE_EMPTY_KRROR

From the given facl lhat the queue is not cmpty, the guard becomes True. Using the

Axioms for Guarding and Removing the Totaliser, the expression hecomes

let id = Currentld ¢ | » = PagesPrinted ¢
& size = SizeOlid

in (¢d, n, size — n)
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This is the simplest expression which can be obtained, without unfolding the let expression.

Now taking the expression on the left of the proposed equivatence, (Active(Add(o, p, f. n))),
the definition of Add is used, followed by the Substitution axiom, which gives

Active (p € KnownUsersu —
(let. newld = /(N\({0} U KnownlJobs inf))
-
& newq = (—~EmptyQueue g ¢ — ¢ = {newld) || ¢)

& newe = ("EBmptyQuenege — ¢ j (newld,0)}

&  newinf = (FileOfinf © {newld — [},
OwnerOfinf & {newld +» p},
PriorityOf inf © {newld — n})

in (newg, newe, b, newinf, 1))

-
| UNKNOWN_UJSER_ERROR)

We use the given facts that (p € KnownUsevs #) and that the quene is not empty. The main
guard becomes True, as well as the two inner guards. So, using the Axioms for Guarding
and Removing the Totaliser, the above expression becomes

Active (let newld = []/(N\({0} U KnownJobs inf))
& newg = ¢ (newld)
& newec=c¢
& newlnf = (FileOfinf @ {newld — f},
OwnerQfinf & {newld — p},
PriorityOf inf @ {newld — n})

in (newq, newe, b, newinf, v))

In arder to use the definition of the Active function. it is easier to move it inside the let
expression, using the Distribution of Function Application inside let Expressions

law, This results in

let newld = [|/(N\({0} U KnownJobs inf))

& newg — q 7 (newld)

& newc=¢

& newlnf = (FileOfinf & {newld — [},
OwnerQfinf 6 {newld — p},
PriorityOfinf & {newld — n})

in Active {newg, newe, b, newInf, u)

P
o
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The definition of Active is nsed next, and the Substitution axiom is applied again.

et newld = |/ (N\({0} U KnownJobs inf))
& mewg =g 7 {newld)
& newe=c¢
& newlnf = (TileOf inf © {newld — [},
OwnerOfinf @ {newld — p},
PriorityOtinf @ {newld — n})
in (-EmptyQueue newq newe — let id — Currentld newe || n = PagesPrinted newe
& size = SizeQlid
in (id, n, size — n)

-
| QuevE_EMPTY_ERROR)

Using the law for Swapping Local Definitions, the local definition for newce can be
unlolded and substituted into the specification. The guard becomes (EmptyQueue newq ¢)
which, according to the definition of EmptyQueue, is equivalent to (Currentld ¢ # (). This
is True, since we have assumed (EmptyQueue ¢ ¢). So, using the Axioms for Guarding

and Removing the Totaliser apain, the expression becomes

let newld = || /(N ({0} U KnownJobs inf))
& newg = g 7 (newld)
& newinf = (FileQfinf & {newld — f},
OwnerOfinf @ {newld — p},
PriorityOf inf & {newld — n})
in (let id = Currentld ¢ || n = PagesPriuted ¢
& size = SizeOf id

in (id. n, size — n)

Using the fact that none of newld, newq or newlnf occurs in the body of the specification,

with the No Occurrence of Local Definition law, the specification reduces to

let id — Cwrrentld ¢ || n = PagesPrinted ¢
& size = SizeOfid

in (4d,n, size — n)
as required.

In section 4.3 we saw how the monad for state and exceptions could be used to structure a,
large specification. We now lock at how properties of such specifications might be formulated
and reasoned about, using the same cquivalence laws, augimented by the monad laws.
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5.4.3 Reasoning with Monads

We return to the specification of the printing control system using monads as described in
section 4.3. Suppose we have the following functions defined using the monad S754 and

the five functions unit, fetch, assign, reise and (%) as described iu section 4.3.3,

Add : PERSON X FILE x PRIORITY — STx.()
Remove : JOBID — STx()
Getld @ FiLk = ST JorID

where Add is as specified in section 4.3.3; Remove deletes the supplied JoBID from the
prinier queue if it is there, and otherwise veports an error; and Getld retrieves the JOBID
of the supplied FiLE from the printer queue, leaving the printer quene unchanged.

We may want to express that, under certain conditions, adding a file to the printer gueue

and then removing that same job leaves the printer queue nnchanged. Using the monad

notation, this may be expressed as, under certain conditions,
Add(p,f.n) *« (fun _ € () : Getld f » Remove) = unit() (5.4)

where . € () indicates thal Lhe function is not expecting a value and unit() is the state
transformer which leaves the state unchanged and returns no valuc. We may define the
shorthand m g E = m« (fun - € () : E) so that the above expression is written as the more
elegant

Add(p, f,n) ¢ (Getld f x Remove) = unit() (5.

o
[ia3]
e

This proof may be carried out by equational reasoning using the equivalence laws of the
specification language and the monad laws for ST A.

We recognise that there is a certain amount of difficulty involved in formulating such prop-
erties of specilications. Althongh the use of the statc monad here is intended to hide the
explicit treatment of state in the specification, making the specification maore rcadable, it is
clear that in order to write down property (5.4) above, a knowledge of the monad, and how
it works, is vequired. In fact, while the use of the statc monad with exceptions makes the
specification casier to read, this style of specification prevents us from formulating properties

in the usual functional style, as can be seen [rom (5.4) and (5.5) above.

Although the mouad laws may now be used in proofs, it is not clear that proofs become
easier, since these laws only apply to that part of a specification involving the monad. It

is likely that the monad laws will be used only to unfold the monad definitions, to obtain
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a purely functional specification like that of section 4.2, go that the equivalence laws of

scction 5.2 can then be applied.

5.4.4

Reasoning about A

In section 3.3 the multiplication problem was specified as:

Multiply = {(fun 2,y € Number : [[/{z € Number : Convert » = Convert « * Convert y}) :

where
Digit = {:I:EZ : O:Qw/\:utgg}
Number = {s ¢ FSeq Digit : 3[0] £ 0}
Convert = (fun s € Number : {(4)/(i : dom s >« 10%5=0+2) 4 ¢[1})

It was statced that the set in (5.6} is a singleton set. We now intend to show how it is

possible 0 prove such a statcinent.

Consider the sct

where

arc pr

Ir

L

{# € Number : Convert z = Convert z » Convert y} {(5.7)

Ax, Ay and Az, since they are all variables. We first show that all termns in (5.7)

oper. Let w be one of &, ¥ or z.

A(Convert w)
“Substitution, A u”
A((#)/ (G dom w s 10%F0 1D 4 gy[3]))
“*A((+)/), properties of the operators”
Aw A A(dom w) ANA(FHw) A (Vi domw | eA{wi]))
“Axioms for Sequences, Axioms for Logical Values”
AwA(domw ZN)A(Vi: domw | e € dom w)
“Civen A w, w € Number, quantification trivially true”
True

The axioms for sequences being used here are:

Aldom §) <= A S

R
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A(F#8) <= AS A(dom § #N)
AN <=ASAAJANjEdom S

Notice that, because A z and A(Convert z « Convert y), the set (5.7) can be written as:
{z € Number : Converl 2 = Convert z = Convert } (5.8

Now that we know that all terms of the set (5.8) are proper, we can rcason that it is a
singleton set in the usual manncr. Let 2 and 7z be members of the set. Lhen, using the

axiom for set membership, transitivity of equivalence and substitution,
(4)/4 = dom 2w 10%5 D) o 2 [4]) = (4)/ 0 ¢ dom zg s 10#2-0FD 4 515

Using induction on the minimum of the lengths of the sequences, Mz, #22), and the fact

that both sequences are elements of Number, it is possible to show that z = .
In general, it will not be necessary to go into such detail aboul the A properties ol ex-

pressions and sub-expressions. The purposc of the axioms in these cases is to ensure that

reasoning is possible, and nnder what conditions normal reasoning can go ahcad.

5.4.5 Simplec Refinements

We now turn to relinement. The first fow cxamples are very simple and demonstrate just a

few of the laws. A slightly larger example, involving recursion, [ollows.

Taking example (5.1), given previously, we prove some simple refinements.

[/N

“Reduce Non-Determinacy, {2,3} C IV
0/42,3}

“Axioms for Generalised Choice”

203

i

iit

and from (5.2)

(funezeN:z+ 2z +3)
= “Unfold partially delined function”
(funzecZ:(z €Ny > (2 +2[z+3))
C “Remove Assumption”
(funa € Z:z+2]z+3)
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as cxpected.

It is possible to prove the second Refine Function law using some other laws. Assuming
that (V& : T | A P}, we refine

funz e T E[I)
= “Introduce Alternation, A P for any z in 7%
funzeT: P (E|F)]-P > (E[F)
‘Reduce Non-Decterminacy”
(funzec T:P - FE||-P - F)
“Alternation Lo Condilional, A P”
(fun2e 7:P > E <[[ )

I

It

as stated.

We prove a form of distribution ol functlion abstraction over choice
funzeT  E|F) C funzeT:E}||(funxeT:F) (6.9)
as [ollows. We have, from the Reduce Non-Determinacy law and monotonicity,

(funz €T E[|F) L (funxeT:E)
(funze 2 E|#) C (funze T:F)

So, by simply applying the Intradnee Choice law we arrive at exactly {5.9). We call this

the Under-determined Choice law,

A more challenging refinement, using the Recursion Introduction law, is now described.

5.4.6 Refinement with Recursion

We want to refine the following specification, for « and y of type Seq 7,
eiplz,y] = /{5 € Seq (Z x Z) : #8 = (#x N #y) (5.10)
Vi€ {0...#8 — 1} o 8] = (i, yli))
In the following derivation, we define the function # for all non-empty sequences.

1S = (i:{0...#85 -2} » S[+1]) S finite
(i » dom S x S|t + 1]} S infinite
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As a first step iu the refinement, it makes sense to introduce an alternation, using the
general form of the Alternation Introduction law. Possible cases are: (z = {}); (y = (});
or (z # {) Ay #£ (). Note that the guards are all well-defined.

ziplz,y] = (x =) —ziplz,y] (v =) = ziplz, y] [ (z # O Ay # () > ziplz, y]
(65.11)

Bach case may be refined in turn, using the fact that choice is monotonic with respect to

refinement of snbexpressions.

We refine

(=) —= ziplz, y]
“Cxpand definition of zip[a, y]”

(z =) =

[/{9 € Seq(ZxE): #§ = (#zNHy) A(Vie {0... 48 — 1} o S[i] = (z[i], y[i})}}
“Using Context in Guard, #tz — 0 and #y > 0"

(=)= [0/{5 € 8eq{Z xXZ) : (#5 =0) A True}

== “Singleton Sct, Propertics of Generalised Choice”

(z=0) =0

It

1M

Using a similar refinement sequence for the second case, we have

(y =) =ziplz,y] C (y={) =

Now, turning to the last case of the alternation, we refine with the aim of forming an

expression suitable for an application of the Recursion Introduction law.

(. # O Ay # ) — ziplz, y)
= “Expand Delinition of zip[z, y]”
@#ONy# Q)
1 /1S € Seq (Zx Z): #£5 = (#hw M fy) A (V3 € {0... #8 = 1} » S[i) = (a[s], y[a])}
“Using Context in Guard, #8 > 0"
(xAZOANy# )= [/1S€ Seq (Z x Z): #8 = 1 + (#é x D el y)
A §10] = (=[0], »[0])
ANVie{l...#S -1 e S = (Hali — 1], y[i — 1]))}
= “Set Manipulations, Distribution of Concatenation over Choice”

@#QAy#0)—

171
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([0, »[0) ~ 0/AS € Seq (Z x Z) : #9 = (£l z N #il y)
AVEi€{0... 45 -1} e S[i) = (i), lyA]))}
“Definition of zip[z, y], with substitutions”
(@ # O Ay A 0) - (0] y[o]) ~ zipfz, y][“ 257
“Axioms for Assumptions, (#ilz < fz) A (#Hy < fy) = Drue”
(2 O Ay # O) = ([0, yl0) ™ (1w < #w) A (el y < Ary) > vipfz, y)[“T4Y)
= “Substitution”
(@#0Ay#(0) >
{(=[0], yoD))
(fun o', y' € Seq Z: (Fa' < Ha) A (Fy' < #y) > zip[z, y][%2 ) (8 2, t y)

H]

The three parts of the specification are now combined, using monoctonicity of choice with
regpect to refinement.

zip[7, y]
C “From (5.11) and partial refinements”
(=)= 0
0(y=0) 0
(#QAy 7))~

{(=[0], y[O]}) ~
(fun ', 4" € Seq Z: (#a’ < #x) A(#y' < #y) > zip[z. ¥ [‘;:’ Nz, il y)
C “Recursion Introduction”

let [ = (fun @,y € Seq Z: (= = ) — ()

1y=0) =0

Iz 7O Ay #0) = (0] y[0D) ™ f(# e, i y)
in f(z,y)

which is a reasonable linplementation of the zip function.

5.4.7 The N-Queens Revisited

The N-Queens prablem, to place & queens on an N x N chessboard such that no queen
can take any of the others, where N > 4, was specified in section 3.3 using the expression
language. In this section we ailm to derive an algorithm for the problein.

This example serves to illusirate a number of propertics. Firstly, it shows how reasoning

about potentially partial expressions might praceed in practice. In fact, this reasoning is

~
v
:
¥
P
&
£
oy
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usually informal, but serves to exhibit possible danger points and invariants to be observed

in a derivation.

Secondly, the derivalion is interesting in that almost all the steps are equivalences rather
than refinements. The two places where refinement occurs are: in a Recursion Tniro-
duction step; and the final choice of one solution from the set of all solutions. So, what
is happening is that the original specilication is being manipulated, ready for the recursion
step.

Thirdly, the specification uses sets of sets of paivs as the basic data structure. This means
that a lot of the reasoning uses the Axioms for Sets. However, most programming lan-
guages don’l. supply sets as a basic data structure, so it is likely that the final expression
derived here would need to be [urther refined, using data refinement. The target dala

strncture is likely to be a sequence of mappings.

Finally, during the derivation we make reference to the application of the Axioms for
Sets and the Axioms for Logical Expressions without demonstrating how the axioms
are actnally applied. This is to ald clarity and to present ihe derivation in a reasonable
length.

The tnitial specification as given in section 3.3 is:

[/{P! € Placing : SafePlacing PI} (5.12)

where we have the following definitions:

Position = {L.N} x{L.N}
Placing = {Pl € PPosition : #P1 = N}
SofePlacing =  (fun Pl Placing : (Y p1, pa : Pl | eCantTake py pa))

The function CantTake describes the property vhat two queens cannot take each other.
A Note on Partiality

Our initial specification (5.12) is potentially pasiial, being a chioice over a set. The specifi-
cation should be given as

—
0/{P! € Placing : SafePlacing P{} [ L
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e~
This is a problem because, since [| is not monotonic in its first argument, any derivations

of {5.12) should be equivalences, not refinements. This is not appropriate since the sct of

all possible placings may contain morc than one element, and we want to choose just one.
—
In fact, refining the left argument of the operator ] is not usually a problem, as long as we

can be sure that any relinements do not result in the partial value T. So, we need to ensure
that any refinements of expression (5.12) are always total. In this case it means ensuring
that the set i non-cmpty.

Luckily, knowledge of the problem dowain assures us that at least one solution exists for
any N > 4. This is given as an assumption in the problem statement. And so we may

proceed to refine, with caution.

Preliminaries
As a preliminaty to the derivation, we notice the following.
SafePlacing T (fun P! € PPosition : (Vpy, p2 : P1| eCantTake py pu))
by the Wealken Assumption law. We define
Sale = (fun P! & P Position : (Vpy, po : £( | eCant'lake p; pa))
and note the following:

Safefl = Yruc
Pl € Pl = (SafePl = SafePl’)

for proper Pl and Pl. These are easily illustrated from the definition of CantTake as given
in section 3.3. Also

Sale Pt = SafePlacing P!

when Pl € Placing.

The Derivation

We intend to build up the set of all possible solutions for a given N, without saying how
Lo choose a particular solution. From (5.12), we take the set of all possible solutions and

cerive:
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{ Pl € Placing : SafePlacing I’}
“Definition of Placing, set theory™
{Pl € PPosition : #Pl = N A SafePlacing Pt}
“Above observation”
{P! & T Position : #Pl — N A Safe PI}
“#Pl = N A Safe Pl = fst = Pl = {1.N}"
{Pl € PDPosition : #Pl = N A Safe P Afst+ Pl = {1.N}}
“Substitution, A N”
(fun m € N: {Pl € PPosition : #Pl=mASafe PLA Bt Pl —{l.m}})N

It

iIl

We are interested in the body of this functian, the set, which we call @.
@ = {P! € PPosition : 4Pl = m A Safe PLAfst x Pl = {1..m}} (5.13)

The intention is to manipulate the set @ so that a recursion can be introduced. Working
just wicth @ alone, to ease rcadability, we use the Alternation Introduction law. Since
m € N we also use the Context in Assumption law to obtain:

RQ=m=0->Q[(m>0—Q (5.14)

Notice that both guards are proper, since m is a variable.

