https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Crack Tip Plasticity in Mixed Mode Loading Under Contained Yielding Conditions

by

Md. Moshiur Rahman

Thesis submitted to the Department of Mechanical Enginecring, Faculty of Engineering, University of Glasgow for the degree of

Master of Science

November, 2002
(c) Md. Moshiur Rahman

ProQuest Number: 10391026

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10391026
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstract

Mode I, mode II and mixed mode I/II asymptotic crack tip fields have been studied under contained yielding conditions using plane strain and plane stress boundary layer formulations. The effect of the non-singular term in the asymptotic elastic expansion (Williams, 1957) on the plastic zone at the crack tip has been determined. Plane stress mode I, mode II and mixed mode I/II crack tip lields have also been investigated analytically. Analytical solutions were developed by assembling constant stress, fan and elastic sectors. Slip line theory (Hill, 1950) was used to solve constant stress and fan sectors while the stress fields in elastic sectors were solved using the semi-infinite wedge solution of Timoshenko and Goodier (1970). Analytical solutions were validated by numerical results, and represented as slip line fields.

Acknowledgement

1 would like to express my profound gratitude to my supervisor Prof. John W. Hancock for his sincere guidance, encouragement and specially for his kindness and financial support during this work.

I acknowledge access to the computer codes given in Appendices I \& II from Prof. Hancock, and the use of ABAQUS under academic license from HKS Inc.

I would acknowledge the financial support of Bangladesh Atomic Energy Commission under the project "Research Devclopment \& Training Project of BAEC" for this research.

I wish to thank my friends and colleagues in Glasgow who have encouraged and helped me during my research.

I am thankful to my father, mother and relatives for their encouragement and support during this work.

Finally, I would like to express my profound thanks to my wife, Nazma and daughter, Nishat for their continuous support during this work.

Contents

Abstract
Acknowkedgement
List of Figures
List of rables
Chapter 1 Introduction l
Chapter 2 Stress, strain and stress-strain relations 3
2.1 Stress and strain 3
2.1.1 Stress 3
2.1.2 Strain 5
2.1.3 Elastic stress strain relations 6
2.2 Plane stress and plane strain 7
2.2.1 Plane stress 7
2.2.2 Plane strain 7
2.3 Yielding and plasticity 8
2.3.1 The Tresca yield criterion 8
2.3.2 The von Mises yield criterion 8
2.3.3 Equivalent stress and equivalent strain 9
Chapter 3 Linear elastic fracturc mechanics 13
3.1 Griffith criterion 13
3.2 Stress Intensity Factor (SIF) 14
3.3 Stress intensity factor and specimen geometry 17
3.4 Estimate of plastic zone radius 18
3.5 The effect of thickness on fracture toughness 20
3.6 LEFM fracture toughness $\left(\mathrm{K}_{\mathrm{IC}}\right)$ test procedure 20
Chapter 4 Slip line fields 22
4.1 Plane strain slip line fields 22
4.1.1 Plane strain mode I crack tip fields 24
4.1.2 Plane strain mixed mode crack tip fields 27
4.2 Plane stress slip line fields 31
4.2.1 Plane stress mode I crack tip fields 32
4.2.2 Plane stress mixed mode crack tip fields 35
Chapter 5 Crack propagation and toughness in mixed mode loading 37
5.1 Criteria for crack propagation 37
5.2 Cleavage (brittle) fracture 37
5.3 Ductile fracture 38
Chapter 6 Numerical methods 40
6.1 Boundary layer formulations 40
6.2 Determination of slip line fields from 42 numerical results
Chapter 7 Results 43
7.1 Plane strain mixed mode (1/II) crack tip fields 43 in perfect plasticity
7.1.1 Plastic zones 43
7.1.2 Asymptotic stress fields 43
7.1.3 Loading 44
7.2 Plane stress mixed mode (I/II) crack tip fields 44 in perfect plasticity
Chapter 8 Plane stress analytical solutions 46
Chapter 9 Discussion 50
Chapter 10 Conclusion 52
Chapter 11 References 53
Appendix I 57
Appendix II 86

List of Figures

Figure 2.1: Stress components referred to Cartesian co-ordinate axes

Figure 2.2: Stresses on an element near the crack tip in Cartesian co-ordinate system.
Figure 2.3: Stresses on an element near the crack tip in polar co-ordinate system
Figure 2.4: Stresses on element (a) and its corresponding Mohr's circle (b) showing the principal stresses (c) and maximum and minimum shear stresses (d).

Figure 2.5: Bar subjected to uniaxial tension
Figure 2.6: Forces at the boundary of a thin plate
Figure 2.7: Cylindrical body is loaded by forces perpendicular to the longitudinal axis

Figure 3.1: Through thickness crack in an infinite plate subjected to a remote tensile stress

Figure 3.2: Three modes of loading applicable to a crack
Figure 3.3: Stresses on an element near the crack tip in a linear clastic material
Figure 3.4: Through crack in an infinite plate
Figure 3.5: Edge crack in a semi-infinite plate
Figure 3.6: Edge cracked bar in tension
Figure 3.7: Edge cracked bar in pure bending
Figure 3.8: Edge cracked bar in three point bending
Figure 3.9: Plastic zone shapes estimated from Tresca yield criterion
Figure 3.10: Plastic zone shapes estimated from von Mises yietd criterion
Figure 3.11: Effect of thickness on the fracture toughness
Figure 3.12: Four types of specimens for K_{10} test
Figure 3.13: Thrce types of load-displacement curves in K_{10} test
Figure 4.1: Orientation of α and β lines in the co-ordinate system
Figure 4.2: Slip line field indicating α and β lines in constant stress and
centred fan sectors
Figure 4.3: The Prandti slip line field
Figure 4.4: Mode I slip Iine fields with elastic sectors on the crack flanks
Figure 4.5: Elastic wedge on the crack flank
Figure 4.6: Mixed mode slip line field, plane strain
Figure 4.7: Mixed mode slip line fields with elastic sectors on the upper crack flanks
Figure 4.8: Zhu and Chao (2001) six sector crack tip field
Figure 4.9: Non-orthogonal slip lines (α, β) for plane stress
Figure 4.10: Hutchinson mode I slip line field, plane stress
Figure 4.11: Dong \& Pan mode I slip line field shown schematically
Figure 4.12: Sham \& Hancock mode I slip line field shown schematically
Figure 4.13: Shih plane stress near mode I slip line field shown schematically
Figure 4.14: Shih plane stress near mode II slip line field shown schematically
Figure 5.1: Direction of crack propagation under mixed mode (I/II) loading in large grain $1 \mathrm{Cr}-1 \mathrm{Mo}-0.3 \mathrm{~V}$ steel specimens (Maccagno \& Knott, 1991)

Figure 5.2: Comparison of experimental and theoretical fracture angles (Maccagno \& Knott, 1991)

Figure 5.3: Comparison of experimental fracture angles (Gao et al., 1979, Yokobori et al., 1983) with theoretical prediction (Maccagno \& Knott, 1991)

Figure 5.4: Effect of mixed mode (I/II, I/III) loading on fracture tonghness, J_{tc} of the aluminium alloy, $2034 \mathrm{Al}(1.08 \mathrm{wt} \% \mathrm{Mn})$ (Kamat \& Hirth, 1995)

Figure 5.5: Specimens showing brittle (top) and ductile (bottom) fracture (Bhattacharjee \& Knott, 1993)

Figure 5.6: Change in crack tip profile due to (a) Budden (1988) and (b) Saka ct al. (1986) (Bhattacharjec \& Knott, 1994)

Figure 5.7: Change in notch tip profile with load in HY 100 steel specimens under mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{11}=1.57$) (Bhattacharjee \& Knott, 1994)

Гigure 5.8: Effect of mixed mode (I/II, I/III) loading on fracture toughness, J_{tc} of the aluminium alloy, $2034 \mathrm{Al}(<0.1 \mathrm{wt} \% \mathrm{Mn})$ (Kamat \& Hirth, 1995)

Figure 6.1: Mesh used in boundary layer formulation
Figure 6.2: Stress-strain curve for elastic-perfectly plastic material
Figure 7.1: Effect of T-stress on crack tip plastic zone under mode I loading, plane strain

Figure 7.2: Effect of T'stress on crack tip plastic zonc under mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{ll}}=2$) loading, plane strain

Figure 7.3: Effect of T-stress on crack tip plastic zone under mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{11}=1$) loading, plane strain

Figure 7.4: Effect of T-stress on crack tip plastic zone under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{If}}=1 / 2$) loading, plane strain

Figure 7.5: Effect of T-stress on crack tip plastic zone under mode II loading, plane strain

Figure 7.6a: Angular variation of stresses in mode I loading, planc strain, $\mathrm{T}=-0.5 \sigma_{0}$

Figure 7.6b: Angular variation of stresses in mode I loading, plane strain, $T=-0.5 \sigma_{0}$

Figure 7.7a: Angular variation of stresses in mode I loading, plane strain, $T=0$

Figure 7.7b: Angular variation of stresses in mode I loading, plane strain, $T=0$

Figure 7.8a: Angular variation of stresses in mode I loading, plane strain, $T=+0.5 \sigma_{0}$

Figure 7.8b: Angular variation of stresses in mode I loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.9a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{11}=2$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$

Figure 7.9b: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$

Figure 7.10a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{H}}=2$) loading, plane strain, $T=0$

Figure 7.10b: Angular yariation of stresses in mixed mode $\left(\mathrm{K}_{\mathrm{J}} / \mathrm{K}_{\mathrm{II}}=2\right)$ loading, plane strain, $\mathrm{T}=0$

Figure 7.11a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.11b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $T=+0.5 \sigma_{0}$

Figure 7.12a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane strain, $T=-0.5 \sigma_{0}$

Figure 7.12b: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$

Figure 7.13a: Angular variation of stresses in mixed mode ($\mathrm{K} / / \mathrm{K}_{\mathrm{II}}=\mathrm{I}$) loading, plane strain, $T=0$

Figure 7.13b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{11}=1$) loading, plane strain, $\mathrm{T}=0$

