

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

D ep artm ent o f
C om p u tin g Science

UNIVERSITY
of

GLASGOW

A R efinem ent Calculus
for E xpressions

Sharon Flynn

Subm itted for the degree of Doctor of Philosophy

September 1996

© Sharon Flynn 1997

ProQuest Number: 10391397

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10391397

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

LIBRARY

A bstract

This thesis describes a calculus intended for the refinement of expressions, in particular
the calculus provides a framework for the formal derivation of executable expressions from
initial specifications. The approach taken follows and extends the work of Back, Morris
and Morgan on the refinement calculus for imperative style programs. We contribute to the
area by providing a refinement calculus of expressions with a simple semantics and support
for the formulation and development of specifications in parts.

We take the view th a t a refinement calculus consists of: a specification language, which
usually includes constructs which are non-executable, but is a "super-language" of a pro
gramming language; a refinement relation between specifications, which possesses particular
properties necessary for the refinement of specifications in a stepwise and piecewise manner;
and a set of laws determining how such refinements may proceed.

We describe a simple functional language of expressions which includes features for unde-
finedness, non-determinism and partiality. The added constructs allow the easy formulation
of expressive and abstract specifications, giving maximum freedom to the implementor.

The issue of methods to structure large specifications is addressed through the concept of
partiality. We provide support for the construction of specifications in parts, together w ith
operations to compose partial specifications to form the whole. We also consider how the
state and exception monads, used to hide imperative features in pure functional programs,
might be used similarly to structure specifications.

A refinement relation between specifications is defined. A set of laws suitable for the
m anipulation and refinement of expressions is proposed.

The expression language is given a simple denotational semantics, using powerdomain struc
tures to capture non-determinism. This semantics allows the easy and intuitive formal
definition of refinement, using the Smyth ordering for powerdomains, and facilitates the
construction of the proofs of the proposed laws for the calculus.

ii

C ontents

1 In trod u ction and B ackground 1

1.1 Specification.. 1

1.1.1 Approaches to S p ec ifica tion ... 2

1.1.2 Undefined t e r m s ... 3

1.1.3 N on-D eterm inism ... 3

1.2 Program Development and R efin em en t... 4

1.2.1 Refinement C a lc u li .. 5

1.2.2 Refinement of E xp ressions.. 7

1.3 Structuring Large Specifications... 10

1.4 Thesis Proposal and P l a n 11

1.4.1 Plan of Thesis .. 12

2 T h e E xp ression L anguage 14

2.1 General O verview ... 15

2.1.1 Scope of the L a n g u a g e ... 15

2.1.2 U ndefinedness.. 16

2.1.3 Non-Determinism and P a r t i a l i t y ... 17

2.1.4 Equivalence and R efinem ent... 19

2.1.5 The Type System .. 20

iii

C o n te n ts iv

2.1.6 Treatm ent of the L a n g u a g e ... 21

2.2 Undefinedness and Non-Determinism F o r m a l ly ... 22

2.3 The L o g ic .. 24

2.3.1 Predicate L o g ic ... 26

2.3.2 T h e o re m s ... 29

2.3.3 Sufficient A x io m a tis a t io n ... 29

2.4 The Type S y s te m .. 33

2.4.1 I n te g e r s .. 33

2.4.2 Characters .. 34

2.4.3 Products ... 35

2.4.4 F u n c t io n s ... 36

2.4.5 S e t s ... 37

2.4.6 B a g s .. 40

2.4.7 S eq u en ces ... 43

2.4.8 Partia l M a p p in g s .. 46

2.4.9 Simple T y p e s .. 47

2.5 Language C o n s tru c ts .. 47

2.5.1 Conditional E x p re ss io n s .. 47

2.5.2 Local D e fin itio n s .. 48

2.5.3 Recursive F u n c t io n s ... 49

2.5.4 Specification Expressions ... 49

2.5.5 Assumptions and Partially Defined F u n c tio n s .. 50

2.5.6 Inverse F u n c tio n s ... 52

2.5.7 Generic F u n c t io n s .. 52

2.6 P a r t i a l i t y .. 53

2.6.1 Potentially Partia l E x p re ss io n s ... 54

- , : ï

ï

C o n te n ts v

2.6.2 Managing M ira c le s ... 55

2.7 C o n c lu s io n s.. 58
ÿ

■

3 M aking S pecifications 60

3.1 Useful F u n c t io n s .. 60

3.2 The Form of a S p ec ifica tio n .. 62

3.2.1 Types in Specification M o d u le s .. 63

3.2.2 Syntax of S p ec if ica tio n s ... 65

3.3 E x a m p le s .. 66

3.4 C o n c lu s io n s.. 71

4 S tructuring S p ecification s 72

4.1 Partial Specifications... 73

4.1.1 Using Partia l F u n c t io n s .. 74

4.1.2 Combining Partia l F u n c t io n s .. 75

4.1.3 M anipulating Partia l F u n c tio n s .. 76

4.2 A Printing Control E x am p le ... 76

4.2.1 N o ta tio n .. 77

4.2.2 Problem D e sc rip tio n .. 80

4.2.3 Building the S p ec ifica tio n .. 80

4.3 Using M o n ad s ... 86

4.3.1 The State M o n a d ... 87

4.3.2 The Exception M o n a d ... 89

4.3.3 Combining S tate and E x c e p tio n s ... 90

4.3.4 Monads in the Specification L a n g u a g e ... 91

4.4 C o n c lu s io n s... 93

C o n te n ts v i

i
I

%;

5 P roofs and R efin em en t 95

5.1 The Proof System ... 96

5.2 Transformation L a w s .. 97

5.3 R e f in e m e n t ... 100

5.3.1 Proving R efin em en ts .. 103

5.3.2 Refinement L a w s ... 104

5.4 Examples of Formal R e a s o n in g .. 107

5.4.1 Simple P ro o fs .. 108

5.4.2 A Larger E x a m p le .. 109

5.4.3 Reasoning w ith M o n a d s .. 113

5.4.4 Reasoning about A .. 114

5.4.5 Simple Refinements ... 115

5.4.6 Refinement w ith R e c u r s io n ... 116

5.4.7 The N-Queens R e v is ite d .. 118

5.5 Towards Im perative P ro g ra m m in g 125

5.5.1 Background to the Derivation Style .. 126

5.5.2 The Specifica tion .. 127

5.5.3 R efinem ents... 128

5.6 C o n c lu s io n s ... 130

6 S em antics 133

6.1 M e th o d o lo g y .. 134

6.2 Semantics of E xpressions.. 136

6.3 Semantic Domains and R ecu rsio n ... 143

6.3.1 Cpo’s and F ix p o in ts ... 144

6.3.2 Domain Constructors ... 145

C o n te n ts v ii

6.3.3 Semantic D o m a in s ... 146

6.3.4 The Egli-Milner Pow erdom ain... 147

6.3.5 Recursive Function D e f in i t io n s .. 149

6.3.6 Semantics of Recursive Function D efin itions.. 151

6.4 R e f in e m e n t .. 152

6.4.1 The Smyth O rd e rin g .. 152

6.4.2 Semantics of R efinem en t... 154

6.5 S o u n d n ess ... 154

6.5.1 Undefinedness and N on-D eterm inism .. 154

6.5.2 The Equivalence A x iom s... 156

6.5.3 Strictness P r o o f s ... 157

6.5.4 D is tr ib u tio n ... 159

6.5.5 Products and F u n c t io n s .. 160

6.5.6 Assumptions and G u a r d s .. 162

6.5.7 Generalised Choice and Biased C h o ic e ... 163

6.5.8 R e c u rs io n .. 164

6.5.9 R e f in e m e n t... 165

6.5.10 Inference R u le s .. 169

6.6 Semantics of Specification M o d u le s ... 169

6.7 C o n c lu s io n s ... 171

7 D iscu ssion and C on clusions 173

7.1 A Refinement Calculus for E xp ressions... 173

7.2 D iscussion .. 174

7.2.1 Evaluation ... 175

7.2.2 Applications 176

-i.;

I

C o n te n ts v iii

7.3 Comparison to O ther W o r k .. 177

7.3.1 Approaches to Formal R e a so n in g ... 178

7.3.2 Formal Program D evelopm ent... 180

7.3.3 Refinement of E xpressions.. 181

7.4 Future Work... .. 185

7.5 Final Remarks .. 191
a
7
7
$

1

A T h eorem s o f th e Logic 192

A .l Theorems of Propositional L o g i c .. 192

A .1.1 Laws Depending on Proper V a lu e s .. 195

A.2 Theorems of Predicate Logic ... 197

B T h e P rin ter C ontrol Specification 200

di:

A cknow ledgem ents

To my supervisor, Joe Morris, I am indebted for his inspiration, support, encouragement,
tim e and patience. I would like to thank the other members of my supervisory committee,
Muffy Thomas, Kieran Cleneghan and David W att, for their input.

I am very grateful to my parents, E lizabeth and Tony Flynn, and my sister, Joanne, for
their constant support, financial and otherwise, over the last number of years. Thanks also
to my husband John, for understanding, and being very very patient.

I would like to express my gratitude towards a number of people who gave of their time
to advise me on certain issues, including: John Launchbury, Alex Ferguson and Samson
Abramsky, for clarification on powerdomain theory; Michael Butler, Graham Hutton, Mary
Sheer an and various anonymous referees for their feedback and direction; and the members
of the Formal M ethods and Theory Group for general advice. I also wish to thank Alex
Bunkenburg, my true peer, for many useful discussions. On the technical side, i.e. DTgX,
Aran Lunzer, Will Parta in and Micheal O ’Foghlu were instrum ental in getting things work
ing.

In des, Glasgow, I have to thank: Aran, Alex and Stéphane of the nightshift; the various
inmates of FIOI; lots of ex-flatmates including Anne, Alison, Jackie, Steve, Mounia, F inbarr
and Aran; A rtur for proofreading services; Michelle and Sheila for getting it subm itted; and
Tom Melham for advice a t a very low point in its completion. In UCG, I am very grateful
to: Gerry Lyons for allowing me the time and space to finish up; Jim Duggan - another
proofreader; and Conn Mulvihil for suggesting tha t I do a Ph.D . in the first place!

I wish to acknowledge EPSRC for supporting this work, and the departm ent of computing
science, University of Glasgow, for the studentship which made living possible.

Finally, I wish to dedicate this thesis to the late Dr. John J. Kelly, of UCD, who was my
mentor and M.Sc supervisor.

IX

D eclaration

The m aterial presented in this thesis is the product of the au tho r’s own independent re
search carried out at Glasgow University, under the supervision of Joseph M. Morris of the
Departm ent of Com puting Science.

Some of the basic ideas have been presented at the Glasgow Functional Program ming
Workshop, Ayr, 1994, as part of an example derivation, with Alexander Bunkenburg as
co-author [19].

X

I

C hapter 1

Introduction and Background

Formal methods for the development of reliable software is an ambitious goal, bu t we
take the view th a t it is ultim ately worthwhile. Research into the area has resulted in
many useful methods, for example: tools for the writing of unambiguous specifications of
software systems; methods of verifying th a t a program meets its specification; semantics of
programming languages which help us to understand the meaning of a program; laws which
encapsulate the process of program development. T hat a program should be derived from
its formal specification, so developing program and proof of correctness together, seems
intuitively obvious. This is exactly the aim of research into formal program development,
particularly refinement calculi. At the very least, it provides us w ith an understanding
of the concepts and issues involved, and defines a common framework within which both
specifications and programs can be discussed.

Our aim is to describe a refinement calculus of expressions, so extending the imperative re
finement calculus and providing a theoretical basis for the formal development of functional
programs. In this chapter we give a brief account of the background areas of specification,
formal program development and refinement, and attem pt to indicate how the refinement
calculus of expressions fits into this context.

1.1 Specification

A specification of a software system is a description of the desired behaviour of th a t system.
It can be thought of as a contract between a customer and a programmer. It must be
w ritten in such a way th a t it can be understood by the customer, bu t is rigorous enough to
exclude ambiguities. N atural language is not suitable as a specification language because

'■:W

1

..

:

1.1 . sp e c if ic a t io n

it allows too many ambiguities. However, a programming language is too restrictive as a
specification language since it gives too much detail about how a task is to be accomplished.

We expect a specification to be more abstract and less machine-oriented than a program
which implements it. Formal specifications are w ritten using languages which are based
on m athem atical principles, and are therefore rigorous, but have a notation rich enough to
express properties of a system in a way which is easily understood by the customer.

The existence of a formal specification also allows us to establish th a t a program implements
th a t specification. A statem ent concerning the correctness of a program presupposes the
existence of an external frame of reference. The formal specification may be used either
to prove the correctness of a program, or in the development process to derive a program
which satisfies the specification.

1 .1 .1 A p p r o a c h e s to S p e c if ic a t io n

M od el-O rien ted Specification

The specification languages Z [27, 75, 44] and VDM [40, 11] are both examples of a model-
oriented approach to specification. This involves the construction of a model of the concept
to be described, taking advantage of available m athem atical tools. The associated opera
tions of the concept are then specified with respect to the particular model which has been
used.

The Z specification language follows an approach to specification which is state-based. It
has as its m athem atical basis familiar m athem atical concepts and notations such as set
theory and first order predicate logic. It uses the set operations such as union, intersection,
set difference, set membership etc. , and operations on m appings between sets to build a
conceptual model of the system to be specified. Operations from predicate logic are used
to build sets and to make assertions concerning the components of the specifications.

The known properties of the underlying m athem atical concepts used for specification in
the model-oriented approach can be used to reason about specifications in a formal setting.
The Logic of Partial Functions (LPF) provides a logical framework for proofs about VDM
specifications [43].

A lgebraic Specification T echniques

The algebraic style of specification, as found for example in [70], is theoretically based on
the notion of algebraic types. In contrast to the model-oriented approach of Z or VDM,

1 .1 . S p e c ifica tio n

concepts are specified implicitly by describing their construction, modification and access
operations using sets of axioms. Thus the internal structure of the concept is not explicitly
revealed.

The advantage of an algebraic specification is th a t a more abstract description of the system
is obtained. Although no explicit model of the concept is formulated, there may be many
models which satisfy the specification. A programmer is not restricted to any particular
model and may choose between possible models during the program development process.

However, the axiomatic equations to describe the system are difficult to construct. In
addition, it is often the case th a t a particular implementation for a da ta type suggests itself
and it is then easier to specify the da ta type in terms of th a t model.

1 .1 .2 U n d e fin e d te r m s

I..
A'

In the specification and development of software systems undefined expressions arise quite
naturally, usually in the application of functions to arguments where the function is not
defined, or term ination is not guaranteed. Simple examples of this are integer division by
zero, or the integer square root of a negative number. This necessitates a m ethod for dealing
with formulae which involve undefined term s. Many examples illustrating the need for such
m ethods may be found in the literature, for example [9, 22, 40, 41]. It is clear tha t classical
logic is unable to deal w ith such terms.

There are various ways of forming proofs about undefined expressions. Some of these a t
tem pt to keep to classical logic by making functions everywhere defined over a restricted
domain, or by using relations to avoid function application, as in the Z specification lan
guage. Other methods use conditional forms of the familiar conjunction and disjunction
operators, as in many program ming languages, resulting in non-symmetric operators. An
other m ethod is to use a logic which has the ability to deal w ith term s which are not
well-defined, a 3-valued logic such as LPF of VDM. An overview of various m ethods of
dealing w ith the problem of undefined term s may be found in [22] and more recently in [42].

Our approach, as developed in chapter 2, is to adm it to the existence of undefined term s
and to use a logic, distinct from LPF, which accomodates them.

1 .1 .3 N o n -D e te r m in is m

An expression is determ inistic if separate evaluations of th a t expression, in the same en
vironment, always give the same result. An expression is non-determ inistic if separate

1 .2 . P ro g r a m D e v e lo p m e n t a n d R e fin e m e n t

1.2 P rogram D evelop m en t and R efinem ent

Given the formal specification of a program, the program m er’s objective is to develop a pro
gram which satisfies the specification. The task of verifying a program after its construction
is a laborious one, and it is well recognised th a t a program and the proof of its correctness

evaluations may give different results. Constructs for non-determinism are used in specifi
cations to increase abstractness, when there may be a number of design options which are
equally suitable. During program development, this allows freedom for design decisions to
be made. We take the view that, ultimately, programs must be deterministic.

Non-determinism may be used as a specification tool for under-specification of a problem.
An often used example is th a t of searching. Find the index of some occurrence of x in the
list L. This gives the implementor freedom to search for the first, last or any occurrence of
the given x.

Non-determinism in specifications is usually obtained through the introduction of a choice
operator [], such th a t for expressions E and T , the expression E ̂F may evaluate to either
the value of E or the value of F. We take the view that, from a specification E ̂ F^ the
customer will be happy with a program implementing E or a program implementing F or
some combination of the two.

In [84] three sorts of non-determ inistic choice operator for expressions are distinguished by
the way choices are made in the presence of undefinedness. W ith angelic non-determinism,
all choices are made in favour of term ination, i.e. [] F is undefined only when both E
and F are undefined. W ith demonic non-determinism, all choices are made in favour of
non-term ination, i.e. F [] F is undefined if either of F or F is undefined. W ith erratic choice,
nothing is done to favour or avoid non-term ination. The term s angelic and demonic are
a ttribu ted to C.A.R. Hoare, while the term erratic is due to M. Broy.

Although erratic non-determinism can be described operationally as being similar to the
tossing of a coin, notice th a t it cannot be used to specify such a process. This is because, for
example, the specification heads [j tails may be implemented by the program heads., which
always gives the same result.

In chapter 2, we introduce a specification language of expressions which includes a choice op
erator. In order not to lim it the properties of the language un-necessarily, this choice opera
tor is erratic. Our logic, which handles undefined terms, also accomodates non-determ inistic
values.

1.2 . P ro g r a m D e v e lo p m e n t a n d R e fin e m e n t

should be developed together. This may be done in an informal manner, however in order
to build programs which are correct w ith respect to their specifications, it is necessary to
validate rigorously each step of the process.

In [24] D ijkstra describes a simple im perative programming language, the language of
guarded commands. A methodology is presented in [24, 31, 38, 45] which allows the program
and proof of its correctness to be developed together, from a specification consisting of a
pre- and post-condition. A program development methodology for Z specifications is de
scribed in [75]. This uses a notion of refinement of both data and operations. The weakness
of these, and other programming methodologies, is tha t while bo th the specification and
the program are formal objects, in refining from specification to program, the intermedi
ate objects are not necessarily formal, since they may be considered as hybrids, a m ixture
between specification and program.

The problem of having informal aspects in the development process is addressed by using a
specification language which is a "superlanguage" of a programming language. The advan
tage of this is th a t bo th program and specification may be reasoned about using the same
semantic framework. This is the case w ith the Extended ML specification language, which
has, as its executable sublanguage, the S tandard ML programming language [78, 79]. In
[79] a formal program development methodology is presented which describes how a spec
ification may be developed in stages by replacing non-algorithmic elements by executable
code. Each step of the development is associated with certain proof obligations. The de
velopment process effectively describes the refinement of a specification such th a t the final
specification is executable, i.e. a program.

Expressions are much easier to m anipulate than statem ents, because we are no longer
concerned w ith possible side-effects or changes to the state. This can be seen very clearly
in reasoning about pure functional programs [12] and in the work of Bird and Meertens
[13, 5] on m anipulating lists. More recently, Bird has used notations from category theory
[8] to specify concisely and very elegantly certain classes of problems [14, 15, 16]. Using
m athem atics of category theory these specifications can be transform ed to equivalent but
more efficient expressions of a functional programming language. Some work is involved in
formulating the initial specifications and the notation could not be considered suitable for a
naive user to read. The approach is also limited to a certain class of optim isation problems.

1 .2 .1 R e f in e m e n t C a lc u li

The main aim of a refinement calculus is to allow the stepwise development of programs from
specifications in a formal m anner, ensuring a correct transform ation. One approach to such

1,2 . P ro g r a m D e v e lo p m e n t a n d R e fin e m e n t

a calculus is achieved by describing a specification language which contains as sublanguage a
programming language. The specification language will, in general, contain some constructs
which are very expressive but are non-executable or expensive to implement. This is usually
obtained by extending a programming language w ith additional expressive, but possibly
non-algorithmic, constructs. An example of this is the Extended ML specification language,
mentioned above.

The calculus will also include a refinement relation between specifications, usually w ritten
X C. Y for specifications X and Y . This expresses the fact tha t whenever specification X
is acceptable (to a customer) so also is specification T , bu t Y is generally more algorithmic
than X . We use the term algorithmic loosely here, to mean tha t Y is closer to being a
program than X .

The purpose of a refinement calculus is to allow the stepwise calculation of a program from
an initial specification, %. This means the development of a sequence of specifications,
Sq Ç: S\ Q . . . ^ Sn^ where each F,, for 0 ^ 2 < n, is refined by and Sn is a program.
In order to conclude th a t Sn is a correct im plem entation of initial specification 5o, it is
necessary th a t refinement is transitive. In fact, the refinement relation should be a preorder,
so tha t if any of the Ç is replaced by ^ (equivalence) in the above sequence, we can still
conclude th a t Sq F Su

it is also im portant th a t refinement can progress in a piecewise manner, so tha t refinement
of part of a specification results in refinement of the whole specification. To facilitate piece-
wise refinement, it should be the case th a t the constructs of the specification language are
monotonie with respect to refinement of subterms. So, if F [A] is a specification containing
X as subspecification, and it can be shown th a t X Ç L , then it should be the case that
5 [x] ç 5 [r] .

The final part of the calculus is a set of refinement laws. In deriving a program from its
specification, it is not necessary to use the definition of refinement directly. Instead, the
definition is used to form a set of refinement laws, which can be used to justify each step of
the derivation.

T h e R efin em en t C alcu lus for Im p era tive Program s

A refinement calculus for im perative programs was first inspired by Back [3, 4], and further
developed, independently, by Morris [59, 62] and Morgan [55, 56]. D ijkstra’s guarded com
mand language [24], whose semantics is given in terms of predicate transformers, is extended
by adding expressive but non-executable constructs, including a specification statem ent con
sisting of a pre- and a postcondition. The added constructs are also given a formal semantics

1 .2 . P ro g r a m D e v e lo p m e n t a n d R e fin e m e n t

in term s of predicate transform ers. The refinement relation between specifications is for
malised, and intuitive notions of program development are described formally, resulting in
a set of refinement laws.

Non-determinism, which is an im portant aspect of specification, is perm itted in the im per
ative refinement calculus at the level of statem ents only. Non-deterministic expressions are
not perm itted. Morris [63] argues th a t expressions which are undefined or non-deterministic
can fit into the refinement calculus for imperative programs by defining a suitable seman
tics. His approach results in an elegant form of assignment, bu t does not accommodate
expressions which are of function type.

D a ta R efin em ent

In extending the guarded command language of Dijkstra to form a specification language,
a richer set of da ta types is added along w ith richer operations on data. This facilitates
specification using the model-oriented approach. During the refinement process, these richer
types must be replaced with simpler and more easily implementable types. This process is
known as data refinement.

Replacement of abstract da ta types by more concrete types using coordinate transform ations
was suggested by D ijkstra in [24]. A formal notion of da ta refinement with laws governing
its application has been developed by Morris [60, 61] and M organ [58] to compliment the
im perative refinement calculus.

1 .2 .2 R e f in e m e n t o f E x p r e s s io n s

It is recognised tha t expressions are easier to m anipulate than statem ents, and we have
already mentioned the use of functional programming languages, and the work of Bird
and Meertens. Refinement of expressions was excluded from the work on the im perative
refinement calculus, although Morris [64, 65] has since done some research in the area. The
ability to write non-determ inistic, more abstract expressions at the specification stage, and
to allow these be refined along with the refinement of statem ents would greatly extend the
power of the imperative calculus.

It is also possible to consider writing an initial specification as an expression and, by refine
ment, calculate an im perative program to implement it. This would involve a special form
of expression refinement since it would mean transform ing from one type, the type of the
specification expression, to the type of statem ents.

1 .2 . P ro g r a m D e v e lo p m e n t an d R e fin e m e n t

In pure functional programming [12] a program is essentially an expression which is evalu
ated by the computer. The task of a program m er is to build a function to solve a particular
problem. A notion of refinement of expressions therefore could be used not only to in
crease the power of the im perative refinement calculus, bu t also as the basis of a refinement
calculus for functional programs.

Function abstraction, in the specification language of [68], distributes over bunch union, re
sulting in functions which are under-determined rather than non-determ inistic. Essentially,
what this means is th a t a function with a non-determ inistic body is exactly equivalent to a
choice between functions w ith determ inistic bodies. Therefore it can be assumed th a t every
function has a determ inistic body.

The identity of bunch union is the null specification which refines all specifications, but
cannot be implemented. The zero of bunch union is the all specification which is refined
by all specifications. There is no explicit treatm ent of undefinedness, although all may be
used to represent errors. The notion of refinement is based on the superbunch operator.

The semantics for the language is axiomatic, but there is no satisfactory treatm ent of recur
sion. In particular, examples of refinements are given which introduce recursive functions
without any theoretical basis for doing so.

The approach of Norvell and Hehner results in a simple treatm ent of expression refinement
at a syntactic level, bu t it does not address the problems which exist at a deeper level. The
specification language is concise, bu t the notation is somewhat difficult to read, and the
examples given are all small examples, of the searching and sorting variety. It is not clear
how the language would be used to describe bigger problems, or how refinement in parts
would be achieved.

L ogical Specifications for F un ctional P rogram s

In [68] Norvell and Hehner present an approach to expression refinement, w ith the aim of
deriving functional programs. As with the approach used for the imperative refinement
calculus, they take a simple program ming language of expressions, and extend it by adding
non-executable constructs. Non-determinism is achieved through the use of bunches [38, 39],
resulting in an erratic form of choice. Bunches are similar to sets, bu t without the bracket
notation, without nesting, and w ith distribution of operations over the elements.

1

t:

1 .2 . P ro g r a m D e v e lo p m e n t a n d R e fin e m e n t

A R efin em ent C alculus for N o n d eterm in istic E xp ression s

In his PhD thesis [90], W ard gives a fuller account of a refinement calculus of expressions
with a view to deriving functional programs. As in the work of Norvell and Hehner, he takes
a simple functional programming language and extends it w ith non-executable constructs.
Interesting additions include constructs for bo th demonic and angelic non-determinism.

The inclusion of angelic non-determ inism means tha t backtracking problems can be ex
pressed quite elegantly. This is because the evaluation of an expression involving angelic
non-determ inism in some sense looks ahead and chooses the correct value to give the desired
result.

W ard gives a semantics to the specification language based on a notion of weakest precondi
tions for expressions. W hile in the im perative refinement calculus statem ents are regarded
as functions from output states to input states, Ward treats expressions as functions from
sets of values (evaluations) to sets of environments. We consider th a t the resulting seman
tics is unnecessarily complicated. The weakest precondition semantics is very suitable for
a state-based language, bu t is not required to give a meaning to expressions.

Based on the semantics of the specification language, W ard gives a definition of the refine
ment relation between expressions and proposes a set of refinement laws, most of which are
intuitively reasonable. However, because of the overcomplicated semantics, the proofs of
these laws seem more involved th an expected.

Although this work results in an expressive specification language, and a formal notion of
refinement with associated laws, it is not clear how it would be used to tackle large problems.
W ard does not address the issues of structuring large specifications, which is essential for
any specification language.

R efin em en t o f Im p era tive E xp ression s

In his Ph.D. thesis [18], Bunkenburg describes a calculus of expressions which has as target
language an expression language w ith im perative threads. Although the aim of the calculus,
to derive im perative style programs from functional specifications, is different from th a t of
Ward or Norvell and Hehner, some of the approaches and techniques are similar.

Bunkenburg begins by laying out a language of expressions which includes a choice oper
ator n for demonic non-determinism. Non-term inating, or undefined, expressions are also
considered, with lazy function application. Bunkenburg claims th a t a lazy language is more
expressive.

1.3 . S tr u c tu r in g L arge S p e c if ic a tio n s 10

Im perative programming techniques are perm itted in the language through the inclusion of
the sta te monad (see chapter 4). The algebraic laws asociated w ith the monad are included
with the laws governing the expression language.

Informally, Bunkenburg treats non-determ inistic expressions as sets of outcomes which are
upward closed (with respect to definedness). An upward closed set is such tha t, if the
set contains an outcome v, then it also contains all outcomes be tte r (more defined) than v.
The refinement relation is then treated as superset between upward closed sets of outcomes.
Bunkenburg provides many axioms describing the behavious of the refinement relation,

A denotational semantics is given to the language, again using upward closed sets, bu t this
time in a formal manner. Bunkenburg states th a t a programmer needs the semantics to
write the initial specificaiton but not for the derivation of a program. The semantics are
needed to decide what to prove, bu t not in order to complete the proof.

The resulting semantics (for the non-im perative features of the language) is reasonably
straightforward, using notations and theory from powerdomain theory. It is also possible,
by extending the notation and imposing some restrictions, to give a denotational semantics
to the state monad within the same framework.

Bunkenburg dem onstrates the use of his calculus in a number of interesting examples
from various problem domains. These are all concerned w ith the use of state threads in
imperative-style expressions, rather than w ith basic expressions themselves. Consequently,
it is difficult to compare the use of the calculus with tha t of the pure expression refinement
approach of Ward.

1.3 S tructu rin g Large Spécifications

For large, or even medium sized, specifications and programs it becomes essential to have
some m ethod of structuring the specification into individual units. One of the most im por
tan t features of Z is th a t it supports the decomposition of large specifications into m anage
able units, called schemas. Each schema should model a conceptual unit of the specification
so th a t it is relatively self-contained, and can be reasoned about individually. This process
may be described as “separation of concerns” . A number of operators, such as conjunc
tion and disjunction, are defined for combining schemas, in a sensible manner, to form the
complete specification.

In the algebraic approach, type definitions may be structured so tha t each type declaration
represents a conceptual unit of the specification. Specifications are built in an hierarchical
fashion, allowing object classes to be defined in a structured way.

1 .4 . T h e s is P r o p o sa l a n d P la n 11

I

In [30], Pi’appier, Mill and Desharnais present a m ethod to promote program construction
by parts. Given a number of user requirements in the form of partial specifications, a partial
program is derived for each one. These are combined to form a program which satisfies all
the requirements simultaneously. Specifications are represented by binary relations, and
the derivation process is a stepwise transform ation of relations.

Back and Butler, in [2], examine various sum m ation and product operators in a higher
order logic approach to the im perative refinement calculus, using category theory. At a
more abstract level than [30], the sum m ation and product operators can be applied to the
composition of partial specifications.

1.4 T h esis P rop osa l and P lan

The aim of this thesis is to provide a refinement calculus suitable for the refinement of
expressions. The calculus could be used in a number of ways: to extend the im perative re
finement calculus by allowing specification and refinement using more abstract expressions;
to provide the basis for a calculus to allow the development of imperative programs from
specification expressions; or to provide the basis of a framework for the formal development
of functional programs from specifications. The approach will parallel the work of Back,
Morris and Morgan on the refinement calculus for imperative programs.

The first stage is to describe formally a simple specification language of expressions. This
is based upon familiar expressions of well-understood types, such as booleans, integers,
functions etc. Additional, less familiar constructs will allow the easy formulation of expres
sive and abstract specifications, giving maximum freedom to the implementor. In order to
achieve more abstract specifications we allow non-determinism in expressions by providing a
choice operator. We also aim to enable formal reasoning about and with expressions which
may contain undefined terms.

So th a t the extended language can be used to specify real problems it is vital th a t we
provide support for the construction of specifications in parts, together with operations to
compose partial specifications to form the whole. We will show th a t it is possible to reason
about and refine these partial expressions individually.

A refinement relation between expressions will be defined. As described in section 1.2, this
is a preorder, allowing the refinement process to progress in a stepwise manner. We will
show th a t constructs of the expression language are, w ith a few exceptions, monotonie with
respect to refinement, allowing piecewise refinement to occur.

.J

i

1.4 . T h e s is P r o p o sa l an d P la n 12

The last part of defining a refinement calculus involves the compilation of a set of laws
which may be used in the derivation of an executable expression, w ithout requiring the use
of the definition of the refinement relation at each step. We aim to provide both equivalence
laws, used in the m anipulation of specifications, and refinement laws, which describe how
expressions may be refined.

The expression language will be given a denotational semantics, w ith powerdomain struc
tures to capture non-determinism. The aim of the semantics is to provide a model of the
language which can be used to justify the axioms and rules of inference, and so dem onstrat
ing th a t the theory is consistent.

In general, we expect our specification language to look similar to th a t of Norvell and Hehner
and th a t of Ward, although there will be some different constructs which we have found
useful and more expressive in form ulating specifications. In particular, the support of partial
specifications extends both of these approaches. We feel th a t the denotational approach to
the semantics of the language is more suitable than the weakest precondition approach of
Ward. Although our semantics is similar to th a t of Bunkenburg, we discuss powerdomains
only at the semantic level, and so the user is not required to have any knowledge of a model
of upward closed sets. The simple semantics and ease with which refinement laws are proved
will support the claim th a t the denotational approach using powerdomains is most suitable
for a language of this form.

We hope to contribute to the area of formal program development by providing a refine
ment calculus of expressions with a simple semantics and support for the formulation and
development of specifications in parts.

1 .4 .1 P la n o f T h e s is

In this chapter we have given some background to the area of formal methods for spec
ification and development of software. We assume th a t the reader is familiar w ith the
various approaches to formal specification, formal programming in the style of D ijkstra
[24, 31, 38, 45], and the refinement calculus for imperative programs, as developed by Back,
Morris and Morgan [3, 4, 59, 62, 55, 56].

In chapter 2 we will introduce the specification language of expressions, based on familiar
m athem atical expressions, bu t including constructs to handle undefinedness, and a choice
operator to provide for nondeterm inistic expressions. We will also describe the logic which
forms part of the language, and give an argum ent th a t it is sufficiently axiomatised. In
addition we describe what it means for an expression to be partial and introduce operators
for forming and totalising such expressions, so excluding miraculous specifications.

1 ,4 . T h e s is P r o p o sa l a n d P la n 13

C hapter 3 describes how expressions are used to form specifications. The syntax of a
specification, as a collection of expressions, is described informally; and a num ber of small
examples is given to illustrate this.

In chapter 4 we address the issue of how to structure large specifications. In particular, the
formation, use and combination of partial functions as the units of partial specifications is
examined. This is accompanied by a larger example to illustrate these new ideas. We also
look at how certain monads, already used generally to structure functional programs, might
be used to structure specifications.

C hapter 5 examines how to reason about expressions, including how to prove properties
of, how to transform, and how to refine specifications. A proof system, based on the logic
system of the language, is described. In order to support more high level m anipulations
than those suggested by the axioms of chapter 2, a collection of transform ation laws is
provided. The refinement operator C is introduced into the language, w ith a set of axioms
and a collection of refinement laws to support the process of stepwise refinement. Examples
are used to illustrate the various concepts introduced, including an example showing the
derivation of an imperative-style expression from a simple specification.

The formal semantics of the language is described in chapter 6. This is a denotational
semantics using power domains to capture non-determinism. In particular, we tackle the
problem of giving a meaning to recursive function definitions which might contain non-
determ inistic terms. The refinement relation is given a meaning based upon the Smyth
ordering for powerdomains. We show how the semantic definitions support the axioms and
laws provided in chapters 2 and 5. We also consider how a semantics might be give to the
informal concept of specification modules introduced in chapter 3.

Chapter 7 concludes the thesis. A sum m ary of the main points is given, along with some
discussion of the contributions made. We compare the approach taken to other work in the
area of refinement calculi for expressions. Finally, some suggestions for future directions of
research are given.

C hapter 2

T he E xpression Language

In this chapter we aim to define a specification language of expressions. This language is
to form one of the components of the refinement calculus.

A programming language is not, in general, useful for specification, since specifications are
usually more abstract than programs. This is because a specification should be concerned
w ith expressing what is to be achieved, while the program implementing it will dictate how
the goal will be achieved.

As in the approach taken by Morris and Morgan in the imperative refinement calcu
lus [62, 59, 57, 56], we extend a simple language of expressions with operations and facilities
for constructing expressions which are more expressive and less algorithmic in nature. In
particular, we add operations for the m anipulation of undefined terms, and introduce non-
determ inistic constructs. Both of these add abstractness to specifications while allowing an
implementor to make certain decisions regarding the im plem entation of a specification.

Various concepts such as undefinedness, non-determinism, equivalence and refinement are
explored informally in section 2.1, as well as an overview of the methodology to be employed
in the description of the expression language. Section 2.2 gives a formal treatm ent of
undefinedness and non-determinism. The logic of the expression language is set out formally
in section 2.3, including an argum ent for sufficient axiomatisation. The types of expressions
are set out in section 2.4 using type rules and axioms. Additional language constructs for
specification are described in section 2.5.

Finally, section 2.6 treats the topic of partiality which, in this context, has a different
meaning to the usual m athem atical interpretation. In fact, as we shall see in chapter 4,
partial expressions, and partial functions in particular, are necessary for the construction

14

2 .1 . G en era l O v erv ie w 15

of specifications in parts. The introduction of partial expressions, however, also means the
introduction of possibly miraculous specifications. We show how this may be dealt with
syntactically.

2.1 G eneral O verview

In this section we give an informal overview of the various im portant aspects of the speci
fication language.

2 .1 .1 S c o p e o f t h e L a n g u a g e

The language of expressions we use in this thesis has a very broad scope. It is a specification
language, with a program ming sub-language as well as other non-algorithmic constructs;
it contains a logic, bo th for specification and also forming a reasoning mechanism for the
language; it has a m odule system which is suitable for the construction of large specifications;
it has relations for equivalence and refinement, used for comparing expressions; and it is
also a calculus, a framework for the rigorous construction of programs from specifications.
All of this will become clear in this and the next three chapters.

The basic specification language, which is treated in this chapter, is made up of expressions.
Each expression has a unique type, according to the type system described in section 2.4.
We do not say exactly which expressions form the programming sub-language. In fact,
this will depend on a given problem. For some applications of the calculus, the aim may
be to find a deterministic, well-defined specification. For other applications a more low-
level expression might be the goal. Indeed, it might be the aim simply to refine an initial
specification to a particular form which can be easily tranform ed into e.g. an imperative
expression. Elements which are certainly not present in the programming language are the
non-monotonic elements, such as the equivalence and refinement relations.

2 .1 . G en era l O v erv ie w 16

2 ,1 .2 U n d e fin e d n e ss

Undefined values necessarily occur in any m athem atical language of expressions. Simple
examples, w ith explanations, include

4/0 division by zero
0/0 = 1 division by zero

when complex numbers are not considered
hd{) trying to re tu rn the first element of the empty sequence

Although it is clear th a t such simple expressions do not result in a well-defined value, it is
not so clear what should be the outcome of such expressions as

(V n : Z I *n = 0 V n / n = 1)

"V

{\ /S ■ . S e q T \ * S = {) y S = hd S - t l S)

where, if the first disjunct is true, the second must be undefined. The first expression states
the property th a t for any integer n, either n is zero, or n /n = 1. The second states a
property of sequences, th a t either a sequence is empty, or it is composed of its head and its

■■

tail. Undefined expressions are unavoidable, the problem lies in how to handle them.

We make the decision to handle undefinedness explicitly. In order to allow reasoning about
such expressions, we augment each type T w ith a special value ‘T ^ ’, usually pronounced
“bottom ” , which represents the undefined value of type T. For example, we say th a t the
result of the evaluation of the expression 4/0 is Tg. We shall drop the subscript in
if the type T is clear from the context, or is irrelevant. The undefined expression will
also be used to represent a “don’t care” value, where the specifier doesn’t care about the
result. This is in keeping w ith the treatm ents of [68, 90].

We now need to consider how expressions behave when their constituents are possibly
undefined. In most cases it is appropriate to enforce strictness, i.e. an operator will yield
T when applied to T. So, for example, the expression (4/0 + 3) is undefined, as is the
expression (0/0 = 1). As we introduce each operator of the language in turn, we will state
whether or not th a t operator is strict.

However, we do want to have the ability to reason about undefined expressions. For example,
it is desirable tha t the two quantified expressions above should hold. Enforcing strictness of
the boolean operators would result in these being undefined. This leads us to new versions

2 .1 . G en era l O v erv ie w 17

of the disjunction and conjunction operators which are symmetric and which satisfy the
equivalences:

X A False = False

X V True = True

for arbitrary (possibly undefined) logical expression X. Formal rules defining these opera
tors will appear in section 2.3. As well as these boolean operators, we will also introduce
other non-strict operators, including equivalence = and refinement C. As each such operator
is introduced we will describe its behaviour in the presence of undefined terms.

One issue which arises when considering possibly undefined expressions is th a t of mono
tonicity. An operation op is monotonie w ith respect to an ordering Ç if, for any expressions
E and F w ith E Ç. F, we have E' Ç F', where E' and F^ are the results of applying op to
E and F respectively. The new versions of conjunction and disjunction retain monotonicity
(with respect to the definedness ordering) and are equivalent to their 2-valued counterparts
when term s are well-defined. O ther non-strict operators may be non-monotonic, including
equivalence, essential for reasoning within the language. This operator allows us to assert
such equivalences as (4/0 = T%).

In order to distinguish undefined term s in specifications, a non-strict, non-monotonic oper
ator 5 will be introduced. For any expression E of any type, 6 E is True if E is well-defined,
and False otherwise. Clearly ->5Tt' holds for any type T. Formal rules for 5 will be
provided in section 2.2 and as each type of the language is introduced.

2 .1 .3 N o n -D e te r m in is m a n d P a r t ia l i ty

To allow greater flexibility and to increase abstractness in specifications, we introduce the
possibility of non-determ inism in expressions. In a non-determ inistic expression, any one
of a num ber of possible outcomes is acceptable. For example, a familiar non-determ inistic
specification is to search a sequence for the index of a particular value. If the value occurs
more than once in the sequence, it doesn’t m atter whether the first, the last, or any other
occurrence of th a t value is found.

We adm it non-determinism by introducing the choice operator '[]’. For E and F expressions
of the same type T, the expression E ̂ F , also of type T, denotes the non-determ inistic
choice between the two expressions. Evaluation of E [] F could result in the evaluation of

2 .1 . G en era l O v erv ie w 18

='ï

î

A

E or the evaluation of F, bu t we don’t know or care which. Choice enjoys the properties
of commutativity, associativity and idempotency.

Non-determinism is often modelled in term s of sets of possible outcomes. For example, the
expression 3 has one possible outcome, namely the value 3. The expression \/4 , on the
other hand, has two possible outcomes, the elements of the set {—2, 2}. The set of possible
outcomes of an expression E\ \ F , then, contains the possible outcomes of expression E and
the possible outcomes of expression F.

Facilitating non-determinism in the expression language is not a simple m atter of ju st
introducing the choice operator []. We also need to consider how other operators of the
language behave in the presence of non-determ inistic operands. Most operators, such as
integer addition, d istribute over choice. So, for example, (3[]4)+7 = 10[]11. A few operators,
such as equivalence, refinement and some of the boolean operators, do not distribute. As
each operator is formally introduced in sections 2.3 and 2.4, we will state if th a t operator
distributes over choice. If it does not, we must show how th a t operator is used w ith choice.