We refine each case in turn, using the fact that choice is monotonic with respect to refine-
ment. For the simple case:

(m=0)—=@Q
“Expand definition of @7
(m =0) — {Pl € WPosition : #Pl=m A Safe Pl A Tst = PL = {1.m}}
= “Using Context in Guard”
(m — Q) —+ { Pl € PPosition : #Pl =0 A Sate PL A fst « 1/l = 0}
“Since #1 — 0 = Pl = §, and Safe (I
(m —0) — {0}

Hl

For the second case we want to introduce a recursion.

We need to make cach Pl smaller, reducing by one element. TFor each Pl there 18 a
proper subset P! such that P{ = PI/\J {(m,n)} for some n € {1.N}. This follows from

fst « Pl — {l..m}. From Safc Pl we [urther conclude that there is only one such n, and so
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fsbx PI' = {l.m — 1} and #Pl' = m — 1, In addition, since PI’ C PI, from the ohservations
abont Safe positionings, P!’ must also be safe. Sa, we can take all the safe sets of positions
of size m — 1 (since m > ), add in the position (m, n) for each n in turn, and test to sce if
the extended sct is safe.

Formally,

(m>0) = @
“Expand definition of {”
(m > 0) = {PI € PPosition : #Pl=m A Safe PI Afst x Pl = {l.m}}
“Using Context in Guard, Axioms for Sets and observations”
(m > 0) = {P!' € PPosition, n C {1.N}:
#PU — m — 1A Safe(PI'U {(m,n)}) Afst « PU' = {1.m -- 1} :
P U{(m,n)}}
“Safe(Pl' U {(m, n)}) = SaleP!’, Axioms for Logical Values”
(e > 0) = {PV & [P Position,n € {1..N} :
#PU = m — L A SafePl' Afst + PI' = {1..m — 1} A Safe(Pl' J {(m,n}}):
PP U{(m,n)}}
“Definition of @ with substitutions, Axioms for Scts”
(rn > 0} = {Pl' € PPosition,n € {L..N}:
Pl'e Q[m;l] A Safe(PY U {{m,n)}) : LU {(m,n)}}
“Axioms for Sets”

(m > 0) = {PU' € Q[™ '], n € {1.N}: Safe(I’l' U {{m,n)}) : PI'U{(m, n)}}

m

Hl

1

Il

“Axioms for Assumptions, (m — 1 < m) = True”
(m>0) = {Ple{m—-1<m> Q" ')nec{lN}:
Sate(PU' L {{m,n)}): Pt {(m,n)}}
= “Substitution, A(m — 1)”
(m>0) = {Pl' e ((funm eN:m' <m> Q[’;:])(m —D)ne{l.N}:
Safe(PV U {(m,n)}) : PV U{(m,n)}}

Now, combining the two cases, from (5.14):

)
“Partial Derivations”
(m —0) — {8}
fim=>0) = {Pl'e((funm eN:m' <m > Q[:’r’:])m ~1},n € {1.N}:
Sate(PI' U {(m,n)}) : PiU{(m,n)}}
“Recursion Introduction”

ill

I
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Now, returning to the initial derivation of the set of all possible solutions for fixed value N,

I

In the recursive function above, the majority ol the work is being done by the function Safe
in the computation of Safe(Pl' U {(m,n)}). In fact, it is doing much more work than is
necessary, since it is already koown that SafeP? = True. Using this fact, and also that

let guerns = (fun m € N
m — 0 — {0}
Im>0— {Pl'e gueens(m — 1), n € {1..N} :Safe(Pl' U {{m,n)}) :
P {(m,n)}})

in queens m

{Pl € Placing : SafePlacing Pi}
“Previous derivation”
(fun m € N : {Pl € PPosition : #Pl = m A Sale PI Afst + Pl = {1.m}}) N
“Above refinements, abstraction monotonic wrt refinement”
(fun m € N :
let queens = (fun m € N ;
m =0 {0}
[m >0— {Pl'C queens(m —1),n € {1.N}:
Safe(Pt' U {(m,n)}) : PI' U {{(m,n)}})
in queens m}N
“Substitution, A N?
let queens = (fun m € N :
m=0— {i}
fm>0-— {PI'€ queens{m —1),n = {1..N}:
Safe( Pl U {(m,n)}) : PO U{(mn,n)}})
in queens N

fst + PI' = {i..m -~ 1}, we simplify:

it

Safe(PI' U {(m, n)})
“Definition of Safe, Substitution, A(PI'U {(m,n)})"
(Y1, po - PTU{(m, n)} | #CantTake py p2)

“Axioms for Sets”

(Yo, pa: PU G eCamTake py po) A (Y p 2 PU | eCantTake p {m, n) A CantTake (m, n) p}

“Definition of Safc”
Safel? A (¥ p : Pl' | eCantTake p (m,n) A CantTake (m, n) p)
“SafePI' = True, by assumption”
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(Wp: Pl'| «CantTake p (1, n) A CantTake (m, n) p)
“Definition of CantTake, Substitution, all terms proper”
(Vp: Pl'|e(fstp=mVsendp —nV|fstp —m|=|sndp — n |} = p=(m,n))
“Know that fst « P{" = {1l..m — 1}, so fst p = m = False and p = (m, n) = Folse”
(Vp:Pl'|esndp #nA(m—1fstp) # sndp—nl)

This is a much simpler condition to check.

We now define, for simplicity, the function Check, as follows:

Check = (fun P{ € PPosition, pos ¢ Position :
(Vp: Pl|esndp £ sndpos A (fst pos — fst p) #] snd p -- snd pes |)}

The Final Spcecification

Returning to the initial specification (5.12) we can now present the complete final specifi-

cation.

[/{ P! € Placing : SafePlacing I/}

C “Above Refinements”
[[/{let gqueens = (fun m € W :
m=0— {0}
1m >0— {Pl' € queens(m — 1}, n € {1.N}:
Sale(PI'U {(m,n)}) : PV U {(me,n)}})
in gueens N}
= “Substitulion, Proper terms, Distribute Function Application inside let,
Above simplification of Sale( Pl U {(m,n)})”
let gucens = (fun m C N :
m =0 — {0}
[m >0—= {PlI' € queens(m —1),n & {L.N}:
Check P (m,n) : PU S {{m,n)}})
in {} /(queens N)
Comrnents

The above derivalion is based very heavily on the axioms for sets. In general, sets do not

form part of a programming language. What is required is some form of data refinement
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which will map each set and set operation to a data type and associated operation of the

target language. An appropriate data type is likely to be that of sequences.

Notice that all the steps, except the application of the Recursion Introduction law, are
equivalences rather than refinements. This is because, in building up the set of all solutions,

we are adding no information to the original specification.

The final step, which has not been derived, would be to choose a single solution from the
set of all solutions. This, necessarily, requires a refinement svep since there is currently no
information to say which solution would be preferred. However, after the data refinement
has taken place, resulting in a sequence of all solutions {(according to some ordering), the

final refinement might be to ¢hoose the first placing in the sequence.

5.5 Towards Imperative Programming

In this section we illustrate the derivation of imperative style expressions using the example
of Bresenham’s line drawing algorithm {17, 83, 77]. This derivation originally appcared in
{19], and is used here with modifications.

The example serves to demonstrate a number of points. First, the basic specification involves
the use of real numbers, which are not included in the expression language. We assume
that the veal nutubers used can be reasoned about in the usual way. Owur target language
does not include real nwnbers, and so part of owr goal is to derive an hnplemenlation which
uses integers only.

We assume, in this example, that all terms arve well-defined. This makes reasoning easier,
since all terms are, in addition, assumed Lo be proper. These assumptions are reasonable
in the context.

Finally, our target langnage is taken to be a lazy functional language. This means that
we use some functions which are not part of owr specification language, but which are
assumed to be a standard part of the functional language. Laziness is assnmed because of
the usual definition of these funciions, which deal with possibly infinite sequences. Since our

expression language already deals with infinite sequences, this does not present a probleni.

Before the problem is described we anticipate the need for two additional refinement laws

which did not appear in sections 5.2 and 3.3.2. These are given as follows.

Law (If Refinement)

(if P then B else Ey) I (if ¢ then /| else Fy)
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Wheneuver

(PAQY=E1CF  (PA-Q)=>ECF
(wPAQ)=>ECF  (~PA-Q)=>IECM
and with A P and A Q.

This can be proved from the refinement laws Disjunction of Guards, Using Context
in Guards and the transformation laws for Alternations to Conditionals.

Law (Application thru Conditional)
AP =& (f(f P then F else F) = (if # then f £ else f F))

This can be proved by case analysis on the guard.

5.5.1 Background to the Derivation Style

Our aim in this example is to (ransforin an expression of the shape f + {m...n} into a
more iterative style of functional program, where calculation of f{s - 1) can re-use some of
the work that went into calculating f 7, for infeger 7 such that m < 4 < n. Suppose that
calealating £(¢ + 1) {rom fi is performed by applying a (simple) function, called nest say,

ie.
(Ni:Z|emKi<n= f(iL1)=next(fi))

then we would only have to apply f once, namely to m, the first integer in the sequence.
After that, we could simply keep applying nert. Naturally, this only reduces work if the

function nezt is simpler (cheaper) than the origical [unction f.

This idea is expressed formally using the functions teke and zierate which are part of the
standard Haskell prelude and can be defined in any lazy functional programming language.
The following theorem is stated from [19]:

Theorem (Map to Iterate)
{use o moke)(m ... n) = (takef(mn . .. n) o (usex) o ferate newt)(meke m)

if m <1< n= make(s + 1) —~ (next o make)d.

This theorem states a more general notion than that given above. 1t says that to map a

[unction [ over an inleger range, all we have to do is find three functions, heve called make,
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use and nezxt, such that useomake is our original function f, and next capturcs a vecurrence

relation on make.

5.5.2 The Specification

Given two integer pairs (21, y1) and (2, ¥2), the line drawing problem is ta find the pixels
which besi approximate the line segment hetween them. The mathematical representation

of the (infinite} line is defined by the equation

fz = yt+mx{z—m) (5.15)
where m is the slope of the line and can be calculated from

m = (g ) (zm—a)

For convenience, we use the following abbreviations: dy = i — 1 and dp = 2 — 1. How-
ever, the points of a mathematical line are given by pairs of real numbers, while pixels are
pairs of integers. We want to caleulate those pixels which are nearest to the mathematical

line, i.¢. those which approximate the line.

Let us assume, [or sixaplicity, that the value of the slope of the line is between 0 and 1. Other
line segments can be obtained by symmetry. The problem now is Lo Lud, for the sequence
of integer x-values {x ...}, those y-values which best approximate the mathematical line

given by (5.15) using ouly integer arithmetic.

The line segment will be represented well if every 2 € Z between 1 and uy is paired
with some y € Z closest to fa. For convenience we define n = #(x ... ). Our initial

specification is given by the expression
{round o f) x {x) ... 23} {5.16)

which cotnputes the integer y-values for {x;... ). The function round : R — Z, which

gives a proper result for all real numbers, is defined by:

rounds = if x — |{z] > 0.5 then |[z] + 1 else |2

{5.17)

where the floor of z € R, denoted |2 |. has the usual properties:

lzl <z < 2]+
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There are two problems with our initial specification. The firse is that it uses real arithmetic,
but takes as input and output only integers. We would prefer to use integer arithmetic only.
Secondly, the algarithm is ineflicient, since f is being applied to each member of the list
(77 ...22). We ali to use the Map to Herate theorem to derive Bresenham's line drawing

algorithm, which is officient and uses integer arithmetic only.

5.5.3 Refinementls

We define the inteper function r : Z0 — 7 as follows:

y = yroundof (5.18)
The initial specification (5.16) is now written:

r{ry ... an)

We can use the Map to lterate theorem if a recurrence relation can be found for . This

should use integer arithmetic only. Cousider r(x + 1), where z; € = < 23,

r{z -+ 1)
“Definition of » (5.18)”

(round o f){z + 1)
MNefinition of round (5.17)*

if fle+1) — Sz +1)] >05then |f(z+1)] +1else |f(x+1)]
“If Refinement, proof requirements below”

fll

M

it (f(z-+1) r2z)>05thenra +1lelserz

11§

“For suilable e, see below”

ifex <Othenraz +lelserz

In the above derivation, the If Refinement law can be used only if the guard is proper

(which it is) and if the four proof requirements are satislied. For example, we have to show
(flza+ )= fz+1)] >08)A{(fle+1)—rz>08)=(f(a+1)]+1=rz+1)

This, and the other requirements, can be shown using the properties of floor and some real
arithmetic. The basic idea is that, since the slope of the line is between 0 and 1, the next

y-value, r(z~1), must be either the same as the previous value, r , or its successor, 7z + 1.

So, we have a recurrence relation for v, which depends on the value of e 2. We now examine
ex.
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ex <0
“From above derivation”
He+1)—rz>05
= “Definition of f (5.15)"
mt+mx(z+1—u)-rz>05

]

“m = dy/d,, multiply by "
derxyr+dy=(x41—m3) —desra>05xd;
= “arithmetic”

2rdpsrotdy, —2xdpryp—24dyt{z+1—-3)<0

So, we define:

~

ex = 2xdgxraddg—2%dyny —24dy s (T +1—2) (5.19)
The function e also satisfics a recurrence relation:
e(z 11) — ex+2xdyx(r(z+1)—rx)—2xdy (5.20)

Note that this expression for e uses integer arithmetic only. We can now eliminate r from
the recurrence relation for ¢. The difference between r(z + 1) and » @ is always either 0 or

1. So we have:

e(z+1)
= “Recurrence Relation (5.20)"
e +2xde s (r(e+1)—ra)—-2+d,
“Alternation Introduction, A(ex < 0), Alternation to Conditional”
ifew <Othener 4 2xd, *{(r(z+1)—rz)—2xd,
else euw - 2xdy» (r{z1 1) —rz) -2+ d,

i1

“Using Context in Guards, previous observations”

ifex <Othencz | 2xd, —2xdyclseex —2*d,

We know from defivition (5.19) that ez = dy — 2+ d,.

Now we have that the caleulation of the next y-value, r(z + 1), depends on the previous
y-value, «x and the difference value e z. Therelore, at each iteration, we want to calculate
r(x + 1) and the next difference value ¢(z + 1). Let us define a function & : Z — Z X Z
forming the pair:

kz = (rz,ex} {5.21)

and combinc the fwo recurrence relations into one:

e
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(r(z+1),e(z +1))
“Recurrence Relations”

(if ex <Othenrz +1elseru,
ifez<Othenez 2xd; ~2+d,elseca — 24 d,)
‘“Product Formation thru Conditional”
ifex <Othen(rz+1l,ea12+d; —2xdy)else (rz,ca—2%d,)

Now we can use the Map to Iterate theorem with:

nert = (funrecZ:ife<0 then(re+1lca+2+dy—2%dy)
else (rz, ez —2xdy))

it

make {(funx €7 :(rz,ex))

use = fst

which gives us, from our fixs¢ specification (5.16):

(round o f)* {(zy ... 29)
“Definitions of » and %, (5.18) and {5.21)"
(fsto k)« (z;...4)

14

= “Map to ILterate theorem”
let next = (fun r,e € Z:if e < Othen (rz+ 1,60 --2xd, — 2% dy)
else (re,eu — 2+ dy))

in (teke n o (fst+) o dlerale newt) (g, dy — 2 % dy)
This iruplementation of specification (5.16) is eflicient and uses only integer arvithmetic. Tt
corresponds to Bresenhara’s line dvawiug algorithm [17].

In [19] it is shown how an imperative version of this program can be obtained through

further transformations which make use of the state monad.

5.6 Conclusions
In this chapter we have provided the apparatus for proving properties of and refining spec-
ifications of the language defined in chapter 2.

A proof system, consisting of the axioms of chapter 2, a number of inference rules and a
P ¥ ) p 4

method of writing down proofs have been provided as a means of proving true boolean

o3
S
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expressions ol the language. Using a deductive form of reasoning, proofs procecd by substi-
tuting equivalent terms, “substituling equals for equals”. The basic axioms of the language

arc cxtended by a list ol transformation laws, usetul for manipulating specifications.

A poal of the refinement caleulus is to supply the means of calculating a program P from o
specification §. Usually we do not have that 2 and S are equivalent, but rather we have the
relation that P implements or relines S. In this chapter we have introduced a new operator
L into the language, so that § C P is equivalent to tle boolean value True whenever P is
a valid implementation or refinement of §. The operator € is transitive, allowing stepwise
refinement. [n addition, the majority of language constructs are monotonic with respect to

refinerment, meaning that piecewise refinement can oceur.

