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Summary

A stationary crack normal (o the boundary between two elastically mismatched solids such
that the crack tip is located at the interface is studicd analytically and computationally. Ei-
genvalue cxpansions establish the first iwo terms of the asymptotic expansion of the plane
strain elastic stress fields for mode I and mode II loading, The sccond order term was de-
termined as a function of elastic mismatch for a thin cracked film on a substrate and for a
thin cracked lamina between two subslratcs.

Elastic-plastic analysis was performed when one of the solids was fully clastic and the
other solid was elastic perfectly-plastic. Analytic and numerical solutions of the asymptotic
stress fields were developed in small strain yielding, The angular span at the crack tip was
composed of elastic and plastic sectors. Analytic solution of the stresses in plastic sectors
was based on slip line thearv and the stresses in the elastic sectors were developed using
solutions to semi-infinite problems. Numerical solutions obtained using boundary layer for-
mulations were in close agreemcnt with the analytic results. When the crack was located
in plastic solid, the clastic solid ahead of the crack develops a logarithmic singularity. The
ellect of the [/ '~stress on the extent of plasticity on the flanks is determined. Interesl is mainly
focussed on the case when the crack is in an elastic solid and the material ahead is elastic
perfectly-plastic. Solutions are developed at different levels of clastic mismatcli, mode mix-
ity and T'-stress. Mode 1 fields are identified to be paramcterised by the constraint ahead of
the crack tip which depends on the clastic mismatch and the T-stress. The effect of constraint
on the competition between interface failure and penetration is discussed.

A crack located in an interfacial zone between two plastically dissimilar solids in which
toughness and yield strength were assumed to interpolate lincarly across the zone, has been
studied both analytically and computationally. The problem is an idealisation of a crack in
the heat affected zone between a weld and parent plate in which the mechanical properties

are dependent on position or a crack in a solid subject to a non-unitorm temperature field.




Summary XVvi

Due to the gradation in yield strength, even under a remote mode I load the plastic zone
shapes arc asymmetric about the crack planc resulting in a non-unity plastic mixity at the
crack tip. Plane strain asymptotic stress fields undex conditions of small scale yielding and
non-hardening plasticity havc been constructed by assembling elastic and plastic sectors us-
ing slip line theory. The numerical solutions using boundary layer formulations are in close
agrcement with the analytic solutions. From the asymptotic field under assumption of local
homogeneity, higher plastic mismatch and compressive T'-stress result in higher inclination
of the crack extension plane towards the solid of higher yield strength. Failure is alsc mod-
elled using a weakest link model which allows initiation of cleavage failure within the plastic
zone and not necessarily at the crack tip. Mismatch in yield strength and toughness show
opposing effects on the crack extension dircetion, the plastic mismatch favours crack initi-
ation in the softer material while toughness mismatch favours crack initiation in less tough

material,




CHAPTER 1 1

Introduction

Thermal barricr, and wear resistant coatings successfully combine dissimilar materials so
that the beneficial properties of the constituents complement each other. A ceramic coating
deposited on a steel companent significantly increases its thermal shock bearing capacity,
allowing the operational termperatures and efficiencies of turbines and internal combustion
engines o be increased. The effective combination of metal and ceramic in laminates also
provides structures which have high strength {and stiffness) to weight ratios. Manufacturing
processes, including soldering, welding and cladding also result in combinations of dissim-
ilar materials. Failure of these systems often results from the failure of the interface between
the solids. This may be caused by flaws or defects in the interface or in one of the solids and
approaching the interface. Understanding the factors that influence the stress field of such
cracks is fundamental to the design, development and life assessment of these composite sys-
tems. In the present work, the interest is focussed on a crack normal to the interface beiween

mismatched solids and a crack located in a zone of graded toughness and yield strength.

The thesis starls with a sevicw of elastic and plastic behaviour of materials followed by a
summary of the literalure in the development of single parameter and two parameter fracture
mechanics for both linear elastic and elastic-plastic homogeneous solids. The key studies in

the development of fracture mechanics in bi-matcrial systcms arc then introduced.

In the case of a crack normal to the interface hetween mismaiched solids, the effect
of elastic mismatch, the non-singular term and the loading phase angle of the outer elastic
field on the elastic plastic crack tip field is determined under plane strain contained yiclding
conditions. The work firstly establishes the asymplotic elastic field for a crack normal to

the interface between mismatched solids. In contained yielding, the non-singular term of the
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ouler elastic field has been shown to determine the constraint of the homogeneous problem
(Betegdn and Hancock, 1991; Du and Hancock, 1991; O'Dowd and Shih, 1991) and affect
the constraint for an interface crack (Kim et. al, 1997). In Chapter 4, the details of the elastic
analysis are presented. The work of Cook and Erdogan (1972) and Chao et al. (1993) [or a
crack normal to the interface between mismatched solids has been extended by determining
the second order term in the asymptotic expansion. The elastic ficld is then used in the
modified boundary layer formulation to perform elastic-plastic analysis under small strain
yielding. ‘The work has focussed on the limiting casc of plastic mismatch when one of the
solids is elastlic and the other is elastic-perfectly plastic. The analytic solution establishes the
parameters that characterise the crack tip field following which the effect of clastic mismatch,
geometric effects duc to non-singular terms and loading phase angle on the characterising

parameters is determined computationally.

In bi-material systems, intcrface failure between dissimilar solids may occur as a con-
sequence of abrupt transitions in composition and properties across a well defined interface.
To minimisc these problems a class of materials known as functionally graded materials
(FGMs) has been developed to minimise property mismatch effects by varying the compos-
ition pradually from one material to another in a controlled manner. In the interfacial zone
of a ceramic-mctal composite the composition can be varied by mixing ceramic and metal
in different proportions such that the spatial change ol properties from ceramic to metal is
gradual which results in Iess severe thermal stress distributions (Choules and Kokini, 1996;
Wetherhold et al., 1996). Surface treatments such as laser hardening, carburising or nitiid-
ing also induce changes in the composition at the surface which result in a spatial variation
of physical properties. The surface being stronger than the substrate and thus more wear

yesistant,

A spatial variation in propertics may also result [rom manufacturing processes such as

welding and cladding. In welding, the thermal cycle results in a heat affected zone which
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typically has a higher yicld strength than the parent plate, As a result, the yicld strength
varies from the weld zone to the parent material in a continuous manner. Even homogeneous
materials in non-uniform temperature fields may result in a spatial variation in mechanical
properties as the yield sirength is a [unction of the temperature. The work concentrates on
a crack in an interfacial zone of uniform elastic modulus but graded yield strength. Chapter
7 first develops the planc strain asymptotic stress field in contained yielding both analytic-
ally and compulalionally, followed by a discussion using a statistical approach based on a
weakest link analysis on the effect of gradient in yield strength and toughness on the faiture

probabilities and crack propagation direction.
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Fundamental Concepts

The aim of fracture mechanics is to deterimine the effect of cracks and defects on the integrity
and life of engineering structures. In order to establish a framework for the present work, the
concepts of continuum mechanics are introduced. 'T'his includes the equilibrium equations,
stress-strain relations, strain-displacement relations and yield criteria followed by a brief
desctiption of plane strain slip line theory. A review of some of the key developments in
the application of fracture mechanics starts with the studies based on the assumption of a
linear elasiic response, the review subsequently develops the critical concepts in elastic-
plastic fracture mechanics. The principles of single parameter characterisation are presented
for both elastic and plastic crack tip fields with a discussion on their limitations. The recent

developments in two-parameter fracture mechanics are then reviewed.

2.1 Constitutive relations

The theory of clastic deformation has been covered in many standard texts such as Timoshenko
and Goodier (1970). In a continuum, the stress field gives a measure of the intensity of the
Internal forces that may arisc from the applied surface and body forces. Consider an ele-
mental volume in an orlhogonal Cartesian co-ordinate system z; (¢ = 1, 2, 3) as shown in
Fig. 2.1. If an incremental force vector, AF;, acts on an elemental area, A4;, which has a

surlace normal, n;, the stress tensor, oy;, is defined as:

. AR
gy = lim

A4—0 AA; (1)

The complete stress state is described by 9 components. However, rotational equilibrium

reduces the number of independent components as o;; = o;;. Within a body at equilibrium,
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the stress-state may be non-uniform. To maintain equilibrivm, every element within it must
be in equilibrium under the action of the stresses on the clement faces. Equilibrium in the «;
(z = 1, 2, 3) directions is ensured by:

doy;
o

+X;=0 (2.2)

where, X; (7 = 1, 2, 3) are body forces per unit volume in the Cartesian directions.

Strain is essentially a geometric quantity which depends on the relative displacements of
points within a material. For small deformations, the strain components are related to the

displacements by the strain-displacement equations:

_ 1 8’1‘45@'_ a'bij
A (8—,{,1 * (?.’I:é) (23)

where, u; are the componenis of the displacement vector. Shear strain may be quantified

by the tensor definition given in Eq. 2.3, or by ap engineering definition in which ; =

2 €53 (4 o4 7). The rigid body rotation is:

. 1 Sui E}'u.j
YTy (axj N 3.@%-) @4

The strain-displacement relations express the strains in terms of displacements u; which

gives rise 1o a set of relations between the strain components. These relations can be estab-
lished by eliminating the displacements from the 6 strain-displacement equations to develop

compatibility relations which have twa forms:

62631 eng . 32612

02 ' 0a7  “Owbzy (2.5)
Pen a Ocas  Oera  Oepn
8-’”26.7:3 - W‘l - 89:1 + sz - 33;3 gt (2.6)
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The compatibility relations ensure the existence of a unique displacement field related to
the strain components. Physically these relations mean that the hody remains connected
after straining and material is neither created nor destroyed. For a linear elastic, isotropic
and homogeneous material the deformation is reversible and independent of the oricntation
of the body. The deformation is fully characterised by two independent constanls Young’s
modulus, F, and Poisson’s ratio, v. The stresses and the strains for such a material are related

by Hooke’s law :
1,
GG~ F (1 + »)ay; — 850k 2.7

where, d;; is Kronecker’s delta. In the solution of two-dimensional problems, it is convenient

to define a stress function, ¢, which is related to the stress field by:

3P
g = “5;? (2.8)
5*®
Toa = (9—1,% (29)
B
Oi2 = Bz, 07, (2.10)

On substituting the stresses in terms of the stress function, the governing equations reduce to

the bi-harmonic equation:

Ve =0 (2.11)
Since the bi-harmonic equation satisfies the equilibrium equations, compalibilily equations,
its solution with appropriate boundary conditions gives the complete state of stress field.

In uniaxial tension, the material behaviour changes at the yield point, beyond which
irreversible non-linear behaviour is exhibited. In uniaxial tension the limit is defined as the

yield stress, ,, which is a material property.
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2.1.1 Yicld criteria

The theory of plaslicity has been developed in standard text books such as Hill (1950). For
a general state of stress the onset of plastic flow is described by a yield critcrion which is a

function of the invariants of the deviatoric stress tensor, Jy and J3, defined as:

1

J:Z = 2 S Sig (2.12)
1
Jg = 58.53'.5’3'],-:5&1 (213)

where, s;; = 7;; — di;05/3 are the stress deviators. The two most widely uscd criteria in
metals are the Tresca and von Mises yield criterion (Hill, 1950). If o, o9 und o3 are the
principal stresses such that o, > o5 > 3, the Tresca yield criterion suggests yielding occurs

when the maximum shear stress, Tmaa, developed in the material reaches a critical value:

o, — 0 o
S (214)

The disadvantage of using Tresca criterion is that it requires a knowledge ol the maximum
and the minimum principal stresses. The von Mises yield criterion suggests that yielding
occurs when J, attains a critical value which can be expressed either in terms of the yield

stress in uni-axial tension, o, or the yield stress in shear, k:

1 o2
56‘7;5'8173' =k? = ? (2'15)

2.1.2 Stress-strain relation in the plastic range

To relate the stresses and strains during plastic deformation, it is convenient to introduce an
equivalent stress, ., and the equivalent plastic strain increment, e’

/3 :
O — w—S“S@,’ {2.16)

2
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> ~
de’ = ﬁ/gd(?%def’j (2.17)

The plastic stress-strain relation can be derived from a plastic polential, g(.75, J3), which

defines the ratios of components of the plastic strain increment by a flow rule:

ag
6G’§j

del; = dA (2.18)

where, dA is a positive scalar. For the plastic potential, g = Jo = 8585 /2, the associated

flow rule gives the increment of plastic strains:
def; — dAsy (2.19)

where, dX = 3&”/ 27.. Thus, the total sirain increment which has elastic and plastic com-

ponents can be expressed as:

P ¢ p
dey = dej; +deg;

1 1
= ({1 +v)doy ~ vidoy] + X (aij - gakkaa-j) (2.20)

The elastic increments depend only on the stress increments while the plastic strain incre-

ments depend on the entire stress-strain path,

2.1.3 Slip line fields

Metal forming processes such as rolling or drawing involve extensive plastic flow. In such
situations it is reasonable to neglect the clastic component of the total strain and assume
the material to be rigid perfectly-plastic. Rigidity implies zero elastic strains and perfect-
plasticity implies the absence of strain or work hardening. Slip line theory has been extens-

ively used for solving this class of problems under plane sfrain and planc stress conditions
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(Hill, 1950). More recently it has been used to describe the crack tip fields in elastic-plastic
fracture mechanics (Ricc, 1968; McCliatock, 1971).

The theory can be developed from the basic governing equalions: equilibrium equation,
plastic stress-sirain relations and the yield criterion in both plane strain and plane siress.
Right handed Cartesian axes «, y, 2, are used and intcrest is focussed on plane strain in the
z-direction which requires that €,, = ¢y, = €,, = 04, = 0,, = (, and that all the stress
and strain components are independent of z, implying (% = (. The cquilibrium equations

subsecquently reduce to:

Odge | O0uy
Tl By = 0 (2.21)
Bowy | Bow _ (2.22)

Oz Ay

Neglecting the elastic strain components, and using the plane strain condition def, = 0 in

the plastic stress-strain relations gives:

1
Opp = j(o‘"‘” + o) (2.23)

The out-of-plane siress, o,,, is necessarily a principal stress since oz, = @y, = 0. In
plane strain under incompressible deformation, the von Mises yield criterion for plane sirain

reduces to:
1 2 2 2
Z (U¢4. a‘![?}) - U:ny =k (2'24)

where, k& is the yicld stress in shear. The stress state in a maierial in yield can be described
graphically using Mohr’s circle as illustrated in Fig. 2.2. The orientation of the plane of
maximum principal stress , oy, is defincd by an angle taken anti-clockwise from x-axis, and

denoted ¢. There are two planes where the magnitude of shear stress 1s maximuin, the first
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plane is inclined at 45° clockwise from the the plane of maximum principal stress and the
second is at 90° anti-clockwise from the first shear plane. The orientation of the planes of
maximum and minimum shear stress define a set ol curvilinear axes denoted o — £ such that
the principal stresses lie in the first and third quadranis of the o — 5 axes. The slip lines
comprise two orthogonal families of curves whose tangent at every point coincides with the
oricntation of the planes of maximum shear. The curves along the first shear plane are termed

c-lines while in the second shear plane, 3-lines, as illustrated in Fig. 2.3.

Mohr’s circle (Fig. 2.2) allows the principal stresses to be expressed in terms of the mean

or hydrostatic stress, o, = %%

Oy =0m-t+£k
02 = O, (2.25)

O3 = 0m — k

Also,
%0, .
tan 2¢ = Ty (2.26)
(02 — Oyy)
tan 90’ . % = Tes) (2.27)

204y

where, §' is the angle made by the first shear line with the x-axis. The stresses expressed in

o — B axes adopt a simple form:

Caa = 040 = Oy (2.28)

Tug =Lk (2.29)
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The state of stress in Cartesian co-ordinates then can be expresscd in tcrms of two independ-

ent quantities, o, and § as:

Ogg = Om — K 8in 26’
Oyy = O + K sin 26/ (2.30)

Oxy = k 08 26"

In curvilinear (o — /) axes the equilibrium equations reduce to a simple form known as

Hencky’s equations (Hill, 1950

T,

T §' = C| along the « curve (2.31)
C;;'; + 6 = O, along the 3 curve (2.32)

Two common plane strain slip lines are fields illustrated in Fig. 2.4. Fig. 2.4(a) shows a
constant stress region comprising orthogonal straight lines. Along the straight « and 3 lines,
the angle (8") remains constani and Hencky’s equations indicate that o, remains constant,
representing a uniform siress ficld. Fig. 2.4(b) shows a cenlred fan, which has straight radial
lines and concentric circular arcs. The angle (§') along the radial lines is constant, but along
the arcs the angle varies linearly with the polar angle (). Therefore, oy, is constant along

the radial lines but varies lincarly with the distance along the aics.

While Hencky's equation ensure equilibrium in the curvilinear co-ordinates, the compat-

ibility of displacements is secured by Geiringer’s equations (Hill, 1950):

du —adf =10

dv — udd = 0 (2.33)

where u and v are the displacemenls along the o and 3 axes.
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2.2 Single paramecter fracture mechanics

Fracture mechanics is founded on the energetics of crack advance and the characterisation of
asymiptotic crack tip fields. In this section, the energy balance approach of Griffiths (1920)
and eigenvalue expansion method developed by Williams (1957) are introduced. This estab-
lishes a basis for fracture mechanics using the stress intensity factor (KX) for largely lincar
elastic materials. Finally, the development of the crack tip opening displacement and .J-

integral (J) is introduced to deal with non-linear response.
2.2.1 The energy criterion

The energetics of crack extension were developed by Griffiths (1920) who considered a
through thickness plane stress crack in an infinitely wide plate Fig. 2.5. Griffiths postulated
that the exiension of the crack is accompanicd by a reduction in the potential energy of the
system. The crack extends only when the decrease in potential energy due io crack growth
is greater or equal to the energy required to create the crack surfaces such that:

_dn 4w,
dA — dA

(2.34)
where, L[ is the potential energy of the system and W, is the work required o create new

surfaces. For the crack shown in Fig. 2.5 the potential energy is given by:

2428
m=1, - "2 (2.35)

where I7' = F for plane stress and for plane strain ' = F/(1 — »*) and I, is the potential

encrgy of the uncracked plate and 73 is the thickness of the plate.

W, = 4aB7, (2.36)
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vy, being the surface energy of the material. Substituting in Hy. 2.35 the fracture stress is

obtained as:

1
20y, | ?
oy = [ - 3} (2.37)

Irwin (1957) introduced the concept of the potential energy release rate, &, within the context

of energy balance approach:

g=-4 (2.38)

S dA

such that crack extends when
G>aG, (2.39)

The critical potential energy, (7, is a material property which defines the resistance to crack
propagation, or toughness, of the material. For a crack extending under fixed displacements
at the boundary the force-displacement diagram is shown in Fig. 2.6(b) where P and A
denote the force load and extension, The compliance of the system, C, is defined as:

C=% (2.40)

The change in potential encrgy of the system due to crack cxlension under fixed displacement
condition is given by:
1 1 1
dli = EPA - §P0A = ;):AdP (2.41)

dll AdP
=55 (2.42)

Using Eq. 2.40:

P AdC

Tl Tala (2.43)
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implying,

dil A2 dC P2d4cC
Rl e R i (2.44)

For a system subjected 1o a constant load, the force-displacement diagram is as shown in

Fig. 2.6(a). The change in polential energy due to crack extension under constant load is

given by:
1 1 . 1.

dll = 51-’Af - -él’A,, - P(Ap—Ay) = —§PdA (2.45)

dIl PdA

/] == 2.46

da P 2 da !P (2.46)
From Ig. 2.40:

dA dC

— =P— 2.4

da P da |P (247)
Substituting in Eq. 2.46:

dIl P2dcC

| = 2.48

da 1P 2 dalp (2.48)
Since compliance ' is a geometric property fl—f AT ‘g P Therefore, the rate of change

in potential cncrgy duc to crack extension is the same regardless of whether extension oc-
curs under constant load or displacement. The energy release rate can be determined from

compliance measurenents.

2.2.2 Asymptotic fields at the crack tip

Tn order to determine the stress field near the tip of a crack in a hornogeneous, isotrapic,

elastic solid Williams (1957) assumcd a variable separable form of the stress function as the
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solution of the bi-harmonic equation, Eq. 2.11. If Cartesian and polar co-ordinate systems aie
located at the crack tip such that the crack is along the negative x-axis as shown in Fig. 2.7,

the stress function is assumed to be of the form:
®(r,0) = r*1F(9) (2.49)

where, F(§) = [Asin(A + 1) + Bcos(A -+ 1)f + Csin{A — 1)¢ + D cos(A — 1)d] and A,
B, C and D are constants which depend on A and the type of loading. Traction free crack

flanks require the boundary conditions are:

am(m) =10
app(m) =0
(2.50)
oge{—m) =0
arp(—m) =0
These conditions give risc to a sct of 4 homogencous cquations:
sin A cos A sin A cos A 1
—sin A CosTA —sinwA COSTTA ]/;
b = 0(2.51)
(A+1)cosmh —(A+1)sinaAd (A—1)coswd —{(A—1)sinmA D

L (A Deosmd A+ Dysinad (A —1)eoswA (A 1)sinwA |

The condition for a non-trivial solution of these homogeneous equations gives rise to the

cigen-cquation:

sin 21 = 0 (2.52)
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A series of eigenvalues (\) are obtained from the solution of the eigen-equation. For finite
straint energy density around the crack tip only the positive roots arc considered such that

A=mn/2,n = 1,23 The crack tip stress field is thus an asymptotic cxpansion:
T4 = C’av'_%a@j (19) - Cb?'“b.ij (9) + C‘,,T%C,gj(a) 4o (251)

where, C,, Cy, C,, - - - are the intensities and ¢,;(@), 0;;(0), cy;(6) - - - angular functions of the
terms. Linear elastic fracture mechanics is based on the leading term in the cxpansion which
is singular in . Higher order terms are ignored as they either vanish or become finite at the
crack tip (r — 0). This allows the asymptotic stress field Lo be expressed as:

O—jj e

whete 7;;(f) are angular functions and X is the stress intensity factor which is a function
of the load and geometry. Three different modes of fracture: opening, shearing and tearing
denoted by mode I, mode I and mode ITT are shown in Fig. 2.8. In general a crack may be
subjected to a combination of these modes. The stress ficld is then a superposition of the

individual contribution from each type of loading:

K Ky S Krrr _in
Uw—\/m (6) 1 NG Ty (0)+‘/2ng3 (@)

(2.55)

In the present work, the interest is focused on mode I and mode II failure modes. The leading

terms of stresses under mixed mode (I/IT) loading are:

. <0 30
1 — sin Zsin 3’—0 sin 5 cos &
K; g 2 2 2
lO] == —:2“— cOSs 5
(s sinfcos¥  1+sin g sin 320-
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% sin g [2 + cos g cos %9] Co8 % ['l — 8in g sin %]
I
+ > (2.56)
V&AT o iy & o 38 in 0 0 neyp 39
COS 3 [1 — 8in g sin - sin 5 cos 3 cos 5

For a mode T crack, the stress intensity factor is related to the energy release rate by the
relation:

_K?

G=T%

(2.57)

where B! = F for planc stress and for plane strain E' = E/(1 — »*). A dimensional
argument shows thal the stress intensity factor can be expressed as a function of the remote

stress, o™, and a characteristic dimension of the cracked body such as the crack length, a:
K = K,0%°/wa (2.58)

where K, is a non-dimensional function of geometry. A wide range of stress intensity factors
have been determined and labulated by Rooke and Cartwright (1976) and Murakami (1987).
Since the stress intensity factor describes the stress field completely a failure is taken to occur

when:
K> K, (2.59)

where XK is the critical value of K. The toughness (J{,) decreases with increasing thickness
and saturates to a minimum for large thicknesses where piane sirain conditions apply (Irwin
el. al, 1958). The critical stress intensity factor under plane strain, #;., is referred to as the
fracture toughness of the material, For fetritic steels K, and the fracture mode depend on
temperature as shown qualitativcly in Fig. 2.9 (Rilchie et. al, 1973). At high temperatures

the failure occurs as a resuli of void growth and coalescence and modc of failure is ductile
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tearing. In ductile (earing there is stable crack growth and considerable plastic deformation.
For lower temperatures, the crack initially grows in a ductile manner followed by rapid crack
growth by cleavage failure. At low temperatures the mode of failure is cleavage. Cleavage
fracture is a low energy failure mode involving the separation of crystallographic plancs that
results in rapid transgranular crack growth, thus considered most dangerous mode of failure.
An important feature of cleavage [ailure is the scatter in the experimental data, which may be
explained by the fact that the micro-structure of real materials is not homogencous and that
microcracks or defects arc distributed throughout the material. A statistical model based on
a wcakest link approach has been reviewed later in Chapter 7 before developing the model
for materials which have graded properties. In Fig. 2.9 with increasing temperaturc the mode
of failure changes from cleavage to ductile tearing correspondingly the toughness increases,
implying increase in resistance to crack growth. At fow temperatures the plasticity is small

enough for the failure process to be described under assumption of linear elasticity (LEFM).