We must also consider the definedness properties of a possibly non-determ inistic expression
E W F. In term s of sets of possible outcomes, the undefined integer T% has { ± z } as its set
of possible outcomes, while the expression 3 [] Tg is modelled by {3, Tg}. However, we say
th a t both expressions are undefined. We make the decision th a t ^(E [] F) should hold only
when both E and F are well-defined, S E A 6 F. This means th a t ~^S{E |] F) holds if either
E or F has T as a possible outcome. So, 5 T is False, as is J(3 [] T). In contrast, 5(3 [] 4) is
True, as is 5 3.

If an expression E yields a single, well-defined outcome, then we say th a t B is proper and
we write A E . For example, A 3 is True, while A T , A(3 [] T) and A(3 |] 4) are all False.
W hen all expressions are proper, the specification language reduces to the normal, everyday
expressions involving familiar types such as integers, booleans, tuples, functions etc. Formal
rules for the A operator will be given in section 2.2 and also as each type of the language
is introduced. Intuitively, it should be clear th a t if an expression is proper A E , then it is
well-defined 6 E .

An expression which has a non-empty set of possible outcomes is called total. Otherwise,
if it has no possible outcomes, not even the undefined outcome, we say tha t it is partial.
The partial value, which will be introduced in section 2.6, is w ritten T (top) and is m irac
ulous. This means th a t there is no program which implements it. We would like all our
specifications to be total, so th a t we can find (or calculate) programs to implement them.
Therefore, we make the decision th a t our language is to contain only to ta l expressions, al
though we allow partial sub-expressions. We will show how to accomplish this by restricting

%

2 .1 . G en era l O v erv ie w 19

the language, in section 2.6.2.

W hile equivalence ^ is an equivalence relation over expressions of the language, refinement
is an ordering relation. In fact, it is a pre-order. Intuitively, if E = F , then a customer
asking for E will be happy w ith F , and vice versa. If E C F , then a customer asking for E
will be happy with F , bu t not the other way round. Again, the refinement operator is not
part of the programming language, and is used for reasoning about (refining) specifications.

We have th a t an undefined expression can be refined by anything, so T j- C E for arbi
trary expression E of type T. This supports the decision to allow _L to be a “don’t care”
specification, since it can be replaced (refined) by anything. Thus refinement increases
definedness.

In term s of possible outcomes, certainly if the set of possible outcomes of E is a superset
of the possible outcomes of F , then we must have E Ç F . So, refinement decreases non
determinism.

Since the set of possible outcomes of the miraculous expression T is empty, and so a subset
of every set, it follows th a t T refines every expression, i.e. E Ç T for arb itrary expression
E . Of course, T cannot be implemented; if it could, the program mer would have a very
simple job.

Formal axioms describing the refinement relation will be given in chapter 5.

I

2 .1 .4 E q u iv a le n c e a n d R e f in e m e n t

We have already mentioned the existence of a non-strict equivalence operator = which does
not d istribute over choice. It is distinct from the usual equality operator = , which is strict
and does distribute. Equality will usually be part of the programming language and behaves
as expected when its operands are proper. Equivalence, on the other hand, is not part of
the algorithmic portion of the language. Its main role in the specification language is for
reasoning about expressions. In term s of our model, it compares sets of possible outcomes
- if two expressions have the same set of possible outcomes, then they are equivalent.

In sections 2.2, 2.3 and 2.4, the equivalence operator is used to give axioms defining the
expression language. These axioms are generally of the form E ^ F , for E and F arbitrary
expressions of the same type, which says th a t the set of possible outcomes of E is exactly
the set of possible outcomes of F .

'Ï-

i

2 .1 . G en era l O v erv ie w 20

2 .1 .5 T h e T y p e S y s te m

Every expression of the specification language has a unique type. This is achieved using
notation from type theory [6, 7, 20, 76, 87] to introduce various expression formers for
each type. The basic types of the language are booleans, integers, characters, products,
functions, sets, bags and sequences.

The type theoretic approach to defining the syntax of the language serves two purposes.
First, it shows how legal expressions of each type are formed, and so we say th a t valid
expressions of the language are those which are well-typed. For example, (3 Q 4) + 7 is
well-typed and so a valid expression; while 3 +> (4 = 2) is not well-typed and so not part of
our language.

Secondly, the type theoretic approach also assigns to each expression a unique type. Thus
the language has the property of type unicity.

We use the symbols T and Tj, for i any subscript, to represent an arbitrary type. A type
judgem ent, w ritten a : T , asserts th a t value a has type T, and E : T asserts tha t expression
E has type T. A type rule, consisting of zero or more judgements or conditions over a single
judgem ent and separated by a horizontal line, should be interpreted as meaning that, if the
conditions above the line are satisfied, then the judgem ent below the line may be asserted.
A condition may be of the form x : T F E : T ' , where x may occur free in E , meaning that,
under the assum ption th a t x has type T, then we can infer th a t E has type T ' .

As well as providing type rules for each expression former, we also give axioms describing the
behaviour of such expressions. The expressions introduced here are, essentially, familiar,
and their behaviour is well understood and documented, for example in [32, 39]. Our
m ain concern is to describe how the expression may be m anipulated in the presence of
undefinedness and non-determinacy. Many of the familiar axioms may hold only when
constituent term s are proper, or may require some subtle changes to allow for improper
terms.

In general, there are not many changes to the standard axioms since most expression con
structors are strict and distribute over choice, thereby only making it necessary to describe
their behaviour for proper sub-terms. W hen all term s are proper, the expressions behave
exactly as described in any standard treatm ent.

We will use the identifiers a, b for constant values; x, y for variables; E , E, G for arbitrary
expressions; P for Boolean expressions; / , g, h for function expressions; A for sets; B for
bags; S for sequences. For any expression E which may contain subexpression x, E[F/ x]
is the same expression, bu t w ith E substitu ted for each free occurrence of x.

2 .1 . G en era l O v erv ie w 21

2 .1 .6 T r e a tm e n t o f t h e L a n g u a g e

A

In the next section we begin the formal treatm ent of the expression language. The language
is described using type rules, to give the formal syntax, and axioms to give the behaviour
of the various expressions. Since the axioms must necessarily be presented in a linear
fashion, some operators are used before their axioms appear. For example, w ithin the axioms
for 5 and A, the implication operator =+ is used before im plication has been introduced.
Therefore, we assume th a t all axioms are asserted at once.

We start, in section 2.2 w ith an initial description of the operators [], 5 and A, since these
are probably new to the reader. The description is initial because more axioms concerning
these operators will appear in sections 2.3 and 2.4.

Section 2.3 describes the logical system of the language. This treatm ent is unusual in tha t
seven logical values are accomodated. Since most of the logical operators are non-strict
and do not distribute over choice, some attention must be given to the collection of axioms
describing them. We also show th a t seven distinct values do exist and outline an argument
th a t every logical operator is fully defined w ith respect to these seven values.

Section 2.4 then describes the remaining types of the language - integers, characters, prod
ucts, functions, sets, bags and sequences. These types are well-known and understood and
so it may be surprising th a t they are treated here in such detail. The answer is that, while
the types may be familiar when all term s are proper (well-defined and deterministic), we
need to explicity treat the expressions in the event of im proper terms. In many cases it
is not so straightforward w hat is meant by, e.g. applying a function to a non-deterministic
argum ent or adding an undefined value to a set. W hat we intend to achieve is to provide a
set of axioms which describes exactly this form of behaviour, allowing us to reason about
and m anipulate formally such improper expressions.

A

4For each of the basic types (booleans, integers and characters) we will introduce the proper
values. These correspond to the usual values of each type, e.g. True and False for the
booleans. The term s E, F, G, P , Q, R, f , g, h, A, B and S all denote total expressions
unless otherwise stated.

Finally, section 2.6 will trea t partial expressions.

I

.
2 .2 . U n d e fin e d n e ss a n d N o n -D e te r m in is m F o rm a lly 22

2.2 U ndefined ness and N on -D eterm in ism Form ally

E : T F : T E : T F : T

± T : T

This rule states th a t for any type T, ± t has type T. This is the T-introduction rule.

Non-determinism is introduced into the language using the choice operator:

E ■. T F : T
E W F : T

So, if E and F are bo th expressions of type T, then the expression E \\ F also has type T.
This is the Q-introduction rule.

We introduce the operators 5, which determines the definedness of an expression, and A,
which determines proper expressions.

E : T E : T
Ô E : Bool A E : Bool

Now the following axioms describe some of the properties of the above operators. O ther
axioms will follow in sections 2.3 and 2.4. We assume th a t E , E and G are arbitrary
expressions of an appropriate type and v is any proper value of appropriate type.

A x io m s fo r 6 a n d A

A V

A X

—ij T y

We first give the type rules for statem ents about equivalence and equality of expressions.
For any type T, non-strict equivalence and strict equality exist

(E = E) : Bool (E = E) : Bool

The type Bool will be described in the next section.

Now, we introduce undefinedness into the expression language using the type rule:

2 .2 . U n d e fin e d n e ss a n d N o n -D e te r m in is m F o rm a lly 23

A E 6 E

A(5E)

A (A E)

These axioms state that: all proper values and all variable expressions are proper (and
hence well-defined); for every type T, T y is not defined; every expression th a t is proper
is necessarily well-defined; and it is always determined whether an expression is proper or
well-defined.

A x io m s fo r []

E \ \ E ^ E

E Q E - E Q E

E fl (E D G) = (E 0 E) Q (7

A (E Q E) = A E A A E A (E - E)

5(EQE) = 5 E a 5E

These axioms state that: choice is idem potent, symmetric and associative; the expression
E [] E is proper whenever E and E are proper and equivalent expressions; the expression
E [| E is well-defined exactly when both E and E are well-defined.

E q u iv a le n c e

E = E

{E = F) = { F ~ E)

((E = E) - True) = (E = E)

(E = E) A (E = G) (E = G)

(E = E) => {G[Ej x\ - G[F/x])

(E # E) = -n(E = E)

The first four axioms give the usual properties of equivalence. The fifth axiom is the axiom
of Liebniz, which enables substitu tion of equivalent subterm s in an expression G . Clearly,
X must have the same type as E and E. The last axiom defines non-equivalence.

2 .3 . T h e L ogic 24

E q u a l i ty We let w, r and w range over proper values of type T.

2.3 T he Logic

The type of Booleans is represented by Bool and has two proper values, True and False.

True : Bool False : Bool

Prom these type rules, and the J_~introduction and ^-introduction rules, it follows tha t
we can form seven values of type Booh True, False, 1-Booh True False, True \\ ±Booh
False [] 1-Booli True [] False [] X booI- We will show, after the presentation of the axioms for
logical expressions, tha t these values are distinct.

The usual disjunction and negation operators exist

P : Bool Q : Bool P : Bool
P V Q : Bool ~>P : Bool

6{E = F) = S E A S F

A {E = F) = A E A A F

A {E = E) - ((E = E) = (E = E))

(E = E) = (E = E)

{u = u)

{u — v) A {v — w) ^ {u — w)

(u = v) = (u = v)

((E(j F) = G) ^ (E = G } l } (F = G)

(E / E) = -n(E = E)

The first three axioms state definedness and determinedness properties of equality. The ■
next five axioms sta te the usual properties of equality for proper values. The eighth axiom
shows how equality distributes over choice. The last axiom defines non-equality.

The negation operator is strict and distributes over choice. Disjunction is non-strict, but
does distribute over choice. The axioms for the propositional logic follow. We assume that
the symbols P, Q and R represent arb itrary expressions of type Bool.

A

2 .3 . T h e L ogic 25

D isju n ction

P V Q = Q \ / P

P W { Q y R) = { P V Q) V R

P V P ^ P

P V TYue = True

(P D g) v E = (P v E) a (g v E)

((P y Q) = True) = (P = True) V (Q = True)

The first four axioms give the usual properties of symmetry, associativity, idempotency and
True as a zero of disjunction. The next axiom treats the behaviour of disjunction with
non-deterministic operands. The last axiom shows distributive properties of ^ over V.

N eg a tio n

False = -iPrae

(-,P = Q) = (P = =Q)

~'S-Bool — -hBool

- . (POQ) = - P O - Q

The first two axioms define negation for proper values. The th ird axioms describes the
strictness property of negation. The last axiom treats the behaviour of negation w ith a
non-deterministic operand.

We now define conjunction and implication in terms of disjunction and negation. The
definition of conjunction is standard, bu t the definition of implication is a little unusual.

C onjunction

P A Q = - (- P V - g)

{ P A Q = P) = { P y Q ~ Q)

P A (g VP) - (P A g) V (P AP)

((P A g) = True) = {P = True) A {Q = True)

The first axiom defines conjunction. The second axiom is the consistency axiom. The last
two axioms show how conjunction distributes over disjunction, and a distribution property

2 .3 . T h e L og ic 26

of equivalence over conjunction.

Finally, we give an axiom concerning A for logical expressions.

A -D e fin itio n

A P - ((P = True) = P)

This defines A for logical values.

2 .3 .1 P r e d ic a te L o g ic

We now trea t quantification in our logical system. Prediate calculus introduces universal
and existential quantification over variables in a logical expression. In the current context
we need to consider what values the variables can range over; and what happens when the
logical expression may be improper.

We make the decision th a t the quantified variables range only over proper values of the
appropriate type. This means that, for example, the expression

(V X : Bool j »x — x)

is True, since x can take only the values True and False. This decision is further supported
by the axiom already given in section 2.2 which stated th a t any variable identifier x is
proper, A x .

The second consideration concerns the interpretation of quantification w ith expressions
which may be improper. We make the decision tha t universal quantification is to be treated

1

Im p lic a tio n

P zg, Q ~ -fP V -lA P V Q

p ^ (g = p) = (p =+ g = p => p)

(p = g) ^ (p g)

The first axiom defines implication. This is different from the usual definition, and is based
on a definition by Avion given in [1]. W hen P is proper, this definition reduces to the
usual definition of implication. The next two axioms show distribution of implication over
equivalence to the right, and the weakening of — to

y

I
vj®

2 .3 . T h e L og ic 27

as generalised conjunction and existential quantification as generalised disjunction. This has
the advantage th a t de M organ’s laws for the quantifiers are retained and th a t the classical
logic holds when all terms are proper.

O ther possible treatm ents might make the quantifiers strict and distribute over non-determ inistic
expressions. We find th a t our version is better in th a t the relationship w ith the disjunction
and conjunction operators is retained, which means tha t most of the familiar axioms for
predicate logic can be asserted in our system.

We now introduce quantified expressions and list the axioms which describe them . The
reader will be familiar w ith most of these axioms. Further theorems are listed in appendix A.
The most noticeable difference from classical theory is the Trading law for existential
quantification. The difference arises because of the new definition of implication. This will
be discussed further in the section.

For 0 one of V, 3, we have the type rule for introduction of quantified expressions

X : T F P : Bool x ■. T h Q : Bool
(0 3 : T I P • g) : Bool

We also allow quantified expressions of the form (03 : T | * g) which is simply a shorthand:

(03 : T \ »Q) = (03 : T | True • Q)

The meaning of quantified expressions is given by the following set of axioms. The symbol
0 represents either V or 3 throughout the axiom in which it occurs. In the following P ,
g, Q' and R represent arb itrary expressions of type Bool which may contain free variable
identifiers x or y; and E is an arb itrary expression of appropriate type.

O n e-P oin t Provided x is not free in E and A E,

(03 : T I 3 = E . g) = g [E/3]

D istr ib u tio n Provided x is not free in R

(V3 ; T ! p • g) A (V3 : p I p • g') = (V3 : r I p • g A g')
PV(V3 : T 1 p . g) = (V3 : T 1 P*PV g)

(33 : T I p . g) = =(V3 : T I P . - g)
(33 : T I . g) = =(V3 : T | # = g)

D istr ib u tion o f =

((V3 : P [P * g) = True) = (V3 : P | P » g ~ True)

(V3 : p I P . g = g') ((V3 : p I p . g) = (V3 : p I p . g'))
((3 3 : P I P • g) = True) ^ (3 3 : T \ P • Q = True)

Further theorems derived from the axioms appear in appendix A. One noticeable theorem
is th a t of Trading for existential quantification. D om the G eneralised D eM organ ,
Trading for universal quantification and the +>-Definition, we get

' '

2 .3 . T h e L og ic 28

Interchange o f D u m m ies Provided y is not free in P and 3 is not free in Q

(®3 : P I P . (Gy : P ' j g . P)) = (0^ : P ' I g . (03 : P I P . R))

N estin g Provided y is not free in P

(®3, y : P, P' I P A g . P) = (03 : P I P . (01/ : P' I g . P))

D u m m y R en am in g Provided y is not free in P or g

(0 3 : P I P * g) = (®y : P j P[y/x] • Q[yjx])

Trading

(V3 : P I P . g) = (V3 : P I . p =4- g)

G eneralised D eM organ

(33 : P I P * g) - (33 ; P I .-n (P = g))

This is equivalent to the usual 2-valued version when all terms are proper.

2 .3 . T h e L ogic 29

p
(V3 : r I .P)

M odus Ponens

Generalisation

A proof of theorem P proceeds as expected, by supplying a sequence of theorems ending with
P , where each member is an axiom, a known theorem, or follows from previous elements by
an application of an inference rule. Chapter 5 shows how we may reason about expressions
of the language using equational reasoning, similar to the style employed by Cries and
Schneider in [32].

The purpose of this section is two-fold. First, we attem pt to show that the seven values
of type Bool are distinct and th a t this is fixed by the axioms presented. Secondly we will
outline an argum ent th a t every operator introduced is fully defined with respect to these
seven values.

D istin c t V alues

We first show th a t True and False are distinct values, with the following short proof. Notice
th a t we are employing equational reasoning, to be justified in chapter 5.

False “ True
= ’"''True an identity for A (See appendix A)”

' t

2 .3 .2 T h e o r e m s

The set of theorems of the specification language is the smallest set of expressions of type
Bool such that: every axiom is a theorem; a theorem follows from other theorems by an
application of one of the inference rules

A

A;

2 .3 .3 S u ffic ien t A x io m a t is a t io n

f

®î:
We have seen tha t the type Bool contains the two proper values, True and False, the
bottom value, A-sooli and the various combinations of these w ith the choice operator, giv
ing True [] False, True [] 1-Booh False [] ± booI and True [] False [] 1-booI- In many cases, the
distinctness of any two values is shown using the operators A and 5.

2 .3 . T h e L ogic 30

[False = True) A True
= “Substitution rule for A (See appendix A)”

[False = True) A False
= '"''False a zero for A (See appendix A)”

False

and so we conclude th a t False ^ True.

The distinctness of any two values X and Y can be shown by finding a function / such th a t
/ A ^ / y . It follows th a t X ^ Y .

Consider the function A. From the axioms we note th a t A True and A False, bu t ~->A1.booI-
And so we now have three distinct values.

Now consider the value True [j False. From the axiom

A (E O E) ~ A E A A F a [E = F) (2.1)

it follows tha t

A[True [] False) = False

since [True = False) = False. So True [] False is distinct from both True and False. It is
also distinct from T booI since, from the axiom

0[E\ \ F) = 5 E A Ô F (2.2)

it follows that

6[True [] False) ^ True

since both 6 True and ô False hold, but ^5 J-booI- We now have four distinct values.

Now we consider the three values X [] ± booI for X one of True, False or True (] False. Using
the axiom for A, (2.1) above, we conclude tha t

A (X j] X booi) = False

and so A [| A booI is distinct from True and False. Now, using the axiom for 5, (2.2) above,
we conclude that

5(A 0 E booi) = False

’

I
.

2.3. T h e Logic 31

5

and so A [] ± booI is distinct from True [] False.

We now need to distinguish between the undefined values 1-Booh True [] -LbooÎ False [j ± booI
and True [] False [] 1-BooI- U nfortunately this is not possible from the axioms as they stand .
It would be necessary to introduce a new operator which would distinguish the value ± booI
from the other undefined values. A lthough this is possible, it would mean providing a
large number of axioms for the new operator to describe its behaviour with each form of
expression.

So, we cannot distinguish the undefined values 1-booA True \\ ±Booh False \ \± booI and
True [] False Q -LbooI from each other. Equally, we cannot prove th a t they are the same
value. This means a certain incompleteness in our axioms. It also dem onstrates how easily
the choice operator could be made demonic by simply asserting th a t all undefined values
are equivalent.

Sufficient A x iom s

The second objective of this section is to outline an argum ent th a t every logical operator
is fully defined w ith respect to the axioms. In the above argum ent we illustrated sufiicient
axiom atisation for the operators A and 5. We have also seen th a t = is not sufficiently
axiomatised since we cannot find a value for e.g.

{True [] ±Bool) ^ S-Bool

Note that, if we could distinguish J-booI from A [j ±Booh for arb itrary defined A , then it
would be a simple m atter to show seven distinct values. Using the disjunction operator we
would have

F booiY {TrueW ±Bool) = True\\±Bool

■S-Booi V {False j] T booi) — F booI

Since we could show that ± booI is distinct from True [] T booÎ we would conclude that
True [] S-Booi i s distinct from False [] T booI- N o w , using the expression tem plate (A = -iA),
we would have th a t the expression is True when A is True [] False [j F Booh and False when
A is either of True [| ± booI or False [] ±Booh

We conclude from all of the above th a t seven possible logical values exist and th a t a t least
four are distinct. Figure 2.1 shows how the operators A and ô distinguish logical values.

,:!f

2 .3 . T h e L ogic 32

True False A

True f| False

True 0 ±Booi False I] ± booI True Q False [] ± booI

T Bool

F ig u re 2.1 Using A and ô to distinguish logical values

O ther logical operators are V, A and =4>. Conjunction and Implication are defined in
term s of negation, disjunction and A, so our task now is to show sufficient axiom atisation
-I and V.

In the case of negation, the following facts are immediate from the axioms:

- ‘True = False

- ‘False = True

—‘T booI — -i-Bool

For the other four logical values, each of which is of the form (P [] Q), the axiom concerning
D is tr ib u t io n o f -< over [] is sufiicient to yield a value.

In the case of disjunction, there is an axiom describing True as a ze ro o f V, a theorem
describing False as a n id e n t i ty o f V (see appendix A), and an axiom describing the
id e m p o te n c y o f V. These laws, together with the axiom for d is t r ib u t io n o f V ov er |],
are sufficient to yield a value for P V Q, for logical values P and Q. To illustrate:

{True [] ±Booi) V {False | ± booi)
= “D istribute V over [], Associativity of []”

{True V False) Q {True V A-booi) Q {F booI V False) Q {± booI V T booi)
= ''‘True a zero for V, Idem potency of []”

■a :;

I

'i

i

2 .4 . T h e T y p e S y s te m 33

True 0 { 1 -B o o l V False) [] { ± booI V -Law)
= "False an identity for V”

True [j False |] {1-booI V T bqqi)
= “Idempotency of V”

True [] False [] ± booI

Now, conjunction and implication are defined in term s of disjunction, negation and A. It
follows that, for logical values P and Q, it is possible to find the values of P A Q and P Q
from the definitions of A and =+, and from the sufficient axiom atisation of -i, V and A.

2.4 T he T yp e S ystem

In this section we describe the types of the language and how to form expressions of each
type.

A
A;-
A;
'C
f;

'V

A
a

:
■A
A

■

A
The basic types are Booleans (as already described), Integers, Characters, as well as other
user-defined types to be described in chapter 3. Type constructors include products, func
tions, sets, bags and sequences. We trea t each of these in turn . We also give the axioms
governing the behaviour of expressions of each type. I t is not claimed th a t this set of axioms
is minimal.

2 .4 .1 In te g e r s

The type of integers is represented by Z, and we assume the usual proper values.

. . . , ~ 2 , “ 1 , 0 , 1 , 2 , . . . : Z

Prom the axioms for A in section 2.3, each of these is proper, and thus well-defined.

The usual operators over integers are included. For ® one of mod, fl (min),U
(max), we have the type rule

E , F : Z
E ® F \ Z

We assume the usual conventions for precedence of operators and the use of bracketing.

.?■
■a :

2 ,4 . T h e T y p e S y s te m 34

The integers are ordered by the ‘< ’ operator

E , F : Z
E < F : Bool

which has the usual interpretation, and similarly for other comparison operators > , ^

We assume the usual axioms of arithm etic for proper terms, e.g. [32], or a different approach
is given in [39]. In particular, we have induction over the natu ral numbers M, the subset of
the integers containing the non-negative elements of Z.

(V n : Z | n ^ 0 * (V « : Z | 0 ^ i < n * P) + > P[n/ i]) + > (V n : Z | n ^ O * P[n/ i])

For improper terms, all of the operators over integers are strict and distribute over choice.
For 0 one of + , —, *, / , mod, n,U,<

E © (E f l G) = (E 0 E) 0 (E © G)

(E 0 E) 0 G = (E © G) Q (E © G)

5 (E © E) =+ (5 E A 5 E)

The last axiom is an equivalence when 0 is one of

A ttem pts to divide by zero result in undefined terms. For 0 one of / , mod, and w ith A E ,

5(E 0 E) = 5 E A 5 E A (E ^ 0)

These axioms, together w ith the usual axiom atisation for proper integers, describe the
integers of our expression language.

2 .4 .2 C h a r a c te r s

The type of characters is represented by Char. We assume the proper values of the type
Char to include letters, ‘a ’, . .. ,‘z’ and ‘A’, . .. ,‘Z’, digits, 'O’, . .. ,'9 ’, punc tuation characters
and other symbols, e.g. as well as the space character, ‘ ’ and the end of line
character ' \ As with the integers, these also are proper, and hence well-defined.

A part from comparison of characters, using equality, there are no other operations over
characters. The m ain use for characters is to form strings, which are sequences of charac
ters.

a;;

-J-

A

11
4
::

2 .4 . T h e T y p e S y s te m 35

2 .4 .3 P r o d u c t s

For T\ and T2 types, so also is Tj x T2 a type.

A member of type T\ x Tg consists of the pairing of an element of T\ and an element of
T2 . We have the type rule

E- . T i F :T2
{E, F) : Ti X T2

Components of a pair can be retrieved using the (family of) functions fs t and sn d . The
type rules are

E : T i x T 2 E i T i X T2

fs t E ; Ti sn d E : Tg

The axioms concerning A are th a t a pair is proper iff its components are proper; and if a
pair is proper then retrieving its first or second component will result in a proper expression.

A (E , E) = A E A A E

A (f s t E) A A (s n d E) = A E

Product form ation and the functions fs t and sn d are strict,

5 (E , E) - S E A S F

5 (fs tE) = 5 E

5(sndE) = 5E

and distribute over choice

(EOE, G) = (E, G) D (E, G)
(E , E [| G) - (E , E) f l (E , G)

fst (E Q E) - fs t E 0 fst E

sn d {E W F) = sn d E [] sn d E

This deals w ith non-determ inistic product expressions and expressions with subterm s which
are not well-defined. For proper expressions we have the usual axioms, where A E and A E

f s t (E , E) = E

I

/ O g : T i - 4 T a

The following axioms hold for A

A (fu n X e Ti : E)

A { f o g) = A f A A g

So, a function abstraction is always proper, i.e. well-defined and deterministic, even though

1
I

2 .4 . T h e T y p e S y s te m 36

sn d (E ,E) s E

(E = E) = (fst E = fst E) A (snd E = snd E)

An example of where these axioms would fail w ith improper term s is the following:

(3,4) 0 (5,6) ^ (3 B 6 ,4 06)

■4:

t.

Bo th pairs have 3 [] 5 as the first component, and 4 [] 6 as the second, but the pairs are not
equivalent.

In general we allow product types of the form Ti X T2 x . . . x T„, for n ^ 2. Values of this
type look like (Ei, E 2 , . . . , E ^) for E, : T*. Associated projection functions are w ritten 7rf
of type Ti X T2 x . . . x - 4 Tj, for each 1 ^ i ^ n.

2 .4 .4 F u n c t io n s

For Ti and T2 types, so also is Ti - 4 T2 a type.
.V

E lements of a function type are formed using the type rule
y

3 : El h E : T2
(fun 3 € Ti : E) : Ti -4 Eg

Function application, w ritten using juxtaposition, has the following type rule.

/ : El Eg E : El

/ £ : Ta

We take function composition as a basic operation over functions, w ith the type rule

I ■■ Ta g : T i ~ f Ta

2 .4 . T h e T y p e S y s te m 37

its body E might not be. It follows th a t function abstraction is not strict and does not
d istribute over choice.

Function application and composition are strict, giving the axioms

2 .4 .5 S e ts

For T a type, so also is P T a type.

A set of type P E is an unordered, possibly infinite collection of elements of type E . Each

6 { f E) ^ 6 f A 0 E

6{f og) = 5 f A ô g

and distribute over choice

/ (E Q E) - f E W f F

{ f W g) E ^ f E ^ g E

^ (P fl /O ^ (/ ° p) D i f ° h)
i f Wg) oh = {f o h) W{ g o h)

I
"

This deals with function expressions which are improper. For proper expressions, w ith A F,
A / and A g, we have the usual axioms for functions

(fun x e T i : E) F = E[F/ x]

(J o g) E = ! { g E)

(/ = s) = (V* : T i \ » f X = gx)

The last axiom does not hold when either / or g is improper. Examples are

-hTi->T2 ^ (fun 3 G El : j-Ta)

(fun 3 G E : 3) [] (fun 3 G E ; 4) ^ (fun 3 G E ; 3 [| 4)

In both cases the left function expression is improper while the right function expression is
proper. The functions may also be distinguished when higher-order functions are applied
to them .

.4!

2 .4 . T h e T y p e S y s te m 38

type T is itself a set of type P T.

T : F T

Sets can also be formed using a predicate.

X : T P : Bool
{x e T ■. P } : F T

A set of type P T can be obtained by taking the generalised union of a set of sets, of type
T.

E E A : Bool

A for set expressions has the axioms, w ith T any type

A T

A { x g T ■. P}

A(u / A) <= A A

A {E g A) 4 ^ A E a A A

M embership G is strict and distributes over choice to its right.

S{E e A) ~ ô A A ô E

E e { A i \ \ A 2) = {E g A i) U E e A2)

A - . F F T
U/ A - . FT

Set membership is denoted by the ‘€ ’ operator.

E : T A : F T

I

Generalised union U/ is strict and distributes over choice

5(U/A) ~ S A

U/(Ai 0 Ag) - (U/Ai) 0 (U/Ag)

2 .4 . T h e T y p e S y s te m 39

This deals with improper sets. For the case where A, Ai : P T, A' : P P T, a: : T \~ P : Bool
and E : T, we have the axioms for proper set expressions A A, A A i, A A'

E G {x G T : P } ^ (fun x G T •. P)E

A G P A i = (Vx : T \ * x GA - =^ x G A\)

E GU/ A^ = { 3 A - . ¥ T \ * E g A a A g A')

(A = A') ^ (V a: : T \ »x G A = x G A')

A result of the axioms is th a t an expression E' [] F is in a set A only if bo th E and F are in
A. For example, we have

{2\\3) G {x g Z : X — x} = True

We define the empty set, and the usual operations for sets, where A, A' : P T, a : T,
h P : Bool , X : T \ - E T', i , j : Z, / : T T % P : T -A Bool

= { x G T False}
A U A' { x g T X G A V X G A'}
A n A' { x g T X G A A X G A'}
A\A' { x G T X G A A X ^ A'}
A C A' A e PA'
A c A' = A Ç A' A A ^ A'
{fl} { x G T X = a)
{ x G A : P } {x g T X G A A P)

{x G T : P : E} ~ {y C T' : (3 x : T • P A E - Ï/)}
{x G T : : E} { x G T True : E}
/ * A {a: C A : : f x)
p <1 A {x G T p x }

{*•■} (x G E : i ^ a:}

(•• il { x G E

= { i . . } n { •i}
N {0..}

A set A is f in i t e if there exists a one-to-one, onto m apping / from {0..n — 1} to A for some
natural number n; in th a t case its cardinality # A is defined to be equal to n. Otherwise A
is infini te. Finite sets may be described by listing the elements of the set, which is just a

2 .4 . T h e T y p e S y s te m 40

no tational shorthand . For example

{2, 4, 8} = {a: G Z : re = 2 V a; — 4 V a: = 8}

We also introduce reduce over sets, where © which is associative, commutative and idem-
potent, i.e. one of U, ft, U or □.

© : T X T -A T

® / A : F T ^ T

For any such ©, © / is a function which is strict and distributes over choice in its arguments.
So it is sufficient to give axioms for the behaviour o f © / when applied to proper arguments.
W hen Ai and Ag are proper set expressions, with A E ,

© /{E } = E

©/(Ai U Ag) = ©/ A i U ©/Ag

And when © has an identity 1@,

These axioms fix © / for finite sets only.

We say th a t reduce distributes to the left over non-determ inistic operators.

(e 10)/ = ®/ 0 0/

It is sometimes useful to consider only finite sets in a specification. For any type T, we
use F T to denote the set of finite sets of elements from T, with the expected operators
inherited from the type F T. In addition, we use T to denote the set of finite, non-empty
sets of elements from T . Bo th F T and F^ T can be defined within the expression language;

F T - {A G F T : (3 n : N | • # 5 = n)}

F^ T = F T \ 0 r

2 .4 .6 B a g s

If T is a type, then so also is IB T a type.

E lements of the type IBT are unordered, possibly infinite collections of elements of type T.

J

2 .4 . T h e T y p e S y s te m 41

A bag is described using a function giving the number of occurrences of each element in the
bag. We have the type rule

Æ : T h E : Z
[[æ : T x< E | : B T

For a bag B of elements from T and E : T , the expression B .E denotes the num ber of
occurrences of E in E .

E : B T E : T
B .E : Z

A bag expression using bag formation is always proper.

A[[æ : T XX EJ

Bag application is strict and distributes over choice to its left.

0{B. E) ^ S B a S E

(E i O E g j . E - E i . E Q E g . E

This accounts for bags which are improper. For proper bags we have the axioms

[[r : T XX Ejj.E - E [E /r] UO

(E = B') ~ (Vr : T 1 *B.x = B'.x)

If E is undefined or non-determ inistic at E, then this is reflected in the result of applying
the bag to E . So, although the bag [r ; T xx E]] and E may be proper, the result of the
bag application might not be.

The empty bag, bag membership, bag union, bag subtraction, the subbag relation and filter

2 .4 . T h e T y p e S y s te m 42

for bags are defined, for E , B' : M T , a : T , p : T -A Bool, x T P : Bool,

O r = [[a; : T XX 0]]

a E B © (E . a > 0 = True)
E W E ' = [[æ : T XX E . a r + E'.a;I]
E - E ' = Ix : T y?K B .x - B ' .x l
E Ç E ' “ { y x : T \ » B . x ^ B ' . x = T r u e)
p < B = [[æ i T x x i f p a ; th e n B .x e lse OJ
[[æ G E : ED = (fun x E T : P) <i B

Finite bags may be described by listing the elements of the bag, bu t this is just a shorthand
notation . So, for example

p , —2, —2,0]] = p : Z XX if r = 1 th e n 1 e lse
if r — —2 th e n 2 else
if æ = 0 th e n 1 e lse 0]]

[[‘a ’]] = p : Char xx if æ = ‘a ’ th e n 1 e lse 0 |

We have map and reduce for bags. W ith © an associative and commutative operator, we
have the type rules

f : T i ^ T2 0 : T x T - ^ T

W ith the axioms

A{f *) = A /

A(©/) = A ©

()(©/) = J ©

{/l D /2)* ^ /l * Q/2 *

(© Q 0) / = © / [] 0 /

It is now sufficient to describe the properties of /* and © / over proper bags.

/ * o = i i

/ * (El l±) Eg) = (/ * E l) l±i (/ * Eg)

2 .4 . T h e T y p e S y s te m 43

©/[[El = E
©/(El W Eg) = (©/El) © (©/Eg)

® / 0 — 1©

These axioms f ix /* and © / for finite bags only.

The set of non-empty bags of elements from type T is denoted by IBi T.

2 .4 .7 S e q u e n c e s

For T a type, then so also is Seq T a type.

E lements of Seq T are ordered, possibly infinite collections of elements of type T. A
sequence is described using a function m apping the natural numbers N or an initial subset
of the natural numbers {0..n} to elements of T.

n : Z i - .ZV- E T i : Z \ ~ E \ T
{i : {0..n} XX E) : Seq T (? : N xx E) : Seq T

The domain of the sequence is the set over which the sequence is defined.

S : Seq T
dom 5 : P Z

The expression # 5 , where S : Seq T, denotes the size (or length) of the sequence S.

S -.Seq T
E : Z

For / : Z, the element of type T a t position j in S is denoted by S[j].

5[?'] : T

Axioms for A are

A (i : (0 ..n} xx E) = A n A A E

A
:

;.s'
•■ÏI-

W hen © has an identity,

2-4, T h e T y p e S y s te m 44

A{i : N XX E) = A E

A S A A j A j e dom S

The functions dom, # and sequence application distribute over choice

dom (El [] Eg) ^ dom Si [] dom Eg

(5 'i [] Eg) = # E i [] #E g

(El 0 Eg)[i] = Ei[j] Q Eg[i]

Syih2]^S[ji]\\S\j2]

For proper E and j , i.e. A S and A j

■!'

A{dom S) A= A S

A (# E) 4= A E A {dom E ^ N)

J:

:
Î

""2
<$(#E) = dE A (d o m E # N)

6(E[/]) => j G dom S
'4

Now, the axioms for proper sequence expressions, w ith A j and / : F Z such th a t / = N or
there is some n : Z such th a t I = {0..n}

(% : J XX E) = # /

dom{i : I xx E) = 1

XX E) H = E | ; A] i f / G 7

(E ™ S') = {{dom S = dom S') A (V/ : Z | / G dom S * E[?‘] ^ E [/']))

We define the em pty sequence, sequence membership and m ap for sequences, w ith î : Z h E : T,
X : T, S : Seq T, f : T ^ r ,

()y - (i ; { 0 . . . - 1} XX E)

X E S = (3 z : Z I z G dom S • E[z] = x)

/ * E {i : dom S xx f{S[i]))

si

■

2 .4 . T h e T y p e S y s te m 45

Concatenation of sequences, S S', for S, S ' : Seq T is defined as follows

S - S' = (M (0,..., (#E + #5' + 1)} XX if z < #E then E[z] else S'[i - #5])
if S finite

S otherwise

Finite sequences, as for bags, may be described by listing the elements of the sequence.
Again, this is a notational shorthand . For example

It is now sufficient to describe the properties o f© / over proper sequences.

©/(E) = E
@/(6:i Eg) = (© /E l) © (©/Eg)

W hen © has an identity, 1©

0 = f ©

Now, filter for sequences and sequence comprehensions are defined, w ith E : SeqT, p : T -A-

I

(1 , - 2 ,—2,0) = (z:{G , . . . ,3 } xx if z = 0 th en 1 e lse
if z — 1 th en —2 else
if z — 2 th en —2 else
if z — 3 th en 0 else n)

(‘tt’) = (z : {0 ,.. . , 0} XX if z = 0 th en ‘a ’ else c)

where n may be any integer, and c is any character.

We introduce reduce for sequences. W ith © an associative operator, we have the type rule

© : T X r ^ T

© / : SeqT -A T

W ith the axioms

A (© /) ^ A ©

<5(©/) = d ©

(©0 0) / = ® / 1 0 /
$

Ï

2 .4 . T h e T y p e S y s te m 46

Bool, X : T F E : T ' , X : T P : Bool,

p <i S = {i : dom E xx if p E[z] th en {S[i]) else ())

{x E S : P \ E) ^ (fun x E T : E) ^ ((fun x E T : P) < S)

We identify the set of strings, String, w ith sequences of characters.

String ^ Seq Char

Instead of writing strings using the sequence notation, as in

C T \ 'h \T /s \ '\h \Y ," , 'a Y \ 's \ 't% h \h Y n \ 'g \h ')

they can be w ritten using double quotes, as in “This is a string .” .

We define the set of injective sequences of elements from a type T. IS eg T contains sequences
of elements in which any a in T occurs at most once.

ISeq T - {E G Eeg T : (V z,/ : Z ! 0 ^ i , j < # E * E[z] = S[j] ^ i = j) }

The set of non-empty sequences of elements from type T is denoted by Seqi T.

2 .4 .8 P a r t ia l M a p p in g s

We could also include the set of partial mappings from a dom ain type Ti to a range type
Tg, w ritten Ti -A Tg. This uses the Z notation and operations for partial functions, as
given in [75, 44], and can be defined in terms of sets of pairs of type Ti x Tg.

For example, we can define the set of partial mappings T% -A Tg as

T i - A Tg = { / G P (T i X Tg) :

(V r G Ti I •(Vz/i,i/g G Tg I {x,yi) G / A(æ,pg) E f • yi = z/g))}

For / a partial mapping in Ti -A Tg, instead of writing elements of / using product notation
(r , y) , we may use the standard m aplet notation r i-A z/. Override and application can be
defined as in [44]. The set of to ta l mappings Ti -A (Tg can be defined as

Ti -A(Tg = { / G Ti - e Tg : {z G Ti : (3 y G Tg I HA y G /) } = T J

Since the notation for partial and to ta l mappings is defined in term s of products, which

if P th e n E e lse F : T

2 .5 . L a n g u a g e C o n s tr u c ts 47

have already been treated for undefinedness and partiality, there is no need to give an
axiom atisation for them . They may be considered as useful syntactic definitions only.

2 .4 .9 S im p le T y p e s

We define the collection of simple types to be the smallest such which includes

• the types Bool, Z and Char;

• the types T\ x Tg, P T, IBT and Seq T for T, Ti and Tg simple.

2.5 Language C on stru cts

In this section we describe the expression formers of the language. Again we use type theory
to introduce the new concepts.

2 .5 .1 C o n d it io n a l E x p r e s s io n s

We introduce the constructor for conditional expressions, if P t h e n E e lse F. We have
the type rule

P : Bool E .E : T

In fact, we take the view th a t there is an if constructor for each type T, and th a t these
form a family of such constructors. The conditional expression is strict in its first argument.
Axioms for conditional expressions are

if True t h e n E e lse F ^ E

if False th e n E e lse F = F

-lA E ^ (if E th e n E e lse E = T)

The last axiom may seem a little odd, particularly for the case where E is Tr'ue [] False.
This derives from the fact th a t a conditional expression is considered to be part of the
programming language, rather than a specification constructor. As such, its first argument
is expected to be deterministic. If it is not deterministic, then the expression is treated as
undefined. We note th a t the if constructor described by these axioms is monotonie in each
argument.

■I

le t x\ = El II. . . \\xn ~ En in F

has type T' and may be defined as

le t xi = El II . . . IÎ M — En in F = (fun xi G T i , . . . ,Xn E Tn : F) { E i , . . . , En)

le t xi = E l & . . . & Xn = En in F

where Xi may occur in Ej provided i < j . This form is equivalent to

le t xi = El in (le t % = Eg in (. . . (le t Xn = E^ in E) . . .))

which, in turn , denotes

(fun xi E Ti : (fun xg G Eg : . . . (fun Xn E Tn : F)En ■ ■ .)Eg))E i

G

2 .5 . L a n g u a g e C o n s tr u c ts 48

2 .5 .2 L o ca l D e f in it io n s

We introduce the let expression for local definitions. If E : Ti and x : T\ F F : Tg, then
the expression

let X = E in F

has type Tg and is defined by

let æ = E in E ^ (fun x E T\ \ F) E

There is a let constructor for each pair of types (Ti, Tg).

More generally, several local definitions can be introduced in parallel using a single le t
construct, successive definitions separated by ‘||’. If E, : T, and we have the judgem ent
xi : T i , . . . ,Xn : T^ b E : T ', then the expression

Clearly the order of writing the definitions of the x f s in the le t expression makes no differ
ence to the expression.