For a small number of operations, including =, %, A and 4, arguments may be replaced only
with equivalent expressions, not by refined expressions. In practice, this is not a problem,
but some care should be taken when rcefinement is piecewise. The non-monotonic opera-
tors arc cssential for specification and for reasoning, and the care taken during piecewise
reflincmnent is a sinall price to pay for theilr expressive power. The multiplication example

provided an instance where reasoning about proper expressions, using A, was necessary,

The example manipulations and refinements in section 5.4 demonstrate how the calculus
might be used. Using the example of the zip function, we showed how recursion can be
introduced inte a refinement. The relinement of the N-queeus example showed both the
intreduction of recursion and how scts can be manipulated in the expression language. It
also indicted where data refinemeni would be nsed.

The proofs associated with the printing control example demonstrate that laws of the pro-
posed calculus can be used with larger specifications, reasoning equationally as before.
Chapter 4 introduced the state monad with exceptions as a way of structuring lavge specifi-
cations, and this was shown to be useful in making specifications more readable. Ilowever,
in section 5.4.3, we find that the use of monads make properties of specilicalions less easy
to formulate. Although the monad laws can be added to the list of cquivalence laws, it is
likely that they would only be used to unfold the monad deflinitions, resuiting in a purely
functional specification which is then manipulated using the laws of the calculus. 'There-
fore, in reasoning about large specifications, the use of monads does not provide any extra
machinery, and may even hinder the formulation of expressions.

Finally, the example of Bresenham’s line drawing algorithm shows how proprams in an
imperative style can be derived from functinnal specifications.

A relinement calculus for the development of functional programs has now been presented.

"I'his comprises the specification language of chapter 2, the refinement relation and the
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provision of a set of refinement laws — including basic axioms, the transformation laws
and the laws of scction 5.3.2. What remains is a justification of their validity in terms of a
denotational semantics and proofs of the laws of the calenlus. This is what is now addressed

in chapter 6.




Chapter 6

Semantics

In this chapter we describe a denotational semantics for the expression language set out in
chapters 2 and 5. The role of the semantics is t0 provide a model of the language which
can be used to justify the uxioms and rules of inference. This will show that the theory is

consistent.

Other approaches 1o specification langnages based on expressions have avoided the jssne of
semantics [63] or have given a semantics based on predicate transformers [90]. We take the
approach, based on an example in [88], of mapping each expression of the language onto
its set of possible values. An overview of the methodology and notation used is given in

section 6.1. The semantic mapping is defined by structural induction in section 6.2.

The difficult problem of giving a semantics to recursive function definitions is tackled in
section 6.3. This involves some applications of domain theory and, since our expressions
denote sets, powerdomains in particular. We order the sets ol our semantic domains using
the Tgli-Milner ordering, and apply the fixpoint theorcin for monotonic functions to give a

formal account of recursive functions in the specification language.

In section 6.4 we examine refinement of expressions and use the Smylh ordering to give a
semantic definition of the relation. In section 6.5 we use the semantic definitions to show
that the semantics supporis the axioms of the langnage and the inference rules proposed in
chapter 5.

Finally, section 6.6 describes informally how a denotational semantics might be given to the

specification modules introduced in chapter 3.

133
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6.1 Methodology

In chapters 2 and 5 an expression langnage was described forally though the use of type
rules and axioms. In this chapter we give a semantic presentation of the language, mapping
cach expression to some set using structural induction. Our aim is to demonstrate that
these sets, in the semantic domain, provide a good model for the axioms and laws of the
expression language. In this section we give an informal overview of the mapping used.

‘I'he semantic mapping, which we call M, maps an expression E to ils set of possibic

evaluntions. We call such sets M-sets, and A4 % is called the M-set of expression F.

Fach type T of the expression language has an associated semantic domain Dy, Tach Do
contains a ‘least’ element, L p, which is associated with the undefined value of 7', Lo, of the
expression language. A more formal treatment of domains will be given in section 6.3 where
the semantics of recursion is considered. For the semantics of non-recursive expressious,

however, it is sufficient to identify domains with maximal typed sels.

For example, the associated domain for the type Bool is the lifted boolean dommain Bool
which contains the elements True. False and Lpeo); has operators 1, V; A, = as well
as quantifiers ¥, =. These values, operators and quantifiers in the semantic domain are
distinet from thelr counterparts in the expression language, although they are written using
the same symbols.

The domain Beol, the domain Z and the domain Char are standard primitive domains of
most versions of domain theory.

Undefinedness in the expression language is handled by using lifted domains, which always
have a least element. Non-determinism in the expression language is handled by mapping
expressions omto sets of possible evaluations which exist in the associated domain. So, our
mapping M, in general, takes a type T onto the powerset of ils associated domain Dy, the
powerdomain P Dy, For example, the M-set ol a hoolean expression is in the powerdomaiu
P Bool,, ie it is a set ol elements from Bool|. The powerdomain structure will he
explained in more detail in section 6.3.

A proper expression in the expression language will be mapped by M to a singleton set
in the semantic domain. This makes sense beeanse a proper expression has exactly onc

possible evaluation. e.g.
M(True) = {True}

A non-deterministic cxpression will be mapped to a set containing at least two elements,
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since it has more than one possible evaluation. e.g.
M(True || False) = { True, False}

So nouv-deterministic cholce I the expression language is modelled by set union in the

sernantic domain.

An expresgion which is undelined in the expression language will be mapped to a set con-

taining the least element of the associated domain. c.g.
M(True || L goet) = { True. Lgool}

The meaning of the miraculous expression T is given by the empty set of the semnantic
domain. This is because it has no possible evaluations.

Intuitively, an expression £ 1s well-defined if — is not in its sel of possible evalualions,
ile. L ¢ ME. An expression I is fotal if its set of possible evaluations is non-empty, i.e.
M E # . If the M-sel ol an expression E is a singleton set, then £ is deterministic,
Strictness, [or example of products, in the expression language will be wodelled by taking
the smash product of M-sets. In a smash product domain Dy & D; there is no distinction

between the pairs (di, 2.p, ), (), d2) and L p gp,, i.c. it is the strict product domain. The

smash product operator, & will be explained in more detail in section 6.3.
Distribution of operators over operands in the expression language will be modelled by
mapping the denotation of the operator over the M-set of the operand. Tor example

MO+ @) =(+) = ({1} & {3,4})

which. takes the smash products of the denotations of the operands (so enforcing strictness)
and then maps the addition operator of the integer domain over the resulling set. This
gives
MOA+{3]14) = ()= ({1} 2{3,4})
= (1) {(1,3),(1,4))
= {4,5}

as expectlad.
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Notation

In the following we will make use of a notation for set comprehensions borrowed from Wacdler
[88]. This is based on the list comprehension notation used in functional programming

languages, as in [12;. We use this notation in order to distinguish the set comprehensions

of the specification language from those in the semantic domain.

For § a singleton set in the semantic domain, we use ¢5 to mean the single element of that
sat.

We define the shorthand notation cond(e, S, T'), where ¢ is a condition and 5 and T are

sets:

cond(c, §,T) = 1if ¢ then § else 1

All of ¢, 5, T here are objects in the semnantic world, and not at the level of specifications.

Somne nice propesties of cond are the following:

cond(—c¢, 5, T) = cond(e, T, 5)

cond(e, S U S, T) = cond(e, S, TYUcond(e, S/, T)
cond(e V¢, §,0) = cond(e, S, 8) Ucond(c, 5,8)
cond(e,cond(c’, §,0),0) = cond(e A, S,9)

We also have that, if from ¢ we can deduce § = S then:

cond(e, 8, 7) = cond{c,5,T)

These properties will be used in proafs.

Notice here that we are talking about scts i the semantic domain, and hence equality (=)
is the usual equality of sets, not to be confused with the equality operator of the expression

language. All conditions ¢ are well-defined.

6.2 Semantics of Expressions

In this section we treat each expression of the specification language and describe its M-set

using structural induction. We begin with proper valnes of the types Bool, Z and Char.

For » any such value:

Mnu = {v}




6.2. Semantics of Expressions 137

Here, the ‘o’ on the left is a value in the specification language, while that on the right, ‘v’
is the corresponding value from the associated semantic domain. In general the two will

not be distinguished.
Examples of instances of this mapping are:
M Prue = { True}

M3 = {3}
le&l — {I&:l}

Undefinedness and Non-Determinism

"T'he bottom expression is mappad onto the sel containing the leasl element of the associated

domain,
MLy = {1p.}

The miracle expression is mapped onto the empty set.
MT = 0

The sct of possible outcomes of an expression I [| I contains the possible outcomes of E

and the possible outcomes of F.
MEF) = MEUMPF

So, if L is a possible outcome of either F or F, then it is also in the set of possible outcoines
for £ ¥.

We now want o describe the AM-mappings for =, § and A. Consider a statement of the
form £ = F of the expression language, ‘This should be True il M FE and M F are the
same, and False otherwise. But the denotation of the expression True is given by the set
containing True in the semantic domain. Therefore the mapping for equivalence, =, must

be onto a (singleton) set.

The denotation of § ¥ should be the set { Truc} if the M-set of £ contains the least element
of Lhe associated domain, and {false} otherwise. The denotation of & E should be the set
{ True} if the M-set of £ is a singleton sct not containing the least element of the associaterl
domain, and {/'alse} otherwisc. Both M(é £) and M(A E) should be singleton sets.

o I e
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From the above analysis, we have the following mappings:
ME=F) = {ME = MF}

M5 B) {LgME}
MAE) = {(#ME=1AME #{1}}

The denotation for equality, =, does not necessarily result in a singleton set, since in the

expression language equality distribubes over choice, e.g.
((3)4) = (B3[4) = (True | False)

and 1s, in addition, strict. So, for equality, we have:
ME=F) = (5)+(MEe M)

This takes the AM-sels of F and F, forms all possible pairs and compares them, pairwise,
for equality.

Semantics of Boolean Expressions

The AM-semantics for Boolean expressions are not very elegant, because most of the oper-
ators are not strict and do not distribute over choice. For negation, however, there is no
problem

.'Wl:—-P} = (—1) * M P

where — in the semantic domain is strict.

Possible outcomes for disjunction are given by extension

Truve € M(PV Q) — True € MPV True ¢ M @
Fulse €¢ M(PV Q) = Fulse € M P A False ¢ M Q
LeM(PVQ) — (LeMPAMGQ# {True})

V(Le MQAMP # {{rue})

Notice that the boolean operators on the left of these equations are those of the specification
language, while those on the right are part ol the semantic language.

For example, consider the expression {Zrue || False) V False. The M-set of this expression
must contain True because Truc is in the M-set of the first disjunct; and it must contain
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False hecause Folse is in the M-sets of both disjuncts. Tt does not contain L becanse L is

not in either of the M-sets. We conclude that:
M((True || False} Vv False) — { True, Fulse}
Conjunction can be expressed in terms of negation and disjunction, while implication is

expressed in terms of digjunction, negation and A. Tt turns out that the mapping for

implication i3 the following:

True € M{P = Q) = Truee MP = Truee M (Q
False e M(P = Q) = MP = {True} A False € M Q
LeM(PvQ) = MP={True}ALeMQ

Aguain, this is given by extension. The mappings are included here because they will be used

when we show that the Modus Ponens inference rule is valid in the model (see section 6.5).

Universal quantification is given by the following:

Truec M(NVz: T |Pe @) = (Vz:Dy| Truec MP e True € M Q)
False c MV : T | e }) = (Bz:ilp| Lrue € M P o Fulse € M 1))
LMV : T|PeR) — (Ja:Dyp|Truec MPeo L& MQ)

ANz :Dr| True € M P o M Q % {Fulse})

And for existential quantification:

True e M(Ba T | Pe Q) = (Fz:Dyp| True c MP o True € M Q)
Falsee M3z : T |Pe)) = (Va:Dp| Truec M P e False € M Q)
leMBz:T|PeQ) = FBa:Dy|Truec MPel e M)

A@w:Dy| True € MPoeMQ # {True})

We notice that the quantification on the left is that of the specification language, and
hence three-valued, whereas that on the right is quantification in the semantic domain, ancd
hence two-valued., Turther, we notice that the 2 on the left is a variable identifier of the
spocification language, while that on the right is of the semantic language, which makes the
predicates > and ) something of a hybrid. The intention is that z in the semantic language

and M a for © in the specification language, should corvespond.
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Semantics of Integer Exprcssions

For operations over the integers, with @ one ol +, —, », LI, and @ one of /, meod, div, we
have

MEGTF) = $+x(MEQMPF)
MEQF) = 2+ (MEQMF\{0})Ucond(0e MF, {1},0)

In the first case, we take the smash product, to enforce strictness, and then map the
semantic function (&) over the set, which models distribution over chaice. We assume that
the application of (®) to Ly is Ly. In the second case we do the same thing, but remove
zero as o possible divisor. Then, if zero is a possible outcome of F, we add Lz to Lhe

resulting M-set.
For example:
MEB/BL0) = (/) + ({3} & {3,01\{0}) Ucond(0 € {3,0}, { Lz}, 0)

= () ({3e {8)) u{lz}
{1: J-Z}

as required.

Semantics of Pairs

For pairs, again strictuess is enforced by using the smash product. The associated operators
arc mapped over the resulting sets, modelling distribution. Note that the domain operators
Jet and snd are strict.

M(EF) = MEoMF
M(fstp) = fstxMp
Msndp) = snd+« Mp

For example:

Mfst(3,5[ Lz)) fst+ M(3,5% 1g)
Jstx ({3} % {5, Lz})
— fet={(3,5), Lavz}

- {33 J—Z}

LT T b L A S
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as expected,

Semantics of Munctions

The meaning of a function is given hy the set of its possible graphs. Each graph is a set of
pairs (z,y) where ¥ is a possible value of the funciion at z, il it is delined and total, or y

is L if the valne at = is undefined. Thus

graph{fun . € 1 B} = {{0,0) ] ¢ + De\{Lp.}, b« M(E[u/z])}
M(funz e T: E) = {graph{fun z € T : E}}

The M-sct of a deterministic function cxpression is a singleton sct containing one graph.
The domain of a graph g, dom(g), is the set of all 2’s such that there is a pair (z,¥) in g.
i.e. the set of all #'s that have a total value under the function given by ¢g. The image of
a value o in a graph g, fm(a, g), is the set of possible values of the function given by g at
¢. Tor a sct of values 4 and a set of graphs G, IM (4, G) is the union of cach (e, g) for
a ¢ Aand g € G. For two graphs g, and go such that the domain type of ¢ is the same as

the result type of gz, compose(g), g2) is as expected. We define

dom(g) = fstxyg
Im(a, g) = cond(e # 1,{b | (¢,0) < g},-)
IM(A,G) = UYldm+ (4 x G))

compose(gr,g2) = {(a,0) | {a,h) < gn, (b.c) g1}

Propertics of IM include

IMAUA, @) = IM(A G)UIM(A,G)
IM(A,GUG) = IM(A GYUIM(A, G

which will be useful in proofs. Now we have that the application of a finction to an
expression is obtained simply by looking up all the possible results in the corresponding
graph(s). Function compaosition is obtained by mapping compose across the set of pairs of

the corresponding graphs.

M{FE) = IM(ME,Mf)
M(fiofs) = composex (Mfr@M#pb)

Syntactically, a total function is one whose hody is a total expression. Semantically, this
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condition is expressed as: for f a function of type T » 77, f is a total function il
WgeMf,oe Dyp:Im(a,g)#0)

or, equivalently
(VgeMf,a € Dr:acdom{g))

According to the syntactic rules, the application f & cannot be formed nnless the fnnction

f is a total function.

Scmantics of Generalised and Biased Choice

We've already seem that the choive operator is modelled by set union in the semantic
dornain, so any possible outcome of F or F will be a possible outcome of I [| . It follows
that generalised choice over a set § will have § as its et of possible outcomes. Although
we have not yet said what the meaning ol a sel expression is, we assert that |JAM S is the
same as the set §. The M-sct for a biased choice is obtained by looking at M E. If it is
not empty, then & has a non-cmpty sct of possible results (possibly including L) and must
be total, i.e. M F # (. In this case, the M-set is just M E. Otherwise we take M &,

M(/5) = UMS

~—

ME]|F) = condME # 0, ME, M F)

Notice that the only way infinite sets arise in the sexpantic domain is from the meaning ol a
generalised choice over an infinite set. This will be inportant in our treatment of recursive

funclions.