Figure 7.14a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{r}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.14b: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.15a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$

Figure 7.15b: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$

Figure 7.16a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{Il}}=1 / 2$) loading, plane strain, $T=0$

Figure 7.16b: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{i}} / \mathrm{K}_{\mathrm{ll}}=1 / 2$) loading, plane strain, $T=0$

Figure 7.17a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $T=+0.5 \sigma_{0}$

Figure 7.17b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{11}=1 / 2$) loading, plane strain, $T=+0.5 \sigma_{0}$

Figure 7.18a: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$

Figure 7.18b: Angular variation of stresses in mode II loading,
plane strain, $T=-0.5 \sigma_{0}$
Figure 7.19a: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=0$

Figure 7.19b: Angular variation of stresses in mode II loading, planc strain, $T=0$

Figure 7.20a: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.20b: Angular variation of stresses in mode II loading, plane strain, ${ }^{\prime} \mathrm{T}=+0.5 \sigma_{0}$

Figure 7.21: Slip line fields under mode I loading, plane strain
Figure 7.22: Slip line fields under mixed mode $\left(\mathrm{K}_{\mathrm{f}} / \mathrm{K}_{\mathrm{Il}}=2\right)$ loading, plane strain
Figure 7.23: Slip line fields under mixed mode $\left(\mathrm{K}_{1} / \mathrm{K}_{\mathrm{t}}=1\right)$ loading, plane strain
Figure 7.24: Slip line fields under mixed mode $\left(\mathrm{K}_{1} / \mathrm{K}_{\mathrm{I}}=1 / 2\right)$ loading, plane strain
Figure 7.25: Slip line fields under mode II loading, plane strain
Figure 7.26: Elastic mixity (M_{cl}) versus plastic mixity $\left(\mathrm{M}_{\mathrm{p}}\right)$ in plane strain
Figure 7.27a: Angular variation of stresses in mode I loading, plane stress, $\mathrm{T}=0$
Figure 7.27b: Angular variation of deviatoric stresses in mode I loading, plane stress, $T=0$

Figure 7.27 c : Angular variation of stresses in mode I loading, plane stress, $\mathrm{T}=0$
Figure 7.28a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{J}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane stress, $\mathrm{T}=0$

Figure 7.28b: Angular variation of deviatoric stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane stress, $\mathrm{T}=0$

Figure 7.28c: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=\mathbf{1}$) loading, plane stress, $\mathrm{T}=0$

Figure 7.29a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{V}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane stress, $\mathrm{T}=0$

Figure 7.29b: Angular variation of deviatoric stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{11}=1 / 2$) loading, plane stress, $\mathrm{T}=0$

Figure 7.29c: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{H}}=1 / 2$) loading, plane stress, $\mathrm{T}=0$

Figure 7.30a: Angular variation of stresses in mixcd mode ($\mathrm{K}_{\mathrm{J}} / \mathrm{K}_{1 \mathrm{II}}=0.45$) loading, plane stress, $\mathrm{T}=0$

Figure 7.30b: Angular variation of deviatoric stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{1 \mathrm{l}}=0.45$) loading, plane stress, $\mathrm{T}=0$

Figure 7.30c: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=0.45$) loading, plane stress, $\mathrm{T}=0$

Figure 7.31a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1 / 4$) loading, plane stress, $\mathrm{T}=0$

Figure 7.3 Ib : Angular variation of deviatoric stresses in mixed mode ($\mathrm{K}_{I} / \mathrm{K}_{\mathrm{If}}=1 / 4$) loading, plane stress, $\mathrm{T}=0$

Figure 7.3 Ic: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{i}} / \mathrm{K}_{11}=1 / 4$) loading, plane stress, $\mathrm{T}=0$

Figure 7.32a: Angular variation of stresses in mode II loading, plane stress, $T=0$
Figure 7.32b: Angular variation of deviatoric stresses in mode II loading, plane stress, $T=0$

Figure 7.32c: Angular variation of stresses in mode II loading, plane stress, $\mathrm{T}=0$
Figure 7.33: Slip line field at the crack tip under mode I loading, plane stress, $\mathrm{T}=0$
Figure 7.34: Slip line field at the crack tip under mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane stress, $\mathrm{T}=0$

Figure 7.35: Slip line field at the crack tip under mixed mode ($\mathrm{K}_{\mathrm{i}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane stress, $T=0$

Figure 7.36: Slip line field at the crack tip under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=0.45$) loading, plane stress, $\mathrm{T}=0$

Figure 7.37: Slip line field at the crack tip under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{JI}}=1 / 4$) loading, plane stress, $\mathrm{T}=0$

Figure 7.38: Slip line field at the crack tip under mode II loading, plane stress, $\mathrm{T}=0$
Figure 7.39: Elastic mixity $\left(\mathrm{M}_{\mathrm{el}}\right)$ versus plastic mixity $\left(\mathrm{M}_{\mathrm{p}}\right)$ in plane stress, $\mathrm{T}=0$
Figure 7.40: Effect of 'T-stress on crack tip plastic zone under mode I loading, plane stress

Figure 9.1: Asymptotic crack tip field under mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{fl}}=2$) loading in plane strain (Li \& Hancock, 1999)

Figure 9.2: Li \& Hancock (1999) plane strain mixed mode ($\mathrm{K}_{\mathrm{J}} / \mathrm{K}_{\mathrm{fI}}=2$)
slip line field
Figure 9.3: Comparison of plane strain mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=2$) numerical result (data points) with analytical solution (solid lines) of Li \& Hancock (1999)

Figure 9.4: Comparison of plane strain mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{[1]}=2$) numerical result (data points) with six-sector analytical solution (solid lines), $\mathrm{T}=0$

Figure 9.5: Comparison of plane strain mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=2$) numerical result (data points) with six-sector analytical solution (solid lines), $\mathrm{T}=-0.5 \sigma_{0}$

Figure 9.6: Comparison of plane strain mixed mode ($\mathrm{K}_{I} / \mathrm{K}_{\mathrm{II}}=2$) numerical result (data points) with six-sector analytical solution (solid lines), $\mathrm{T}=+0.5 \sigma_{0}$

List of Tables

Table 7.1: Flastic and plastic mixities, plane strain
Table 7.2: Critical angles on the slip line fields, plane strain
Table 7.3: $\mathrm{J}_{\text {local }} / \mathrm{J}_{\text {emote }}$ ratios under mode I, II and mixed mode (I/II) loading, plane strain

Table 7.4: Elastic and plastic mixities in plane stress, $\mathrm{T}=0$
Table 7.5: Critical angles on the slip line fields, plane stress, $\mathrm{T}=0$
Table 9.1: Sector angles of the slip line fields under mixed mode, $\mathrm{K}_{\mathrm{V}} / \mathrm{K}_{\mathrm{II}}=2$ in plane strain

Chapter 1 Introduction

Engineering structures and components may contain cracks or defects which may compromise their structural integrity. Fracture mechanics is intended to ensure the safety of structures such as nuclear installation, aircraft and chemical plant, and thus avoid loss of life, as well as providing financial savings.

Fracture mechanics can be used both in the design and maintenance of structures and components. Conventional methods based on strength, use two variables: the applied load and the yield strength or ultimate lensile strength of the material. In design based on fracture mechanics, three variables are considered: the applied load, the fracturc toughess and the absolute defect size. Fracture toughness is a material property, which quantifies the material resistance to fracture. Fracture mechanics attempts to establish the critical combinations of load, fracture toughness and defect size to ensure that an existing defect does not extend.

The field of fracture mechanics developed following the failure of the Liberty ships developed in the United States during the second wolld war. The Liberty ships were fabricated by welding instead of using traditional riveted joints. Out of about 2700 Liberty ships, fractures occurred in around 400 vessels. Subsequent fracture analysis identified three different causes of failure: defects or cracks in welded joints, stress concentration at square hatch corncrs on the deck and poor fracture toughness of the structural steel. As a result improved quality control measures were implemented.

Research in the field of fracture mechanics can be categorised into materials research and structural research. Materials research is intended to give a better understanding of material behaviour. This includes material properties, process control, defects control and control of microstructure to obtain improved material performance and reliability. Structural research is intended to improve the life and design of structures. Thus fracture mechanics research potentially saves significant costs arising from both material and structural failures.

A component containing crack-like defects, may be loaded in three distinct modes. mode 1 (opening), mode II (in-planc shear) and mode III (out of plane shear) or any combination of these modes. In many practical cases, structures or components are subject to mixed mode (I/II, I/III, II/II) loadings rather than a single mode. The current work investigates the mixed mode $\mathrm{I} / \mathrm{\Pi}$ crack tip fields in elastic perfectly-plastic material in plane strain and plane stress, and is intended to provide insight into the structure of the crack tip field within the plastic zone, which develops at the crack tip.

Following this Introduction, Chapter 2 reviews the basic concepts of stress, strain and elastic stress-strain relations, plane stress and plane strain and concludes with a discussion on yieiding and plasticity. Chapter 3 introduces the fundamental concepts of finear elastic fracture mechanics, which are central to this work. Chapter 4 establishes the concepts of plane strain and plane stress slip line fields and reviews existing solutions of plane strain and plane stress mixed mode (I/TI) slip line fields.

Chapter 5 reviews the literature on cleavage and ductile fracture under mixed mode ($/ / \Pi$) loading. This leads to the numerical methods employed in the analysis including boundary layer formulations, which are discussed in Chapter 6 . Chapter 7 presents the results of the
numerical study, which focus on the structure of elastic perfectly-plastic crack tip fields in mixed mode I/II loading. Here a technique for expressing numerical results as slip line fields is developed in both plane strain and plane stress. Chapter 8 develops analytical solutions of the plane stress problems in mode I and mixed mode I/II loading. Finally, Chapter 9 discusses the results and the main conclusions of the work are summarised in Chapter 10.