To avoid having expressions with lots of nested le t definitions we introduce a syntactically
nicer form

i

il
2 .5 . L a n g u a g e C o n s tr u c ts 49

2 .5 .3 R e c u r s iv e F u n c t io n s

Recursive function definitions are included in the specification language using a let expres
sion where the free variable / may occur free in its defining expression E[f].

le t / = (fun X G T : E\ f]) in F[f]

The notation E\f] means th a t / is a free variable of expression E. We limit recursive
definitions to function types only. For example, we could have the expression

le t fac = (fun x G Z : i f x ^ 1 th en 1 else x * fac{x — 1)) in facS

which we expect should result in the value 6.

The behaviour of such a recursive definition may be described by unfolding its definition,
so we assert the axiom

le t f ^ E[f] in F\f] - E [E[(let / = E[/] i n /)]]

Applying this a number of times to the above example gives the desired result. This axiom
states tha t / is a fixpoint of some functional. In fact, as will be seen in the semantics
presented in chapter 6, / is a least fixpoint of the functional, w ith respect to a definedness
ordering.

2 .5 .4 S p e c if ic a t io n E x p r e s s io n s

We introduce a new operation on sets called generalised choice and write this []/. Clearly,
it is based on using the choice operator [] w ith reduce for sets. If E is a non-empty, possibly
infinite set of type F T, then the expression [J/E has type T and can be interpreted as
‘choose any element of E ’. For example

0/{3,4 ,5 ,6} - 3 Q 4 Q 5 f l 6

The type rule is

E : P T

I:

D/E: T

Expressions of the form D/E are term ed specification expressions [90].

2 .5 , L a n g u a g e C o n s tr u c ts 50

We have the following axioms for | /

A(D/5') = (# S = 1)

5 { y S) = 6 S

D/(5i I = (D M) D ([]/%)

and for A S , A Si and A Eg

D/{^} = ^
D/(EiUEg) = (D/Ei)D(D/Eg)

(0/El = 0/Eg) - (El = Eg)

The expressive power of the generalised choice operator is realised when it is used with set
comprehensions. We have the axiom

(3a; e T . F) ^ E(D/{% G T : P x})

An initial specification can be given by defining the properties required of a solution using a
predicate P say, forming the set of all elements which satisfy th a t property [x E T \ P x},
and then using 0/ to choose any one of those elements. Prov ided it can be proven tha t
there is a solution, i.e. (3 a; G T • P) , then the set {a; G T : P a;} is non-empty, and the
specification is given as

fl/{a; e T P x]

which may, of course, be a non-determ inistic expression. For example

D/{a; G Z : 0 ^ a; : 2 * a:} Any even natural
D/{s G P Z : j f s — 10} Any integer set w ith exactly 10 elements

More interesting examples using this form of specification can be found in the following
chapter.

2 .5 .5 A s s u m p tio n s a n d P a r t ia l ly D e f in e d F u n c t io n s

We introduce a new expression constructor, w ith the type rule

P : Bool E : T
P > ~ E : T

2 .5 . L a n g u a g e C o n str u c ts 51

The boolean expression P is called the assumption . The intuitive meaning of P >— E is
such th a t, if P = TYue then P >~ E = E , and otherwise P >— E = 1.t -

The assum ption constructor >— is strict in its left argument and distributes over choice to
the right. Axioms for assum ptions are, w ith E \ T ,

P G - E D P = (P G - E) Q {P >~ P)

True >~~ E ^ E

False >— E = T J-

- AP=4> (P : ^ E = T r)

This last axiom may appear unusual for the case when P is True D False, although we
notice th a t >— is monotonie in both arguments. The above axiom atisation is useful for case
based reasoning about expressions of the form P >— E . There are three cases to consider,
P = Tf'ue, P “ False and -lA P .

We sometimes want to specify a function which will only ever be applied to elements of a
restricted set, and we don’t care what happens if it is applied to something outside th a t set.
For example, the integer square root function should only ever be applied to the natural
numbers, N. Having assum ptions gives us an easy way to write such functions which are
only partially defined. For A a set of type P T, we define

(fun X E A : E) = (fun x E T \ {x E A) > - E)

Now the function (fun x E A \ E) acts like the function (fun x E T : E) whenever it is
applied to something in A. For any a ^ A, the result of the application will be equivalent
to T.

For example, the square root function can be specified as

Sqrt = (fun n G N : []/{a; G Z : x “̂ ^ n < {x A 1)^})

It can be proven th a t the set comprehension will not be empty, and so D/ will pick one of
the elements which satisfy the predicate used to describe the set.

2 .5 . L a n g u a g e C o n s tr u c ts 52

IA:
3

2.5.6 In v e r se F u n c t io n s

For any function / : Ti —> Tg, we define the inverse o f / , c a lle d /“ ̂ as follows. For externally
nondeterministic functions, we assert th a t inverse distributes over choice,

For / proper we define

/ - (fun z /G Tg : (?/G / * Ti) > - D/{æ € Ti : / x ~ y})

So, for any y G Tg, f ~ ^ y is defined if there is some x G Ti, not necessarily unique, with
f X ^ y , i.e. y is in the range of / . If there is more than one such x, in the case where / is
internally nondeterm inistic, the result of / " ^ y is a choice between them .

2.5.7 G e n e r ic F u n c t io n s

A generic function definition actually defines a family of functions. The notation we use is
funct ion^name[T], which represents a family of functions, one for each type T . In actual
use, the index T can usually be inferred from the context, and so the index will be dropped.

A generic function is defined using a type param eter, as in

funct ion-name[T] ^ f r

where / is a function expression containing the type index T. For example, we could define
a generic search function as follows

search[T] = (fun x E T, A G Seq T : (3 z : N | * A [z] — x) > - \\/{i E N : A[i] — æ })

This actually specifies a family of search functions, one for each possible type T.

More generic functions will be described in chapter 3.

A polymorphic function is one whose actual param eters can have more than one type.
L iterature in the area of type theory, e.g. [20, 21, 29, 76], identifies at least two forms of
polymorphism: param etric polymorphism, where a function works uniformly on a range
of types; and ad-hoc polymorphism, where a function works on several different types and
may behave differently for each type.

Our generic functions, defined using a type param eter, are similar to param eterised tem
plates. They must be instantiated w ith actual types before use. Bu t each instantiated

i;

2 .6 . P a r t ia lity 53

function behaves in the same way, independent of the type instantiation . Thus we claim
th a t our generic functions provide a weak form of param etric polymorphism .

In most cases, this weak form of polymorphism is sufficient. W hat is missing is the possibility
of having higher-order functions th a t accept polymorphic functions as arguments. For
example, although we can define

id[T] ^ (fun X E T : x)

which, for a given type T, has type T -> T; we are not allowed to define the function

illegal[T] © (fun f E T T : {f 3 J True))

because it cannot be typed for a given T .

The reason we are using the weaker form of polymorphism for our expression language is
because of the simplicity of the type system . In order to allow higher-order functions ac
cepting polymorphic functions as argum ents, we would require a second-order type system .
A lthough we have not fully investigated such an approach, Reynolds [76] suggests th a t type
deduction in such a system might be problematic, and tha t the language could present
semantic difficulties. On the other hand, he also presents some examples illustrating the
possible benefits arising from the more expressive langauge.

2.6 P artia lity

Experience with the Z specification language has shown th a t it is a useful feature to allow
a specification to be constructed in parts . Such partiality is distinct from undefinedness as
described in section 2.1. Partia l specifications mean tha t a single aspect of the problem can
be focussed upon in isolation, and the complete specification obtained by assembling the
parts.

We obtain partiality by introducing an identity for choice, which we give the fictitious value
T, pronounced “top” . So, we have th a t T D E = E for any expression E . We assert th a t T
is distinct from T , and so it m ust be well-defined J T . Bu t T is not a proper value, so we
assert - lA T .

Now th a t y has an identity, it follows th a t the generalised choice operator []/ is also defined
for empty sets. From the properties of reduce we must have th a t []/0 = T .

2 .6 . P a r t ia lity 54

We now introduce the concept of a guarded expression. We have the type rule

An alternation expression is of the form P i -A Ei Pn -A En- Any guard P* which
evaluates to False has the result th a t the guarded expression P, -A E{ effectively disappears
from the alternation . If all the guards are proper, then the alternation is such th a t some
expression Ej for which the corresponding guard Pj evaluates to True will be chosen and
evaluated. For example, the alternation

a; > 0 ^ ‘+ ’ fl a; < 0 -A

As defined in section 2.1.3, we say th a t an expression E is total if E cannot evaluate to T .
O therwise E is partial All the expressions we have seen so far have been total.

2 .6 .1 P o t e n t ia l ly P a r t ia l E x p r e s s io n s

P : Bool E : T
P -A E : T

where the boolean expression P is called the guard. The intuitive meaning of a guarded
expression P — E is such that: if P is True then P -A E = E; if P is False then
P -A E = T; and otherwise P -A E = T .

The expression constructor -A is strict in its left argument and distributes over choice to
the right. The axioms are, w ith E : T,

True -A E = E

False -A E = T

-nAP=4> (P - > E = A t)

As for assumptions, these axioms have been formed to facilitate case-based reasoning. To
prove something about an expression P ^ E it is convenient to consider three cases,
P = T'ue, P = False and "lA P .

Since an expression of the form P -A E may ‘evaluate’ to T, we say th a t guarded expressions
are potentially partial. This means th a t expressions of the form []/E are also potentially
partial, in the case where S might be empty. We note the following law, for any set S with
A S .

D/E = (E ^ 0) y/E

2 .6 . P a r t ia lity 55

2 .6 .2 M a n a g in g M ir a c le s

A lthough the introduction of T brings great expressive power to the language and, as we will
see in chapter 5, greatly facilitates the piecewise refinement of expressions, it is nonetheless
a very dangerous expression.

No program can satisfy the specification T. It is the miraculous specification which solves

■I

will evaluate to ‘+ ’ if the integer x is positive, to ’ if x is negative, and to either ‘+ ’ or
if a; is 0. An a lternation expression is potentially partial, since all guards may be False.

The conditional expression, introduced in section 2.3, is a special form of the alternation
expression. We have

if P th e n E e lse F = P ^ E \\ ^ P F

It should be clear th a t a conditional expression is total, provided E and F are total.

Partia l expressions, on their own, are not useful as specifications, since no program can
satisfy such a specification. The intention in introducing potentially partial expressions is
tha t they may be combined, using choice, to form to tal specifications. In order to control
occurrences of potentially partial expressions in specifications, we restrict the syntax of the
language, as described in the next section.

I

all our problems, bu t cannot be implemented. We will see, in chapter 5, th a t it is the
most refined specification, since it refines every expression. Therefore, we have a problem .
Given an initial specification expression E, there is nothing to stop the developer from over-
refining E, perhaps in a sequence of steps, to the miraculous specification, thereby resulting
in something which is unimplementable. A lthough this is not desirable on the part of
the developer, it is possible th a t he may inadvertantly introduce partial, and therefore
problematic, subexpressions during the refinement.

We intend to control occurrences of potentially partial expressions so th a t every specifica
tion of the language, whether an initial specification or one calculated by refinement from
a previous specification, is total. We find th a t it is possible to impose simple syntactic
restrictions which will ensure th a t every specification is a to ta l expression.

■

R ec o g n is in g P o te n t ia l ly P a r t ia l E x p re ss io n s

From the language description in this chapter, and from earlier comments in this section,
we see tha t potentially partial expressions can occur in exactly 2 possible ways:

■

2 .6 . P a r t ia lity 56

• from a generalised choice, Q/E

• from a guarded expression, P -A E

E n E : T

Intuitively, E j] E is equivalent to E if E is total, otherwise E j] E is equivalent to E .
Biased choice is associative and idem potent, bu t clearly not symmetric. It is strict in its

I

In the first case, the expression |]/E is partial when E is the empty set; in the second
case, the expression E -A E is partial when P is False. There are no other constructs
where partiality might be created. All other language constructs are total. So, it is only
in the cases of generalised choice and guarding where we need to be concerned about the
possible introduction of the miraculous expression T . Both of these cases are recognisable
syntactically.

Po tentially partial expressions are defined as the smallest subset of expressions satisfying

• Expressions of the form D/E are potentially partial.

• Expressions of the form E -A E are potentially partial.

• If E is potentially partial then so is E D E, for arb itrary E .

R estr ic tin g th e S yn tax

We don’t want to eliminate potentially partial expressions completely. We’ve seen tha t
guarded expressions are very useful when used with choice to form alternation expressions.
Generalised choice expressions are also extremely useful specification tools. We do, however,
intend to ensure th a t potentially partial expressions are never used directly with operators
(other than choice), constructors or function application. None of these can create partiality,
bu t they would propogate it.

W hat is required is a way of ‘totalising’ potentially partial expressions, i.e. transform them
into to tal expressions, soThat they can be used freely in specifications. We introduce a new
operator, biased choice D , which always chooses its left operand if possible. The type rule
is

I-

E ,E : T

2 .6 . P a r t ia lity 57

left argument and distributes over choice to the right. We have the axioms

(E = T) ^ (E I E = E)

(e ^ t) ^ (e | e = e)

—̂
Most im portantly, the expression E [] E is guaranteed to be to ta l if F is. This means that
given a potentially partial expression, such as E —> E , it can be ‘totE^sed’ by combining it
w ith a to tal ‘alternative’ E , giving an expresson of the form E -A E \\ F.

• operands of Q - thus forming a new potentially partial expression;
—̂

• the left operand of D - thus forming a to tal expression;

The specification form E D X is used frequently in specifications. Intuitively it means tha t
if E is to ta l then choose an outcome of E and otherwise we don’t care about the value of
the expression. We define the shorthand

if E fi = E I X

which allows us to write nicer alternation expressions, for example

(fun a; G Z : if a; > 0 —> ‘X ’ Q a; ^ 0 —)• ‘—’ fi)

instead of

(fun æ G Z : (a; ^ 0 “A- ‘X ’ D a; ^ 0 -A ‘—’) [] X)

if E th e n E else X = (E — E) D X

We now give the extra restrictions placed on expressions of the specification language. The
use of potentially partial expressions is such th a t they may only be:

• operands of Ç, A and 5 - thus forming to tal expressions.

B ia se d C ho ice a n d C o n d it io n a ls

A

There is a connection between expressions based on biased choice and the conditional ex
pression which we met at the end of section 2.5.1. We have tha t

2 .7 . C o n c lu sio n s 58

Further, if A P

if P th e n E e lse E = (E -A E) | E

A R e la x a tio n o f th e R u le s

■«

0-

I
I
I
i

’I

There is one case where we would like to relax the special syntax rules given above. In
general, we are not perm itted to write E > - []/E, since Q/E is potentially partial and so
cannot be an operand of the assum ption operator >—. However, if E guarantees th a t E is
not empty, and A E , then we allow such expressions. In particular, we allow

E 7̂ 0 D/E

{ 3 x e T * P x) >~ y { x e T : P x }

We claim th a t such a form is very useful for specifications, and we have in fact already used
this style of specification in the definition of function inverse in section 2.5.6.

The justification for this relaxation is based on the theorem, which will be given in chapter 5,

(E7^0:-D/E) = D/EÎT

when A E. Since T is total, the expression on the right is total, and so the expression on
the left must also be total.

2.7 C onclusions

In this chapter we have defined a specification language of expressions, based on ordinary
m athem atical expressions, bu t including facilities for the form ation and m anipulation of
expressions which are undefined or nondeterministic.

The language has been described using type rules and axioms. The type rules ensure that
every expression has a unique type. The axioms describe how the various constructs behave
w ith non-proper term s, which is usually based on strictness and distribution over choice.
Axioms are also provided for proper terms.

The syntax of specification modules will be described in the next chapter, where we give a
num ber of small example specifications, illustrating the use of the various concepts of the
expression language.

■I

I
■

2 .7 . C o n c lu sio n s 59

A proof system governing the m anipulation and refinement of expressions using these axioms
will be discussed in chapter 5.

Section 2.6 introduced the concept of a partial expression. Such potentially partial expres
sions cannot be implemented and so can be dangerous in a specification. However, they are
useful in the process of constructing specifications by parts . This m ethod of constructing
specifications will be further developed in chapter 4 when we describe how the language
can be used for large specifications. On a bigger scale, considering specifications in parts is
vital.

Luckily, potentially partial expressions may be recognised syntactically. They may arise in
only a lim ited number of ways. This means th a t it is possible to control their use and, by
always totalising such expressions, to ensure th a t complete specifications are always total.

j
i
>5-
?

A

■iii

.....

C hapter 3

M aking Specifications

In this chapter we show how to use the specification language of chapter 2 to make specifi
cations.

F irst we define some generic functions which, though not part of the language definition
itself, are used frequently in specifications. R a ther than replicating their definitions at each
point of use, they are defined in section 3.1, w ith the understanding th a t the function names
are replaced by their definitions wherever the names occur. The act of replacing a name by
its definition is sometimes referred to as unfolding the definition.

The concept of a specification module is described in section 3.2. A lthough each expression
of the language is a specification, it is generally the case th a t a specification will require
a number of expressions, together w ith user defined types, collected together to form a
module. We describe m ethods by which user defined types, e.g. Book, Person, Colour
etc. , can be introduced into a specification, and give an informal syntax for specification
modules.

Finally, to illustrate the expression language and how it is used in specification, we give four
substantial examples. A larger example illustrating the problem of structuring specifications
will be developed in chapter 4.

3.1 U sefu l F un ction s

In this section we define some generic functions which are useful in specifications.

60

I
:#

G

%

Al

3 .1 . U se fu l F u n c tio n s 61

R a n

BagToSet[T] A (fun B E ' B T : [x E T : B .x > Q])

Similarly, the function SeqToSet[T] converts a sequence S of type Seq T to a set of type
P T, defined by

SeqToSet[T] ~ ran[T]

This is the same as ju st using ran[T] but, in a specification, it may be desirable to make
explicit the intention of converting a sequence to a set.

M a x im is in g /M in im is in g F u n c tio n s

m i n W R T } ^ {(1,2), {2)} = {(1),<2)}

mmW^iîT/u{(2,4) ,(8,8) , (4 ,7), (8.1)} = {(2,4)}

I
The range of a function is the set of its possible outcomes. The function ran[Ti, T2] is
applied to a function / of type T\ -A T2 and returns its range, formally

't
ran[Tu Tg] - (fun / G Ti ^ Tg : / * Ti)

The range of a sequence is simply the set of values th a t appear in it. In this case, the
function ran[T] is applied to a sequence S of type Seq T and returns its range, formally

ran[T] © (fun E G Ee? T : {z G {0 . . . # E - 1} ; ; E[z]})

C o n v e rs io n s to S e ts

It is sometimes necessary to convert a bag or a sequence to a set. For a bag, this means
losing frequency information, and for a sequence, both duplication and order are lost. The
function BagToSet[T] converts a bag B of type IBT to a set of type P T, and is defined by

A very useful generic function is minW RT[T] which, when applied to a function / of type
T —> Z and a set E of type P T, results in the set of elements of E which minimise / . For
example

3 .2 . T h e F orm o f a S p e c if ic a tio n 62

where

and U is the max operator introduced for the base type of integers. The definition for
m.inWRT[T] is given as

minWRT[T] = (fun / G T -A Z : (fun S e F T [x E S : y E S • f x ^ f y}))

Similarly, the maxWRT[T] function is defined as

maxWRT[T] A (fun / G T - > Z : (fun S E F T - . { x E S : y E S • f x ^ f y]))

and results in the set of elements of S which maximise / . From the above examples,

m axW R T {(1, 2) , {\) , {2)] = {(1,2)}
maïW'iîî’ /u { (2 ,4) , (8 ,8) , (4 ,7) , (8 , l } } = {(8,8), (8.1)}
ma2;TOT/n{(2 ,4) , (8 ,8) , (4 ,7) , (8 , l) } s {(8,8)}

with U (max) and fi (min) as before.

We also allow minWRT[T] to be applied to bags and sequences, with implicit use of the
BagToSet[T] or SeqToSet[T] functions. Thus, for B a bag

m i n W R T f B = m i n W R T f [BagToSet B)

and similarly for sequences. Notice th a t the result is still a set and not a bag or sequence.
This implicit conversion is merely a shorthand in the case of maximising/m inimising func
tions, and is not a general rule.

I
. 'A :

/# = (f u n E G E e g Z : # E)

/u = (fun p E Z X Z : fst p U snd p)

3.2 T he Form o f a Specification

In this section we consider what is a specification. In its simplest form, a specification is
ju st an expression with no free variables, w ith the special property th a t it is total. So, many
of the expressions we’ve already seen are specifications.

In general, an expression which is a useful specification will probably be large in size,
containing a num ber of local definitions. In such cases a clearer presentation would be to
list the local definitions as named specifications, intervened with explanatory text. So, we

i

3 .2 . T h e F orm o f a S p e c if ic a tio n 63

W ithin a specification expression we may need to introduce new types. For example, it
would be impossible to give a library specification without referring to books, members,
people etc. We now describe how such types may be introduced and used.

3 .2 .1 T y p e s in S p e c if ic a t io n M o d u le s

As well as the known types, and those which can be constructed using the type constructors
described previously, it is also possible to introduce new types in specifications. Since we
give type rules for these types, they can, in turn , be used w ith type constructors to form
more complex types.

may write a long specification, of the form

le t 5i = -El & 5*2 = F 2 & • ■ - in En

where the E(are typically long expressions, as

S i = E l

% = E2

:

The convention is tha t Si can appear in the specification named Sj provided i < j . In the
above example the final specification has been given the name Sn, but the name of the final
specification can be om itted .

W riting a specification in this way, as a list of sub-specifications, is simply a convenience
for clear presentation . We still have a specification as a single expression. However, we fre
quently need to specify more than one operation in a specification document. For example,
a library system will require specifications for adding a book, borrowing a book, adding a
new member etc. Each one of these is a separate specification or expression.

k
In this case, we say tha t a specification is a collection of named specifications, and we may
refer to the collection as a specification module. The collection is not ordered since, for
example, it is not possible to say whether the operation to add a book to the library should
come before the operation to add a new member. However, a named expression may be used
by name within the definition of another. In this case, the defining occurence of the named
expression should be presented before the expression in which it occurs, and it should be
treated as a local definition for the later expression.

3 .2 . T h e F orm o f a S p e c if ic a tio n 64

G iven T y p e s

9 - - T

Thus we can introduce values of given types, described above. The introduction of two
global constants, of the same type, does not guarantee tha t they are distinct values.

These are the types which can be assumed in a specification. For example, in the library
specification, we would like to use the given types Book and Person w ithout having to
explicitly say what those types are. A given type is introduced into a specification by the
expression

[typename]

We do not know what the members of such a type are.

A lthough the declaration of a given type, such as

[Person]

means tha t we can now use th a t type in a specification, we cannot conclude any information
about the elements of th a t type. We can ensure tha t the type is not empty, by using global
constants (see below), bu t we cannot make any assumptions as to the size of the given type
(as a set), or whether it contains an infinite number of values. Since, from section 2.4, each
expression of the language must have a unique type, it follows tha t elements of the type
Person are distinct from elements of any other type.

G lobal C on stan ts

These are values of a type which are constant within a specification module. A global
constant could also be handled as a param eter to each expression in the module. A global
constant g is introduced into a specification module by the expression:

\ g - T

where T is a type. For each expression of this form there is a corresponding introduction
rule

Î

-

3 .2 . T h e F orm o f a S p e c if ic a tio n 65

D a ta ty p e D efin ition s

These are new types with enum erated elements. For example, the type of rainbow colours

Rainbow ::= red | orange | yellow | green | blue (indigo j violet

A da ta type definition of the form

typename v\ \ V2 \ . . . \ Vn

makes typename a type, and gives the introduction rules

3 .2 .2 S y n ta x o f S p e c if ic a t io n s

We give an informal syntax for specifications.

We use the convention that, w ithin a specification module, a named expression may be
subsequently used by name in a later expression. In this case the defining occurrence of the
expression should be treated as a local definition for the later expression.

The notion of specification modules and named expressions is very informal. Our interest
lies mainly in the use of expressions for specification, and in how such expressions may
be refined. An informal treatm ent of specification modules allows us to group together
such expressions and we shall see, in chapter 4, further notation allowing us to structure

!

!

Vi : typename Vn ' typename

Such a type is finite and contains exactly n elements, f i, %, ■ ■ ■ Vn- It follows tha t each Vi
is distinct.

1

A specification may be a single expression as described previously. This may involve writing
the specification as a list of subspecifications, which is purely for clarity in presentation .

A specification module begins w ith any num ber of user defined type declarations and global
constants, as discussed above. This is followed by a list of expressions, separated by blank
lines. The list must contain at least one expression, and the elements of the list are named,
as in

name = expression

a:

We define the set FSeq T for any type T, to be the set of finite sequences of elements from
T. Then FSeqi T is the set of non-empty, finite sequences of elements from T.

The m ultiplication problem is suggested by an example from [12].

E x a m p le : T h e M u lt ip lic a t io n P ro b le m Given two positive integers x and y each
represented as a list of digits, m ultiply them together to form another list of digits.

We first define Digit, the set of all valid digits

Digit = {æ G Z : 0 ^ a; A .t ^ 9}

Then a valid number is a finite, non-empty sequence of digits not starting with ‘0’

Number = {s g FSeqi Digit : a[0] ^ 0}

The conversion from a Number to a positive integer is made in a standard fashion

Convert = (fun s G Number : {+)/{% : dom s xx * s[i]))

Then to find a Number z which is the result of multiplying Numbers x and y is easily
specified

M ultiply = (fun x , y Ç: Number : '^/{z G Number :
Convert z = Convert x * Convert y})

€

I
3 .3 . E x a m p le s 66

large specifications. However, if we were to provide a theory of modules and refinement
of modules, it would be necessary to trea t such specification structures in a more formal
m anner (see chapter 7).

In chapter 6 we will indicate how it might be possible to provide a semantics for specification
modules. Since the syntax of specification modules is informal, it follows tha t the semantics
will also be informal.

3.3 E xam ples

In this section we use the specification language to make some more interesting specifications
than have already been given. A larger specification will be described in chapter 4.

3 .3 . E x a m p le s 67

□

A fam iliar example is th a t of the N-Queens. The specification expression is also used in
this specification.

E x a m p le : T h e N -Q u e e n s P ro b le m To place N queens on an A x A chess board such
th a t no queen can take any of the others.

We assume that A ^ 4. The chess board can be represented by an A x A m atrix, so any
position on the board can be given by its co-ordinate.

It should be clear th a t the set comprehension above will result in a singleton set. We will
show how to prove such a property in chapter 5.4.

,

Using the same style, it is possible to define other functions over positive integers represented
as lists of digits, such as division and rem ainder

Divide ^ (fun x , y E Num ber : |]/{ (z, r) G Number x Number :
Convert z — Convert x div Convert y
A Convert r = Convert x mod Convert y/})

Position - {1..A} X {1..A}

A proposed placing of the A queens will be given by a set of A positions.

P lacing [Pl ç P Position : — A}

For queens in any two positions, p i , p 2 G Position, one queen can take the other if

;
• Pi and p2 are in the same row, fstp i = fs tp 2 ;

• Pi and p2 are in the same column, sn d p i = sndp2;

• Pi and p2 are on the same diagonal, | fstp i — fstp 2 1=| su d p i — sn d p 2 [•

From this we describe the property th a t two queens cannot take each other.

i

3 .3 . E x a m p le s 68

CantTake = (fun , P2 G Position :
(fs tp i — f s tp 2 V s n d p i = s n d p 2 V | f s tp i — f s tp 2 | = | s n d p i — s n d p 2 1)

Pi = P2)

For any placing of N queens on the N x N board, the property th a t no queen can take any
other is given by

SafePlacing = (fun PI G Placing : Çdp i , p 2 : PI \ •C antT akepi P2))

Now a solution to the problem is given as any safe placing.

Solution = W/{Pl G Placing : SafePlacingP/}

□

This specification will be refined in chapter 5.4.

Another example uses the specification expression, assumptions, the m i n W R T function
and exploitation of the higher-order function map[Ti, T2]. This example is based on one
suggested by J. Morris.

E x a m p le : T h e T ilin g P ro b le m A tile is a shape tha t can be assembled from unit
squares. A rectangular tiling is a placement of tiles, w ithout any gaps or overlappings, on
a flat surface so tha t they form a rectangle. Civen a particular shape of tile and using as
many tiles as necessary, can we form a rectangular tiling?

We have an infinite grid of cells upon which all tilings are constructed . A tile placed on the
grid is represented by the (finite) set of cells it occupies. A paving is a set of tiles.

Cell = Z X Z
Tile = Fi Cell
Paving “ F Tile

We define a function to test if a given area of the grid is a rectangle;

isrectangle = (fun area G Cell : (3 a ; , Y / ; Z , m , n G N :
area = {x. .x + m} x {y..y + n}))

3 .3 . E x a m p le s 69

Finally, given a particular shape of tile, we first form the set of all possible positions for
th a t tile. The set of all pavings contains all the finite pavings for th a t shape. We then filter
out all the pavings which are non-overlapping and rectangular, and test th a t the set is not
empty:

To find a smallest rectangular paving we need to minimise with respect to the area of the
paving. We first define a function to find the size of a rectangular paving:

I

Then a paving is rectangular if the area it covers is a rectangle. |

rectangular = isrectangle o |J /

Two tiles overlap if their intersection is non-empty,

overlap (fun A, A G Tile : h Ft (2 0)

The condition th a t a paving contains no overlapping tiles may now be expressed. '|l

noOverlap ^ (fun p G Paving : (V A, ^2 '■ P j «overlap h ^ 2 ^ 4 — 2̂))

Now, a given tile may be oriented in any way in order to form a paving. Any position of
th a t tile on the grid is obtained from a combination of reflection, rotation and translation .
A translation is a combination of any num ber of movements up, down, left or right:

■F"
reflect = (fun (a; Pj) G Cell (æ,- î /))* :■;
rotate ^ (fun {x Pj) G Cell (7/,-a;))*
up = (fun {x Pj) G Cell {x, y + 1))*
down = (fun {x ,y) G Cell {x, y - 1))*
left = (fun (æ^y) G Cell {x - 1 , 2/))+
right = (fun {x pj) G Cell (.T -F 1,2/)) +

(fun shape G Tile :
le t alltiles — n / { S G F Tile :

S — {5/tape} U (reflect * F) U (rotate * 5) U (up * S)
U (down * 5) U (left * 5) U (right + -S')}

& allpavings = alltiles
&€ rectpavings = rectangular <1 (noOverlap o allpavings] in
rectpavings ^ 0)

Î

3 .3 . E x a m p le s 70

Then, assuming th a t a rectangular paving exists, we can find a smallest one:

(fun shape G Tile :
le t alltiles — \ \/{S G F Tile :

S — {shape} U (reflect + 5) U (rotate * S) U (up + S)
U (down + -S') U (left + 5) U (right * S)}

& allpavings — alltiles
h rectpavings = rectangular o (noOverlap < allpavings) in
rectpavings ^ 0 >— \ \ / {m inWRT size rectpavings))

□

Finally, we have an example which uses the biased choice operator. This is based on an
example from D ijkstra [25].

E x a m p le ; C o llin e a r P o in ts Given a finite non-collinear set of integer-valued points in
the Euclidean plane, find a line th a t passes through exactly two of them .

We say th a t a point is a pair of integers:

Point G: Z X Z

A line is given by two integer points.

Line = Point x Point

Now given a line represented by the points (%i, yi) and (2:2 , P2), the point (.r, y) is on th a t
line if {y — yi) [x — X2) — (2/ — 2/2) + (a; — æQ, though we must treat separately the case
where any of these term s evaluates to zero.

size F: (fun p G Paving : rectangular p >~
[] / { m , n G N : {3 x , y E Z : [j / p = {x. .x m] x [y. .y + n}) : m * n})

.I

online = (fun p G Point, I G Line :
le t ((«1 , 2/1), (^2 , 2/2)) ^ I II {x, y) = p in

X = X \ V X — X2 X l — X2

D 2/ = 2/1 V 2/ ^ 2/2 ^ 2/1 = ?/2
i—
0 (2/ - 2/1) - X2) = [y - 2/2) + (a: - %))

%

...

3 .4 . C o n c lu sio n s 71

A given set of points is collinear if there is some line on which every point of the set occurs:

collinear (fun S G F Point : {31 E Line : (V p G F : online (p, /))))

For the specification we need to consider only those sets which have more than one element,
and whose elements are non-collinear.

(fun -S' G F Point :
F > 2 A -^collinear S >~
W/{1 G Line : # { p G S : onlinep /} — 2})

From Sylvester’s theorem, stated in [25] as

Consider a finite number of distinct points in the Real Euclidean plane; these
points are collinear or there exists a straight line through exactly 2 of them .

the assum ption in the above specification, # 5 ^ 2 A -i collinear F , is sufficient to ensure
th a t the set {/ G Line : # { p G S : onlinep /} — 2} is non-empty.

3.4 C onclusions

In this chapter we have dem onstrated the use of the expression language for specifications of
a functional style. Some functions which appear often in specifications were identified and
defined so tha t they can be used w ithout definition in larger specifications. The concept
of a specification module was introduced and this style of specification, as a collection of
expressions w ith user-given types, was used in a number of examples. A possible semantics
for specification modules will be suggested in section 6.6. A formal treatm ent of modules
is discussed in chapter 7.

The examples illustrate the power of the specificaton language and, in particular the use of
the specification expression, where the solution to a problem is expressed using a predicate.
Assumptions and partial expressions were also used to formulate the example specifications,
along with some of the functions from section 3.1. However, the examples given in this
chapter are small examples. We need to address the problem of using the language to
build larger, more useful specifications. In particular, the issue of using partiality to build
specifications piecewise, on a larger scale than in section 2.6, should be examined. This
issue is examined in chapter 4.

Î
A

a:

■'ïi

C hapter 4

Structuring Specifications

The language introduced in chapter 2 is sufficient to describe small problems, as demon
stra ted in chapter 3, but when atten tion is turned to bigger problems, the specification
quickly becomes out of hand . In this chapter we examine the im portant, but often over
looked, issue of m ethods to structure large specifications.

In section 2.6 it was described how partial expressions, describing particular aspects of
a specification, could be combined using choice to form a to ta l specification. We will
build on this notion and examine how partial functions, which are usually more substantial
than partial expressions, can be used to construct bigger specifications in parts, and then
combined using new union operators to form large specifications. In section 4.1 we examine
the formation of partial functions, where and how they may be used and definitions of union
operators. Similar to the situation for partial expressions, occurrences of partial functions
are syntactically controlled. Section 4.1.3 suggests ways of m anipulating partial functions
using a special class of higher-order functions.

To illustrate the use of partial functions in larger specifications, in section 4.2 we describe
a printing control system using the specification language of chapter 2. Some notation is
first introduced which is used as a shorthand to make the specification more readable. We
then show how the specification is built up, explaining why certain decisions were made,
and ending w ith a full specification of the system in a pure functional style.

Finally, in section 4.3, we look at how the state and exception monads, used to structure
functional programs, might be used to structure specifications. We describe the various
monads and show how the printing control example of section 4.2 can be rew ritten to take
advantage of these. The resulting specification, in which details of sta te and error handling
are hidden, is neater and more readable. In section 4.3.4 we give suggestions as to how the

72

4 .1 . P a r t ia l S p e c ifica tio n s 73

monads could be expressed in the specification language.

4.1 P artia l Specifications

In section 2.6 we looked at potentially partial expressions and how they can be used to
specify a problem in parts which are then combined to form the complete specification.
Because partial expressions are potentially miraculous, the syntax of the language has been
restricted so th a t potentially partial expressions may be direct arguments of choice [] and

biased choice [j only. Such a restriction is possible because potentially partial expressions
can arise in exactly two ways, from a guarded expression or from a specification expression.
Such expmssions may be ‘totalised’, as discussed in section 2.6.2, using the biased choice
operator A .

In this section we examine how partial functions can be used to structure large specifications.
During the construction of a specification we claim that it is useful to allow an abstraction
over a non-total expression, i.e. the form ation of a partial function, with the intention tha t
it be combined with other, possibly partial, functions at a later stage. In the same way tha t
partial expressions are used for small specifications, partial functions are a useful concept
in the language because they perm it large specifications to be constructed in parts, w ith
separation of concerns a m ajor issue.

The intention is th a t a specification is w ritten describing a result in a certain, perhaps error-
free, case, generally of the form (fun x E T : B ^ E) where E is typically a large expres
sion. The “error” case is described separately, perhaps of the form (fun x E T : ~^B -E F).
These two partial functions should be combined to form a new specification given by
(fun X E T : B —> E W ->B —> F). For example, the searching function for sequences of type
SeqT could be w ritten as

(fun S E SeqT ,x E T : \\/{i E {0 ..#F - 1} : S[i] - x}) (4.1)

This is a partial function since it yields T if the given x does not occur in the sequence.
It could be made into a to ta l function by combining it, for example, w ith a function which
returns a default error value if the given value x does not occur in the sequence.

The Z specification language [75] perm its the construction of specifications by combining
schemas, which can be compared to partial functions. In a Z specification it is usual to
combine schemas for partial specifications using schema disjunction. We will propose a
similar m ethod for combining partial functions.

4 .1 . P a r t ia l S p e c ifica tio n s 74

«
1

Note the distinction between a to ta l function and a total expression. A function expression
can be total, while still being a partial function, i.e. its body is potentially partial. An
example of this phenomenon is the search function (4.1).

4 .1 .1 U s in g P a r t ia l F u n c t io n s

W ith the syntax rules given so far, we cannot construct partial functions, since all possible
occurrences of possibly non-total expressions must be totalised before being used w ith the
language constructors such as pairing, function application and, in particular, abstraction .
We consider what happens when this rule is relaxed to allow abstraction over non-total
expressions to form partial functions, as described above.

These functions are to ta l expressions and, as such, there is no restriction on where they may
occur, subject to typing conditions. This causes some problems, particularly with function
application.

We consider the application of a partial function to some argument for which a result has not
been specified in the function body. According to the axioms the result of the application
is the value T . So, for example, the result of the application

(fun æ G Z : æ ^ O - A ‘ T ’)(—7)

is T and thus the expression is not total. From the example it is clear that, although in
order to form the expression (/ e) bo th / and e must be total, it is possible th a t the new
expression (/ e) is not total.

The result of allowing such applications is th a t a new form of potentially partial expression
has been adm itted, th a t of a function application. R a ther than complicating specifications
by requiring th a t all expressions of the form (/ e) are totalised, we instead insist th a t all
functions occurring within an expression are to tal functions.

The admission of partial functions is intended only as a structuring agent for large specifi
cations. This means th a t they should only be used in certain ways and otherwise must be
totalised, ju st as partial expressions require to be totalised before being used.

Similar to the syntactic restrictions for partial expressions, we now require th a t potentially
partial functions occur only as direct argum ents of choice [] and the syntactic union operators
Ù and U which will be defined in section 4.1.2. Since the test for to ta l functions is a syntactic
one, this restriction can be imposed as a syntax rule.

I

4 .1 . P a r t ia l S p e c ific a tio n s 75

4 .1 .2 C o m b in in g P a r t ia l F u n c t io n s

Allowing the formation of partial functions results in the ability to build a specification in
parts. This promotes the ‘separation of concerns’ approach to specification. Its intended
use is in the specification of a result in a certain, perhaps error-free case, generally of the
form:

(fun X e T : B -E E)

which we would like to make to ta l by combining it w ith the specification describing the
result in the “error” case:

(fun X e T : F)

Our aim in this section is to define an operator Ù which will take two partial functions and
combine them such tha t

(fun X E T : F) Ù (fun x E T : F) = (fun x E T : F \\ F)

Since the formation and combination of partial functions appears to be a purely syntactic
notion, it makes sense th a t the definition of Û should also be syntactic. Restrictions to
occurrences of Ù are th a t it is used only with function types. From the discussion in sec
tion 4.1.1, the functions m ust be of the form (fun x E T \ F) , or a choice between functions
of this form. The two defining rules for Ù are, therefore

(fun X e T : F) Ù (fun x E T : F) - (fun x E T : F \\ F)

/ Ù (^ 1 D 272) = (/ Ù gi) 0 (/ Ù g2)

Since choice is commutative, so also is Ù.

Taking the union of two partial functions yields another partial function. We define another
version of union, a biased union, which can be used to obtain a to ta l function. A function
(/ U 27) when applied to an argum ent e will result in (/ e) if it is to ta l and otherwise {g e).
The definition is purely syntactic, w ith the defining rules given by

(fun X E T : E) {J (fun x E T : F) ^ (fun x E T : F \\ F)

/ U (5 1 fl 272) = (/ U 271) Q (/ U 272)

Com m utativity does not hold, in general, for U. Moreover, U does not left-distribute over
choice, which is why the left argum ent of U may not be a choice between functions. We see

: -y;?:

4 .2 . A P r in t in g C o n tro l E x a m p le 76

th a t a function f U g is guaranteed to be a to tal function if g is. Thus, the biased union
can be used to form total functions.

4 .1 .3 M a n ip u la t in g P a r t ia l F u n c t io n s

We have suggested the use of partial functions as a means to construct a specification
piecewise, so th a t the partial functions can be combined to form a complete specification.
However, we may also want to m anipulate partial functions. This means allowing certain
higher-order functions to be applied to potentially partial functions.

In general, partial functions are not perm itted as arguments to higher-order functions, for
the reason th a t this might introduce partiality into a specification. For example, if / is a
partial function, then it is not clear exactly what should be the meaning o f /+ applied to a
set, or whether such an expression is useful.

However, we propose a class of higher-order functions which may be applied to partial
functions, and for which the resulting application is guaranteed to be total. Consider a
higher-order function which takes two arguments, a possibly partial function / of type
Z ^ Z and a string (sequence of characters) s. The result is a total function of type
Z -4- (Z X String) which behaves in the following way: when applied to an argument z ,

if (/ z) is to ta l then it returns the pair consisting of the value (/ x) and the string ‘ok’,
otherwise it returns the pair (0, s). W ithout the possibility of having partial functions, we
could not specify this higher-order function. The specification can be expressed by

totalise = (fun / G Z Z, 5 G String :

(fun a: G Z : ((/ U zero)a;, [x G d o m f -> ‘oA;’) [| s)))

where zero = (fun a: G Z : 0), and the function dom, when applied to a partial function / ,
returns the set of values for which f has been specified. Notice th a t the ‘totalise’ function,
being a to tal function, can now be used to totalise a partial function.

There is no syntactic m ethod to recognise higher-order functions th a t can be applied safely
to partial functions. They will be used only to add clarity to specifications and when it is
clear th a t the evaluation of their application would give a syntactically correct specification.

4.2 A P rin tin g C ontrol E xam ple

In this section we use the example of a printing control system to show how we can use partial
functions to help structure large specifications. We also introduce some notation which

1

4 .2 . A P r in t in g C o n tro l E x a m p le 77

helps to make the specification more readable. The complete specification is reproduced in
appendix B. In the next section (4.3) we will use the same example but w ith monads to
help hide the details of sta te and error handling.

4 .2 .1 N o t a t io n

A list of variables with their type information, x\ : T i , . . . ,Xn : which we write x : T for
convenience, is detached from an expression E using the notation

It should be clear tha t, in specification (4.2), the argument x has simply been moved to a
position where it may be less intrusive in the reading of expression E.

Having given a definition for name we expect tha t it will be used elsewhere in the speci
fication. Since, from (4.3), name represents a function, we expect it to be applied to an

In the following example, of a printing control system, we use some notation which is
introduced in this section.