Semantics of Guards and Assumplions

The M-set for a guarded expression P - E is a little more complicated, since there are three
possibilities. If the guard is true, then the resulting M-set is just M £, LT the guard is false,
then the resnlt should be nen-total, i.c. the empty set. But if the guard is improper, then
the resulting M-set should contain just L. The AM-gemantics for assumnptions is similar,

but they behave the same way whenever the asswmption is non-true. giving an undefined
; ) : &
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result.,

i

M(P = F) cond(M P = {True}, M F,cond(M P = {False}, 0, {L}))
M(P>F) = cond{MP = {True}. M F,{L})

Semantics of Sets, Bags and Sequences

In order to simplify the semantics of the data stractures sets, bags and sequences, we treat
them, essentially, in the same way that simple values are treated. So, the M-set of a sei
in the expression language, is a set of seis in the semantic domain. Similarly, a bag of the
expression language is denoted by a set of bags, and a sequence in the expression language

is denoted by a seb of sequences in the semantic domain. We have, for sets

M{zecT: P} = {{ze€Dp\{Lp,}: MP ={True}}}
M/ = UJNxma
Mrzcd) = (6)a{(Ma®MA)

For bags

It

Mlz: T s EJ {[z:Dr % o] | a +— ME}
M(B.E) = {ba]|b< MB,a« ME)

And [or sequences

M T o B
M(dom S)
M(8[5])

{d:Dp w a)| e+ ME}
(dom) M §
L33 | s M8, + My}

It

where Dy is the initial subset of the natural numbers in the semantic domain corresponding
to the initial subset of the natural numbers 7 in the expression language.

6.3 Semantic Domains and Recursion

Our aim in this section is to give a meaning to recursive [unction expressions of the speci-

fication language. These are syntactically of the form

let f = E[f] in F[f}
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where f has type A — F. Traditionally, the semantics of such a function is the least
fixpoint of some [unclional in the semantic domain. Owr goal, then, is to be able to apply
the Fixpoint Theorem (theorem 2, to follow). This requires a theory of cpo’s and monotonic
functious such as can be found in any text on denotational semantics (e.g. [23, 35, 66, 74,
82, 86]).

6.3.1 Cpo’s and Fixpoints

We assuime the reader is familiar with the basic concepis of partial orders and partially
ordered sets (posets), chains of clements from a posect, least upper bounds etc. We will
usually write a partially ordered sct using the notation (12, C) where D is a set of elements,
and T iy a partial ordering over D. If the ordering is obvious, we shall simply write D for
the poset (D,C). In addition, the relation Cp may bhe used 1o represent the associated
partial ordering for the set 2. Subscripts may be dropped if the meaning is clear from the

context. We now give a definition of a complete partial order.

Definition 1 A partially ovdered set (D, C) is o complele partial order, cpo, if every in-
creasing chain of elements of D, (dyn}, has o least upper bound (lub).

Note that from this definition, since cmpty chains of elements of 2 have not heen excluded,

every cpo has a least clemcut, written Lp, or L if the subscript is obvions.

Every set X gives a flat cpo, (X,C), where X} = X U{L}and 2 Cy iflz = L or 2z = y.
Examples of such flat domains include Z, Bool; and Char |, which will henceforth be
written without subscripts. A inore intervesting class of cpo is (PS5, C} for any set 9, the set
of all subsets of § ardered by ordinary sct inclusion. The least element of P S is Lhe empty

set, and the least upper bound operation is set union.

An important concept in the theory of lixpoints is that of a monotonic function.

Definition 2 et (D,Cp) and (E,Cg) be cpa’s. A funetion f : D — E is monotowic iff,
Joreveryx,y €D, ife Cpy thenf2zCp fy.

The functions generally needed [or the semantics of prograinming languages are contimions,
i.e. they preserve limits of increasing chains,

Definition 3 Let (D, Zp) and (E,Cy) be cpo’s. A function { : D — E is continuous iff,
Jor each chain {(d,) of elements of D, f{{1dn)=1]f dn.

o
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It should be clear that every continuous function is necessarily monotonic.

We have scen that any flat partial order is a ¢po. Likewise any partial order, with a least

clement, which only has eventually constant increasing infinite chains, is also a cpo. Tn fact,

all monotonic functions over such ¢po’s are continuous.

For any function f : 2 — D, an clement d of D is a Gxpoint of f iff fd = d. Such a d
is the least fixpoint if, for any other fixpoint ¢’ of j, d Cp d'. We now state the fixpoint

theorem (see [47]).

Theorem 1 Let (D, C) he a cpo with least element L. Every continuous function f : D - D

has o least fizpoint which s | |f™ ). p.

This theorem is used widely to give denotational semantics (o programuning languages,
particularly to iterative and recursive programming constructs. Domains with continuous
functions provide denotations for alinost all useful programming constructs. The exception,
however, is unbounded non-determinism, which we use as a tool for specification rather
than as part of the programming langnage. Tn this case we deal with monotonic, rather
than continuous, functions. We use the fixpoint theorem for monotonic functions, stated in
[50, 67] and attributed to Hitchcock and Park.

Theorem 2 fet (P,C) be a cpo. Then for any monotonic mapping f : D — D, the set of

Jixpoints of | contains a least element.

A proof of this theorem can be found in [67]|. The least fixpoint is given by f*L p for some
ordinal a. So, unlike the case for continuous functions, the fixpoints of monotonic functions

are not nccessarily obtainable as the lubs of countable chains.

6.3.2 Domain Constructors

We have seen examples ol some simple domains, such as the flat domains Z, Bool and Char.

New domaius can be constructed using operalors on domains. We look at some ol the most

common domain constructors here.

Products and Smash Products

Given two posels (D, Cp) and (B, Cg), thelr produet domain (D x E,Cpyg) is the set of

pairs (d, ¢) such that d € D and e € E, partially ordercd coordinatewise, Le. (d,e) Cpxr (d', &)
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iff d Cp & and ¢ Ly &', If D and B, are ¢pa’s, then so also is D x E. Note that {(=, y),)
is a chain in 2 x B iff {z,) is a chain in D and {y,) is a chain in E. Least upper bounds of

chains in D x & are given by (2, ¥)n = {UZn, Uyn)-

Given cpo’s D, B and F, a function [ : D x E — F is continuous iff it is continuous in each
i )

of its arguments individually. This result can be cxlended to general products.

In the product domain D x E the pairs (d, Lg) and (Lp,e) are distinct, if d # Lp or
¢ 5 Ly, However, in the smash product I @ £ such pairs ave identified with the least
clement of the domain, Lpgy. The elements of D ® E arc those paivs (d, ¢) € D x & such

that d # Ly and e # g, and the element | pgp. The ordering is coordinatewise, and
1 pgr is the least element. of D & K. Tt follows that the smash product is a cpo since it has
the same least element and the same lubs of increasing sequences as the Cartesian product,
This makes D @ F a subcpoof ) x E.

Note that @ preserves the flatness of domains, i.e. if D and E are flat cpo’s, then so is
Da k.

Function Spaces

For D asct and (#, Cg) a poset, their [unction space (D — E, Ty, g) 1s the set of functions
from D to B with the pointwise partial ordering f “pog ¢ If Ve € D.fe Lgp gx). If
(£,Cg) is a cpo, then so also is (D -» £, Cp.,5), with lubs of increasing sequences given
by (U fa)x = LJ(fn 2), and least elemen! (Azx € D.1g).

For D a set. and (K, Cg) a poset, the function space (D = B, Lp_5) is the set of monotonic

functions from D to & with the pointwise partial ordering inherited from (D — E, Cp_g).
If (E,Lg)isacpo, thensoalsois (D 2 E,Cp_ ). Itis, in fact, a subepo of (D — E, Cpur).

For D a sel and (&, Cg) a posct, the strict function space (D — E,Cp,g) is the set of

strict fnnctions from D to F with the pointwise ordering inherited from (D — E,Cp_,p). I

(#,CF) is a cpo, then so also is (D —) F,Cp_, ), and it is a subcpoof (D - E,Cp_ g}

6.3.3 Semantic Domains

The domains we use to describe the semanties of the specification language include the
basic flat domains Z, Bool and Char. We also use smash products to represent pairs, and
domains isormorphic to lifted strict {unclion spaces for functions. To represent the sels of

the specification language we usce the flat powerset domain (F S, Up g), where the ordering
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Cpg is the usual flat ordering. Howcver, we also requite a powerdomain structure PL
to represent the nos-determinacy of the speciftcation language. This is because cach non-
deterministic expression E, of type T', of the specification language, is represented by a set
of possible values in the domain PDy, where Dy is the domain corresponding to type 7.

In the following section, we examine a suitable candidate for PD.

6.3.4 The Egli-Milner Powerdomain

We have given a semantics for a non-deterministic specification language without recursion,
and we now wanl to include the semantics for recursive function expressions. Since the
semantic domains for the language are powersets, we need to find a definedness ordering on

sefs which will give us Lthe cpo structure necessary for the existence of fixpoints.

For D a c¢po, we want to form a powerdomain PD which is a cpo, with basic operations
singleton and union. Clearly, the elements of P D should be those of ' D). We have alveady
seen two orderings which can be associated with P D, the flat ordering Cp p and the subset
ordering C. Neither of these are suitable orderings for PD since we require that singleton
is monotonic, fe. if o Cp 6 then {a} Cpp {6}, which is not the case in general with either
of the orderings given. We shall see that the ordering we desire on sers is the Egli-Milner

ordering.

The Egli-Milner Ordering

Let D be a domain. We take as elements of PD non-empty subsets of elements of . Now,
for A and B in PD, the Egli-Milner ordering is given by:

ACg B iff (WxeAJdyeBaLlpyAa(WVyeB.3xeAdxTpy) (6.1)

We argue that this ordering is appropriate for our needs. Each set in the semantic language
denotes the set of possible evaluations for some expression. A set 4 can be made more
defined by making some of its clements more defined, and without losing any information
content. This gives the [irst part of the definition, (Vo ¢ 4.3y ¢ B.a Cp %). For the
second part we note that no information which does not potentially already exist can be
added o A, (Vy € B.3x € Az Ty y).

If D is flat, the definition can be restated as:

ACey B iff either LEgANA=D
or LeAnAN\{L}CB\{1}

LA e =i
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From this definition it should be clear that the set 7D has a least clement {L1p}, and if
Ao Cey A1 Cpar ... is a non-empty increasing chain then either 1 & 4, for some n, when
L;4i = Ap, or | & Ay, for all n, when ||, 4; — U, 4;. It can easily be shown that Ty is
a partial ordering. We conclude that PD, for D flat, together with the ordering Cppy is a
cpo.

The singleton function {-} : 7 — PD is continuous, so | [{a,} = {{Jen}, as is expected.
In addition, the binary union function | @ PD x PD — PD is also continuous. This
means that chaing of sets can be described in terms of chains of singleton sets, and the
lubs of chains of sets can be given in terms of lubs of chains of elements, since singleton iy
continuous. The emply sel is a special case, which we consider laler.

Treatments of the Dgli-Milner powerdomain [35, 37, 74, 82, 84] take the powerdomain for
flat D, PD to consist of all non-cinpty subsets of D which are either finite or contain L.
This is explained by the [act that for any computable tunction which has the poasibility
of producing an infinite set of outcomes, non-termination is also a possibility. However,
this ls not true for a specification language, where unbounded non-determinacy without
non-termination is possible.

Including infinite, non _L-containing sets in 7D does not allect the cpo structure. For
example, including the set {0,1,2,..,n,..} in PZ does not affect the cpo structure which

already exists, and by the Egli-Milner ordering we have that
{12,0,1,2, . ,n,..} Cem {0,1,2,..,n,..}

In fact the set {0,1,2,..,7n,..} is not related by the Egli-Milner ordering to any other non

L-containing infinite set of integers.

However, allowing non 1-containing sets in PD means that not every set can be obtained

as the limit of & chain of finite sets. From the above example, the limit of the chain

{1z} Tem {L7.0} Cupr {12, 0,1} Ciar .. Cpar {42,0,1,2, .,n} Cewr - ..

is the infinite set {1z,0,1,2,..,n,..}. It is impossible to construct a chain ol finite sets
which has {0,1,2,..,n,..} as its limic. Siuce the meaning of recursion will be given by the
limit of a chain of sets, a non L-containing infinite set cannot be introduced as the resuli

of recursion.
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Adding the Empty Set

The Egli-Milner powerdomain, extended with infinite non L-containing scts, contains only
non-empty sets. I'or an expression £ of the specification language, the semantics of £ is
given by the set of possible evaluations of £, 'L'he cmpty set would denote the absence of
a value for 7, as in the case where I7 corresponds to the fictitious value T. Therefore, we

include the emply set § in Lhe ordering lor a powerdomain P4,

Following Heckmann [37] this can be achieved by simply including @ in the elements of the
powerdomain, and cxtending the ordering Ty so that { L} Caay @, and no other element

of the powerdomain is comparable to §.

6.3.5 Recursive Function Definitions

The reasan that we arc looking at the powerdomain P 7 for a domain D is so that we can

give meaning 10 recursive defiuitions. Such delinitions are, syntactically, of the form:
let f = E[f] in F[f]

where f is a function of type A — B, say. Then the meaning of f will be given by the least
fixpoint of a functional F over the domain P(A - » PR). This exists, by theorem 2, provided
that F is monotonic, ie. F is in P(4 — PB) 3 P(A — PB), and that P{A — PB) is
a cpo. Using skraightforward syuntactic restrictions we can ensure that F is monotonic.
Unfortunately, using the exiension ta Lhe Egli-Milner powerdomain, as described above, we

can only guarantee that PD is a cpo if we know that D is a flat domain.

We can, however, make some simplifications. First we insist that, in the definition for f, the
expression £ must be deterministie. This is a reasonable syutactic restriction which can be
imposed easily. Since [ is a function, this means that f must be exlernolly deterministic,
though it can have a non-determuinistic body. The direct consequence of this restriction is

that the meaning ol f musi be a singleton set in P(4 — P B).

Using the fact that singleton is continuous, it follows that the meaning of f is the singleton
set containing the least fixpoint of a monotonic functiomal F', which is in the domain
(A—=TB) D (A = PB). This, in turn, exists if A — P B is a cpo. We saw in section 6.3.2
that this holds if P B is a ¢po, which is true by the extension of the Egli-Milner powerdomain
if B is flat.

We propose to restrict recursive function definitions to those of type A -» B where the

domain corresponding to the type 2 is flat. From section 6.3.3 it should be clear that the
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only non-flat semantic domains we use are function dotnaing, or smash products involving
function domains. This restriction of B to fat domains would rule out such recursive

function definitions as:
let f = (funzc’:
Hae>10>funyeZ:a+y)
else let y — |/Z in [ y)
in f
We do not consider this to be a serious restriction to the expressive power of the language.

Tt is, in fact, possible to remove the restriction by construciing a powerdomain similar to

the Plotkin powerdomain [73, 74].

A Towerdomain for Non-Flat Domains

Let D be a domain. We want to form the powerdomain 2D which has as elements sets of
elements ol D, with an ordering = making PD into a cpo, with continuous singleton ancd
union operators. We know, from section 6.3.4 that the ordering should be based upon the

BEgli-Milner ordering:
AZpm B iff (Ve CAIyeBalpy)ANyeB. Iz € AxCpy)

and we have seen that this is sufficient to give an appropriate P when IJ is [lal.

However, when D is not flal, two problems oceur. The first is that Ty is not a partial
order, hut a preorder, as can be seen from the example: if « Ty 6 Cp ¢ then, from the

definition of the Egli-Milner ordering, we have

{2,0,¢} Cp {a,c} and {e,¢} Cp{a,bh, e}
This problem could be solved quite easily by taking the quotient domain obtained by di-
viding out by the induced equivalence and ordering by Cau.

The second problem is that the union operator is not continuous. If {z,,) is a chain in D,
then continuity of union would require that any set in P2 containing zg, 2y, ..., #n, ... should
also contain | Ju,. This is a problem because it means that infinite sets cannot be obtained
by generalised union over finite sets.

Based upon the Plotkin construclion [73, 74} of a powerdomain PD, for £ not necessarily
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{lat, we form equivalence classes using a preovder [Cgar which is based on U gar. The induced
equivalence 2,y is such thal, from the above examples, {a, ¢} ~gyr {a. b, ¢}, and any set
containing w, &1, ..., Zn, ... 18 equivalent to one containing | |x,. Each equivaleuce class has

a biggeyt element, which can be taken as the rvepresentative element of the class.

For X a non-empty sot in PD, the representative element of its equivalence class is denoted

by its closure X*, which is defined by:
A ={y|FecXely) AVeDICy=Tve X bl o)}

These {-)*-closed subsets of I can now be ordered by the Egli-Milner ordering to give an

appropriate powerdomain for our needs. So, we take
P = (()"-closed non-empty subsets of D, Cepr)

The empty set is added to PD using the Heckmann construction as described in sec-
tion 6.3.4.

Plotkin’s construction limits the subsets of D to those which are fnitely-generable. This
requirement i necessary for computation issues. However, we allow all sets, including
those which are infinite and non L-conlaining. Our powerdomain agrees with the Plotkin

powerdomain on finitcly-generable sets.