The plastic zone is a function of the applied load and yield stress. The Mises stress near
the crack tip has a square root singuarnity: omises ~ K /+/7. On the boundary of the plastic

ZONE T = Ty, Upmises = o, Where o, is the uniaxial yield stress, Implying:

I; ~ Go (2.60)
y
"\ 2
Ty ™~ (Ki_i) (2.61)

Linear elastic [racture mechanics can be applied usefully as long as crack lip plasticity is a
minor perturbation of a largely elastic stress field. This condition is cnsured il the plastic
zone size, ry, is very small compared with any of the specimen dimensions: crack length,
u, the width of the specimen, W, the remaining ligament, W — ¢ or the thickness B. The

requirement given by ASTM (1983) are:

I{Ic)z

4225(
O‘O
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2
B>2.5 (-Iff-*“:) (2.62)

= o

W > 5.0 ( -?9)2

To
where, o, is the uniaxial yield stress. Under conditions of appreciable crack tip plasticity
comparcd to the specimen dimensions as prescribed in Eq. 2.63, characterisation through the
stress intensity factor is no longer valid. This problem is addressed by elastic-plastic fracture
mechanics which extends the applicability of fracture mechanics by including a non-linear
response. The parameters which have been widely used to describe elastic-plastic crack tip

fields and toughness are the crack tip opening displacement (CTOD) and .J-integral.

2.2.3 Crack tip opening displacement: CTOD

Wells (1961) observed that plastic deformation caused the crack tip to biunt prior to fracture.
The degree of crack blunting prior {o crack exlension increased with the toughness of the
material. This led to a proposal that the crack tip opening could be used as a measure of
toughness. In the limit of small scale yielding the CTOD can be related to the stress intensity
factor. In plane stress conditions the plastic zone radius is given by:

2
ry = -2-1;; (-‘E’-) (2.63)

To

Irwin (1961) showed that crack tip plasticity makes the effective crack length a.7p = a + 7.
In this case the actual crack tip is located at a distance r,, distance behind the effective crack

tip and the displacement normal to the crack flanks can be approximated as:

_ (el [Ty _ 4 [T
iy = ( 2” )1{[ . = EI\( - (264)
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The crack tip opening displacement, 4, can be related to the stress intensity factor, i, and

energy release rate, G, as:

4K2 4G
6 = Juy, = = é = (2.65)

This rclation is based on a plane stress state and non-hardening plasticity, however, more

generally:

_ K? G
mo, ' mo,

(2.66)

where, m is a dimensionless constant that depends on the state of stress. [n numerical studies
the crack tip opening displacement is taken to be the vertical displacement between the points

where a 90 degree angle intercepts the crack flanks (Kumar et. al, 1981).

2.2.4 J-integral

For a crack in a non-linear elastic solid Rice (1968a) identified a path independent line in-

tegral referred as the J-integral:

ou ou.
= Vdy — | Py—o Y1 ds .67
J Wdy [Pl 5 + B, ay]de (2.67)

where T is an arbitrary contour surrounding the crack tip. In the first term, W = [ oy;dc;; is
the strain encrgy density. The second term in Eq. 2.67 is the work done by the traction at the
boundary, traclion and displacement vectors at the boundary being I” and u. ‘The J-integral
is path independent and under non-linear elastic conditions il quantifies the potential energy

release rate as the crack advances:

J (2.68)
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where II is the potential energy and A is the crack area. Consider a crack in a non-linear

elastic solid such that the stress-strain relation is described by the Ramberg-Osgood equation:
. n
= ta (3) (2.69)

where, ¢,, 0, and « are material constants and 7. is the strain hardening exponent. The first
term in Eq. 2.69 is the elastic component of the total strain. At the crack tip the plastic strains
are much larger compared to the elastic strains. Ignoring the elastic component the stress-
strain reduces the relation to a power law: €/¢, = w(o/0,)". Hutchinson (1968a) and Rice
and Rosengren (1968) (HRR henceforth) demonstrate that the leading term of the agymptotic

stress and strain fields for a crack in a non-linear elastic solid are characterised through J:

J Tiw
= 00 || 3500, .
75 =0 [eﬂrfuafnr} %;(0,m) .70)
g0 J 1¥n
s = - (0, m .
€ E LOJOCHIHT] (0 m) 2.71)

where, I, is an integration constant that depends on n and 64;(8,n) and €;;(¢,n) are non-
dimensional angular functions iabulated by Shih (1983). The J-integral and the crack tip

opening are uniquely related to each other by the relation (Shih, 1981):

dnJ

Ta

§ =

(2.72)

where, d,, is a constant which has a strong dependence on the strain hardening exponent and it
also depends weakly on cio,/ F. Both .J and CTOD have been used widely to characterise the
stress field in elastic-plastic fracture mechanics. The HRR field is a small geometry change
solution which does not take into account the effcets of finitc geometry changes associated
with crack tip blunting. McMeeking and Parks (1979) established that the blunting effect

vanishes for distances greater than 2. Thus, at distances when 1 < i‘—‘r use of the HRR
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field is inaccurate, The ability of a single parameter, such as ./, 6 or K, to characterise the
elastic-plastic crack tip field is limited. McClintock (1968) showed that cracks in different
geometries under mode I loading can have completely different plane strain slip line fields.
Figs. 2.10-2.13 show the modc I slip line fields ol 4 centre-cracked panel, deep and shallow
cracked bars and Prandil field for deeply double edge cracked bar. These fields show that
the slip line fields are not unique and depend on geometry as well requiring two parameter
representation. Shih and German (1981) proposed a criterion for identifying ./-dominant
fields: the stress field at a distance ro,,/J = 2 ahead of a crack tip must be within 10 percent
of the HRR ficld. J-dominance can be expressced through a controlling parameter ¢ that has

dimensions of length such that for single parameter representation:

o> f:] (2.73)

where, i 18 2 non-dimensional constant, For deeply cracked plane strain centre cracked pan-
els, the controlling parameter is the width of the uncracked ligament and 4 is approximately
200, In bars with deeply cracked cdge, the controlling parameter is again the uncracked lig-
ament width and g = 25. Tn the case of shallow edge cracked bars the controlling parameter
is the crack length and J-dominance is valid when a > 200 J/0,. To incorporate the effect
of geometry in the local stress field iwo paramcter fracture mechanics is required. The effect
of gcometry is expressed through the T-stress of the elastic field or the ()-parameter of the

elastic-plastic field.

2.3 'Two parameter fracture mechanics

2.3.1 T'-stress

The second order term in Williams expansion for the homogeneous crack lip field is inde-

pendent of distance and corresponds to a uni-axial stress, parallel to the crack flanks such
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that in the Cartesian co-ordinates the field can be expressed as:

lo] = —Z5=l5] @ +T

K 1
00

U ] + higher order terms 2.74)
where, T" has the dimensions of stress and depends on the remote load and geometry. The
other higher order terms in the Williams expansion tend to zero at the crack tip. On the crack
flanks, § = = planc, the angular function ¢y; (47) = 0, which allows the 7'-stress to be

evaluated directly from finite element analysis as:
T=limon(rd=m) (2.75)

The 7"-stress can also be expressed in terms of a bi-axiality paramecter § = T'v/ma/K. The
T-stress has been determined for a range of geometries and tabulated by leevers and Radon
(1983), Sham (1991), Sherry et. al (1995). Latsson and Carlsson (1975) demonstrated that
the T'-stress affects the shape and size of plastic zone that develops near the crack tip, as
illustrated in Fig. 2.14 following Du and Haucock (1991). Compressive T-siresses increase
the plastic zone size and swing the plastic zone forward while tensile T'-stresses decrease the
plastic zone size and swing it backwards Lo the flanks. Bilby ct. al (1986) and Betegén and
Hancock (1991) using finite element analysis showed the effect of the non-singular term on
the elastic-plastic crack tip field lor a range of finite specimens. For negative 7, the crack
tip stresses are less than the IIRR solution which is within 5 percent of small scale yielding
(1' = 0), necessitating the introduction of a sccond parameter in the stress equation which
depends on the 1" of the outer field. On the plane abead of the crack tip the hoop stress is

(Betegdn and Hancock, 1991):

v T r, T = T\ 2 T .
0'00({: ) . 0-00(/, 0) 4+ 0.61 (I_) — 0.4 (—) n = 13’ — _< 0 (2.76)
To Oa To U Ta
T =10 1 s 2 1
age(r, T) _ oe(r, ) +0.6 (M) —0.75 (_) 7= 00, — < 0 (2.77)
0'0 O‘U 00 G-o s]
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For positive T' the stresses approach the HRR field and a single parameter characterisation is
valid, but for negative 7' a two parameier representation is required, to take into account the
associaied loss of constraint. Du and Hancock (1991) identified that in the asymptotic slip
line field plasticity encompasses the crack tip only under conditions in which 1” is positive.
When T is negative, there is incomplete plasticity at the crack tip as an elastic wedge appears

at the crack flank and there is loss of constraint ahead of the crack tip.

2.3.2 (-parameter

In the non-lincar elastic field the leading term in the stress expansion is the HRR ficld. O’-

Dowd and Shih (1991) express the higher order solution in the form:

bl () "l (0,m) 4+ Q (722) o0 (0,m] + -+ 278)

T, T J

For low hardening rates, when ¢ — 0, Eq. 2.78 can be simplified as:

[o] _ o] i l 10 ] (2.79)

Ty To 0 1

where [07%f] is taken as the reference field, HRR field or small scale yielding, Comparing
Eqs. 2.76-2.77, the second order term of the outer elastic feld: the T'-stress and the sccond

order term of the elastic-plastic field at the crack tip ¢J-parameter may be related to each

other as:
T 2
Q = 0.64 ( ) 0.4 (T—) n =13, T <0 (2.80)
O—U O—O O—()
T TH\? T
Q=06 ( ) 075 (—) n—=o0, <0 (2.81)
0—0 OIO O—CJ

the implication being that in contained yielding conditions either 7' or ¢} can be used to

Characterise the constraint effects on the elastic-plastic crack tip fields.
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233 J - Q or 1 toughness locus

Classical fracture mechanics predicts failure on the assumption that the fracture toughness
is a material constant that is indepcndent of geometry. The assumption that failure can be
characterised by a single parameter is however valid only in a limited range of geometries
and loadings. For wider applicability of elastic-plastic fracture mechanics it is necessary to
include the constraint effects by expressing the toughness as a function of the ()-parameter

of T'-stress:
Jo=J{QorT) (2.82)

Thus, fracture toughness is dependent on the geometry through the second order term.
Betegén and Hancock (1991) and Sumpter and Hancock (1994) examined different geo-
metrics and determined the critical value of toughness, .J,., for cleavage failure at different
levels of constraint. Centre cracked pancls and shallow edge cracked bars that develop the
most negative T'-stresses were lougher than deeply cracked edge bars which develop positive
T'-stress. Figs. 2.15 shows the J.-T locus determined by Sumpter (1993) and the correspond-
ing J.-Q locus is shown in Fig. 2.16. The figures indicate that the toughness (\/.) increases
as € or 1" become more negative. Hancock, Reuter and Parks (1993) examined stable ductile
tearing in A710 pressure vessel steel, The measured CTOD is shown in Fig. 2.17 as a func-
tion of 7" for crack cxtensions Ag= 0, 200 um and 400 gm. Initiation toughness was taken
to be the critical value of J tfrom Ag= 200 gm. For geomelries with compressive T'-stress
(centre cracked panel), the initiation toughness was approximately 4 tites greater than that
of deeply cracked bend bars and compact tension specimens. The effect of constraint was

even more significant for higher crack extensions.

Loss of constraint results in increased toughness for both cleavage failure and ductile
tearing while highly constrained geometries exhibit constraint independent toughness. The

toughness locus that represents the toughness as a function of constraint for a material is uscd
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to predict failure by comparing the diiving force curve with the toughness locus. Failure is

predicted to occur when:

JQorT) > J(Qor 1) (2.83)
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Fig 2.1: Stress components referced to Cartesian coordinates.
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Fig 2.2: Mohr’s circle.
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Fig 2.3: Direction of planes.

Fig 2.4: Constant stress and centred fan slip lines.
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Fig 2.6: Force-displacement diagrams.
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Tig 2.7: Crack in a homogeneous sokid.

Mode I Mode O Mode 111

Fig 2.8: Fracture modes: Mude 1, Mode 11 and Mode 1L
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Fig 2.9: Dependence of fracture toughness, K., on temperaturc.

Fig 2.10: "L'he skip line field for a centre-cracked tension panel.
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Fig 2.11: The slip line field for deep and shallow-cracked bars in bending after Ewing (1968) and
Green (1953).
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Fig 2.12: Prandt] field for a deeply double edge cracked bar
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Fig 2.13: Slip line ficld for a shallow double edge cracked bar, after Ewing and Hill (1967)
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Fig 2.14: The effect of the T-stress on the plastic zone shape and size after Du and ITancock (1991).
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Fig 2.15: Critical value of J as a function of T'/o, for 3PB and CCT specimens, low-grade mild stecl
at -50°C, Sumpter (1993)
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Fig 2.16: Critical value of J as a function of Q-parameter for 3PB and CCT specimens, low-grade
mild steel at -50°C, Sumpter and Hancock (1994)
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Fig 2.17: The CTOD as a function of T at crack extensions of 0, 200 and 400 gm, after Hancock,
Reuter and Parks (1991).




CHAPTER 3 36

Fracture Mechanics of Mismatched
Bi-Material Systems

The structural integrity of bi-material systems such as thermal barrier coatings, ceramic lam-
inates or cladding in pressurc vessels may be compromised by cracks in the interface or
which terminale at the interface between the constituting solids (Kokini and Takeuchi, 1994;
He et. al, 1993; Bvans and Marshall, 1989). Interest is largely focused on the factors that
determine the crack tip field with the objective of improving the performance and reliability
of bi-material systems. This chapter reviews the literature on: a crack located in a sharp
interface across which material propertics change abruptly, a crack located in an interfacial
zone of graded properties between two dissimilar solids, and a crack normal to the interface
between mismatched solids. For each case, the results obtained from linear elastic fracture

mechanics are presented followed by solutions for small scale yielding.

3.1 Interface cracks

In one of the first studies of cracks in dissimilar matcrials Williams {1959) considered the
plane problem of two isofropic, homogencous, clastic dissimilar materials with a semij-
infinite crack located in the interface as shown in Fig. 3.1. The crack flanks were taken
to be traction free. Cartesian (z,y) and cylindrical (r, §) coordinate systems are used, such
that the origins lie at the crack tip and the crack is located along the negative z-axis (€ = 7).
Material 1 is the solid above the interface (3 > 0) and material 2 (y < 0) below. E®), ,)
and G®) (k = 1,2) are the Young’s moduli, Poisson’s ratios and the shear moduli of the two
materials. Let 5% = 3 — 40®) for plane strain and x*) = (3 — v®) /(1 + v®) for plane

stress. In studies of mismatched systems, the Dundurs parameters (Dundurs , 1969) « and 3
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are widely used:

. G(zl-)(!{’(Q} | J_) - 0(93 (n(}-.] 4_ 1) " ]
GO (@ + 1) + GO (MW + 1) 3.1)

GE (@ — 1) — GO (xM - 1)
T GOD | 1) GE (M 1)

(3.2)

Using eigenvalue expansions Williams (1959) established the singularity of the leading term,
starting with stress functions, ®*)(r, §), for both materials that satisfy the equilibrium and

compatibility equations:
a®(r, 9) = ' F®) (g) (3.3)

wherc F5)(§) = [ A® gin(A + 1) + B® cos(A + 1)8 - C® sin(\ — 1)@ + D® cos( X — 1)6}
and A® B® C®) and D®) are constants, The application of boundary conditions corres-
ponding to traction free crack faces combincd with traction and displacement continuity at

the intetface gives rise to a set of eight equations:

afy (r} =0
B (x) =0
Uoo ( m) =0
o (~m) = 0

osy (0) = o8y (0) (3.4)
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71§ (0) = 033 (0)
w1 (0) = w{P(0)

uy? (0) = uiP (0)

For non-trivial solutions of these equation the following characteristic equation nceds to be

satistied:

29(1 — C(Z)) _____ 2(1 _ C-(ZI.)) . (Q _ '.I.) b
O | 00 - oy e coy | T 3.5)

where, (%) = »*1 /(1 4 »®)}, An infinite number of A values satisfy the characteristic
equation. The dominant complex eigenvalue is A = 1/2 - te. Where ¢ is a function of

Dundur’s parameter, /3:

€= iﬂ_ In (1 —f ) ' (3.6)

For any plane problem, in which the crack flanks of the interface crack arc traction free, the

dominant stress singularity is of the form:

o] = \721—? (Re (K1) [67(0, )] + Tm (Kr¥) [67 (8, )] ) (3.7)

whete 1 =/ 1and K = K, + ik, is the complex stress intensity factor. Quantitatively,
K;(i = 1,2) depend on the loading and geomeiry. The stresses on the interface direcily

ahead of crack tip are given by:

' K +iK,)
Tyy -+ Way = %7’“ (3.8)
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where

ic iclny

T =¢ = cos(elnr) + isin(elnv) (3.9)

Substituting in Eq. 3.8,

(K1 + i) (cos(elnr) +isin{cIny))

Oyy + 10y = e (3.10)
Implying,
S Ky cos(elnr) z—ﬁi{g sin(elnr) 3.11)
and
Kyeos(elnr) + Ky sin(elnr)
gy = e (3.12)

Both o, and oy, dirccily ahead of the crack depend on X and K5 in an inherently coupled

manner. The singular behaviour of the stresscs retains the square root singularity of homo-

geneous solids. However, the stresses possess a pronounced oscillatory nature of the type:
sin

o~r73 or (clor) (3.13)
o8

Using the central features ol the asymptotic ficld ol interface cracks established by the ei-
genfunction expansion in the complex variable approach, Rice and Sih (1965) developed
complete solutions for some specific problems. For the problem of a central crack of length
2a, lying in the interface between (wo semi-infinite blocks subject to yemote stresses ag, and

Ty the complex stress intensity factor al the vight tip is:

Ky +iKy = (o +iog)(1 + 2ie)y/na(2a) e

= Vra(aly 4+ iog) (1 + 2ic)e M (3.14)

= maloy, +ioy )(1+ 2ic)(cos(cln 2a) ~ isin(e1ln 2a))

&y
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Implying,
Jia — (o5 — 2e037) cos(eIn 2a) + (og; + 2¢apy) sineln 2a) (3.15)
Ky oo o ; 00 ). 00 o E :
Tra = (o5 -+ 26055 cos(cln 2a) — (opy — 2e0q,) sin(eln 2a) (3.16)

In bi-material problems, in the expressions for K and K both the symmeiric and skew-
symmetric loadings are inherently coupled. As a result K and thus o, directly ahead of
crack is non-zero even when the remote loading is symmetric (og;, = 0). The energy release

rate for crack advance in the interface is:

1 — 3%

G =1 = (K2 + K2) (3.17)
where
1 1 1 1
E. 2 ('Etii }_77(2)') (318)

and B®) = &} /(1 (®))2) in plane stain and 7; — J% in plane stress. For incompressible
solids (V) = v = 0.5), Dundur’s parameter /3 = 0 which implies a bi-material constant
¢ = (L. As a resull, the siresscs losc the oscillatory nature and the normal and shear stresscs

are decoupled such that the stresses ahead of the crack become:

1 -
(Oyy> Ouy) = (KbKE)"“\/—é’ﬁ (3.19)

The intcrface siress intensity factors Ky and K5 now play similar roles to their counterparts
for a crack in a homogeneous isotropic solid. However, for non-zero 3, normal and shear
components remain inherently coupled. The mode mixity can be generalised following Rice
(1988) by introducing a phase angle parameter, :

_; [ Im(KT*) 'z
b= tan e — taqn i [ ZE¥ -
¥ = tan (RG(KZ;E) ) tan (%‘)mz (3.20)
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where K is the complex stress intensity factor and [ is a reference length. England (1965)
noted that for a crack with traction free crack flanks the solutions of the displacements of
the crack flanks oscillate and predict inter-penetration, The crack flank displacements, §; =

ug”(r, 6=m) - 4},§2)(r’6 = m),i=1,2, are:

8(1{1 -+ 'I,I{g \/
0o + 61 = 3.21
2 40 = " EL(L + Ze) cosh(me) e (-21)

Inter-penetration is however physically impossible leading Comninou (1977,1978) to pro-
pose a contact zone model which allowed closure of the crack flanks. On (his basis the

leading ierm solution of the crack tip field becomes:

Crr 51+ B)sin§ — (3— B)sin ¥

Ta ¢ — Rir 31+ 3)sin g + (3 — ) sin % (3.22)
44/2r -

Org (1+ 8)cos§ + (3 — B)cos &

where K§; is the stress intensity factor for the interface crack tip field given [rictionless
contact of the crack flanks. On the plane ahead of the crack tip (¢ = 0) and the crack flanks
both the radial siress and the hoop stress are zero while the shear stress is singular. As aresult
the crack tip field is mode II like. Comninou (1978) concluded that the oscillation zone was
very small compared to the fracture process zone or the plastic zone in the case of tensile
loading but may be significant for predominantly shear loading situations. Any plasticity at
the crack tip would further reduce the etfect of the oscillation zone which aliows the use of

model with traction free crack flanks for predominantly remote tensile loadings.

3.1.1 Crack paths in homogeneous and bi-material systems

A crack in a homogeneous solid subject to mode I loading continues to propagatc in the

plane of the initial crack. However, under mixed mode loading, in brittle fracture of steels,
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poly-crystalline alumina the crack propagates at an angle to the initial crack plane (Mac-
cagno and Knott, 1991; Surcsh and Shih, 1991). The criteria used to predict the deviation in
crack path due to mixed mode loading are based on the dircetion of maximum hoop stress
{Erdogan and Sih, 1963), the direction of maximuim energy release rate (Cotterell, 1965} and
direction ol vanishing K7 stress inlensity factor (Cotterell and Rice, 1980). The kink direc-
tions predicted by these crilerions are in close agreement for kink angles less than 40°. To
determine the kink angle using the criterion based on vanishing &7y stress intensity factor an
infinitesimal crack at an angle, ¢, clockwise from the initial plane is considered. The mode
I, mode II stress intensily factors in terms of the stress intensity factors of the initial crack

can be expressed in the form:

K = Cn(8) K + Crad) Ky (3.23)

Kir = Ca(o)K; + Co(d) Ky (3.24)

where, C}; are coefficients determined by a method described by Lo (1978). The cxtension

angle is the angle for which K7, vanishes.

For an interface crack, the stress intensity [actors of the kinked crack depends on the kink
length (Aa). He and ITutchinson (1989) using a dimensional argument relate the complex
stress intensity factor of the kinked crack, A™, to the interface crack complex stress intensity

factor, ¥, as:
K* = c(p, o, 8) K (Aa)* + d((¢, o, B) K (Aa)™ (3:25)

where functions ¢ and < are complex valued. Since the stress intensity factor, K, is a strong
function of the kink length, the kink length is viewed as a bi-material property. Kinking is
favoured when the ratio between the energy release rate for the crack to kink into one of
the malterials and the rate for crack to extend in the interface is greater than the ratio of the

toughncss between the material and the interface.
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3.1.2 Elastic-plastic interfacial crack tip fields

Zywicz and Parks (1989, 1992) and Shih and co-workers (1988,1991) have examined efastic-
plastic interfacial crack tip fields for (wo elastically mismatched solids using the singular
term of the Williams expansion to define the outer elastic field. Zywicz and Parks (1989)

cxpressed their results in terms of a load phasc angle, (.