In most specifications of any size a concept of state is required. In a functional world,
the state can be passed as an argum ent from function to function, bu t this can make for
unnecessarily cluttered specifications. We use a simple, though naive, notation to unclutter
such specifications.

Record definitions are simply a syntactic shorthand for the specification of tuples with
associated retrieval functions. They are used to make specifications shorter while increasing
clarity and readability.

D e ta c h e d P a r a m e te r s

We may sometimes wish to detach, or make less explicit the param eters to a specification,
in order to make the specification more readable. In the printer control system, we make
the variable representing the state less explicit so tha t the main elements of the specification
can be more evident.

X : T h name = E (4.2)

where x may occur free in E. This specification is exactly the same as the definition

name ^ (fun x E T : E) (4.3)

, : ■ L '

4 .2 . A P r in t in g C o n tro l E x a m p le 78

argument. So, subsequent appearances of name are likely to be of the form

F[name e]

where e is an expression of type T. Unfolding the definition of name, this is the same as

F [(fu n X E T : E)e]

as expected.

More generally, we can have a list of specifications of the form

X : T h namei ^ E\,
name2 ^ E2 ,

C u r r e n t J o b = J o b I d x N

c : C u r r e n t J o b h C urrentid = tti c,

PagesPrinted = 7T2 c

Instead of writing this specification out in full, we use the shorthand

namCfi — En
:

which is ju st shorthand for

X : T h namei = E\
X : T h namc2 = E2

X : T h namcn ^

and so any Ei may contain namej provided j < i.

R e c o rd D e fin itio n s

In conjunction with the introduction of detached param eters, we have a shorthand notation
for the specification of tuples w ith associated retrieval functions. For example, in the
specification to follow we have the notion of a Current Job which is made up of the JobId
and the number of pages printed so far. For every possible C urrent Job we want the ability
to retrieve either of its components. We write the following specification

-I

4 .2 . A P r in t in g C o n tro l E x a m p le 79

c : C u r r e n t J o b ^ [Currentid E J o b I d , PagesPrinted E N]

In general, a specification of the form

r : R - [A i E E T^]

where the Xi are names and the T, are sets (or types), is shorthand for the specification

R = Ti X • ■ • X

r : R h Xi = 7Ti r,

X n ^ ' K n r

Often it is required tha t not all possible tuples are included in the set R, but rather ju st those
which satisfy some requirement. In this case we add a predicate to the record definition.
So, a specification of the form

r :R = [%i E E T»] : P { X i , . . . , X n)

r : R = [Quota E N, PagesPrinted E M] ; (Quota ^ PagesPrinted)

where P is a predicate over X \ , . . . , X m is shorthand for the specification

R A A ^) E T i X . . . X T » : P (A i , . . . , A ») }

r : R h Xi :E: TTi r,

 '^n ^ ;;

This form of record definition can be used, for example, to specify tuples consisting of a
prin ter quota and the num ber of pages printed by a specific person.

In this case, the number of pages printed should be less than the quota.

The following specification, of a printing control system, dem onstrates the use of both
detached param eters and record definitions.

•1;

i
I
I

i

4 .2 . A P r in t in g C o n tro l E x a m p le 80

F il e = F egpA C E

P r i o r i t y = m

B u f f e r = P a g e

We have a mapping for information about specific jobs, w ith corresponding retrieval func
tions

inf : J o b s = [KnownJobs € P J o b I d

FileOf E Known Jobs -+>f F i l e ,

OwnerOf E Known Jobs -O j P e r s o n ,

PriorityO f E Known Jobs -O f PRIORITY]

in f : J o b s F SizeOf = # o FileOf

Î

1:

I

4 .2 .2 P r o b le m D e s c r ip t io n

E x a m p le : P r in t in g C o n tro l S y s te m A printing control system manages the allocation
of page quotas to users, and provides such operations as:

• A llocate a page quota to a user.

• Add a print job to a print queue with a given priority.

• Give the print job th a t is active, the num ber of pages printed for this job so far, and
the number of pages still to be printed .

• “P r in t” the next page of the active job, moving on to the next job (with the highest
priority) if the active job is finished.

• Remove a print job from the print queue.

etc.

4 .2 .3 B u ild in g t h e S p e c if ic a t io n

We assume two sets, PERSO N and PAGE

[P e r s o n] , [P a g e]

We define the following sets:

J o b I d = N

I

4 .2 . A P r in t in g C o n tro l E x a m p le 81

where -Pf denotes a to ta l mapping from the domain set, in this case the set Known Jobs.

T h e c u r r e n t jo b (b e in g p r in te d) is id e n tif ie d b y i ts J o b I d , b u t w e a lso n e e d to k n o w how

m a n y p a g e s h a v e b e e n p r in te d so fa r

c : CU R R EN TJoB [Currentid 6 J o b I d , PagesPrinted G N]

The jobs waiting to be printed go into the P r i n t Q u e u e . We use an injective sequence fo r

the queue, to ensure th a t no two jobs in the Job queue can have the same J o b I d .

P r i n t Q u e u e = I S e q (J o B lD \{ 0 })

q : P r i n t Q u e u e h Jobs W aiting = ran g,
RemQueue ^ (fun id G J o b I d : Remove(g, id))

where an operation to Remove some occurence of a given element from a sequence, or
the occurence of an element from an injective sequence, can be added to the collection of
operations over sequences. Its definition may be given as

Remove(æ, -S') = fl/{-5" G SeqT : (3 i G { 0 . . . # 5 } :
-S = 5 '[0 . . . ï] '^ { a :) ^ ,S '[C . .# 5]) }

for a; : T and S : SeqT for some type T. The sequence is left unchanged if it does not
contain the given element.

The current state of the printer queue is given by the P r i n t Q u e u e and the C u r r e n t J o b .

The state queue is empty whenever the J o b I d of the C u r r e n t J o b is zero.

g : P r i n t Q u e u e , c : C u r r e n t J o b F JobsInQueue G: Jobs W aiting U Currentid,
Em ptyQ ueue = (C urrentid — 0)

We have a m apping for known users of the printing system to their quota and the number
of pages used so far. Clearly, the quota should exceed the number of pages used.

u : U s e r s = [K n o w n U se rs G P P e r s o n ,

QuotaO f € KnownUsers -u-f N,
PagesUsedBy G KnownUsers K] :

(V p G P e r s o n .Q u o ta O f p ^ P a g e s U s e d B y p)

■

f
î

4 .2 . A P r in t in g C o n tro l E x a m p le 82

N ow th e s ta te o f th e s y s te m is m a d e u p o f five c o m p o n e n ts , th e P r i n t Q u e u e , th e C u r

r e n t J o b , a B u f f e r fo r p r in t in g , in f o rm a tio n a b o u t th e J o b s , a n d in fo rm a tio n a b o u t th e

U s e r s . S u ch a s t a te m u s t s a t is fy c e r ta in c o n s tra in ts , su c h a s th e n u m b e r o f p a g e s p r in te d

o f th e c u r r e n t jo b c a n n o t ex c e e d th e size o f th e jo b , th e d o m a in o f th e jo b in fo rm a tio n m u s t

b e th e s a m e a s th e s e t o f J o b I d s in th e q u e u e , a n d th e o w n e r o f e v e ry jo b in th e q u e u e

m u s t b e a k n o w n u se r .

For the error case it is probable th a t we would want to report some error, bu t this hasn’t
been given in the informal specification. We simply have:

cr : S h A ddError = (fun p G P E R S O N ,/ G F i l e , n G PR IO R ITY :

U n k n o w n „ U s e r „ E r r o r)

(J = [q e P r i n t Q u e u e , c g C u r r e n t J o b , b e B u f f e r , in f g J o b s , u g U s e r s] :

(PagesPrinted ^ SizeOf o C urrentid
A Known Jobs — JobsInQueue
A KnownUsers D OwnerOf * JobsInQueue
A C urrentid ^ Jobs W aiting
A (C urrentid = 0 g — ())

We now specify one of the operations described above, to add a print job to a print queue
with a given priority. This is done in two stages, one where the owner of the file is known to
the system, and the second in the error case where the owner is not known. If the job-owner
is known, then we need to get a new job number and record the new job information. If the
printer queue is empty, then the new job should become current immediately, otherwise it
is added to the job queue

cr : S h AddOk ^ (fun p G P E R S O N ,/ G F il e , n G PRIO R ITY :

p G KnownUsers -A

le t newld — Q/(N\({0} U Known Jobs))
<—

k newq = (^Em ptyQ ueue -A g {newld) [] g)
4—

k newc — (-<EmptyQueue -A c [] {newld, 0))
k newinf = (FileOf CD {newld i-A /} ,

OwnerOf© {newld t-A p},
PriorityO f © {newld t-A n})

in {newq , newc , b, n e w i n f , u))

I

:fe
1■S

4 .2 . A P r in t in g C o n tro l E x a m p le 83

We have not said what U n k n o w n _ U s e r „ E r r o r is, but we shall see more examples of this
form of expression in the rest of the specification. It can be regarded as a special sort of
expression, of the appropriate type, highlighting a part of the specification which has not
yet been fully specified. Bu t this explanation is not entirely satisfactory. Error-handling in
a functional setting is a known problem and there do exist techniques to deal with it. One
such approach will be considered in section 4.3.2.

The complete specification to add a job to the queue is then

(T ; E h Add = AddOk U AddError

Another operation required of the queue system is to allocate a page quota to a person. We
assume two possibilities. E ither the person is a new user, or the person is already known
as a user and is getting a new quota, w ith the number of pages used being reset to zero. In
the first case we have

(7 : E h NewUser ^ (fun p G PER SO N , g G N :

p ^ KnownUsers -A let newu — (Q uotaO f© {p i-> g},
PagesUsedBy © {p ha 0})

in (g, c, 6, inf, newu))

In the second case, we give a new quota and reset the number of pages printed

(T : E h ResetQ uota = (fun p G PER SO N , g G N :

p G KnownUsers —>let newu — (Q uotaO f© {p t~> g},
PagesUsedBy © {p ha 0})

in (g, c, h, i n f , newu))

The complete specification to allocate a quota is then

(7 : E h Alloc = NewUser Ù ResetQ uota

Further examination reveals th a t the two specifications Newuser and Resetquota are almost
exactly the same. The Alloc specification is, in fact, equivalent to

(7 : E h Alloc = (fun p G PER SO N , g G N :

le t newu — (Q uotaO f© {p ha g},
PagesUsedBy © {p ha 0})

in (g, c, b, inf , newu))

4 .2 . A P r in t in g C o n tro l E x a m p le 84

A proof of this equivalence will be given in section 5.4.2.

The operation which returns the print job th a t is active, the num ber of pages printed so far
and the number still to be printed is given as

O' : E h Active = (-nEmptyQueue -A le t i d = C urrentid || n = PagesPrinted
& s ize = SizeOf zd

le t newb = f [n]

& ne w u = ChangeUser(gwoia, pages + 1) in

Now there are two cases. For the first possibility there is more of the current document still
to print, so we ju st record th a t one more page has printed of the job

(n <SizeOfzd -A

le t n e w c — { id, n + 1)
in {q, newc , i nf , n ew u , newb)

For the second possibility the next job with the highest priority is made current

i—

[j le t n e w i d = GetNextId
& n e w c — {n ew id , 0)

& n ew q — re m o v e n ew id

h n e w i n f — Rem inf i d

in {newq , n ew c , n e w i n f , newu , newb)))

in { i d , n , s i ze — n)

[j Q u e u e _ E m p t y _ E r r o r)

We now consider the ‘p rin t’ operation, which puts the next page of the current document
into the buffer to be printed, and moving on to the next job, w ith the highest priority, if
the active job is finished. We first specify the case where the queue is not empty and the
owner of the current job has enough quota left to print the next page

(7 ; E h P rin t Ok = (-lEm ptyQueue -A

le t i d — C urrentid || n = PagesPrinted
k p = OwnerOf zd |j / = FileOf zd
k quota — Q uotaO f p || pages — PagesUsedBy p in
quota > pag es -A

We ‘p rin t’ the next page and adjust the num ber of pages printed for the owner of the job

4 .2 . A P r in t in g C o n tro l E x a m p le 85

where GetNextId gives the J o b I d of the first job in the P r i n t Q u e u e with the highest
priority, or zero if the queue is empty

cr : S F Q uotaError © (-lEm ptyQueue -A Q u o t a _ E r r o r)

And if the queue is empty, we already have the function from the Active specification

(7 : E F QEmpty = E r r o r _ Q u e u e ™Em p t y

The complete specification to print a page is

i— i—
a : E F Printpage © Printok |] Q uotaError [] QEmpty

Our final specification is, given a J o b I d , remove th a t job from the printer queue. This can
only happen if the job is in the queue, and it is not the active job

cr : S F RemoveOk = (fun id G J o b I d :

id G JobsInQueue A id C urrentid -A

le t newq — RemQueue id
& newinf — (FileOf\zd,

OwnerOf\zd,
PriorityOf\z‘d)

in [newq, c, h, newinf, u))

An error is reported if either the job to be killed is the current job

q : P r i n t Q u e u e , inf : J o b s F GetNextId ^ (g ^{) -a
le t pr — (fun z G N : PriorityO f g [z])

in n / { m a x W R T pr{0..fi^q ~ 1}))

T 0)

The Prin tO k function does not handle the cases when the user doesn’t have enough quota
or the printer queue is empty. These are treated separately

cr : E F R e m o v e C u r re n t = (fun id G J o b I d :

id = C u r r e n t id -A C u r r e n t „ J o b _ E r r o r)

o r i f i t i s n ’t in th e q u e u e

■i -i

4 .3 . U s in g M o n a d s 86

cr : S h RemoveFail ^ (fun id G J o b I d : J o b _ n o t _ i n _ Q u e u e _ E r r o r)

The complete specification to remove a job from the queue is given as

(J : E h Remove Job = (RemoveOk U RemoveCurrent) U RemoveFail

The full specification for the printer control system can be found in Appendix B.

4.3 U sin g M onads

The concept of a monad, which is simply a form of abstraction with certain properties,
comes from category theory [8]. Monads have been used in com puter science, for example,
to structure the denotational semantics of programming languages [53, 52, 54] with the aim
of providing a unified approach. Another application of monads is in the structuring of pure
functional programs th a t mimic impure features such as state, exceptions and continuations
[88, 89, 72, 48]. In this section we apply the same theory to structure the printer control
specification of section (4.2). We use a m onad to help hide the explicit printer state and to
control error handling.

We take a very simple definition of a monad, where no knowledge of category theory is
assumed. From [89], a m onad is a triple {M,uni t ,X) where M is a type constructor, and
unit and a are polymorphic functions with types

unit :: a -A Ma

(★) :: Ma -A (a A- Mb) A Mb

for a and b types. These operations must satisfy three laws

un i ta -kXb .n — n[a/b] [Left unit)
m - k X a .u n i ta — m {Right unit)
m-k { X a .n k Xb.o) = {m-k X a.n)-k Xb.o {Associative)

The th ird law is valid only when a does not appear free in o. These laws are only the basic
laws, and can lead to a list of other laws useful for equational reasoning, as described in
[88],

4 .3 . U s in g M o n a d s 8T

4 .3 .1 T h e S ta te M o n a d

In pure functional languages, sta te may be handled explicitly by passing around a value
representing the current state, as in the prin ter control example of the previous section (4.2).
Descriptions of the monad to help hide this explicit state can be found in [88, 89, 72, 48].
The key idea is th a t of a state transform er.

A state transform er is an object of type STs A, î o r S the type of states and arbitrary type A,
where STsA is defined to be the function type S -~k {A x S). So, a sta te transform er trans
forms a state and produces something of type A. Useful functions over state transformers,
w ith their types, which are described in [88], include

u n i t : A A STsA

u n i t E: (fun a E A : (fun s E S : { a , s)))

which, given a value a, returns tha t value w ithout transform ing the state . This function is
called r e t u r n s T in [48];

fetch : S T s S

fetch (fun s E S : { s , s))

which simply returns the state as the value without transforming the state;

a s s ig n : S ^ STsQ

a s s ig n = (fun s ' E S : (fun s E S : ((), s ')))

where () is the type containing only the value (). Given a state s', a s s ig n changes the state
to s' and returns no value.

The im portant function for glueing together state transform ers is the infix function (a)

(a) : STsA A (A A STsB) a STs B

m k k — (fun s E S : le t (a, s') — m s in k a s')

Together u n i t and (a) , w ith the constructor S T , form a monad, satisfying the laws given
above, which can be used in equational reasoning, [88, 89].

A state transform er may have additional arguments, or other inputs, when its type will be
a function type, returning a sta te transform er. For example, a state transform er of type
B a STs A takes something in B, transform s the state and produces something in A. We
can examine the specification of the prin ter control system in this light.

4 .3 . U s in g M o n a d s 88

i
i
3

T h e P rin ter C on trol S y stem using th e S ta te M onad

Assume the given sets, initial definitions and definitions for state are as before, bu t in their
unfolded form. Our state type S for the state transformers is S .

The Add function now has the type

P e r s o n x F i l e x P r i o r i t y S T ^ Q

since, given a P e r s o n , F i l e and P r i o r i t y , it will transform the state without producing
any value. The specification becomes

AddOk = (fun p € P e r s o n , / e F i l e , n e P r i o r i t y :
fetch -k (fun (g, c, 6, i n f , w) G S : p G KnownUsers u —>

le t newld — |]/(jN\({0} U Known Jobs m /))
i—

& newq = (-!EmptyQueue(g, c) {?iewld) [] q)
i—

&: newc = (-iEm ptyQueue(g, c) -T- c [] {newld, 0))
&: newinf — (FileOf m / ® {newld / },

O w nerO fm / © {newld p}.
Priority Of m / © {newld n})

in assign{newq, newc, b, newinf ,u)))

The initial fetch returns the state as a value, and is used to make the state explicit. This
‘value’ is then passed to a function, of type S —> STj]{), which uses the assign function to
replace the input state by a new updated state, and produces the empty result ().

Unfortunately, the expression for AddOk given above is not correct according to our syntax
rules. A po tentially partial expression, here of the form (P -> F) is perm itted only at
the top level of a function body, w ith the intention tha t the resulting partial function is
to be combined immediately, using Ù or U, w ith other partial functions to form a to tal
specification. In the above, a partial function is correctly formed but immediately used as
an argument to which is not allowed according to this rule.

Instead, we must write the Add specification in one, as follows

Add ^ (fun p G P e r s o n , / g F i l e , n g P r i o r i t y :
fetch -k (fun (g, c, 6, inf , w) G S :

(p G KnownUsers u ->
let newld = |]/(N\({0} U Known Jobs m /))

4 .3 . U s in g M o n a d s 89

We define the type E A, for arb itrary type A, to be the sum type Raise String | Return A.
A value of this type is either a String prefixed by the keyword Raise or a value of type
A prefixed by the keyword Return. The u n i t E of the exception monad simply returns the
argument,

units : A E A

units — (fun a G A : Return a)

while (-ks) tests the result of the first function, passing it on if it is a sensible result and
otherwise propagating the error message.

(ks) : E A - ^ (A ^ E B) - ^ E B

m k s k — case m o f

Raise e —>■ Raise e

Return a ^ k a

I
;

& newq — (-'Em ptyQueue(g, c) -> g {newld) [] g)
4—

k. newc = (-iEm ptyQueue(g, c) —)■ c [] {newld, B))
& newinf — (FileOf m / © {newld M- /} ,

O w nerO fm / © {newld i-> p},
P rio rityO fm / © {newld M- n})

in assign{newq, newc, b, newinf ,u))
-f-
w a s s i g n (U n k n o w n _ U s e r _ E r r o r)))

We assume, as in the origial example, tha t U n k n o w n _ U s e r _ E r r o r is of type E . Unfold
ing this Add specification will result in (almost) the unfolded specification we already had.
The only difference is the empty result () which doesn’t appear in the original specification.

4 .3 .2 T h e E x c e p t io n M o n a d

In an impure functional language, exceptions provide a way to handle errors easily. In a
pure language, a similar effect can be achieved by making the result type of a function
into a sum type. So, a function will either return a sensible result, or a string representing
an error message. However, the code or specification can become complicated since tests
must be included to decide whether an input to a function is a value or an error to be
propagated . The details of these ‘exceptions’ can be hidden using the exception monad as
described in [89].

.,,.1

, l .

f
4 .3 . U s in g M o n a d s 90

The case-expression is used with values of the sum type to test, in this case, whether it is
an exception or something from type A.

4 .3 .3 C o m b in in g S ta te a n d E x c e p t io n s

In order to handle both sta te and exceptions in our printer control example we need to
combine the two monads described in sections 4.3.1 and 4.3.2. Unfortunately, there is
no autom atic m ethod to combine monads. Instead, we build a new monad, exhibiting
properties of both [46].

We take as our type of state transform ers S T s A , for S the type of states and A an arbi
trary type, defined to be the function type S {Raise String | Return{A x 5)). So, a state
transform er in STgA takes a sta te and either transforms it, returning a value of type A, or
else produces an error.

We find tha t unit, fetch and assign are almost unchanged from the definitions given in
section 4.3.1.

unit : A - 4- S T s A

unit — (fun a E A : (fun s E S : Return{a, s)))

fetch : S T s S

fetch — (fun s E S : Return{s, s))

assign : S STs{)

assign = (fu n s' E S : (fu n s E S : Return{{), s')))

Only (4-) is changed so th a t exceptions, if encountered, are propagated .

{k) : S T s A - ^ { A ^ S T s B) -4 S T s B

m k k — (fun s E S \ case m s o f

Raise e ^ Raise e

Return {a, s') -4 k a s')

We can also define a function raise

raise : String - 4 - STs{)

raise — (fun e E String : (fun s E S : Raise e))

4 .3 . U s in g M o n a d s 91

so th a t S T s A is like an abstract da ta type with only these five operations defined for it.

T h e P r in ter C on trol S y stem using th e C om bined M onad

Using this combined m onad for state and exceptions, and w ith the same assum ption th a t
the state type S is defined as before, we rewrite the specification for adding a file to the
printer queue. The new Add specification has type PERSON x F il e x P r i o r i t y —> 5 T s () .

Add = (fun p E P e r s o n , / e F i l e , n e P r i o r i t y :
fetch k (fun (g, c, 6, inf , w) E S :

{p E KnownUsers u —>
le t newld — |]/(N\({0} U Known Jobs in /))

i—
h newq = (“iEmptyQueue(g, c) -4 g {newld) [j g)

4—
& newc — ("iEmptyQueue(g, c) --4 c [] {newld, Q))
k newinf — (FileOf in / © {newld 1-4 /} ,

Owner Of in / © {newld p},
PriorityO f in / © {newld n})

in assign{newq, newc, h, ne w in f , u))
i—
[] raise “User not known”))

This looks almost exactly like the last specification we had in section (4.3.1). However, w ith
the new definitions of fetch, assign and (*), we now have th a t bo th state and errors are
being handled correctly. Moreover, the details of handling state and errors are completely
hidden in the specification.

4 .3 .4 M o n a d s in th e S p e c if ic a t io n L a n g u a g e

So far we have used the monads for state and exceptions simply as a structuring device for
the printer specification. We are aware tha t, if the definitions are unfolded, we would get
back to a purely functional specification similar to the one of section 4.2. The only difference
being th a t functions which only change the state would also produce an empty result, as
highlighted in section 4.3.1. Bu t can we actually define the state/exception monad and
associated functions within our specification language, and then include the monad laws in
our list of equivalence laws?

In its current form, the specification language does not provide any mechanism to allow
user defined types. Instead we have user-defined sets which allow us to define type-like sets,

I

4 .3 . U s in g M o n a d s 92

such as S . However, we cannot use th is m ethod to define the set of ‘state transform ers
with exceptions’, because they depend on two types, S the type of states, and A the type of
results. A lthough S is known, in this case, to be the set S , A is completely arbitrary . We
would have to define a set of ‘state transform ers with exceptions’ for every possible type A,
and we have no m ethod for making such families of definitions.

A possible solution might be to anticipate the use of the ‘state transform er monad with
exceptions’ in structuring a certain class of large specifications. In the same way th a t bags
and sequences are defined as da ta types, it is possible to make S T s A a da ta type of the
language, dependent on the types S and A. The five operations unit, fetch, assign, raise
and (^) also require type rules and axioms to describe their behaviour, including the monad
laws. The expression language is rich enough to allow these rules and axioms to be stated .

More generally, it would be useful to allow user defined types, in addition to the enumerated
types we have already introduced, which were of the form

TypeName | ^2 I • ■ • I

As well as defining a type by listing its values, it should be possible to define a type whose
values depend on other types. These could be introduced in the form

TijpeName TypeExpression

so th a t every member of the set TypeExpression is now a value of TypeName. To a cer
tain extent, we already have this possibility, where user-defined sets are used in type-like
situations.

Now we want the ability to define a type using a TypeExpression which may be parame-
terised by type variables. Definitions would be of the form

TypeName A TypeExpression[A] (4.4)

where A is a type variable, or more generally, a list of type variables. We consider such a
definition as introducing a family of types, one for each type A. For any type A, the values
of type TypeName A are identified w ith the elements of the set given by TypeExpression[A],
and as such may have associated operations performed on them .

One problem with allowing snch user defined types is th a t the principle of unicity of types
is destroyed, i.e. it is no longer the case th a t every expression has exactly one type. It is not
clear whether, for a type definition of the form (4.4) above, the elements of TypeName A
and TypeExpression[A] should be exactly identified for any A. Operations over elements of
TypeExpression[A] are now applicable to elements of TypeName A, bu t can functions defined

4 .4 . C o n c lu sio n s 93

over the new type TypeName A be equally applied to elements of TypeExpression[A]? These
are issues which would require to be addressed.

Assuming th a t such user defined types are perm itted, the state monad with exceptions can
now be defined for the printer control example, using the specification language, as

S T A E -4 {Raise String j Return{A x E))

and the five associated operations, unit, fetch, assign, raise and (i»r) defined as previously.
Unfortunately, w ith this approach the m onad laws would require proof.

Comments

The first solution, of anticipating the use of the particular ‘state transform er m onad with
exceptions’ has the advantage th a t the type STg A, for each S and A, is an abstract data
type with only the five operations provided. The monad laws, now axioms, can be used for
reasoning about specifications. Bu t, while this monad is very useful for the printer control
specification, and for other specifications which use a concept of state and require error
handling, another class of specification might need something different again. This solution
does not offer a generic way of handling the problem .

However, it is reasonable to assume th a t the class of problems requiring state and error
handling is large. Therefore the approach of simply including the ‘state transform er monad
with exceptions’ as a facility built into the language may be considered as practical, w ithout
being universal.

The provision of type definitions, which may be param eterised, does provide an ex tra tool
for specification. The state transform er type can now be defined entirely in the language,
bu t so also can types for other monads, or other types useful for a given specification.
However, w ith this approach, the monad laws need to be proved. In addition, the type
S T s A is not an abstract type, since the type expression must be made explicit. While this
is not necessarily a problem, it would be considerably more elegant to be able to package a
type with the allowed operations over th a t type.

4.4 C onclusion s
-

In this chapter we have tackled the im portant issue of writing large specifications. As well
as the syntax introduced in chapter 2 and the informal specification modules of chapter 3,

d:
I

"f
-

4 .4 . C o n c lu sio n s 94

we have now provided machinery to allow the construction of specifications from partial
functions. This facility promotes the separation of concerns approach to making specifi
cations. The introduction of the union operations perm its these partial functions to be
combined to form complete specifications.

In practice, as in the example of the printing control system of section 4.2, we have found
th a t partial functions are a good way to construct large specifications. This specification
has been w ritten entirely using the specification language, and partial functions have played
an im portant role in the construction . We also found it useful to introduce some notational
conveniences to make the specification more readable and to concentrate on the more im
portan t aspects of the problem .

In developing the example, we found a need for m ethods to control state and error handling
in a less explicit manner. Following approaches used in structuring functional programs,
we examined, in section 4.3, the use of certain monads in structuring the specification.
The resulting specification is more readable, w ith certain details hidden, but still purely
functional.

As the specification language is currently defined, there is no mechanism to allow user de
fined types, which would perm it the definition of a particular m onad in a specification. In
section 4.3.4, we addressed ways of incorporating the monads for state and exceptions for
mally into the specification language. Some suggestions were made including approaches to
allow user defined types or to add the “state transform er monad with exceptions” explicitly.

We have seen a description of the syntax of the specification language in chapter 2 with some
small examples. In this chapter we saw how larger specifications can be made, including a

.substantial example in section 4.2. The language gives a rich and expressive way to write
specifications, bu t we also require the ability to reason about specifications, and a m ethod of
refining such specifications. We now tu rn our attention to the proof theory of the calculus,
describing how properties of specifications can be proved, including refinement properties,
which is the subject of chapter 5.

3̂'

C hapter 5

Proofs and R efinem en t

In section 5.3 we describe what it means for one specification to refine another, and how a
program may be calculated from a specification by stepwise and piecewise refinement.

Refinement is handled in our calculus by the introduction of a refinement operator, Ç into
the language so tha t, for E and F of the same type, the expression E Ç. F is a boolean

95

Î

i

In chapter 2, an expression language was defined which includes the usual m athem atical
expressions associated w ith integers, booleans, functions, sets, etc. , but also incorporates
undefined expressions, non-determ inism and partiality, which are used for the formulation
of expressive and abstract specifications. In chapters 3 and 4 we showed how the expression
language may be used to form such specifications.

We have stated tha t our aim is to provide a refinement calculus for this expression language.
This means th a t we must provide a refinement relation for specifications, i.e. define what it
means for one specification to refine another; and we must show how such refinements can
be calculated.

In this chapter we address a number of aspects of this problem . F irst we describe what it
means to prove a theorem of the language. Already, in chapter 2, we have described the
expression language using axioms. In section 5.1 we give an overview of a proof theory
based on the axioms for boolean expressions and show how theorems of the language are
proved.

In general, in m anipulating specifications for either the purpose of refinement or in order to
prove a property of a specification, we need to use higher-level theorems than the axioms
of chapter 2. So, in section 5.2, a num ber of such theorems, or transform ation laws of the
language, are provided.

5 .1 . T h e P r o o f S y s te m 96

expression. In keeping with the treatm ent in chapter 2 , a number of axioms are provided
to govern the behaviour of Ç.

During the process of stepwise refinement it is not convenient to justify each step by re
ferring to an axiom, so, ju st as w ith the transform ations of equivalent expressions, a set of
refinement laws is provided in section 5.3.2.

It is intended tha t the axioms, transform ation laws and refinement laws together w ith the
proof theory of section 5.1 should allow proofs of refinements and properties of specifications
to be calculated quite easily. A num ber of examples, including reasoning with monads, rea
soning about A, showing the introduction of recursion into a refinement and the refinement
of the A-Queens example are given in section 5.4. The refinement from a simple specifica
tion to an im perative style of expression is dem onstrated using the example of Bresenham ’s
line drawing algorithm in section 5.5.

5,1 T h e P ro o f S y stem

Proofs in the specification language take a different form from th a t expressed at the end of
section 2.3. Instead, equational reasoning, or “substituting equals for equals” , is employed.

A proof th a t an expression Pi of type Bool is a theorem within our system may consist
of a sequence of expressions, beginning with Pi and ending w ith a known theorem P„.
Each member of the sequence (apart from the first) is obtained from its predecessor Pi by
replacing Pi, or a sub-term of Pi, by an equivalent expression.

Such a proof is laid out as follows.

Pi
= “Reason why Pi = P 2 ”

P 2

= “Reason why P2 = P 3 ”

“ “Reason why P n - i = Pn"

Pn

By transitiv ity of = we conclude th a t P i ^ Pn- Since P„ is a theorem, it follows th a t so
also is P i . If any of the = signs in the left column is replaced by 4^, w ith a corresponding
justification, then by transitiv ity of im plication we have a proof of Pn P\. Again, since
Pn is a theorem, it follows from m odus ponens tha t P i also holds.

i

5 .2 . T ra n s fo rm a tio n L aw s 9 7

A proof of a boolean expression of the form E ^ F, îov E and F of some type T, may
proceed as above, or may consist of a sequence of expressions of type T beginning with E

and ending w ith F. Again, each expression in the sequence is obtained from its predecessor
by replacement of equivalent subexpressions.

A justification th a t equational reasoning is valid within our system, along w ith various
strategies for proof, may be found in [64].

W hen m anipulating specifications w ith detached param eters, such as the printer control
specification of chapter 4, it should be clear th a t we are actually ju st m anipulating function
bodies. The detached param eters can always be eliminated. However, for convenience, we
will write a : T. \~ E = a : T, \- F, to mean (fun cr E E : A) = (fun cr E E : P).

5.2 T ransform ation Laws

In order to provide a simple calculus for the easy m anipulation and transform ation of
expressions as specifications, we need to provide some transform ation laws which are easily
applicable to specifications. The axioms of chapter 2 form a base for such laws, bu t it is
not usually convenient to m anipulate specifications from first principles. Some higher order
theorems are required. In the following list of laws we assume the following conventions:
E , El , E 2 , F and G are any expressions, subject to appropriate syntax constraints; / is
a function expression; P and Q are expressions of type Bool; w is a value; and 5 is a set
expression.

le t xi = El k X2 — E2 in F = le t X2 = E2 k x\ = Ei in F

We include three laws concerning le t expressions. These laws can be proved by unfolding
the meaning of local expressions as given in section 2.5.2, however it is useful in proofs
involving long expressions to apply these in one step.

L aw (D i s t r ib u t io n o f F u n c tio n A p p l ic a tio n in sid e le t E x p re ss io n s) I f x does not
occur free in f , hut may be free in F then

/ (l e t x = E in F) s le t x = E in f F
:

L aw (S w a p p in g L oca l D e fin itio n s) Suppose that Xi and X2 may be free in F. I f Xi does
not occur free in E2 and % does not occur free in Ei then

i
I
I

-

. : î

5 .2 . T ra n s fo rm a tio n L aw s 98

L aw (N o O c c u rre n c e o f L o ca l D e fin itio n) I f x does not occur free in F then

5 E ^ ((le t x = E in F) ^ F)

For determ inistic functions, we have a form of 7 -reduction.

Law (7 -R e d u c tio n)

(fun X E T : E) x = E

We include a law concerning the behaviour of generalised choice with assumptions, as per
m itted in section 2 .6 .2 .

L aw (P ro p e r t ie s o f G e n e ra lis e d C ho ice)

A ^ = > ((^ ^ 0) > - [] / ^ = []/^T_L)

Information contained in the guard or assum ption can be used to m anipulate an expression.

L aw (U s in g C o n te x t in A s su m p tio n s a n d G u a rd s)

(f => (A = E')) ^ { P ^ E = P ^ E ’)

where ‘>-4 ' represents either '—4 ’ or ‘> - ’ throughout the formula.

Choice and guarding together perm it the formation of alternation expressions. These can
be introduced into a derivation using the following law.

L aw (A l te rn a t io n I n tro d u c tio n)

A P = ^ { E ^ P ^ E \ \ ~ ^ P ^ E)

More generally, for Pi, 1 ^ i ^ n, boolean expressions

((V%: Z| 1 ^ 2 ^ n . A P , -) A (3 2 : Z | 1 < % < M . P ^))

^ { E ^ P i ^ E \ i . . . W P n - - ^ E)

We saw in section 2.6 th a t there is a relationship between conditionals and alternations.

5 .2 . T ra n s fo rm a tio n L aw s 99

L aw (A l te rn a t io n to C o n d itio n a l)

A P = ^ { P - > E \ \ - ^ P ^ F = P - ^ e " ^ F)

(P ^ A) Î F = if P th e n E e lse F

Assumptions and guards both d istribute over choice to the right.

L aw (D i s t r ib u t io n o f A s s u m p tio n s a n d G u a rd s over C ho ice)

P (E |] P) = (P E) (] (P P)

where ‘>—4 ’ represents either ‘—4 ' or ‘>— ’ throughout the formula.

Guarded expressions, being potentially partial, are restricted in where they may occur.
However, expressions with assum ptions are total, and so there are laws determining how
assumptions d istribute over various operations

L aw (D is t r ib u t io n o f A s s u m p tio n s th ro u g h P r o d u c t F o rm a tio n)

(P > - F , Q F ') = P A Q (F , E')

L aw (D i s t r ib u t io n o f A s s u m p tio n s th ro u g h F u n c tio n A p p l ic a tio n)

(P) ^ /) (Q > - F) = P A Q > - / F

Other laws concerning the behaviour of assum ptions include

L aw (D o u b le A s su m p tio n s)

P > - (Q : ^ F) = P A Q > - F

(P > - 0) > - F = P A (?) ^ F

There is also a law for expressions w ith both a guard and an assumption.

L aw (P ro p a g a te G u a rd as A s s u m p tio n)

(P=^ q) ^ (P - ^ E = P ^ { Q > ~ E))

5 .3 . R e f in e m en t 100

An expression with an assum ption may be guarded, but the syntactic restrictions of sec
tion 2.6.2 do not allow expressions of the form P >— [P' —4 E).

We saw, in section 2 .6 .2 , how it is possible to recognise syntactically expressions which
are potentially partial. Such expressions need to be totalised, bu t all other expressions are
already total. The next law gives the condition under which a totaliser can be removed.

Law (R em oval o f T o ta liser) I f E is not potentially partial then

E ^ F = E

The following two laws are concerned w ith distributive properties of choice with biased
choice.

Law (R ig h t-D istr ib u tio n o f B iased C hoice over C hoice)

S Î (F D G) = (S Î F) 0 (£ Î G)

Law (C hoice w ith B iased C hoice)

£ I (Æ D B I F

£ f l (£ Î F) = B | F

£ H (f î = g n f

5.3 R efinem en t

Given a specification S of the expression language, the ultim ate goal is to find a specification
P which is executable and which satisfies S, i.e. P implements S. An executable specification
P is made up of expressions from th a t part of the specification language which forms the
programming sub-language (see section 2 .1). As such, it must be defined and deterministic.
Since the original specification S may exhibit either of the properties of undefinedness or
non-determinism, it follows th a t equivalence does not hold between S and P. Instead we
need a refinement relation, C, so th a t P refines S, S Q P.

Informally, for an expression E to be refined by an expression F, w ritten F Ç F , it should be

' 4

5 .3 . R e f in e m e n t 101

the case tha t every possible ‘evaluation’ of F is also a possible ‘evaluation’ of F , or is better
defined than some possible ‘evaluation’ of F . So, a specification is refined by reducing non
determinism or by increasing definedness. For example, we expect the following refinements
to hold

2 0 3 U 2 (5 . 1)

D/N G 2 03

(f u n X EI a: X F -\-S) Ç (f u n x E 1a \ x 2)

(f u n æ E N : x + 2 0 a : + 3) Ç (f u n x E l \ x -\-2) (5 . 2)

The first two examples are simple cases of reducing non-determinacy, while the th ird ex
ample reduces non-determinacy w ithin the body of a function. The last example reduces
non-determinacy, but also increases definedness since the function on the left gives an un
defined result for any negative integer, while th a t on the right is defined for every integer.

We advocate the process of program development by stepwise refinement, starting with an
initial specification and building a sequence of specifications % Ç Ç . . . C so that
each Si, for 1 ^ z ^ n is an acceptable replacement for S i - \ , and Sn is a program . Since the
aim is to derive programs in steps, it is required tha t the refinement relation is transitive.
Then, from a sequence of refinements of the form Sq Q Si C . . . C , we can conclude that
Sn is a correct im plem entation of the initial specification Fq. In fact, refinement is a pre
order, since every specification refines itself. In general, a refinement relation need not be
anti-symmetric. In fact our relation is not since, for example, we have the refinements

2 0 -L Ç -L

T Ç 2 []±

In the first case, the refinement is obtained by reducing non-determinism, while in the
second definedness is increased. However, the two expressions are not equivalent.

As well as refinements proceeding stepwise, it is also im portant th a t refinement can oc
cur piecewise. This means th a t an expression may be refined by refining one, or more,
subexpressions,

(F Ç F) ^ {G[E/x] Ç G[F/x])

This states exactly the property th a t G must be monotonie (with respect to refinement)
at the position x where the refined subexpression occurs. Refinement can occur only in
monotonie positions.

5 .3 . R e f in e m e n t 102

Most of the constructs of the expression language, as defined in chapter 2, are monotonie.
Bu t there is a small number of operators which are non-monotonie. These include equiva
lence = , non-equivalence and the two delta operators A and S. Implication and biased
choice W are non-monotonic in the first argum ent, and monotonie in the second. Function
abstraction is monotonie only when the abstraction is over a monotonie position.

Subexpressions which occur in non-monotonie positions may be replaced only by equivalent
expressions. This means th a t some care must be taken when refining expressions with
non-monotonic elements, bu t in practice this is not a problem .

We now introduce the refinement relation as an operator of the language;

E : T F : T
E n F : Bool

An expression of the form F Ç F is always proper, and it should be clear th a t refinement
does not distribute over choice.

The following axioms describe refinement of expressions.

The refinement relation is transitive

(F C F) A (F Ç G) ^ (F Ç G)

The general refinement axiom is

(F C F) 4- (- J F V (F Q F = F))

W hen F and F belong to a simple type, this is an equivalence, and may be used as the
definition of refinement.

For function domains, w ith A / and A g,

{ f Q g) = { V x - . T \ • f x Q g x)

W hen refining non~deterministic expressions, w ith A G, A E and A S we have the axioms

(B Q F C G) = (B Ç e V F Ç G)

(0 /S CB) = : r I a: e S .a: ÇB)

|:

5 .3 . R e f in e m e n t 103

We assert th a t top T is the unique most-refined specification,

(T Ç F) - (F = T)

We define the concept of refinement equivalence for expressions which refine each other,

5 .3 .1 P r o v in g R e f in e m e n t s

F Ç G

for the transitivity of refinement, and

F C F

r “Reason why F „ „ i Ç F „ ”

En

and we may conclude tha t E\ Ç F„ . In the above, any of the Ç in the left margin may be
replaced by equivalence

E U E = F C F A F A F

&
where E 'P F = F C. E. Clearly refinement equivalence is weaker than = .

Refinements proceed stepwise, as previously indicated, with a similar layout to transform a
tion proofs as in section 5.1.

There are two additional inference rules to accommodate refinement:

F C F EU. G

G[E/x] Ç G[F/x]

where x is in a monotonie position in G .

A refinement then proceeds as a sequence of specifications, starting with the initial specifi
cation, expression E\.

El
Ç “Reason why E\ Ç E f

E2
Ç “Reason why Fg Ç F 3 ”

. -------------------

5 .3 . R e f in e m e n t 104

5 .3 .2 R e f in e m e n t L aw s

Given a specification, refinement will proceed stepwise, as indicated above, using the infer
ence rules and axioms for refinement. Bu t, in general, it is not convenient to calculate each
refinement from first principles. As in the case for simple transform ations, a collection of
theorems, or refinement laws, is required . This is what we now provide.

In the following list of refinement laws we assume the following conventions: E, F, Fi,
Fg and G are any expressions, subject to appropriate syntax constraints; P and Q are
expressions of type Bool; w is a value; and S and S' are set expressions.

The first law says th a t an expression may be refined by reducing non-determinacy. This
could take a number of forms.

Law (R ed u ce N o n -D eterm in a cy)

F Q F C F

For generalised choice,

(5 ' c S) ^ (D / 5 ç n / 5 ')

(Væ e r I .Q P) ^ (|/{x € T : P} C D/{.ï 6 r : (?})
{v E S) ^ (|]/F Ç v)

Choice can also be introduced into a specification, but note th a t this does not increase
non-determinacy.