The maib consequence of allowing sets which are not finitely-generable is that some functions
may no longer be continuous. In particular, for a continuous function f : D — E, it may
not be the case that the extension fx : PD -+ PE is continuous. It is the case, however,
that f+ is monotonic, which is sufficient far the fixpoint theorem 2 for monotonic functions.

Obviously, f* is continuous over the Plotkin version of the domain PD.

6.3.6 Scmantics of Recursive Function Definitions
We uow give the M-semantics for expressions of the form, for f: 4 — B,
let f = E[f, in F[f]

From the above discussion we know that the meaning of f is a singleton set containing the
least, fixpoint of a certain functional. So, the meaning of the above expression should be the
M-set for expression F, which will depend on the M-sct for f, with occmrences of M f
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replaced by this singleton set.
Mlet f = B[f] in ) = M F[Mf[{e GV MS]

where (¢ is the functional for which we require a fixpoint.

From the discussion in section 6.3.5, the least fixpoint of this & is actually the single element
of the set M f, which we write eAM f. This should be given its meaning from eM F[AM f].
Now, since for any singleton set 9, {¢5} = S, we conclude that the functional G should be
defined as G = A g.eM I|{g}].

6.4 Refinement

For expressions £ and &, we want to give a semantics for refinement, written E L F, with
the infended meaning that expression # cau be transformed into expression # such that
every possible outcomne of F is at least as delined as somne possible outcome of #. 'I'his
means that F must be at least as defined as I and should involve no more non-determinacy
than Z.

For E and F expressions of a simple type {corresponding to a flat domain} we expect that
I C Fiff L is a possible outcome of &, or the set of possible outcomes of F' is included in
those of B, i.c.

ECF if Le MEVMEDMPF (6.2)

as described by the general axiom for refinement, given in section 5.3. For example, we
have L3 C5and 23 C 2.

‘Fhe refincment relation between cxpressions needs to be a preorder, i.e. have the praperties
of reflexivity and transitivity. However it will not be anti-syminetric since e.g. L[[2 = L[5

and L} 5 Z L [ 2 but these expressions do not have equivalent semantics,

We find that a suitable definition for the refinement relation is based on the Smyth ordering

for powerdomains [83].

6.4.1 The Smyth Ordering

The yefinement relation between expressions of the specification language must be defined in

terms of a relation at the semantic level. Because we have represented the nondeterminism
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of an expression by a set of possible values, we require a relation between sets in the
powerdomain P12}, where D is the domain corresponding to the type of the expressiomn.

This relation, as already suggested, should be a preorder for PD.

At the level of sets in PD, the relationship we require is that set I “refines” set A iff
everything in B is “betier” or “morc refined” than something in 4. This moeans that
refinement cannot add any information which was not already potentially present in A,
but some of the information content in A can be lost, corresponding to a decrcase in the
nondeterminism of an expression. This intuitive notion is exactly the Swyih ordering lor
sets in P D, first described in [83]:

ACsg B = VYyeB dzcAz<py {6.3)

where € p {or the domain D will be delined in the [ollowing paragraph. The Smyth ordering
corresponds exactly to the second half of the definition for the Egli-Milner ordering (6.1),

which was used to form the powerdomain P D,
We now define the ordering < p for a domain £ by considering, in turn, each possible form
that I} may take:

» For a flat domain D, <p is exactly the definedness ordering Cp.

e [or a product domain I X I the ordering is coordinatewise:

(d.e) Kpxp (d,e)iff d <p d' and e <p &'
¢ For the smash product domain D @ E, the ordering € pee 18 also determived coordi-
natewise.
e For a [unction domain, which in our case will be of the form 2 — PFE, the ordering
is polnlwise:

fSosvugif (Ve eDfalysgz)

Clearly, the ordering € p for each domain D is very similar to the definedness ordering Zp.
The only differenice being that <pp over a powerdomain is taken as the Smyth ordering

Cg, rather than the Egli-Milner ordering gy used for definedness.

We now uge the Smyth ordering (6.3) to give a formal definition of the refinement relation

for expressions.
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6.4.2 Semantics of Refinement

Based on the Smyth ordering we give a semantics for the refinement relation between
cxpressions of the specification language. For expressions £ and F of the same type, with
meauings M E and M F, we define

M(EC¥) = {MECsMF}

We must now show that this definition agrees with the axioms given in section 5.3.

6.5 Soundness

We have now given a semantics to all aspects of the expression language. We now intend
to demonstrate that this is a good semantics for the language, that it provides an adequate
model for the axioms and laws of the language.

Irom the approach to the semantics, where cach expression has been modelled by its set of
possible evaluations, it follows quite easily that our axioms hold in the model. It is exactly
this fact that we intend to demonstirate in the current section. Every axiom is an expression
of type Bool and so has a meaning in the semantic domain PBool. We are required to
show that each axiom is mapped to the M-set { True}. We will also need to show that the
inference rules of the logic preserve truth in the M-semantics.

Mast axioms arc of the form E = I", which is given meaning in the semantic domain as
{ME = M F}. Accordingly, in order to demonstrate the truth of the axiom, it sullices to
show that M E — M I,

Some further axioms are of the form P — . 1In this case it suffices to show that
M Q = {True} under the assumption that M P = { True}.

Some proofs are very similar in how they progress, e.g. those which deal with distributivity
of some operator over choice. In such cases we group the relevant axioms logelther and give

the proof for just one representative axiom.

6.5.1 Undefinedness and Non-Determinism

The axtoms for § and A follow imunediately from their semantic descriptions. To show

the validity of an axiom of the form A F, we just check that M E is a singleton set not
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coutaining L. To show the validity of an axiom of the form & 7, we just check that | & M E.

Such proofs are trivial.

The basic properties of choice follow directly from the use of set union to madel non-
determinism. For exarple, to show that the choice operator is commmutative we have the
proof as follows.

Commutativity of Choice
E\|\F = F[E

Here it suffices to show that
ME|F) = M(F]E)
Proof
M(E | I)
= “Semantics”
MEUMFE
= “Set union is commutaiive”
MFPUME

= “Semantics”

M) B)

The other basic properties, reflexivity and associativity, are equally trivial to show frow the

properties of set union.

We now show that the scmantics supports the A axiom for [[.

A Property for Choice Tor £ and F total
AE|F) = AEAAFA(E=F)

To prove this equivalence from the semantics, we need to prove

MAE[F)) = MABEAAFA(E=F))




6.5. Soundness 156

Proof From the semantics for A and for A, if is enough to show
HMIEJF) —1ALEME]F)

is the same as
HFME=1ALEMEANHEMF =1ALEMPAME =M¥F

under the assumption that neither M £ nor M £ is empty. This is trivial.

The strictness property of || is supported by the following proof.

Strictness of Choice
HE[F) = dEASF
THere it is sufficient to show that
LEMEY) = LEgMEALEMPF

Proof

LgME[F)

= “Semantics”
Lg(MEUMEF)

o “Properties of set union”
legMENLEMEF

6.5.2 'The Equivalence Axioms

Lquivalence in the expression language is modelled by equality of M-sets. So the equiva-

lence axioms follow immediately from properties of = in the semantic domain. We give a

representative proof.
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Symmetric Equivalence
(E=F) = (F=L)

ITere we need to show that

ME=F) = MUF=E)

Proof

MI(E = )

= “Semantics”
{ME=MF}

= “= is symmetric”
{(MF=MIE}

= “Semantics™
M{F = F)

6.5.3 Sitrictness Proofs

Many of the operators described in chapter 2.4 are strict, and there ave a number of axioms
which deal with strictness. Examples of these axioms are the following:

HEBGF)=JEA{F
HE,FY=0LA8F
HEecA)=8§LATA

Most axioms concerning striciness follow inmmmediately from the use of smash products.

integer operators
product formation

sel membership

Proofs of their validity are similar to each other, so there is no need to include them all

here. As a representative example we have the following proof of the slrictness of product

formation.

Strictness of PP’roduct Formation Tor £ and F expressions,

(B, F) = SEASF
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In order to prove this, from the semantics for d, it suffices to show that

LgM(EF) = LEMEANLEMEP
Proof

L& M(E, I')
ke “Semantics”

LEgMERMIF
= “Properties of smmash products”

LEMBEANLEMYE

O

Strictuess of function application is demonstrated by the following proof.

Strictness of Function Application
S(fE) = dfASE
Here it is sufficient to show that

LEMIALEME < L&M{JE)

Proof

LEMANLEME
= “Set, Theory”
Yee MEgeMfe# L Ag7 L
de= “Properties of graphs”
VecMEgeMfe# LALE{D] (e,bh)+ g}
= “Properties of cond”
Yee ME ge Mf.L &condle #,{b}(eb) « g}, L}
. “Definivion of fm”
Yee ME, ge Mf. L& Im(e,g)
“Set Theory”
LEU(Im« (M E x Mf))
“Detinition of IM”

Il




6.5. Soundness 154

L& IM{ME,M[)
= “Semantics”

L & M(f E)

6.5.4 Distribution

There are many axioms which describe the property of distribution over the choice operator.
This is modelled in the semantics using map over sets. As in the casc for the validation of
strictness axioms, most of the axioms concerning distribution are shown to be valid in the

modcl using a similar style of proof. A representative example is that of the distribution of

function application over choice.

Distribution of Function Application over Choice

JBIF) = FENFF
Again, we need to show
MF(E]F) = MGE|SF)

Proof

MUF(E | F))
= “Semantics”
IM{(M(EZ [ F),M[)
= “Definition of TM
UlIm = (M(E [ F) x M f))
— “Semantics”
UlIm s ({(MEUMPF) x Mf))
e “Properties of x”
Ul ((ME X MU (MF x Mf)))
= “Properties of *”
Ulim s« (ME x MU Im+ (M F x MF))
= “Distribute fm«+”
Ulfmx (M E x M) UUIm + (M F x Mf))
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= “Definition of IM”

MME MAHUIM(MF, Mf)
= “Scmantics”

MfEYy O M(fF)
= “Semantics”

M(fE[]F)

Other distribution axioms, such as

(EF})=G=(L=G)Y(I'=G) equality

Bl ed=EsG)[(FoG) integer operations
(EF.G)=(E,G)[] I, G) product formation
FlE=fE|gE function application to the right

Ee(A]A)=(ECA)[(E e Ay)  set membership

will have similar proofs in the model.

6.5.5 Producls and Functions

Ior the type constructors which form products and functions we demonstrate that the

remaining axioms hold in the models we have given them.
A product type is modelled using the corresponding (smash) product domain. So, the
axioms [or proper products follow immediately. An example is the proof of one of the
projection axioms.
Products For & and I" expressions such that A F and A #,
fat(&,F) = E
To prove this cquivalence from the semantics, we need to prove
Mfst{E. F)) = M#
using the fact that A E and A I are singleton sets not containing L.

Proof
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M(fst(FE, F))

= “Semantics”
fst« M(E, F)

= “Semantics”
fstx (ME®MEF)

= “ME and M F singleton sets”
st = ({e M E} ® {eM F})

—~ “Definitionof @, LZME, L & MF?
Jot x {{e M E, e M FY}

— “Definition of fst+, L& ME, L& M #7
{eM E}

= “Definition of €”

ME

Other proofs for products are similay:.

A function typo is modelled using graphs, a common semantic model for functions. Again,
the axioms for proper functions follow hmmediately from the properties of graphs. An

example proof is that of function application by substilulion.

Substitution I expression #' has type T, such thai A F, then
(funzc T: E)I" = E[F/x]
Again, we need to show that
M({(funz € T: EYF) = M(EB|F/z])
using that M F7 is a singleton set not containing L.
Proof
M({(ftunz e T: E)F)
= “Semantics”
IM(MF M{fun 2 € T: B))

- “Semantics, with g = graph(fun 2 € T : E)”
IM(MF,{g})
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= *MF a singleton set”
IM({eM F}, {g})
— “Definition of M
Ut + {(eM P, g}})
= “Mapping over a singleton sct”
Tm(e M F, g)
! = “Definition of fm, L ¢ M F”
] (eMFB) < g}
= “Defnition of g, Set Theory, A F”
{b | eMF«— T\{1}.b ¢ M(E[F/z])}
= feM I e T\{1}, Set Theory”
M(B[F]z])

Other axioms for proper [unctions can be proved similarly.

Sets, bags and sequences are all mapped to flat powerset domains of their own associated
domains, and so proofs of their axioms will also follow casily. We omit these proofs since

they are tedious rather than intcresting.

6.5.6 Assumptions and Guards

The axioms for assumplions and guarding follow directly from the semantics. Tor example,

we show two of the axioms for assumptions.

True Assumption
Trae>~FE =— E
Here we need to show that

M(True >—E) = M£E

Proof

M(True >— E)

= “Semantics™
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cond({Truc} = {True}, M E, {L})
= “Properties of cond”
ME

Improper Assumption
~AP = (IP>F=1)
Here we need to show thac
M(P>—E) = ML

assuming that #FM P > 1v | ¢ M P.

Proof

M(P >— E)
= “Semantics”
cond(M P — {True}, M B {1})
= “M P o {True}, from assumption”

{1}
= “Sernantics”

ML

Similar proofs exist for the axioms of guarding.

6.5.7 (eneralised Choeice and Biased Choice

The axioms for generalised choice / follow immediately from the semantics.

The axioms concerning biased choice are also easily proved, for example.
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Biased Choice
pa
(E=T) == (E|F=F)

Here we need to show that
—
ME | F) = MF

under the assumption that M E = .

Praof

M(E ] F)
= “Semantics”
cond{ M E £ 0, M E, M F)
= “By assumption, M E ="

ME
a
6.5.8 Recursion
Recursion Unfolding For recursive function definitions, we have the expected uniolding:

Here, we need to show that
Mlet f = BIf] in FIf}) = M(F[E[(et § = B[] in /)]

under the assumplion that M E is a singleton set not containing 1.

Proof

M(let f = B[/} in F[f])

- “Semantics, let & = Ag.eM F[{g}})
M F[MF{p CHM ]

= “Substitution”
M F{{p G}

= “u G o fixpoint of G”
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M F[{eME[{11 G}}]

= “For any singleton set S, {eS} = 8, and M E a singleton set”
MP[M E[{n G}]

= “Semautics”

M(F[E[(let f = E[f] in f)]])

6.5.9 Refinement

In this section we show how the semantic definition of refinement supports the axioms
proposed in section 5.3

Transitivity The transitivity of C, follows imunediately from (he trausitivity of Cg.

General Refinement  The general axiom for refinement, stated as
(BCI=~SEV(E|F=E)

we split into two parts.

Using the semantics, in order to show
(ECF)«<=-0E

al the language level, we prove
LleEME= MECs M¥

at the semantic level.

Proof

MECg MF
= Definition of g
Vyce MF.dzce MEz<py
= Supply L as a witness, 1 £p y for any ¥
Vye MF.Le ME
= Logic
leME

Lo
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To prove the sccond part of the axiom
(ECPM<E|F=E

at the language level, we prove
(MEUMEF =M= MECs MF

at the semantic level.

Proaf

MEEs MF
== Definition of Tg
Vye MFP.daee MEB.xc<py
4= Supply y as a witness, ¥ < y lor auy g
YycMIPyc ME
= Set Theory
MECME
= Set Theory
MEUME =ME

In the case where M E and M I" are sets over a flat domain, it is trivial to show that the

axiom
(FC 1) = EV(F[|F =E)
holds.

Refinement of Functions The axiom describing the refinement of proper functions is
stated as

AfAAg)=(Cy)=(NVa: T |efz T gx)
We prove this by showing

(Ve e Dp MECsMP)=M{funz e T:E)Cs M{funz € T: F)
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Proof

Mfunze T EYCgM{funz € T': F)
= “Semantics”
Az MPE} Ty {Az.MF}
e “Nefinition of [Lg”
Ao ME Syopp A MF
= “Definition of Cg"
NVzeDyp:(AaME)z Cg (Ae. M F)x)
= “~-Reduction in the A Calculus”
VaeDp  MECTg MF)

We conclude from this that
(funz e T:B)E(funze T: F)=VWzse T ECF)
Naw, since any fanction expression f which is proper must be of the form (fun ¢ € 7' £),

and using ~-reduction, we conclude that the axiom is also valid from the semantics of

refinement.

Refinement of Choice The axiom for refinement of choice states, for A &G
(E|FCOYy=(FELGVFLG)

In the semantic domain this requires a proof that
(MEUMFCe MG)=(MECy; MG)V(IMFLCs M@G)

which is & trivial exercise, using the fact that M G is a singleton set.

Refinement of Generalised Choice The axiom regarding refinement of generalisel
choice was given as

(J/SCE)Y=(Hz:TlzeSexC E)

for A E and AS.
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We give an overview of the proof that the scmantics of refinement supports this axiom.
Proof We need to show that

M(Y/S)Cs ME = (M@EBz: 17|z & Sec T E)—~ {True})

We know that M S and M E are singlton sets containing eM S and e & respectively,
which arc non-bottom.