Chapter 2 Stress, strain and stress-strain relations

2.1 Stress and strain

2.1.1 Stress

Stress is a fundamental concept in the mechanics of materials, and indicates how a force is transmitted through a solid body. To illustrate this, consider a small cubic element in Figure 2.1 subjected to arbitrary forces in an orthogonal Cartesian co-ordinate system x_{i} (i $=1,2,3)$. As the element is small, the forces are assumed to be uniformly distributed over the faces of the element. Force is a vector F_{j}, and Λ_{i} is the area of a face normal to the i direction. The stress on the element can be defined as:
$\sigma_{i j}=\lim _{\mathrm{A}_{1} \rightarrow 0} \frac{\mathrm{~F}_{\mathrm{i}}}{\mathrm{A}_{\mathrm{i}}}$
where $\mathrm{i}, \mathrm{j}=1,2,3$. Stress σ_{ij}, is a second order tensor, in which the first suffix, i refers to the direction of the normal to the plane on which the stress acts, and the second suffix, j refers to the direction of force component. Normal stresses occur when $i=j$ and shcar stresses when $i \neq j$. Thus a normal stress σ_{11} evolves from the force component on a plane in the x_{1} direction and where the direction of the normal to the plane is also x_{1}. As illustrated in Figure 2.1, the stress components $\sigma_{11}, \sigma_{22}, \sigma_{33}$ are the normal stress components on the element in x_{1}, x_{2} and x_{3} direction, σ_{12} and σ_{13} arc shear stress components on the $x_{2} \mathrm{x}_{3}$ face. Similarly σ_{21} and σ_{23} are shear stress components on the $\mathrm{x}_{1} \mathrm{x}_{3}$ face, and σ_{31} and σ_{32} are the components on the $x_{1} x_{2}$ face. Equilibrium of moments requires that $\sigma_{\mathrm{ij}}=\sigma_{\mathrm{ji}}$ allowing the stress tensor at a point be described by six independent components $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{23}$ and σ_{31}.

If a body is under static equilibrium, the stress components must satisfy a set of differential cquations known as the linear equilibrium equations:

$$
\begin{align*}
& \frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{12}}{\partial x_{2}}+\frac{\partial \sigma_{31}}{\partial x_{3}}+X_{1}=0 \\
& \frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{12}}{\partial x_{1}}+\frac{\partial \sigma_{23}}{\partial x_{3}}+X_{2}=0 \\
& \frac{\partial \sigma_{33}}{\partial x_{3}}+\frac{\partial \sigma_{23}}{\partial x_{2}}+\frac{\partial \sigma_{31}}{\partial x_{1}}+X_{3}=0 \tag{2.2}
\end{align*}
$$

wherc, $\mathrm{X}_{1}, \mathrm{X}_{2}$ and X_{3} are the components of the body force per unit volume in the $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} directions.

Stresses can be transformed from one co-ordinate system to another system using the stress transformation equations. Figures $2.2 \& 2.3$ show the stresses on an element near the crack
tip in Cartesian and polar co-ordinate systems. If the Cartesian stress components are σ_{11}, σ_{22} and σ_{12}, the stress components in a polar co-ordinate system (r, θ) are:

$$
\begin{align*}
& \sigma_{\mathrm{rr}}=\sigma_{11} \cos ^{2} \theta+\sigma_{22} \sin ^{2} \theta+2 \sigma_{12} \sin \theta \cos \theta \\
& \sigma_{\theta \theta}=\sigma_{11} \sin ^{2} \theta+\sigma_{22} \cos ^{2} \theta-2 \sigma_{12} \sin \theta \cos \theta \\
& \sigma_{\mathrm{r} \theta}=\left(\sigma_{22} \cdots \sigma_{11}\right) \sin \theta \cos \theta+\sigma_{12}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \tag{2.3}
\end{align*}
$$

where, σ_{rr} is the normal stress component in the radial direction, σ_{00} is the normal stress component in the circumferential direction, $\sigma_{\mathrm{r} \theta}$ is the shear stress component and θ is the angle (taken as positive anti-clockwise) which the element makes with the x_{1} axis.

Similarly, stresses in the Cartesian co-ordinate system can be obtained from the polar coordinate system by the reverse transformation:

$$
\begin{align*}
& \sigma_{\mathrm{ti}}=\sigma_{\mathrm{rr}} \cos ^{2} \theta+\sigma_{\mathrm{\theta A}} \sin ^{2} \theta-2 \sigma_{\mathrm{ri}} \sin \theta \cos \theta \\
& \sigma_{22}=\sigma_{\mathrm{rr}} \sin ^{2} \theta+\sigma_{00} \cos ^{2} \theta+2 \sigma_{\mathrm{r} \theta} \sin \theta \cos \theta \\
& \sigma_{12}=\left(\sigma_{\mathrm{rr}}-\sigma_{0 \theta}\right) \sin \theta \cos \theta+\sigma_{\mathrm{r} \mathrm{\theta}}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \tag{2.4}
\end{align*}
$$

The maximum and the minimum normal stresses in an element are the principal stresses. The planes on which principal stresses act are called principal planes, which are not subject to shear stresses. Using Mohr's circle in Figures 2.4a \& b, the maximum and minimum normal stresses i.e., the principal stresses on the element are:

$$
\begin{equation*}
\sigma_{1,2}=\frac{\sigma_{11}+\sigma_{22}}{2} \pm \sqrt{\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}+\sigma_{12}^{2}} \tag{2.5}
\end{equation*}
$$

The principal planes and the principal stresses are shown in Figure 2.4c, and are perpendicular to cach other.

Consideration of the element shown in Figure 2.4, indicates the maximum and minimum shear stresses in the element obtained from Mohtr's circle construction are:

$$
\begin{equation*}
\tau_{\max }= \pm \sqrt{\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2} \div \sigma_{12}^{2}} \tag{2.6}
\end{equation*}
$$

The minimum shear stress is negative with an absolute value equal to the maximum shear stress. Figure 2.4d shows the maximum and the minimum shear stresses and the planes on which they occur. The two planes are orthogonal. The normal stresses, ω_{n}, on the planes of maximum and minimum shear stresses are identical and can be given as:
$\sigma_{n}=\frac{\sigma_{11}+\sigma_{22}}{2}$
The plane of maximum shear stress makes an angle of 45° with principal planes.

2.1.2 Strain

Strain is a measure of the distortion of a body, possibly as the result of an applicd stress. A. body subject to an external force, may undergo deformation as well as a rigid body motion. In multi-axial loading, the strain at a point in the body is specified by the components of strain in x_{1}, x_{2} and x_{3} directions. Like stress, the strain components are denoted as normal and shear strains and give the strain values of an infinitesimal element which is initially parallel to the co-ordinate axes. Normal strains are denoted by $\varepsilon_{\mathrm{ij}}(\mathrm{i}=\mathrm{j})$ and shear strains by $\gamma_{\mathrm{ij}}(\mathrm{i} \neq \mathrm{j})$. If the displacement components of a particle in a deformed body in $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} directions are u, v, and w, the nomal and shear strain components are:
$\varepsilon_{11}=\frac{\partial \mathrm{u}}{\partial \mathrm{x}_{1}}, \varepsilon_{22}=\frac{\partial \mathrm{v}}{\partial \mathrm{x}_{2}}$ and $\varepsilon_{33}=\frac{\partial \mathrm{w}}{\partial \mathrm{x}_{3}}$
$\gamma_{12}=\frac{\partial u}{\partial x_{2}}+\frac{\partial v}{\partial x_{1}}$
$\gamma_{23}=\frac{\partial v}{\partial x_{3}}+\frac{\partial w}{\partial x_{2}}$
$\gamma_{31}=\frac{\partial w}{\partial x_{1}}+\frac{\partial u}{\partial x_{3}}$
As the six strain components are functions of the three displacement components, they can not vary independently and are related by a set of differential equations. The differential equations are called compatibility equations and can be written as:
$\frac{\partial^{2} \varepsilon_{11}}{\partial \mathrm{x}_{2}^{2}}+\frac{\partial^{2} \varepsilon_{22}}{\partial \mathrm{x}_{1}^{2}}=\frac{\partial^{2} \gamma_{12}}{\partial \mathrm{x}_{1} \partial \mathrm{x}_{2}}$
$\frac{\partial^{2} \varepsilon_{22}}{\partial x_{3}^{2}}+\frac{\partial^{2} \varepsilon_{33}}{\partial x_{2}^{2}}=\frac{\partial^{2} \gamma_{23}}{\partial x_{2} \partial x_{3}}$
$\frac{\partial^{2} \varepsilon_{33}}{\partial \mathrm{x}_{1}^{2}}+\frac{\partial^{2} \varepsilon_{11}}{\partial \mathrm{x}_{3}^{2}}=\frac{\partial^{2} \gamma_{13}}{\partial \mathrm{x}_{1} \partial \mathrm{x}_{3}}$

$$
\begin{align*}
& 2 \frac{\partial^{2} \varepsilon_{22}}{\partial x_{1} \partial x_{3}}=\frac{\partial}{\partial x_{2}}\left(\frac{\partial \gamma_{23}}{\partial x_{1}}-\frac{\partial \gamma_{13}}{\partial x_{2}}+\frac{\partial y_{12}}{\partial x_{3}}\right) \\
& 2 \frac{\partial^{2} \varepsilon_{33}}{\partial x_{1} \partial x_{2}}=\frac{\partial}{\partial x_{3}}\left(\frac{\partial y_{23}}{\partial x_{1}}+\frac{\partial y_{13}}{\partial x_{2}}-\frac{\partial \gamma_{12}}{\partial x_{3}}\right) \tag{2.9}
\end{align*}
$$

The strain components must satisfy the compatibility equations.