Law (In troduce C hoice)

(F Ç Fi A F □ F2) ^ (F Ç F i 0 Fg)

An expression of the form F > - F may be refined by refining F or by weakening F .

Law (W eaken A ssu m p tion)

(F => Q) (F > - F Ç Q > - F)

By weakening the assum ption to True, and so effectively removing it, the next law imme
diately follows.

"i

5 .3 . R e f in e m e n t 105

L aw (R em o v e A ssu m p tio n)

P > - F C F

Dually, an expression of the form F —4 F may be refined by refining F or by strengthening
P.

L aw (S tr e n g th e n G u a rd)

(5 g A Q F) ^ (F ^ F Ç g ^ F)

Now any expression, which may be considered to have an implicit True guard, is refined by
introducing a guard.

::
L aw (In t ro d u c e G u a rd)

*

6 P - ^ { E Q P ^ E)

Care must be taken when applying the previous two laws above since the refined expression
can be considered more partial In particular, in the second case, a potentially partial
expression is introduced instead of a to tal expression.

A useful law allows the use of information in a guard or assum ption to refine an expression.

L aw (U s in g C o n te x t in A s s u m p tio n s a n d G u a rd s)

{P E O E') ^ {P E Q P >-^ E')

where ‘> —4 ’ represents either ‘—4 ' or ‘> - ’ throughout the formula.

Non-determinacy can be reduced by taking the conjunction or disjunction of assumptions
or guards, as governed by the following laws.

L aw (D is ju n c tio n a n d C o n ju n c tio n o f A s su m p tio n s)

F) - F [] g > - F Ç F v g) - F

F > - F Q g > ~ F g F A g > - F

Note the m utual refinement of the second clause.

5 .3 . R e f in e m e n t 106

Law (D isju n c tion and C on ju n ction o f G uards)

P - 4 F Q g - 4 F ç p v g - 4 F

P ^ F [] Q - 4 F Ç P A Q - 4 F

Law (R efine F unction) I f x appears in a monotonie position in E , F and P,

{ \ / x : T \ » E E F) = ^ ((fun x E T : E) Q (fun x E T : F))

(Væ : T I . J P) ^ ((fun x E T : E \\ F) E (fun x E T : P ^ E ^ F))

To complement the equivalence law concerning right-distribution of biased choice over
choice, we have the refinement laws

Law (D istr ib u tion b etw een C h oice and B iased C hoice)

(BDB) Î G 3 (b Î g) | (f | g)

B n (F Ï G) Ç (B I F) Î (B D G)

Finally, we give the law governing the introduction of recursion into a specification.

Law (R ecursion In trod u c tion) Let Ex be an expression which contains a free occurrence
of the variable x, and let E f be the same expression but with value y substituted for x.

{Ex g P[(fun y E T : y < x y — F I)]) =4> {Ex E let / = (fun x E T : F[f]) in / æ)

where T is a well-founded set with respect to <, and F[%] is monotonie with respect to
refinement of subexpression X .

Proof We use the deduction theorem, and prove the consequent by assuming the antecedant.
So, we assume

{ E, S F((fun y 6 T : 1/ < Ï > - B^)))

Since T is well-founded we can use the principle of induction for well-founded sets,

{(ff X E C \ P x) ^ (y y E C \ y < X : P y)) = iff x E C : P x)

5.4 E xam p les o f Form al R easoning

In this section we dem onstrate the sort of proofs which may be formed using the axioms and
laws of the language, and the properties of = and C. These proofs range in complexity from
simplification of expressions to proving properties of specifications and the introduction of
recursion during the refinement of expressions.

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 107

where < is a well-founded ordering for (7, and P is some property over elements of C. So,
we take as our induction hypothesis:

(V g e T : g < a: : F | Ç le t / = {fun x e T : F[f]) in / y) (5.3)

The proof proceeds as follows. Let x E T.

Ex C let / — (fun x E T : F[/’]) i n f x
= “For convenience, detach / — (fun x E T : F [/])”

Ex g / z
= “Unfolding / ”

Ex g (fun a; E T : F[f])x
= “7 -reduction”

Ex g F\f]
<= “Using the assum ption, g is transitive”

F[(fun y e T : ÿ < a: B |)] Q F\J]

<= “F[%] is monotonie w ith respect to refinement of subexpression X ”
(fun V e T -.v < x > ~ E f) Q f

“ “Refinement axiom for proper functions, and substitu tion”
(V g E T : y < x ^ E f Q f y)

4= “Axioms for assumptions, T least wrt refinement”
{\/y E T : y < X : E f Q f y)

= “Induction Hypothesis”
True

The recursion introduction law now follows by induction and the deduction theorem .

The refinement laws all follow quite easily from the axioms for refinement. The laws con
cerning assumptions and guards may be proved by a case analysis on the value of the
assum ption/guard . The laws for biased choice are proved by case analysis on the to tality
of the left argument.

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 108

5 .4 .1 S im p le P r o o fs

We look at some simple reasoning about specifications by simple m anipulation of expres
sions. For example, to illustrate some of the distributive properties of choice, a function
applied to a non-determ inistic argum ent is simplified. Note that, although the function has
a non-deterministic body, it is itself deterministic.

(fun æ G Z : æ [] a; + 1)(3 j] 4)
= “D istr ib u te F un ction A p p lica tion over C h o ice”

(fun X E l \ x ^ x (fun x E Z : x \\ x + I) 4
“ “S u b stitu tion , A 3 and A 4”

(3 [] 3 + 1) Q (4 [] 4 -f 1)
= “A xiom s for In tegers”

(3 [|4) |] (4 0 5)
= “P ro p erties o f C h o ice”

3 0 4 0 5

From a brief example of section 2.6, illustrating the behaviour of guards and totalisers, the
following function application is simplified.

(fun æ E Z : if a: ^ 0 - 4 ‘4 - ’ [] z ^ 0 - 4 ‘ —' fi) 0
= “S u b stitu tion , A 0”

i f o ^ o - 4 ‘-f’ 0 o ^ o - ^ ‘- ’ fi
= “A xiom s for

if True - 4 '+ ’ [| True - 4 ’ fi
= “A xiom s for G uard in g”

i f f i
= “Definition of if . . . fi”

C + ’ D‘- ’) Î ±
= “R em oval o f T ota liser”

‘ + ’ 0 ‘ - ’

Returning to the Multiplication Example of section 3.3 we simplify

Multiply((4) 0 (8), (2,5))
= “D istr ib u te P ro d u c t F orm ation over C h o ice”

Multiply(((4>,(2,5)) 0 ((8) ,(2 ,5 »)

a : E h- Alloc = NewUser Ù R esetQ uota

NewUser and ResetQ uota were defined as

(J : E h NewUser = (fun p G P e r s o n , g E N :
p ^ KnownUsers - 4 F)

cr : S h ResetQ uota ^ (fun p E PER SO N , g E N :

p E KnownUsers —> F)

5 .4 . E x a m p le s o f F orm al R e a so n in g 109

= “D is tr ib u te F u n c tio n A p p l ic a tio n over C h o ic e ”
M ultiply((4), (2, 5)) {] M ultiply((8 >, (2 , 5))

= “Definition of Multiply, S u b s t i tu t io n with proper argum ents”
^ j { z E Number : Convert z = Convert(4) * Convert (2, 5)}
D D/{^ C Number : Convert z = Convert(8) * Convert (2 , 5)}

^ “Definition of Convert, S u b s t i tu t io n with proper term s”
[]/{% E Number : Convert z = 4 * 25} 0 D/{' ̂ E Number : Convert z — 8 * 25}

= “A x io m s fo r E v a lu a tio n s o f S e ts ”
D /{{ i,o .o)} 0 D/{(2 .o ,o)}

= “P rop erties o f []/”
(1 ,0 ,0)D (2.0,0>

These examples illustrate the use of some of the equivalence laws with small specifications.
In chapter 4 we saw how the expression language could be used to build bigger specifica
tions. It is im portant th a t the equivalence laws can be used to prove properties about large
specifications also.

5 .4 .2 A L arger E x a m p le

In section 4.2, a purely functional specification of a printing control system was detailed.
We now show how the equivalence laws can be used to reason about this specification.

F irst we prove an easy equivalence stated in section 4.2. The function Alloc was defined
using two partial functions, NewUser and ResetQuota, in such a way tha t

lit;

where F is a shorthand for the more complicated expression given in the specification. The
details of F are not required in the following proof however. We said th a t the function
Alloc, as defined above, is equivalent to the specification

5 .4 . E x a m p le s o f F orm al R e a so n in g 110

le t id = C urreiitldc || n = PagesPrinted c
& size = SizeOfzd
in [id, n, size — n)

cr : E h A llo c = (fun p E PERSO N , g E N : F)

We reason th a t

£7 : S h Alloc
= “Definition of Alloc”

(7 : E h NewUser Ù ResetQ uota
= “Definitions of NewUser, R esetQ uota and Ù ”

(T : S h (fun p E PERSO N , g E N :

p ^ KnownUsers —4 F [| p E KnownUsers —4 F)
= “Alternation Introduction, A(p E KnownUsers)”

cr : E h (fun p E PERSO N , g E N : F)

as required. The last step of this proof assumes tha t p E KnownUsers is a proper boolean
expression for any state cr, which is reasonable.

The above is a proof tha t two specifications are equivalent. We now give an example of a
proof tha t the specification satisfies a certain property. Again, we use the equivalence laws
as tools for reasoning.

Let a ^ (g,c, 6 , m/ , w) be any state such th a t (-«EmptyQueiieg c). Let p be a P e r s o n

such th a t (p E KnownUsers w), then it should be the case that

Active(Add(c7, p , / , n)) = Active cr

R a ther than tackle the whole expression at once, each side of the equation is simplified in
turn . Using the definition of Active, and the Substitution law, the expression on the right,
(A c tivea), is equivalent to

-I Em pty Queue g c —4 le t id — C urren tid c || n — PagesPrinted c
k size — SizeOfzd
in {id, n, size — n)

i—
Q Q u e u e „ E m p t y _ E r r o r

Fi'om the given fact th a t the queue is not empty, the guard becomes True. Using the
Axioms for Guarding and Removing the Totaliser, the expression becomes

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 111

This is the simplest expression which can be obtained, without unfolding the le t expression.

Now taking the expression on the left of the proposed equivalence, (Active(Add(cr, p , / , n))),
the definition of Add is used, followed by the S u b s t i tu t io n axiom, which gives

Active (p G KnownUsers u - 4

(le t newld = Q/(N\({0} U Known Jobs in /))
i—

k newq — (-lEm ptyQueue q c q ' ^ {newld) {] q)
i—

k newc = (-«EmptyQueue g c —4 c [] (newld, 0))
k newinf — (FileOf in / 0 {newld i-4 /} ,

O w nerO fin / © {newld t-4 p},

PriorityO f in / © {newld *-4 n})

in {newq, newc, h, n e w in f , u))
4—
[] U n k n o w n _ U s e r „ E r r o r)

We use the given facts th a t (p E KnownUsers u) and tha t the queue is not empty. The main
guard becomes Time, as well as the two inner guards. So, using the A x io m s fo r G u a rd in g
and R e m o v in g th e T o ta lise r , the above expression becomes

Active (le t newld — Q/(N\({0} U Known Jobs in /))
k newq — q ' ^ {newld)
k newc = c
k newinf — (FileOf in / © {newld i-k /} ,

OwnerOf in / © {newld t - 4 - p},
PriorityO f in / © {newld t-4 n})

in {newq, newc, b, n e w in f , u))

In order to use the definition of the Active function, it is easier to move it inside the le t
expression, using the D is tr ib u t io n o f F u n c tio n A p p l ic a tio n in s id e le t E x p re ss io n s
law. This results in

le t newld = Q/(N\({0} U Known Jobs in /))
k newq — q ' ^ {newld)
k newc — c
k newinf — (FileOf in / © {newld t-4 / } ,

OwnerOf m / © {newld t- 4 p},
PriorityO f in / © {newld t-4 n})

in Active {newq, newc, h, newinf, u)

5 ,4 . E x a m p le s o f F o rm a l R e a so n in g 112

The definition of Active is used next, and the S u b s t i tu t io n axiom is applied again.

le t newld — Q/(N\({0} U Known Jobs in /))
& newq — q ^ {newld)
& newc — c
& newinf — (FileOf in / © {newld i-4 /} ,

OwnerOf in / © {newld p},
PriorityO f in / © {newld t-4 n})

in (-«EmptyQueue newg newc -4 le t id — C urrentid newc || n — PagesPrinted newc
& size = SizeOfid
in (id, n, size — n)

i—
[| Q u e u e _ E m p t y _ E r r o r)

Using the law for S w ap p in g L oca l D efin itio n s , the local definition for newc can be
unfolded and substitu ted into the specification. The guard becomes (EmptyQueue newq c)
which, according to the definition of EmptyQueue, is equivalent to (C urrentid c ^ 0). This
is True, since we have assumed (EmptyQueue g c). So, using the A x io m s fo r G u a rd in g
and R e m o v in g th e T o ta lise r again, the expression becomes

le t newld — []/(N\({0} U Known Jobs w /))
k newq — q {newld)
k newinf = (FileOf in / © {newld e4 /} ,

OwnerOf in / © {newld p},
PriorityO f in / © {newld t-4 n})

in (le t id — C urrentid c || n — PagesPrinted c
k size — SizeOfid
in (id, n, size — n)

Using the fact th a t none of newld, newq or newinf occurs in the body of the specification,
w ith the N o O c c u rre n c e o f L oca l D e fin itio n law, the specification reduces to

le t id — C urrentid c || n = PagesPrinted c
k size = SizeOf id
in (id, n, size — n)

as required.

In section 4.3 we saw how the m onad for state and exceptions could be used to structure a
large specification. We now look at how properties of such specifications might be formulated
and reasoned about, using the same equivalence laws, augmented by the monad laws.

.

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 113

5 .4 .3 R e a s o n in g w i th M o n a d s

We retu rn to the specification of the printing control system using monads as described in
section 4.3. Suppose we have the following functions defined using the monad ST-^A and
the five functions unit, fetch, assign, raise and (^) as described in section 4.3.3,

Add

Remove

G etid

P e r s o n x F il e x P r i o r i t y 5 T s ()

J O B lD - > S 'T sO

F il e S T ^ J o b I d

4 .

where Add is as specified in section 4.3.3; Remove deletes the supplied J o b I d from the
prin ter queue if it is there, and otherwise reports an error; and GetId retrieves the J o b I d

of the supplied F il e from the printer queue, leaving the printer queue unchanged.

We may want to express tha t, under certain conditions, adding a file to the printer queue
and then removing th a t same job leaves the printer queue unchanged. Using the monad
notation, this may be expressed as, under certain conditions,

A d d (p ,/, n) X (fun _ G 0 : G e t i d / * Remove) = unit() (5.4)

where _ G () indicates th a t the function is not expecting a value and unit() is the state
transform er which leaves the sta te unchanged and returns no value. We may define the
shorthand m ̂E = m -k (fun _ G () : FI) so th a t the above expression is w ritten as the more
elegant

A d d (p ,/, n) g (G e t id /★ Remove) = unit() (5.5)

This proof may be carried out by equational reasoning using the equivalence laws of the
specification language and the monad laws for STj^A.

We recognise th a t there is a certain amount of difficulty involved in formulating such prop
erties of specifications. A lthough the use of the state monad here is intended to hide the
explicit treatm ent of state in the specification, making the specification more readable, it is
clear tha t in order to write down property (5.4) above, a knowledge of the monad, and how
it works, is required. In fact, while the use of the state monad with exceptions makes the
specification easier to read, this style of specification prevents us from formulating properties
in the usual functional style, as can be seen from (5.4) and (5.5) above.

A lthough the monad laws may now be used in proofs, it is not clear th a t proofs become
easier, since these laws only apply to tha t part of a specification involving the monad. It
is likely th a t the monad laws will be used only to unfold the monad definitions, to obtain

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 114

a purely functional specification like th a t of section 4.2, so tha t the equivalence laws of
section 5.2 can then be applied.

5 .4 .4 R e a s o n in g a b o u t A

In section 3.3 the m ultiplication problem was specified as:

M ultiply = (fun x , y G Num ber : '^/{z G Number : Convert z — Convert a; * Convert y})

(5.8)

where

Digit = { a : G Z : 0 ^ a ; A a ; ^ 9 }

Number {s G FSeqi Digit : s[0] 0}

Convert = (fun s G Number : (+) / (i : dom s XK * s[i]))

It was stated th a t the set in (5.6) is a singleton set. We now intend to show how it is
possible to prove such a statem ent.

Consider the set

{z G Number ; Convert z = Convert x * Convert y] (5.7)

where A x , A y and A z, since they are all variables. We first show that all term s in (5.7)
are proper. Let w be one oï x, y oi z.

A (Convert w)
= “S u b stitu tio n , A w"

A ((+) /(î : dom w xx * -u;[z]))
4= “A ((+) /) , properties of the operators”

A w A A{dom w) A A{ j f w) A (V % : dom w | *A(w[%]))
4= “A xiom s for Sequences, A x iom s for Logical V alues”

A w A {dom w ^ N) A (V A dom w | G dom w)
4= “C iven A w , w E Number, quantification trivially true”

True

The axioms for sequences being used here are:

A{dom S) ^ A S

■-'I

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 115

Taking example (5.1), given previously, we prove some simple refinements.

D/N
Ç “R e d u c e N o n -D e te rm in a c y , {2, 3} Ç PT

l/{2 ,3}
^ “A x io m s fo r G e n e ra lis e d C h o ic e ”

2Q3

and from (5.2)

A (# 5) 4= A 5" A (dom ^ ^ N)

A(5"[/]) ^ A S A A j A j e dom S

Notice tha t, because A z and A (Convert x * Convert y), the set (5.7) can be w ritten as:

{z G Number : Convert z = Convert x ̂Convert y} (5.8)

Now th a t we know that all term s of the set (5.8) are proper, we can reason th a t it is a
singleton set in the usual manner. Let z% and Z2 be members of the set. Then, using the
axiom for set membership, transitivity of equivalence and substitution,

(+)/(% : dom z\ xx * zi[%]) = (+)/(* : dom Z2 xx * Z2 [*])

Using induction on the minimum of the lengths of the sequences, n (# z i , #Z 2), and the fact
tha t both sequences are elements of Number, it is possible to show th a t z\ ™ Z2 .

In general, it will not be necessary to go into such detail about the A properties of ex
pressions and sub-expressions. The purpose of the axioms in these cases is to ensure tha t
reasoning is possible, and under what conditions normal reasoning can go ahead.

5 .4 .5 S im p le R e f in e m e n ts

We now tu rn to refinement. The first few examples are very simple and dem onstrate ju st a
few of the laws. A slightly larger example, involving recursion, follows.

(fun a ; GN: a : - l - 2 | a ; - l - 3)
“Unfold partially defined function”

(fun a: G Z : (rc G N) (a; + 2 [) rc H- 3))
“R em o v e A s s u m p tio n ”

(fun a ; G Z : a : 4 - 2 |] a ; + 3)

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 116

as expected.

It is possible to prove the second R efin e F unction law using some other laws. Assuming
tha t (V a; : T | *A P), we refine

(fun a; G F : F [j F)
= “In tro d u c e A l te rn a tio n , A P for any x in T ”

(fun ar G T : P ^ (F Q F) D - P ^ (F 0 ^))
Ç “R e d u c e N o n -D e te rm in a c y ”

(fun X e T P -k F)
= “A l te rn a t io n to C o n d itio n a l, A P ”

(fun X e T ■. P -A e \ F)

as stated .

We prove a form of distribution of function abstraction over choice

(fun a; G T : F [] F) Ç (fun a; G T : F) [] (fun x E T : F) (5.9)

as follows. We have, from the R e d u c e N o n -D e te rm in a c y law and monotonicity,

(fun X E T : F W F) Ç (fun x E T : F)

(fun a; G T : F Q F) Ç (fun x E T : F)

So, by simply applying the In tr o d u c e C h o ice law we arrive at exactly (5.9). We call this
the U n d e r -d e te rm in e d C h o ice law.

A more challenging refinement, using the R ecu rsion In trod u c tion law, is now described.

5 .4 .6 R e f in e m e n t w i th R e c u r s io n

We want to refine the following specification, for x and y of type Seq Z,

zip[a:,ïy] []/{5 G Peg (Z x Z) : = (#a: n # y) (5.10)

A (V z G {0 . . . # P - 1} • P[z] = (a;[z], ÿ[z]))}

In the following derivation, we define the function tl for all non-empty sequences.

tl S = (z : (0 . . . # P — 2 } XX 5[z d - 1]) S finite
{i : dom S XX S[i H- 1]) S infinite

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 117

As a first step in the refinement, it makes sense to introduce an alternation, using the
general form of the A ltern a t io n In trod u c tion law. Possible cases are: {x = ()); {y = ());
or {x ^ {) A y ^ {)). Note th a t the guards are all well-defined.

zip[x, y] = (x = 0) zip[æ, !/][](!/ = 0) ^ zip[æ, if] O (a: 0 A y ()) - 4 zip[o:, y]

(5.U)

Each case may be refined in turn , using the fact tha t choice is monotonie with respect to
refinement of subexpressions.

We refine

{x - 0) zip[x,y]
= “Expand definition of zip[æ, ^]”

(z = 0) - 4 -

0 /{s 6 Seq (Z X Z) : # S = (# z n # ÿ) A (Vi e { 0 , . , # 5 ~ 1} . S[i] = (z[ij, ÿ[i]))}
Ç “U s in g C o n te x t in G u a rd , = 0 and > 0”

{x = 0) W/{S e Seq (Z X Z) : (# 5 = 0) A True}
“ “Singleton Set, P r o p e r t ie s o f G e n e ra lise d C h o ic e ”

[x == (» 0

Using a similar refinement sequence for the second case, we have

{y = 0) -A zip[a;, y] C {y ^ ()) -4- ()

Now, turning to the last case of the alternation, we refine w ith the aim of forming an
expression suitable for an application of the R ecursion In trod u c tion law.

{x {) A y ^ zip[x, y]
“Expand Definition of zip[æ, y]”

{x {) A y ^ {)) ^
[] /{ P G Peg (Z X Z) : # P = n A (V z E {0 . . . # P - 1} . P ^ = ^M))}

“U s in g C on tex t in G uard, # P > 0”
(a: f 0 A # 0) ^ n/{PE Peg (Z x Z) : # P = 1 -b (# (/ z H

A P[0] = (æ[0],ÿ[0])
A (V % E {1. . . # P — 1} • P[%] = {tl x[i — 1], tl y[i — 1]))}

“Set M anipulations, D istr ib u t io n o f C on caten ation over C h o ice”
{ x ^ {) A y i - 0) -A

5 .4 . E x a m p le s o f F orm al R e a so n in g 118

A (V 2 G {0 . . . # P — 1} # P[z] = {tl rc[«], tl y[i]))}
“Definition of zip[a:, y], w ith substitu tions”

tl x,tl yi
x,y i

T
A

I

^[0])) - [|/{P G Peg (Z x Z) : #P = æ n y)

{ x ^ {) A y ^ {)) -4 ((rc[0], y[0])) zip[a:, t/][

= “A x io m s fo r A ssu m p tio n s , {f^tl x < f f x) A {fftl y < # y) ™ True
{x ^ {) A y ^ {)) -A ((a;[0],i/[0])) {{i f t l x < #æ) A { f f t l y < #?/) > - zip[a ,̂ ?/][*'

= “S u b s t i tu t io n ”
{x {) A y ^ {))

{(æ[0],î/[0])) ^
(fun x \ y' G Peg Z : (#æ ' < # 3?) A (#?/' < #?/) > - zip[a;, yYl'^y]){tl x, tl y)

The three parts of the specification are now combined, using monotonicity of choice with
respect to refinement.

zip[a;,^]
Ç “Fi’om (5.11) and partial refinements”

(x 0) -> 0

0 (2/ = <» -A 0

0 (a; 0 A 2/ 7 ̂ {)) -A
{(æ[0],?/[0])) ^
(fun x', y' G Peg Z : (# F < j f x) A (# y ' < #%/) > - zip[æ,]){tl x, tl y)

C “R e c u rs io n I n tr o d u c t io n ”
le t / — (fun x , y E Seq Z : (a; — ()) -A ()

|] (l/ — 0) -A 0

^{x ^ {) A y ^ {)) -k ((æ[0], y[0])> ^ f { t l x, tl y))
in f {x , y)

which is a reasonable im plem entation of the zip function.

5 .4 .7 T h e N -Q u e e n s R e v is it e d

The N-Queens problem, to place N queens on an A x A chessboard such th a t no queen
can take any of the others, where A > 4, was specified in section 3.3 using the expression
language. In this section we aim to derive an algorithm for the problem .

This example serves to illustrate a num ber of properties. Firstly, it shows how reasoning
about potentially partial expressions might proceed in practice. In fact, this reasoning is

î

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 119

usually informal, bu t serves to exhibit possible danger points and invariants to be observed
in a derivation.

Secondly, the derivation is interesting in th a t almost all the steps are equivalences rather
than refinements. The two places where refinement occurs are: in a R e c u rs io n I n t r o
d u c tio n step; and the final choice of one solution from the set of all solutions. So, what
is happening is th a t the original specification is being m anipulated, ready for the recursion
step.

Thirdly, the specification uses sets of sets of pairs as the basic da ta structure . This means
th a t a lot of the reasoning uses the A x io m s fo r S e ts . However, most programming lan
guages don’t supply sets as a basic d a ta structure, so it is likely th a t the final expression
derived here would need to be further refined, using data refinement. The target da ta
structure is likely to be a sequence of mappings.

Finally, during the derivation we make reference to the application of the A x io m s fo r
S e ts and the A x io m s fo r L og ical E x p re ss io n s without dem onstrating how the axioms
are actually applied. This is to aid clarity and to present the derivation in a reasonable
length.

The initial specification as given in section 3.3 is:

[]/{-P/ G Placing : SafePlacing (5.12)

where we have the following definitions:

Position A: { I . . N} x {1. .N}

P lacing Ar }Pl g P Position : f f Pl = N }

SafePlacing A (fun PI G Placing : Çd pi, p2 PI \ # Cant Take pg))

The function CantTake describes the property tha t two queens cannot take each other.

A N o te on P a r t ia l i ty

Our initial specification (5.12) is potentially partial, being a choice over a set. The specifi
cation should be given as

^ / { P l G Placing : SafePlacing P/} [] T

:î

I

5 .4 . E x a m p le s o f F orm al R e a so n in g 120

This is a problem because, since [] is not monotonie in its first argum ent, any derivations
of (5.12) should be equivalences, not refinements. This is not appropriate since the set of
all possible placings may contain more than one element, and we want to choose ju st one.

SafeP/ ” SafePlacingPI

when PI G Placing.

T h e D e r iv a tio n

We intend to build up the set of all possible solutions for a given A , w ithout saying how
to choose a particular solution. From (5.12), we take the set of all possible solutions and
derive:

In fact, refining the left argum ent of the operator |] is not usually a problem, as long as we
can be sure th a t any refinements do not result in the partial value T . So, we need to ensure :
th a t any refinements of expression (5.12) are always total. In this case it means ensuring
th a t the set is non-empty.

Luckily, knowledge of the problem domain assures us th a t at least one solution exists for
any A ^ 4. This is given as an assum ption in the problem statem ent. And so we may
proceed to refine, w ith caution. 4

I
P re lim in a r ie s

As a preliminary to the derivation, we notice the following.

SafePlacing Ç (fun PI G F Position : (Vpi ,p2 : P! | "CantTake pi P2))

by the W e ak en A s s u m p tio n law. We define

Safe A (fun PI G F Position : (Vpi ,p2 • Pi \ "CantTake pi P2))

and note the following; 4

Safe0 = True

PI' C P I = ^ (SafeP/ SafePr)

for proper PI' and PL These are easily illustrated from the definition of CantTake as given
in section 3.3. Also 4

f

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 121

{PI G P lacing : SafePlacing P/}
“Definition of Placing, set theory”

{PI G P Position : f f Pl = A A SafePlacing Pf}
“Above observation”

{PI G P Position : f f Pl = A A Safe Pf}
“#P 1 - A A SafePf =7 fs t * PI = {1 ..A}”

{PI G P Position ; # P / — A A Safe P / A fst * PI — {1..A}}
“S u b s t i tu tio n , A A ”

(fun m G N : {PI G PPosition : ^ P l ~ m A SafeP/ A fst * PI = {L .m}}) A

We are interested in the body of this function, the set, which we call Q.

Q A: {PI G PPosition : # P / — m A Safe P / A fst ^ PI = {L .m }} (5.13)

The intention is to m anipulate the set Q so th a t a recursion can be introduced. Working
ju st w ith Q alone, to ease readability, we use the A l te rn a t io n I n tr o d u c tio n law. Since
m G N we also use the C o n te x t in A s s u m p tio n law to obtain:

Q = (m — 0) —> Q [] (m > 0) —> Q (5.14)

Notice tha t both guards are proper, since m is a variable.

We refine each case in tu rn , using the fact th a t choice is monotonie with respect to refine
ment. For the simple case;

{m = 0) ^ Q
= “Expand definition of

(m — 0) -A {PI G P Position ; ^ P l = m A SafeP^ A fst ^ PI = {L.m}}
= “U sin g C on tex t in G uard”

(m — 0) -A {PI G P Position ; / tP / = 0 A Safe PZ A fst * P/ = 0}
= “Since # P / = 0 = 7 P / s 0, and Safe 0”

(m = 0) -A {0}

For the second case we want to introduce a recursion.

We need to make each PI smaller, reducing by one element. For each PI there is a
proper subset PI' such th a t PI = PI' U {(m,n)} for some n G {1 ..A}. This follows from
fst * P / = {l..m }. From Safe PZ we further conclude th a t there is only one such n, and so

"i

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 122

fst + PF = { l..m 1} and # P F — m — 1. In addition, since PV C PI, from the observations
about Safe positionings, PI' must also be safe. So, we can take all the safe sets of positions
of size m — 1 (since m > 0), add in the position (m, n) for each n in turn, and test to see if
the extended set is safe.

Formally,

(m > 0) —y Q
~ “Expand definition of Q”

(m > 0) —> {PI G PPosition : # P / — m A Safe P^ A fs t * P / = {l..m }}
= “U s in g C o n te x t in G u a rd , A x io m s fo r S e ts and observations”

(m > 0) -A {PI' G PPosition, n G {1..A} :
P F — m — 1 A Safe(PF U {(m, n)}) A fst * PI' — { l . .m — 1} :
PI' U {(m, n)}}

= “Safe(PF U {(m ,n)}) SafeP/', A x iom s for L og ical V a lu e s”
(m > 0) ^ {PI' G PPosition, n G {1..A} :

i f PI' — m — 1 A SafePZ' A fst * PI' = { l..m — 1} A Safe(PF U {(m, n)}) :
PI' U {(m,n)}}

= “Definition of Q w ith substitutions, A x iom s for S e ts ”
(m > 0) — {PI' G P Position, n G {1..A} :

PI' G Q r ~ ^] A S afe(P r U {(m, n)}) : PI' U {{m, n)}}
= “A x io m s fo r S e ts ”

(m > 0) -A {PI' G n G {1..A} ; Safe(PF U {(m, n)}) : PI' U {(m, n)}}
= “A x io m s fo r A s su m p tio n s , (m — 1 < m) = TruP'’

(m > 0) { P V e (m - l < m > ~ e :
Safe(PF U {(m, n)}) : PI' U {(m, n)}}

— “S u b s t i tu tio n , A(m — 1)”
(m > 0) -A {PF G ((fun m ' G N : m ' < m > -])(m — 1)), n G {1..A} :

Safe (PL U {(m, n)}) : PL U {(m, n)}}

Now, combining the two cases, from (5.14):

Q
= “Partia l Derivations”

(m — 0) —> {0 }
[] (m > 0) -A {PL G ((fun m ' G N : m ' < m > -])m — 1), n G {1..A} :

Safe (PL U {(m, n)}) : PL U {(m, n)}}
C “R e c u rs io n I n t r o d u c t io n ”

In the recursive function above, the m ajority of the work is being done by the function Safe
in the com putation of Safe(PL U {(m,n)}) . In fact, it is doing much more work than is
necessary, since it is already known th a t SafePL = True. Using this fact, and also tha t
fs t * PI' = { l..m — 1}, we simplify:

5 .4 . E x a m p le s o f F o rm a l R e a so n in g 123

le t queens = (fun m G N :
m = 0 -A {0}
0 m > 0 {PI' G queens{m — l) , n E {U .A} :Safe(PL U {(m, n)}) :

PI' U {(m, n)}})
in queens m

Now, returning to the initial derivation of the set of all possible solutions for fixed value A ,

{PI E P lacing : SafePlacing P/}
= “Previous derivation”

(fun m G N : {PI E PPosition : f f Pl ~ m A SafeP/ A fs t PI = A
C “Above refinements, abstraction monotonie wrt refinement”

(fun m G N :
le t queens = (fun m G N :

m = 0 -A {0}
[] m > 0 -A {PI' E queens{m — 1), n G {1..A} :

Safe(P/' U {(m, n)}) : PI' U {(m, n)}})
in queens m) N

= “S u b s t i tu tio n , A A ”
le t queens — (fun m G N :

Ï7Î — 0 —y {0 }
[] m > 0 -A {PI' E queens{m — 1), n G {1..A} :

Safe(PL U {(m, n)}) ; PI' U {(m, n)}})
in queens A

. ' I :

Safe(PL U {(m, n)})
“Definition of Safe, S u b s t i tu tio n , A{Pl ' U {(m, n)})”

(Vpi ,P2 : P L U { (m , n) } | " C a n t T a k e ^2)
“A x io m s fo r S e ts ”

iy P i , P 2 : PL I "CantTake Pi P2) A (Vp : PL | "C an tTakep (m, n) A CantTake (m, n)p)
“Definition of Safe”

SafePL A (Vp : PL I "C an tT akep (m, n) A CantTake (m, n)p)
“SafeP/' — True, by assum ption”

:$6

I
J

5 .4 . E x a m p le s o f F orm al R e a so n in g 124

(Vp : PI' I "C an tT akep (m, n) A CantTake (m, n) p)
= “Definition of CantTake, S u b s t i tu tio n , all term s proper”

(Vp : PI' I " (f s t p = m V s n d p — nV | f s tp — m |= | s n d p — n |) =7 p = (m, n))
= “Know th a t fs t * PI' = { l..m — 1}, so f s t p = m = False and p — (m, n) = FalsF'’

(Vp : PI' I " s n d p ^ n A {m — f s t p) s n d p — n |)

This is a much simpler condition to check.

We now define, for simplicity, the function Check, as follows:

Check = (fun PI E f Position, pos E Position :

(Vp : P / I " s n d p sndpoa A (fstpos — fst p) ŷ l s n d p — sn d p o s |))

T h e F in a l S p e c if ica tio n

.Returning to the initial specification (5 .1 2) we can now present the complete final specifi
cation.

W/{Pl E P lacing : SafePlacing P/}
Ç “Above Refinements”

[]/{let queens — (fun m G N ;
m = 0 -A {0 }
[] m > 0 -A {PI' E queens{m — 1), a G {1..A} :

Safe(PL U {(m, a)}) : PI' U {(m, a)}})
in queens N)

= “S u b s t i tu tio n , Proper terms. D i s t r ib u te F u n c tio n A p p l ic a tio n in s id e le t .
Above simplification of Safe(PL U {(m, a)})”

le t queens — (fun m G N :
m — 0 -A {0}
[] m > 0 |P / ' G queens{m — 1), a G {1..A} :

Check PI' (m, a) : PI' U {(m, a)}})
in W/{queens N)

C o m m e n ts

The above derivation is based very heavily on the axioms for sets. In general, sets do not
form part of a programming language. W hat is required is some form of da ta refinement

5 .5 . T ow ard s Im p e r a t iv e P r o g r a m m in g 125

which will m ap each set and set operation to a da ta type and associated operation of the
target language. An appropriate da ta type is likely to be th a t of sequences.

Notice th a t all the steps, except the application of the R e c u rs io n In tro d u c tio n law, are
equivalences rather than refinements. This is because, in building up the set of all solutions,
we are adding no information to the original specification.

The final step, which has not been derived, would be to choose a single solution from the
set of all solutions. This, necessarily, requires a refinement step since there is currently no
information to say which solution would be preferred. However, after the data refinement
has taken place, resulting in a sequence of all solutions (according to some ordering), the
final refinement might be to choose the first placing in the sequence.

5.5 Towards Im p erative P rogram m ing

In this section we illustrate the derivation of imperative style expressions using the example
of Bresenham ’s line drawing algorithm [17, 85, 77]. This derivation originally appeared in
[19], and is used here w ith modifications.

The example serves to dem onstrate a num ber of points. F irst, the basic specification involves
the use of real numbers, which are not included in the expression language. We assume
th a t the real numbers used can be reasoned about in the usual way. Our target language
does not include real numbers, and so part of our goal is to derive an im plem entation which
uses integers only.

We assume, in this example, th a t all term s are well-defined. This makes reasoning easier,
since all terms are, in addition, assumed to be proper. These assum ptions are reasonable
in the context.

Before the problem is described we anticipate the need for two additional refinement laws
which did not appear in sections 5.2 and 5.3.2. These are given as follows.

L aw (I f R e f in e m e n t)

(if P th e n Ei e lse E 2) Ç (if Q th e n Fi e lse F2)

Finally, our target language is taken to be a lazy functional language. This means that
we use some functions which are not part of our specification language, bu t which are
assumed to be a standard part of the functional language. Laziness is assumed because of
the usual definition of these functions, which deal w ith possibly infinite sequences. Since our
expression language already deals w ith infinite sequences, this does not present a problem .

î:

-'I

I

5 .5 . T ow ard s Im p e r a t iv e P ro g r a m m in g 126

L aw (A p p l ic a tio n t h r u C o n d it io n a l)

A P -7 (/ (i f P th e n E e lse F) - (if P th e n / F e lse / P))

This can be proved by case analysis on the guard,

5 .5 .1 B a c k g r o u n d t o t h e D e r iv a t io n S ty le

(V i : Z 1 • m ^ i < n ^ f { i P 1) = next{f i))

then we would only have to apply / once, namely to m, the first integer in the sequence.
After that, we could simply keep applying next. Naturally, this only reduces work if the
function next is simpler (cheaper) than the origical function / .

This idea is expressed formally using the functions take and iterate which are part of the
standard Haskell prelude and can be defined in any lazy functional programming language.
The following theorem is sta ted from [19]:

This theorem states a more general notion than tha t given above. I t says tha t to m ap a
function / over an integer range, all we have to do is find three functions, here called make,

Î

Whenever

(P A Q) =7 Fi C Pi (P A -iQ) =7 Pi Ç p2

(~iP A Q) F2 Q Fi {->P A ~^Q) F2 Q F2

and with A P and A Q .

This can be proved from the refinement laws D is ju n c tio n o f G u a rd s , U s in g C o n te x t
in G u a rd s and the transform ation laws for A l te rn a tio n s to C o n d itio n a ls .

J

I
Our aim in this example is to transform an expression of the shape / * (m . . . n) into a
more iterative style of functional program , where calculation o f / (z + 1) can re-use some of
the work th a t went into calculating / i, for integer i such th a t m ^ i < n. Suppose th a t
calculating f { i -j- 1) from / i is performed by applying a (simple) function, called next say,
i.e.

A

■■'I
%

T h e o re m (M a p to I te r a te)

{use o make){m . . . n) = {takef f {m . . . n) o (use*) o iterate next){make m)

i f m ^ i < n ^ make{i + 1) — {next o make)i.

i

Ï

5 .5 . T ow ard s Im p e r a t iv e P r o g r a m m in g 127

use and next, such th a t useomake is our original function f , and next captures a recurrence
relation on make.

5 .5 .2 T h e S p e c if ic a t io n

Given two integer pairs {x\, yi) and (3:2 , 2/2), the line drawing problem is to find the pixels
which best approxim ate the line segment between them . The m athem atical representation
of the (infinite) line is defined by the equation

f x A: y ^ - p m ^ { x - x i) (5.15)

where m is the slope of the line and can be calculated from

m = { V 2 - y L) / { x 2 - X i)

For convenience, we use the following abbreviations: dy ^ y2 ~~ yi and d^ = X2 — x\. How
ever, the points of a m athem atical line are given by pairs of real numbers, while pixels are
pairs of integers. We want to calculate those pixels which are nearest to the m athem atical
line, i.e. those which approxim ate the line.

Let us assume, for simplicity, th a t the value of the slope of the line is between 0 and 1. O ther
line segments can be obtained by symmetry. The problem now is to find, for the sequence
of integer x-values (3:1 . . . 3:2), those y-values which best approxim ate the m athem atical line
given by (5.15) using only integer arithm etic .

The line segment will be represented well if every x E Z between x\ and 3:2 is paired
with some y E Z closest to f x. For convenience we define n ^ f f{xi . . . X2) . Our initial
specification is given by the expression

{round o f) ^ {xi . . . X2) (5.16)

which computes the integer y-values for (3:1 . . . 3:2). The function round : IR -A Z, which
gives a proper result for all real numbers, is defined by:

round x = if 3: — (æj > 0.5 then (3:) + 1 else (xj (5.17)

where the floor of x € IR, denoted [x j , has the usual properties:

[xj < X < [xJ -b 1

5 .5 . T ow ard s Im p e r a t iv e P r o g r a m m in g 128

There are two problems with our initial specification. The first is th a t it uses real arithm etic,
bu t takes as input and output only integers. We would prefer to use integer arithm etic only.
Secondly, the algorithm is inefficient, since / is being applied to each member of the list
(xi . . . X2). We aim to use the M ap to I tera te theorem to derive Bresenham ’s line drawing
algorithm, which is efficient and uses integer arithm etic only.

5.5.3 Refinements

We define the integer function r : Z -A Z as follows:

r round o f (5.18)

The initial specification (5.16) is now written:

r * (xi . . . X2)

We can use the M ap to I tera te theorem if a recurrence relation can be found for r. This
should use integer arithm etic only. Consider r(x + 1), where xi < x < X2 ,

r(x + 1)
= “Definition of r (5.18)”

[round o /) (x + 1)
= “Definition of round (5.17)”

if / (x + 1) - [/(x + 1)J > 0.5 th e n [/(x + 1)J T 1 else [/(x + 1)J
Ç “I f R efin em en t, proof requirem ents below”

if (jF(x 4- 1) — r x) > 0.5 th en r x + 1 else r x
= “For suitable e, see below”

if e X < 0 th en r x + 1 else r x

In the above derivation, the I f R efin em en t law can be used only if the guard is proper
(which it is) and if the four proof requirem ents are satisfied. For example, we have to show

(/(x + 1) - [/(x + 1)J > 0.5) A (/(x + 1) - r x > 0.5) => ([/(x + 1)J + 1 ^ r x + 1)

This, and the other requirements, can be shown using the properties of floor and some real
arithm etic . The basic idea is tha t, since the slope of the line is between 0 and 1, the next
y-value, r(x -f 1), must be either the same as the previous value, r x, or its successor, r x + 1 .

So, we have a recurrence relation for r, which depends on the value of ex . We now examine
e X.

5 .5 . T ow ard s Im p e r a t iv e P ro g r a m m in g 129

We know from definition (5.19) th a t e x% — — 2 * .