We take the left hand side and reason:

M{[/8) Ts ME
= “Semantics, A B
I MSCg {eME}
= A, U{eMS} =eM S
eMS g (e ME)
= “Definition of Cg”
YyeleMEYJzeeMS e <py
= “Logic”
JdeeeMSx<pyeME

Taking the right hand side, we obtain:

M PBz:T|zecSezC E)= {True}

e “Set. Theory, Semantics™
Dz : Dy | M(z € 8) ={True} o M(z C, F) = {True})

e “A 5, Semantics, Set Theory”
Be:DyleceMSe{z} Csg ME)

= “Logic, Definition of Cg”

JzeceMSVye ME. T ce{a}a"<py

“AF, Logic”
JreeMSagspeMPB

It

as required.

Relining = The final axiom is stated as

(TCE)=(E=T)
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It is trivial to show thal the semantics supports this.

6.5.103 Inference Rules

Our final task is 10 show that the inference rules of scetion 2.3.2 are valid, In fact, it is

fairly standard to prove that these inference rules preserve truth in the M-semantices.

For example, consider the Modus Ponens inference rule, given as:

P oP=Q
3,

We need to show that if bolh P and P = @ are trae in the model, for arbitrary 2 and

¢}, then it is necessarily the case that @ is true. Let us assume that M P = {True} and
M(FP = @) = {True}. Recall the mappings given for implicalion:

True ¢ M(P = Q) — Truee MP = Truee M@
Folse €« M(P = Q) = MDP ={Trne} A False € M Q
LeM{PV Q) = MP={True} AL ecMQ

From the first identity, and our assumptions, we conclude that True € A4 Q. From the
second identity, since Fulse ¢ M(F = (Q), we conclude that Folse & M (). Similarly, from
the third identity we conclude that L ¢ M Q. And so we have M Q = { Truc}.

The truth of the Generalisation inference rule is similar.

6.6 Semantics of Specification Modules

In section 3.2 we considered the lorm of a specificalion and said that a specification could
either be a simple expression, or a collection of named expressions, possibly with user-defined
types.

Simple specifications are just expressions, and so they have already been given a formal

semantics.

We now consider what have been termed specification modules. These are collections of
named expressions which may ajso contain given types, global constants and datatype def-

initions, as described in section 3.2.1.
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Consider first a specification module with just a collection of specifications. This has the
general form

neme, = B

nemey; = Iy

name, = I,

We may assurue that these are independent of each other, i.e. name; does not appear free
in B; for any i, j; otherwise make E; a local definition of E;, thercby binding name;.

Now, each £; has a denotation in the semantic domain, M ;. We say that the denotation
of the specification maodule is a record, or collection of named denotations. The names in
the semantic domain are derived [rom the corresponding names in the syntactic domain.
So, the denotation of the above module would be something like:

[ (name;, M FE7),

{namecs, M Fz),

(name,, M E,), ]

We now consider the case where the specification module contains a global constant, with
the general form:

lg: T
Spec

The specification Spec already has a denotation which we call M Spec. This contains
occurrences of A4 g which is in the domain P Dy, where Dy is the domain corresponding
to type T'. Now, ¢ is a constant, so it should be denoted by a singleton set in 7 Dp, of
the form {m,}, for some mgy in Dp. Finally, we say that the denotation of the specification

module is a function from elements in Dy to denotations. This may be written as

Aing : Doy M Spec[{m, } /M g]

Now consider a specification module containing a given type. This is of the form

[T]
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Spec

Again, the specification (wodule) Spec alveady has a denotation, M Spec which depends on
a domain I}y corresponding to the giveu tvpe T'. We assunie that this domain exists and
that appropriate mappings exist, taking proper values of 7' to singleton sets in P Dy, We
don’t know anything about the domain Dy except that it is distinet from any other domain
that we know about. The denotation of the above specification module might be bascd on

the usc of existential parameter, representing the domain D¢, to the meaning of Spee.

Finally, we consider a gpecification module contalning a datatype definition. This has the

general form

Tuo=wmive:...| v,

Spec

As belore, we assurne that the specification {1nodule) Spec has the denotation M Spec, this
time based on the domain Dy corresponding to the datatype 7. Tn this case we want to
associate D with the lifted domain containing the elements { Ly, v, v, ..., v} These
n + 1 values are distinct, and are such that v; is the domain element associated with the

proper value v;, Le, M = {vi}.

Clearly this account does not form a formal scmantics for specification modules. However,
it Indicates that the problem of giving such a semantics does exist and suggests ways in

which the problem might be overcome.

6.7 Conclusions

In this chapter we have given a formal semantics to the specificalion language based on
sets of possible evaluations from some domain. In this way, the erratic non-determinism of
an expression may be captured. The issue of undefined expressions is trcated explicitly, by

allowing these sets to contain the least element of the domain.

Since our semantic objects are sets, we use powerdomain theory to give a meaning to recur-
sive function definitions. ‘T'he sets are ordered using a variation of the Egli-Milner ordering,
This extends work previously done with powerdorains, in that we admit infinite sets which
do not contain ., the least element of the domain. We claim ihiat this is appropriate for a
specification language, since monotonicity, rather than continuity, is sufficient to allow the
application of the fixpoint theorem. In a program, such infinite, non |-containing sels will

not ke a problem, since they can only arise from generalised choice over an infinite set.
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Two expressions of the expression langnage arc cquivalent exactly when their M-sets corre-
spond. Therefore, in order to show the validity of the axioms of the language, with respect
to the semantics, we have compared A-sets for equality. Since the semantics of the lan-
guage was structured with the axioms in mind, many of the axioms follow quite naturally,
as demonstrated in section 6.5. The reasoning used in the semantic domain is semi-formal,

as in the usual mathematical style for sets and domains.

The refinement relation has been given meaning using the Smyth ordering. We have shown

that this supports the axioms for refinement given in chapter 5.

We find that the semantics based on sets of possible evaluations is a simple one, but sullicient
for the requirements of an expression language, It has been possible to describe recursive
functions adequately, and to reason easily about such functions. The definition of refinement

is very clear, and the proolg of cthe relinement axioms are straightforward.

We have also suggested how a denotational semantics might be given o specification mod-
nles, Informally infroduced in chapter 3. This would involve records of denotations, and
methods to construct new domains from their associated syntactic types. A discussion of a

formal approach to modules is included in the next chapter.




Chapter 7

Discussion and Conclusions

In this chapter we summarisce, review and discuss the main points of this thesis, the refine-
ment calculus as il sbands on its own, and how it contributes to the arca of formal methods in
computing science. Section 7.1 gives an overview of the thesis, indicating what was achieved
and how it was approached. An evaluation is given in section 7.2.1 and section 7.2.2 looks
at how the calculus might be used. Scetion 7.3 compares the results to similar work in the
area of formal program developinent in general, and in the area of expression refinement in

particular. Some suggestions lor future work on the caleulus are described in section 7.4,

7.1 A Refinement Calculus for Expressions

In chapter 1 we described what we consider to be the components and attributes of a
refinement calculns, and indicaled that it was our intention to describe such a calculus
for expressions. Ibllowing the approach used for the imperative refinement caleulus we
defined a specification language of expressions which includes more expressive, though non-
executable, constructs useful {for making specifications. Special features include ways for
reasoning with and about undefined terms; non-deterministic expressions to allow for more
abstract specifications; and partial expressions to allow the piecewise construction of spec-
ifications. The cxpression language is deseribed in chapter 2.

Chapter 3 shows how the cxpressions are used to form specifications. A specification is
described as a collection of expressions which may jueclude user defined types and global
constants. A number of small examples demonstrate how the various concepts might be

etmployed.
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In chapter 4 we showed how the language could be used to describe larger problems, by
introducing the concept of partial functions, which may be combined using special union
operators to form complete specifications. These partial functions are essentially a syntactic
device for the structuring of specifications into conceptual units. However, we also discussed
how it might be possible to define a special clags of higher-order functions to manipulate

pattial functions.

The use of monads in functional programming has proved a uscful tool in the structuring
of large programs, by hiding the details of impure features such as state and exceptions.
in chapter 4 we showed how the state monad with exceptions can be nsed to structure
specifications ol our language, and we indicated how it might be possible to define monads

within the language itself.

We demonstrated, in chapter b, how propertics of specifications can be formulated and how
expressions can be manipulated and reasoned about, using a proof system based on the logic
of the language itself. A refinement relation is introduced and we indicate how a specification
can be refined, in a stepwise and piecewise manncr. Collections of transformation and
refinement laws ave provided to support the high level manipulation of expressions without

always appealing 10 the basic axioms.

‘We have given a formal semantics to expressions of our language, based on sets of possible
evaluations, in chapter 6. The use of sets handles explicitly the possible non-determinism of
oxpressions, while nndafinedness ig accormmodated by allowing the least value of a domain
as an element of a sermantic sel. Tolality is given a meaning in terms of definedness and non-
determinism. The semantics of recursion is given by ordering the sets using the Egli-Milner

ordering and applying the fixpoint theorem.

Refinement is given meaning at the semantic level using the Smyth ordering for powerdo-
mains, which displays the required properties. Using this and the semantic definition of
equivalence, we have shown that the axioms and laws of the calculus are supported by the

semantics. We consider that the proofs invelved are straightforward.

7.2 Discussion

We discuss the reflinement caleulus described in this thesis in terms of an evaluation of its

shortcomings and achievements and how the caleunlus might be nsed.
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7.2.1 Ivaluation

A logic which accomodates both undefined and non-deterministic terms has been described
in section 2.3. Lhe logic includes many of the laws of 2-valucd logic, and it is possible to
reason equationally about terms, in the style of [26, 32]. A similar logic, with L and a
demonic form of [}, is presented in [64, 85]. Our work extends this by providing axiowms for
terms of Lypes other than Bool.

The inclusion of L and [| in the expression language, as described i chapter 2, results in
an expressive specification language which has been shown to be useful in the formulation
of specifications. The admission of non-deterministic expressions is not a new concept.
However, our choice construct is slightly different from other approaches since it is both truly
non-deterministic and erratic. The introduction of non-deterministic expressions results in
more abstract specifications, giving more frecdomn at the implementation stage. The rich
get of data types also adds to the expressiveness of the language, although one obvious
omission is the ability to deline recursive data types, such as trees.

The distinction between possibly undefined and possibly partial expressious is not usually so
explicit. We have treated partinlity as the dual of undefinedness with respect to refinement,
since top ‘T’ is the identity for choice, so T [| £ O E, while boltom ‘L’ acts like a gero for
choice, since L[| E O L. The concept of partial expressions is useful since specifications
can be bhuilt in parts, while each part may be manipulated and refined as a complete unit.

However, since partial expressions are not implementable, we found it necessary in sec-
tion 2.6.2 to control the occurrences of potentially partial expressions in specilications.
This means the introduct-ioil_ of an operator which can be used to totalise such expressions,
the biased choice operator ||, While this is a useful tool i specifications, it is not meno-
tonic with respect to refinement, in general. This is not desirable, but any construct used
to totalise expressions will necessarily not be menotonic. It would be mare elegant to treat

partiality in the same unrestricted way that we have treated undelinedness.

Apain making nse of partial expressions, we have extended the concept to partial functions,
which are used purely as a syntactic device to structure specifications. Thig promotes the
aim of separation of concerns in the construction of large specifications. The use of partial
functions was demonstrated in chapter 4 with a specification of a printing control system.
This also made nse of some notational shorthands, such as detached parameters and record

definitions, in order to make the specification more readable.

. - - — .
Partial functions are combined using the union operators ‘W’ and ‘U’, which both have a

syntactic definition. The ‘U’ operator, in particular, can be compared to the disjunction
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opcrator used for schemas in the Z specification language. The syntactic definitions could
be considered over-simplified, certainly when compared to the category theoretic approach
of Back and Butler [2] or the relational approach of Frappier [30] to the composition of
specifications. We have not considered any other ways of combining partial functions, such

as a version of the conjunclion operalor,

The use of the state monad with exceptions to structure the printer control specification, in
chapter 4, demonstrates how a large specification can be made morve readable. We have also
made some suggestions concerning how the definition of the monad might he included into
the language, rather than simply being a syntactic device with some useful associated laws.
However, as pointed out in section 5.4.3, the use of monads, even with the associated mionad
laws, doesn’t make the specification any easier to reason about. In fact, it becomes more
difficult to formulate properties about the specification, sinee a knowledge of the monad

and how il works i3 required.

In chapter 6 we gave a semantics for the expression language based on sets. The resulting
semantics is very simple. The approach to the construction of the semantic objects, as
sets, means that most of the axioms of the language follow immediately. Where proofs are

required, they are rcasonably straightforward.

A lot of asswnptions had to be made concerning recursive function definilions in order 1o
give them a reasonable semantics. We on])-I allow recursive functions which are deterministic
at the outer level, but may have non-deterministic bodies. In addition, we restrict recursive
function definitions to those of type 4 — B where the domain corresponding $o the type B
18 flat. As described in section 6.3, these restrictions were necessary to allow the semantics
hased an powerdomains to be simplified. Tt would be interesting to allow general recursive
expression delinitions, which wonld certainly add to the expressiveness of the specilication

language.

7.2.2 Applications

The aim of this thesis is to describe a refinement calculus for expressions. We have provided
a specificalion language based on expressions, a relinement relation and a sel ol relinement
laws allowing the stepwise and piecewise refinement of expiessions. There are a number of

areas in which the results of the thesis could be applied.

It is possible that this work on the refinement of expressions could be used as an extension
to the refinement caleulus for iimperative programs. As suggested by Morris [64, 65], by

admitting non-determinacy at the level of expressions, not just at the statement level, this
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would permit the development of imperative programs using a wethodology combining
proeedural and functional relinement. The specification language would be more expressive
and, since expressions are easier to manipulate than statements, derivations could he much
simplified.

Another application is that this work could form the basis of a refinement calculus for
functional programs.  As mentioned earlier, a program in a pure functional language is
just an expression. Therefore, by making the target language of the calenlus a functional
programming language, it would be possible to calculate a functional program from an
initial specifcation in the expression language. The data types of our language are guite
rich and arc not all present, or not easily implementable, in a functional programming
lunguage. Uhis means that some form of data refinement would be necessary in a refinement
calculus for functional programs. In addition, most functional languages have features
such as polymorphism or laziness which do not form part of the expression language. We
have discussed reasons why full polymorphism is not used in the language in section 2.5.7.
Comments on laziness are given in section 5.5 and in section 7.3.3 when we compare our

work with Bunkenburg’s thesis.

In [18] Bunkenburg looks at how (o transformn expressions of a certain form into impera-
tive style programs. Again using the fact that expressions arc easicr to manipulate than
statements, the relinement rules of our calenlus conld be nsed to derive expressions of the
required form before transforming to an lmperative program. An example of the use of
this approach is ihe derivation of Bresenhaim’s line drawing algorithm in [19]. Part of this
derivation was described in section 5.5 A simple mathematical specification of a, line is re-
fined, using the refinement calculus for expressions, (o an expression of a certain form which

ig then transformed to an imperative style programn. A similar lechnigue is used in [69].

We claim that the specification language alone, deseribed in chapters 2, 3 and 4, is a use-
ful language for the construction of specifications for software. Like the Z specilication
language, it may be used to build specifications in the model-oriented approach, as demorn-
strated by the printer control specification of chapter 4. Even without using the refinement
laws to derive a program, the resulting specifications can be rcasoned about using the
cquivalence laws in the equational reasoning style.

7.3 Comparison to Other Work

In this section we compare our approaches and results to general formal program develop-
ment techniques and also Lo other work carried out in the area of expression refinement. We
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first consider other approaches to reasoning with undefined and non-deterministic termns.
We then look at other frameworks for the formal development of programs from specifi-
cations, Tinally, we comepare our caleulus, in more detail, with the calculi of Norvell and
Hehner [68], Ward {90], and Bunkenburg [18].

7.3.1 Approaches to Formal Reasoning

Our basic specification language, as defined in chapters 2 and 5, includes canstructors
for expressions which are possibly not well delined, non-deterministic or miraculous. In
the logic, which is used to reason about expressions of the language, such problemalic
expressions arc handled explicitly. We do not try to hide them, or pretend that they don’t
exist. We found that the miraculous expression top, T, is difficult to reason with, and so
it has a special treatment, as discussed in section 2.6.2. But for undefined expressions; |,
and those involving choice, [); axioms have been provided which cater for their occurrences.
The aiw is to retain as many of the usual axioms as possible, so that when all terms are

well-defined and deterministic the logic reduces to classical logic.

There are many possible alternatives 1o the treatment of undefined expressious, as illustrated
by the work of Clift Jones in the area of handling partial functions [22, 42]. One approach
ig to attempt 6o keep to classical logic by restricting the domain of a function. In fact, we
do this when we write the shorthand function

(funneN:J/{z€Z:22<n<(z+1)?))