2.1.3 Elastic stress strain relations

Consider a bar of isotropic lincar-clastic matcrial subjected to uniaxial tensile stress σ_{32} as illustrated in Figure 2.5. The corresponding strains are:
$\varepsilon_{22}=\frac{\sigma_{22}}{E}, \varepsilon_{11}=\varepsilon_{33}=-v \frac{\sigma_{22}}{E}$
where, $\varepsilon_{11}, \varepsilon_{22}$ and ε_{33} are strain components in x_{1}, x_{2} and x_{3} direction respectively, E is Young's modulus and v is Poisson's ratio. Similarly for uniaxial tensile stresses σ_{11} and $\sigma_{3 j}$ the stress strain relations are:
$\varepsilon_{11}=\frac{\sigma_{11}}{E}, \varepsilon_{22}=\varepsilon_{33}=-v \frac{\sigma_{11}}{E}$ and
$\varepsilon_{33}=\frac{\sigma_{33}}{E}, \varepsilon_{11}=\varepsilon_{22}=-v \frac{\sigma_{33}}{E}$
By superimposing these equations for the strain components, the stress strain relations for multi-axial loading are:
$\varepsilon_{11}=\frac{1}{E}\left[\sigma_{11}-v\left(\sigma_{22}+\sigma_{33}\right)\right]$
$\varepsilon_{22}=\frac{1}{E}\left[\sigma_{22}-\nu\left(\sigma_{11}+\sigma_{33}\right)\right]$
$\varepsilon_{33}=\frac{1}{E}\left[\sigma_{33}-v\left(\sigma_{11}+\sigma_{22}\right)\right]$
The shear strain components are obtained from the shear stresses as:
$\gamma_{12}=\frac{\sigma_{12}}{\mathrm{G}}, \gamma_{23}=\frac{\sigma_{23}}{\mathrm{G}}, \gamma_{31}=\frac{\sigma_{31}}{\mathrm{G}}$
where, G is the shear modulus, which can be written in terms of Young's modulus and Poisson's ratio:

$$
\begin{equation*}
G=\frac{E}{2(1+v)} \tag{2.14}
\end{equation*}
$$

2.2 Plane stress and plane strain

2.2.1 Plane stress

Plane stress and plane strain are concepts which are intended to simplify full three dimensional problems allowing them to become more amenable to analysis. Consider a thin plate, loaded as in Figure 2.6. The forces are uniformly distributed over the boundary of the plate, and act parallel to its plane, such that there is no stress component in the direction perpendicular to the plane of the plate (i.c., in the x_{3} direction), and other stress components (x_{1} and x_{2}) do not vary in that direction. This state is defined as plane stress and can be specified by the stress components σ_{11}, σ_{22} and σ_{12}.

Plane stress is defined such that in direction x_{3}.
$\sigma_{33}=\sigma_{13}=\sigma_{23}=0$ and $\frac{\partial \sigma_{\mathrm{ij}}}{\partial \mathrm{x}_{3}}=0$

2.2.2 Plane strain

Consider a long cylindrical body loaded as in Figure 2.7. The forces are unifornly distributed over the surface of the body, and act parallel to the faces of the cylinder. The stress components ($\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3}) do not vary along the longitudinal axis (represents the x_{3} direction) of the cylinder. Moreover, the cylinder is fixed between two rigid plates, such that it does not displace in the axial direction. Therefore, strain components of the body in the x_{3} direction are zero. This state is defined as plane strain.

Plane strain is defined such that in direction x_{3},
$\varepsilon_{33}=\gamma_{13}=\gamma_{23}=0$
From Hooke's law, the strain in the x_{3} direction:
$\varepsilon_{33}=\frac{1}{E}\left[\sigma_{33}-v\left(\sigma_{11}+\sigma_{22}\right)\right]$
where v represents Poisson's ratio and E is modulus of elasticity. Substituting $\varepsilon_{33}=0$ in Equation 2.17, the normal stress in direction x_{3} is:
$\sigma_{33}=v\left(\sigma_{11}+\sigma_{22}\right)$
The out of plane stress, σ_{33}, maintains the plane strain condition. Again, from stress-strain relations:
$\gamma_{13}=\frac{1}{G} \sigma_{13}, \gamma_{23}=\frac{1}{G} \sigma_{23}$ and $\gamma_{12}=\frac{1}{G} \sigma_{12}$

Substituting from Equation 2.16, Equations 2.19 give the condition of plane strain as:

$$
\begin{equation*}
\varepsilon_{33}=\gamma_{13}=\gamma_{23}=\sigma_{13}=\sigma_{23}=0 \text { and } \gamma_{12}=\frac{1}{G} \sigma_{12} \tag{2.20}
\end{equation*}
$$

2.3 Yielding and plasticity

2.3.1 The Tresca yield criterion

The Tresca yield criterion (Tresca, 1864) suggests that multiaxially loaded material yields and exhibits irreversible plastic deformation when the maximum shear stress exceeds a critical value equal to the yield strength in shear. The maximum shear stress is given by:
$\tau_{\max }=\tau_{y}=\sigma_{0} / 2=$ Maximum of $\left|\frac{\sigma_{1}-\sigma_{2}}{2}\right|,\left|\frac{\sigma_{1} \cdots \sigma_{3}}{2}\right|,\left|\frac{\sigma_{2} \cdots \sigma_{3}}{2}\right|$
where, σ_{1}, σ_{2} and σ_{3} are the three principal stresses. The Tresca criterion indicates that the yield stress in shear is one-half the tensile yield strength.

2.3.2 The von Mises yield criterion

The von Mises yield criterion (von Mises, 1913) indicates that yielding occurs when the elastic distortional energy per unit volume in a tensile test equals the distortional energy per unit volume in the component under multi-axial loading. The distortional energy within a component under multi-axial loading can be characterised by an equivalent stress:
$\sigma_{e}=\frac{1}{\sqrt{2}}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]^{\frac{1}{2}}$
where, σ_{1}, σ_{2} and σ_{5} are the three principal stresses. Yielding occurs in a multi-axially loaded component if the equivalent stress, σ_{e} equals the uni-axial yield strength, σ_{0}.

The von Mises yield criterion can be expressed in terms of non-principal stresses. As discussed in Section 2.1.1, the principal stresses can be written as:

$$
\begin{align*}
& \sigma_{1}=\frac{\sigma_{11}+\sigma_{22}}{2}+\left[\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}+\sigma_{12}^{2}\right]^{\frac{1}{2}} \\
& \sigma_{2}=\frac{\sigma_{11}+\sigma_{22}}{2}-\left[\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}+\sigma_{12}^{2}\right]^{\frac{1}{2}} \tag{2.23}
\end{align*}
$$

The principal stress in x_{3} direction can be given as:
$\sigma_{3}=0$
in plane stress, and

$$
\begin{equation*}
\sigma_{3}=v\left(\sigma_{1}+\sigma_{2}\right) \tag{2.25}
\end{equation*}
$$

in plane strain, where v is Poison's ratio.
Substituting Equations 2.23 in Equation 2.25 gives:

$$
\begin{equation*}
\sigma_{3}=v\left(\sigma_{11}+\sigma_{22}\right) \tag{2,26}
\end{equation*}
$$

Substituting Equations $2.23 \& 2.24$ in Equation 2.22 gives von Mises equation in terms of non-principal stresses for plane stress:

$$
\begin{equation*}
\sigma_{\mathrm{e}}=\frac{1}{\sqrt{2}}\left[6\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}+2\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)^{2}+6 \sigma_{12}^{2}\right]^{\frac{1}{2}} \tag{2.27}
\end{equation*}
$$

Again substituting Equations $2.23 \& 2.26$ in Equation 2.22 gives the corresponding equation for plane strain:

$$
\begin{equation*}
\sigma_{e}=\frac{1}{\sqrt{2}}\left[6\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}+2\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)^{2}(1-2 v)^{2}+6 \sigma_{12}^{2}\right]^{\frac{1}{2}} \tag{2.28}
\end{equation*}
$$

2.3.3 Tquivalent stress and equivalent strain

If yielding is assumed to occur under the von Mises yield criterion, the tendency for further plastic flow can be quantified by the equivalent stress, $\bar{\sigma}$ which can be expressed in terms of principal stresses, $\sigma_{1}, \sigma_{2}, \sigma_{3}$ as:

$$
\begin{equation*}
\bar{\sigma}=\sqrt{1 / 2\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]} \tag{2.29}
\end{equation*}
$$

The equivalent stress can also be written in terms of the Cartesian stresses as:

$$
\begin{align*}
\bar{\sigma}= & \sqrt{1 / 2\left[\left(\sigma_{11}-\sigma_{22}\right)^{2}+\left(\sigma_{22}-\sigma_{33}\right)^{2}+\left(\sigma_{33}-\sigma_{11}\right)^{2}\right]} \tag{2.30}\\
& +\sqrt{3} \sigma_{12}+\sqrt{3} \sigma_{23}+\sqrt{3} \sigma_{31}
\end{align*}
$$

In uni-axial tension the equivalent stress, $\bar{\sigma}$ is equal to the yield or flow strength of the matcrial. For an clastic-perfectly plastic material during plastic deformation the equivalent stress remains constant. However, if the material strain hardens, the equivalent stress increases with plastic deformation, due to changes in the dislocation structure of the material.