(3.26)

KT
G = (K +eln(rp) = £K~1—eln[ s }

24 cosh? (mc)
where, /I is the phase angle of the complex siress intensity factor (/K = tan™1(K,/K>))
and rp is the approximate plastic zone radius. The near-tip slip linc ficlds are shown as a
function of the loading phase parameter, ¢, for an elastic-perfectly plastic material bonded

to an elastic or rigid substrate in Fig. 3.2.

For ¢, < 0, fully plastic tields which consist of a fan and (quasi-) constant state sectors
encompass the crack tip. In the (quasi-) constant state sectors the slip lines have small but
finite curvatures which allow modest stress gradients. However, over small radial distances
the angular stress distribution in conventional constant state seciors accurately represents the
stress states within the (quasi-) constant state sectors, In the range —30° < {, < 0 the unique
sectoral composition gives rise to an extremely high interfacial triaxiality (o4, /30, = 3.29),
which is extremely conducive to crack extension by ductile void nucleation, growth and
coalescence as well as cleavage fracture. The slip line fields for ¢, > 0 are composed ol both

elastic and plastic sectors and exhibit modest interface normal tractions.

Extending these investigations based on the leading singular term of the Williams cx-
pansion, Xim et. al (1997) considered the effect of the second order term, T-siress, on the
interfacial crack tip fields. The effect of plastic mismatch (M = of? /a{") and T-stress
(r = T/o(") is illustrated by the slip line fields shown in Fig. 3.3 for clastically matched but

plastically mismatched solids.
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Starting with plastically matched solids and looking at the upper half (0 > 8 > ), the
slip line field consists of an clastic scctor at the flank (~ 50°) and a constant stress sector
ahead of the crack tip making an angle, 4, = 45°, as shown in the figure. As the plastic
mismaich is increased, ¥, decreases till it becomes zero for A > 1.8, however, the elastic
sector remains unchanged. As a result, for high plastic mismatches the slip line field is
composed of an elastic sector at the flank followed by a centred fan sector extending up to
the interface such that o,,(0) = 3.206§" and 0,4(0) = o{/+/3. The phasc angle, 4, is

approximated in terms of the plastic mismatch as:

—0.3147(M — 1)+ 0.251; forl < M < 1.8

(M) = 3.27)
0 for1.8 < M

The stresses at the interface can be expressed in terms of 15, and thus of M as:

1 (1)
U?rb(ﬂ) C (1 + —3?( - 2’(!”1) %

9 V3
® all)
a00{0) = o (0) + cos (5 - 2@[);) i (3.28)

For homogeneous systems (M = 1), 0,,,(0) = 2.290%9, 04 (0) = 2.87c¢{V and 0,4(0) =
0. While for all plastic strength mismatches greater than 1.8, &,,, (0) = 3.206{2 and 0,4(0) =
o$!) /1/3. Increasing the plastic mismatch leads to higher crack tip constraint and mode mix-
ities. Fig. 3.3 also shows the effect of the T-stress for the limiting case of plastic mismatch,
M = oc. Under positive T'-stress plasticity fully sutrounds the crack tip and the fan extends

to the interface. The stresses in this field are the highest possible for interfacial cracks in
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bimaterial systems:

Om = Ogg = Opr = 3.300Y (3.29)
(1)
Grp = i/ﬁ (3.30)

The effect of negative T-stresses (1 = 7'/a{l) on the mean siress and hoop siress ahead of

crack ¢an be summarised as:
om(0) = (3.20 + 0.567 ~ 1.9777) 0" (3.31)
0g0(0) = (3.20 -1 0.297 — 1.6077) oV (3.32)

Kim et. al (1997) also show the effect of efastic mismatch on interfacial crack tip constraint.
For an interface crack between clastically mismatched solids the first two terms of the stress

ficld can be written as:

rk) K N(‘L)

= Taar0u +TWE6: (=1, 2) (3.33)
277

where, T = (1 | )7 and 7@ = (1 — )T,  being the Dundur’s parameter defined in
Eq. 3.1. Fig. 3.4 shows that elastic mismatch through « significanily affects the interfacial
crack tip constraint, ¢,,{(}}, al compressive 1'-stress. The effect is most pronounced for
positive values of o. For tensile T'-stresses, the crack tip is fully surrounded by plasticity and

the effect of clastic mismatch disappears.

Sham el. al (1999) considercd an interface crack between yield strength mismatched
solids under general mixed mode loadings. The asymptotic crack tip stress fields arc char-
acterised by the strength mismaich (i) and a phase angle, ¢, such that ogpsin ¢(@ = 0) =

a9 (8 = 0) cos ¢. The slip line fields for strength mismatches iy = 1.25 and 1.5 are drawn in
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Fig. 3.5. Depending on the mode mixity of the remote load and the plastic mismatch, a set of
distinct configurations denoted B, C, E, G are obtained. A critical mismatch y., = 1.408 is
identified that classifics crack tip fields into sub-critical, critical and super critical when loc-
ally near mode I conditions apply. The near mode 1 field saturates at a phase angle ¢,q; == 9.9
when the configuration in the softer material consists of a 46°-constant siress sector on the
crack flank leading to a 135° centred fan sector. Saturation implies that the stress field in the
soff material is independent of yield strength mismaich when y > y,,. Strength mismatched
systems were also investigated in hardening materials (Li, 1998). The plane of maximum
principal stress is located in the harder material and rotates as the mode II component in-
creases. On these planes the stress profiles are parallel and deviatorically similar and difter
only by a hydrostatic term. The constraint parameter in the plane of maximum principal
stress, @ = (O — 0557 /6,, is shown in Fig. 3.6 to decrease with increasing mode II

component.

Burstow et. al (1998) studied & two-material idealisation of welded joints conlaining
cracks by considering the crack to be centrally located within the weld material and parallel
to the interface with the base material. The materials were elastically matched but differed
in their plastic strength (0 wetd, Ty pose)- The obtained crack tip siress ficlds were symmetric
about the crack planc. Sclf similarity of stress fields at the same leve] of plastic mismatch
was obtained by identifying a loading parameter, J/{hoywmeaq), Which describes the size of
plastic zonc relative to the width of the weld material, h. Crack tip constraint was identified
io depend on both the plastic mismatch between the two materials as well as the 7T'-stress
of the outer field. Over-matching (Oymetd > 0y pase) resulled in loss of constraint while
under-matching (o weiq < Ty pase) increased constraint. The effect of T-stress was similar to
the elfect of the 7'-stress term in the homogencous casc: compressive 1-stress lowered the

constraint while tensile T-stresses raised the level of constlraini till it salurated. However, in

under-matched specimens the T-stress had little or no effect.
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3.1.3 Crack in a zone of graded properties

The bi-material crack tip fields discussed so far consider an interface which features u step
change in material propertics across a sharply defined interface. However, interfaces in struc-
tures such as welded joints and functionally graded sysiems, the variation in properties from
one material to the other material is gradual. Work addressing the problem of a crack in a
zone of graded yield strength is presented in chapter 6. The results of which can also be ap-
plied to a crack in a homogeneous solid under a non-uniform lemperaiurc ficld. Amongst the
first studies to gain insight into the effect of crack like defects within a zone of graded prop-
erlies, Delalc and Erdogan (1983) studied a crack located in a solid with a spatial variation
of elastic modulus. If the properties arc considered to be piecewise continuous the crack fip

singularity is identical to that of a homogeneous crack, the near crack-tip field being of the

form:
K K . -
0ij = \/ﬁ i7(0) + \/%féf(ﬁ) (3.34)

where, K; and K, are the stress intensity factors which depend on the remote loading
and the clastic gradient, and f(#) and f{/(6) are the universal angular functions. Unlike
homogeneous systems, both K and K;; depend on the remote opening and shearing loads,

implying that even for a remote pure {ensile load the local field is mixed mode.

Gu and Asaro (1997) studied small crack detlection in brittle functionally graded mater-
ials. A crack located centrally in a functionally graded inter-layer between two clastically
dissimilar solids is considered. Under the assumption of local homogeneity the toughness is
taken to be independent of direction; as a result, the gradicnt in elastic modulus only affects
the failure mode through the crack tip mixity and the crack path is predicted along the direc-
tion of maximum energy release rate or the direction which gives a vanishing mode 11 stress
intensity factor. Under remote mode I load the crack is predicted to kink towards the elast-

ically compliant material. Experiments by Rousseau and Tippur (2000) on compositionally
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graded particulate composites consisting of glass spheres dispersed in an epoxy matrix veri-
fied that a crack normal to the elastic gradient subjected to mode I loading cxhibits a mixed
mode failure. The mixity caused the crack to propagate at an angle to the initial direction
towards the less stiff solid. The assumption of local homogeneity is true if fracture initiates
at the crack tip, however, inhomogeneity in matcrial may lead to fracturc which is initiated
at a region which differs in strength from the crack tip. Becker et. al (2002) wllow a dis-
tributed strength described by Weibull statistics in their recent analyses on fracture initiation
necar a crack tip in functionally graded clastic matcrials. The probability of failure based on
a weakest [ink model was assumed to be of the form:

P=1-exp [— IR (i)} (3.35)

b O,

where the Weibull parameters, o, and m are material constants, V, is the reference volume
and V; is the volume subject to stress o; within the stressed zone. Gradients in the Weibull
scaling stress, o,, were found to lead to dramatic decrease in initiation toughness and the
crack was predicted o grow towards the material of lower Weibull scaling stress. In func-
tionally graded systems in which the clastic modulus has a gradient in the direction normal
to the crack planc, the Weibull modulus, m, plays a significant role. At high m when the
strength has less scatter, the average crack initiation angle is the same as the crack in a homo-
geneous solid having the same remote phase angle, ¥ = tan—' K, /K, implying initiation
in the material of lower elastic moduli which agrees with the predictions of Gu and Asaro
(1997). However, in case of lower m, the far field stresses drive the crack back towards the
clastically stiffer material. Thus, at high valucs of m, the near crack tip stress field dominates

the failure probabilities while for lower m the far field stresses also become significant.

Rashid and Tvergaard (2003) analyse the effect of a gradient in plastic properties com-
putationally using exclusion region theory. They consider a crack in a thin layer between

two elastically similar but plastically dissimilar solids such that the yield strength of the
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inter-laycr is a linear interpolation. The fracture criterion is specified such that a separation
function, ©, does not exceed a ctitical value ®.. The advance of the crack occurs in the
direction which maximises the separation function. For nine ditferent locations within the
interlayer the crack grows towards the plastically stronger material. The energy dissipation
per unit arca for a crack in a graded layer is even higher than for a crack in a homogencous
solid of the more ductile material. The energy dissipation profile remains well above that
for a homogeneous malerial until large crack extensions have occurred such that the crack is

well within the more brittlc material.

The present work is motivated to study the effect of a gradient in plastic strength on the
asymptotic field of a crack located in an interfacial zone between elastically matched but
plastically different solids. The discussion is then developed using a slatistical approach to
find the effect of a gradient in fracture toughness and plastic strength on the failure probab-

ilities and crack extension direction.

3.2 Crack normal to an interface

The first studies of a crack normal to an interface between two homogencous, isolropic,
elastically mismatched solids (Zak and Williams, 1963; Cook and Erdogan, 1972) focused
on the asymptotic elastic field in mode [ loading. Using cylindrical co~ordinates (v, &) centred

at the crack tip, the stress field, o5, can be expressed in the form:
o3 (r,0) = K(2nr)}*~15;;(0) (3.36)

The strength of the singularity is defincd by the exponent (A — 1) such that the well known

r=3 singularity is recovered for elastically matched solids. A can be determined from the

characteristic equation:

B o fe BN a0
cos(mA) — 2 (—«1 — ,6) A%+ T 0 (3.37)
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where o and § are the Dundur’s parameters. The amplitude of the singularity is described by
a stress intensity factor, &, and the angular variation of stress is given by universal angular
functions, d;;(f), which depend on the clastic mismatch. The present work determines the
second order term in the expansion of the crack tip elastic field, and considers its significance.

The details of the determination of the elastic field are developed in Chapter 4.

In a study of the general non-linear elastic problern Chao et al. (1993) the stress-strain
relation is taken to be of the form:

€ _ . (0) v (3.38)

€ oy

where ¢, o, and « are material constants. The stresses are expressed in a separable form as a

product of a power of the radial distunce and a function of the polar angle, ¢:
ol = 17 #(0) (3:39)

where the superscript £ = 1, 2 denotes the two materials. The crack was located in material
2 and the material ahead of crack was taken as material 1. The discussion is largely focused
on matcrials with the same hardening exponent. Eigenvalues and angular functions were
determined for a range of B, delined as the ratio of the material constants: O',»(l)/ J,(g) and
the hardening exponent IV as shown in Fig. 3.7. A becomes less singular for increasing 3.,
and very weakly dependent on 8., when 8., > 3. The stress ficlds arc most singular for
N =1 and become Icss singular as N decreases. In the limit as N — 0, the materials tend
towards the ideally plastic response and the stress singularity vanishes. When N > N{2)
the singularity depends only on N2, The effect of non-linear behaviour on the leading
singularity was identified such that the results of Cook and Erdogan (1972) were recovered
in the limit ot linear behaviour. Although non-linear elasticily indicates the effect of crack
tip plasiicity, such solutions do not involve a yield criterion. As non-linear behaviour is

taken to occur at all angles around the crack tip, non-linear elastic solutions are equivalent to
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assuming that deformation plasticity occurs at all angles around the tip. As a result, the crack

tip stress field depends only on plastic properties and there is no effect of elastic mismatch.

3.2.1 Elastic-plastic solutions for a crack normal to an interface

Sugimura et. al (1995) consider a crack approaching an interface between elastically similar
but plasticafly dissimilar materials. The crack lip is at a distance, £, from the interface. One
material is taken to be fully elastic while the other is strain hardening. The J- integral is
path independent in the two domains: in the crack tip region 7 < L and in ibe remote region
r > R,, R, being the plastic zone radius. Jy;, is calculated along any contour lying within
the crack tip region and J,,, is calculated for a remote contour as indicated in Fig, 3.8, When
the crack is within the plastically weaker material and approaches the bi-material interface,
the cffcctive J-integral at the crack tip is smaller than the remotely applied J. When the
crack approaches the interface from the clastic solid, the near tip J is higher than the applied
J indicating amplification of the driving force. However, this approach is not valid for a

crack tip that is very near the interface (7. — 0) as Jy, does nol remain path-independent.

He et. al (1992) and Slahle and Shih (1992) obtain the nature of the crack tip fields for a
crack normal to the interface between elastically and plastically mismatched solids using an
elastic perfectly-plastic response, which allows the use of slip linc theory (Hill, 1950). The
elastic singular field was used as the houndary condition in a boundary layer formulation
to obtain small scale yielding asymptotic solutions. In the limit of plastic mismatch when
one solid is elastic and the other is elastic perfectly-plastic, the stip line fields are shown in
Fig. 3.9. The crack may be located in either solid giving rise to two configurations. When the
crack is located in the clastic perfectly-plastic solid, the asymptotic stresses in the yielded

material are:

opr = k(1 + cos 28)
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oss = k(1 — cos 26) (Bn/a< 0 <) (3.40)

o9 = —ksin 26

The stresses in the cenired fan adjoining the constant stress sector are:

1 3w
Tpp = Ogg = Ory, — 2k [5 + _4“ - 6]
Org =k (w/2 <6 < 3n/4) (3.41)

He et. al (1992) give the asymptotic solution for the siresses in the elastic material ahead of

the crack tip without proof as:

4k cos ' ' .
Opg = — cos [COSH (log T + £) — 95]116’! -+ (1 - E) ksin? ¢
T L Tre 2 | 2
2k
Opp = 2k {—2 sin® § log T +cos®f — fsin 20} + (l -+ ;) % cos® 0 (3.42)
T L

2 . 1 | )
Opp = v—k {811129 (logrl— -+ -~) -+ & cos 20J — (l | j) ksinfcosd
m e 2 2

The stresses in the malerial ahead is postulated to have a logarithmic singularity which em-
phasises the limitation of the assumption that the dependence on radial distance is always
described by the Eq. 3.39. 7, is a constant that has dimensions of [ength. The present work
verifics the form of the stresses and identifics its dependence on loading, The asymptotic
solution in the material behind (7 > € > «/2) is determined assuming plasticity al all angles
as shown in Fig. 3.9(a). The present work will argue that plasticity at all angles occurs only

as a special case: the details being presented in Chapter 4 and 5.
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When the crack is located in the elastic solid the slip line field as in Fig 3.9(b) is similar
to that of a homogeneous mode I crack. However, the radial stresses are discontinuous across
the inlerface due to the mismatch in properties. The asymptotic field can be fully expressed

in terms of the hoop stress at the interface, ogs(7/2). In the perfectly plastic region:
ka
oe = aee(m/2) + ~ T kcos 20

Oy = Ogg(7/2) - %T — k cos 26 (3.43)

Oy = ksin 26

The constraint (hydrostatic stress) ahead of the crack tip is a function of the elastic mismatch

as shown in Fig, 3.10 through the Dundur’s parameter, c.
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Fig 3.1: Semi-infinite crack between dissimilar solids.
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0 =
-30< §U< 0

Elastic

Elastic

Fig 3.2: Slip lines are based on solutions with € = 0.07796 for cases with {, > 0 and with ¢ =
—0.07923 for cases with (, < 0 (Zywicz and Parks, 1992).
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Fig 3.3: Slip line fields for an interface crack betwecn elastically matched but plastically mismatched
solids, showing the effect of (a} strength mismatch, M, and (b) normalized second order term T =
T8 (Kim et. al, 1997).
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Fig 3.4: Effect of the non singular term (T'-stress) on interfacial crack tip copstraint, oy, (0)/ 0§V
(Kim ct, al, 1997).
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4

Fig 3.5: Slip line fields for interfacial crack tip in strength mismatched solids (Sham et. al, 1999).
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Fig 3.6: Effect of remote load mode mixity on the constraint parameter in the planc of maximum

principal stress (Li, 1998).
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Fig 3.7: Dependence of singularity on B0, and N (Chao et al., 1993).
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)

Fig 3.8: Crack approaching an inferface between elastically similar but plastically dissimilar materi-
als when crack is in (a) a plastic solid, approaching an elastic solid and (b} an elastic solid, approach-
ing a plastic solid.

PLASTIC PLASTIC

@ {b)

Fig 3.9: Slip line fields when crack is in (a) a plastic solid and (b) an elastic solid {Ile et. ai, 1992;
Stahle and Shih , 1992).
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Fig 3.10: Hydrostalic stress, S, and radial stress 7" ahead of crack (He et. al, 1992).
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Elastic Analysis of a Crack Normal to an
Interface

In contained yiclding, the non-singular term of the outer elastic field has been shown to
determine the constraint of the homogencous problem (Betegdn and Hancock, 1991; Du and
Hancock, 1991; O’Dowd and Shih, 1991) and affect the constraint for an interface ¢rack
(Kim et. al, 1997). In order to dctermine the constraint effects for a crack normal to the
interface between mismatched solids in contained yielding, the first two terms of the linear
clastic stress fleld are developed using eigenvalue expansions. The strength of the singularity
of the leading tcrm is determincd as a function of ihe elastic mismatch, The associated
angular functions and the second order term in the asymptotic expansion are obtained for
symmetric (mode 1) and anti-symmetric (mode T1) loading. FFull field analysis is performed to
obtain the sccond order non-singular term for two geometties of technological significance,
The geometries include a thin cracked film on a substrate and a thin cracked film between

two substrates,

4.1 Asymptotic analysis

A crack normal to the interface between two elastically mismatched homogeneous, isotropic
solids is considered. The bonded materials are represented by superscript, &, (8 = 1, 2), such
that G*) and *) are the elastic constants shear modulus and Poisson’s ratio respectively.
The ratio of the shear modulii (GV/G?) is denoted by 2. The geomeiry is defined using
both Cartesiun (2, y) and polur (r, 8) co-ordinate systems with the origin located at the crack
tip as shown in Fig. 4.1. The material interface lics along the plane @ = £ /2 and the crack

lies normal to the interface along the plane § = L7 such that material 1 is divided into two
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disconnected regions by the crack. Without loss of generality the upper half (0 < 8 < )
of the geometry can be considered, allowing the solution to be extended to the lower half,
symmetrically or anti-symmetrically about the ¢ — 0 plane. In order to determine the crack
tip stress ficld, following the eigenvalue expansion method described by Williams (1957) the

solution of the bi-harmonic equations in each material is taken to be:
) (r, 8) = P LEE (g) (4.1)
where

FOE) = [A®sin(A+1)0 + B cos(A + 1)0

+ C® gin(X — 1)0 + D™ cos(A — 1)9] (4.2)

and A%, BB C® and D™ are constants which depend on A and the type of loading.

and C? are zero. For mode 11 loading, B and D are zero such that ®(2) is antisymmetric.

In both case there are 6 unknown coefficients.

To ensure continuity of tractions along the interface, at all radjal distances both &1 and
$t2) are taken to be the same function of ». The stress fields in cylindrical co-ordinates can

then be written as:

2 (k)
o) — g 1 {d 31;-2 (A 1)F(“(9)] =r*150(0) (4.3)
o$E) = gt [ A+ 1) F[k)(g)] =15 () (4.4)

\ ‘ AN :
0?(_2; —— Al [_'_)\689 I — ?"“\‘15,,(»;@)(9) (4.5)
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In plane strain, the radial and hoop displacement, #{*) and 'u..g.k}, become:

A :

+4(1 ~ v®) (W sin(A — 1)8 | D® cos(A — 1)6)] (4.6)

(k) A _OF®
a6
—4(1 — () (C’““] cos(A — 1)8 — D) sin(A — 1)9)] 4.7}

The boundary conditions of a traction free crack surface combined with continuity of trac-

tions across the interface give rise to a sct of 6 homogeneous equations for both mode [ and

mode II loading:

Jé},} () =0 (4.8)
ot () =0 (4.9)
o5 (1/2) = o3 (7/2) (4.10)
oly (x/2) = o (x/2) (4.11)
uM(r/2) = P (x/2) (4.12)

M 79Y = o (/9 4.13
Uy (m/2) = ug’ (7/2) (4.13)

4,1.1 Structure of the mode I crack tip field

For mode I loading, symmetry about # = 0 requires that @, should be an even function of £.