Now we have th a t the calculation of the next y-value, r{x + 1), depends on the previous
y-value, r x and the difference value e x. Therefore, at each iteration, we want to calculate
r(x + 1) and the next difference value e(x + 1). Let us define a function /c : Z -A Z x Z
form ing the pair:

k x = (r x ,e x) (5.21)

and combine the two recurrence relations into one;

e X < 0
= “Fi’om above derivation”

/ (x + 1) — r X > 0.5
= “Definition of / (5.15)”

yi + m * (x + 1 — xi) — r X > 0.5
= “m — dy/dx, m ultiply by d̂ ,”

dx * Ï/1 + dy * (x + 1 “■ xi) — da; * r X > 0.5 * d^
= “arithm etic”

2 * d a ;* r x + d j ;" -2 * d a ;* y i—2 * d y * (x + l — x i) < 0

So, we define:

ex A: 2 * da; * r X + da; -- 2 * da; * — 2 * dy * (x + 1 — xi) (5.19)

The function e also satisfies a recurrence relation;

e(x + 1) — e X + 2 * da; * (r(x + 1) — r x) — 2 * dy (5.20)

Note th a t this expression for e uses integer arithm etic only. We can now eliminate r from
the recurrence relation for e. The difference between r(x + 1) and r x is always either 0 or
1. So we have:

e(x + 1)
= “Recurrence Relation (5.20)”

e X + 2 * da; * (r(x + 1) — r x) — 2 * dy
= “A ltern a t io n In trod u c tion , A(ex < 0), A ltern a t io n to C on d ition a l”

if e X < Othen e x + 2 * da; * (r(x + 1) — r x) — 2 * dy
else e X + 2 * da; * (r(x 4- 1) — r x) — 2 * dy

Ç “U sin g C on tex t in G uards, previous observations”
if e X < 0 th en e x T 2 * d̂ — 2 * dy else e x — 2 * dy

.1

li"

5 .6 . C o n c lu s io n s 130

(r(x + 1), e{x + 1))
“ “Recurrence Relations”

(if e X < 0 th en r x + 1 else r x,
if e X < 0 th en e x + 2 * — 2 * dy else e x — 2 * dy)

= “P rod u c t F orm ation th ru C on d ition a l”
if e X < 0 th en (r x + 1, e x + 2 * d ̂— 2 * dy) else (r x, e x — 2 * dy)

Now we can use the M ap to I tera te theorem with:

next = (fun r , e € Z : if e < 0 th en (r x + 1, e x -f 2 * d̂ — 2 * dy)
else (r X, e X — 2 * dy))

make = (fun x G Z : (r x, e x))
use = fst

which gives us, from our first specification (5.16):

{round o /) * (xi . . . X2)
= “Definitions of r and k, (5.18) and (5.21)”

(fst o k) * (xi . . . X2)
™ “M ap to I tera te theorem ”

let next — (fun r, e G Z :if e < 0 th en (r x + 1, e x + 2 * d ̂ — 2 * dy)
else (r X, e X — 2 * dy))

in {take n o (fst*) o iterate next){yi, d^ — 2 * dy)

This im plem entation of specification (5.16) is efficient and uses only integer arithm etic . It
corresponds to Bresenham ’s line drawing algorithm [17].

In [19] it is shown how an im perative version of this program can be obtained through
further transform ations which make use of the state monad.

5.6 C onclu sion s

In this chapter we have provided the apparatus for proving properties of and refining spec
ifications of the language defined in chapter 2.

A proof system, consisting of the axioms of chapter 2, a num ber of inference rules and a
m ethod of writing down proofs have been provided as a means of proving true boolean

5 .6 . C o n c lu s io n s 131

expressions of the language. Using a deductive form of reasoning, proofs proceed by substi
tu ting equivalent term s, “substitu ting equals for equals” . The basic axioms of the language
are extended by a list of transform ation laws, useful for m anipulating specifications.

A goal of the refinement calculus is to supply the means of calculating a program P from a
specification S. Usually we do not have th a t P and S are equivalent, bu t rather we have the
relation th a t P implements or refines S. In this chapter we have introduced a new operator
C into the language, so th a t P Ç P is equivalent to the boolean value True whenever P is
a valid im plem entation or refinement of S. The operator Ç is transitive, allowing stepwise
refinement. In addition, the m ajority of language constructs are monotonie with respect to
refinement, meaning th a t piecewise refinement can occur.

For a small number of operations, including A and 5, argum ents may be replaced only
with equivalent expressions, not by refined expressions. In practice, this is not a problem,
but some care should be taken when refinement is piecewise. The non-monotonic opera
tors are essential for specification and for reasoning, and the care taken during piecewise
refinement is a small price to pay for their expressive power. The m ultiplication example
provided an instance where reasoning about proper expressions, using A, was necessary.

The example m anipulations and refinements in section 5,4 dem onstrate how the calculus
might be used. Using the example of the zip function, we showed how recursion can be
introduced into a refinement. The refinement of the A-queens example showed bo th the
introduction of recursion and how sets can be m anipulated in the expression language. It
also indicted where data refinement would be used.

The proofs associated with the printing control example dem onstrate tha t laws of the pro
posed calculus can be used with larger specifications, reasoning equationally as before.
Chapter 4 introduced the sta te m onad with exceptions as a way of structuring large specifi
cations, and this was shown to be useful in making specifications more readable. However,
in section 5.4.3, we find th a t the use of monads make properties of specifications less easy
to formulate. A lthough the m onad laws can be added to the list of equivalence laws, it is
likely th a t they would only be used to unfold the monad definitions, resulting in a purely
functional specification which is then m anipulated using the laws of the calculus. There
fore, in reasoning about large specifications, the use of monads does not provide any extra
machinery, and may even hinder the formulation of expressions.

Finally, the example of Bresenham ’s line drawing algorithm shows how programs in an
im perative style can be derived from functional specifications.

A refinement calculus for the development of functional programs has now been presented.
This comprises the specification language of chapter 2, the refinement relation and the

5 .6 . C o n c lu s io n s 132

provision of a set of refinement laws - including basic axioms, the transform ation laws
and the laws of section 5.3.2. W hat rem ains is a justification of their validity in term s of a
denotational semantics and proofs of the laws of the calculus. This is what is now addressed
in chapter 6.

4

C hapter 6

Sem an tics

In this chapter we describe a denotational semantics for the expression language set out in
chapters 2 and 5. The role of the semantics is to provide a model of the language which
can be used to justify the axioms and rules of inference. This will show th a t the theory is
consistent.

O ther approaches to specification languages based on expressions have avoided the issue of
semantics [68] or have given a semantics based on predicate transform ers [90]. We take the
approach, based on an example in [88], of mapping each expression of the language onto
its set of possible values. An overview of the methodology and notation used is given in
section 6.1. The semantic m apping is defined by structural induction in section 6.2.

The difficult problem of giving a semantics to recursive function definitions is tackled in
section 6.3. This involves some applications of domain theory and, since our expressions
denote sets, power domains in particular. We order the sets of our semantic domains using
the Egli-Milner ordering, and apply the fixpoint theorem for monotonie functions to give a
formal account of recursive functions in the specification language.

In section 6.4 we examine refinement of expressions and use the Smyth ordering to give a
semantic definition of the relation . In section 6.5 we use the semantic definitions to show
th a t the semantics supports the axioms of the language and the inference rules proposed in
chapter 5.

Finally, section 6.6 describes informally how a denotational semantics might be given to the
specification modules introduced in chapter 3.

133

6 .1 . M e th o d o lo g y 134

6.1 M eth od o logy

In chapters 2 and 5 an expression language was described formally though the use of type
rules and axioms. In this chapter we give a semantic presentation of the language, m apping
each expression to some set using structural induction. Our aim is to dem onstrate tha t
these sets, in the semantic domain, provide a good model for the axioms and laws of the
expression language. In this section we give an informal overview of the m apping used.

The semantic mapping, which we call M , maps an expression E to its set of possible
evaluations. We call such sets Af-sets, and A4 E is called the Af-set of expression E.

A4{True) = {True}

A non-determ inistic expression will be m apped to a set containing at least two elements.

1

Each type T of the expression language has an associated semantic domain Dp. Each D t
contains a ‘least’ element, which is associated with the undefined value of T, T p , of the
expression language. A more formal treatm ent of domains will be given in section 6.3 where
the semantics of recursion is considered. For the semantics of non-recursive expressions,
however, it is sufficient to identify domains with maximal typed sets.

For example, the associated domain for the type Bool is the lifted boolean domain B o o lx ,
which contains the elements True, False and Tbooi; has operators V, A, as well
as quantifiers V, 3. These values, operators and quantifiers in the semantic domain are
distinct from their counterparts in the expression language, although they are w ritten using
the same symbols.

The domain B oo l, the domain Z and the domain C h a r are standard prim itive domains of
most versions of domain theory.

Undefinedness in the expression language is handled by using lifted domains, which always
have a least element. Non-determinism in the expression language is handled by m apping
expressions onto sets of possible evaluations which exist in the associated domain. So, our
mapping A4, in general, takes a type T onto the powerset of its associated domain D t , the
powerdomain V D t - For example, the A4-set of a boolean expression is in the powerdomain
U B ooW , i.e. it is a set of elements from Boolj^. The powerdomain structure will be
explained in more detail in section 6.3.

A proper expression in the expression language will be m apped by Af to a singleton set
in the semantic domain. This makes sense because a proper expression has exactly one
possible evaluation, e.g.

■ . :T

6 .1 . M e th o d o lo g y 135

since it has more than one possible evaluation, e.g.

M {T rue [] False) — {True, False}

So non-deterministic choice in the expression language is modelled by set union in the
semantic domain.

An expression which is undefined in the expression language will be m apped to a set con
taining the least element of the associated domain, e.g.

A4 (T fu e y 4.B o o l) ~ { T r u e , J-bqoi}

The meaning of the miraculous expression T is given by the empty set of the semantic
domain. This is because it has no possible evaluations.

Intuitively, an expression E is well-defined if T is not in its set of possible evaluations,
i.e. T ^ A4 E. An expression E is to tal if its set of possible evaluations is non-empty, i.e.
A4 E If the VW-set of an expression A is a singleton set, then E is deterministic.

S trictness, for example of products, in the expression language will be modelled by taking
the smash product of Ad-sets. In a smash product domain D\ ® D2 there is no distinction
between the pairs (A , T^^), ^2) and ±Bi®D2 i âe. it is the strict product domain. The
smash product operator, ® will be explained in more detail in section 6.3.

D istribution of operators over operands in the expression language will be modelled by
m apping the denotation of the operator over the Ad-set of the operand . For example

■^(1 + (3 [] 4)) — (+) * ({1} 0 {3,4})

which takes the smash products of the denotations of the operands (so enforcing strictness)
and then maps the addition operator of the integer domain over the resulting set. This
gives

■^(1 + (3 D 4)) = (-f) * ({1} ® {3,4})

= (+) + { (!,3),(1 ,4)}

= {4,5}

as expected.

6 .2 . S e m a n t ic s o f E x p r e ss io n s 136

cond(c,*S', T) = if c then S else T

All of c, S, T here are objects in the semantic world, and not at the level of specifications.

Some nice properties of cond are the following:

These properties will be used in proofs.

Notice here tha t we are talking about sets in the semantic domain, and hence equality (—)
is the usual equality of sets, not to be confused w ith the equality operator of the expression
language. All conditions c are well-defined.

6.2 S em an tics of E xp ression s

M v — {v}

N o ta t io n

In the following we will make use of a notation for set comprehensions borrowed from Wadler
[88]. This is based on the list comprehension notation used in functional programming
languages, as in [12]. We use this notation in order to distinguish the set comprehensions
of the specification language from those in the semantic domain.

For S a singleton set in the semantic domain, we use eS to m ean the single element of tha t
set.

,

We define the shorthand notation cond(c, S, T), where c is a condition and S and T are
sets:

cond(-ic, 5, T) = cond(c, T ,5)
cond(c. S 'U 5 ', T) — cond(c, S, T) U cond(c, S ', T)
cond(c V c', S, 0) = cond(c, S, 0) U cond(c', S, 0)
cond(c, cond(c', S, 0), 0) — cond(c A c', S, 0)

We also have that, if from c we can deduce S = S ' then:

cond(c, S, T) = cond(c ,S ', T)
-A-

In this section we trea t each expression of the specification language and describe its Ad-set
using structural induction . We begin with proper values of the types Bool, Z and Char.
For V any such value:

6 .2 . S e m a n t ic s o f E x p r e s s io n s 137

Here, the A ’ on the left is a value in the specification language, while th a t on the right, ‘v ’
is the corresponding value from the associated semantic domain. In general the two will
not be distinguished.

Examples of instances of this m apping are:

AA True — {True}

A4 3 — {3}

Ad

U n d efin ed n ess and N o n -D eterm in ism

The bottom expression is m apped onto the set containing the least element of the associated
domain.

M A - t — { T ^ r }

The miracle expression is m apped onto the empty set.

y\dT - 0

The set of possible outcomes of an expression E F contains the possible outcomes of E
and the possible outcomes of F.

A4{E{^F) - A 4 E \ J A 4 F

So, if T is a possible outcome of either E or F , then it is also in the set of possible outcomes
for E n F.

A

A

Î

Î

We now want to describe the Ad-mappings for ô and A. Consider a statem ent of the
form A “ E of the expression language. This should be True if Ad E and A4 F are the
same, and False otherwise. Bu t the denotation of the expression True is given by the set
containing True in the semantic domain. Therefore the m apping for equivalence, = , must
be onto a (singleton) set.

The denotation of 5 E should be the set { True} if the Ad-set of E contains the least element
of the associated domain, and {False} otherwise. The denotation of A E should be the set
{ True} if the Ad-set of E is a singleton set not containing the least element of the associated
domain, and {False} otherwise. Bo th A4{6 E) and A 4 (A E) should be singleton sets.

I
I

6
..lA.

I I

6 .2 . S e m a n t ic s o f E x p r e ss io n s 138

The vW-semantics for Boolean expressions are not very elegant, because most of the oper
ators are not strict and do not distribute over choice. For negation, however, there is no
problem

where -i in the semantic domain is strict.

Possible outcomes for disjunction are given by extension

From the above analysis, we have the following mappings:

M { E = F) - { M E = M F }

I
M { 5 E) - { L ^ M E]

A l(A P) = {_L}}

The denotation for equality, —, does not necessarily result in a singleton set, since in the
expression language equality distributes over choice, e.g.

((3 [] 4) = (3 0 4)) = (TFue [] Fake)

and is, in addition, strict. So, for equality, we have:

M { E : = F) = { =) ^ { M E ® M F)

This takes the A l-sets of E and P , forms all possible pairs and compares them, pairwise,
for equality.

Sem an tics o f B oo lean E xp ression s

"I.

True ^ M { P y Q) — True G Af P V True G M. Q
False E M { P y Q) — False E M P A False E A4 Q
± E M { P y Q) = { T E M P A M {True})

y (± E M Q A M P ^ { T r u e })

Notice th a t the boolean operators on the left of these equations are those of the specification
language, while those on the right are part of the semantic language.

For example, consider the expression {True [] False) V False. The Af-set of this expression
must contain True because True is in the Af-set of the first disjunct; and it must contain

.

6 .2 . S em a n t ic s o f E x p r e ss io n s 139

False because False is in the A4-sets of both disjuncts. It does not contain ± because _L is
not in either of the vW-sets. We conclude that:

M.{{True (] False) V False) = {True, False]

Conjunction can be expressed in terms of negation and disjunction, while implication is
expressed in terms of disjunction, negation and A. It tu rns out th a t the m apping for
implication is the following:

True e M (P ^ Q)
False 6 AA{P ^ Q)
i . E M { p y Q)

True E A4 P => True E A4 Q
A4 P — {True} A False E A4 Q
M P — { True} A ± E A4 Q

Again, this is given by extension. The mappings are included here because they will be used
when we show th a t the M odus Ponens inference rule is valid in the model (see section 6.5).

Universal quantification is given by the following:

True E A4{MX : T \ P • Q)

False e A4(Vx : T \ P • Q)

± E A 4 (V x : T j P m Q)

And for existential quantification:

True E A4(3 X : T \ P • Q)

False E A4{3x : T \ P • Q)

± E A 4 { 3 x : T \ P » Q)

(V X : D t I True E A4 P • True E A4 Q)

(3 X : D t I True E A4 P • False E A4 Q)

(3 X : D t \ True e A 4 P * A . e A4 Q)

A { y X : D t | True E A4 P • A4 Q ^ {False})

(3 X : D t I True E A4 P • True E A4 Q)

(VX : D t | True E A4 P • False E A4 Q)

(3 X : D t \ True e A 4 P * L e A 4 Q)

A (3 a; : D t \ True e A 4 P * A 4 Q ï^ { True})

We notice th a t the quantification on the left is tha t of the specification language, and
hence three-valued, whereas th a t on the right is quantification in the semantic domain, and
hence two-valued. Further, we notice th a t the x on the left is a variable identifier of the
specification language, while th a t on the right is of the semantic language, which makes the
predicates P and Q something of a hybrid . The intention is th a t x in the semantic language
and A4 x for x in the specification language, should correspond.

I

Ï

6 .2 . S em a n t ic s o f E x p r e s s io n s 140

= /a t * {(3,5), J_zxz}

— { 3 , - L z }

S e m an tic s o f I n te g e r E x p re ss io n s

For operations over the integers, w ith © one of , x , U, fl and 0 one of / , mod, div, we
have

M { E ® F) = ® * (A4 E ® A4 F)
A 4 (E 0 F) - 0 * (A 4 E ® A 4 F \{0}) U cond(0 e A 4 F , {©}, 0)

In the first case, we take the smash product, to enforce strictness, and then m ap the
semantic function (©) over the set, which models distribution over choice. We assume that
the application of (©) to Fz x Z is -L%. In the second case we do the same thing, bu t remove
zero as a possible divisor. Then, if zero is a possible outcome of F, we add T% to the
resulting A l-set.

For example:

A f(3 /(3 []0)) = (/) + ({3 }0 {3 ,O }\{O })U co n d (O E {3 ,O },{T z},0)

^ (/) * ({3} 0 {3}) U {Tz}

-

as required.
i

S e m a n tic s o f P a irs

For pairs, again strictness is enforced by using the smash product. The associated operators
are m apped over the resulting sets, modelling distribution . Note th a t the domain operators
fst and snd are strict.

A 4 (E ,F) = A4 E ® A4 F
A l(fs tp) = f s t ^ A 4 p
Ad (snd p) = s n d ^ A i p

For example:

>l{f s t(3 ,5DXz)) = / s (* A f (3 ,5 |X z)

= /s(* ({3} ® {5 ,±z})

6 .2 . S e m a n t ic s o f E x p r e s s io n s 141

as expected.

S e m a n tic s o f F u n c tio n s

The meaning of a function is given by the set of its possible graphs. Each graph is a set of
pairs (rr, y) where p is a possible value of the function at x, if it is defined and total, or y
is T if the value at x is undefined. Thus

graph{îwn x E T : E) = {(a, 6) | a <— D t \{-Ld t }-> ̂ ^ M{E[a/ x]) }
Ad (fun X E T : E) ~ {graph{fun x E T : E)}

The Ad-set of a determ inistic function expression is a singleton set containing one graph.
The domain of a graph g, dom[g), is the set of all x ’s such th a t there is a pair (x, y) in g,
i.e. the set of all x ’s th a t have a to ta l value under the function given by g. The image of
a value a in a graph g, Im[a, g), is the set of possible values of the function given by g at
a. For a set of values A and a set of graphs G, IM[A, G) is the union of each Im{a,g) for
a E A and g E G. For two graphs g\ and g2 such tha t the domain type of g\ is the same as
the result type of g2 , compose(pi, ^2) is as expected. We define

dom[g) = f s t * g
Im{a, g) = cond(a ^ E , { h | (a, h) ^ g} , _L)
I M[A , G) “ + (A X C))

compose(<71, P2) = {{a, c) \ {a,h) E- g 2 ,[h, c) E- g i]

Properties of I M include

I M[A \ J A ' , G) = I M [A , G) \ J I M { A ' , G)
I M { A , G g G') - I M { A , G) U I M { A , G ')

which will be useful in proofs. Now we have that the application of a function to an
expression is obtained simply by looking up all the possible results in the corresponding
graph(s). Function composition is obtained by mapping compose across the set of pairs of
the corresponding graphs.

M { f E) = I M [M E , M f)
Ad(/i o / 2) = compose + (Ad /i 0 Ad

Syntactically, a to tal function is one whose body is a total expression. Semantically, this

%

6 .2 . S e m a n t ic s o f E x p r e ss io n s 142

condition is expressed as; for / a function of type T —)■ T ', / is a to tal function if •
s';

{ y g e M f , a e D t ■ Im{a,g)

or, equivalently

{y g E M f , a E D t : a E dom{g))

According to the syntactic rules, the application / E cannot be formed unless the function
/ is a to ta l function.

Sem an tics o f G en eralised and B ia sed C ho ice

S em an tics o f G uards and A ssu m p t ion s

The Ad-set for a guarded expression P —> F is a little more complicated, since there are three
possibilities. If the guard is true, then the resulting Ad-set is ju st Ad E. If the guard is false,
then the result should be non-total, i.e. the empty set. Bu t if the guard is improper, then
the resulting Ad-set should contain ju st T . The Ad-semantics for assum ptions is similar,
bu t they behave the same way whenever the assum ption is non-true, giving an undefined

We’ve already seem th a t the choice operator is modelled by set union in the semantic
domain, so any possible outcome of E or F will be a possible outcome oï E F. It follows
th a t generalised choice over a set S will have S as its set of possible outcomes. A lthough A
we have not yet said what the meaning of a set expression is, we assert tha t U Ad 5" is the
same as the set S. The Ad-set for a biased choice is obtained by looking at Ad P . If it is
not empty, then E has a non-empty set of possible results (possibly including T) and must ,
be total, i.e. Ad E 0. In this case, the Ad-set is just Ad E. O therwise we take Ad F. A

f
M(ys) = \ J M S

M (E % F) = c o n A (M E ^ ^ , M E , M F)

Notice th a t the only way infinite sets arise in the semantic domain is from the meaning of a s
generalised choice over an infinite set. This will be im portant in our treatm ent of recursive
functions.

: ;A

6 .3 . S em a n t ic D o m a in s a n d R e c u r s io n 143

result.

M [P ^ F) = cond(Ad P = { T r u e] , M F ,cond[M P - {Pa/5e}, 0, {J.}))
A d (P > - P) = coiid[M P { T r u e } , M F , { ± })

S e m a n tic s o f S e ts , B ag s a n d S eq u en ces

In order to simplify the semantics of the da ta structures sets, bags and sequences, we treat
them , essentially, in the same way th a t simple values are treated . So, the Ad-set of a set
in the expression language, is a set of sets in the semantic domain. Similarly, a bag of the
expression language is denoted by a set of bags, and a sequence in the expression language
is denoted by a set of sequences in the semantic domain. We have, for sets

Ad{x € T : P} — {{x G D t \ { 1 . D t } ■ M P = {True}}}

= (\JD*MA
M i x e A) - (G) * (Ad X 0 Ad A)

For bags

where Dj is the initial subset of the natural numbers in the semantic domain corresponding
to the initial subset of the natural numbers I in the expression language.

6.3 Sem an tic D om a in s and R ecursion

Our aim in this section is to give a meaning to recursive function expressions of the speci
fication language. These are syntactically of the form

le t / = E[f] in F[f]

0-
■ A

Ad Ex : P x< P] = (Ex : D r XK a]] I o Ad E}

M (B . E) — {b.a \ b M B, a ^ M E}

And for sequences

M { i ■- I yK E) - {{i Di -XK a) \ a ^ M E}

M { d o m S) = {dom) * M S

■t

A

6 .3 . S em a n t ic D o m a in s an d R e cu r s io n 144

where / has type A B. Traditionally, the semantics of such a function is the least
fixpoint of some functional in the semantic domain. Our goal, then, is to be able to apply
the Fixpoint Theorem (theorem 2, to follow). This requires a theory of cpo’s and monotonie
functions such as can be found in any text on denotational semantics (e.g. [23, 35, 66, 74,
82, 86]).

6 .3 .1 C p o ’s a n d F ix p o in t s

We assume the reader is familiar with the basic concepts of partial orders and partially
ordered sets (posets), chains of elements from a poset, least upper bounds etc. We will
usually write a partially ordered set using the notation {D, Ç) where D is a set of elements,
and □ is a partial ordering over D. If the ordering is obvious, we shall simply write D for
the poset (J9,C). In add ition, the relation C p may be used to represent the associated
partial ordering for the set D. Subscripts may be dropped if the meaning is clear from the
context. We now give a definition of a complete partial order.

D e f in itio n 1 A partially ordered set [D, Ç) is a complete partial order, cpo, i f every in
creasing chain of elements of D, (dn), has a least upper hound (luh).

D e fin itio n 3 Let {D, C p) and {E, C p) he cpo’s. A function f \ D ^ E is continuous ijf,
for each chain {dn) of elements of D, / (U <̂ n) — \ J f d„,-

Note th a t from this definition, since empty chains of elements of D have not been excluded,
every cpo has a least element, w ritten _Lp, or T if the subscript is obvious.

Every set X gives a f lat cpo, (Xp, Ç), where X± = X U {_L} and x Q y iff x = ± or x — y.
Examples of such flat domains include Zp, B oo lp and C h a rp , which will henceforth be
w ritten without subscripts. A more interesting class of cpo is (P6", Ç) for any set S, the set
of all subsets of S ordered by ordinary set inclusion. The least element of P -S' is the empty
set, and the least upper bound operation is set union.

An im portant concept in the theory of fixpoints is tha t of a monotonie function.

D e fin itio n 2 Let (D, C p) and (E,C,e) cpo’s. A function f : D E is monotonie iff,
for every x , y e D, i f x C p y then f x E p / ï/.

The functions generally needed for the semantics of programming languages are continuous,
i.e. they preserve limits of increasing chains.

6 .3 . S em a n t ic D o m a in s a n d R e c u r s io n 145

T h e o re m 2 Let (D, C) be a cpo. Then for any monotonie mapping f : D D , the set of
fixpoints of f contains a least element.

P r o d u c ts a n d S m a sh P r o d u c ts

■ f

It should be clear tha t every continuous function is necessarily monotonie.

We have seen tha t any flat partial order is a cpo. Likewise any partial order, w ith a least
element, which only has eventually constant increasing infinite chains, is also a cpo. In fact,
all monotonie functions over such cpo’s are continuous.

For any function f : D ^ D, element d of D is a fixpoint of / ilf / d — d. Such a d
is the least fixpoint if, for any other fixpoint d' of / , d C p d' . We now state the fixpoint
theorem (see [47]).

T h e o re m 1 Let {D, C) be a cpo with least element _Lp. Every continuous function f : D D
has a least fixpoint which is U /"_L p. |

This theorem is used widely to give denotational semantics to programming languages,
particularly to iterative and recursive programming constructs. Domains with continuous
functions provide denotations for almost all useful programming constructs. The exception,
however, is unbounded non-determinism, which we use as a tool for specification rather
than as part of the programming language. In this case we deal w ith monotonie, rather
than continuous, functions. We use the fixpoint theorem for monotonie functions, stated in
[50, 67] and attribu ted to Hitchcock and Park .

A proof of this theorem can be found in [67]. The least fixpoint is given by / “̂ T p for some
ordinal a. So, unlike the case for continuous functions, the fixpoints of monotonie functions
are not necessarily obtainable as the lubs of countable chains.

6 .3 .2 D o m a in C o n s tr u c to r s

We have seen examples of some simple domains, such as the flat domains Z, Bool and Char.
New domains can be constructed using operators on domains. We look at some of the most
common domain constructors here. I

.

Given two posets (D, C p) and (E, C p), their product domain {D x E, Qd x e) is the set of
pairs {d, e) such tha t d E D and e E E, partially ordered coordinatewise, i.e. (d, e) ÇpxÆ (d \ e') y

6 .3 . S e m a n t ic D o m a in s a n d R e c u r s io n 146

Note th a t 0 preserves the flatness of domains, i.e. if D and E are flat cpo’s, then so is
D 0 F .

A l l

5

■ÿ-
iff d C p d' and e Cp e'. If D and E, are cpo’s, then so also is D x E. Note tha t ({x, y)n)
is a chain in D x E iff (x„) is a chain in D and (yn) is a chain in E. Least upper bounds of

chains in D x E are given by \J{^, y)n = iU^n, Uï/n)-

Given cpo’s D, E and F, a function f : D x E F is continuous iff it is continuous in each
of its arguments individually. This result can be extended to general products.

In the product domain D x E the pairs (d,_Lp) and (T p ,e) are distinct, if d 1 _Lp or
e 1 J_p. However, in the smash product D 0 E such pairs are identified with the least
element of the domain, Tp® p . The elements oî D 0 E are those pairs [d, e) E D x E such
th a t d 1 T p and e 7 ̂ T p , and the element T p ^ p . The ordering is coordinatewise, and
Tpgip is the least element oi D 0 E. It follows th a t the smash product is a cpo since it has
the same least element and the same lubs of increasing sequences as the Cartesian product.
This makes D 0 E a subcpo oi D x E.

.K

F u n c tio n S paces

For D a set and {E, Cp) a poset, their function space {D -4 E, Qd->e) is the set of functions
from D to E w ith the pointwise partial ordering / Q d ^ e ^ iff (Vx € D . f x Cp gx) . If

E p) is a cpo, then so also is (D -7 F ,E p -î-p) , w ith lubs of increasing sequences given
by iU fn)x — U(/n Sind least element (Ax G D .T p) .

For D a set and [E, E p) a poset, the function space (H E , Cp_,.p) is the set of monotonie
functions from D to E w ith the pointwise partial ordering inherited from [D —> E, Ep-^p)-
If (E, Cp) is a cpo, then so also is {D E , C p ^ p) . It is, in fact, a subcpo of {D -> E , E p - 5-p)-

For D a set and (E , E p) a poset, the strict function space [D — E , Cp_^p) is the set of
strict functions from D to E w ith the pointwise ordering inherited from [D -7 E , E p ^ p) - If
(E , E p) is a cpo, then so also is [D E , E p->p), and it is a subcpo of [D -> E , C p ^ p) .

6 .3 .3 S e m a n t ic D o m a in s

The domains we use to describe the semantics of the specification language include the
basic fiat domains Z, B o o l and C h a r . We also use smash products to represent pairs, and
domains isomorphic to lifted strict function spaces for functions. To represent the sets of
the specification language we use the flat powerset domain (P 5 , E p s) , where the ordering

6 .3 . S e m a n t ic D o m a in s an d R e c u r s io n 147

T h e E g li-M iln e r O rd e r in g

Let E be a domain. We take as elements of V D non-empty subsets of elements of D. Now,
for A and B in V D , the Egli-Milner ordering is given by:

4 C p M E iff iff X E A . 3 y E B. x Qd y) A i f f y E B . 3 x e A. x Qd y) (6.1)

We argue th a t this ordering is appropriate for our needs. Each set in the semantic language
denotes the set of possible evaluations for some expression. A set A can be made mor e

def ined by making some of its elements more defined, and without losing any information
content. This gives the first part of the definition, (Vx G G B. x C p y). For the
second part we note th a t no information which does not potentially already exist can be
added to A, [y y E B . 3 x E A.x C p y).

If D is flat, the definition can be restated as:

A F e m B i f f e i th e r ± ^ A A A — B
o r JL G A A A\{_L} Ç E \{_L }

1
I

Cpg, is the usual flat ordering. However, we also require a powerdomain structure V D ;
to represent the non-determ inacy of the specification language. This is because each non-
deterministic expression E, of type T, of the specification language, is represented by a set
of possible values in the domain VDr-, where E p is the domain corresponding to type T.
In the following section, we examine a suitable candidate for VD .

■IÎ

6 .3 .4 T h e E g li-M iln e r P o w e r d o m a in

We have given a semantics for a non-determ inistic specification language w ithout recursion,
and we now want to include the semantics for recursive function expressions. Since the
semantic domains for the language are powersets, we need to find a definedness ordering on
sets which will give us the cpo structure necessary for the existence of fixpoints.

For E a cpo, we want to form a powerdomain V D which is a cpo, with basic operations
singleton and union. Clearly, the elements of V D should be those of P E . We have already
seen two orderings which can be associated w ith P E , the flat ordering E pp and the subset
ordering C. Neither of these are suitable orderings for V D since we require th a t singleton
is monotonie, i.e. if a E p b then {a} C pp {6}, which is not the case in general w ith either
of the orderings given. We shall see th a t the ordering we desire on sets is the Egli-Milner
ordering.

I

I

■As:

6 .3 . S e m a n t ic D o m a in s an d R e c u r s io n 148

is the infinite set 0,1, 2 , n , I t is impossible to construct a chain of finite sets
which has {0,1, 2 , n , a s its limit. Since the meaning of recursion will be given by the
limit of a chain of sets, a non _L-containing infinite set cannot be introduced as the result
of recursion.

1

i-
Prom this definition it should be clear th a t the set V D has a least element {-Lp}, and if
Ao Epm Ai Epm . . . is a non-empty increasing chain then either JL 0 A„ for some n, when
IJjAj = Ajj, or X G A„ for all n, when \JiAi — Uj Ap I t can easily be shown th a t Qem is
a partial ordering. We conclude th a t V D , for D flat, together w ith the ordering Qem is a
cpo.

The singleton function {•} ; D -A V D is continuous, so ^ as is expected.
In addition, the binary union function |J : V D x V D -A V D is also continuous. This
means th a t chains of sets can be described in term s of chains of singleton sets, and the
lubs of chains of sets can be given in term s of lubs of chains of elements, since singleton is
continuous. The empty set is a special case, which we consider later.

Treatm ents of the Egli-Milner powerdomain [35, 37, 74, 82, 84] take the powerdomain for
flat D, V D to consist of all non-empty subsets of D which are either finite or contain JL.
This is explained by the fact th a t for any computable function which has the possibility
of producing an infinite set of outcomes, non-term ination is also a possibility. However,
this is not true for a specification language, where unbounded non-determinacy without
non-term ination is possible.

Including infinite, non X-containing sets in V D does not affect the cpo structure . For
example, including the set {0 ,1 ,2 ,.., n , ..} in V L does not affect the cpo structure which
already exists, and by the Egli-Milner ordering we have th a t

{X z ..,72,..]" EpJV/ {0; I) ‘̂ 1

In fact the set {0,1, 2 ,.., n , i s not related by the Egli-Milner ordering to any other non
X-containing infinite set of integers.

However, allowing non X-containing sets in V D means th a t not every set can be obtained
as the lim it of a chain of finite sets. From the above example, the limit of the chain

{ - L z } Qem { - L z , 0 } Gem { 4 - z , 0 , 1 } Gem ■ • . E p m (d - z , 0 , 1 , 2 , . . , n } Gem • • •

.A

6 .3 . S em a n t ic D o m a in s an d R e c u r s io n 149

A d d in g th e E m p ty S e t

The Egli-Milner powerdomain, extended with infinite non X-containing sets, contains only
non-empty sets. For an expression E of the specification language, the semantics of E is y
given by the set of possible evaluations of E. The empty set would denote the absence of
a value for E , as in the case where E corresponds to the fictitious value T . Therefore, we f
include the empty set 0 in the ordering for a powerdomain VD .

Following Heckmann [37] this can be achieved by simply including 0 in the elements of the
powerdomain, and extending the ordering E pm so tha t {X} 0, and no other element
of the powerdomain is comparable to 0.

IÎ-
6 .3 .5 R e c u r s iv e F u n c t io n D e f in it io n s

The reason th a t we are looking at the powerdomain V D for a domain D is so th a t we can
give meaning to recursive definitions. Such definitions are, syntactically, of the form:

s
le t / = E\J] in F[f]

where / is a function of type A —> E , say. Then the meaning of / will be given by the least 3
fixpoint of a functional V over the dom ain V[A -A VB) . This exists, by theorem 2, provided
th a t V is monotonie, i.e. V is in V[A -4- V B) ^ V[A -4 VB) , and tha t V{ A -4 V B) is
a cpo. Using straightforward syntactic restrictions we can ensure th a t V is monotonie. 3,
Unfortunately, using the extension to the Egli-Milner powerdomain, as described above, we
can only guarantee th a t V D is a cpo if we know that E is a flat domain.

We can, however, make some simplifications. F irst we insist th a t, in the definition for / , the '-t
expression E must be determ inistic . This is a reasonable syntactic restriction which can be
imposed easily. Since / is a function, this means that / must be externally deterministic,
though it can have a non-determ inistic body. The direct consequence of this restriction is
tha t the meaning of / must be a singleton set in E(A -4 VB) .

Using the fact th a t singleton is continuous, it follows th a t the meaning of / is the singleton
set containing the least fixpoint of a monotonie functional V ' , which is in the domain
(A -4 VB) (A -> VB) . This, in tu rn , exists if A ^ V B is a cpo. We saw in section 6.3.2
th a t this holds if V B is a cpo, which is true by the extension of the Egli-Milner powerdomain
if B is flat.

We propose to restrict recursive function definitions to those of type A -4 E where the
domain corresponding to the type E is flat. From section 6.3.3 it should be clear th a t the

J

6 .3 . S em a n t ic D o m a in s a n d R e c u r s io n 150

Based upon the Plotkin construction [73, 74] of a powerdomain VD, for D not necessarily

only non-fiat semantic domains we use are function domains, or smash products involving
function domains. This restriction of B to fiat domains would rule out such recursive
function definitions as:

le t / = (fun X G Z :

if X > 10 -4 (fun y E l i : X V y)

else le t y — []/Z in / y)

in /
A

We do not consider this to be a serious restriction to the expressive power of the language.

.It is, in fact, possible to remove the restriction by constructing a powerdomain similar to
the Plotkin powerdomain [73, 74].

A P o w e rd o m a in fo r N o n -F la t D o m a in s

Let E be a domain. We want to form the powerdomain V D which has as elements sets of
elements of E , w ith an ordering C making V D into a cpo, w ith continuous singleton and
union operators. We know, from section 6.3.4 th a t the ordering should be based upon the
Egli-Milner ordering:

A Ge m B iff iff x E A . 3 y E B .x G y) A iff y E B . 3 x E A.x C p y)

and we have seen th a t this is sufficient to give an appropriate V D when E is flat.

However, when E is not fiat, two problems occur. The first is th a t Gem is not a partial
order, but a preorder, as can be seen from the example: if a C p b C p c then, from the
definition of the Egli-Milner ordering, we have

y

{a, b, c} Cp {fl, c} and {a, c} C p {a, b, c}

This problem could be solved quite easily by taking the quotient domain obtained by di
viding out by the induced equivalence and ordering by Ge m -

The second problem is th a t the union operator is not continuous. If (x^) is a chain in E ,
then continuity of union would require th a t any set in V D containing xq, xi,..., x„,... should
also contain [Jx^. This is a problem because it means tha t infinite sets cannot be obtained
by generalised union over finite sets.

r;

3

. J

6 .3 . S em a n t ic D o m a in s a n d R e c u r s io n 151

flat, we form equivalence classes using a preorder Q em which is based on CpM ■ The induced
equivalence is such that, from the above examples, {a, c} cxem (a , 6, c}, and any set
containing xq, x i , ..., x „ , ... is equivalent to one containing [J^n- Each equivalence class has
a biggest element, which can be taken as the representative element of the class.

For X a non-empty set in VD , the representative element of its equivalence class is denoted
■

by its closure X*, which is defined by:

X* ^ {y \ (3 X e X . X G y) A {y b e D.b G y 3 X e X .b G x)}

These (-)*-closed subsets of D can now be ordered by the Egli-Milner ordering to give an
appropriate powerdomain for our needs. So, we take

V D X ((■)*-closed non-empty subsets of D, Ge m)

y

The empty set is added to V D using the Heckmann construction as described in sec
tion 6.3.4.

P lo tk in’s construction limits the subsets of D to those which are finitely-generable. This
requirement is necessary for com putation issues. However, we allow all sets, including
those which are infinite and non T-containing . Our powerdomain agrees with the Plotkin
powerdomain on finitely-generable sets.

The main consequence of allowing sets which are not finitely-generable is tha t some functions
may no longer be continuous. In particular, for a continuous function f : D ^ E, it may
not be the case th a t the extension f * : V D -4 V E is continuous. It is the case, however,
th a t f * is monotonie, which is sufficient for the fixpoint theorem 2 for monotonie functions.

.Obviously, /* is continuous over the P lotkin version of the domain VD.

6 .3 .6 S e m a n t ic s o f R e c u r s iv e F u n c t io n D e f in it io n s

We now give the A4-semantics for expressions of the form, for / : A —>■ E,

le t / ^ E[f] in F\f]

From the above discussion we know th a t the meaning of / is a singleton set containing the
least fixpoint of a certain functional. So, the meaning of the above expression should be the
Ad-set for expression E , which will depend on the Ad-set for / , w ith occurrences of Ad /

I

4
1;I
I

. J

6 .4 . R e f in e m e n t 152

replaced by this singleton set.

4 f (l e t / = Æ [f] in f [/]) = M F [M f] [{ n G } I M f]

where G is the functional for which we require a fixpoint.

Prom the discussion in section 6.3.5, the least fixpoint of this G is actually the single element
of the set A d /, which we write ej \4f . This should be given its meaning from eAd E[Ad/].
Now, since for any singleton set S, {eE} — 5, we conclude th a t the functional G should be
defined as G = X g .eM E[{g}].

6.4 R efinem en t

Por expressions E and F, we want to give a semantics for refinement, w ritten E G F, with
the intended meaning th a t expression E can be transform ed into expression F such tha t
every possible outcome of F is a t least as defined as some possible outcome of E. This
means th a t F must be at least as defined as E and should involve no more non-determinacy
than E.

For E and F expressions of a simple type (corresponding to a flat domain) we expect that
E C E iff _L is a possible outcome of E , or the set of possible outcomes of E is included in
those of E , i.e.

E G F iff X G A dE V A d E D Ad E (6.2)

as described by the general axiom for refinement, given in section 5.3. For example, we
have X Q 3 E 5 and 2 0 3 E 2.

The refinement relation between expressions needs to be a preorder, i.e. have the properties
of reflexivity and transitivity . However it will not be anti-symmetric since e.g. X [] 2 E X [] 5
and X [] 5 E X [] 2 but these expressions do not have equivalent semantics.

We find th a t a suitable definition for the refinement relation is based on the Smyth ordering
for power domains [83].

6 .4 .1 T h e S m y th O rd er in g

The refinement relation between expressions of the specification language must be defined in
term s of a relation at the semantic level. Because we have represented the nondeterminism

1
I

6 .4 . R e f in e m e n t 153

■J

of an expression by a set of possible values, we require a relation between sets in the
powerdomain VD , where D is the domain corresponding to the type of the expression.
This relation, as already suggested, should be a preorder for VD .

At the level of sets in V D , the relationship we require is th a t set B “refines” set A iff
everything in B is “better” or “more refined” than something in A. This means tha t
refinement cannot add any information which was not already potentially present in A,
but some of the information content in A can be lost, corresponding to a decrease in the
nondeterminism of an expression. This intuitive notion is exactly the Smyth ordering for

Eg, rather than the Egli-Milner ordering E e'M used for definedness.

We now use the Smyth ordering (6.3) to give a formal definition of the refinement relation
for expressions.

sets in VD , first described in [83]:

A E s B = y y E B .3 X E A.x y (6.3)

where for the dom ain D will be defined in the following paragraph . The Smyth ordering
corresponds exactly to the second half of the definition for the Egli-Milner ordering (6.1),
which was used to form the powerdomain VD .