Since the equivalent stress depends on plastic strain, it is necessary to quantify strain with a parameter which corresponds to the equivalent stress, $\bar{\sigma}$. The appropriate parameter is the equivalent plastic strain, $\overline{\mathrm{e}}^{\mathrm{p}}$, which can be defined as:

$$
\begin{equation*}
\overline{\mathrm{e}}^{\mathrm{p}}=\sqrt{2 / 9\left[\left(\mathrm{e}_{1}^{\mathrm{p}}-\mathrm{e}_{2}^{\mathrm{p}}\right)^{2}+\left(\mathrm{e}_{2}^{\mathrm{p}}-\mathrm{e}_{3}^{\mathrm{p}}\right)^{2}+\left(\mathrm{e}_{3}^{\mathrm{p}}-\mathrm{e}_{1}^{\mathrm{p}}\right)^{2}\right]} \tag{2.31}
\end{equation*}
$$

where, e_{1}^{p}, e_{2}^{p} and e_{3}^{p} are principal plastic strains. The equivalent plastic strain in terms of Cartesian strains can be given as:

$$
\begin{align*}
\stackrel{\mathrm{e}}{ }_{\mathrm{p}}= & \sqrt{2 / 9\left[\left(\mathrm{e}_{11}^{\mathrm{p}}-\mathrm{c}_{22}^{\mathrm{p}}\right)^{2}+\left(\mathrm{c}_{22}^{\mathrm{p}}-\mathrm{e}_{33}^{\mathrm{p}}\right)^{2}+\left(\mathrm{e}_{33}^{\mathrm{p}}-\mathrm{e}_{11}^{\mathrm{p}}\right)^{2}\right]} \\
& +\frac{1}{3}\left(\gamma_{12}\right)^{2}+\frac{1}{3}\left(\gamma_{23}\right)^{2}+\frac{1}{3}\left(\gamma_{31}\right)^{2} \tag{2.32}
\end{align*}
$$

In uni-axial tension the equivalent strain, $\overline{\mathrm{e}}^{\mathrm{p}}$ is equal to the axial strain, e_{1}^{p} for incompressible deformation. The equivalent plastic strain, $\overline{\mathrm{e}}^{\mathrm{p}}$ quantifies the total dislocation activity associated with a shape change. Under uni-axial tension ($\sigma_{2}=\sigma_{3}=0$) an axial tensile plastic strain, $\mathrm{e}_{1}^{p}=0.02$, gives rise to transverse plastic strains, $\mathrm{e}_{2}^{\mathrm{p}}=\mathrm{e}_{3}^{p}=-0.01$, with no volume change. Although the volumetric shape change $\left(e_{1}^{p}+e_{2}^{p}+e_{3}^{p}\right)$ is zero, the equivalent plastic strain $\left(\overline{\mathrm{e}}^{p}=\mathrm{e}_{\mathrm{i}}^{\mathrm{p}}\right)$ is 0.02 .

The equivalent plastic strain can be written in an ineremental form as:
$\mathrm{de}^{p}=\sqrt{2 / 9\left[\left(\mathrm{de}_{1}^{\mathrm{p}} \cdots \mathrm{de}_{2}^{\mathrm{p}}\right)^{2}+\left(\mathrm{de}_{2}^{\mathrm{p}}-\mathrm{de}_{3}^{\mathrm{p}}\right)^{2}+\left(\mathrm{de}_{3}^{\mathrm{p}}-\mathrm{de}_{1}^{\mathrm{p}}\right)^{2}\right]}$
where, $\operatorname{de}_{1}^{p}, \operatorname{dep}_{2}^{\mathrm{p}}$ and de_{3}^{p} are the principal plastic strain increments. Using Cartesiarn strains the equivalent plastic strain increment is:

$$
\begin{align*}
\mathrm{de}^{\mathrm{p}}= & \sqrt{2 / 9\left[\left(\mathrm{de}_{11}^{\mathrm{p}}-\mathrm{de}_{22}^{\mathrm{p}}\right)^{2}+\left(\mathrm{de}_{22}^{\mathrm{p}}-\mathrm{de}_{33}^{\mathrm{p}}\right)^{2}+\left(\mathrm{de}_{33}^{\mathrm{p}}-\mathrm{de}_{11}^{\mathrm{p}}\right)^{2}\right]} \\
& +\frac{1}{3}\left(\mathrm{~d} \gamma_{12}\right)^{2}+\frac{1}{3}\left(\mathrm{~d} \gamma_{23}\right)^{2}+\frac{1}{3}\left(\mathrm{~d} \gamma_{31}\right)^{2} \tag{2.34}
\end{align*}
$$

The total equivalent plastic strain is then given by summing the equivalent strain increments over the strain history:

$$
\begin{equation*}
\overline{\mathrm{e}}^{\mathrm{p}}=\int \mathrm{d} \overline{\mathrm{e}}^{\mathrm{p}} \tag{2,35}
\end{equation*}
$$

Thus a tensile strain of $0.02\left(e_{1}^{p}=0.02, e_{2}^{p}=e_{3}^{p}=-0.01\right)$ followed by a compressive strain of $0.02\left(e_{1}^{p}=-0.02, e_{2}^{p}=c_{3}^{p}=+0.01\right)$ recovers the original shape of the body but gives a total equivalent plastic strain of 0.04 .

The relation between equivalent stress and equivalent plastic strain is independent of loading history as well as state of stress. Therefore, the equivalent stress-strain relation in tension is identical to that in bending or torsion.

The plastic stress-strain equations can be written in similar form to the clastic equations, thus:

$$
\varepsilon_{11}=\frac{1}{E}\left[\sigma_{11}-v\left(\sigma_{22}+\sigma_{33}\right)\right]
$$

$\varepsilon_{22}=\frac{1}{\mathrm{E}}\left[\sigma_{22}-v\left(\sigma_{11}+\sigma_{33}\right)\right]$
$\varepsilon_{33}=\frac{1}{E}\left[\sigma_{33}-v\left(\sigma_{11}+\sigma_{22}\right)\right]$
$\gamma_{12}=\frac{\sigma_{12}}{G}, \gamma_{23}=\frac{\sigma_{23}}{G}, \gamma_{31}=\frac{\sigma_{31}}{G}$
where, G is shear modulus and $G=E / 2(1+v)$.
Plastic deformation occurs with no volume change, so that the volumetric strain is:

$$
\begin{equation*}
\frac{\Delta V}{V}=\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}=0 \tag{2.38}
\end{equation*}
$$

Substituting from Equations 2.36, Equation 2.38 gives:

$$
\begin{equation*}
\frac{\Delta V}{V}=\frac{1-2 v}{E}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)=0 \tag{2.39}
\end{equation*}
$$

Equation 2.39 shows that for an incompressible material Poisson's ratio is $1 / 2$, giving the shear modulus, $\mathrm{G}=\mathrm{E} / 3$. Substituting into Equations 2.37 gives:

$$
\begin{equation*}
\gamma_{12}=\frac{3 \sigma_{12}}{E}, \gamma_{23}=\frac{3 \sigma_{23}}{E}, \gamma_{31}=\frac{3 \sigma_{31}}{E} \tag{2.40}
\end{equation*}
$$

To describe non-linear deformation, the modulus of elasticity, E, can be replaced with the ratio of equivalent stress to equivalent strain, $\bar{\sigma} / \bar{e}$, in Equations $2.36 \& 2.40$ to give a set of equations:
$\varepsilon_{11}=\frac{\overline{\mathrm{e}}}{\bar{\sigma}}\left[\sigma_{11}-\frac{1}{2}\left(\sigma_{22}+\sigma_{33}\right)\right] \quad \gamma_{12}=3 \frac{\overline{\mathrm{e}}}{\bar{\sigma}} \sigma_{12}$
$\varepsilon_{22}=\frac{\overline{\mathrm{e}}}{\bar{\sigma}}\left[\sigma_{22}-\frac{1}{2}\left(\sigma_{15}+\sigma_{33}\right)\right] \quad \gamma_{23}=3 \frac{\overline{\mathrm{e}}}{\bar{\sigma}} \sigma_{23}$
$\varepsilon_{33}=\frac{\overline{\mathrm{e}}}{\bar{\sigma}}\left[\sigma_{23}-\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right)\right] \quad \gamma_{31}=3 \frac{\overline{\mathrm{e}}}{\bar{\sigma}} \sigma_{31}$
These equations describe deformation plasticity, which is applicable to both linear and non-linear elasticity. A non-linear elastic material can not be distinguished from a plastic material unless unloading is allowed, and given this type of loading history (proportional loading) Equations 2.41 are also applicable to a material under deformation plasticity.

Non-linear elastic and plastically deforming materials can be distinguished if the deformation history involves unloading as the elastic strains arc recovered on unloading and plastic strains are permanent. The total plastic strain is the sum of the increments of the
strain in the deformation history. Replacing strains by plastic strain increments, Equations 2.41 gives the flow rule as:

$$
\begin{align*}
& \mathrm{d} \varepsilon_{11}^{\mathrm{p}}=\left[\sigma_{11}-\frac{1}{2}\left(\sigma_{22}+\sigma_{33}\right)\right] \frac{\mathrm{de}^{\mathrm{p}}}{\bar{\sigma}} \quad \mathrm{~d} \gamma_{12}^{\mathrm{p}}=3 \frac{\mathrm{~d}^{\mathrm{p}}}{\bar{\sigma}} \sigma_{12} \\
& d \varepsilon_{22}^{p}=\left[\sigma_{22}-\frac{1}{2}\left(\sigma_{11}+\sigma_{33}\right)\right] \frac{d \overline{\mathrm{e}}^{\mathfrak{p}}}{\bar{\sigma}} \quad d \gamma_{23}^{\mathrm{p}}=3 \frac{\mathrm{~d} \overline{\mathrm{e}}^{\mathrm{p}}}{\bar{\sigma}} \sigma_{22} \\
& d \varepsilon_{33}^{\mathrm{p}}=\left[\sigma_{33}-\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right)\right] \frac{\mathrm{d} \overline{\mathrm{e}}^{\mathrm{p}}}{\bar{\sigma}} \quad \mathrm{~d} \gamma_{31}^{\mathrm{p}}=3 \frac{\mathrm{~d} \overline{\mathrm{e}}^{\mathrm{p}}}{\bar{\sigma}} \sigma_{31} \tag{2.42}
\end{align*}
$$

The Equations 2.42 describe incremental plasticity, where the total strain is obtained from the elastic strain calculated from instantaneous stresses and the total plastic strain obtained by summing the plastic strain increments:
$\mathrm{d} \varepsilon_{11}=\mathrm{d} \varepsilon_{11}^{\mathrm{e}}+\mathrm{d} \varepsilon_{11}^{\mathrm{p}}$
$\mathrm{d} \gamma_{12}=\mathrm{d} \gamma_{12}^{\mathrm{cl}}+\mathrm{d} \gamma_{12}^{\mathrm{p}}$
$\mathrm{d} \varepsilon_{22}=\mathrm{d} \varepsilon_{22}^{\mathrm{el}}+\mathrm{d} \varepsilon_{22}^{\mathrm{y}}$
$d \gamma_{23}=d \gamma_{23}^{\mathrm{ed}}+\mathrm{d} \gamma_{23}^{p}$
$d \varepsilon_{33}=d \varepsilon_{33}^{\mathrm{el}}+d \varepsilon_{33}^{\mathrm{r}}$
$\mathrm{d} \gamma_{31}=\mathrm{d} \gamma_{31}^{\mathrm{et}}+\mathrm{d} \gamma_{31}^{\mathrm{p}}$

Figure 2.1: Stress components referred to Cartesian co-ordinate axes.