The intention is that the function is only ever applied to natural munbers, and never to a
negative integer. However, there is no guarantee that the function won't be applied to such
a negative argument sinee the type rules permit it. In our calculus the logic also tells us
what happeus when the function is applied to a negative intcger, the result is the undefined

integer, 1.

The approach taken in the Z specification language 27, 75, 44] is to avoid function applica-
tion entirely by treating functions as relations. ‘Chis means, instead of writing f # = gy, the
[unction is treated as its graph and propoerties are forumlated by testing whether the pair
(=, ) is a member of that graph. This has the advantage that it would also handle non-
determinisin quile easily. 'The disadvantage is that this approach leads to more complicated

formulations of properties, making specifications more dificult to write.

Another approach is to use conditional forms of the familiar conjunction and disjunction

operators, as in most programming languages. In evaluating an expression of the form
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P A Q, the left operand P is evalualed [irst. If it is Fulse, then the whole expression is
False. If it is True, then the result is the value of Q. If P is undefined, then the whole
expression is undefined. Similarly for the disjunction operator. This approach is very
implementation-oriented, and indeed our own conjunction and digjunction operators would
probably be implemented (refined) in this way. However, for calculational purposes, these
conditional operators have very unsatisfactory properties, the most obvious being that they

are not symmetric,

The approach which we took was to treat the undefiued value explicitly, using a logic close
to classical Jogic. A similar approach is used in the logic of partial functions (LPI) [9]
used for reasoning about specifications in VDM {40]. This uses non-strict extensions of the
classical conjunction and disjunction operators (the same cxtensions as ours), and defines
implication, as in classical logic, hy

X = der-:f -XvY

Unfortunately, this definition means that implication in LPF is not reflexive. We consider

this to be a serious loss.

The implication defined in chapter 2 as
P=( = -Pv-APVQ

is based on a definition from [1]. Tt was originally used in a three-valued version of the logic,
but is also suitable for the seven values possible in our logic. This implication operator is
reflexive and, although the bi-implication law

(P=Q)=(P=>QA(Q=P)

does not hold unless all terms are proper, many other laws of classical logic arc retained.
In particular, the deduciion theorem holds. This says that in order to prove a theorem of
the form P = (), it is sufficient to prove @ under the assumption that P is available to us

as a theorerm.

The definition of implication aside, another way that owr logic differs from LPF is that
while LPF is three-valued, our logic also deals with non-deterministic logical values. Both
Morris [65] and Bunkenburg [18] use a logic where terms may be non-deterministic. This
logic has four distinct values, True, Fulse, L and True || False. The choice operator in this

treatment is demonic, which makes 1 a zero for choice.

The choice operator used in this thesis is erratic, giving seven valucs, True, Ffalse, L,
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True || L, False [ L, True ] Fulse and True [| False || L. At Grst this may appear unneces-
sarily cumbersome, but in fact is not so difficult to work with since negation, disjunction
and conjunction all distribute over choice. Of course, not all of the theorems of classical
logic can be retained, but this directly follows from the fact that we are no longer in a two-
valued world. When all logical terms arve proper, our seven-valued logic reduces to clagsical
logic.

7.3.2 Formal Program Development

Given a specification, the task of the programmer is to construct a program which imple-
ments that specification. Formal program development inveolves using rules and method-
ologies to develop a program in stages, with ccrtain proof requirements at each step, such
that the resulting program is guaranteed to satisfy the specification.

Program development methodologies for Z specifications are described in {27, 75.. The
treatment of [73] involves a notion of refinement, of both data and operations. An abstract
specification is refined in steps to & coucrete specilication which is suitable for “translation”
into programming language code. Diller [27] describes how Z schemas can be transformed
into formulae of a Floyd-Hoare logic, from which an implementation may be derived using
the usual methods, e.g. [31, 45]. The weakness of such methodologies is in the gap between
the final specification and the program. Since each is written in a different lormal language,
intermediate structures are necessarily hybrids. In particular, the last development step of

[75]) is an informal jump [rom specification to implementation.

The problem of having informal aspects in the development process is addressed, as in the
lmperative refinement calculus and in owr own calculus, by having a specification langnage
which is a superlanguage of a programming language. ‘I'his is the case with the Fixtended MT,
speeification language [79, 81, 80] which has as sublanguage the Standard ML programming
language [71]. A iethodology is provided which describes how a specification may be
developed in stages by replacing non-algorithmic elements by executable code. At any stage
in the development process there are three ways of proceeding - further decomposition of
a problem into more manageable units; replace the special placeholder *?* by providing
a functor body; or replace abstract code by a morc ‘algorithmic’ version. Each way of
proceeding is associated with a set of proof obligations.

The methodology for the development of programs {rom specifications in the Extended ML
framework suffers from the problem that the process is still partly informal. The three
general rules are expressed in an informal manner and, although they identily certain proof
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abligations associated with each type of step, the identification is done by observation.

There is no mathematical notion of refinement between specifications.

In contrast, this thesis has attempted to follow the approach taken in the imperative refine-
ment calculus {59, 56]. Both specification and program are expressed in Lhe same language,
in fact, we consider a program to be a special type of specification. A refinement relation is
defined formally. Axioms and theorems are provided which allow properties of specifications

to be rigorously demonstrated and programs to be formally calculated from specifications.

7.3.3 Relinement of Expressions

Other work in the area of refinement calculi for expressions includes that of Norvell and
Hehner [68], Ward [90] and Bunkenburg [18|, as discussed in section 1.2.2.

In the cases of 8] and [90}, a sinple language of expressions is extended with constructs for
forming non-deterministic expressions, resulting in a specification langnage similar to that
of chapter 2. Tn fact, the resulting calculi, consisting of langnage, refinement relation and
rules {or manipulation of expressions, are similar (0 that part of our caleulus described in
chapter 2 and parts of chapter 5. Qur main contribution to the field of cxpression refinement,
in comparison fo these two pieces of work, is in two areas: we use partial expressions and
partial functions lo address the issues involved in structuring large specifications; and we
give the specification langnage a simple denotational semantics. We now discuss these two

issues, and then go on to compare our work with the thesis of Bunkeuburp.

Large Specifications

The problem of using the gpecification language to make large specifications is not addressed
in cither of {68, 30]. We have shown, in seclion 2.6, how expressions may be combined using
the choice operator, and, in section 4.1, how partial functions may be combined using
a special union operator, to build large specifications in parts. The technique has been
demonstrated in section 4.2, In addition, the use of the state and exception handling
monad to structure large specifications has been examined, the results of which are fonnd
in. section 4.3. The possibility of describing partial expressious and functions arises from

the use of the unimplementable expression ‘T’, the unit of choice.

Norvell and Hehner’s bunch union, corresponding to non-ideterministic choice, hias the null
specification as unit, while the magic specification of Ward’s language is the unit of demonic

choice. Both of these specilications are unimplementable, and they correspond directly to
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our fictitious value ‘T'. However, neither approach goes any further than admitting that

this extreme specification exists.

For an under-determined choice operator, described in section 1.2.2, there would bhe no
distinction between choice | and the special union operator 12’ used to combine partial
[unclions. This is the case with the bunch uunion operator of [68]. Our choice operator is

such that, for partial functions f and g of the same type

fUg C flg

Like the demonic choice of [90], we can say that our choice operator is truly non-deterministic,

malking our function abstractions more expressive than those with an under-determined se-

mantics.

Our biased choice operalor ‘ﬁ’, usedl for totalising expressions, is very similar in nature
to the non-commutative choice operator P introduced by Nelson in {67] as an extension
to Dijkstra’s caleulus [24]. For 4 and B programs, the operational sewantics of 4 ¥ 2
is ‘activate A if possible, elsc activate B’. Nelson uses this choice operalor with partial
commands, which may be compared with our partial expressions. In the refinement calculus
for imperative programs the unimplementable specification, miracle or magic, is also uscd

to aid the formulation and refinement of specifications in parts.

Semantics

The semantics of Norvell and Hehner's specification langnage is given axiomatically. The
refinement laws, while reasonable, are given without proof. In particular, the introduction

of recursion in some of the example refinements is not given any formal basis.

Ward, in contrast, gives a semantics based on weakest preconditions to his langnage. The
resulting semantics is over-complicated, and we are nol convinced that such a semantics
is necessary [ar a language based on expressions. Functions of the language only get a
meaning when applicd to something else, so, semantically speaking, they are not treated as
first class citizens. In order Lo give a meaning to recursive functions in [90}], the ordering used
to obtain a least fixpoint is the refinement ordering, which is not usual in most treatments

of recursion,

We consider that our approach to the denotational seamantics of the specification language
is more intuitively clear, and results in o much simpler semantics. While many of Ward’s

refinement laws are similar to those of chapter 5, our proots are shorter and less complicaled.
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Comparison with Bunkenburg’s Thesis

Bunkenburg’s recent thesis [18] describes a calculus for the derivation of imperative style
[unctional programs. In some ways, Bunkenburg’s approach, content and findings are com-
parable to those of this work, but his thesis dillers significantly in scope and in many of
the design decisions taken. Bunkenburg states that the aim of his thesis is to present a
formalism for calculating programs, including imperative programs. His main achievement
is based on combining imperative threads with the easy calculational style of expressions,

through the use of the state monad.

The scope of Bunkenburg’s work is much broader than trealed in this work, He starts with
a description of an expression language, similar to that of chapter 2, and a discussion ol
refinement for this language. 1t is this part of [18] which can be directly compared with
this thesis. However, Bunkenburg swiltly moves on Lo treat imperative expressions and also

includes a brief descriplion of data refinement techniques used with his language.

Bunkenburg alse uses powerdomain theory to give a denotational semantics to the language,
including the imperative style components. We will compare the denotational semantics of

chapter 6 with Bunkenburg’s treatment.

In the following we outline and discuss the dillerences between the expression language

component of [18] and that presented in this thesis.

The first major difference in Bunkenburg’s expression calculus is that function application
is non-strict. In owr approach we observe the property of strictness. Strictness of fune-
tion application, as a specification tool, has the advantage that any value which becomes
bound to a variable within the function body will be well-defined {and deterministic in our
calculus). This has much value in terms of ease of calculation, without losing a significani
amount of expressive power. For example, Bunkenburg’s approach means that a function
such as

4m

(funzcZ:ifex=L->31{48)

is a sensible one. In our calculus it is possible to prove, using the fact that « = L for any

#, that this function is the same as the constant function

(fun z € Z : 4)

A second difference between the twoe pieces of work is in the data types provided and the

trcatment of objects of each type. Bunkenburg provides primitive types, sums, tuples,
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functions, scts, recursive and polymorphic types. In our calculus there are primitive types,
tuples, functions, sets, bags and seguences. The three latter types allow specification in
the model-oriented siyle and, in particular, admit infinite objects. Bunkenburg constructs
lists which, he claims, are infinite. In fact, the axioms provided are for finite lists only.

Bunkenburg approximates infinite lists because he has lazy constructors.

At the level of specification it is convenient to calewnlate with infinite objects, but such
objects cannot be directly implemented. At this point, the implementation stage, infinite

objects must be data-refined to finite objects. The use of lazy evaluation is a good way of

approximating infinite objects. We suggest that it is more appropriate at the implementa-
tion stage than al specification level. It has heen our experience that infinite sets, sequences
and bags have been useful specification tools.

As described in chapter 1, Bunkenburg informally treats his expressions as npward closed
sets of outecomes. An upward cloged set is such that, if the set confains an ontecome o,

then it also contains all outcomes better (more defined) than v. In contrast, we Lreat an

expression F such that, when evaluated, it maay have a number of possibile oulecomes. We >

clow’t identify £ with sets of possible outcoines. This is purely a semantic model.

A further difference between the caleuli is in the treatment of non-determinism. Bunken-
burg’s choice operator, 1, is interpreted as demonic non-determinism and axiomatised as
the greatest lower bound operator for Bunkenburg’s upward closed sets. This hias a nwmber

of consequences.

First, refinement cquivalence, Ci, is the same as equivalence, =. This means that fewer

expressions can he distingunished in Bunkenburg's caleulus.

His refinernent is a partial order, since it is now anti-symmetric, in addition to being reflexive
and transitive. However, in order to have a “good” refinement ardering, suitable for stepwise

refinernent, it is sufficient to produce a pre-order, such as our relation.

There are other minor differences between the two caleull iucluding Lhe treatment of guarded

expressions. Bunkenburg’s guarding operator, —, is defined

True - K= FE
Go>E=1,if §F Thrue

which makes alternations casicr, but the —+ operator is no longer monotonic in its left

argument.

Guarding is the only way that partiality can be introduced into a specification. Bunken-

burg’s specification expressions are of the form Mz @ T.E (£ with z bound to an arbitrary
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outcome of type T'), which is always total. Although initially this seetns less expressive than
our |/5 (choose an arbitrary element of sets .5), the same can be expressed in Bunkenburg'’s
calculus as M : Lw € 5 — z.

Bunkenburg’s denotational semantics uses the theory of powerdomains to provide a model
for his language. ITis semantics is broadly similar to ours. Both usc the Smyth ordering
for refinement. However, because Bunkenburg's choice is demonic, he also uses the Swmyth
ordering for definedness, upon which the theory of recursion is based. Therefore, Bunken-
burg’s theory suffers from the same problem as Ward’s, where the refinement ordering is
used to find the least fixpoint. In some way, demoenic choice wonld appear to blur the dis-
tinction between the refinement ordering and the definedness ordering. Bunkenburg gives
a sexantics for recursive function definitions, but not for more general recursive expression

definitions, although he allows these in the specification language.

Finally, although Bunkenburg starts with an expression language similar to that described
in chapters 2 and 5 of this thesis, he does not treat the language in as thorough a manner
as is presented here. We have attempted to investigate fully the behaviour of possibly
undefined, non-deterministic and partial expressions in a rigorous manner. In contrast,
Bunkenburg uses the language more as a starting point to which is added imperative style
constructs. It is his treatment of imperative expressions which forms the major component
of this thests.

7.4 Future Work

In thisg seclion we look at some possible areas for future extensions to the work presented

in the thesis.

Noun-Deterministic Boolean Expressions

Although the usc of non-deterministic boolean expressions is not encouraged, since they are

unlikely to be of any use in specifications, they cannot be eliminated.

We investigate the behaviour of non-deterministic boolean expressions s guards or assump-

tions. For example, consider the expression

let f=(funze€Z:2+3]2~3)
& n

2
{_
in (,fﬂ?U—?El) |] Ey
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The guard in the subexpression (f n > 0 — Ej) is non-deterministic and is equivalent to

Prue || False. Using our axioms for guarding, and since —A{True | Felse) the resulting

expression is undefined.

YRR A S SO

s

A different axiomatisation for guards (and assumptions) replaces the axiom for non-proper

guards (assumptions) with a strictness axiomn and a distribution axiom.

lpe > E=17
(PL[ Py) >t E = (Py > B) || (P > E)

where ‘> vepresents either ‘—' or *>—’ throughout the formula, and 7' is the type of E.

Now the subexpression becomes

fn>0-= H
e “Manipulation of Guard”
(True || IFalse) — I
“Left-distribute —”
True — B, || False — By
= “Axioms for Guarding”
£y

In this, we could say that [] in guarding is, in some sense, angelic with respect to T, since it

is T-avoiding. Evaluation of the guarded expression looks ahead to determine which choice

of guard gives a total result.

With assumptions we have the less interesting case that %
fn>0>E
poos “Manipulation of Assumption” i

(True || False) > Fy
“Loft-distribute >--”
True >— By || False > By

“Axioms for Assumptions”
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So. in this case, we could say that [} in an assumption is demonic with respect to 1 and O,

r.e. d-seeking in terms of refinement cquivalence.
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Partial Functions

As discussed in sections 1.3 and 7.2.1, there has been some interesting work carried out on
how to describe specifications in parts, and how to combine these parvs to form complete
specifications. . We allow the formation of partial functions as absfractions over partial
expressions, and combine them using a union operator, which is defined syntactically. This
operator is similar fo the disjunction operator used to combine schemas in Z. There also
exists a conjunction operator for schemas in Z, We consider how a corresponding intersection

operator might be used in our language.

In chapter 1.3 we used partial functions to specify different cases of a problem. These are

then combined, using the union operator, such that
fmzcT:P »E)YJ(funzcT:-P -+ F)

is equivalent to
(fanxce?:P o E[]-P = F}

Given the two specification expressions
l/{lzeZ:0<2<20} [/{z€Z: evenz}

an intersection of the two specifications should result in the expression
U/ {z €Z : (0 <z <20)Aevens}

Apart from investigating whecher or not such a facility would be useful, it would also be
interesting to see if a suitable syntactic definition could be given in the language. Such an
operator, among others, is described by Frappier in [30] using a relational approach. The
main concern is that either of the two specification expressions could be refined to such a

point that the interseclion no longer exists, resulting in an unimplementable specification.