We now define the ordering ^ p for a domain D by considering, in turn, each possible form
th a t D may take:

• For a flat domain D, ^ p is exactly the definedness ordering Ed-

• For a product domain D x E the ordering is coordinatewise:

{d, e) ^ d x B [d' , e') iff d ^ p d' and e e’

• For the smash product domain D 0 E, the ordering yo®E is also determined coordi
natewise.

• For a function domain, which in our case will be of the form D —> V E , the ordering
is pointwise:

/ < D ^ v E g iff {yx E D . f X E s g x)
■:

Clearly, the ordering ^ p for each dom ain D is very similar to the definedness ordering C p .
.The only difference being th a t ^ t?p over a powerdomain is taken as the Smyth ordering

■

6 .5 . S o u n d n e ss 154

6 .4 .2 S e m a n t ic s o f R e f in e m e n t

Based on the Smyth ordering we give a semantics for the refinement relation between
expressions of the specification language. For expressions E and F of the same type, with
meanings M E and M F, we define

M [E G F) = { M E G s M F }

We must now show th a t this definition agrees w ith the axioms given in section 5.3.

6.5 Soundness

We have now given a semantics to all aspects of the expression language. We now intend
to dem onstrate th a t this is a good semantics for the language, th a t it provides an adequate
model for the axioms and laws of the language.

From the approach to the semantics, where each expression has been modelled by its set of
possible evaluations, it follows quite easily th a t our axioms hold in the model. It is exactly
this fact tha t we intend to dem onstrate in the current section. Every axiom is an expression
of type Bool and so has a meaning in the semantic domain E B o o l. We are required to
show th a t each axiom is m apped to the vW-set {True}. We will also need to show th a t the
inference rules of the logic preserve tru th in the Ad-semantics.

Most axioms are of the form E = F, which is given meaning in the semantic domain as
{A4 E = M F}. Accordingly, in order to dem onstrate the tru th of the axiom, it suffices to
show that M. E = M. F .

Some further axioms are of the form P ^ Q. In this case it suffices to show that
A4 <5 = {TYue} under the assum ption th a t A4 F — {True}.

Some proofs are very similar in how they progress, e.g. those which deal with d istributivity
of some operator over choice. In such cases we group the relevant axioms together and give
the proof for just one representative axiom .

6 .5 .1 U n d e f in e d n e s s a n d N o n -D e te r m in is m

The axioms for ô and A follow immediately from their semantic descriptions. To show
the validity of an axiom of the form A E , we ju st check tha t A4 E is a singleton set not

We now show th a t the semantics supports the A axiom for [j.

A P r o p e r ty for C h o ice For E and F to tal

A(E[] E) = A E A A F A { E = F)

To prove this equivalence from the semantics, we need to prove

M [A { E ^ F)) = M { A E a A F A [E ^ F))

6 .5 . S o u n d n ess 155
 — — — — '—

%
containing T . To show the validity of an axiom of the form Ô E, we ju st check th a t A ^ M. E.
Such proofs are trivial.

The basic properties of choice follow directly from the use of set union to model non
determinism . For example, to show th a t the choice operator is commutative we have the
proof as follows.

C o m m u ta t iv i ty o f C ho ice

E Q E = F \ \ E

Here it suffices to show that

M { E \ \ F) = M { F ^ E)

Proof

M { E ^ F)
— “Semantics”

A4 E U A4 F
— “Set union is com m utative”

A 4 F G A 4 E
— “Semantics”

A 4 { F ^ E)

□

The other basic properties, reflexivity and associativity, are equally trivial to show from the
properties of set union.

4

i:

i f A4 E = 1 A X ^ A4 E A f fA4 E = 1 A X 0 A4 E A Af E — A4 F

under the assum ption th a t neither A4 E nor A4 E is empty. This is trivial.

The strictness property of [] is supported by the following proof.

S tr ic tn ess o f C ho ice

5 (E 0 E) = Ô E A S F

Here it is sufficient to show th a t

X ^ A 4 (E 0 E) - X 0 A 4 E A X ^ A 4 E

Proof

X 0 A 4 (E [] E)
— “Semantics”

X 0 (A4 E U A4 E)
— “Properties of set union”

X 0 A 4 E A X ^ A 4 E

□

6.5.2 The Equivalence Axioms

Equivalence in the expression language is modelled by equality of A4-sets. So the equiva
lence axioms follow immediately from properties of — in the semantic domain. We give a
representative proof.

f
1

6 .5 . S o u n d n e ss 156

Proof From the semantics for A and for A, if is enough to show

1
A 4 (E Q E) - 1 A X ^ A 4 (E Q E)

Î
is the same as

Î

y

'i;

6 .5 . S o u n d n e ss 157

(E = E) = (E - E)

Here we need to show th a t

M [E = F) = A4(E = E)

Proof

6.5.3 Strictness Proofs

Many of the operators described in chapter 2.4 are strict, and there are a number of axioms
which deal with strictness. Examples of these axioms are the following:

6{E 0 F) Ô E A 6 F integer operators
(5(E,E) ^ Ô E A Ô F product form ation
0{E E A) = 5 E A 6 A set membership

S y m m e tr ic E q u iv a le n c e

'1

M { E = E)
“Semantics”

{ M E = = M F }
“= is sym m etric”

{ M F = ^ M E }
“Semantics”

M { F = E)

□

Ai..r

Most axioms concerning strictness follow immediately from the use of smash products.
Proofs of their validity are similar to each other, so there is no need to include them all
here. As a representative example we have the following proof of the strictness of product
formation.

S t r ic tn e s s o f P r o d u c t F o rm a tio n For E and E expressions,

J (E ,E) = 6 E A 5 F

A

6 .5 . S o u n d n e ss 158

A ^ M [E , F)
“Semantics”

A ^ M E 0 M F
“Properties of smash products’

A ^ M E A A ^ M F

□

In order to prove this, from the semantics for J, it suffices to show that

A ^ M { E , F) = A ^ M E A A ^ M F

Proof

I

i
i
31-

Strictness of function application is dem onstrated by the following proof.

IS tr ic tn ess o f F unction A p p lica tion

6{ f E) S f A S E

Here it is sufficient to show th a t

A ^ M f A A ^ M E ^ A ^ M i f E)

Proof

A ^ M f A A ^ M E
= “Set Theory”

y e E M E , g E M f . e j l ^ A A g y A
4= “Properties of graphs”

y e E M E , g e M f . e y ^ A A A ^ { b \ (e,b) E- g}
— “Properties of cond”

y e e M E , g E M f .A ^ cond(e A , { h \ (e, b) E- g], A)
— “Definition of /m ”

y e E M E , g E M f . A ^ Im{e, g)
= “Set Theory”

A ^ \ j { I m * [M E X M f))
— “Definition of IM ”

I

6 .5 . S o u n d n e ss 159

I M { M E , M f)
“Semantics”

A ^ M i f E)

6.5.4 Distribution

There are many axioms which describe the property of distribution over the choice operator.
This is modelled in the semantics using map over sets. As in the case for the validation of
strictness axioms, most of the axioms concerning distribution are shown to be valid in the
model using a similar style of proof. A representative example is th a t of the distribution of
function application over choice.

Proof

■

:
:i

□

I

I

I
Distribution of Function Application over Choice

f (E \ \ F) = f s y p

Again, we need to show

M(f { E WF)) = M i f E ^ F)

M { f { E 0 F))
“Semantics”

I M { M (E \ \ F) , M f)
“Definition of /M ”

U (/m * (A 4 (E []E) X A t /))
“Semantics”

U(Im * ((A4 E U A t F) X A4 /))
“Properties of x ”

U (/m + ((A 4 E x A 4 /) U (A 4 E x A 4 /)))
“Properties of *”

\J{Im * (A 4E X A 4 /) U Jm + (A 4E x A 4 /))
“D istribute /m *”

U i I m * (M E X M f)) U [j { I m * { M F X M f))
3

A

i

6 .5 . S o u n d n e ss 160

I1
a

“Definition of IM ”
I M { M E , M f) U l M { M F , M f)

“Semantics”

“Semantics”
A4(/E 0/E)

□

equality
integer operations
product formation
function application to the right
set membership

O ther distribution axioms, such as

(E 0 E) = G = (E = G) 0 (E = G)
(E 0 E) © G - (E e G) Q (E © G)
(S D F , C?) = (Æ, C?) I (F, G)
(f \ l g) E = f E \ i g B
E G (Al 0 Ag) = (E G Ai) 0 (E G A2)

will have similar proofs in the model.

6 .5 .5 P r o d u c t s a n d F u n c t io n s

For the type constructors which form products and functions we dem onstrate th a t the
rem aining axioms hold in the models we have given them .

A produc t type is modelled using the corresponding (smash) product domain. So, the
axioms for proper products follow immediately. An example is the proof of one of the
projection axioms.

P r o d u c t s For E and E expressions such th a t A E and A E,

fs t (E ,E) = E

To prove this equivalence from the semantics, we need to prove

A 4 (fst(E ,E)) - A 4E

using the fact tha t A4 E and A4 E are singleton sets not containing _L.

Proof

A

i
3

I
■ya

6 .5 . S o u n d n e ss 161

3:
A 4 (fst(E ,E))

“Semantics”
f s t * M { E , F)

“Semantics”
fst * [M E 0 M F)

“A4 E and A4 F singleton sets”
/sf * ({eA4 E} 0 {eA4 E})

“Definition of 0 , X 0 A4 E , X ^ A4 E ”
+ {(eA4E,eA4 F)}
“Definition of fst*, X 0 A4 E , X 0 A4 E ”

{eA4E}
“Definition of e”

A 4E

□

O ther proofs for products are similar.

A function type is modelled using graphs, a common semantic model for functions. Again,
the axioms for proper functions follow immediately from the properties of graphs. An
example proof is th a t of function application by substitution .

.y . .

S u b s t i tu t io n If expression E has type T, such th a t A E, then

(fun X e T : E) F = E[F/x]

Again, we need to show that

A 4((fun a: e T : E)E) - M {E [F /x])

using th a t A4 E is a singleton set not containing X.

Proof

A4 ((fun x e T : E)F)
~ “Semantics”

/M (A 4 E ,A 4 (fu n x E T : E))
= “Semantics, w ith g — graph{fun x E T : E)”

I M { M F , { g })

A

O ther axioms for proper functions can be proved similarly.

6 .5 . S o u n d n e ss 162

— “A4 F a singleton set”
IM ({e A 4 E },W)

— “Definition of IM ”
U(Im * { { e M F , g) })

— “M apping over a singleton set”
I m { e M F , g)

— “Definition of Im, X 0 A4 E ”
{ 6 I { e M F , b) ^ g }

— “Definition of g, Set Theory, A E ”
{ 6 I cA4E G- T\{X }, b 4 - M { E [F /x])]

“eA4 E E E \{X }, Set Theory”
M { E [F / x])

□

Sets, bags and sequences are all m apped to flat powerset domains of their own associated
domains, and so proofs of their axioms will also follow easily. We omit these proofs since
they are tedious rather than interesting .

6 .5 .6 A s s u m p t io n s a n d G u a rd s

The axioms for assumptions and guarding follow directly from the semantics. For example,
we show two of the axioms for assumptions.

T ru e A s s u m p tio n

True >~ E = E

Here we need to show that

M { T r u e - > - E) = A4E

Proof

Ï

M { T r u e > - E)
“Semantics”

üj.;
6 .5 . S o u n d n e ss 163

cond({ True} = { True}, M E, {X})
“Properties of cond”

M E

Im p rop er A ssu m p t ion

- A P (P > - P = X)

Here we need to show that

M { P > - E) - M X

assuming tha t P > l V X G A d P .

Proof

M { P ^ E)
= “Semantics”

cond(Af P = { TVwe}, M E, {X})
— “vW P / {True}, from assum ption”

{-L}
= “Semantics”

M E

Similar proofs exist for the axioms of guarding.

6 .5 .7 G e n e r a l ise d C h o ic e a n d B ia s e d C h o ic e

The axioms for generalised choice Q/ follow immediately from the semantics.

The axioms concerning biased choice are also easily proved, for example.

□

□

i

,1

I

I
-

:

y

i

6 .5 . S o u n d n e ss 164

cond{A4 E F)

□

6 .5 .8 R e c u r s io n

■¥!

B ia sed C ho ice

(P = T) => (p | p = F)

Here we need to show th a t

A f (p | p) =: M E

.under the assum ption th a t VW P — 0 .

Proof

M { e \ f)

= “Semantics”

1
“By assum ption, M E = 0”

M E

•Ï-:

R ecu rsion U n fo ld in g For recursive function definitions, we have the expected unfolding:

A E ^ (let / = £ [/] in E[f] = _F[i5[(let / - £ [/] in /)]])

Here, we need to show th a t

vW(let / = Elf] in F\f]) = / = £ [/] in /)]])

under the assum ption th a t A4 F is a singleton set not containing X.

Proof

i

::r

At (let / = E[/] in F[f])
“Semantics, let G = X g .e M E[{g}Y'

M F [M f] { { i J , G } / M f]
“Substitution”

C}]
“/i G a fixpoint of (?”

I
i:

i

6 .5 . S o u n d n e ss 165

□

6 .5 .9 R e f in e m e n t

In this section we show how the semantic definition of refinement supports the axioms
proposed in section 5.3

T ra n s i t iv i ty The transitiv ity of Ç, follows immediately from the transitivity of Qs-

we split into two parts .

Using the semantics, in order to show

Proof

A4 E Ç-S A4 F
Definition o f Cg

V y G A 4 P . 3 x e A 4 E .x y
Supply T as a witness, T y for any y

My £ M F .E e M E

± e M E

M F [{ e M E [{ f i G}]}]
“For any singleton set S, {eP} — S, and A4 P a singleton set”

M F [M E[{{i G}]]
“Semantics”

M{F[E[{ l e t f = E\f] in/)]])
:

I

G e n e ra l R e f in e m e n t The general axiom for refinement, stated as

{ E Q F) < ^ M E y { E \ \ F = E)

A

{ E F F) ^ M E

a t the language level, we prove

T E A4 E ^ A4 E A4 F
%

a t the semantic level.

■A

Logic

I

6 .5 . S o u n d n e ss 166

To prove the second part of the axiom

{ E E F) ^ E \ \ F = E

at the language level, we prove

(M E U M F = M E) ^ M E Qs M E

at the semantic level.

Proof

M E Q s M F
— Definition of Qs

My e M F . 3 x G M E. x y
^ Supply y as a witness, ?/ y for any y

My E M F . y e M E
— Set Theory

M E Q M E
— Set Theory

M E \ J M F = ^ M E

□

In the case where M E and M F are sets over a flat domain, it is trivial to show th a t the
axiom

{ E E F) ^ M E y { E \ [F ^ E)

holds.

R e f in e m e n t o f F u n c tio n s The axiom describing the refinement of proper functions is
stated as

(A / M X g) [f g) = {M X \ T \ »f X E g x)

We prove this by showing

{M X E D t - M E Qs M F) — A4 (fun x E T : E) C,s A4 (fun x E T : F)

6 .5 . S o u n d n e ss 167

Proof

We conclude from this th a t

((fun X E T : E) Q (fun x E T : F)) = {M x E T : E C F)

R e f in e m e n t o f G e n e ra lis e d C h o ice The axiom regarding refinement of generalised
choice was given as

A4 (fun X E T \ E) Ç 5 A4 (fun x E T : F)
“Semantics”

{ \ x . M E } Ç 5 [X x . M F]
“Definition of C g”

A x.M. E ^ X x . M F
“Definition of Ç 5 ”

(V.T G D t : { X x . M E) x Cg { X x .M F)x)
“7 -Reduction in the A Calculus”

(Væ g D t - . M E C s M F)

1:

Now, since any function expression / which is proper must be of the form (fun x E T : E),
and using 7 -reduction, we conclude th a t the axiom is also valid from the semantics of
refinement.

D

R e f in e m e n t o f C h o ice The axiom for refinement of choice states, for A G

{ E \ \ F n G } = { E E G V F E G)

In the semantic domain this requires a proof th a t

{ M E U M E Es M G) = { M E Es M G) V { M E Es M G)

which is a trivial exercise, using the fact th a t A4 G is a singleton set.

I
■■■

([]/5 Q E) = { 5x : T \ x e S » x Q E)

for A E and A S.
A

R e fin in g T The final axiom is stated as

(T Ç P) = (P - T)

6 .5 . S o u n d n e ss 168

We give an overview of the proof th a t the semantics of refinement supports this axiom.
Proof We need to show th a t

A l([]/P) Qs M E = = { M { 3 x : T \ x e S » x E E) = {True})

We know th a t A4 S and A4 E are singlton sets containing eA4 S and eA4 E respectively,
which are non-bottom .

We take the left hand side and reason:

M { y S) E s A 4 E
— “Semantics, A

u A 4P {eA4E}
“A 5, P) = cA4 P ”

e A 4 S E s {eA4E}
— “Definition of

V y G {eA4 P} . 3 æ G eA4 S. x y
— “Logic”

3 a; G eA4 S.x eA4 E

Taking the right hand side, we obtain:

A 4(3x : T \ x e S » x E E) = {True}
= “Set Theory, Semantics”

(3 X : D t \ A4{x E S) — {True} • A4{x E E) = { True})
= “A 5 , Semantics, Set Theory”

(3 X : D t | x E eA4 S • {æ} A4 E)
= “Logic, Definition of C g”

3 a; G eA4 S .M y E A4 E .3 x' E {a;}.a;' V
“A P , Logic”

3 a; G eA4 S.x ^jy eAA E

as required.

□

6 .6 . S em a n t ic s o f S p e c if ic a t io n M o d u le s 169

It is trivial to show th a t the semantics supports this.

f
I

:

J f . :

.
Our final task is to show th a t the inference rules of section 2.3.2 are valid. In fact, it is
fairly standard to prove th a t these inference rules preserve tru th in the A4-semantics.

For example, consider the M odus Ponens inference rule, given as:

P P ^ Q

6 .5 .1 0 In fe r e n c e R u le s

Q

We need to show th a t if bo th P and P => Q are true in the model, for arb itrary P and
Q, then it is necessarily the case th a t Q is true. Let us assume th a t M P — [True] and
M (P Q) = {True}. Recall the mappings given for implication:

True E A4(P => Q) = True E A4 P True E A4 Q
False E A4[P ^ Q) — A4 P = { True} A False E A4 Q
± e A 4 { P V Q) = A4 P = {True} A E E A4 Q

From the first identity, and our assumptions, we conclude th a t True E A4 Q. From the
second identity, since False ^ A4[P =A Q), we conclude th a t False ^ A4 Q. Similarly, from
the th ird identity we conclude th a t X 0 A4 Q. And so we have A4 Q = {True}.

The tru th of the Generalisation inference rule is similar.

6.6 Sem an tics o f S pecification M odules
■

.In section 3.2 we considered the form of a specification and said th a t a specification could
either be a simple expression, or a collection of named expressions, possibly with user-defined
types.

Simple specifications are ju st expressions, and so they have already been given a formal
semantics.

We now consider w hat have been term ed specification modules. These are collections of
named expressions which may also contain given types, global constants and datatype def
initions, as described in section 3.2.1.

. .

6 .6 . S e m a n t ic s o f S p e c if ic a t io n M o d u le s 170

I
Consider first a specification module w ith ju st a collection of specifications. This has the
general form

namei X Ei

name2 = E 2

namen X En

We may assume th a t these are independent of each other, i.e. namei does not appear free
in E j for any i , j \ otherwise make E i a local definition of E j, thereby binding nam ei.

Now, each Ei has a denotation in the semantic domain, A4 E i. We say th a t the denotation
of the specification module is a record, or collection of named denotations. The names in \
the semantic domain are derived from the corresponding names in the syntactic domain.
So, the denotation of the above module would be something like:

[(n a m e i, A4 .El),

(nam eg, A4 E2),

(nam en , A4 E„),]

We now consider the case where the specification module contains a global constant, w ith
the general form:

\ g - - T

Spec

Now consider a specification m odule containing a given type. This is of the form

[T]

I

I

The specification Spec already has a denotation which we call A4 Spec. This contains
occurrences of A4 ^ which is in the domain V D t , where D t is the domain corresponding
to type T. Now, ^ is a constant, so it should be denoted by a singleton set in V D t , of
the form {mg}, for some mg m D t - Finally, we say tha t the denotation of the specification
module is a function from elements in D t to denotations. This may be w ritten as

■A
A mg : D t -A4 Spec[{mg}/A4 g]

6 .7 . C o n c lu s io n s 171

Spec

Again, the specification (module) Spec already has a denotation, A4 Spec which depends on
a domain D t corresponding to the given type T . We assume th a t this domain exists and
th a t appropriate mappings exist, taking proper values of T to singleton sets in V Dp- We
don’t know anything about the domain Dp except tha t it is distinct from any other domain
th a t we know about. The denotation of the above specification module might be based on
the use of existential param eter, representing the domain Dp, to the meaning of Spec.

Finally, we consider a specification module containing a datatype definition. This has the
general form

T Î/1 j Î/2 I • • • I
Spec

As before, we assume th a t the specification (module) Spec has the denotation A4 Spec, this
tim e based on the domain Dp corresponding to the datatype T. In this case we want to
associate D p w ith the lifted domain containing the elements { T j”, v % , V 2 , . . . , v ^ } . These
n + 1 values are distinct, and are such th a t v% is the domain element associated w ith the
proper value Vi, i.e. A4 Vj = { v , } .

C learly this account does not form a formal semantics for specification modules. However,
it indicates th a t the problem of giving such a semantics does exist and suggests ways in
which the problem might be overcome.

6.7 C onclu sion s

In this chapter we have given a formal semantics to the specification language based on
sets of possible evaluations from some domain. In this way, the erratic non-determinism of
an expression may be captured . The issue of undefined expressions is treated explicitly, by
allowing these sets to contain the least element of the domain.

Since our semantic objects are sets, we use power domain theory to give a meaning to recur-
sive function definitions. The sets are ordered using a variation of the Egli-Milner ordering.
This extends work previously done with powerdomains, in tha t we adm it infinite sets which
do not contain T, the least element of the domain. We claim th a t this is appropriate for a
specification language, since monotonicity, rather than continuity, is sufficient to allow the
application of the fixpoint theorem . In a program, such infinite, non T-containing sets will
not be a problem, since they can only arise from generalised choice over an infinite set.

 J

6 .7 . C o n c lu s io n s 172

Two expressions of the expression language are equivalent exactly when their A4-sets corre
spond. Therefore, in order to show the validity of the axioms of the language, with respect
to the semantics, we have compared A4-sets for equality. Since the semantics of the lan
guage was structured with the axioms in mind, many of the axioms follow quite naturally,
as dem onstrated in section 6.5. The reasoning used in the semantic domain is semi-formal,
as in the usual m athem atical style for sets and domains.

The refinement relation has been given meaning using the Sm yth ordering. We have shown
that this supports the axioms for refinement given in chapter 5.

We find th a t the semantics based on sets of possible evaluations is a simple one, bu t sufficient
for the requirements of an expression language. It has been possible to describe recursive
functions adequately, and to reason easily about such functions. The definition of refinement
is very clear, and the proofs of the refinement axioms are straightforward .

We have also suggested how a denotational semantics might be given to specification m od
ules, informally introduced in chapter 3. This would involve records of denotations, and
methods to construct new domains from their associated syntactic types. A discussion of a
formal approach to modules is included in the next chapter.

C hapter 7

7.1 A R efin em en t C alculus for E xpression s

D iscussion and C onclusions
■3;

I
■I

In this chapter we summarise, review and discuss the main points of this thesis, the rehne-
ment calculus as it stands on its own, and how it contributes to the area of formal m ethods in
computing science. Section 7.1 gives an overview of the thesis, indicating what was achieved
and how it was approached. An evaluation is given in section 7.2.1 and section 7.2.2 looks
at how the calculus might be used. Section 7.3 compares the results to similar work in the
area of formal program development in general, and in the area of expression refinement in
particular. Some suggestions for future work on the calculus are described in section 7.4. i

In chapter 1 we described what we consider to be the components and attribu tes of a
refinement calculus, and indicated th a t it was our intention to describe such a calculus
for expressions. Following the approach used for the im perative refinement calculus we
defined a specification language of expressions which includes more expressive, though non
executable, constructs useful for making specifications. Special features include ways for
reasoning with and about undefined terms; non-deterministic expressions to allow for more
abstract specifications; and partial expressions to allow the piecewise construction of spec
ifications. The expression language is described in chapter 2.

Chapter 3 shows how the expressions are used to form specifications. A specification is
described as a collection of expressions which may include user defined types and global
constants. A number of small examples dem onstrate how the various concepts might be
employed.

I
173

.,;,5

7 .2 . D isc u ss io n 174

Refinement is given meaning at the semantic level using the Sm yth ordering for powerdo
mains, which displays the required properties. Using this and the semantic definition of
equivalence, we have shown th a t the axioms and laws of the calculus are supported by the
semantics. We consider th a t the proofs involved are straightforward.

7.2 D iscussion

We discuss the refinement calculus described in this thesis in term s of an evaluation of its
shortcomings and achievements and how the calculus might be used.

.

In chapter 4 we showed how the language could be used to describe larger problems, by
introducing the concept of partial functions, which may be combined using special union
operators to form complete specifications. These partial functions are essentially a syntactic
device for the structuring of specifications into conceptual units. However, we also discussed
how it might be possible to define a special class of higher-order functions to m anipulate
partial functions.

The use of monads in functional program ming has proved a useful tool in the structuring
of large programs, by hiding the details of impure features such as state and exceptions.
In chapter 4 we showed how the sta te monad with exceptions can be used to structure
specifications of our language, and we indicated how it might be possible to define monads
within the language itself.

We dem onstrated, in chapter 5, how properties of specifications can be formulated and how
expressions can be m anipulated and reasoned about, using a proof system based on the logic
of the language itself. A refinement relation is introduced and we indicate how a specification
can be refined, in a stepwise and piecewise manner. Collections of transform ation and
refinement laws are provided to support the high level m anipulation of expressions without
always appealing to the basic axioms.

.
We have given a formal semantics to expressions of our language, based on sets of possible
evaluations, in chapter 6 . The use of sets handles explicitly the possible non-determinism of
expressions, while undefinedness is accommodated by allowing the least value of a domain
as an element of a semantic set. Totality is given a meaning in term s of definedness and non
determinism . The semantics of recursion is given by ordering the sets using the Egli-Milner
ordering and applying the fixpoint theorem .

7 .2 . D isc u ss io n 175

7 .2 .1 E v a lu a t io n

A logic which accomodates bo th undefined and non-deterministic term s has been described
in section 2.3. The logic includes many of the laws of 2-valued logic, and it is possible to
reason equationally about term s, in the style of [26, 32]. A similar logic, w ith T and a
demonic form of [|, is presented in [64, 65]. O ur work extends this by providing axioms for
term s of types other than Bool.

The inclusion of X and [] in the expression language, as described in chapter 2, results in
an expressive specification language which has been shown to be useful in the formulation
of specifications. The admission of non-determ inistic expressions is not a new concept.
However, our choice construct is slightly different from other approaches since it is both truly
non-deterministic and erratic. The introduction of non-deterministic expressions results in
more abstract specifications, giving more freedom at the im plem entation stage. The rich
set of da ta types also adds to the expressiveness of the language, although one obvious
omission is the ability to define recursive da ta types, such as trees.

The distinction between possibly undefined and possibly partial expressions is not usually so
explicit. We have treated partiality as the dual of undefinedness with respect to refinement,
since top ‘T ’ is the identity for choice, so T [] E □ E , while bottom ‘X ’ acts like a zero for
choice, since X [] E □ X. The concept of partial expressions is useful since specifications
can be built in parts, while each part may be m anipulated and refined as a complete unit.

However, since partial expressions are not implementable, we found it necessary in sec
tion 2 .6 . 2 to control the occurrences of potentially partial expressions in specifications.
This means the in troduc tio^o f an operator which can be used to totalise such expressions,
the biased choice operator []. W hile this is a useful tool in specifications, it is not mono
tonie w ith respect to refinement, in general. This is not desirable, but any construct used
to totalise expressions will necessarily not be monotonie. It would be more elegant to trea t
partiality in the same unrestricted way th a t we have treated undefinedness.

Again making use of partial expressions, we have extended the concept to partial functions,
which are used purely as a syntactic device to structure specifications. This promotes the
aim of separation of concerns in the construction of large specifications. The use of partial
functions was dem onstrated in chapter 4 w ith a specification of a printing control system .
This also made use of some notational shorthands, such as detached param eters and record
definitions, in order to make the specification more readable.

Partia l functions are combined using the union operators ‘Ù’ and ‘U’, which bo th have a
syntactic definition. The Û ’ operator, in particular, can be compared to the disjunction

7 .2 . D isc u ss io n 176

operator used for schemas in the Z specification language. The syntactic definitions could
be considered over-simplified, certainly when compared to the category theoretic approach
of Back and Butler [2] or the relational approach of Erappier [30] to the composition of
specifications. We have not considered any other ways of combining partial functions, such
as a version of the conjunction operator.

The use of the state monad with exceptions to structure the printer control specification, in
chapter 4, dem onstrates how a large specification can be made more readable. We have also
made some suggestions concerning how the definition of the m onad might be included into
the language, rather than simply being a syntactic device w ith some useful associated laws.
However, as pointed out in section 5.4.3, the use of monads, even with the associated monad
laws, doesn’t make the specification any easier to reason about. In fact, it becomes more
difficult to formulate properties about the specification, since a knowledge of the monad
and how it works is required.

In chapter 6 we gave a semantics for the expression language based on sets. The resulting
semantics is very simple. The approach to the construction of the semantic objects, as
sets, means th a t most of the axioms of the language follow immediately. W here proofs are
required, they are reasonably straightforward .

A lot of assumptions had to be made concerning recursive function definitions in order to
give them a reasonable semantics. We only allow recursive functions which are determ inistic
at the outer level, bu t may have non-determ inistic bodies. In addition, we restrict recursive
function definitions to those of type A -A B where the dom ain corresponding to the type B
is flat. As described in section 6.3, these restrictions were necessary to allow the semantics
based on powerdomains to be simplified. It would be interesting to allow general recursive
expression definitions, which would certainly add to the expressiveness of the specification
language.

7 .2 .2 A p p l ic a t io n s

The aim of this thesis is to describe a refinement calculus for expressions. We have provided
a specification language based on expressions, a refinement relation and a set of refinement
laws allowing the stepwise and piecewise refinement of expressions. There are a number of
areas in which the results of the thesis could be applied.

It is possible th a t this work on the refinement of expressions could be used as an extension
to the refinement calculus for im perative programs. As suggested by Morris [64, 65], by
adm itting non-determ inacy at the level of expressions, not ju st at the statem ent level, this

i
.

7 .3 . C o m p a r iso n to O th er W ork 177

7.3 C om par ison to O ther W ork

would perm it the development of im perative programs using a methodology combining
procedural and functional refinement. The specification language would be more expressive
and, since expressions are easier to m anipulate than statem ents, derivations could be much
simplified.

Another application is th a t this work could form the basis of a refinement calculus for
functional programs. As mentioned earlier, a program in a pure functional language is
ju st an expression. Therefore, by making the target language of the calculus a functional
programming language, it would be possible to calculate a functional program from an
initial specifcation in the expression language. The data types of our language are quite
rich and are not all present, or not easily implementable, in a functional programming
language. This means th a t some form of d a ta refinement would be necessary in a refinement
calculus for functional programs. In add ition, most functional languages have features
such as polymorphism or laziness which do not form part of the expression language. We
have discussed reasons why full polymorphism is not used in the language in section 2.5.7.
Comments on laziness are given in section 5.5 and in section 7.3.3 when we compare our
work w ith Bunkenburg’s thesis.

In [18] Bunkenburg looks a t how to transform expressions of a certain form into im pera
tive style programs. Again using the fact th a t expressions are easier to m anipulate than
statem ents, the refinement rules of our calculus could be used to derive expressions of the
required form before transform ing to an imperative program . An example of the use of
this approach is the derivation of Bresenham ’s line drawing algorithm in [19]. Part of this
derivation was described in section 5.5 A simple m athem atical specification of a line is re
fined, using the refinement calculus for expressions, to an expression of a certain form which
is then transform ed to an im perative style program . A similar technique is used in [69].

We claim that the specification language alone, described in chapters 2, 3 and 4, is a use
ful language for the construction of specifications for software. Like the Z specification
language, it may be used to build specifications in the model-oriented approach, as demon
stra ted by the printer control specification of chapter 4. Even w ithout using the refinement
laws to derive a program, the resulting specifications can be reasoned about using the
equivalence laws in the equational reasoning style.

In this section we compare our approaches and results to general formal program develop
ment techniques and also to other work carried out in the area of expression refinement. We

I

7.3. C o m p a r iso n to O th e r W o rk 178

first consider other approaches to reasoning with undefined and non-deterministic terms.
We then look at other frameworks for the formal development of programs from specifi-

I : V

cations. Finally, we compare our calculus, in more detail, w ith the calculi of Nor veil and
Hehner [6 8], W ard [90], and Bunkenburg [18].

7 .3 .1 A p p r o a c h e s to F o rm a l R e a s o n in g
E

Our basic specification language, as defined in chapters 2 and 5, includes constructors
for expressions which are possibly not well defined, non-determ inistic or miraculous. In
the logic, which is used to reason about expressions of the language, such problem atic
expressions are handled explicitly. We do not try to hide them, or pretend th a t they don’t
exist. We found th a t the miraculous expression top, T , is difficult to reason with, and so
it has a special treatm ent, as discussed in section 2.6.2. Bu t for undefined expressions, X,
and those involving choice, [], axioms have been provided which cater for their occurrences.
The aim is to retain as many of the usual axioms as possible, so th a t when all term s are
well-defined and deterministic the logic reduces to classical logic.

There are many possible alternatives to the treatm ent of undefined expressions, as illustrated
by the work of Cliff Jones in the area of handling partial functions [2 2 , 42]. One approach
is to attem pt to keep to classical logic by restricting the domain of a function. In fact, we
do this when we write the shorthand function

{fun n G N ; []/{a; € Z : ^ n < {x E 1)^})

The intention is tha t the function is only ever applied to natural numbers, and never to a
negative integer. However, there is no guarantee tha t the function won’t be applied to such
a negative argum ent since the type rules perm it it. In our calculus the logic also tells us
what happens when the function is applied to a negative integer, the result is the undefined
integer, Xg.

The approach taken in the Z specification language [27, 75, 44] is to avoid function applica
tion entirely by treating functions as relations. This means, instead of writing f x — y, the
function is treated as its graph and properties are forumlated by testing whether the pair
{x, y) is a member of th a t graph. This has the advantage tha t it would also handle non
determinism quite easily. The disadvantage is th a t this approach leads to more complicated
formulations of properties, making specifications more difficult to write.

Another approach is to use conditional forms of the familiar conjunction and disjunction
operators, as in most programming languages. In evaluating an expression of the form

I
I

I

7.3 . C o m p a r iso n to O th er W ork 179

P A Q, the left operand P is evaluated first. If it is False, then the whole expression is
False. If it is True, then the result is the value of Q. If P is undefined, then the whole
expression is undefined. Similarly for the disjunction operator. This approach is very
implementation-oriented, and indeed our own conjunction and disjunction operators would
probably be implemented (refined) in this way. However, for calculational purposes, these
conditional operators have very unsatisfactory properties, the most obvious being th a t they
are not symmetric.

The approach which we took was to trea t the undefined value explicitly, using a logic close
to classical logic. A similar approach is used in the logic of partial functions (LPF) [9]
used for reasoning about specifications in VDM [40]. This uses non-strict extensions of the
classical conjunction and disjunction operators (the same extensions as ours), and defines
implication, as in classical logic, by

A y - A V y

Unfortunately, this definition means tha t implication in LPF is not reflexive. We consider
this to be a serious loss.

The implication defined in chapter 2 as

P => Q =def ~'P V -lA P V Q

is based on a definition from [1]. I t was originally used in a three-valued version of the logic,
but is also suitable for the seven values possible in our logic. This implication operator is
reflexive and, although the bi-implication law

(P = 0) = (P = ^ Q) A (Q ^ P)

does not hold unless all term s are proper, many other laws of classical logic are retained .
In particular, the deduction theorem holds. This says tha t in order to prove a theorem of
the form P it is sufficient to prove Q under the assum ption th a t P is available to us
as a theorem .

The definition of implication aside, another way tha t our logic differs from LPF is th a t
while LPF is three-valued, our logic also deals w ith non-determ inistic logical values. Bo th
Morris [65] and Bunkenburg [18] use a logic where term s may be non-deterministic. This
logic has four distinct values, True, False, ± and True [| False. The choice operator in this
treatm ent is demonic, which makes T a zero for choice.

The choice operator used in this thesis is erratic, giving seven values, True, False, _L,

7 .3 . C o m p a r iso n to O th er W ork 180

True [] X, False [| X, True [] False and True [] False [] X. At first this may appear unneces
sarily cumbersome, but in fact is not so difficult to work w ith since negation, disjunction
and conjunction all d istribute over choice. Of course, not all of the theorems of classical
logic can be retained, bu t this directly follows from the fact th a t we are no longer in a two
valued world. W hen all logical term s are proper, our seven-valued logic reduces to classical
logic.

7 .3 .2 F o rm a l P r o g r a m D e v e lo p m e n t

Given a specification, the task of the program mer is to construct a program which imple
ments that specification. Formal program development involves using rules and m ethod
ologies to develop a program in stages, w ith certain proof requirem ents at each step, such
th a t the resulting program is guaranteed to satisfy the specification.

Program development methodologies for Z specifications are described in [27, 75]. The
treatm ent of [75] involves a notion of refinement, of both da ta and operations. An abstract
specification is refined in steps to a concrete specification which is suitable for “translation”
into programming language code. Diller [27] describes how Z schemas can be transform ed
into formulae of a Floyd-Hoare logic, from which an im plem entation may be derived using
the usual methods, e.g. [31, 45]. The weakness of such methodologies is in the gap between
the final specification and the program . Since each is w ritten in a different formal language,
interm ediate structures are necessarily hybrids. In particular, the last development step of
[75] is an informal jum p from specification to implementation.

The problem of having informal aspects in the development process is addressed, as in the
imperative refinement calculus and in our own calculus, by having a specification language
which is a superlanguage of a programming language. This is the case with the Extended ML
specification language [79, 81, 80] which has as sublanguage the S tandard ML programming
language [71]. A methodology is provided which describes how a specification may be
developed in stages by replacing non-algorithmic elements by executable code. A t any stage
in the development process there are three ways of proceeding - further decomposition of
a problem into more manageable units; replace the special placeholder ‘?’ by providing
a functor body; or replace abstract code by a more ‘algorithm ic’ version. Each way of
proceeding is associated with a set of proof obligations.

f

The methodology for the development of programs from specifications in the Extended ML
framework suffers from the problem th a t the process is still partly informal. The three
general rules are expressed in an informal m anner and, although they identify certain proof

■I

7 .3 . C o m p a r iso n to O th er W ork 181

obligations associated w ith each type of step, the identification is done by observation.
There is no m athem atical notion of refinement between specifications.

In con trast, this thesis has a ttem pted to follow the approach taken in the im perative refine
ment calculus [59, 56]. Bo th specification and program are expressed in the same language,
in fact, we consider a program to be a special type of specification. A refinement relation is
defined formally. Axioms and theorems are provided which allow properties of specifications
to be rigorously dem onstrated and programs to be formally calculated from specifications.

7 .3 .3 R e f in e m e n t o f E x p r e s s io n s

L a rg e S p ec ifica tio n s

ê;.

1
Î

"r
A-' ?’
4
j

O ther work in the area of refinement calculi for expressions includes th a t of Norvell and
Hehner [6 8], W ard [90] and Bunkenburg [18], as discussed in section 1.2.2.

In the cases of [6 8] and [90], a simple language of expressions is extended with constructs for
forming non-determ inistic expressions, resulting in a specification language similar to that
of chapter 2. In fact, the resulting calculi, consisting of language, refinement relation and
rules for m anipulation of expressions, are similar to th a t part of our calculus described in
chapter 2 and parts of chapter 5. Our m ain contribution to the field of expression refinement,
in comparison to these two pieces of work, is in two areas: we use partial expressions and
partial functions to address the issues involved in structuring large specifications; and we
give the specification language a simple denotational semantics. We now discuss these two
issues, and then go on to compare our work with the thesis of Bunkenburg.

The problem of using the specification language to make large specifications is not addressed
in either of [6 8 , 90]. We have shown, in section 2.6, how expressions may be combined using
the choice operator, and, in section 4.1, how partial functions may be combined using
a special union operator, to build large specifications in parts . The technique has been
dem onstrated in section 4.2. In add ition, the use of the state and exception handling
monad to structure large specifications has been examined, the results of which are found
in section 4.3. The possibility of describing partial expressions and functions arises from
the use of the unimplem entable expression ‘T ’, the unit of choice.

Norvell and Hehner’s bunch union, corresponding to non-determ inistic choice, has the null
specification as unit, while the magic specification of W ard’s language is the unit of demonic
choice. Both of these specifications are unimplementable, and they correspond directly to

i
s:

7 .3 . C o m p a r iso n to O th er W ork 182

our fictitious value ‘T ’. However, neither approach goes any further than adm itting th a t
this extreme specification exists.

For an under-determ ined choice operator, described in section 1.2.2, there would be no
distinction between choice ‘Q’ and the special union operator ‘Ü’ used to combine partial
functions. This is the case with the bunch union operator of [6 8]. Our choice operator is
such that, for partial functions / and g of the same type

/ Ù y E / 0 ^

Like the demonic choice of [90], we can say th a t our choice operator is truly non-deterministic,
making our function abstractions more expressive than those with an under-determined se
mantics.

4—

Our biased choice operator ‘ [] ’, used for totalising expressions, is very similar in nature
to the non-commutative choice operator ‘El’ introduced by Nelson in [67] as an extension
to D ijkstra’s calculus [24]. For A and B programs, the operational semantics of T El E
is ‘activate A if possible, else activate B \ Nelson uses this choice operator with partial
commands, which may be compared w ith our partial expressions. In the refinement calculus
for im perative programs the unimplem entable specification, miracle or magic, is also used
to aid the formulation and refinement of specifications in parts.

S e m a n tic s

The semantics of Norvell and H ehner’s specification language is given axiomatically. The
refinement laws, while reasonable, are given without proof. In particular, the introduction
of recursion in some of the example refinements is not given any formal basis.

Ward, in contrast, gives a semantics based on weakest preconditions to his language. The
resulting semantics is over-complicated, and we are not convinced tha t such a semantics
is necessary for a language based on expressions. Functions of the language only get a
meaning when applied to something else, so, semantically speaking, they are not treated as
first class citizens. In order to give a m eaning to recursive functions in [90], the ordering used
to obtain a least fixpoint is the refinement ordering, which is not usual in most treatm ents
of recursion.

We consider th a t our approach to the denotational semantics of the specification language
is more intuitively clear, and results in a much simpler semantics. W hile many of W ard’s
refinement laws are similar to those of chapter 5, our proofs are shorter and less complicated.

I

1
eI

.
7 .3 . C o m p a r iso n to O th er W ork 183

:7.