Figure 2.2: Stresses on an element near the crack tip in Cartesian co-ordinate system.

Figure 2.3: Stresses on an element near the crack tip in polar co-ordinate system.

Figure 2.4: Stresses on element (a) and its corresponding Mohr's circle (b) showing the principal stresses (c) and maximum and minimum shear stresses (d).

Figure 2.5: Bar subjected to uniaxial tension.

Figure 2.6: Forces at the boundary of a thin plate.

Figure 2.7: Cylindrical body is loaded by forces perpendicular to the longitudinal axis.

Chapter 3 Linear elastic fracture mechanics

3.1 Griffith Criterion

According to the Griffith criterion (1920), crack propagation occurs if the energy available for crack growth is greater than the energy absorbed by the material. Griffith (1920) used a thermodynamic principle which states that a system loses energy when it goes from a nonequilibrium to an equilibrium state, but if it is already in equilibrium the energy will remain unchanged. Hence, an existing crack will advance if the total energy in the system decreases or remains constant.

Consider an infinite plate subject to a remote tensile stress σ as illustrated in Figure 3.1. The plate contains a crack of length 2 a . Following Griffith (1920), the surfacc energy associated with the crack will be 4 at γ_{s} (the product of the total crack surface area, 4at, and the specific surface energy, γ_{s}). According to an analysis duc to Inglis (1913), the decrease in elastic potential energy of the plate due to introducing a crack of length 2 a is $\left(\pi \sigma^{2} a^{2} i\right) / E^{\prime}$, where $E^{\prime}=E$ in planc stross and $E /\left(1-v^{2}\right)$ in plane strain. The change in potential energy of the plate duc to the introduction of a crack can be given as:
$\mathrm{U}-\mathrm{U}_{0}=-\frac{\pi \sigma^{2} \mathrm{a}^{2} \mathrm{t}}{\mathrm{E}^{\prime}}+4 \mathrm{at} \gamma_{\mathrm{s}}$
where, U is the potential energy of the plate with a crack, U_{0} is the potential energy of the plate without a crack, a is one-half the crack length, t is the thickness of the plate and γ_{s} is the specific surface encrgy.

Equation 3.1 can be rewritten in the form:
$\mathrm{U}=4 \mathrm{at} \gamma_{s}-\frac{\pi \sigma^{2} \mathrm{a}^{2} \mathrm{t}}{\mathrm{E}^{\prime}}+\mathrm{U}_{0}$
The equilibrium condition is given by the minimum potential energy, U with respect to crack length

$$
\begin{equation*}
\frac{\partial \mathrm{U}}{\partial \mathrm{a}}=4 \mathrm{t} \gamma_{\mathrm{s}}-\frac{2 \pi \sigma^{2} \mathrm{at}}{\mathrm{E}^{\prime}}+0=0 \tag{3,3}
\end{equation*}
$$

Equation 3.3 gives the equilibrium condition as:

$$
\begin{equation*}
2 \gamma_{\mathrm{s}}=\frac{\pi \sigma^{2} \mathrm{a}}{\mathrm{E}^{\prime}} \tag{3.4}
\end{equation*}
$$

The second derivative of U in Equation 3.3 can be written as:

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{U}}{\partial \mathrm{a}^{2}}=-\frac{2 \pi \sigma^{2} \mathrm{t}}{\mathrm{E}^{\prime}} \tag{3.5}
\end{equation*}
$$

A negative value of the second derivative indicates unstable equilibrium in which the crack continues to grow. Equation 3.4 can finally be written in the form, which relates the fracture stress to the crack length:
$\sigma=\sqrt{\frac{2 \mathrm{E}^{\prime} \gamma_{\mathrm{s}}}{\pi \mathrm{a}}}$
Equation 3.6 is valid for ideally brittle materials in which cracks propagate by breaking the atomic bonds, such that the energy of the broken bonds per unit area is given by surface energy per unit area, γ_{s}. However, in the case of metals and polymers, which undergo plastic deformation, a major portion of the fracture energy is contributed by plastic work (Irwin, 1948, Orowan, 1948). Therefore, plastic work per unit area of surface must be included in surface energy term.

In order to apply Griffith's relation to a plastically deforming material, Irwin (1948) defined the elastic strain energy release rate, $G=\partial U / \partial a$, which gives the relation:

$$
\begin{equation*}
\sigma \sqrt{\pi \mathrm{a}}=\sqrt{\mathrm{E}^{\prime} \mathrm{G}} \tag{3.7}
\end{equation*}
$$

Fracture occurs when the strain energy release rate reaches a critical value, G_{c}. This critical strain energy relcase ratc, G_{c}, is a material property and is independent of geometry. Substituting $G=G_{c}$ in Equation 3.7 gives relation between failure stress and critical strain energy release rate as:

$$
\begin{equation*}
\sigma_{\mathrm{f}} \sqrt{\pi \mathrm{a}}=\sqrt{\mathrm{E}^{\prime} \mathrm{G}_{\mathrm{c}}} \tag{3.8}
\end{equation*}
$$

For an elastic plastic material strain energy release rale, $\mathrm{G}=\mathrm{J}$, a path independent contour integral surrounding the crack tip (Rice, 1968), which characterises the elastic plastic crack tip condition. Following Rice (1968), the J integral can be given as:

$$
\begin{equation*}
\mathrm{J}=\int_{\Gamma}\left(w \mathrm{dy}-\mathrm{T}_{\mathrm{i}} \frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}} \mathrm{ds}\right) \tag{3.9}
\end{equation*}
$$

where, Γ is an arbitrary contour surrounding the crack tip, w is the strain energy density, T_{i} are components of traction vector (normal to the contour), u_{i} are the components of displacement vector and ds is the increment of length along the contour. The strain energy density, w, can be given as:

$$
\begin{equation*}
\mathrm{w}==\int_{0}^{\varepsilon_{\mathrm{in}}} \sigma_{\mathrm{ij}} \mathrm{~d} \varepsilon_{\mathrm{ij}} \tag{3.10}
\end{equation*}
$$

where, σ_{ij} and $\varepsilon_{\mathrm{ij}}$ are the stress and strain tensors. Under lincar clasticity J is jdentical to the strain energy release rate, G.

3.2 Stress Intensity Factor (SIF)

A parallel approach to the energetics of the crack advance considers the stress field at the
crack tip. Using a cylindrical co-ordinate system centred at the crack tip the Williams (1957) expansion of the asymptotic elastic field can be given as:

$$
\begin{equation*}
\sigma_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij}}(\theta) \mathrm{r}^{-1 / 2}+\mathrm{B}_{\mathrm{ij}}(\theta) \mathrm{r}^{\theta}+\mathrm{C}_{\mathrm{ij}}(\theta) \mathrm{r}^{1 / 2}+\cdots \tag{3.11}
\end{equation*}
$$

Focusing on the first and second terms that are non-zero at the tip, the stress field can be written as:

$$
\sigma_{\mathrm{ij}}=\frac{\mathrm{K}}{\sqrt{2 \pi \mathrm{r}}} \mathrm{f}_{\mathrm{ij}}(\theta)+\left[\begin{array}{ll}
\mathrm{T} & 0 \tag{3.12}\\
0 & 0
\end{array}\right] \quad(\mathrm{i}, \mathrm{j}=1,2)
$$

where, σ_{ij} is the stress tensor, $\mathrm{f}_{\mathrm{ij}}(\theta)$ is a dimensionless function of θ, K is the stress intensity factor and T is a uni-axial stress (tensile or compressive) parallel to the crack flanks. The first term in Equation 3.12 is singular at the crack tip and K describes the amplitude of singularity. T-stress is independent of radial distance but depends on geometry and load. Focussing on the first term, the asymptotic stress field for mode I loading can be given as:

$$
\begin{equation*}
\sigma_{i j}=\frac{K_{I}}{\sqrt{2 \pi r}} f_{i j}(\theta) \tag{3.13}
\end{equation*}
$$

where, K_{I} is mode I stress intensity factor. The Stress Intensity Factor (henceforth SIF) characterises the amplitude of the stress singularity at the tip of a crack in a linear elastic material. If the SIF is known, all the components of stress, strain and displacement at a point near the crack tip can be determined as a function of distance from the crack tip r and angle θ. The stress intensity factor is denoted by $\mathrm{K}_{\mathrm{I}}, \mathrm{K}_{\mathrm{II}}$ and $\mathrm{K}_{\mathrm{III}}$ depending upon the mode of loading (i.e., opening, in-plane shear and out-of-plane shear respectively). Figure 3.2 illustrates three different modes of loading. In mode I, the load is applied normal to the crack plane, and the crack opens symmetrically about the crack plane. Mode \amalg corresponds to in-plane shear loading and tends to slide onc crack face with respect to the other. Mode III corresponds to out of plane shear.