In section 4.1.3 we looked briefly at the manipulation of partial functions, and suggested a
special class of higher-order functions which might he defined for this purpose. We could also
exaiiue the bebaviour of partial functions when applied to non-deterministic arguments.
For example, consider the following expression, which is not syntactically correct according

to our syntax restrictions.

(funze€Z:2=0-E)0| 1 (7.1}
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Since function application distributes over choice, it is reasonable to assume that this should

be the same as
(funzc€Z:z=0—=FE)0[{funzeZ:2=0- )

Function application with deterministic arguments is governed by the substitution rule,
giving

0=0—-E[]1=0—=F
which, according to our equivalence laws, is just B. So, we could say that the evaluation of

expression (7.1) looks ahead to detcrmine which. choice, il any, gives a total result.. Similarly,

we expect the expression
funzeZ:2=0- E)N[/Z)

to behave in the same way. This could prove to be a very uselul property of the application
of partial functions to non-deterministic arguments. In contrast, we note that the (total)

expression
funzeZ:x=0>—E)0[]1)

will evaluate to F L.

In this thesis we have restricted the occwrrences of partial functions, in order to simplify
the tasks involved in describing the caleulus. A study of the unrestricted behaviour of these

[unctions could provide some interesting results.

Non-Deterministic Functions

The choice operator of our expression language is such that function abstraction does not

distribute over ]. This, as we have seen, results in true non-determinist {907, ie.
(funz e T E{|F)Zfunze T : F)|j(funs e T:F)

Although the function on the right is a refinement of that on the lef, the two may be
distinguished from each other. Not only is the [unclion on the lelt proper, while that on
the right is improper, but they are also distingnishable when passed as arguments to a

higher-order function such as map.
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We now consider the function expression
(funace T E]F)](funz e T:E)
and compare it fo
(fanc € 7' : K] F}

It is reasonable to consider that these two functions shonld be equivalent since, operationally,
there is no observahle difference between them. In fact, they arve refinement equivalent, O,

and can be distinguished from each other only by using the operator A.

This operator is defined over ||, in chapter 2, by the axiom
AE|F)=AEANAFA(E=F)

An alternative axiom might be
AE|FY=s{(AEAECTF)V{(AFAFLTE)

With this axiom, both of the funcbions in question would be proper and so impossible
to distinguish from each other. In fact, it would be possible to prove equivalence, using

extensionality.

If this alternative axiomatisation for 2 was to be used, the semantic definitions described in
chapter 6 wonld require to be revised. Currently they support the axiom for A as included
in chapter 2, and a prool of his is given in secltion 6.5. However, il would be uscful to
explore the paossibilities offered by the new axiomatisation, and to find a definition in the

semantic domain to support it.

Program Transformations

In this thesis we have looked at the derivation of programs from specifications, but we have
not considered the issue of efficiency. 1t is likely that a functional program derived using this
calculus will not be the most efficient of implementations. However, there ave technigues for
the Lransformation of incfficient functional programs into egquivalent but efficient programs.
It should be possible to prove sich transformations nsing onr equivalence laws. or to describe

the transformation techiniques uwsing our syntax and use the semantic definitions to prove

them.
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Data Relinement

The specification language of chapter 2 contains a rich set of data types, which arc not
present, or not easily implementable, in a pure functional programming language. The
whole point of using the model-oriented approach for specification is to model some concept
nsing these rich, but well-understood, types. However, it i3 not usually possible to use these
types in the implementation.

Although we can refine expressions using our calculus, vefincments are always between
expressions of the same type. ln order to change the type of an expression, data refinement
methods are needed [60), 61, 58], as described in section 1.2.1. We anticipate that the same
methods as are used for data refinement of imperative style specifications could be applied

to functional style specifications. Bunkenburg outlines such an approach in lLis thesis [18].

Module Refinement

It is possible to give a formal syntax for modules using ideas drawn from algebraic specifica-
tions, object-oriented programming, type theory ete. [28, 36, 49, 51]. Although we did not
take such an approach, because we found it was not necessary to achieve our goals, there
are a number of reasons for a more formal approach. Modularisation of a large system (of
specifications or nplementations) bas the commonly associated benefits of seperation of

concerns and re-use of components.

A formal module syntax would provide the basis of a formal module calculus. Operations
over modules, such as module inclusion, union and difference could be formally defined
and investigated (see [10]). We could imagine the usefulness of building a hierarchy of
modules, and employing the concepts of inheritance and specialisation, moving towards an
object-oriented approach. More interesting might be the consideration of parameterisation
of a module, with respect to values, types and even other modules (sec |80]}. Finally, and
importantly in a vefinement calculus, we could consider the possibility of one module vefining
another, using both expression and data refinement. It is likely that such refinement of a
module would be with respect to some notion of an interface, containing invariants and

olher necessary information.

Mechanisation

Tools for the refinement of specifications based on the refinement calculus for imperative

programs are currently being developed, for example, the work of Grandy [33, 34] using the
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HOL theorem prover. An interesting exercise would be to attempt to build such a tool for
our calculus for expressions. The embedding of the semanties of the language would be a
huge task. However, if we were to incorporate the methods for expression refinement into
the imperative refinement. caleulus, as suggested in section 7.2.2, the framework providerd

by the theorem prover could be of enormous benelit.

7.5 Final Remarks

This thesis has investigated an approach to dertving executable cxpressions from speci-
fcations using a refincment calculus, in the same manner as the refinement calculus for
imperative programs. In this way, the ecalculus could be used to extend the refinement
calculus to allow the refinement of non-delerministic expressions in specifications. It coukl
also be used to form the basis of a refinement calculus for functional programs, or to de-
rive imperative style programs from functional specifications. The calculus consists of: a
specification language of expressions based on a general expression language; a refinement
relation with properiies to allow the stepwise and piecewise refinement of expressions; and
a set of laws which can be used in the manipulation of a specification, the derivation of a
program, or in the proof of a property of a specification. We consider the main contribu-
tions fo the area, as well as the calculus itself. to be the approach taken fo constructing
large specifications using partial expressions and functions, and the denctational semantics

which 18 based on the idea of sets of possible evaluations.




Appendix A

Theorems of the Logic

In this appendix we list some theorems of the logic as described in chapter 2.

A.1T "Theorems of Propositional Logic

Distribution of vV Disjunction distributes over itself.

PV(QVRY=(PVQ)V(PVR)

Involution Negation is an involution.

Properties of A An cquivalence is always proper.

A(E = F)

AA P

De Morgan Conjunction and disjunction satisfy de Morgan’s laws.

TP

(P AQ)=-PVaQ
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(PVE)=-PA-Q

Conjunction Conjunction satisfies the usual properties.

PAQG=QAP

PA(QARY=(PAQ)AR

PAFP=P

PA(QARY=(PAQ)A(PAR)

Absorption The absorption laws for conjunction and disjunction.

PA(PVQ)=P

PV(PAQ)

IIf
e

Ydentities True is an identity for conjunclion, and Fulse is an identily for disjunction.

PATrue=P

PV False = P
Properties of = Implication is reflexive and trichotomons. False is leasi with respect
Lo the implication ordering, and True is greatest.

FP=P

(P=Q)v(Q@=7r)

False = @
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P = Truye

Substitution The substitution rule for conjunction and for implication.

(F=Q)ANE(P)=(P=Q)ANE(R)

(P=Q)=E(l)=(=Q)= EQ)

Modus Ponens

PA(P= Q)= @

Conjunction and Implication Conjunction is a greatest lower hound with regpect to

implication.

(P=2QA(P=>R)=(P=> QAR)

Absorption We have two further absorption laws, concerning implication.

P=PVQ

PAQ =P

Shunting The shunting law holds.

PAQR—»>R=PFP=(Q=R)

Transitivity and Monotonicity Implication is transitive. 1t is monotonic in its second

argument, and antimonotonic in its first {wrt implication).

(P= QAN(Q=R)=(P=R)

(P=@)=(R=>F)=(R=0Q)
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(P = Q)= (@ = R) > (P = R))

Conjunction Mono wrt Implication Conjunction is monotonic with respect to impli-

cation.

(P= Q)= ((PAR)={QAR))

Disjunction and Implication Disjunction is a least upper hound with respect to im-
plication, and satisfies certain monotonicity properties.

(P=RIA(Q=R)=(PV—~>R)

(P= Q)= ({PVR)=(QVR))

Distribulion of Tmplication Lmplication left-distributes over disjuniction, over eguiva-

lence, and over itself.

P=QVR=(P=Q)V{(P=R)

P=(Q=R=F=Q)=(P=R)

Pa2(@Qz=R)=(P=Q)=(P = R)

Properties of Nonequivalence Noneguivalence is symmetric.

P2ZQ=QzPF

A.1.1 Laws Depending on Proper Values

Excluded Middle If #* is proper, then the law of the excluded middle holds.

AP={PV-P)
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Negalion and Equivalence These are relaced by the law

(APANAQ)=((P=Q)=( P=Q))

Associativity of Equivalence Iiquivalence is associative for proper boolean terms.

(APANAQAAR)= ((P=@Q)=R)=(P=(@ =R)))

Distribution over Equivalence

AP= (PV(@=R)=({PVQ)=(PVR)

AP=(P=(Q@=R)=(PAQ)=(PAR))

AP=(PA(QZR =((PAQ)Z(PAR))

Golden ITmplication

(APAMAQ)= (P=Q=(FPAQ=P)

Bi-Implication

(APAAQY= (P = QA (Q = P)=(P= Q)

Conjunction Absorption We can simplify the following conjunctions.

AP=(PA(P=Q)=PAQ)

(APAARQD=(PAP=Q)=PAQ)

AP (PA(-PVQ)=PAQ)
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Exchange Laws

(APAAQ) = (P=-Q=Q = -P)

(APAAQ) = ("P=@Q=-Q=P)

Contrapositive

(APANAQ)= (P = Q)= (-Q = ~P))

(APAAQ) = (P> Q=0 = —P)

Associativity of Nonequivalence Nonequivalence is associative for well-defined terns,

and equivalence and noneguivalence are mutually associative.

(APAAQAAR) = ((P£Q)#R)=(P#(Q#R)

APAAQAMR)={((P£2Q)=R)=PZ(Q=R)))

(APAAQAAR)= (P=Q)#R)=(P=(Q#R)

A.2 Theorems of Predicate Logic

Trading Theorems

AP={((Ve:T|PeQ)=Nz:T|e=PVQ))

Ve: T|{PAReQ)=(Vz:T|PeR= Q)

AR=((Vas:T|PAReQ)=Na:T|Pe-RV{(Q))
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Further Distribution Provided 2 is not free in ¢,

AP={((Va: TiPeQ)=@QV(Va:T|eP))

Distribution Provided z is not free in @, and (Va2 : T | e~ P)

AP=(Va: T PeQrR)Y=QANz: T |PeR))

Additional Theorems

(Vz :T| P e True)

Ne:T|Pe@=R)=((Va:T|Pe@)=(Naz:T|FPeR)

Weakening, Strengthening and Monotonicity

(Ve:T|PvQeR)y=(Vaz:T|PeR)

Ve:T|PeQAR)= (NVa:T|PeQ)

Ve:T|PeQ=R)=((Y2:T|PeQ)=(Vz:T|PeR)

Instantiation Forany cin T

(Vo :T}|elP) = Ple/z]

Generalised DeMorgan

=(Jz:T|Pe—Q)=(Vz:T|Pe)

EZx: T | Pe)=NVu:T|DP e Q)

Bz:T|Pea@Q)=-Va:T|Ped)
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Trading

(Ba:T|Pe)={3z:T|e=(P=-0Q))

(e T|PAReQ)={(F2:T|Pe-(R=-Q)

Distribution Provided z is not {ree in ,

Ce:T|{PeQAR=QA(Fz:T|PeR)

AP=((3z: T |PeQ)=QA{3z:1|eP))
Provided « is not free in @, and (Jz : T | oP)

(Hz:T|PeQVR}=QVv(3a:T|PeR)

Additional Theorem

—(Jdz: T | P e Fualse)

Weakening, Strengthening and Monotonicity

(Ja:T]QeR)=>(Fz: T|PVQeR)

(z:T|Pe@Q)=3z:T|Pe@VR)

(@z:T|PeQ=R)=(Fz: 7T

Poe)=3z:T|Pelif))

Introduction and Exchange Forany ¢ in 7

Plefe] = (Aa: T | o)

Provided 2 is not free in @, and y is not free in P,

(Fz: T |Pe(Vy: T

QeR))=Wy: T |Qe(3x:T|PeR))




Appendix B

The Printer Control Specification

Here we give an outline of how the final printer control specification looks.

Given Sets

[PERSON] , [PAGE]

Initial Definitions

JORTD = N
FiLr = SegPaGr

Priority = N
Burresr = PAGE

Definitions for State

inf : JoBs = [KnownJobs € P JoID
FiteOf ¢ KnownJobs +; FILE,
OwnerOf € KnownJobs -+; PERSON,
Priority Of € KnownJobhs <13, PRIORITY]
mf : JOBS I SizeOl = # o FileOI

¢ CURRENTJOR = [CurrentlTd & JoORTD, PagesPrinted € N
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PRINTQUEUE = ISeq(JoBID\{0})
g : PRINTQUEUL F JobsWaiting = ran g,
RemQueue = (fun id € JOBID : Remove(g, id))

¢ : PRINTQUEUE, ¢ : CURRENTJORB F JohsInQuene = JobsWaiting U CurrentId,
EmptyQuene = (Currentld = 0)

% : Uskrs = [KnownUscrs € [P PERsON,
QuoataOf € KnownUsers +; N
PagesUsedBy € KnownUsers +; N| :

(¥ p € PrrsoN.QuotaOfp = PagesUsedBy p)

o: X = [¢ € PRINTQUEUL, ¢ € CURRENTJOB, b € BUFFER, inf € JOBS, u € USERY] :
(PagesD’rinted < SizneOf o Currentld
A KnownJobs = JobsInQueue
A KnownUsers = OwnerOf x JobsInQueue
A Currentld ¢ JobsWaiting
A (Currentld = 0 = ¢ = {}}

Operations over the State
Adding a Print Job

o %+ AddOk = (fun p € PERSON, f € FILE, n € PRIORITY :
p € Knownllsers—

let newld = [[/(N\{({0} U Krowndobs))

& newq = (EmptyQueuc - » ¢ 7 (newld) ﬁ q)

& newe = (EmptyQuene — ¢ {|] (newid, 0))

& newlnf = (FileOt @ {newld — f},
OwnerOf & {newld — p},
PriorityOf @ {newld — n})

in (newy, newe, b, newlnf | u))

c: 5L F AddError = (fun p € PERSON, f € FILE, n € PRIORITY :
UNKNOWN_USER_FERROR)

oD F Add = AddOk U AddError
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Allocating Quaotas

o: X1 Alloc & (fun p € PERSON, g €N :
let newu = (QuotaOf T {p — ¢},
PagesUsedBy & {p — 0})

in (g, ¢, b, inf, newn))

Returning the Active Job

c: X+ Active = (-EmptyQuene — let id — Currentld || n — PagesPrinted
& size = SizeOfid
in {(id,n, size — n)

{
| QurURE_EMPTY_ERROR)

Printing a Page

g : PRINTQUEUE, inf : JoBS F GetNextld = (g #£() —
let pr = (fun ¢ € N : PriorityOf ¢[7])
in N /{rnazWRT pr{0..#¢ — 1}))
*_
o

o ¥ PrintOk = (~EmptyQueue —
let id = Currentld || n = PagesPrinted
& p = OwnerOfid || f = FileOfid
& guoic = QuotaOlp || pages = PagesUsedBy p in
quote > pages —
let newb = f[n]
&  mnewu = ChangeUser(guole, puges + 1) in
(n <SiweOfid —
let newe = (id, n + 1)
in (g, newe, inf , newu, newd)
let newid = GetNextld
& newe = (newid,0)

[

& newq = remove newid
& newlnf = RemlInfid
in (newq, newe, newinf, newu, newb)))




The Printer Control Specification

203

o D Quotalrror = {(-EmptyQueuce -+ QUOTA_ERROR)
c:ZF QEmply = Error_Quetr_Empry

— —
@ : 2+ Printpage = Printok [| Quotakrror || QEmpty

Removing a Priant Job

g : % F RemoveOk = (fun ¢d € JosIn ¢
id €JobsInQueue A id #£ Currentld —
let newq -= RemQuene id
& newinf = (FileOf\id,
OwnerOf\ id,
Priority Of\ id)

in (newgq, ¢, b, newinf , u})

o 2~ RemoveCurrent = (fun id ¢ JOBID :

td = Currentld — Cunripexr Jon. Eruion)
o : ¥+ Removebail = (fun id € JOBID : JOB_NOT_IN_QUEUK_ERROR)

o —
i Y RemoveJob = RemoveOk U RemoveCurrent U RemoveFail
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