As a result A, and C' are zero. Applying the boundary conditions to Eqs. (4.3)-(4.7) gives a
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set of 6 homogeneous equations:

o

(0] [40 B ¢ p B DT = (4.14)
where,
[ stnw cos A Sin A
—(A=1DecosnA (A4 DsinddA  —(A—1)cosmA
cos 2 "7’\ —sin ﬂ - cos 12 ”’\
—(A+Dsin® —(A+Deos (A—1Dsind
A+Dsin% (A+1)cos%  —(P-L-(A=1))sin%
At1leosZ (A+1))sinD  —(P~(A+1))cos T
(ORI
COS T A 0 0 ]
(A —1)sin7A 0 0
sin —2)‘ sin ~‘-’\ —sin ﬂ
""" (A—1)cos (A+ 1) cos 3 ~(A—1)cos 22

—(P+(A—-1))cosD —QA+1)ecos Q)+ (A—1))cos 2

(P—(A+1))sin QA+ DsinD —Q(Q — (A--1))sin 2

and P = 4(1 -- vM) and @ = 4(1 — v@). For a non-trivial solution Det [C‘] = ( which

gives rise to a characteristic equation. In the present work clastic deformatton ol both the

materials is taken to be incompressible (1} = 142

= 0.5) which simplifies the characieristic

(4.15)
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equation to:
[(©2 = 1)(23% - 1) + (2 + 1) cos(m})] sin(mA) = 0 (4.16)

The solution gives a series of eigenvalues, A. The strain encrgy of the region al the crack tip
enclosed within radius 1 is given by:

.
5.5 = / w.2nr dr (4.17)
Q

wherc the strain energy density, w = [j 0y; de;;. The r-dependence of strain energy density

thus can be described as:
w o~ 2D (4.18)
Substituting in the expression for strain enetgy:

S.E ~ ]Vl r20—Dp gy
0

~ 7 (4.19)

Thus, for strain energy at the crack tip to be finile, positive eigenvalues (A > 0) are con-
sidered. Singular terms arise when A < 1 while terms for which A > 1 are finite or disappear
at the crack tip. The smallest positive value of A depends on the ratio of the shear modulii
of the two materials, €2, as shown in Kig, 4.2. Substituting valid value of A and solving
the Eq. (4.14), gives the corresponding unknown coefficients. The coefficients for mode 1
loading are presented in Tables. 4.1-4.3 which allow F(0) to be determined in letms of an
arbitrary constant, The angular functions (6.,.(f), 59e(€) and 5,4()) can be determined by

Eqgs. (4.3)-(4.5). These angular functions arc shown graphically in Figs, 4.3 and 4.4.
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£ A A B C D

0.05 | 0.589 | 0.257 | 0.0617 | -0.0814 | 0.5484
0.1 | 0.584 | 0.247 | 0.0777 | -0.0728 | 0.569

S0.25 ] 0.568 | 0.215 | 0,125 | -0.050 | 0.636

0.5 10543 | 0.153 | 0.201 | -0.021 | 0.753

1 .5 0 0.333 0 1

2 (0433 |-03061] 0516 | ~0.065 | 1.486
4 10350 | -1.094 | 0.647 { -0.400 | 2.297
10 | 0.244 | -2.820 | 0.410 { -1.600 | 3.836

20 | 0178 | -4.774 | 0,292 | -3.247 | 5.320

Table 4.1: Coefficients for the material in the angular span 7/2 > ¢ > 7.

2 A A B C|D
0.05 | 0589 0 102585 )0 | 1
0.1 0584101 02063 (0|1
025 (0568 |0 0275 |01
05 |0543 10| 029 |0 |1

1 05 (00333 |01

2 0433100395 (0|1

4 0350 | 0] 0481 (01
10 0244 |10 0608 |0 |1
20 0178 0] 0697 |0} 1

Tablc 4.2: Cocfficients for the material in the angular span —7/2 > 8 > « /2.

4.1.2 Structure of the mode I crack tip field

The antisymmetry of mode II loading about 8 = 0 requires B and D' to be zera such that

®) is antisymmetric. Applying the boundary conditions described by Egs. (4.8)-(4.13). A
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0 A A B C D
0.05 | 0.589 [ -0.257 | 0.0617 | 0.0814 | 0.5484
0.1 | 0.584 | -0.247 | 0.0777 { 0.0728 | 0.569
0.25 | 0.568 | -0.215 | 0.125 | 0.050 | 0.636
0.5 | 0.543 | -0.153 | 0.201 | 0.021 | 0.753
1 0.5 0 0.333 0 1
2 10433 | 0361 | 0.516 | 0.065 | 1.486
4 0350 | 1.094 | 0.647 | 0400 | 2.297
10 | 0.244 | 2.820 | (.410 | 1.600 | 3.836
20 | 0.178 | 4774 | -0292 | 3.247 | 5.320
Table 4.3: Cocflicients for the material in the angular span —7 > 8 > —x /2.
system of 6 homogeneous equations is obtained:
[Cu} (AW B () p») 4@) C(z)f —0 (4.20)
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where
[ sinawA COS A sinA
—(A+1eosrA (A+1Dsinar  —(A—1)coswA
cos % — sin 22 —cos 2
~(A+1)sin® —(A+1ljcosT (A—1)sinT
(A+ 1) sin 2 A+ Lcos™  —(P+(A—1))sinZ
—(A+Deos (A+1)sin%  —(P—~(A+1))cos %
cl={
cos A 0 0 |
(A —L)sinwA 0 0
sin 22 — cos 2 cos 22
..... {A—1)cos %2 (A+1)sin %2 ~(A—1)sin %}
—(P+(A—1))cosZ —(A+ 1)sin -’;\- U+ (A —1))sin 22
(P -(A4+1))sin%  QA+1)cosD  QQ—~(A+1))cos T2

\

Non-trivial solution of the Eq. 4.20 requires that Dei {C"I q = (), and gives rise to the
same characleristic equation as obtained for analysis of mode I field. Hence, the same singu-
larity (Fig. 4.2} can be applied to mode IL. For the smallest valid value of A the corresponding
unknown coefficients and hence the angular functions can be obtained using equations sum-
marised in Eq. (4.20). The cocfficients for mode IT loading are tabulated in Tables. 4.4-4.5.

The angular functions are shown in Figs. 4.5-4.6 for elastic mismatch of 0.1 and 10.

(4.21)
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QA A B C D
0.05 | 0.589 | -0.548 | -0.081 | 0.239 | -0.994
0.1 | 0.584 | -0.569 | -0.073 | 0.296 | -0.942
0.25 | 0.568 | -0.636 | -0.050 ' 0.454 | -0.783
0.5 |0.543 | -0.753 | -0.021  0.679 | -0.517
1|05 | - o | 1 0
2 | 0.433 | -1.486 | -0.065 | 1.305 | 0.913
4 |0350|-2.297 | -0.400 & 1.345 | 2.275
10 | 0.244 | -3.836 | -1.598 | 0.674 | 4.637
20 | 0.178 | -5.320 | -3.247 | -0.418 | 6.844

Table 4.4: Coefficients for the material in the angular span 7/2 > 0 > 7.

4.1.3 Stress function of the distance independent term under mode 1

and mode II loading

The next and only other cigenvaluc for which the stresses are non-zero at the crack tip is

A = 1. In contrast lo the feading eigenvalue, this eigenvalue is independent of elastic mis-

malch, and gives rise to a second order term in stresses which is independent ol distance.

Substituting A = 1, equation. 4.14 becomes:

0 -1 0
2 0 0
0 -1 0
-2 0 0
2 0 =P

0

—_ OO

0
0

0 2 0 P-2 —20 -QQ-2) |

51
Oflj
pi
B2

- A{l) -

D |

=0 (4.22)
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Q A A{B|C|D
0050589 (-1|0|1]|¢0
1 (0584 |-1|10|1|0
0250568 (-1 |0 | 1[0
05 (0543 |-110 |1 |0
1 05 {-1[0]|1]|0
2 0433|1010
4 10350 |-110[|1]0
10 02441110 |1 |0
20 (0178 |-1{0 | 1|0

Table 4.5: Coefficients for the material in the angular span —n /2 > 8 > /2.

The corresponding modc I stress functions for the distance independent term can be derived

from the boundary conditions to be:

Dy? |((Eet)200 )

Q—pD
(ij‘IT = <

Q—pf1)

Dr2 (5725 ) [1 — cos 20];

)(:0526'—!—1]; D<o <x/2

(4.23)
T/2<0< 7w

where I is an arbitrary constant. To determine the stress function for the distance independ-

ent term under mode 1l loading A = 1 is substituted in Eq. (4.20) giving:

0 -t 0 -1 0
2 0 0 0 0
0 -1t 0 1 0
-2 0 0 0 2
2 0 =P 0 2
0 2 60 P—-2 0

AR

B
o
D
Al

(2

=0 (4.24)
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Q A A B C D

0.05 | 0.589 | 0.548 | -0.081 | -0.239 | -0.994
0.1 | 0.584 | 0.569 | -0.073 | 0.296 | -(1.942
0.25 1 0.568 | 0.636 | -0.050 -0.454 | -0.783
0.5 10543 | 0.753 | -0.021 -0.679 | -0.517

1|05 | 1 0o -1 0
2 0433 ] 1.486 | -0.065 -1.305 | 0.913
4 10350 2297 | -0.400 | -1.345 | 2.275
10 | 0.244  3.836 | -1.598 | -0.674 | 4.637

20 ] 0.178 | 5.320 | -3.247 | 0.418 | 6.844

Table 4.6: Coefficienis for the material in the angular span —7% > 6 > —x /2.

The solution of these equations simplifies to give the stress function for the second order

term: to be:
=0, 0<b6<nm (4.25)

The angular functions can be obtained from the siress functions. Using the Cartesian

coordinate system distance indcpendent stresscs can be written as:

r ‘,l O 1
< G < 2
T_O 7 | 0<0<w/2,
orl =4 (4.26)
10
9
T 0 0 /2 <8 <,

(4.27)
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and T is an arbitrary constant with the dimensions of stress. ep ensures the compatibility
condition at 8 = 7 /2:

o 2
E?(JIJJ = ﬁvy) {4.28)

In material 1, the second order term is a simple uniaxial stress parallel to the crack flanks.
However, in material 2 the stress system is bi-axial, the y-component being related to the
z-component by a factor 7. For a homogeneous material (€2 -- 1), 77 becomes zero and the
higher order term reduces to the second term in the Williams expansion (Williams, 1957)
which Rice (1974) has denoted the T'-stress. The Cartesian strain field corresponding to the

distancc indcpendent siresses can be written as:

Ec“il'ﬁT ((1 —v®)oy, — V(g}%y) = 325:1'£2] ((1 ’/(2)) - V(Z)U) 0<e<a/2,

€ 7 1 1 g 1 (4.29)
s (1= )00 = s (1 = 14AY) 7/2<0<w
?ég (1 - V) Gy — VoOyy) = —?c% 0<0<w/2,

Eyy == T (4.30)

Using the strain-displacement relations the Cartesian displacement field can be derived from

Eqn, 4.26 10 be:

, (T/2G)) [1 — (1 4 n)] reosf 0<6<7/2

ul = < _ (4.31)
(T/2G) (1 — ) cos b T/2<8<xw

\

[(T/2G) [n =@ (14 )] rsing 0<0<n/2

o = (4.32)
(T /2GWY(~V)rsgin @ /28 <7

.
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In the general case of mixed mode loading, the contribution from mode T and mode I com-
poneits of the foad can be combined and the first two terms of the elastic stress field can be

written as:
o] = (2er)*! (KT (6 (0)] + K [5(6)]) + T [54] (4.33)

where [&‘] and [&‘r d } are angular functions of the siress components corresponding to mode
I and mode II loading respectively. [&‘T] is the angular function of the higher order term for
mode { and mode II loading. K7, K’ and T are arbitrary constants. For a homogeneous
material (§2 = 1), K7 and K7 become the linear elastic stress intensity factors (K, K;;) in

mode I and mode II loadings.

4.2 Full field analysis

In order to delermine the effect of elastic mismatch on the second order term in the crack tip
elastic ficld, full field analysis was performed for two technologically important geometries.
The configuration of a thin thermal barrier coating containing a surface crack on a thick sub-
strate was represenied by modelling a cracked thin film on a substrate as shown in Fig. 4.7.
The figure also shows the second geometry that of a thin cracked laniina between two thick
substrates which represents the practical situation of a cracked lamina in a ceramic lamin-
ate under planc strain conditions. The axi-symmetric version of the problein represents a
cracked fibre embedded in a matrix. The ratio of the thickness of the coating to the thickness
ol the substrate is 1 : 30 and the ratio of the radius of the fibre to that of the thickness of
the matrix is also 1 : 30. The finite element mesh for the cracked coating geometry consists
of 980 isoparametric 8-noded elements as shown in Fig. 4.8. The mesh is refined near the
crack tip such that the ratio between the size of the first element to the crack size is 3/10°.
The same mesh is used for modelling the laminate geometry by enforcing symmeltry about

the left edge of the model. Analysis is performed for elastic mismatches in the range 0 Lo 10
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for tensile loading represented by a remote uniform displacement. The stress intensity factor

was determined using the radial stress on the crack flanks (¢ = «):

KT = tim o7

. 4.34
M @ar) 16, () (4.34)

Tuble. 4.7 gives the stress intensity factors normalised by the remote tensile stress, 0™, and

the crack length, «, as a function of elastic mismatch, €2.

Q N Kmay=t o K(mepr
(coating) (lamina)

0.05 0.589  0.069 0.036
05 0543 0575 0.492
t 0.500 1.11 0.995
2 0433 1.88 178
4 (.350 2.90 3.03
10 0.244 5.29 5.68

Table 4.7: The effect of elastic mismatch, £2, on the stress intensity factor, K.

The non-singular higher order term, 7', was alse determined numerically from the radial
stress on the crack flanks using:

T =lim {o’”.(r, 1) — K (2ur) 5,, (?T)} (4.35)

T

At low elastic mismatches both geometries have negative T-strcsscs as shown in Fig, 4.9,
but at large clastic mismatches, T remains compressive in the laminate but becomes positive
for the coating. Close approximations to the well known results for an edge crack in a semi-

infinite homogeneous solid: 7' = —0.51¢> (Harlin and Willis, 1988) and the centre crack
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¢ffeet of the second order tetin on the hoop stress ahead of the crack is shown in Fig. 4.10
as the ratio between the first term and the first two terms. For lower elastic mismatchcs
the effect of the second order term becomes apparent at smaller distance from the crack tip.
The effect of the non-singular term on the elastic-plastic crack tip fields is similar to that in

homogencous materials as is shown next in Chapter 3.

4.3 Conclusions

The first two terms in the asymptotic elastic crack tip fields of technologically significant
bi-matcrial systems have been obtained using analytical and computational methods, For the
leading term, the strength of the singularity and the angular functions depend on mismatch.
The second order term is distance independent for all elastic mismatches although the angular
tunctions depend on mismatch. The amplitudes of both the terms depend on loading and
geometry. In general the second order term in the stress field in material 2 is biaxial. The
biaxiality depends on the clastic mismatch and vanishes for elastically matched solids when
the uniaxial second order term in the Williams expansion is recovered. The distance over

which the leading term dominates the second order term increases with increasing mismatch

().
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Material 2

Fig 4.1: Bi-matcrial systein.

0.8

0.2 -

Fig 4.2: The strength of the singularity of the leading term as » function of mismatch.
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Fig 4.3: Angular functions, &gg, 6y and dp for an elastic mismatch of 0.1
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Fig 4.4: Anpular functions, gy, &5 and &, for an elastic mismatch of 10.
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Fig 4.5: Angular functions, &gy, &5 and &,¢ for an elastic mismatch of 0.1
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Fig 4.6: Angular functions, &gy, 7 and 7,¢ for an elastic mismatch of 10,




CHAPTER 4. Elastic Analysis of a Crack Normal to an Interface 79
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(a) Cracked Film (5 Cracked Lamina

Fig 4.7: Schematic diagrams ol the [ull field geometrics, w/a — 30 subjected to remote tensile
displacement load.
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a w

Fig 4.8: Fullfield mesh used for modelling a cracked thin film on a substrate and a lamina between
two substrates.
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Fig 4.9: The T-stress normalised by the remotely applied stress, ogy, as a function of elastic mis-
match.
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Fig 4.10: The comparative cffect of leading term over distances ahead of the crack tip.
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A Crack Normal to an Interface:
Klastic-Plastic Analytic Solution

Understanding of the mechanism of fracture normal to the interface is essential for failure
analysis and design of composite systoms. Although the elastic analysis gives 4 uscful de-
scription, {or larger levels of plasticily elastic-plastic analysis is required. In bi-material
systems like hard coatings or laminates which have significant plastic mismatch, insight into
the clastic-plastic field canr be obtained by taking one of the material as elastic perfectly-
plastic while the other is fully elastic. Initially the configuration in which a crack is located
in an elastic perfectly-plastic solid (referred as problem A in Fig. 5 .1) is considered followed
by the case in which the crack is located in a fully elastic material and the material ahead of
the crack is elastic perfectly-plastic (problem B). Analytic sofution of the elastic-plastic field
is developed by rcpresenting the angular span at the crack tip as a combination of elastic and

plastic sectors using slip line theory.

5.1 Plastic sectors

Within the plastic sectors, slip line field theory (Hilt, 1950) allows the stresses 1o be writien
in terms of the mean stress o,,, and 1+, the angle between the positive « slip line direction

and the positive x direction:

Tpp = O + K sin{28 — 2¢0)
Opp = Oy — ksin(20 — 29H) (5.1)

orp = kcos(20 — 23)
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where k is the yield stress in shear. In general both oy, and ¢ are fanctions of 8. For

incompressible deformation v = 1/2, the yield criterion for plane strain can be simplified to:

(0w = on)? + 307 =03 (5.2)

The two dimensional equilibrium cguations in cylindrical co-ordinates (v, 8) are:

O 1y 1 Gary — gy 5
or r o0 r . (5:3)
0o 16—"‘1‘1 +27% =0 (5.4)

or oo

Following an argument of Rice (1982), for finite crack tip stresses, as r -+ 0, the equilibrium

equations reduce to:

Cgg — Opr = % (5.5)

200 30 (5.6)
Diiferentiating the yield criterion described in Eq. 5.2 with respect to angle, £, gives:

3(000 (fm);% (79 - 0pr) 1 6 mgg;g -0 (5.7)
Substituting {ces — @) and o,¢ from Eq. 5.5-5.6 gives rise to the condition:

—3 6;;0 2% (0w + o) =0 (5.8)

Tn two possible situations the condition in Eq. 5.8 can be satisfied non-frivially:

oo _ . 5?«"—‘1’1 £0 (5.9)

a0
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9om _ o om0

50 =& 50 # 0 (5.10)

In the first case, substituting E’—ggi = 0 in Eq. 5.5 gives:

Ogg = Oyr (5.11)
which reduces the yield criterion to:

o2y —k*— 0 (5.12)

Thus, the shear stress component, 7, = +k. The other stress components can be determined

from Eq. 5.6:

15}
-% = —20,p = 2% (5.13)

which on integration with respect to 8 gives:
Ogg = $2f€9 + B (5]4)

This type of scetor which is denoted a centred fan, features a constant shear siress, o,4, while
the mean stress is a linear function of angle, &. The direction of an «-plane can be radial or

tangential. The stresses corresponding to Fig. 5.2(a) arc:

Om = On +2k(0 —6)
b = ;—r +0 (5.15)
or corresponding to Fig. 5.2(b):
O = Oy +2k(0 —0)

i = (5.16)
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where, ¢, and @' are constants. In the second case, the mean stress is independent of ¢ and

the slip lincs arc straight piving rise to a constant stress sector, the stresses being described

by:

Oms Tz Tyys Toz — constant

¥ = constant (5.17)
5.2 Elastic sector

Elastic sectors adjoining plastic sectors under certain restrictions have finite stresses at the
crack tip subject to certain restrictions (Sham et. al, 1999). In the elastic sectors compatibility

must be satisfied along with the plane strain equilibrium equations:

# 10 10
or2  rdr 22

) (O}-r -+ G'.g,la) =) (_5.[8)

For finite crack tip stresses at asymptotic distance, » — 0, the compatibility equation reduces

to:

820',-.;- 820',99 .

g6z " o9z (5.19)
Integrating with respect to @ twice gives:
opg = B0+ By — opy (520)
Substituting in Eq. 5.5 and 5.6 gives:
0910 | 2,y — By — By =0 5.21
69 Trr -3 ‘4 — ( . )
and
Oy
By— 2 4 90, =0 (5.22)

o0
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Eliminating 0,4 gives a partial differential equation:

&a,,

o0?

+ 4oy, — 2Isf — 2B, — 0 (5.23)
The homogencous part of the differential equation is:

%o

755;—” +4g,, =0 (5.24)
which has the homaogencous solution:

Opr = Fy8in 260 + E'; cos 20 (5.25)
and the particular solution:

1

Ty ¥ E(Eﬂ + E4) (526)

The general solution is the sum of the homogeneous and particular solutions:

1
O = By 5in28 + Ey cos 26 4 §(E39 + Ey) (5.27)

The other stress components can be obtained in a similar way. The stresses in the elastic

sector are:

ayr = Fy 8in 260 + I cos 26 - ;(E’g(} 1 Ey) (5.28)

Ogp — — 1oy sin 20 — Fa cos 20 + ';‘(qu + E/l) (529)
. Iy

vrg = Ky cos 20 — iy sin 20 — Vi (5.30)

where F, £;, E3 and Fy are determined from the appropriate boundary conditions. In

elastic-plastic crack tip fields elastic sectors usuajly appear at the crack flank as shown in
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Fig. 5.3, If the angular span of the elastic sector is ¢,, applying the boundary condition of a

traction free crack face (o, (w) = o,9(w) = 0) reduces the stress equations to:

oy = C(20 — 240 4+ sin 20) + D(1 + cos 26) (5.31)
ogeg = C(20 - 27 ~-sin26) | (1 - cos28) (5.32)
or9 = C{cos26 — 1) — Dsin 20 (1 — ¢, <0 < 7w) (5.33)

where the coefficients ¢’ and D can be be determined using the tractions, gg = H and
oxg = K, at the wedge surface, 0 = 7 — ¢,

_ Hsin2¢, — K(1 — cos2¢,)

C = -
2(1 — co8 2¢, — P, 5in 2¢,)

(5.34)

and

. H(1 - cos2¢,) + K(sin 2¢, — 2¢,)
p=""\ el ik B 17 5.35
2(1 — cos 2¢, — @, 8in 2¢),) (3.35)

The clastic and plastic seclors can be asscmbled subject to the requirement of traction
free crack flanks and traction continuity across the scctor boundaries. Continuity of tractions
does not necessarily imply continuity of siresses as jumps in radial stress may be permitted
by the equilibrium equations. Analytic solutions ate presented for both situations when the

crack is located in the elastic perfectly-plastic solid and when it is in a fully elastic solid.

5.3 A crack located in a plastically deforming solid: prob-
lem A

In this configuration, plastic deformation is allowed only in the angular region, —7 < # <

—w/2 and 7/2 < @ < w while the material ahead of the crack is fully elastic. In the
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limiting case when the angular region in which plastic deformation is allowed is fully plastic
at the crack tip, the mode I slip line field compriscs a centred fan starting at the interface
and extending to & = 3w /4, complemented by a constanl siress sector at the crack flank as
identified by He et. al (1992) and Stahle and Shih (1992) shown in the Fig. 5.4(a). The

stresses in the constant stress sector are:

orr = k(1 + cos 26) (5.36)
age = k{1 — cos 26) (5.37)
Org = —k sin 20 (Br/4a<8 <) (5.38)

The stresses in the centred fan adjoining the constlant siress secior are:

Opr == Tpg = Ty = 2k [% -+ 3_171: — [9} (5‘39)
s = k (7/2 < 0 < 3u/4) (5.40)

However, He el. al (1992) and Stahle and Shih (1992) failed to recognise that complete plas-
ticity behind the interface is only a limiting case, which occurs only for tensile T'-stresses.
In general an elastic wedge adjoins the centred fan sector. Howcver in the presentwork i is
cstablished that in the case of elastically matched solids (2 = 1, 77 = 0), the elastic wedge
extends from the crack flank to an angle, ¢, = 60.3°, as shown in Fig. 5.4(b). In the elastic

sector at the crack tlank the stresses are:

o = C(20 - 27 + sin 26) -+ D(1 + cos 26) (5.41)

ogp = C(26 — 2w — sin 20) + D(1 — cos 28) (5.42)
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oy = Clcos 26 — 1) — Dsin 20 (r— o <8 <) (5.43)
where,
o0
and
- s

The stresses int the centred fan sector are:

Opp == 0gg = Oy = P 1 k('ﬂ' 29) (5,46)

o = k (r/2 <0 <7 — ) (5.47)

where P is the hoop stress at the interface which depends on ¢, as:

| sin2¢, - 2¢, -
P—k 1~ cos 29, + 7 (5.48)

Tn the elastic region ahead of the crack the crack tip stresses from the numerical solution are
singular. 'The Egs. 5.28 developed for an elastic sector cannot be applied as the assumplion
of finite crack tip stresses does not hold. It is useful to start with a stress function given
by Timoshenko and Goodier (1970) for a semi-infinite plate subjected to shear loading on a

half-plane as shown in Fig. 5.5:

s |y 2 8 -1 ¥ 2 s
@ = — | = In(z” -} ¥°) | zytan™ "~ — ¢ (5.49)
|2 T
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The stress function can be modified taking into account the co-ordinale system and boundary
conditions as idealised in Fig. 5.6. An arbitrary constant, 7,, with the dimensions of length

is introduced such that the stress function is dimensionally consistent:

2k [x? (2% = y¢? A ¥ . :
L) EanC = ) {2y (tan—‘ % - u;) — 2+ Pyz} (5.50)

o

b =

Z

The Cartesian stress field corresponding to this stress function features a logarithmic singu-

larity:
O = j—:(l + cos 26) — P (5.51)
Tyy = ij 41n :u + (1 +cos 29)] (5.52)
Ty = % [8in 26 — 26] (5.53)

In the limiting case, in which plasticity fully surrounds the crack tip in the angular regions
-7 <8< —x/2and 7/2 < 6 < 7, the hoop stress at the interface, P is k(1 + #/2). This
recovers the siress ficlds reported without derivation by He et. al (1992) and Stahle und Shih
(1992) in which the nature of the constant, r,, was left undetermined. The nature of r, will

be addressced in ChapterS by numerical analysis.