Consider an element located at (r,0) near the crack tip in Figure 3.3. Westergaard (1939) has given the mode I stresses on the element in Cartesian co-ordinates:

$$
\begin{align*}
& \sigma_{11}=\frac{\mathrm{K}_{1}}{\sqrt{2 \pi \mathrm{r}}} \cos \left(\frac{\theta}{2}\right)\left[1-\sin \left(\frac{\theta}{2}\right) \sin \left(\frac{3 \theta}{2}\right)\right] \\
& \sigma_{22}=\frac{\mathrm{K}_{\mathrm{I}}}{\sqrt{2 \pi \mathrm{r}}} \cos \left(\frac{\theta}{2}\right)\left[1+\sin \left(\frac{\theta}{2}\right) \sin \left(\frac{3 \theta}{2}\right)\right] \\
& \sigma_{12}=\frac{\mathrm{K}_{1}}{\sqrt{2 \pi r}} \cos \left(\frac{0}{2}\right) \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{3 \theta}{2}\right) \tag{3.14}
\end{align*}
$$

On the crack plane, $\theta=0$, Equations 3.14 can be written as:
$\sigma_{11}=\sigma_{22}=\frac{\mathbf{K}_{1}}{\sqrt{2 \pi \mathrm{r}}}$
$\sigma_{12}=0$
On the crack plane the shear stress is zero, so that for mode I loading the crack plane is a principal plane. The normal and shear stresses in the x_{3} direction:
$\sigma_{33}=v\left(\sigma_{11}+\sigma_{22}\right)$, in plane strain
$\sigma_{33}=0$, in plane stress and
$\sigma_{13}=\sigma_{23}=0$, both in plane stress and strain
The Cartesian displacements $\left(\mathrm{u}_{1}, \mathrm{~L}_{2}\right)$ at (r, θ) for mode I can be given as:

$$
\begin{align*}
& \mathrm{u}_{\mathrm{i}}=\frac{\mathrm{K}_{1}}{2 \mathrm{G}}\left(\frac{\mathrm{r}}{2 \pi}\right)^{\frac{1}{2}}\left(\cos \frac{\theta}{2}\left(\kappa-1+2 \sin ^{2} \frac{\theta}{2}\right)\right) \\
& \mathrm{u}_{2}=\frac{\mathrm{K}_{1}}{2 \mathrm{G}}\left(\frac{\mathrm{r}}{2 \pi}\right)^{\frac{1}{2}}\left(\sin \frac{\theta}{2}\left(\kappa+1-2 \cos ^{2} \frac{\theta}{2}\right)\right) \tag{3.17}
\end{align*}
$$

where, $\kappa=(3-4 v)$ for plane strain and $\kappa=(3-v) /(1+v)$ for plane stress, and G is the shear modulus. Stresses on the element in Figure 3.3 due to mode II loading can be given as:

$$
\begin{align*}
& \sigma_{11}=-\frac{\mathrm{K}_{\mathrm{H}}}{\sqrt{2 \pi \mathrm{r}}} \sin \left(\frac{\theta}{2}\right)\left[2+\cos \left(\frac{\theta}{2}\right) \cos \left(\frac{3 \theta}{2}\right)\right] \\
& \sigma_{22}=\frac{\mathrm{K}_{\mathrm{II}}}{\sqrt{2 \pi \mathrm{r}}} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \cos \left(\frac{3 \theta}{2}\right) \\
& \sigma_{12}=\frac{\mathrm{K}_{\mathrm{II}}}{\sqrt{2 \pi \mathrm{r}}} \cos \left(\frac{\theta}{2}\right)\left[1-\sin \left(\frac{\theta}{2}\right) \sin \left(\frac{3 \theta}{2}\right)\right] \tag{3.18}
\end{align*}
$$

Finally Cartesian displacements at (r, θ) for mode II loading can be written as:

$$
\begin{align*}
& u_{1}=\frac{K_{\text {II }}}{2 G}\left(\frac{r}{2 \pi}\right)^{\frac{1}{2}}\left(\sin \frac{\theta}{2}\left(\kappa+1+2 \cos ^{2} \frac{\theta}{2}\right)\right) \\
& u_{2}=\frac{K_{\text {II }}}{2 G}\left(\frac{r}{2 \pi}\right)^{\frac{1}{2}}\left(\cdots \cos \frac{\theta}{2}\left(\kappa-1-2 \sin ^{2} \frac{\theta}{2}\right)\right) \tag{3.19}
\end{align*}
$$

Linear elastic fields can be superimposed to produce a general mixed mode //IX loading. The stresses are given by summing Equations 3.14 and 3.18 and displacements by adding Equations 3.17 and 3.19. The strain energy release rate, G is given as:

$$
\begin{equation*}
\mathrm{G}=\frac{\mathrm{K}_{1}^{2}}{\mathrm{E}^{\prime}}+\frac{\mathrm{K}_{12}^{2}}{\mathrm{E}^{\prime}} \tag{3.20}
\end{equation*}
$$

where $E^{\prime}=E$ for plane stress, and $E^{\prime}=E /\left(1-v^{2}\right)$ for plane strain.

3.3 Stress intensity factor and specimen geometry

The stress intensity factor for a central through crack in an infinite plate, illustrated in Figure 3.4 is:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{I}}=\sigma \sqrt{\pi \mathrm{a}} \tag{3.21}
\end{equation*}
$$

where, σ is remotely applied stress, and a is one-half the crack length. This makes contact with the Griffith's solution shown in Equation 3.6. This can be expresscd as:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{I}}=\sqrt{2 \mathrm{E}^{\prime} \gamma_{\mathrm{s}}} \tag{3.22}
\end{equation*}
$$

The stress intensity factor must always involve the product of the applied stress and a chatacteristic distance such as the crack length. However the definition may involve a dimensionless constant which depends on geometry.

As an example consider an edge crack in a semi-infinite plate shown in Figure 3.5. The stress intensity factor given by Brown \& Srawley (1966) is:
$K_{1}=1.12 \sigma \sqrt{\pi \mathrm{a}}$
For an edge crack the stress intensity factor is 12% higher than that of a Griffith crack.
An important test geometry is that of an edge cracked bar of height $2 h$, width b and crack length a, subjected to a uniform tensile stress, σ as shown in Figure 3.6. For the condition without bending constraint, Brown \& Srawley's (1966) polynomial for stress intensity factor is:

$$
\begin{equation*}
\frac{\mathrm{K}_{1}}{\mathrm{~K}_{\mathrm{o}}}=1.12-0.23(\mathrm{a} / \mathrm{b})+10.6(\mathrm{a} / \mathrm{b})^{2}-21.7(\mathrm{a} / \mathrm{b})^{3}+30.4(\mathrm{a} / \mathrm{b})^{4} \tag{3.24}
\end{equation*}
$$

where $K_{0}=\sigma \sqrt{\pi \mathrm{ta}}$, the stress intensity factor for Griffith crack. Brown \& Srawley (1966) estimate the accuracy of the stress intensity factor calculated from this equation to be within 1% for specimen with $\mathrm{h} / \mathrm{b} \geq 1.0$, and $\mathrm{a} / \mathrm{b} \leq 0.6$.

For an edge cracked bar (Figure 3.7) of width b and crack length a, subjected to pure bending, Brown \& Srawley's (1966) polynomial for stress intensity factor is:
$\frac{\mathrm{K}_{\mathrm{I}}}{\mathrm{K}_{\mathrm{o}}}=1.12-1.39(\mathrm{a} / \mathrm{b})+7.32(\mathrm{a} / \mathrm{b})^{2}-13.1(\mathrm{a} / \mathrm{b})^{3}+14.0(\mathrm{a} / \mathrm{b})^{4}$
where, $K_{0}=\frac{6 \mathrm{M} \sqrt{\pi \mathrm{a}}}{\mathrm{b}^{2}}$
M is bending moment per unit thickness. The accuracy of result, obtained from the polynomial is estimated to be within 1% for $\mathrm{a} / \mathrm{b} \leq 0.6$.

As a further example consider an edge cracked bar of width b and crack length a, subjected to three point bending as shown is Figure 3.8. P is the applied load per unit thickness and] is the distance of each support from the line of crack. Brown \& Srawley's (1966) stress intensity factor polynomials for $1 / \mathrm{b}=2$ and 4 are given in Equations 3.27 and 3.28 respectively:
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{0}}=1.11-1.55(\mathrm{a} / \mathrm{b})+7.71(\mathrm{a} / \mathrm{b})^{2}-13.5(\mathrm{a} / \mathrm{b})^{3}+14.2(\mathrm{a} / \mathrm{b})^{4}$
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{\mathrm{o}}}=1.09-1.73(\mathrm{a} / \mathrm{b})+8.20(\mathrm{a} / \mathrm{b})^{2}-14.2(\mathrm{a} / \mathrm{b})^{3}+14.6(\mathrm{a} / \mathrm{b})^{4}$
where K_{0} is calculated from Equation 3.26. The bending moment:
$\mathrm{M}=\mathrm{P} / 2$

3.4 Estimate of plastic zone radius

Much of the work of fracture involves crack tip plasticity (Irwin, 1948, Orowan, 1948). It is therefore important to estimate the radius of the plastic zone at the crack tip. The crack tip plastic zone radius can be estimated by applying the Tresca or von Mises yield criterion to the Westergaard (1939) equations:

$$
\begin{align*}
& \sigma_{11}=\frac{\mathrm{K}_{1}}{\sqrt{2 \pi \mathrm{r}}} \cos \left(\frac{\theta}{2}\right)\left[1-\sin \left(\frac{\theta}{2}\right) \sin \left(\frac{3 \theta}{2}\right)\right] \\
& \sigma_{22}=\frac{\mathrm{K}_{1}}{\sqrt{2 \pi \mathrm{r}}} \cos \left(\frac{\theta}{2}\right)\left[1+\sin \left(\frac{\theta}{2}\right) \sin \left(\frac{3 \theta}{2}\right)\right] \\
& \sigma_{12}=\frac{\mathrm{K}_{1}}{\sqrt{2 \pi \mathrm{r}}} \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{3 \theta}{2}\right) \tag{3.30}
\end{align*}
$$