C o m p a r iso n w ith B u n k e n b u rg ’s T h e s is

Bunkenburg’s recent thesis [18] describes a calculus for the derivation of im perative style
functional programs. In some ways, Bunkenburg’s approach, content and findings are com
parable to those of this work, bu t his thesis differs significantly in scope and in many of
the design decisions taken. Bunkenburg states tha t the aim of his thesis is to present a
formalism for calculating programs, including imperative programs. His main achievement
is based on combining im perative threads with the easy calculational style of expressions,
through the use of the state monad.

.The scope of Bunkenburg’s work is much broader than treated in this work. He starts with
a description of an expression language, similar to tha t of chapter 2 , and a discussion of
refinement for this language. It is this part of [18] which can be directly compared with
this thesis. However, Bunkenburg swiftly moves on to treat imperative expressions and also
includes a brief description of da ta refinement techniques used with his language.

Bunkenburg also uses powerdomain theory to give a denotational semantics to the language,
including the im perative style components. We will compare the denotational semantics of
chapter 6 with Bunkenburg’s treatm ent.

In the following we outline and discuss the differences between the expression language
component of [18] and th a t presented in this thesis.

The first m ajor difference in Bunkenburg’s expression calculus is th a t function application
is non-strict. In our approach we observe the property of strictness. Strictness of func-
tion application, as a specification tool, has the advantage th a t any value which becomes
bound to a variable within the function body will be well-defined (and deterministic in our
calculus). This has much value in term s of ease of calculation, without losing a significant
amount of expressive power. For example, Bunkenburg’s approach means th a t a function
such as

(fun x E Z : [] 4 f i)

.■

is a sensible one. In our calculus it is possible to prove, using the fact that x ^ E for any
X , th a t this function is the same as the constant function

’

.

(fun X E Z : 4)

.A second difference between the two pieces of work is in the da ta types provided and the
treatm ent of objects of each type. Bunkenburg provides prim itive types, sums, tuples,

s
;’ï

I

I

His refinement is a partial order, since it is now anti-symmetric, in addition to being reflexive
and transitive . However, in order to have a “good” refinement ordering, suitable for stepwise
refinement, it is sufficient to produce a pre-order, such as our relation .

There are other m inor differences between the two calculi including the treatm ent of guarded
expressions. Bunkenburg’s guarding operator, is defined

Guarding is the only way th a t partiality can be introduced into a specification. Bunken
burg’s specification expressions are of the form FI3; : T .E {E w ith x bound to an arb itrary

#

7 .3 . C o m p a r iso n to O th er W o rk 184

functions, sets, recursive and polymorphic types. In our calculus there are primitive types,
tuples, functions, sets, bags and sequences. The three latter types allow specification in
the model-oriented style and, in particular, adm it infinite objects. Bunkenburg constructs
lists which, he claims, are infinite. In fact, the axioms provided are for finite lists only.
Bunkenburg approximates infinite lists because he has lazy constructors.

A t the level of specification it is convenient to calculate w ith infinite objects, bu t such
objects cannot be directly implemented. At this point, the im plem entation stage, infinite
objects must be data-refined to finite objects. The use of lazy evaluation is a good way of
approxim ating infinite objects. We suggest tha t it is more appropriate at the implem enta
tion stage than at specification level. It has been our experience th a t infinite sets, sequences
and bags have been useful specification tools.

As described in chapter 1, Bunkenburg informally treats his expressions as upward closed
sets of outcomes. An upward closed set is such that, if the set contains an outcome v,
then it also contains all outcomes better (more defined) than v. In contrast, we trea t an
expression E such th a t, when evaluated, it may have a num ber of possible outcomes. We
don’t identify E w ith sets of possible outcomes. This is purely a semantic model.

s

A further difibrence between the calculi is in the treatm ent of non-determinism . Bunken
burg’s choice operator, FI, is interpreted as demonic non-determ inism and axiomatised as
the greatest lower bound operator for Bunkenburg’s upward closed sets. This has a number
of consequences.

F irst, refinement equivalence, □ , is the same as equivalence, = . This means th a t fewer
expressions can be distinguished in Bunkenburg’s calculus.

3

i

True -A E = E

G F = T, if G ^ True

which makes alternations easier, but the -A operator is no longer monotonie in its left
argument.

7 .4 . F u tu re W ork 185

7.4 Future W ork

In this section we look at some possible areas for future extensions to the work presented
in the thesis.

We investigate the behaviour of non-determ inistic boolean expressions as guards or assump
tions. For example, consider the expression

le t / = (fun X e Z \ X E 3 ^ x — 3)
k, n — 2

in (/ n > 0 -> F i) Q E 2

3Î

outcome of type T), which is always total. A lthough initially this seems less expressive than
our y /5 (choose an arb itrary element of sets 5), the same can be expressed in Bunkenburg’s
calculus as Fla; : T .x E S -A x.

Bunkenburg’s denotational semantics uses the theory of powerdomains to provide a model
for his language. His semantics is broadly similar to ours. Bo th use the Smyth ordering
for refinement. However, because Bunkenburg’s choice is demonic, he also uses the Smyth
ordering for definedness, upon which the theory of recursion is based. Therefore, Bunken
burg’s theory sufifers from the same problem as W ard’s, where the refinement ordering is
used to find the least fixpoint. In some way, demonic choice would appear to blur the dis
tinction between the refinement ordering and the definedness ordering. Bunkenburg gives
a semantics for recursive function definitions, but not for more general recursive expression
definitions, although he allows these in the specification language.

Finally, although Bunkenburg starts w ith an expression language similar to th a t described
in chapters 2 and 5 of this thesis, he does not treat the language in as thorough a m anner
as is presented here. We have attem pted to investigate fully the behaviour of possibly
undefined, non-determ inistic and partial expressions in a rigorous manner. In contrast,
Bunkenburg uses the language more as a starting point to which is added imperative style
constructs. It is his treatm ent of im perative expressions which forms the m ajor component
of this thesis.

y;
:#

3
1
I

.N o n -D e te rm in is tic B o o le a n E x p re ss io n s

A lthough the use of non-determ inistic boolean expressions is not encouraged, since they are
unlikely to be of any use in specifications, they cannot be eliminated.

7.4 . F u tu re W ork 186

The guard in the subexpression (/ n > 0 -> F j) is non-determ inistic and is equivalent to
True False. Using our axioms for guarding, and since ~^A{True False) the resulting
expression is undefined.

A different axiom atisation for guards (and assumptions) replaces the axiom for non-proper
guards (assumptions) w ith a strictness axiom and a distribution axiom.

E booI E-a E = E p

{Pi H F2) >-4 F = (Pi F) 0 (P2 F)

where ‘>-A’ represents either or throughout the formula, and T is the type of F.

Now the subexpression becomes

/ n > 0 F i
™ “M anipulation of G uard”

{True [] False) -4- F i
= “Left-distribute —

True “4 F i [] False -4 F i
= “A xiom s for G u ard in g”

Fi

In this, we could say th a t [] in guarding is, in some sense, angelic w ith respect to T, since it
is T-avoiding. Evaluation of the guarded expression looks ahead to determine which choice
of guard gives a to ta l result.

W ith assumptions we have the less interesting case tha t

/ n > 0 > “ F i

= “M anipulation of A ssum ption”
{True [] False) > - F%

= “Left-distribute > - ”
True > - F i [j False >— F i

= “A xiom s for A ssu m p t io n s”

F i Q T
□ “R ed u ce N o n -D eterm in a cy , In trod u ce C ho ice, T C T and E C F i”

T

So, in this case, we could say th a t [] in an assum ption is demonic w ith respect to E and □ ,
I.e. X-seeking in term s of refinement equivalence.

7.4 . F u tu re W ork 187

Partial Functions

As discussed in sections 1.3 and 7.2.1, there has been some interesting work carried out on
how to describe specifications in parts, and how to combine these parts to form complete
specifications. We allow the form ation of partial functions as abstractions over partial
expressions, and combine them using a union operator, which is defined syntactically. This
operator is similar to the disjunction operator used to combine schemas in Z. There also
exists a conjunction operator for schemas in Z. We consider how a corresponding intersection
operator might be used in our language.

In chapter 1.3 we used partial functions to specify different cases of a problem . These are
then combined, using the union operator, such th a t

(fun X G T : P —)■ F) Ù (fun x G T : -iP -4 F)

is equivalent to

(fun X G T : P ^ E W -'P -4 F)

Given the two specification expressions

[j/{x G Z : 0 ^ X ^ 20} []/{x G Z : evenx)

an intersection of the two specifications should result in the expression

[j/{x G Z : (0 ^ X ^ 20) A even x}

A part from investigating whether or not such a facility would be useful, it would also be
interesting to see if a suitable syntactic definition could be given in the language. Such an
operator, among others, is described by F a p p ie r in [30] using a relational approach. The
main concern is tha t either of the two specification expressions could be refined to such a
point th a t the intersection no longer exists, resulting in an unimplementable specification.

In section 4.1.3 we looked briefly at the m anipulation of partial functions, and suggested a
special class of higher-order functions which might be defined for this purpose. We could also
examine the behaviour of partial functions when applied to non-determ inistic arguments.
For example, consider the following expression, which is not syntactically correct according
to our syntax restrictions.

(fun X G Z : X = 0 -4 F)(0 [] 1) (7.1)

7 .4 . F u tu re W ork 188

Since function application distributes over choice, it is reasonable to assume th a t this should
be the same as

(fun X € Z : a: — 0 -> E)0 [] (fun x & Z : x — 0 E)1

Function application w ith determ inistic arguments is governed by the substitution rule,
giving

which, according to our equivalence laws, is just E. So, we could say that the evaluation of
expression (7.1) looks ahead to determine which choice, if any, gives a to tal result. Similarly,
we expect the expression

(fun a; E Z : a; — 0 —y F?)([]/Z)

to behave in the same way. This could prove to be a very useful property of the application
of partial functions to non-determ inistic arguments. In con trast, we note th a t the (total)
expression

(fun a: 6 Z : a; — 0 > - £ ')(0 [] 1)

will evaluate to FJ [] _L.

In this thesis we have restricted the occurrences of partial functions, in order to simplify
the tasks involved in describing the calculus. A study of the unrestricted behaviour of these
functions could provide some interesting results.

N o n -D eterm in istic F un ction s

The choice operator of our expression language is such th a t function abstraction does not
distribute over []. This, as we have seen, results in true non-determinism [90], i.e.

(fun a; G T : F [] F) ^ (fun a; G T : F) [] (fun x E T : F)

A lthough the function on the right is a refinement of th a t on the left, the two may be
distinguished from each other. Not only is the function on the left proper, while th a t on
the right is improper, bu t they are also distinguishable when passed as arguments to a
higher-order function such as map.

7 .4 . F u tu re W ork 189

A (F 0 F) - (A F A F E F) V (A F A F Ç F)

P ro g ra m T ra n s fo rm a tio n s

We now consider the function expression

(fun x e T ■.E\\F)W (fun x e T : E)

and compare it to

(fun x e T : E WF)

It is reasonable to consider th a t these two functions should be equivalent since, operationally,
■i;

there is no observable difference between them . In fact, they are refinement equivalent, □ ,
and can be distinguished from each other only by using the operator A.

This operator is defined over [], in chapter 2, by the axiom

A (F [] F) = A F A A F A (F = F)

An alternative axiom might be

W ith this axiom, both of the functions in question would be proper and so impossible
to distinguish from each other. In fact, it would be possible to prove equivalence, using
extensionality.

If this alternative axiom atisation for A was to be used, the semantic definitions described in
chapter 6 would require to be revised. Currently they support the axiom for A as included
in chapter 2, and a proof of this is given in section 6.5. However, it would be useful to
explore the possibilities offered by the new axiomatisation, and to find a definition in the
semantic domain to support it.

IIn this thesis we have looked at the derivation of programs from specifications, but we have
not considered the issue of efficiency. It is likely th a t a functional program derived using this
calculus will not be the most efficient of implementations. However, there are techniques for
the transform ation of inefficient functional programs into equivalent bu t efficient programs.
It should be possible to prove such transform ations using our equivalence laws, or to describe
the transform ation techniques using our syntax and use the semantic definitions to prove
them .

■I

I
7.4. Future W ork 190

D a ta R e fin em en t
. .

The specification language of chapter 2 contains a rich set of d a ta types, which are not
present, or not easily implementable, in a pure functional programming language. The
whole point of using the model-oriented approach for specification is to model some concept
using these rich, but well-understood, types. However, it is not usually possible to use these
types in the implementation.

A lthough we can refine expressions using our calculus, refinements are always between
expressions of the same type. In order to change the type of an expression, d a ta refinement
m ethods are needed [60, 61, 58], as described in section 1.2.1. We anticipate th a t the same
m ethods as are used for d a ta refinement of imperative style specifications could be applied
to functional style specifications. Bunkenburg outlines such an approach in his thesis [18].

M od u le R efin em en t

Tools for the refinement of specifications based on the refinement calculus for imperative
programs are currently being developed, for example, the work of G rundy [33, 34] using the

It is possible to give a formal syntax for modules using ideas drawn from algebraic specifica
tions, object-oriented programming, type theory etc. [28, 36, 49, 51]. A lthough we did not
take such an approach, because we found it was not necessary to achieve our goals, there
are a number of reasons for a more formal approach. M odu larisation of a large system (of
specifications or implementations) has the commonly associated benefits of seperation of
concerns and re-use of components.

A formal module syntax would provide the basis of a formal module calculus. Operations
over modules, such as m odule inclusion, union and difference could be formally defined
and investigated (see [10]). We could imagine the usefulness of building a hierarchy of
modules, and employing the concepts of inheritance and specialisation, moving towards an
object-oriented approach. More interesting might be the consideration of param eterisation
of a module, w ith respect to values, types and even other modules (see [80]). Finally, and
im portantly in a refinement calculus, we could consider the possibility of one module refining
another, using both expression and da ta refinement. It is likely th a t such refinement of a
module would be w ith respect to some notion of an interface, containing invariants and
other necessary information.

M ech an isation

'I

7 .5 . F in a l R em a rk s 191

HOL theorem prover. An interesting exercise would be to a ttem pt to build such a tool for
our calculus for expressions. The embedding of the semantics of the language would be a
huge task . However, if we were to incorporate the methods for expression refinement into
the imperative refinement calculus, as suggested in section 7.2.2, the framework provided
by the theorem prover could be of enormous benefit.

7.5 F inal R em arks

This thesis has investigated an approach to deriving executable expressions from speci
fications using a refinement calculus, in the same m anner as the refinement calculus for
im perative programs. In this way, the calculus could be used to extend the refinement
calculus to allow the refinement of non-determ inistic expressions in specifications. It could
also be used to form the basis of a refinement calculus for functional programs, or to de
rive im perative style programs from functional specifications. The calculus consists of: a
specification language of expressions based on a general expression language; a refinement
relation with properties to allow the stepwise and piecewise refinement of expressions; and
a set of laws which can be used in the m anipulation of a specification, the derivation of a
program, or in the proof of a property of a specification. We consider the m ain contribu
tions to the area, as well as the calculus itself, to be the approach taken to constructing
large specifications using partial expressions and functions, and the denotational semantics
which is based on the idea of sets of possible evaluations.

" v . .

A p pendix A

Theorem s o f th e Logic

In this appendix we list some theorems of the logic as described in chapter 2.

A .l T heorem s of P rop o sition a l Logic

D i s tr ib u tio n o f V Disjunction distributes over itself.

In v o lu tio n Negation is an involution.

-n-iP = P

A A P

-i(P /\ Q) ^ V -iQ

192

I
I
I
À

j
Ï

I

P V (Q V P) = (P V a) V (P V P)

I

I
,

P r o p e r t ie s o f A An equivalence is always proper.

A { E = F)

:
D e M o rg a n Conjunction and disjunction satisfy de M organ’s laws.

'I

ïf

A . l . T h e o r e m s o f P r o p o s it io n a l L og ic 193

--- I-■ffOv

. . .C on jun ction Conjunction satisfies the usual properties.

P A Q = Q A P

I
P

P A {Q A R) = {P A Q) A R |

P A P = P

i
P A { Q A R) = { P A Q) A { P A R) ; |

A b sorp tion The absorption laws for conjunction and disjunction.

P A (P V 0) = P

P V (P A Q) = P

Id en t it ies True is an identity for conjunction, and False is an identity for disjunction.

P A True = P

P V False ~ P
i
y

« . . .P ro p erties o f ^ Im plication is reflexive and trichotomous. False is least w ith respect A
to the implication ordering, and True is greatest.

(P = > Q) V (Q = i . P)

False ==> Q

A . l . T h e o r e m s o f P r o p o s it io n a l L og ic 194

P => True

S u b stitu tio n The substitu tion rule for conjunction and for implication.

(P = Q) A F (P) = (P = Q) A F (Q)

{P = Q) ^ E{ P) = { P = Q) ^ E{Q)

M odu s P on en s

Shun ting The shunting law holds.

P A Q ^ R ~ P = ^ { Q = ^ R)

T ran sitiv ity and M o n o to n ic ity Im p lication is transitive. It is monotonie in its second
argum ent, and antimonotonic in its first (wrt implication).

(P=> Q) A (q = # > P) = > (P = > R)

{ P ^ Q) ^ { { R = ^ P) ^ { R ^ Q))

I
A

I

P A (P = ^ Q) = ^ Q
«

C on jun ction and Im p lication Conjunction is a greatest lower bound with respect to
implication.

{P ^ Q) A (P R) = {P Q A R)

A b sorp tion We have two further absorption laws, concerning implication.

P ^ P y Q

P A Q P

I

■î
A . l . T h e o re m s o f P ro p o s it io n a l L ogic 195

 ̂

{P Q) {{Q ^ R) ^ {P ^ R))

C o n ju n c t io n M o n o w r t Im p lic a tio n Conjunction is monotonie with respect to impli
cation.

{P Q) ^ {{P A R) {Q A R))

P r o p e r t ie s o f N o n e q u iv a le n c e Nonequivalence is symmetric.

I
D is ju n c tio n a n d Im p lic a tio n Disjunction is a least upper bound with respect to im
plication, and satisfies certain m onotonicity properties.

{P R) A { Q ^ R) ^ { P V Q ^ R)

{P=^ Q) ^ { { P V R) { Q V R))

D i s t r ib u t io n o f Im p lic a tio n Implication left-distributes over disjunction, over equiva
lence, and over itself.

P Q V R ^ { P ^ Q) V {P ^ R)

P {Q R) ^ {P Q) {P ^ R)

P ^ { Q = R .) ^ { P ^ Q) = { P ^ R)

I

A . 1,1 L a w s D e p e n d in g o n P r o p e r V a lu e s

E x c lu d e d M id d le If P is proper, then the law of the excluded middle holds.

A P (P V - P)

Ï

{ A P A A Q a A R) ^ {{{P = Q) = P) = (P = (Q = R)))

D is t r ib u t io n over E q u iv a le n c e

A P = ^ { P V { Q = R) ^ { { P V Q) = { P V R)))

A P ^ { P A { - ^ P V Q) ^ P A Q)

A . l . T h e o r e m s o f P r o p o s it io n a l L o g ic 196

N e g a tio n a n d E q u iv a le n c e These are related by the law

(A P A A Q) => (- (P = Q) = (- P = Q))

A s so c ia tiv ity o f E q u iv a le n c e Equivalence is associative for proper boolean terms.

"s

I
%

'

A P ^ (P ^ (Q = R) = ({ P A Q) = i P A R}))
■:

■■

A P = ^ { P A { Q ^ R) = { { P A Q) ^ { P A R)))

G o ld e n Im p lic a tio n

(a p a a q) = > (p = ^ q = (p a <s = p))
V'

.B i-Im p lic a tio n

(A P A A Q) ^ ((P a ~ Q) A (Q ^ P) = (P = Q))

C o n ju n c tio n A b s o rp tio n We can simplify the following conjunctions.

A P ^ (P A (P ^ Q) = P a Q)

(A P A A Q) ^ (P A (P = Q) = P A Q)

I

I

■y,::

:

A .2. T h e o rem s o f P r e d ic a te L ogic 197

I!

E x c h a n g e Law s

(A P A A ^) => (P ->Q ^ Q -iP)

(A P A A Q A A P) => (((P ^ Q) ^ E) = (P ^ { Q ^ R)))

f
{ A P A A Q) ^ i ^ P Q = - . Q ^ P) :K

C o n t ra p o s itiv e

I
(A P A A Q) ^ ((P ^ Q) ^ A Q =;. -nP))

'i
{ A P A A Q) = ^ (P ^ Q = -^Q=^-.P)

A-
'A

A s so c ia tiv ity o f N o n e q u iv a le n c e Nonequivalence is associative for well-defined terms,
and equivalence and nonequivalence are m utually associative.

(A P A A Q A A P) ^ (((P ^ Q) = R) = { P ^ { Q = R))) J;

(A P a A Q A A P) ^ (((P ~ Q) ^ R) ~ { P ^ { Q ^ R)))

A .2 T heorem s of P red icate Logic

T ra d in g T h e o re m s

A P ^ { { V x : T \ P » Q) = { V x : T \ 0 - . PVQ)) %

(Va: : T I P AÆ. Q) = (Vx : T I P . P ^ Ç)
'■A

A P = > ((Vrr : P I P A P . Q) = (Vz : T I P . -nP V Q))
■i

A .2. T h e o r e m s o f P r e d ic a te L ogic 198

F u r th e r D is tr ib u t io n Provided x is not free in Q,

A P ^ {{Vx : T \ P » Q) = Q V { \ f x : T \ . - P))

D i s t r ib u t io n Provided x is not free in Q, and -i(Væ : T | *-iP)

A P {{Vx ■. T \ P • Q A R) = Q A { \/x : T \ P • R))

A d d i t io n a l T h e o re m s

(Væ : P I P . True)

{ \ / x - . T \ P » Q = R) = ((Va; : P | P • t?) = (Va: : P | P • P))

'3W e ak en in g , S tre n g th e n in g a n d M o n o to n ic ity
;

(Vx : P I P V Q * P) ^ (Va; : P I P * P)

(Vx : P I P . Q AP) => (Vx : P I P . Q)

(Vx : P I P . Q ^ P) ((Vx : P I P . Q) => (Vx : P I P . P))

I n s ta n t ia t io n For any c in P

(Vx : P I mP) ^ P [c/x]

.
G e n e ra lis e d D e M o rg a n

: T I P » - i Ç) = (Vz : r I P . Q)

: T I P . Q) = (Va: : r I P . ^ Q)

(3a; : T I P • ^ Q) = -(Va: : T | P • Q)

I
I
I

A .2. T h e o r e m s o f P r e d ic a te L og ic 199

Trad ing

{ 3 x : T \ P * Q) ~ { 3 x : T \ — (P - nQ))

{ 3 x - . T \ P A R * Q) = { 3 x : T \ P * - ^ { R = > - ^ Q)

D istr ib u t ion Provided x is not free in Q,

(3x : T I P * Q A P) - Q A (3 x : r I P . P)

A P = > ((3x : P I P . Q) = Q A(3 x : P I .P))

Provided x is not free in Q, and (3x : P | *P)

(3 x : P | P . Q V P) = Q V (3 x : P | P . P)

A d d it ion a l T h eorem

^ (3 x : P I P » False)

W eakening, S tren g th en in g and M on o to n ic ity

(3x : P I g * P) ^ (3x : P I P V <5*P)

(3x : P I P . <9) => (3x : P I P . Q VP)

(3x : P I P . Q => P) => ((3x : P I P . 0) ^ (3x : P I P . P))

In trod u c tion and E xchan ge For any c in P

P[c/x] ^ (3x : P I *P)

Provided x is not free in Q, and y is not free in P ,

{3x : P I P . (Vÿ : P ' I Q * P)) ^ (Vi/ : P ' I <5 • (3x : P I P . P))

A p pendix B

T he Pr in ter C ontrol Specification
i

i
Here we give an outline of how the final printer control specification looks.

G iv e n S e ts

[P e r s o n] , [Pa g e]

In it ia l D e f in it io n s

J o b Id = N
F ile = ^ cçP a g e

P r io r it y ^ N

B u f f e r = P a g e

D e fin ition s for S ta te

I

in f : J o bs = [KnownJobs G P J o b Id

FileOf G Known Jobs F il e ,
OwnerOf G Known Jobs -e-; P e r s o n ,

PriorityO f G Known Jobs -Uf PRIORITY]
in f : J o b s F SizeOf = # o FileOf

;

c : C u r r e n t J o b = [Currentid G J o b Id , PagesPrinted G N]

I
200

T h e P r in te r C o n tro l S p e c if ic a t io n 201

P r i n t Q u e u e = ISeq(JoBlD\{0})
q : P r i n t Q u e u e h JobsW aiting = ran g,

RemQueue = (fun id G J o b I d : Remove(g, id))

q : P r i n t Q u e u e , c : C u r r e n t J o b h JobsInQueue = JobsW aiting U Currentid,
Em pty Queue = (C urrentid = 0)

u : U s e r s = [KnownUsers G P P e r s o n ,

QuotaO f G KnownUsers -+>t N,
PagesUsedBy G KnownUsers N] :
(Vp G PERSON.QuotaOfp > PagesUsedBy p)

cr : E = [g G P R I N T Q U E U E , C G CURRENTJOB, b G B U F F E R , in f G JOBS, U G USERS]
(PagesPrinted ^ SizeOf o C urrentid

A Known Jobs — JobsInQueue
A KnownUsers 3 OwnerOf * JobsInQueue
A C urrentid ^ JobsW aiting
A (C urrentid = 0 => g = ())

O p e r a t io n s over t h e S ta te

A d d in g a P r in t Job

a : S F AddOk = (fun p G P e r s o n , / g F i l e , n G P r i o r i t y :

p G KnownUsers-A
le t newld = []/(N\({0} U Known Jobs))

—̂

& newq = (-lEm ptyQueue -A g {newld) [] g)
i—

& newc = (-lEm ptyQueue -A c [] (new/d, 0))
& new inf = (FileOf® {new ld t-A /} ,

OwnerOf© {newld ha p } ,

PriorityO f© {newld ha n})
in (newg, newc, 6, new inf, u))

(7 : S F A ddError ^ (fun p G P E R S O N , / G F I L E , n G P R I O R I T Y :

U n k n o w n _ U s e r _ E r r o r)

cr : E F Add = AddOk U A ddError

T h e P r in te r C o n tro l S p e c if ic a t io n 202

A l lo c a tin g Q u o ta s

cr : S h Alloc = (fun p G PERSON, g G N :
le t newu = (Q uotaO f© {p (-> g},

PagesUsedBy © {p i-A 0})
in (g, c, b, in f, newu))

R e tu rn in g th e A c tiv e J o b

cr : S h Active = (-lEraptyQueue -A le t id — Currentid || n — PagesPrinted
& size — SizeOf id
in (id, n, size — n)

—̂
W Q u e u e „ E m p t y - E r r o r)

P r in t in g a P a g e

g : P r in t Q u e u e , in f : J o b s h GetNextId G: [q ^ ()
le t pr ™ (fun i G N : PriorityO f g [i])
in n /{m axW R T p r{0 ..ifq — I}))

f-
Q 0)

(T : E h P rin t Ok (-lEm ptyQueue -A
le t id = C urren tid || n — PagesPrinted
& p — OwnerOf id || / = FileOf id
& quota = Q uotaO fp || pages — PagesUsedBy p in
quota > pages -A

le t newb — f[n]
& newu = ChangeUser(guoia, pages + 1) in
(n <SizeOf id -A

le t newc = (id, n + 1)
in (g, newc, in f, newu, newb)

4.—

[] le t newid — GetNextId
& newc = {newid, 0)
&: newq ~ remove newid
& new inf — Rem inf id
in {newq, newc, new in f, newu, newb)))

■A

*

T h e P r in te r C o n tro l S p e c if ic a t io n 203

<T : S h Q uo taError ^ {-lEmptyQueue —> Q u o t a _ E r r o r)

a : S h QEmpty = E r r o r _ Q u e u e _ E m p t y

i— i—
cr : E h Printpage G: Printok [] Q uotaError [] QEmpty

R em ov in g a P r in t Job

cr : E h RemoveOk = (fun id G J o b Id ;

id G JobsInQueue A id ^ C urrentid -A

let newq — RemQueue id
&: newinf = (FileOf\id,

Ow nerO f\id,
Priority Of\id)

in {newq, c, b, new inf, u))

cr : E h RemoveCurrent = (fun id G JobId :

id — C urren tid -A C u r r e n t _ J o b __Er r o r)

cr : E h RemoveFail (fun id G J o b Id : J o b _ n o t _[N _Q u e u e _ E r r o r)

fj : E F Remove Job ^ RemoveOk U RemoveCurrent U RemoveFail

i:
'A

.,1

A

I
I

«
%

I
I

: î

B ibliography

[3

[4

[5

[6

[7

[8

[9

[10

[11

A. Avron. Foundations and Proof Theory of 3-valued Logics. Technical Report ECS-
LFCS-88-48, Departm ent of Com puter Science, University of Edinburgh, U .K., 1988.

R.J. Back and M. Butler. Exploring Summation and Product O perators in the Refine
ment Calculus. In B. Moller, editor, Mathematics of Program Construction : Proceed
ings of the Third International Conference, M P C ’95, Kloster Irsee, Germany, number
947 in LNCS, pages 128-158. Springer-Verlag, 1995.

R.J.R . Back. Correctness Preserving Program Refinements: Proof Theory and Appli
cations. Tract 131, M athem atisch Centrum , Am sterdam, 1980.

R.J.R . Back. A Calculus of Refinements for Program Derivations. Acta Informatica,
25:593-624, 1988.

R. Backhouse. An Exp loration of the Bird-M eertens Formalism . In Proceedings of the
International Sum m er School on Constructive Algorithmics, Hollum-Ameland, 1989.

R. Backhouse, P.Chisholm, G. Malcolm, and E. Saaman. Do-it-yourself Type Theory.
Formal Aspects of Computing, 1:19-84, 1989.

H.P. Barendregt. In troduction to Generalized Type Systems. Journal of Functional
Programming, 1(2):125-154, 1991.

M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, 1990.

H. Barringer, J.H. Chen, and C.B. Jones. A Logic Covering Undefinedness in Program
Proofs. Acta Informatica, 21:251-269, 1984.

J.A. Bergstra, J. Heering, and P. K lint. Module Algebra. Journal of the Association
for Computing Machinery, 2:335-372, 1990.

J.C. Bicarregui, J.S. F itzgerald, P.A. Lindsay, R. Moore, and B. Ritchie. Proof in
VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994.

204

■'■'"■A

I
B ib lio g ra p h y 205

--- i

[12] R. B ird and P. Wadler. Introduction to Functional Programming. Series in Com puter t
Science. Prentice Hall International, 1988. |

'i[13] R.S. Bird. An In troduction to the Theory of Lists. In M. Broy, editor, Logic of
Programming and Calculi of Descrete Design, volume 36 of N A TO Series F, pages
3-42. Springer-Verlag, 1986.

[14] R.S. Bird. A Calculus of Functions for Program Derivation. In D.A. Turner, editor,
Research Topics in Functional Programming, University of Texas at Austin Year of
Program ming Series, pages 287-308. Addison-Wesley, 1990.

[15] R.S, Bird. The A lgebra of Program ming Principles. In Proceedings of the International
Sum m er School on Deductive Program Design, Marktoberdorf, 1994.

[16] R.S. Bird. Functional A lgorithm Design. In B. Moller, editor, Mathematics of Program
Construction : Proceedings of the Third International Conference, M P C ’95, Kloster
Irsee, Germany, num ber 947 in LNCS, pages 2-17. Springer-Verlag, 1995.

[17] J.E. Bresenham . An algorithm for computer control of a digital plotter. IB M Systems
Journal, l(4):25-30, 1965.

[18] A. Bunkenburg. Expression Refinement: Imperative Programs. Phd thesis. Departm ent ;;i
of Computing Science, University of Glasgow, 1997.

I
[19] A. Bunkenburg and S. F lynn. Expression Refinement: Deriving Bresenham ’s Algo

rithm . In K. Hammond, D.N. Turner, and P.M. Sansom, editors. Functional Program
ming, Glasgow 199f, Workshops in Computing, pages 1-17. BCS, Springer-Verlag,
1994.

‘7
[20] L. Cardelli. Typeful Program ming . Technical Report 45, Digital Equipment Corpora

tion Systems Research Center, May 1989.

[21] L. Cardelli and P. Wegner. On U nderstanding Types, D ata Abstraction, and Polymor
phism . Computing Surveys, 17(4):472-552, 1985.

[22] J.H. Cheng and C.B. Jones. On the Usability of Logics which handle Partial Functions.
In Carroll Morgan and J.C .P. Woodcock, editors, 3rd Refinement Workshop, pages 51-
69. Springer-Verlag, 1990. ■

[23] J. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall Interna- s’

:
tional, London, 1980.

[24] E.W. D ijkstra. A Discipline of Programming. Prentice Hall, N .J., 1976.

■ÿ

1];s-

B ib lio g ra p h y 206

[31] D. Gries. The Science of Programming. Springer, New, York, 1981.

[25] E.W . D ijkstra. A Com pu ting Scientist’s Approach to a Once-Deep Theorem of
Sylvester’s. In Proceedings o f the International Sum m er School on Deductive Program
Design, Marktoberdorf, 1994. EWD1016, 1988.

[26] E.W. D ijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Springer-
Verlag, 1990.

.[27] A. Diller. Z - A n Introduction to Formal Methods. Wiley, second edition, 1994.

[28] J.S. F itzgerald and C.B. Jones. Modularizing the Formal Description of a database
system . In VD M ’90 Conference, Kiel, 1990.

[29] M.M. Fokkinga. Program m ing Language Concepts — The Lam bda Calculus Approach.
In P.R .J. Asveld and A. N ijholt, editors. Essays on Concepts, Formalism, and Tools,
volume 42 of C W I Tract, pages 129-162. CWI, Am sterdam, 1987.

it
[30] M. F iappier, A. Mill, and J. Desharnais. Program Construction by Parts . In B. Moller,

editor. Mathematics of Program Construction : Proceedings of the Third International
Conference, M P C ’95, Kloster Irsee, Germany, number 947 in LNCS, pages 258-281.
Springer-Verlag, 1995.

I
[32] D. Gries and F.B. Schneider. A Logical Approach to Discrete Math. Texts and Mono

graphs in Com puter Science. Springer-Verlag, 1994.

[33] J. Grundy. A W indow Inference Tool for Refinement. In C.B. Jones, B .T . Denvir,
and R.C.F. Shaw, editors, Proceedings of the 5th Refinement Workshop, Workshops in
Computing, pages 230-254. BCS FACS, Springer-Verlag, 1992.

[34] J. Grundy. A Method of Program Refinement. PhD thesis, University of Cambridge,
,1.

Com pu ter Laboratory, New Museums Site, Pembroke Street, Cambridge CB2 3QG,
November 1993. Technical Report 318.

[35] C.A. Gun ter and D.S. Scott. Semantic Domains. In J. Van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 633-674. Elsevier Science Publishers
B .V., Am sterdam, 1990.

[36] R. Harper, R.M ilner, and M .Tofte. A Type Discipline for Program Modules. Technical
Report ECS-LFCS-87-28, D epartm ent of Computer Science, University of Edinburgh,
1987.

■Î

I
£

Î

B ib lio g ra p h y 20 7

[37] R. Heckmann. Power Domains Supporting Recursion and Failure. In J.-C. Raoult,
editor, Prodeedings of the 17th Colloquium on Trees in Algebra and Programming,
Rennes, France, num ber 581 in LNCS, pages 165-181. Springer-Verlag, 1992.

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

[48

[49

[50

[51 B. Meyer. Eiffel; Program m ing for Reusability and Extendibility . SIG P L A N Notices,
22{2):85-94, 1987.

E.C.R. Hehner. The Logic of Programming. Prentice Hall International, 1984.

E.C.R. Hehner. A Practical Theory of Programming. Texts and Monographs in Com
puter Science. Spr inger-Ver lag, 1993.

C.B. Jones. Systematic Software Development Using VDM. Prentice Hall, U .K., second
edition, 1990.

C.B. Jones. Partia l functions and logics: A warning. Information Processing Letters,
54(2):65-67, 1995.

C.B. Jones. TANSTAAFL (w ith partial functions). Work in Progress, 1996.

C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore, mural: A Formal Development
Support System. Springer-Verlag, 1991.

.
J.Woodcock and J.Davies. Using Z: Specification, Refinement, and Proof. Prentice
Hall, U .K., 1996.

A. Kaldewaij. Programming - The Derivation of Algorithms. Prentice Hall, 1990.

D .J. King and P. Wadler. Combining Monads. In J. Launchbury and P.M. Sansom,
editors. Functional Programming, Glasgow 1992, Workshops in Computing. Springer-
Verlag, 1993.

J.-L. Lassez, V.L. Nguyen, and E.A. Sonenberg. Fixed Point Theorems and Semantics:
A Folk Tale. Information Processing Letters, 14(3).T12-116, 1982.

J. Launchbury and S.L. Peyton Jones. Lazy Functional State Threads. In Proceed
ings of the A C M Conference on Programming Languages Design and Implementation,
Orlando, June 1994.

D. MacQueen. Using Dependent Types to Express M odular Structure . Technical
report. D epartm ent of Com puter Science, University of Edinburgh, 1986.

Z. M anna and A. Shamir. The Theoretical Aspects of the Optim al Fixedpoint. S IA M
Journal of Computing, 5(3):414-426, 1976.

A

B ib lio g ra p h y 208

1991.

[58] C. Morgan and P.H.B. Gardiner. D a ta Refinement by Calculation. Acta Informatica,
26:481-503, 1990.

[52] E. Moggi. An A bstract View of Program m ing Languages. Technical Report ECS-LFCS-
90-113, D epartm ent of Com puter Science, University of Edinburgh, 1989. Lecture Notes
for course CS 359, Stanford University.

[53] E. Moggi. Com pu tational Lamb da-Calculus and Monads. In Symposium on Logic in
Computer Science, 1989.

[54] E. Moggi. Notions of Com putation and Monads. Information and Computation, 93(1),

[55] C. Morgan. The Specification Statem ent. A C M Transactions on Programming Lan
guages and Systems, 10(3):403-419, Ju ly 1988.

[56] C. Morgan. Programming from Specifications. Prentice Hall, U.K., 1990.

[57] C. Morgan. The Refinement Calculus. In Proceedings of the International Sum m er
School on Program Design Calculi, Marktoberdorf, 1992.

Î

[59] J.M. Morris. A Theoretical Basis for Stepwise Refinement and the Program m ing Cal
culus. Science of Computer Programming, 9:287-306, 1987.

[60] J.M Morris. Laws of D ata Refinement. Acta Informatica, 26:287-308, 1989.

[61] J.M. Morris. Piecewise D ata Refinement. In Edsger W. D ijkstra, editor. Formal Devel
opment o f Programs and Proofs, University of Texas a t A ustin Year of Program ming
Series, chapter 10, pages 117-137. Addison-Wesley, 1989.

[62] J.M. Morris. Program s from Specifications. In Edsger W . D ijkstra, editor, Formal De
velopment of Programs and Proofs, University of Texas at Austin Year of Program ming
Series, chapter 9, pages 81-115. Addison-Wesley, 1989.

-

[63] J.M. Morris. Nondeterm inistic Expressions and Functional Im perative Programming.
To appear, 1994.

[64] J.M. Morris. Reasoning Equationally in the Presence of Undefinedness. Subm itted for
Publication, 1996.

[65] J.M. Morris. Undefinedness and Nondeterminacy in Program Proofs. To appear, 1996.

[66] P.D. Mosses. Denotational Semantics. In J. Van Leeuwen, editor, Handbook of Theo
retical Computer Science, volume B, pages 575-631. Elsevier Science Publishers B.V.,
Am sterdam, 1990.

■|
F

£

B ib lio g ra p h y 209

[67

[68

[69

[70

[71

[72

[73

[74

[75

[76

[77

[78

[79

G. Nelson. A generalization of D ijkstra’s Calculus. A C M Transactions on Programming
Languages and Systems, 11(4):517-561, October 1989.

T.S. Norvell and E .C .R. Hehner. Logical Specifications for Functional Programs. In
R. Bird, C. Morgan, and J. Woodcock, editors. M athematics of Program Construction
1992, number 669 in LNCS, pages 269-290. Springer-Verlag, 1993.

J.T . O ’Donnell and G. Rfinger. A Case Study in Parallel Program Derivation: The
Heat Equation A lgorithm, In K. Hammond, D.N. Turner, and P.M. Sansom, editors.
Functional Programming, Glasgow 1994, Workshops in Computing, pages 167 - 183.
BCS, Springer-Verlag, 1994.

H.A. Partsch . Specification and Transformation of Programs. A formal approach to
software development. Springer-Verlag, 1990.

L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.

S.L. Peyton Jones and P. W adler. Im perative Functional Programming. In 20th A C M
Symposium on Principles of Programming Languages, pages 71-84. ACM Press, 1993.

G. P lotkin . A Powerdomain Construction . SIA M Journal of Computing, 5(3):452-487,
1976.

G. P lotkin . Domains. Lecture Notes, Departm ent of Com puter Science, University of
Edinburgh, 1983.

B. Po tter, J. Sinclair, and D. Till. A n Introduction to Formal Specification and Z.
Prentice Hall, U.K., 1991.

J.C. Reynolds. Three Approaches to Type Structure . In E.A. Ehring, editor. M athe
matical Foundations of Software Development, pages 97-138. Springer, Berlin, 1985.

R. Salmon and M. Slater. Computer Graphics, Systems and Concepts. Addison-Wesley,
1987.

D. Sannella. Formal Specification of ML Programs. Technical Report ECS-LFCS-86-15,
Departm ent of Com puter Science, University of Edinburgh, 1986.

D. Sannella. Formal program development in Extended ML for the working program
mer. In Carroll Morgan and J.C .P. Woodcock, editors. Proceedings of the 3rd Refine
m ent Workshop, pages 99-130. Springer-Verlag, 1990.

B ib lio g ra p h y 210

[80] D. Sannella, S. Sokolowski, and A. Tarlecki. Towards formal development of programs
from algebraic specifications ; param eterisation revisited. Technical report, D epart
ment of Com puter Science, University of Edinburgh, 1990.

[81] D. Sannella and A. Tarlecki. Toward Formal Development of Program s from Algebraic
Specifications: Im plem entations Revisited. Acto, Informatica, 25:233-281, 1988.

[82] D.A. Schmidt. Denotational Semantics - A Methodology fo r Language Development.
A llyn and Bacon, INC ., 1986.

[83] M. Smyth. Power domains. Journal of Computer and System Sciences, 16(l):23-36,
1978. .1

m
3

[84] H. Sondergaard and P. Sestoft. Non-determinism in Functional Languages. The Com
puter Journal, 35:514-523, 1992. y

¥■
[85] R.F. Sproull. Using Program Transformations to Derive Line-Drawing A lgorithms.

A C M Transations on Graphics, l(4):259-273, 1982. #

[86] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming A
Language Theory. Series in Com puter Science. The M IT Press, 1977.

;
[87] S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

'.Ji
[88] P. Wadler. Comprehending Monads. Mathematical Structures in Computer Science, 7

2:461-493, 1992. 1
■s:

[89] P. Wadler. Monads for Functional Programming. In Proceedings of the International
Sum m er School on Program Design Calculi, Marktoberdorf, volume 118 of N A TO A S I
Series F : Computer and systems sciences. Springer-Verlag, 1992. A

[90] N. Ward. A Refinement Calculus for Nondeterministic Expressions. Phd thesis, The
University of Queensland, February 1994. 1.

1

I