5.4 A cracklocated in an elastic solid: problem B

Mode I, mixed modc and modc II slip linc fields are developed for a crack located in a fully
elastic solid while plasticity is restricted to the material ahead of the crack, —7/2 < # < 7 /2,

The parameters which characterise these ficlds are identilied.



CHAPTER 5. A Crack Normal to an Interface: Elastic-Plastic Analytic Solution 91

5.4.1 Mode Islip line fields

The made T slip line field features a constant stress region directly ahead of the crack com-
plemented by centred fans as shown in Fig. 5.7. A statically admissible siress field can
be determincd in terms of the mean stress dircctly ahcad of the crack tip, 04, (0) which is

a free variable in the analysis. Starting with the constant stress sector ahead of the crack

0 < 0 < x/d):

Opr = O (0) + k8in(26 — %)

60 = 02 (0) — K 5in(26 - ;) (5.54)

ong = kcos(26 — —g)
The stresses in the adjoining centred fan (r /4 < 8 < 7/2) can be written as:

Gyr = Top = 0 (0) — 2k(0 — %)

opp — k (5.55)

while at the interface (f = 7/2):

w

Ty — Grrf.(U) - k§ (556)

(5.57)
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The stresses in the clastic material (7/2 < @ < ) can be determined from Eqgs. (5.28)-(5.30)

with:
By = —% (5.58)
By = a,,,,((})2~ kn (5.59)
By =—2k (5.60}
By = 0m(0) | ke (5.61)

Although the solution is presented for the upper half (0 < 8 < @), it can be extended to
the lower half such that hoop and radial stresses are symmeiric and the shear stress is anii-
symmetric about the ¢ = 0 plane. Thus, the mean stress ahead of the crack tip paramcteriscs
a family of mode I crack tip fields which differ only through the mean stress. In the numerical
work the dependence of the mean stress (constraint) on the elastic mismatch und 7-stress is
determined. The range of validity of the elastic solution can be established by checking
4 posteriori that the yield criterion is not violated in the elastic sectors. This lcads to a
restriction on the ratio of the yield stresses (o8 /(%) which is addressed in the numerical

solutions.

5.4.2 Mixed mode slip line fields

Depending on the ratio of shear to tension in the remote loading, there are three distinct
forms of mixed mode fields: sub-critical, critical and super-critical fields. The critical field
is unigue and corresponds to the loading phase angle that is denoted by ¢, A range of

loading phase angles give risc to the sub-critical field and super-critical fields. In this section
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the form of these fields and the parameters that characterise them are described.

n the sub-critical field: 0 < ¢ < ¢, the constant stress sector rotates and the symmetry
of the mode I field is lost as shown in Fig. 5.8. The span of the centred fan sector in the
upper half increases while the centred fan sector at the lower half decreases. 'L'he stress field
is determined by both the mean stress and the mode mixily ahead ol the crack tip defined by
p = 0,4{0)/ape(0). The stresses in the constant sector ahead of the crack tip in the angular

range ¥, — /2 < 8 < iy, are:

Crr = O (0) + ksin(20 — 29)

oog = 0, (0} — ksin(20 - 24h,,) (5.62)

Org = K Cos(20 - 24hy,)
where ., can be determined from:
P (0) + pk sin 2thes — k cos 2tpe, = 0 (5.63)

The stresses in the centred fan scctor adjoining the constant sector in the range: v, < 8 <

7 /2, are given by:
Tpp = Tgg = Tyn(0) - 2k (e - 6) ' (5.64)
or0 = k (5.65)

The other centred fan sector in the angular span —7/2 < 8 < 4, - /2 has stresses of the

form:

Gr = gy = 0y (0) + 2k [9 _ (qpcs - g)] (5.66)
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G0 = —k (5.67)

In the elastic sector on the upper flank (/2 < ¢ < ) the stresses can be determined using

Egs. (5.28)-(5.30) with:

£ - _’; (5.68)
By = (om(0) + 2sths — ) (5.69)
By = —2% (5.70)
By = 0 (0) = 2ths + — (5.71)

2

In the clastic region at the lower fank (—7 < @ < —r/2) stresses can be determined using

Eqs. (5.28)-(5.30) with:

B = g (5.72)
Py = % (a,,,(()) — Yhenp, — %’T) (5.73)
Es = 2k (3.74)
Fa= o (0) — 2hpus 1 T (5.75)

.

As the shear component of the loading is increased to ¢, the critical field is reached in which

the constant siress sector stretches from the plane ahead of the crack tip to the interface in
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the lower half such that the centred fan sector in the lower half disappears as shown in
Fig. 5.9. The loading phase angle cormresponding to this limiting field for elastically matched
but plastically mismatched systems is approximately 26 degrees. The crack tip field can be
fully described by the mean stress ahead of the crack tip, ¢, (0). Starting from the centred
fan sector that stretches from the plane ahead of the crack tip to the interface (0 < @ < #/2),

the stresses are:

Opp = Tpg = O'm(ﬂ) — 2k0 (5.76)

Opp = K (5.77)

In the constant stress sector (—7/2 < ¢ < 0):

Opr = 0 (0) -+ £ 5in 20

oo = 0m{0) ~ k sin 20 (5.78)

opp = K cos 20

In the clastic sector at the upper flank (7/2 < @ < #):

B == (5.79)

(5.80)

By = —2k (5.81)
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km
Ey = om(0) + ?“ (5.82)

In the elastic sector at the lower flank (—7 < 8 < —7/2):

7 = g (5.83)
By == % [am(o) -~ kj } (5.84)
By = 2% (5.85)
Ey = am(0) + i’.;ii (5.86)

In the super-critical field (¢ < ¢ < u/2), the limiting field rotates and a constan( siress
sector develops al the upper interface. A generic slip Hne field is shown in Fig. 5.10, the
sector boundary of the centred fan being at @ = 6°%1 and § = 0°°~. The stress field is
established by the traction vector (o, o) at the interface (# = #/2) and the span of the

centred fan, 26¢7 = g+ — §°~ Starting from the upper flank which is elastic:

0':' . 17, =« | . 1 i 3T
Orr — —Tﬁ sin 20 + 5 (oy* -5 V.lg) cos 26 + 3 {—erﬂgﬁ + o5 + ?0}{0]
A 1 i 17, I
g0 = —Q-g sin 20 — 5 (rr;}, - gajb) cos 20 - g {—20}1};9 + ogp - 9 0'1.'0] (5.87)
o Ly . =« . 1 .
Opg = — —50- cos 20 - 5 (03'9 - 50,?’9) sin 26 — 50)9

In the adjoining constant stress sector, 6%+ < 6 < w /2:

Opp = 00" - ke sin(26 — 26°°)
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deg — 0'7‘77‘:+ . fcsin(29 . 20:;34-)

O = kcos(20 - 2097T)
where,
61.:5—}- —

1 +
— E cog ! (%’ﬂ)

ol = o + ksin(2m — 2697)

w2 5

In the centred fan (#%" — 26 < 6 < §¢57) the stresses are:

Opr = 00T + 2R(0%) — 6)

i

opg = 0T + 26(0°°F . 9)

Trg = k

97

(5.88)

(5.89)

(5.90)

(5.91)

The centred fan is followed by a constant stress scctor in the range —w/2 < @ < 0+ — 267,

the stresses are given hy:

O = 057 + ksin(26 + 2(8° — 20°))

ogp = 0257 — ksin(20 + 2(8°°F - 20<)))

Jpp = k COS(ZQ -+ 2(003— _ 29(:3‘))

(5.92)
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where 0@~ = g2t 4 4k6%. In the clastic sector on the lower flank the stresses are of the
form:
: 1 1 3
G = P sin20+ o (oo + T 00520+ | ~2050 + o — 507
y 1 1 3
G0 = % sin 20 — (ags, + %a;g) c0s 20 + [—25;90 o — ; —gl (5.93)

o 1 T . o,
Org = __:32 cos 26 — 3 (O’a_‘g + 50’_;;) sin 26 + ﬂ—;ﬁ

where

0 = 0% - B{2(8%F — 26°0)) (5.94)

Ve

0.5 = —k cos(2(6°" — 267)) (5.95)

5.4.3 Mode II slip line fields

Mode II loading requires anti-symmetry of 7, and o4y and symmetry of o, about the § = 0
plane. The sector composition of the mode II field is shown in Fig. 5.11. In the upper haif

(0 < 0 < ), the stresses in the centred fan of angular span, 267, are:
Opr = Ogp = Oy = - 2k8 (5.96)
Ore = k (0<9<6m) (6.97)
Siresses in the constant stress sector adjoining the centred fan are:

O = —2k67 + ksin(20 — 26™) (5.98)
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vop = —2k6~ — ksin(260 - 26") (5.99)

Ovo = kcos(20 — 26) (0% <6 < n/2) (5-100)

The stresses in the elastic region (7/2 < # < x) are given by equations.( 5,.28-5,30) with:

B = g—cos 20" (5.101)
By = % [—29"" ~ §in 261 + gcos 29""] (5.102)
Eg = 2k cos 20T (5.103)
£y = —; [-"1:0+ + 2sin 26" + 37 cos 2(7’*] (5.104)

The mode 1T stress field is expressed in terms of the span of the centred fan which the nu-

merical work will show to be & function of elastic mismatch.

All the forms of fields described with their corresponding loading phase angle in de-
grees have been presented in Fig, 5.12 for elastically matched but plastically mismatched

bi-material system.

5.5 Discussion

Slip linc theory (Hill, 1950) was developed to deal with processes such as metal forming in
which the plastic strains are very much larger than the elastic strains. This allows elastic
strain increments to be neglected and the material response o be simplified as elastically ni-
gid. When a plastically delorming region abuts an elastically rigid region, the slip lines must
be orthogonal to the interface ensuring that the interface is a line ol zero extension. This con-

dition is met in mode I and sub-critical mixed mode fields when the cenired fans adjoin the
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elastic material on the crack flanks. Similarly in a critical mixed mode field, when a constant
sector joins an elastic sector the condition holds if the sector boundary is along and perpen-
dicular to the slip lines as shown in Fig, 5.9. In these fields, the material on the crack flanks
can be approximated as clastically rigid. However, in the ficlds of higher mixity like super-
critical mixed made or mode II fields, the condition is not met as shown in Fig. 5.10-5.11
and the strains in the elastic material are comparable to the plastic strains of the adjoining
constant stress sector. Although these fields cannot be formally expressed as slip line fields
the elastic perfectly-plastic analysis remains valid. Significantly, unique statically admiss-
ible fields (¢ < ¢ < 90°) cannot be determined from the local mixity (¢,9(0)/0¢e(0)) and
mean siress (0, (0)) ahead of the crack but require additional information. These fields are

not statically determinate but additionally require solutions to the compalibility equations.

5.6 Conclusion

Analytic solution of the plane strain asymptotic fields for a crack between elastically and
plastically mismatched solids is developed. The discussion is based on two limiting cases:
when the crack is located in perfectly-plastic material while the material ahead is fully elastic
and a case when the crack is located in an elastic solid while the solid ahead deforms plastic-

ally.

When plasticity is limited to the material behind the crack, the clastic matcrial ahead
of the tip exhibits a logarithmic singularity. Only the Cartesian stress normal fo the crack
plane is singular. The fields can usefully be parameterised by the hoop stress on the interface,
Behind the crack, the {ield comprises an elastic wedge and a centred fan, {ul] plasticity behind

the crack being a limiting case.

In the important case in which plasticity is restricted to the material ahead of the crack,

for mode I loading, a family of plastic ficlds symmetric about the # = 0 planc arises which
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are parameterised by constraint. As the shear component of the remote load is increased the
symmetry is lost, the stress field is determined from the mean stress and the mode mixity
(0r6/00g) ahead of the crack tip. As the shear component of loading is incrcascd further
(¢ > ¢her) the stress field is established by the traction vector at the intetface and the span
of the centred fan, 26", The modc I field is antisymmetric about the # = 0 plane and the

structure of the field is determined fully by the angular span of the centred fan zhead of crack.
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PLASTIC ELASTIC ELASTIC PLASTIC

Problem A Problem B

Fig 5.1: Schematic diagram of material configurations.

(2} (b)

Fig 5.2: First shear {«) direction in ceatred fan sector.
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Fig 5.3: Elastic wedge at the crack surface.

(a) [t}

T'ig 5.4: Mode I slip line field for a crack in an elastic perfectly plastic solid normal to the interface
with an elastic solid (a) at tensile T'-stress and (b) at compressive T-slresses.
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y

Fig 5.5: Scemi-infinite plale subjected to shear loading in the half plane.

Fig 5.6 Loading configuration for the elastic region ahead of the crack.
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Fig 5.7: Slip line field for mode I loading.

Fig 5.8: Mixed mode slip line field for near mode I loading.
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Fig 5.9: Limiting slip line fiek.

Fig 5.10: Mixed mode slip line field for loading phase angle, © > 26°.
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FFig 5.11: Slip line field for mode [ loading.
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p=30
Mode 11

Fig 5.12: Ship line fields for diffcrent loading phase angles, for clastically matched but plastically
mismatched systems.
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A Crack Normal to an Interface:
Elastic-Plastic Numerical Solution

Cracks normal to the interface between dissimilar solids are features of bi-material systems
such as thermal bartier coatings, ceramic laminates and welds. An understanding of the
factors that influence the crack tip field provides a basis {or asscssing the structural integrity
and the reliability of these important technological systems. The analytic solution developed
in Chapter 5 establishes the parameters that characterise the asymptotic fields. In this chapter,
the dependence of these parameters on the clastic mismatch, non-singular term (7'-stress) and

the loading phasc angle is determined computationally.

6.1 Modified boundary layer formulations

Rice and Tracey (1973) established an elegant technique to model crack tip plasticity using
boundary layer formulations. Instead of modelling a crack in a full engineering structure, a
domain centred at the crack tip is considered. At the outer boundary of the circular domain
elastic displacements corresponding to the leading term in Williams expansion (Williums,
1957) are applied. Contained yielding is ensured by restricting the extent of crack tip plasti-
city to some small fraction of the radius of the domain. The concept is extended to incorpor-
ate the effect of the second order term of the elastic field in the form of modified boundary
layer formulations, in which displacements corresponding to both the feading term and the

second order term of Williams expansion are applied to the boundary.

In the present work, modified boundary layer formulations were based on a circular mesh

comprising 576 reduced hybrid, second order isoparametric elements focuscd at the crack tip
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which was represented by 49 coincident but independent nodes. This is shown schematically
in Fig. 6.1. The ratio between the crack tip element and the outer boundary radius is 3/10%. A
range of elastically mismatched systems are analysed in plane strain conditions. To describe
the gencral mixed mode load, the ratio of tension to shear in the remote field is defined by a

loading phase angle ¢:

. . B KH
¢ =tan™! <K1> 6.1)

where K and K77 are the remotely applied stress intensity factors for mode I and mode I1.
Conditions close Lo elastic incompressibility are approximated by taking /(! = v .- 0.49,

the small elastic dilation inhibiting mcsh-focking.

6.1.1 Displacement boundary conditions

Displacements of the outer elastic field corresponding to the first two terms in the asymptotic
series can be expressed as the sum of contributions from the leading order terms of mode 1
and mode I{ plus a second order term:

Ug = ul 4 ull 4+ ul (6.2)

gy
Uy = u-;; + uf + u;f (6.3)

The superscripts, I and 17, distinguish the Cartesian displacements associated with the lead-
ing term of mode I and mode II loading while the supcrseript 1’ identifics the displacements
from the second order distance independent term. From Eqs. 4.6-4.7, the leading term of the

polar displacements corresponding to mode I or mode I load can be expressed as:

AL Fr 111
T — £27T)2G—(£;’7,A —A(A+Dsin(A+ 1) - B(A=+1)cosf---

(73
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o C 41 = V) = (A + 1)) sin{A — )8 -+ (6.4)

vvo = D (4(1 —/Fy — (A= 1)) cos(A — 1)(7‘]

V-LEHIT
ki %M[ “A+ 1) sin(A+1)8 + B\ + 1) cos 8- --

o= C {41 =) — (A4 1)) sin(A - 1) (6.5)

cee 4+ D (4(1 7] Jy § 1)) cos(A — 1)0]

where 4, B, C and D are stress function coefficients determined in the linear elastic analysis
in Chapter 4. The displacement field corresponding o the second order term under plane
strain conditions can be derived from Egs. (4.6) and (4.7) in the material ahcad of the crack

(—n/2 <8< 7/2)tobe:

[ ul "ty {1 — 31 ?7)] cosf
- 6.6)
s |- ) (
Uz': 20 [77 — 1/(2)(1 + n); sin &
On the upper crack Aank (7 /2 < 0 < ), the displacements are:
ul Y (1 —vM)cost
o - ZG(IJ i . (6.7)
Uy, (—vW)sing

The displacement field in the material in the angular range (—n < # < —x/2) are obtained
by symmetry about the § = 0 pléuc. A software program in language C' was written to create
the Cartesiun displacement boundary condition for the 49 nodes at the outer boundary: the
input of the program were the elastic mismatch and the corresponding A and coefficients
given in Tables 4.1-4.6, K, K*f and 7. The program calculates the leading term polar
displacements using Lgs. 6.5-6.6, converts them into Cartesian co-ordinates before adding
the contribution from the second order term. Finite element analysis was performed using

the commercial software package ABAQUS v 5.8 (2003). Insight into the elaslic-plastic
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behaviour is obtained by focusing on the clastic-plastic analysis of a crack normal to an
interface such that one of the materials is non-hardening. The post-processor Abaqus Post
was used to record the Cartesian stresses atong radial lines at 7i degrec intervals around the
crack tip in a report file (*.rpt). A Matladb v 5.3 (1999) program was used to read the recorded
data from the report file and fit a linear curve through the nodal values of the 2nd and 3rd
element from the crack tip at ?% degree intervals around the crack tip. The asymptotic crack
tip stresses for cach angle were obtained by extirapolating the linear cuxve {o the crack ip.
For a crack located in an elastic perfectly-plastic solid the cffcet of the second order term is
elucidated for elastically matched solids (£2 = 1), however, the present work largely focuses
on the problem of a crack in an elastic solid which has practical relevance for hard surface

coatings.

6.2 Crack located in plastically deforming solid

Numerical solutions have been devcloped for clastically matched but plastically mismatched
systems (€2 = 1) for a crack located in a plastically deforming solid while the material ahead
is fully elastic. The stress ficld in the material ahead of the crack is fully elastic and the
stresses are singular at the tip, whilc in the plastically deforming material on the crack flank
the crack tip stresses are finitc and distance independent. Fig. 6.2 shows the hoop stress
directly ahead of the crack as a function of the distance from crack tip normaliscd by the
crack tip opening displacement, 6, determined by the construction proposed by Kumar et. al
(1981). With this normalisation the stress profiles age self similar as evidenced by data at
two load levels. The crack tip opening is proportional to (K/ a,,)l%*. The proportionality
constant depends on the elastic mismatch and has insignificant dependence on the 7'-stress

in contained yiclding as discusscd later in section 6.4.1. In the analytic expression for the

singular elastic ficld given by Iiq. 5.52, a constant r, was left undefined by He el. al (1992).
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To determince r,, consider the hoop stress ahcad of the crack tip (¢ = 0) using Eq. 5.52:

a20(0) = — -2 [4 In =+ :z] (6.8)

):"T"\/5 o

r, can be determined from the numerical results obtained for the hoop stress on the plane

ahead of the crack tip using:

o T exp (M N 1) 6.9

"o _lim ~ o
e 3 iz, 2

Given self similarity, the right hand side of Eq. 6.9 is a constant for a given mismaich, and
r, Is a loading paramctcr that depends on the crack tip opening displacement. For clastic-
ally matched (2 = 1) solids, », = 82504, gives good agreement between the analytic and

computational results.

6.2.1 Effect of 7'-stress

He et. al (1992) develop an asymptotic solution based on the leading term of the elastic
field using a boundary layer formulation. The analytic solution was developed by proposing
the slip line field assuming complete plasticity extending from the interface to the flanks as
shown in Fig. 5.4(a). However, in the present work the mode I asymptotic cylindrical stresses
for elastically matched solids shown for the angular region, /2 < f# < « in Fig. 6.3, at
T = 0 there is incomplete plasticity, with an elastic wedge angle, ¢, = 60.5°. However,
for tensile T-stresses (I' = 0.50,), plasticity extends to the flanks. In both the cases the

numerical and analytical solutions are found to be in closc agreement. Thus, the assumption

of complete plasticity at the flanks by He et. al (1992) is valid only for highly constrained
(T > 0) fields.
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6.3 Crack located in an elastic solid

In the context of cracks in hard surface coatings and laminates which have high yield strength,
the crack tip field is obtained under the assumption that the solid containing the crack is fully
clastic. Numecrical solutions are developed for elastic mismatches, €2, in the range 1 to 10
and a full range of load cases from Mode I to Mode II. Numerical results are prescnted to
illustrate the effect of elastic mismatch, 7'-stress and mode mixity on the asymptotic plane

strain stress ficld.

6.3.1 Effect of elastic mismatch

Numerical solations for the mode I asymptotic stresses for elastic mismatches, 2 = 1, 2
and 4 are compared with analytic sclutions in Fig. 6.4, The mean stress and Mises stress
are shown in Fig. 6.5. The stresses are normalised with the yield stress of material 2. The
analytic and the numerical solution are found to be in close agreement. The plane of the max-
imum hoop stress is ahead of the crack tip (¢ = 0), while at the interface, the radial stresses
exhibit a discontinuity which decreases with increasing elastic mismatch. The structure of
the mode I ficld is independent of elastic mismatch and can be parameterised by the mean
stress ahead of the crack tip, 0,,(0). For perfect plasticity the variation of the mean stress
ahead of the crack tip with increasing mismatch is shown in Fig, 6.6. Increases in elastic
mismatch decrease the crack tip constraint and increase the resistance to crack extension by

cleavage or ductile tearing.

6.3.2 Effect of T-stress

The ctfect of the non-singular tcrm has been established as a function of ' in mode I loading.
A comparison of the effect of T° on elastically matched but plastically mismatched bi-material

systems and a fully homogeneous elastic perfectly plastic solid is given in Fig. 6.7. For
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tensile 7'-stresses, the crack tip stresses in the homogeneous material saturate when the crack
tip is fully surrounded by plasticity in the Prandtl field. However, in mismatched problems
the material on the crack flanks is fully elastic and plasticity is confined to the material
ahead of the crack. As a result, even for large tensile 77-stresses the mean steess ahead of
the crack does nol salurate but continues to increase with 7. l‘or compressive T-siresses,
the homogeneous crack features an elastic wedge on the crack flunks. The angular span of
this wedge increases for large compressive 7 -stresses until the clastic wedge angle nears m/2
which is the clastic wedge angle in the bi-matezial system, and the loss of constraint becomces
similar in both systems. Fig. 6.8 shows the normalised cylindrical stresses for T — 0.5e,, 0
and —0.50, whilc the normalised mean and mises stress are shown in Fig. 6.9. The structure
of the mode I field is independent of the T-stress but I" controls the mean stress ahead of the
crack tip and thus the magnitude of the crack tip siress. A compressive f'-stress resulls in a

loss of crack tip constraint.

A similar loss of crack tip constraint is observed for higher elastic mismaiches as shown

in Fig, 6.10. Constraint effecis can be expressed in terms of the consirainl parameter,(}:

g = 200(0) — ow 0y (6.10)

Ty

where the reference state is taken to be the small scale yielding solation (" = 0} for the
elastically matched but plastically mismatched syslem, such thai 04(0)™ = 3.450,. In
a homogeneous solid, in smal! scale yielding ags(0)7=? := 2.840, and the HRR field has

aga(0)FFE = 2.970,. The constraint parameter can be expressed in terms of 7" as:

Q= 2.48%. Q=1 {6.11)
T |

Q= 141— —0.64 Q=2 (6.12)
r

il
N

Q=1.00"- —0.98 0

Ty

(6.13)
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Q=115 —13 Q=10 (6.14)
0.0

Constraint effects continue to be significant for comprcssive and tensile 7'-stresscs cven at

higher elastic mismatches than those illustrated in Fig. 6.10.

6.3.3 Effect of loading phase angle

In mode I, the maximum hoop stress occurs directly ahead of the crack. However, as the
remote sheat component increases the plane of the maximumn hoop siress rotules towards the
interface as shown in Fig. 6.11. The maximum hoop stress increases with incrcasing loading

phase angle to a phase angle ~ 15°, beyond which it decreases as shown in Fig. 6.12.

The mode II asymptotic cylindrical stresses are shown in Fig. 6.13 and the corresponding
mean and Mises stresses in Fig. 6.14. Since the field is antisymmetric with a centred fan
sector ahead of the crack tip, ope(0) = 0,,(0) — 0 whilc 7,5(0) = £, irrespective of elastic
mismatch. Thus, elastic mismatch has little effect on the stress levels ahead of the crack but
affects the angular span of the centred fan, 20, as shown in Fig. 6.15, and hence the hoop

stress across the interface (¢ = = /2):

vep — £(2k07 4 ksin 26™) (6.15)

The span of the centred fan increases with mismatch but can never be larger than o, whea
the hoop stresses at the interface are +-kw, which arc thc maximum intcrfacial hoop stress

for any material combination in mode II loading,

6.3.4 Range of validity of the solution

Analytic and numerical solutions were determined under the premise that the material behind

the interface was fully elastic. Howevet, the solutions are still valid for bi-material systems
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which may have finite plastic mismatch, o€’ /0 {2, provided the Mises stress of the present
solution in the elastic region is below the yield point of the material. As a result, there is
a critical plastic mismatch, o{} /{?), for which the assumption of fully efastic crack flanks
remains valid. The critical plastic mismalch for mode I solutions is a function of the mean
stress ahcad of crack as shown in Fig. 6.16. With increasing mean siress ahead of the crack
tip the permissible plastic mismatch increases for maintaining fully elastic crack flanks and

thus the validity of the solutions.

If the condition is not met and the plastic mismatch is slighily lower than the critical
value, plasticily in the flank initially develops as a centred fan which does pot exfend to the
interface as shown in Fig. 6.17(a). For even lower plastic mismatches the slip line field that
develops has a constant siress secior at the inferface adjoining the centred fan as shown in
Fig. 6.17(b). In this configuration, the span of the constant stress scctor at the interface, o,
can be determined in terms of the plastic mismatch. If the shear al yield for the material at
the flanks is &'Y), the shear siress in the constant siress sector behind the interface is of the

form:
oo = k7 cos(20 — (m — 2a)) (6.16)

and at the interface it satisfies the condition:

(Trﬁ(w/g) = k(z} = V/i

(6.17)

where, £(® is the yield stress in shear of matcrial ahead of crack. The solution of the bound-

ary conditions gives the span of the constant stress sector in terms of the plastic mismatch:

1y {e® oo\? _
@ = 5 €08 (m 0< o) <1 (6.18)

Thus, the span of the constlant stress sector, ¢, incrcases for high plastic mismaich and re-

duces to 0 for a plastically homogeneous material (o, = ¢,)). The span of the centred
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fan, 5, depends upon the mean stress ahead ol the crack, as discussed for homogeneous

systems by Du and Hancock (1991).

6.4 Crack in an elastic solid approaching a strain harden-
ing solid

Although non-hardening behaviour gives insight into the structure of the crack tip fields,
practical material systems usually exhibit strain hardening. In this section, the effect of the
non-singular term and elastic mismatch is analysed when the material abead ol the crack is

allowed to strain harden with a uni-axial stress-sirain relalion of the form:

epE]:T

g = J‘,[l-i-o
G -

o> g,

(6.19)

= Fe o <a,

here ¢, is the plastic strain and n is the strain hardening exponent which is taken to be 10
giving the stress-strain curve illustrated in Fig. 6.18. The uni-axial stress-strain relation is
generalised for multi-axial states of stress using a Miscs yicld criterion with an associated
flow rule. Initially the tcchnologically important gcometrics of a crack in a hard coating and
a crack in a hard laminate detailed in Fig. 4.7 are analysed for an elastic mismaich, 2 = 10.
The non-singular T-stress can hbe compiessive or tensile depending on geometry, loading
and elastic mismatch as indicated in Fig. 4.9. The load is such that 7' = +0.31o, for the
coating and T ~ 0 for the lamina. The hoop stress ahead of the crack tip and at the interface
as a function of the normalised distance from the crack tip are shown in the Fig. 6.19. At
different levels of T, the stress curves remain parallel and the tensile 7-sivess raises the level
of stress. For weakly strain hardening materials the deviatoric component of the stress is not
affected by the T-stress as shown in Fig. 6.20, but the hydrostatic componcat increases with

the T-siress.
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Further insight into the effect of elastic mismatch and 7 -stress on the form of the strain
hardening stress field is obtained for contained yielding conditions using the modified bound-
ary layer formulation model described in Section 6.1. Small scale yielding solutions (7" = 0)
of the hoop stress at the plane ahead of crack tip (¢ = 0) are illustrated in Fig. 6.21 for elastic
mismatches, = 1, 2, 4. With increasing elastic mismatch the hoop stress decreases, the ef-
fect is similar on the hydrostatic stress as indicated in Fig. 6.22, The deviatoric hoop sticsscs
shown in Fig. 6.23 differ slightly for different elastic mismatches. Thus, incrcasing elastic
mismatch decreases the crack tip mean stress, however, in strain hardening bi-material sys-
teras of diffcrent elastic misinatches, the deviatoric component shows a weak dependence on

the mismatch.

6.4.1 Crack extension: penetration or delamination

There are two possible modes of extension for a crack normal to an interface: interface
failure or penetration of the material ahead of the crack. He and Hutchinson (1989) address
this issue in elastic solids by considering the ratio of the strain encigy release rates of the
two processes. Although strain energy rclcase tate as a derivative of the potential energy
with respect to crack length per unit area is imperfectly defined at the interface, following
a dimensional argument the strain energy release rates have been expressed in terms of the
stress intensity Lactor, K, and a finite increment of crack extension, Aa, which is either into
the substrate or along the interface (He and Hulchinson, 1989). However, for both modes of
failure, as Ag — 0, the strain energy release rate becomes zero for A < ;, corresponding
to a crack in the stiffer material. Alternatively, the strain energy releasc rate is unbounded
for A > % when crack is located in the less stiff material. Nevertheless, as the ratio of
strain energy telease rafes remains finite, it has been used Lo discuss the failure mode. Tt
has subsequently becomc clear that the critical strain energy release ralc is not a unique

material property but depends on crack tip constraint. In homogeneous materials the strain
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energy release rate (.J,) increases as crack tip constraint is lost (Betegdn and Hancock, 1991;
Sumpter and Hancock, 1994). Similar effects musl also be expected for interface toughness.
However, progress can be made by considering crack tip opening displacement, ¢ as defined
by Kumar ct. al (1981) as the parameter characterising the stress field. The crack tip opening
displacement obtained numerically can be rclated to the stress intensity factor through a
constant ¢ which depends on elastic mismatch and is independent of T-slress as shown in
Table 6.1-6.2:

§=d (5) = (6.20)

To

Q4
1 56167

4 4276.0
10 52384

Table 6.1: The effect of elastic mismatch on the constant, d, for 7" = 0.

‘TX% g ‘
0.5 52383
0 5238.4
0.5 53819

Table 6.2: The effect of T-stress on the constant, o, for elastic mismatch €2 = 10.

In the present work the local faiture criterion proposed by Ritchie et. al (1973) for cleav-
age is used. 'The crack is taken to penetrate the interface when the hoop stress ahead of the
crack exceeds a critical stress taken to be, o, = 3.50,, over a micro-structurally significant
distance, 7*. The interface is subject to combinations of tension and shear, so that a distinc-
tion is made between interface failure dominated by a local opening mode and failure by
local shearing. 'Lensile dominated failure is assumed to occur when the hoop siress at the
interface aver distance r* exceeds a critical stress taken to be, g, = 1.50,. Shear dominated

failure is taken to occur when the shear stress at the interface exceeds a critical shear stress

taken to be, T — g,, over the characteristic distance, r*,
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The hoop slress ahead of the crack is shown in Fig. 6.21 as a function of the distance
from the crack tip normalised by the crack tip opening, ¢. This defincs a set of seli similar
curves at three levels of elastic mismatch. The critical hoop stress defines the ratio 4, /r*, for
interfacc penctration as a function of clastic mismatch. Eliminating the critical distance r*,
allows the data to be presented as the ratio of the crack tip opening, §,(2)/6,(€2 = 1), for an
elastically mismaiched system compared to that of an elastically matched system as shown
in Fig. 6.24. The significant result is that the resistance to interface penetration increases

with elastic mismatch due to constraint {oss.

At the interface, the hoop stress decreases with increasing mismatch as shown in Fig. 6.25.
Thus, elastic mismatch causes the hoop stress to fall both abead of the crack tip and at the
interface. However, the interfacial shear stress remains independent of the elastic mismatch
as shown in Fig. 6.26. Interface failure criteria have yet to be fully c¢stablished. Nevertheless
it is useful to consider two limiting cascs of tensile or shear dominated inierface failure, Fail-
ure under general stress states must be expected io interpolate between these extremes. For
tensile dominated interface failurc, a similar argument to that developed for interface pen-
etration leads to §4(£2)/34(€2 = 1) where dy is the crack tip opening for delamination. The
compctition between penetration and delamination for tensile dominated interface failure is
shown in Fig. 6.27 as the ratio of the crack tip openings for penetration and delamination.
For tensile dominated interface failure, loss of constraint associated with incrcasing elastic
misitatch promotes penctration compared to delamination, although the toughness of both

processes is increascd.

Significantly elastic mismatch has no effect on the interface shear stress. As a result, for
shear dominated interface failurc, the loss of constraint associated with elastic mismatch has
no effect on é; while the toughness for penelration increases. The effect is that in this case,

constraint loss promotes interface failure as iliustrated in Fig. 6.27.




CHAPTER 6. A Crack Normal to an Interface: Elastic-Plastic Numerical Solution 122

For a range of I -stresses, the hoop stress is shown as a function of the distance from
the crack tip for elastic mismatch, 2 = 10, in Figs. 6.28-6.29 while the shear stress at the
interface is in Fig. 6.30. Loss of constraint due to compressive stress is observed both ahead
of the crack and at the interface. Following an identical argument the loss of constraint due
to negative 7-stress is shown to increase the resistance 1o both interface penetration and
interface delamination in the opening mode. However, constraint loss due to 7'-stress has
no effect on the interface shear steess. Fig. 6.31 shows the ratio of crack tip opening for
penetration and delamination as a function of the T-stress. The constraint loss associated
with compressive T-stress promotes penetration (o1 tensile dominated interface failurc and

delamination for shear dominated interfaces.

6.5 Conclusion

Numcrical solutions of the plane strain elastic-plastic asymptotic fields of a crack normal to
the interface between elastically and plastically mismatched solids have been obtained using

modified boundary layer formulations.

When plasticity is [imited to the material on the crack flanks, the elastic material ahead of
the tip exhibits a logarithmic singularity. The logarithmic constant r, is a loading parameter
with the dimensions of distance that can conveniently be identified with (K/ cr(,)ﬁ or the
crack tip opening displacement. The crack tip field in the material behind (7 /2 < # < ir and
—7 £ 8 < —7/2)is composed of elastic and plastic sectors that have finite crack tip stresses,
full plasticity being achieved for tensile T -stresses when the characterising parameter of the

field, hoop stress at the interface, reaches its peak value, (1 + 7w/2).

When the crack is located in an elastic solid, the structure of the mode I fields is sim-
ilar and in the leading sectors only differ through a hydrostatic {erm. The mcan siress or

the conslraint ahead of the crack tip, identificd to be the characterising parameter of the
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family of mode I fields, increases with increasing 7'-stress and decreasing elastic mismaich.
Thus, for gcometries with high clastic mismatch and negative T-siress the resistance for
crack exlension is expected to be be higher. As the mode mixity is incrcased , the plane of
maximum stress rotates towards the interface. The mode II field parameter, #%, increases
with increasing clastic mismatch, marginally increasing the stresses at the interface. The
constraint cffects associated with elastic mismatch and 7'-stress established in the limit of

non-hardening are reproduced for moderately strain hardening malerial response.

The constraint loss associated with compressive T-stress and higher elastic mismatch
increases the resistance to crack extension in the opening mode. A hard surface coating
which has a high elastic stiffness compared to the substrate would have a high resistance
to crack extension at small loads. However, since such a geometry would develop tensile
T'-stress, the loss of constraint as a result of elastic mismatch would get compensaled by the
tensile 7-stress effects and the resistance to crack extension would fall with increasing load.
However, in mismatched laminates compressive 7-stresses develop, implying both clastic

mismatch and T'-stress would result in loss of constraint and higher toughncss.

Loss of constraint increases the resistance 1o both interface penetration and delamination.
However, if inteiface failure is dominated by normal stiesses across the interface, loss of
constraint favours interfuce penetration, whereas for interfaces which fail due to shear stress,

constraint loss favours delamination.
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Fig 6.1: Mesh of the modified boundary layer formulation
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Fig 6.2: The hoop stress ahead of the crack tip as a function of the normalised distance [rom the
crack tip for elastically matched solids (€2 = 1) atI" = 0.
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clastically matched solids (€2 = 1) at different T-stresses.




CIHAPTER 6. A Crack Normal to an Interface: Elastic-Plastic Num@rjca] Solution

126

L
=150 -i00

=50 1} 50 100 150
0
4 T T T T ¥ T -
6w +
ar e x
313 . L
3 analytic —

-150 —108 -50 0 50 10 150
3]
4 T H T ] i 1 T
§n +
ir 0Q=4 G ® "
= A .
2k analytic —

1

1 1
-150 =100

~30

L
100

el
150

Fig 6.4: Mode I normalised asymptotic cylindrical stresscs as function of the angle, ¢ {in degrecs)

for different elastic mismatches at 1’ = 0,




CHAPITER 6. A Crack NO__I‘{I’_I_&I to an Interface: Blastic-Plastic Numerical Solution 127

4 T T T T T~ T

G inzan +

Lo FIEN X

b EUTITS B analytic —— "7
2 / A\\\\ _

o ~ 4
1]
A 1 1 J S Y U U NN
-180 -150 -100 -50 (] 50 100 150 180
H

4 T T T = -

O e o

O nises X
3P Q=2 unalytic —

| T
L /{0"‘7‘4 -o—m\\\ |

+ *Jﬁ\
VETIVEY s P AT % .
TN

;r
b,
b,

n fovecce © . . - . . . - o . e [P —
b 1 ! : . N T F
=182 - 150 100 A0 0 S 1an 50 180
B
4 T T T T T 7
O o +
O ttses X
aF 84 analytic —- 4
2 | i
ir ‘%{},‘/‘—::—: RKEFHR m);.x* -
0O .
Q N
1 ) I i | 1 I I
=180 ~150 =300 =50 1l 50 100 150 180

)

Fig 6.5: Mode I normalised mean and mises stresses as function of the angle, ¢ (in degrees) for
different elastic mismatches at T = {.




CHAPTER 6. A Crack Normal to an Interface; Elastic-Plastic Numetical Solutio_{l ) 12_,8

Mode 1

IFig 6.6: The effect of elastic mismalch on the mean stress ahead of the crack in mode 1, 77 = 0.
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Fig 6.7: A comparison of the effect of the 7'-stress on an elastically matched but plastically mis-
matched bi-material, with an clastically and plastically homogeneous solid.
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Fig 6.11: Direction of the plane of maximum hoop stress as a function of the loading phase angle
for elastically matched but plastically mismaiched solids (£2 = 1).
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Fig 6.12: The cffect of loading phasc angle on the maximum hoop stress abead of the crack, for three
levels of mismatch, 2, and T == (.




CHAPTER 6. A Crack Normal to an Interface: Flastic-Plastic Ni ume;i_c;;l_So}u tion

133

03

-t

5Ir + 7
g X
Oy *

analytic —

2 1 1 Lo
-150 =10 -50 LI} 50 LUy 0
4 T 1 T T T T T
3k Oy 1 .
=2 T N

Ty %
analytic ~—

2l
-15¢ - =50 0 S0 L H 150
4 T 1 T T T T T
3+ §1r + N
1 g=4 G X
2 Gvﬂ . ¥ -
analytic ——

| L
=150 -100

L
=50

a 50 100 150

Fig 6.13: Mode II normalised asymptotic cylindrical stresses as function of the angle, # (in degrees)

for different elastic mismatches at 7° = (.




CHAPTER a. A Crack Normal to an Interface: Elastic-Plastic Numetrical Solution 134

3 T T T T T T 1
2k i
I.WXXXXXX}(TX N e o VK-X'W*K‘*F
--—4—r+-+—o-+-e-rnr—¢~f$; AR
ol . |
|oe= M st ]
G iseun -
6:!115:3 x
-2 . -
: anafytic —--
-3 i o L | 1 I 1 L
~150 =100 -50 Qa A1 100 150
4]
3 T T T T T T T
2k 4
1 154 e . s X =
L St X
ot -
Q=2 N .
I \ : R |
- Lo e 3 Sl
amlmﬂ X
-2 amalytic — -
- 1 1 Il 1 J 1 1
) -5 100 -50 0 30 <00 150
1 T : T T T T T
P bt
K ?
2 W : : M"%M
1 .:‘H*"-:\ ; \'C aahial N SHEN x 3
ol >, i
Q=4 ¢
-1 F ~ %\H“F\I\N&’:
O uean + : L
&Illhc:i x
=20 analytic — T
-3 L [ L JR TS AT | 1|
—150 =300 =50 o i} 140 150

Fig 6.14: Mode II normalised asymptotic mean and mises stresses as function of the angle, @ (in
degrees) for different elastic mismatches at P = (.




CHAPTER 6. A Crack Normal 1o an Interface: EIasticJ’Iast_ic Ny_z_neri_(_,_'al Solution 1

w
U

90 T T 1 4 T T T T
80
Maodc 11
70 |
60 r
., 50t

an T

20 +
10 |-

Fig 6.15: The effect of elastic mismatch on the span, 8 |, of the cenwred fan sector in mode IT.

4 -y T T T

35 Mode 1 J

(] 1 i 1 1
1 2 3 4 5 6

G (O
o

Fig 6.16: The ciitical ratio of yield stresses, o / 0,(,2) , for no plasticity behind interface.




CHAPTER 6. A Crack Normal to an __I_nterface: EJas_I.ic—I_’.I_aﬁgfc Numerical Solution 136

(a) ()

Fig 6.17: Mode I slip line fields when the vield stress ratio is less than critical.
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Fig 6.18: The stress-strain relationship for a strain hardening exponent, n = 10.
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Fig 6.19: The effect of T-stress on hoop stress in the plane ahead of the crack tip in a strain hardening
material.
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Fig 6.20: The ettect of 7-stress on deviatoric stress in the plane ahead of the crack lip in a strain
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Fig 6.21: 'The effect of elastic mismatch on hoop stress abead of the crack tip (¢ = 0y at 7 = Q.
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Fig 6.22: The cllect of clastic mismatch on the hydrostatic component ahead of the crack tip (8 = 0)
atT = 0.
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Fig 6.23: The effect of elastic mismatch on the deviatoric hoop stress ahead of the crack tip (f = ()
at T =0.
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Fig 6.24: 'The effect of elastic mismatch on the crack opening displacement for T = (.
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Fig 6.26: The effect of elastic mismatch on shear stress at the interface (¢ = 7/2) at T=0.
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Fig 6.28: The effect of T'-stress on hoop stress ahead of the crack tip (¢ = 0) Jor £ = 10.
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Fig 6.29: The cffect of T-stress on hoop stress at the interface (¢ = 7/2) for @ = 10.
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Fig 6.30: The cffect of T'-stress on shear stress at the interface (¢ = 7/2) for Q = 10.
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Cracks in Strength and Toughness
Graded Materials

Functionally gruded material systems are designed to avoid abrupt transitions in properties
from onc material fo another by changing material properties in a continucus manscr across
an interfacial zone. A continuous spalial variation in propertics may also result from man-
ufacturing process such as welding. The present work is motivated towards the identifying
effect of strength and toughness gradients, experienced by a crack in an interfacial zone of
uniform elastic modulus. The problem may be considered as an idealisation of a crack in the
heat affected zone between a weld and parent plate, or a crack subject to a non-uniform tem-
peraturc ficld. Plane strain asymptotic stress fields under conditions of small scale yielding
and non-hardening plasticity have been consiructed. A statistical approach is used to dis-
cuss the effect of toughness and strength gradient on the failure probabilities and the crack

trajeclory.

7.1 Geometry

Consider two elastically matched homogeneous isotropic solids denoted by the superscript,
k = 1,2, which differ in yield strength, o), and arc joincd by a graded zone of length 2. A
crack is located at the centre of the zone with iis flank paraliel to the boundaries of the zone.
Polar and Cartesian co-ordinate systems are centred at the crack tip as shown in Fig. 7.1, The
yield strength within the zone is taken to be a linear interpolation between the yield strength

of the two maierials as shown in Fig. 7.2, such that:

ooly) = off (v>0)
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) _ (2) (1) 4 g2
_ (ao 7 02,___) Yy - (OL.:; il ) (—I<y<l) (7.1

= o (y <)

and o{V < ¢{*). The numerical solution is based on the boundary layer formulation tech-
nique developed by Rice and Tracey (1973) to model contained yielding. A circular focussed
mesh centred at the crack tip was constructed for the elastic-plastic numerical analysis under
conditions of plane strain contained yielding. The mesh was composed of 576 eight-noded
isoparametric, reduced-hybrid elements, such that the ratio of the crack tip element to the
outer radius of the mesh was 3/10°. The displacement field corresponding to the homo-
geneous elastic mode I solution was applied on the outer boundary of the mesh. The solids
and the graded layer are taken to be almost plastically incompressible (# = 0.49) and non-
hardening, In order to model plastically dissimilar solids joined by a graded interfacial zone,
a (-program was writien to assign a field variable to each node such that the field variable
was a function of the nodal y-co-ordinate as indicated by Eq. 7.1, and the yield strength is as-
signed to be the feld variable. Solutions were obtained for a range of plastic mismatches and

constraint, as quantified by the second order term in the Williams expansion: the 7'-stress.

7.2 Plastic zone shape

In order to define the shape of plastic zone a numerical procedure prepared in Matlab v 5.3
(1999) was developed in which a Mises stress within 4 percent of the local yield strength
was taken to be at yield. The plastic zone boundary was determined at radial intervals of 7.5
degrees around the crack tip. Pue to the gradation in yield strength, even under a remote
mode I load the plastic zone shapes are asymmetric about the crack plane. The co-ordinates

of the plastic zone boundary points ate normalised by the loading parameter (K;/otF)?
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which has the dimensions of length: o being the yield stress at the crack tip. However,
unlike plastic zones in homogencous malerials, this normalisation gives a plastic zone shape

which depends on the load because the yield strength varies within the graded zone.

An important distinction is made between plastic zones comparable to or smaller than
the graded zone width, and plastic zones with dimensjons very much greater than the graded
zone width. The maximum span of plastic zone normal to the crack plane, 7, is taken as
a measure of the plastic zone size as shown in Fig. 7.3. Plastic zone shapes for a system
with mismatch, 4 = 2 and the ratio between the graded zone width and the outer boundary,

20/10°, are shown in Figs. 7.4-7.5.

When the plastic zone is small compared to the graded zone width (r, << 2I), the
difference in yield sirength across ry, is insignificant. Thus, the shape of the plastic zone tends
towards that of a crack in a homogeneous material under the same remote loading conditions,
as shown in Fig. 7.4 for mode 1. As the ratio r,/2[ increases the plastic zone shape becomes
asymmeiric, the lobe within the softer material becoming larger than the lobe in the harder
matcrial, When the plastic zone is very much greater than the graded zone width (r, >> 21),
the effect of gradation on the plastic zone decreases as illustrated in Fig, 7.5, and the plastic
zone shape tends towards that of an interface crack between plastically mismatched solids.
An interface crack between dissimilar solids is the limiting configuration in which the graded
zone width approaches zero (2{ — 0), corresponding to an abrupt change in properties across
the interface. With increasing load the plastic zone shape evolves from a mode I shape fill it

saturates at a shape corresponding to a sharp interface crack us shown in Fig. 7.5.

For a general plastic mismatch, the erack tip stress field is asymmetric. The plastic mixity,

M, = tim,_ 2 tan 1 (%), is shown in Fig. 7.6 as a lunction of the non-dimensional
loading parameter, K /{Aa,/1), where Ac, = 02 — o{), Since in the geometry, oi?) is
taken to be greater than or equal to ¢’ and loading is mode I, stresses ogg(0) and 7,4(0) are

non-negative. Starting from the homogeneous made [ field which develops at a load level



CHAPTER 7. Cracks in Strength and Toughuess Graded Materials 148

asymplotically close to zero, the shear component at the crack tip increases, resulting in a
decrease in plastic mixity with increasing load. The plastic mixity at the crack tip salurates
at large loads when 7, >> 2 as shown in Table 7.1. For a sharp intcrface problem, however,

the plastic mixity is load independent, being 0.88 for M = 2 (Kim et. al, 1997).

In homogeneous solids mixity within the plastic zone only arises as a result of mixity
in the remote loading. However, local mixity is an inherent feature of functionally graded
problems. A crack in a homogeneous solid under a remote mixed mode loading (I(;/ Ky =
6; M, = tan—'(K;/K;r) = 0.89) has the same crack tip plastic mixity, M, = 0.94, as
that of a crack in a graded zone between dissimilar solids at a plastic mismatch, M = 2,
/20 = 207 and under remote mode I loading. A comparison of the plastic zone shapes is
shown in Fig. 7.7. Even though the plastic mixity at the crack tip is the same, the plastic
zone shapes differ markedly. For a mixed mode ficld in a homogeneous material, asymmetry
of the crack Lip plasticity is associated with the rotation of the plastic lobes. However, in the
case of dissimilar materials the plastic zone expands into the softer material resulling in a

marked diffcrence in the radius of the plastic lobes.

Tp U S
2| (Aol M,

=0 =0 | =1
0.7 . 1.7  0.98

3 3.5 0958
25 10.5 | 0.94

207 | 31 ! 0.94

Table 7.1: Mixity as a function of loading parameters.
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7.3 Asymptotic analytic solution

FFor elaslic perfectly-plastic homogeneous materials undergoing incompressible plane strain
deformation, crack tip plasticity can be described by slip line theory. Following an srgument
developed by Rice (1982) and presented in section 5.1, but for graded material, the structure
ol the asymptotic ficld can be determined. In a graded material the yield stress is a function

of 7, (. Differentiating the yield criterion with respect to 9 gives:

3 0 00—1'H o 00—0 o
‘2—(003 - Ja-r)'é“é‘(gas - Uw) + 6(71‘9“5“6*" = 209*{75;5‘ (7.2)
Substituting (cpp ~ o) and o,y from Eq. 5.5-5.6 gives risc to the condition:
3 60}9 a 80—0
AL S ) = 20— 7.3
5759 5500 | o) = 20055 (7.3)

In the limit, as ¥ — (), % —+ ( as the material is locally homogeneous recovering Tig. 5.8.
Al the crack tip the stress field can be represented by a combination of constant stress sectors
and cenired fan sectors as described in Chapter 5. Numerical solutions of the asymptotic
stress field show that the slip line field is composed of 6 sectors: an elastic sector at the
vpper flank, ES-6 (65 < @ < «) followed by a constant stress scctor, CS-5 (04 < 6 < 65)
that leads to a centred fan sector, CF-4 (03 < # < #,) followed by a constant sector, C3-3
(8 < 8 < @), a centred fan sector, CF-2, (#, < @ < fs) and finally a constant stress sector
at the lower flank, CS-1 (—n < 0 < 6;) as illustrated in Fig. 7.8. The configuration is
the general 6-sector form identified by Zhu and Chao (2001) for homogeneous cracks under
mixed mode loading. Ensuring continuity of tractions and traction free crack flanks, Zhu and
Chao (2001) built up the analytical solution of the asymptotic field based on two parameters

that are determined numerically, 7, and 7, defined as:

T, = o0p(0=0) — 0g(0 = O)F!‘anm&ﬁ for o,.0(0 =0) <k
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37

= 099(0 :0)— (].-1— 5

)k for o,(0=0)=k  (74)

6 = 7) — 0,, (6 = m)Prondt

Trr - wa(
2

(7.5)

where, app(0 = 0)P" 4 = k(2 + 7) and 0,..(8 = 7)Pr*nd = 2k while the sector defining

angles, 8y - —3x/4, 05 == 8; — /2, 83, 84 and #; can be determined from:

Tr  cos(fs — 204)

ko sin g ! (7.6)
10-3) = (@-F-) -G -0 o
15 T . .

e (2()3 —1- E) + sin 26y for o0 =0} < £k

= Ay for o.4(8=0)=1k (7.8)

Thus, in a 6-sector configuration the sector defining angle ¢, is a constant, angles @, and 04
depend only on 7}, while 8, and 65 depend on both T}, and 7. The asymptotic ficld then
can be expressed in terms of the sector defining angles. The asymptotic stress field in the

constant stress sector at the lower flank, CS-1, (—m < & < ;) is:

Ty = k{1 --cos20)

age = k(1 — cos26) (7.9)

Org = =ksin2f
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In the centred fan sector, CF-2, (#; < < @) the siresses are:

3
Orp = Ogg=k (1 + "*g =+ 29) (7.1{.})

Ovh — —k

The stresses in the following constant stress sector, CS8-3, (62 < @ < ;) are:

2 (1 +2 293) + ksin 200 — 6)

Opr

oo = k (1 + 2+ 2.93)  ksin2(0 — 6s) (7.11)

o = kcos2(8 — &)
The stress field in centred fan sector, CEH-4, (#3 < § < 64) is:

6w = om=k (.L oy 29) (7.12)

U-v'[} = k;’
The stresses in constant stress sector, CS-5, (63 < 0 < 0,) are:

O = k (1 -} g— + 464 — 294) + ksin 2(8 — 6,)

o = k (1 + g + 46, — 204) — ksin2(8 — 64) (7.13)

arg = kcos2(8 —0y)
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At the upper flank, the stresses in the elastic sector, ES-6, arc:

Ope = C(1+c0s828) + D(2r — 28 — sin 20)

gog = C(1—cos20)+ D(2x — 20 + sin 26) (7.14)

oy = —Csin20 -+ D(1 ~ cos?28)

where C = —kcos(fs - 264)/siufly and D = - kecos20,/(1 -- cos 205). To summarise,
for a crack in a graded zone the crack tip field in general there is a 6-sector configuration.
In the limiting case of a homogeneous crack it is a 5-sector configuration identified by Du
and Hancock (1991). In the 6-sector configuration, the stress field in the sectors at the lower
flank, CS-1 and CF-2, is independent of plastic mismatch. In the following constant stress
sector, CS-3, the stress field can be expressed in terms of #; which depends only on 7. The

plane of maximum hoop siress lies within CS-3, its orientation being at angle f3 — 7 /4.

7.4 Numerical results

A boundary layer formulation analysis was performed using the commercial software ABAGUS
v 5.8 (2003). The output stress data was processed using the routine described in Section
6.1.1. The asymplotic stresses at the interval of 7.5 degrees around the crack tip are com-
pared with the analytic solutions for a plasiic mismatch, A/ = 2 in Fig. 7.9. Thc analytic
solution is based on the parameters identified by Zhu and Chao (2001): T, /k == —0.60 and
Tx/k — —1.97, the angles defining sectors arc determined from the solution of transcend-
ental Egs. 7.6-7.8 using M athematica to be: 6y = —135°, 0 = —59°, 03 = 31°,8, = 111°,
fs = 153°. The numerical solution of the stress field is in close agreement with the analytic

solution. The crack tip mixity is M, = 0.94. In a similar manner the asymptotic stress field
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is abtained for a range of plastic mismatch to evaluate the effect of plastic mismaich. The
effect of the second order term of the outer elastic field has also been examincd atl tensile and

compressive 1'-stresses.

7.4.1 Effect of plastic mismatch on the asymptotic field

Analytic and numerical solutions for the asymptotic field have been determined for a range
of plastic mismatches, M = 1.2,1.5,2.0, 3.0 and 4.0, The parameters characterising the 6-
sector configuration of the crack tip field, 7}, /%, T /%, and the sector boundarics are tabulated

in Table. 7.2, the locations of the sector boundaries are tabulated in Table. 7.3.

For a mode 1 crack in a homogeneous solid, symmetry of the field requires the shear
stress on the plane ahead of crack tip to be zcro and the plastic mixity to be unity, Mp = 1.
When a plastic mismatch is introduced, crack tip plasticity becomes asymmetric and the
shear stress at the crack tip becomes non-zero, resulting in a decrease in plastic mixity. The
plastic mixity is shown as a function of the plastic mismatch in Fig. 7.10. Incicasing plastic
mismatch results in lower hoop stresses at the crack tip (o40(0) /0 ¥). The radial stress at the
flank, o,,.(7)/c?"?, becomes more negative until it reaches the limit for yield: —./4/30%%.
The span of the centred fan sector in the lower half (CF-2) decreases with increasc in plastic
mismatch. Thus, the constant stress sector ahcad of the crack tip CS-3, rolales towards
the lower flank resulting in the planc of maximum hoop stress o rotate towards the higher
yicld strength material. ‘Lhe orientation of the plane of maximum hoop stress, 4., a8 a
function of the yield strength mismatch is indicated in Fig. 7.11. Starting from a crack in a
homogeneous solid in which the maximum hoop stress acis in the crack plane (6 = 0), the
orientation of the plane of maximum hoop stress saturates at an angle close to 20 degrees
for plastic mismatches, M > 3. The span of the sector: CF-4, initially increascs with
plastic mismatch but for higher mismatches it decreases. The angular span of the trailing

constant stress scclor, CS-5, increases with plastic mismatch and saturates to 45 degrees.
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Finally, the elastic wedge at the upper flank, ES-6, its span first decreases with increasing
plastic mismatch but starts increasing for higher mismatches. Fig. 7.12 shows that increase

in plastic mismatch results in a decrease in the mean siress in the planc ahcad of the crack

tip.

L R O N I L BN (" IO
(deg) | (deg) | (deg) | (deg) | (deg)

i |
1.2 283 ! 036 |-0.24 069 -135 | 51 | 39 - 117 | 132
1,5 277 1 058 {-034 -1.50]-135| -54 | 36 , 118 | 158 °
2.0 2.62 -1.14 | -0.60 | -1.97 | -135 | -59 | 31 | 111 | 155 |
30| 245 | -1.14 | 089 [-1.97 | -135 | -64 | 26 | 102 | 147
4.0 238 | -1.14 | -1.00 | -1.97 | <135 | -66 | 24 | 100 | 144

Table 7.2: The slip line field characterising parameters and sector bovndaries for a range of
yield strength mismatches.

M | CF2 | CF-4 | CS-5 | ES-6
(deg) | (deg) | (deg) | (deg)

12| 8 | 78 | 15 | 48
15| 81 | 82 | 40 | 22
20| 76 | 80 | 44 | 25
30| 71 | 76 ¢ 45 | 33
40| 69 | 76 44 | 36

Table 7.3: The angular span of scctors for a range of yield strength mismalches.
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7.4.2 Etfect of T-stress on the asymptotic field

The effect of the second order term in Willimms expansion, 7-stress, has been detlermined
for a yield strength mismatch, M = 2, at T/o% = —0.33, 0 and 0.33. The characterising
paramcters of the 6-seclor configuration, 7,/k and 75 /k and sector boundaries are tabulated
in Table. 7.4. In the crack tip ficlds shown in Fig. 7.13, the angular spans of the constant
sectors: CS-1 and CS-3 remain constant while there is negligible effect of 7' on the trailing
constant stress sector: CS-5. TMowever, compressive T'-stress results in an increase in the
elastic wedge angle at the upper tlank as observed for a crack in a homogeneous material (Du
and Hancock, 1991). For compressive 7' the angular spans of centred fans: CF-2 and CF-4,
decrease. Decrease in the span of centred fan, CF-2, causes the constant stress sector ahead
of the crack tip to rotate towards the lower flank, thereby rotating the plane of maximum hoop
stress towards the plastically stronger material and decreasing the plastic mixity as shown in
Table. 7.4. The decrease in plastic mixity and increase in the anglc of orientation of the

maximum hoop stress associated with compressive 7'-stress is illustrated in Tigs, 7.14-7.15.

;JL— E-—s_,r;(?—) ”;%577‘"1 % TT" 01 92 193 84 95 ) l‘/fp
(deg) | (deg) | {deg) | (dog) | (deg)

C-0.33 ] 222 | -1.02 | -1.29 -1.88 | -135 - 71 19 92 134 | 0.87
0 | 262 |-1.14 | -0.60  -1.97 | -135 | -39 31 111 | 155 | 0.94
33 : 279 | -1.14 } -0.31 | -1.97 | -135 | -33 37 120 | 165 | 0.96

Table 7.4: The effect of T-stress on the slip line characterising parameters and the sector
boundaries for yield strength mismatch, M = 2.
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7.4.3 Crack path based on the asymptotic stress field

In mixed-modc lests of homogeneous brittle solids, a range of sieels were tested by Mac-
cagno and Knott (1991) and polycrystalline alumina by Suresh and Shih (199 1). In all cases,
the crack tip mixity caused the crack to deviate from its original plane. Predictions of the
crack extension direction based on the direction of asymptotic maximum hoop siress (Er-
dogan and Sih, 1963) and the direction of maximum strain energy release rate (Palaniswamy
and Knauss, 1978) were in close agrecment with the experimental results. In functionally
graded clastic materials Gu and Asaro (1997) assuming local homogeneily use the crack tip
mixitly to predict failure towards the material of lower elastic stiffness in agreement with the

experiments of Rousseau and Tippur (2000).

On the basis of local homogeneity at the crack tip a discussion can be developed to
predict failure based on the asymptotic stress field. In the asymptotic stress field of a crack
in a plastically graded zone, the siructure of the 6-sector field is such that there is complete
plasticity from the lower flank to the plane of maximum hoop stress. Thus, the mean stress in
the plane of maximum hoop stress can be expressed in terms of the angle of the orientation

of the plane, @,,.:
Um(gmam) = k(l + 7'r) — 26844 (7.15)

In the asymptotic field il local homogeneity is assumed, an increase in f,,,, as a con-
sequence of high plastic mismatch and compressive T-stress, implies loss of constraint and

higher toughness favouring crack extension towards the harder solid.

7.4.4 Near tip field

The hoop stress normalised with the yield strength at the crack tip is shown as a function

2
of distance normalised with { in Fig. 7.16 for (ﬁ) = 88, 362 when the graded zone

To
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width was held constant. Fig. 7.17 shows the strcss for 5 (%)2 = 145, 362 when K was
held constant while the width of the graded zone was changed. From these figures it is
evident that for a non-hardening respouse, normalising the distance with the graded zone
width results in self similar curves. The cylindrical stxcsses, o4y, Fgp and o,g, are shown in
Figs. 7.18-7.20 as a function of distance from the crack tip at 8 = 07, 45° and 75° for a
mismatch, M = 2, The stresses are normaliscd with the yield strength at the crack tip while
the radial distance is normalised with I. Comparing the stress ficld with the stress field of
an intcrface with the same mismatch, it was noted that the stresses at the boundary of the
graded zone which is at a distance I/ sin & [rom the crack tip shown in Fig. 7.21 have a form
which is similar to the asymptotic stresses in a problem of a sharp interface as shown by
the solid hines in Fig. 7.21. The stresses cannot be determined at 0 — 0° and 4= 180 as the
boundary is an infinite distance from the tip. The asymptotic stresses for the problem of a
sharp interface were obtained numerically by taking the limiting case when the graded zone
width, 21 = 0. This observation implies that if the boundary of the graded interfacial zone
is within the critical distance al which cleavage failure initiates, the gradation in properties

would have minimal difference on failure.

7.5 Statistical aspects

An important feature of cleavage fuilure is the scatter in the experimental data, which makes
cleavage toughness duta inherently irreproducible, The scatter maybe explained by the fact
that the micro-structure of real materials is not homogencous and that microcracks or de-
fects arc statistically distributed throughout the material. The material properties are thus
distributed functions. A weakest link concept has been widely used to describe the scatter in
strength and fracture toughness (Freudenthal, 1968; Beremin, 1983; Wang and Parks, 1992;
O’Dowd et. al, 2000). In the weakest link approach, the failure of the whole system is de-

termined by the weakest element. Failurc is the result of the unstable propagation of the most
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critical micro-crack within the weakest volume element. In this section, the key concepts in
the development of a statistical approach to describe failure in homogeneous materials are

reviewed and a framework is established which is extended for a crack in a graded material,

In the weakest link approach, the failure of the whole syslem is determined by the weak-
est element, possibly caused by propagation of the most critical micro-crack within the weak-
est volume element. For a volume V, subjected to a uniform stress, o, the cumulative prob-
ability, I, that V;, will fail at or before the siress o, can be expressed as a two paramcicr

Weiball distribution (Freudenthal, 1968):

P,(7) =1—exp [—— (;)m] (7.10)

u

where o, and m are the Weibull parameters. The corresponding probability density function,

p,(c) is of the form:

ooy = oD (O o [ (2] (7.17)

do T

The average sirength of the volume V, is:

T = / opolo)de — o, (1 of %) (7.18)

The physical significance of the Weibull parameter, o,,, can be inferred to be a measure of
average strength:
5
Op = —F——~ 7.19)
Cor(1+ ) (
where T () is the gamma function tabulated in standard mathematics textbooks. The failure

of a larger volume V which is composed of V/V, number of element volume, V;,, subject
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to a uniform stress o is the result of the failure of the weakest V, within V. Survival of V'

requires survival of cach V, element, thus the probability that V' survives, Ps“me! jg:

v

- = (exp [— (%)n])"— (7.20)

Therefore, the probability of failure of the volume V" at or before the stress ¢ is attained is of

<|<

Psuvm’ival — (1 _ Pa)

the form:

o1 (el [ L] 0w

= — [ ¢ —_ ) — = — — | — .
a XD o Xp 7 \ow
"The corresponding probability density function can be writien as:
dP{g) mV fo\™! Voo™

. — AL S B — [ 7.22

rlo) do oy Vo (0,,_) =P [ V, (O'u) ] ( )
The average sirength of volure V is:

AN 1
o= /O'p(O')dO' = G, (Vt) r (1 + ;E) (7.23)

Comparison of Egs. 7.18 and 7.23 shows a volume effect such that with increasing volume
of the material under stress, the average strength decreases. In other words, increasing the
stressed vohume increases the number of flaws that may cause failure. For instance, for a
material with a Weibull modulus, m: = 20, an increase in volume by a [aclor of 5 decreases

the average strength by 8 percent.

The concept can be extended (o & system with a non-uniform stress distribution, by di-
viding the stressed zone into n smaller volumes V; which have approximatcly uniform stress

o; (Freudenthal, 1968), "The probability of survival, P**""#4_ of such a system would be:

Puu'}"m'fuul —n l‘[ (] . R)
n
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[ Ve o m 1/' . 7 m V o mn
_ Yo £_L>) , __gz_(@) e | 2@ (h_@_)
Py, (ozu ]'exp[ V, \oy il AN

~ ey Y (%) m] (7.24)
% Ve \ou '
The total probability of failure, P, of the systent then can be cxpressed as:
. S N
P=1—pewal = —exp |- -I—z (ﬁ) (7.25)
12 I'/0 d?f.
The Weibull stress, o, is defined as (Freudenthal, 1968):
oMy, "
Ty = [Z L_“_] (7.26)
1=1 V:?

whetre, o; is the stress associated with volume, V;, and V,, is a reference volume. The cumu-
lative probability of failure in terms of Weibull stress becomes:

P=1—exp [ (-“’“’--) m] (727)

Cr'l!,

The argument can be developed to determine the fatlure probability in presence of a mac-
roscopic defect such as a crack (Beremin, 1983). Lei etl. al (1998) consider a crack in a
homogeneous strain hardening solid, using cylindrical co-ordinates (r, 8) located at the tip
of a crack in a plate of uniform thickness, an incremeatal volume dV = rdrdf can be con-

sidered. Summation over the entirc plastic zone can be replaced by an integral such that:
o= Oy = [ [ForBreras (7.28)
w I/('; I/a T /0 ’

where 7.(8) is the radius of the plastic zone and B is the thickness of the plate containing the
defect. Dimensionally r ~ J/o,€,, where J is the J-integral. For a strain hardening solid
using the HRR field and ignoring all the non-dimensional ferms:

m B T "Fe J ‘l"s"‘-zl
0%~ j_ﬂ /ﬂ { } rdrdd (7.29)
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Integrating with respect to r and ignoring the integration with respect to @ which has no

effect on the dimensions:

e 2{ntl)—m
m B J nt: F atl Te 7‘ n
T~y e, T o (7.30)
° om0 n+1

For the integral in Eq. 7.28 to be defined for a strain hardening solid of hardening exponent,
n, the Weibull modulus, 7, must be less than 2{z +1). For a linear elastic solid the condition
reduces to m > 4. When m > 2{n -+ 1), the sugpested method is to consider a notch at the
crack tip which has a finite root radius. Introducing the limits of integration where the plastic
zone tadius, 7. ~ J/ 06, = JE/O‘E:

2{r+1)—m

B J \~h {BJ)
J:ENV{ }+{ } (731)

Ty a2

On simplification, the dependence of Weibull stress on dimensional terms is of the form:

B 252 om—d v];
ow ~ [ J2 BT ) (7.32)
Vo
Lei et. al (1998) usefully introduce a non-dimensional Weibull stress &, that is independent

of crack tip deformation under J-dominant conditions:

= O Vo
T 7.33
Te T JiERgpiB (7-33)

In the present work, the discussion is further developed by relaling the Weibull parameter,

oy, which is a matcrial property to the average Weibull stress at failure by:

E‘UJ
Ou = —7 7% (7.34)
r(1+2)
substiluting &,, from Eq. 7.33, o,, becomes:
1 A
. a},’“‘*EEB] m J& .
Gy = O, 7.35
’ [ Vo T {1+2%) (7:39)
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On substitution the cumulative probability of failure becomes:

"y '},21,\ 1+ L m
=1—exp [—%ﬁ)-} (7.36)

i)
c

il 1

2
.

k)
c
—gn

Using a dimensional argument J&™  can be related to the mean toughness, J., by:

}Tﬂ
e = T (7.37)
r{1+L)

m

where, o is a non-dimensional constant which depends on the toughness distribution. The

probability of failure then can be written in the simple form:

A J?
P=1--cxp [:— (.MQJ_CE] (7.38)
in which J/aJ, is a loading parameter which controls the probability of failure. A crack in
a homogeneous isotropic strain hardening material with strain hardening exponent n = 10
has been considered at three different load levels. The loading parameter and the cumulative
failure probability of the system arc given in Table. 7.5. As expected, increasing Joad results

in a higher probability of failure,

J
ade r
| 0.096 | 0.003
0.37 | 0.145
1.79 | 0.978

Table 7.5: The loading parameter and the failure probability.

In order to develop a framework to calculate the direction of crack propagation, the angular
region around the crack (ip is divided into sectors following a development given by Becker

et. al (2002). Each sector is defined by the central angle, 8, and an angular span, Af as shown
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in Fig. 7.22. The Weibull stress was calculated numerically for each sector, o3 (6, Af)
using the boundary layer formulation in which the angular span, Af was 7.5 degrees. From
the finite element analysis results, the principal stresses, Mises stresses, the co-ordinates and
the volumes associated with cach intcgration station of the 576 elements were recorded in a
text file. The data was post-processed using a routine created in Matlab v 3.3 (1999) which
cvaluated the Weibull stress of each sector by summing over all the elements within a sector
which were within the plastic zonc. The weakest link approach requires that failure of the
entire systemn aoccurs if a single sector fails or if more than one sector fails. The probability
that the sector is involved in the failure process, including single or multiple sector failures,
is given by:

Pyoes(8, AB) =1 — exp [—— (M)m} (7.39)

Ty,

Fotlowing the argument which led to thc non-~dimensionalisation of the Weibull stress, the
Weibull stress for the sector,ose(f, A9), has the dimensional dependence of ~ J=. The

probability of a sector heing involved in the failure process can be written in the form:

(8, A8)
Frect(0, A8} = 1 —exp l— L(“J_‘?i] (7.40)
o,

where, f(#, A8) — (0778, Ab)/0,)™. The probability that a sector of angular span 7.5¢ is
involved in the failure process has been determined as a function of 8 in Fig. 7.23 for three
load levels. A probability density function, p(#), can be obtained by dividing P by the
angular span and normalising with the arca under the curve such that 7, »(#)d€ = 1. The
probability density function for the three load levels is shown in Fig. 7.24. A measure of the
centralness of the crack extension direction is given by:

6= [ 6p(o)do (7.41)

—

For a mode I crack in a homogeneous material # = (0. The probability thal a sector is involved
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in failure &s bi-modal, the modal values occurting at @ ~ -£33°. The most likely directions

of cleavage initiation are thus at £33 to the crack planc.

The present wotk focuses on the effect of gradation in yield sirength and toughness on
the failure probabilitics and the crack propagation directions. In functionally graded material
systems, the Weibull stress continues to be a loading parameter. However, in contrast to
homogeneous material in which o, is a constant material property o, in a graded material
is a material properly averaged over the process zone and is thus also dependent on loading.

The probability of failure of a graded system can be writtcn as:

o.m
P = 1—cxp ( Voo dVv ) (7.42)
. o VUFm (1 + rin) ‘
= 1l—exp |- — Py —— dV (7.43)
'/V O'g‘_‘l JCE V") [ O.'gl E AB

The formulation allows J2 and m to vary spatially. However for simplicity and relevance
to experiments done ot homogeneous material subject to non-uniform temperature field,
interest is restricted to cases in which F, mn are spatially independent. However, the strength
and toughness, o, and J,, are spatially dependent and are within the inlegral. Comparison
wilh the probability of failurc of a homogeneous material at the same applied J can be made

by:

In(1 — prresed) _(of) 0 (o) 74%)
In(l_Phum) - O—:“P T\ gm *

w

tor small probability of failures In{1 — P} ~ — 2 such that:

pyroded g\ Y ruded o hom
: . w u
Phom - om L gm
w

o

(7.45)
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. & Vo™ (1++ "
(JV ( T ) { 5m£4;-ag')] dV)
_ '}_Lu—"lJcm v, w
( J2 ) rm (1 + %)
J,

An interfacial zone was considered across which toughness was uniform but there was
plastic mismatch, M = 2. Toughness and yield strength were assumed to interpolate linearly
across the interfacial zone. The Weibull modulus, m, was assumed to be 20 for both materi-
als. Yor the same applied load, J/a.J, = 0.6, at the outer boundary, different interface zone
widths were considered such that the normalised plastic zone size r,/2{ = 1.6, 4, 7, 15, 35,
the associated probability density functions are shown compared to the probability density
function of an interface crack (7, /20 — oo) in Kig. 7.25. At low values of r,,/21, the density
function is bi-maodal and similar to the homogeneous mode T distribution. When the plastic
zone becomes larger than the graded zone width, the peak in the harder material falls and the
peak in the softer material grows such that the modaf value, #,,,,402, Shifts towards the plane
ahead of crack as illustrated in Fig, 7.26. Correspondingly, the direction of crack propagation
increases and subsequently decreases with increasing r,/2/, tending towards the prediction
for a sharp interface as shown in Table. 7.6. The probability density function interpolates
between the hi-modal distribution representation of a mode I crack in a homogeneous solid

to a single peak distribution of an interface crack ynder remote mode L

The relative probability of failure for a crack n a graded zone compared 10 a crack in a
homogeneous solid with the properties at the tip of the graded material as evaluated using
Eq. 7.45 is presented in Table 7.6. The rclative probability of failure at low deformation
levels is close to unity. As r,/2{ increases, the relative probability of failure decreases which
means the graded interface is more reliable. However, as the width of the graded zone
is further decrcased, the relative probability of failure starls increasing towards the sharp

interface failurc probability. Thus, whether the functionally graded material is more reliable
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z 4 (;ﬁé«,;)g nih (g{;ﬂf)q (Z—%)h f(degrees) | Omona(degrees)
1.5 3.5 0.6 0.975 0.5 33
4 8.8 0.6 0.72 3 33
7 17.5 0.6 0.72 5 13 33
15 35.1 0.6 1.78 25 27
35 87.8 0.6 3.78 26 _ 19
—oo] —oo |06 28.5 19 % 12

Table 7.6: Bffect of deformation Ievel as measured by r,/27 or (1/21)(K/0})? on the re-
lative probability of failures for solids which have uniform toughness but are plastically
mismatched, M = 2.

than a homogencous solid of the crack tip properties depends on the size of the plastic zone
compared with the width of the interface. For low values of r,/2{ the interfacial zone is
tougher whereas for large plaslic zones, a crack in an interfacial zone is more likely fo cause

failure than a crack in 4« homogeneous solid of crack tip properiies.

The crack propagation dircction depends on both the toughness and the yield strength
mismatch. To elucidate the ctfect of loughness and yield strength mismaich separately
the case of a sharp interface crack is first considered at a plastic mismatch, &/ = 1 and
the cflect of toughness mismatch was determined at three different toughness mismatches,
751} / 7((;2} =1, 2, 5. Fig. 7.27 shows the effect of toughness mismatch on the crack extension
ditrection for an interface crack when the two solids have identical yield strengths (M = 1).
When the solids are toughness matched, the angnlar probability density function is that of a
homogeneous solid and the average crack path angle is zero. As the toughness mismatich is
increascd, the modal peak in the tougher material decreases while the peak in the less tough
malcrial increases. As a consequence of increasing toughness mismatch, the average direc-

tion of crack initiation, tabulated in Table. 7.7, becomes more negative and bends towards
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the less tough material.

In order to demonstrate the effect of plastic mismatch, the toughness is taken {o be uni-
form (J’”i” / jiz) = 1} at different plastic mismatches, M = 1, 1.2, 2. When the solids are
plastically matched (M = 1) the bi-modal angular probability density function is symmetric
about the crack plane. However, as the plastic mismatch is increased, the peak in the harder
material decreases while the peak in the sofler materisl increases as shown in Fig. 7.28.
The average crack cxtension ditection is oricnted towards the plastically weaker material as
shown in Table. 7.8. Clearly mismaich in yield sirength and toughness have opposing ef-
fects, the plastic mismatch favours crack extension into the softer material while toughness

mismatch favours crack initiation in less tough material.

=)
5@

“e

|
e

~18 | -29

Table 7.7: The effect of toughness mismatch, % on the average angle of crack extension,
0.

Ml1|1L2)| 2

)
<

22 116

Table 7.8: The effect of plastic mismatch, M, on the average angle of crack extension, 6.

The location of a crack may also play a role in the crack initiation direction. The ellect of

crack location on the average crack extension direction graded zone with either solids as
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shown in Fig. 7.29. For a mismatch of A/ = 2 and uniform toughness, "j{cl] / 7{3) =1, in the
limit of #, >> 2/, the probability density function is shown in Fig. 7.30 for three different
locations of crack in the graded zose. When the crack is located at the boundary between the
softer solid and the graded zone the average angle of crack extension is 17° towards the softer
solid, the angle increases to 21° for the central crack and 30° for the lower boundary crack
when the plasticity towards the harder material is comparatively restricted. The closer the
location of the crack to the boundary with the harder material, the higher is the inclination
of the angle of extension towards the softer side. The effect of location is most pronounced

at high plastic mismatch and vanishes for plastically maiched solids (M = 1).

7.6 Experiments

The effect of strength and toughness gradicnt on the crack extension direction was invest-
igated cxperimentally for gradients normal to the crack plane. A non-uniform temperature
field was created across a crack in a carbon steel of grade En32 whose chemical composi-
tion is shown in Table. 7.9. As the yield strength of ferritic sieels is strongly dependent on
temperature (Rifchic ct. al, 1973; Bowen el. al, 1987), the temperature gradient causes a
gradient in yield strength. The yield strength-temperature relation for En32 was measured in
tensile tests performed at different temperatures by Bezensek (2003) and fitied with a curve
as illustrated in Fig. 7.31. Nine fracture mechanics specimens were machined to the dimen-
sions described in Fig. 7.32 with a 2.5 mm decp notch. The notched specimens were subject
to fatigue in three point bending following ASTM E399-88 (1988) (o introduce a sharp crack
of length equal to half the width of the specimen (a/w = 0.5).

To develop the temperature gradient two chambers were installed on either side of the crack
as shown in the schematic diagram in Fig. 7.33. One chamber had water circulated from a

rescrvoir maintained al a temperature (~30°C) while the other had liquid nitrogen to provide
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c|{si|Mn| P | S |ClIM| Vv

0.18 | 0.26 | 0.70 | 0.014 | 0.027 | 0.10 | 0.02 | <0.003

Table 7.9: Chemical composition by percenlage weight (wt%) of En32 steel.

cooling. The specimen passed throngh the iwo chambers such that 50 mm of the length
was submerged in cach chamber. A thermal calibration test was performed in which a series
of thermacouples were used to record the temperalure as a function of the location, Two
thermocouples were spot welded on the surface and 5 were inserted into holes drilled to half
the thickness. The temperatures are shown as a function of location in Fig. 7.34. In sicady
state conditions the temperature varied linearly between the two chambers, and {here was
only a small difference (~1-2°C) belween the temperatures on the surface and within the

specimen.

Pre-cracked [racture specimens werc deformed in three point and four point bending
using a4 250 kN servo controlled elcctro-hvdraulic INSTRON muchine operating under dis-
placement control at the rate of 0.5 mm/min. The results from the three point bend tests are
ignored as the indentor influences the near crack tip temperatuge. In the four point bending
cxperiments the span between the supporsts was 230 mm while the indentors were separated
by 160 mm. To recoid the test-temperatures two thermocouples were spot welded on the
surface on either side of the crack as shown in Fig. 7.33 such that crack tip temperature was
taken as the average of the two recordings. The crack tip temperature for all tests was main-
tained between —70°C and —80°C causing cleavage failure, After fracture the specimen was
cut across the centre and crack initiation angle was measured, 2 typical specimen cross sec-

tion is shown in Tlig. 7.35. The experimental data including the crack tip temperature (£3;,,),
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the temperature gradient, the load at failure (P5) and the corresponding fracture toughness
(J9) calculated following ASTM 813 E are presented in lable 7.10. Cleavage failure inifi-
ation in En32 grade steel which was subjected to a graded iemperature ficld shows a tendency
10 occur towards the hotter side which is the side of lower yield strength. With increasing
temperature gradients the orientation of the crack inifiation plane inclined more towards the
softer side and the apparent [racture toughness increased. The lrend of the crack growing
towards the softer material matches with the prediction from the statistical approach in con-
tained yielding, The crack path is thus not determined by the asymptotic field, using either a

local maximum hoop slress or grealest potential energy release rale.

Weibull calculations were performed by Bezensek (2003) on a full-field model based on
the present set of experiments, Elastic modulus, £ = 217GPa, a sirain hardening exponent
n = 10, and a Weibull moduli, 7z == 20 were used. Inilially the effect of gradient in vield
sttength was examined by taking the material to have u uniform toughness of 180 N/mm (cor-
responding to the crack tip temperature T4 =-80°C) but a spatialty varying yicld strength
approximated by a curve fit to the experimental data from brittle fracture of En32 steel shown
in Fig. 7.31. The probability density function is shown in Fig. 7.36 for a temperature gradient
of 10 °C/mim and the average initiation angle was predicted to be 3.8° towards the warmer

side,

When the yield strength was taken to be uniform at a temperature of -80°C, and the
toughness to be dependent on temperature as in Fig, 7.37, cxicnsion is predicted to be 9°
(owards the colder side. The probability density function is shown in Fig. 7.38. The effect
of toughness and yield strength mismatch observed in contained yielding solution are also
ohserved in the full field analysis. When the combined effect of gradicnt in yicld strength
and toughness was taken into account the probability density function is shown in Fig. 7.39.
Although the average extension direction is 2° towards the colder side, the most likely dir-

ection of crack propagation is ~30° towards the warmer side. The experimental results
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show the crack extends towards the warmer side. Since the yield strength gradient due to a
non-uniform temperature field is mild the sensitivity to the toughness gradicnt becomes very
high and the curve used in the model may over-estimate the toughness of the warmer side.
In the model the temperature is assumed to be have a uniform gradient which was based on
a thermal test. Thus, better predictions using a statistical model may require a more accur-
ate representation of the temperaturc ficld and the relation between the temperature and the

toughness.

Tyip °C) | Gradient (°C/mm) | Giisiasion | Py kN) J¢ (N/mm)
-71.0 3.0 6 17.85 147
-78.0 5.7 10 15.3 161
-78.5 6.3 17 16.2 177

Table 7.10: Experimental data from cleavage failure of En32 sieel subjected to a femperaturc
gradient.

7.7 Conclusions

A crack within a graded interfacial zone between two elastically similar but plastically dis-
similar elastic-perfectly plastic solids has been studied. Asymptotic stress fields under con-
tained yielding were constructed for remote mode I loading. At the crack tip, due fo the
non-uniform yield stress thete is asymmetry in the plastic zone shape which depends upon
the loading parameter r, /21, Al very small levels of plasticity the field is near mode 1, with
increasing load the asymmetry in plasticity increases and cventually saturates. Due to the
asymmetry, the shear componcent at the crack tip is non-zero such that the plane of maximum

hoop stress is inclined towards the material of higher yield strength. The general structure of
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the asymptotic slip line field is composed of 6-sectors as proposed by Zhu and Chao (2001)
for homogeneous mixed-mode field. Increasing mismatch and compressive 7 -stress result
in higher crack tip mixity and the constraint parameter, the mean siress, in the plane of max-
imum hoop stress decreases with increasing angle of inclination of the plane of maximum
hoop stress. Thus, for increasing plastic mismatch and compressive 7'-stresses the direc-
tion of crack propagation inclines more towards the material of higher yield strength and the

toughness increases.

Contact between the asymptotic field for a crack along an inlerface ucross which the
plastic properties change abruptly (Kim et. al, 1997) and the stress field of a crack in a graded
zone has been established. The stresses along the boundary of the graded zone correspond
to the asymptotic stress field of the sharp inlerface crack such that lor a graded zone width
reaching the limit zero the asymptoltic field of the sharp interface crack is recovered. Thus,
the effect of gradation becomes negligible when the boundary of the graded zone is within a

critical distance in which cleavage failure might initiate.

Using a statistical approach based on a weakest link model the effect of a gradient in yield
sirength and toughness on failure probability and crack exiension direction was examined.
In the statistical model the deformation level as measured by 7,/2{ plays an important role.
At low r,/2! 4 crack in a graded zone js tougher than a crack in a homogensous material
of crack tip propetties. However, for larger r,/2 the graded interface is less tough, The
model establishes that the asymmetry of the plastic zone lobes on either side of the crack
plane (resulting from the yield strength mismatch) drives the crack towards the softer side
whilc the toughness mismatch causes the opposite effect, driving the crack towards the low
toughness material. The effect of plastic mismatch is seen to dominate over the toughness
variation except for cases of low plastic mismatches. Thus, unlike homogeneous solids the
prediction of the maximum hoop stress direction in the asymptotic stress field and the average

angle based on probabilistic arguments may give very different crack initiation directions.
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Cleavage failure in En32 grade stecl when subjected to a non-uniform temperatare field

confirms the predominant volume cffect as the crack consistently initiates towards the hotter

side (the side of lower yield strength).
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Matcrial 1
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Material 2

Hig 7.1: Crack located at the centre of a zone of graded yield strength.
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o

Fig 7.2: Variation of the yield strength in normal to the crack plane.

Fig 7.3: Measure of plastic zone size, 7.
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Fig 7.4: Plastic zone shapes for plastic zonc sizes comparable to the graded zone width.
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Fig 7.5: Plastic zone shapes for plastic zone sizes much greater than the graded zone width.
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Fig 7.6: Plastic mixity, M, as a function of the remote foad for mismatch, M = 2 and graded zone
width, 21.
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Fig 7.7: Plastic zones for a crack in a homogencous material under mixed mode load (K /K = 6)
and a crack in a graded zone between plastically mismatched solids (M = 2; rp /21 —+ 00).
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Fig 7.8: Structure of the crack tip slip linc ficld.
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Fig 7.12: The mean strcss in the plane ahead of crack tip as a function of the yield strength mismatch.
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Fig 7.13: Effect of T-sircss on ship line ficld, for yield strength ratio, M — 2.
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Fig 7.14: Plastic mixily as a lunclion of the second order term, T-stress.

30 . . . . : ' :
20 | ™ ]
™.
Bmﬂx: \\\_\
—_
10 f \ T 1
— ¥ T
‘.)._‘Hmax
0 4, L 1 1 1 1 L
04 03 02 .01 0 00 02 03 04
T
ﬁl‘:p

Tig 7.15: Dircction of plane of maximum hoop stress as

mismatch, M — 2.

a function of the second order term for



CHAPTER 7, Cracks in Strength and Toughness Graded Malerials 183

4
3 -
L]
‘1‘,‘_&%%
e e -
U0 2
0;'_!’
'l A
0 —— —_—
4] 1 2 3

Fig 7.16: Hoop stress in the plane ahead of crack tip, solid symbols represent the stresses for
2 2

a7 (g{;) — 88 while the open symbols represent stresses for (%) = 362. 'The graded zone

width was held constant.
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Fig 7.17: Hoop stess in the plane ahead of crack tip, solid symbols reprosent the stresses for
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was held constlant.
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Fig 7.18: Radial stress at different angles as a fuunction of the radial distance for plastic strength
2
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Fig 7.19: Hoop stress at different angles as a function of the radial distance for plastic strength
2
mismatch, M = 2, for & (K) = 362,
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Fig 7.20: Shear stress at different angles as & function of the radial distance for plastic strength
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Fig 7.21: Sircsses normalised with the yield stress at the crack tip, o*% at the boundary of the graded

zone, M = 2, compared to the asymptotic crack tip stresses for a corresponding inlerface crack
shown as solid lines.
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Fig 7.22: Sector centred at an angle ¢ and with an angular span of Ad.
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Fig 7.23: Probability of failure of a sector of angular span 7.5 degrees and is in the dircction & for
three different load levels corresponding to the total probability of fatlure, .
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Fig 7.24: Probability density function as a function of the angle, 0, for three different load levels
corresponding to the total probability of failure, Py.
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Fig 7.25: The probability density function for a crack in zone of graded yield strength, M = 2, but
uniform toughness.
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Fig 7.27. The probability density function for an interfacial crack between solids of similar yield

strength but mismatched toughness.
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Fig 7.28: The probabitity density fanction for an interfacial crack between plastically mismatched
solids which have similar toughness.
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Fig 7.29: Dillcrent locations of cracks in a zone of graded yield strenglh,
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Fig 7.35: Post-fracture digital photograph of cleavage initiation angle
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Fig 7.36: The probability density function when toughness (180 N/mm) was uniform but the yield

strength varied spatially.
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Conclusions

In the study of the constraint effects of a crack normal to the inferface between mismatched
solids, the first two terms in the asympiotic clastic crack tip ficlds of technologically signi-
ficant bi-material systcms have been determined. For the leading term, the strength of the
singularity and the angular functions depend on mismatch. The second order term is distance
independent for all elastic mismaiches although the angular functions depend on mismaich.
The amplitudes of both the terms depend on loading and geometry. In general the second
order term in the stress field in material ahead of crack is hiaxial. The biaxiality depends on

elastic mismatch and vanishes for elastically matched solids.

The analytic and numerical solutions of the plane strain asymptotic fields for a crack
between elastically and plastically mismatched solids have then been developed. The dis-
cussion was based on two limiting cases: when the crack was located in perfectly-plastic
material while the material ahead was fully elastic and a case when the crack was located in

an elastic solid while the solid ahead deformed plastically.

When plasticity was limited to the material behind the crack, the elastic material ahcad of
the tip exhibited a logarithmic singularity. The logarithmic constant r, is a loading paramete
with the dimensions of distance that can convenicntly be identified with (K /o) ™% or the
crack tip opening displacement. The crack tip field in the material behind (7 /2 < 8 < 7 and
—n < 8 < —w/2)is composed of elastic and plastic sectors that have finite crack tip stresscs,
full plasticity being achieved for tensile T-stresses when the characterising parameter of the

field, hoop stress at the interface, reaches its peak value, &(1 | #/2).

When the crack was located in an clastic solid, the structure of the mode I fields was sim-

ilar and in the leading sectors only differed through a hydrostatic term. Mean stress or the
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constraint ahead of the crack tip, identificd to be the characterising parameter of the family of
mode I fields, increases with increasing T'-stress and decreasing elastic mismatch. Thus, for
geometries with high elastic mismatch and negative 7-stress the resistance for crack cxten-
sion is expected to be higher. As the mode mixity Is increased the planc of maximum strcss
rotates towards the interface. The mode II field parameter, 0%, increases with increasing
elastic mismatch, maiginally increasing the stresses at the interfuce. The constraint effects
associated with elastic mismatch and 1'-stress cstablished in the limit of non-hardening are
reproduced for moderately strain hardening material response. The constraint loss associ-
ated with compressive 1'-stress and higher clastic mismatch increascs the resistance to crack

extension in the opening mode.

Loss of constraint increases the resistance to both interface penctration and delamination.
However, if interface failure is dominated by normal stresses across the interface, loss of
constraint favours interface penetration, whereas for interfaces which fail due to shear stress,

constraint loss favours delamination.

A crack within a graded interfacial zone between two elastically simifar but plastically
dissimilar clastic-perfectly plastic solids has been studied. Asymptotic stress fields under
contained yielding were constructed for remote mode I loading. Duc to the non-uniform
yield stress the plastic zone shape is asymmetric and the extent of asymmetry depends upon
the Joading parameter 7,/2I. For low deformation levels the field is near mode I, with in-
creasing load the asymmetry in plasticity increases and eventually saturates. A result of the
asymmetry is that even under remote mode I loading the crack tip field is mixed-mode and
the maximum hoop stress direction in the asymptotic field is inclined towards the material
of higher yield strength. ‘The constraint parameter, the mean stress, in the plane of max-
imum hoop stress decreases with increasing angle of inclination of the plane of maximum
hoop stress. For crack extension on the plane of maximum hoop stress of the asymptotic

field, increasing plastic mismatch and compressive T-stresses causes the direction of crack
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propagation to be inclined more towards the material of higher yield sirength and the tough-

ness to be higher.

Using a statistical approach based on a weakest link model the effect of a gradient in yicld
strength and toughness on failure probability and crack extension direction was examined.
In the statistical model the deformation level as measured by r,/2! plays an important role.
Al low 7,/2 a crack in a graded zonc is tougher than a crack in a homogencous materiat of
crack tip properties. However, for larger ,/2{ the graded interface is less tough. The dircc-
tion of crack propagation depends on both the toughness and yield strength mismatch. Yield
strength mismatch favours crack extension towards the softer material whercas toughness
mismatch drives the crack towards the less tough material. Thus, unlike in homogeneous
solids the prediction of the maximum hoop stress direction in the asymptotic stress field and
the average angle based on probabilistic arguments may give very different crack extension
directions. Cleavage failure in En32 grade steel when subjected to a non-uniform temperat-
vre field confirms the predominant volume effect as the crack consistently iniliates towards

the hotter side (the side of lower yield strength).
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