The Tresca Equation is:

$$
\begin{equation*}
\tau_{\text {nux }}=\frac{\sigma_{1}-\sigma_{3}}{2} \quad\left(\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}\right) \tag{3.31}
\end{equation*}
$$

where, σ_{1} is the largest principal stress, and σ_{3} is the smallest principal stress.
The von Mises equation is:
$\sigma_{\mathrm{e}}=\frac{1}{\sqrt{2}}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]^{\frac{1}{2}}$
where, σ_{1}, σ_{2} and σ_{3} are the three principal stresses. Using Mohr's circle σ_{1}, σ_{2} and σ_{3} can be given as:
$\sigma_{1}=\frac{\sigma_{11}+\sigma_{22}}{2}+\left[\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}+\sigma_{12}^{2}\right]^{\frac{1}{2}}$
$\sigma_{2}=\frac{\sigma_{11}+\sigma_{22}}{2}-\left[\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}+\sigma_{12}^{2}\right]^{\frac{1}{2}}$
$\sigma_{3}=0$, for plane stress
$\sigma_{3}=v\left(\sigma_{1}+\sigma_{2}\right)$, for plane strain
where, v is Poison's ratio.
Substituting Equations 3.30 into Equations 3.33 gives:
$\sigma_{1}=\frac{\mathrm{K}_{1}}{\sqrt{2 \pi r}} \cos \left(\frac{\theta}{2}\right)\left[1+\sin \left(\frac{\theta}{2}\right)\right]$
$\sigma_{2}=\frac{\mathrm{K}_{1}}{\sqrt{2 \pi r}} \cos \left(\frac{\theta}{2}\right)\left[1-\sin \left(\frac{\theta}{2}\right)\right]$
$\sigma_{3}=0$, for plane stress
$\sigma_{3}=\frac{2 \nu \mathrm{~K}_{1}}{\sqrt{2 \pi \mathrm{r}}} \cos \left(\frac{\theta}{2}\right)$. for plane strain
Following the Tresca criterion, yielding occurs when $\tau_{\max }=\sigma_{0} / 2$. Substituting Equations 3.34 into Equation 3.31 and setting $r=r_{0}$, the radius of Tresca plastic zone can be given as:

$$
\begin{equation*}
\mathrm{r}_{\mathrm{n}}=\frac{\mathrm{K}_{1}^{2}}{2 \pi \sigma_{0}^{2}}\left[\cos \left(\frac{0}{2}\right)\left(1+\sin \left(\frac{\theta}{2}\right)\right)\right]^{2} \tag{3.35}
\end{equation*}
$$

for plane stress, and the larger of
$\mathrm{r}_{0}=\frac{\mathrm{K}_{1}^{2}}{2 \pi \sigma_{0}^{2}} \cos ^{2}\left(\frac{\theta}{2}\right)\left[1-2 v+\sin \left(\frac{\theta}{2}\right)\right]^{2}$
and
$\mathrm{r}_{0}=\frac{\mathrm{K}_{\mathrm{I}}^{2}}{2 \pi \sigma_{0}^{2}} \sin ^{2} \theta$
for plane strain.
Following the von Mises criterion, yielding occurs when the equivalent stress, σ_{e}, cquals the uniaxial yield strength, σ_{0}. Substituting Equations 3.34 into Equation 3.32 and setting r $=r_{0}$, the radius of von Mises plastic zone can be given as:
$r_{0}=\frac{\mathrm{K}_{1}^{2}}{4 \pi \sigma_{0}^{2}}\left[1+\cos \theta \cdot \frac{3}{2} \sin ^{2} \theta\right]$
for plane stress
$r_{0}=\frac{K_{1}^{2}}{4 \pi \sigma_{0}^{2}}\left[(1-2 v)^{2}(1+\cos \theta)+\frac{3}{2} \sin ^{2} \theta\right]$
for plane strain. Figures 3.9 \& 3.10 show the plastic zone shapes estimated from Tresca and von Mises yield criteria.

3.5 The effect of thickness on fracture toughness

Fracture toughness varies with the thickness of the specimen (Irwin \& Kies, 1954). If the thickness is small compared the plastic zone size, plane stress conditions occur at the crack tip. In this case, a high fracture toughness results, because of the energy absorbed by the large plastic zone.

If the specimen is thick compared to the plastic zone size, plane strain conditions develop in the centre of the crack plane. In this case, a limiting lower fracture toughness is obtained. This plane strain fracture toughness is denoted, K_{IC}, which is a material property and independent of geometry.

Figure 3.11 shows the effect of thickness on the fracture toughness schematically. A high K_{C} value occurs at small thicknesses. The K_{C} value decreases, as thickness increases until the limiting K_{IC}, the toughness is obtained, which does not change further with thickness.

3.6 LEFM fracture toughness (K_{I}) test procedure

In Linear Elastic Fracture Mechanics the plane strain fracture toughness, $\mathrm{K}_{1 \mathrm{C}}$ is a material property, which must be measured in a laboratory lest. Standard $\mathrm{K}_{1 \mathrm{C}}$ test methods include ASTM E 399 (1983) and BS 5447 (1974).

ASTM E 399 allows four possible specimen configurations for the K_{IC} test: the compact
tension specimen (CTS), the single edge notched bend (SENB) specimen as well as the arc-shaped and disk-shaped specimens illustrated in Higure 3.12. A specimen for a $\mathrm{K}_{\text {IC }}$ test has three characteristic dimensions, the crack length, a, the thickness, B and the width, W. Specimens are fatigue pre-cracked under controlled conditions before the test is performed. The dimensions of the specimens are such that the thickness, B, equal to one half the width, W, and the crack length to the width ratio, a/W, is kept between 0.45 and 0.55 .

To obtain a valid K_{IC}, the dimensions of the specimens must be large compared to the plastic zone radius. A preliminary validity check is recommended by ASTM E 399 to determine the specimen dimensions. The required dimensions are:
$\mathrm{B}, \mathrm{a} \geq 2.5\left(\frac{\mathrm{~K}_{\mathrm{IC}}}{\sigma_{0}}\right)^{2} \quad$ and $0.45 \leq \mathrm{a} / \mathrm{W} \leq 0.55$
where, σ_{0} is the uniaxial yield strength. To determine the specimen dimensions, an anticipated fracture toughness is estimated using data for similar materials. If data are not available, a strength-thickness table provided by the ASTM standard can be used. However, this table is not strongly recommended as there is no unique relationship between K_{IC} and σ_{0}, and the data can only be used when better data are not available.

Before fatigue pre-cracking the specimen, the maximum allowable fatigue load is determined from the estimated K_{IC} value. During fatigue pre-cracking an optimum load is selected as pre-cracking would take longer time with low loads, and on the other hand there is a possibility of excessive crack tip plasticity at high loads. ASTM E 399 recommends that the maximum stress intensity factor, $\mathrm{K}_{\text {max }}$ in a cycle should be kept within $0.8 \mathrm{~K}_{\mathrm{IC}}$ during initial stages of pre-cracking, and should be reduced to within 0.6 K_{IC} during the final stages.

In the test, the specimen is loaded until it fails and the load and displacement are monitored throughout the loading. From the load-displacement curve, the critical load, P_{Q}, is determined. 'lhree different load-displacement curves are possible depending upon the material behaviour as shown in Figure 3.13. After performing the test the crack length, a, is measured as the average of three evenly spaced measurements through the thickness. A provisional fracture toughness, K_{Q}, is then calculated using the equation:

$$
\begin{equation*}
K_{Q}=\frac{P_{Q}}{B \sqrt{W}} f(a / W) \tag{3.40}
\end{equation*}
$$

where, $f(a / W)$ is a dimensionless function obtained from a polynomial or the table provided in the ASTM E 399. Upon the fulfilment of the requirements in the standard and the conditions imposed by the equations given below, K_{Q} would be the fracture toughness, $\mathrm{K}_{\text {IC }}$ of the material:

$$
\begin{equation*}
\mathrm{B}, \mathrm{a} \geq 2.5\left(\frac{\mathrm{~K}_{\mathrm{Q}}}{\sigma_{0}}\right)^{2}, 0.45 \leq \mathrm{a} / \mathrm{W} \leq 0.55 \text { and } \mathrm{P}_{\mathrm{mux}} \leq 1.10 \mathrm{P}_{\mathrm{Q}} \tag{3.41}
\end{equation*}
$$

where, $\mathrm{P}_{\text {max }}$ is the maximum load in the test.

Figure 3.1: Through thickness crack in an infinite plate subjected to a remote tensile stress.

Figure 3.2: Three modes of loading applicable to a crack.

Figure 3.3: Stresses on an element near the crack tip in a linear elastic material.

Figure 3.4: Through crack in an infinite plate.

Figure 3.5: Edge crack in a semi-infinite plate.

Figure 3.6: Edge cracked bar in tension.

Figure 3.7: Edge cracked bar in pure bending.

Figure 3.8: Edge cracked bar in three point bending.

Figure 3.9: Plastic zone shapes estimated from Tresca yield criterion.

Figure 3.10: Plastic zone shapes estimated from von Mises yield criterion.

Figure 3.11: Effect of thickness on the fracture toughness.

Figure 3.12: Four types of specimens for K_{IC} test.

Figure 3.13: Three types of load-displacement curves in K_{IC} test.

Chapter 4 Slip line fields

4.1 Plane strain slip line fields

Two dimensional elastic perfectly-plastic plane strain problems can be expressed in terms of slip line fields (Hill, 1950). This allows material deformation to be regarded as a planar shear process in which blocks of material slide over onc another at constant volume.

For plane strain in the out-of-plane direction, $\mathrm{x}_{3}, \sigma_{33}$ is a principal stress which can be written for incompressible flow as:
$\sigma_{33}=\sigma_{3}=\sigma_{m 2}=\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right)$
where, σ_{m} is mean stress. From the yield criterion the principal stresses can be written as:
$\sigma_{1}=\sigma_{m}+k$
$\sigma_{2}=\sigma_{\mathrm{m}}-\mathrm{k}$
$\sigma_{3}=\sigma_{m}$
where, k is the yield stress in shear. The yield stress in shear, k can be expressed in terms of the yield stress in tension, $\sigma_{0} . \mathrm{k}=\frac{\sigma_{0}}{\sqrt{3}}$ using the von Mises yield criterion and $\mathrm{k}=\frac{\sigma_{n}}{2}$ using the Tresca criterion.

The direction of the maximum shear stress bisects the principal directions. The orthogonal lines of maximum shear stresses are slip lincs and designated as α and β. The α, β lines represent a new system of curvilinear co-ordinate axes, in which an α line makes an angle of 45° clockwise from the maximum principal direction and a β line is oricnted 45° anticlockwise from the same principal direction. Thus the maximum principal stress lies in first and third quadrants of the $\alpha-\beta$ co-ordinate system as shown in Figure 4.1. As the stress system changes the α and β axes rotate and consequently the α, β axes can be curved but they are always orientated at $\pm 45^{\circ}$ from the principal directions.

The equilibrium equations referred to the α, β lincs are known as the Hencky equations (Hencky, 1923):
$\sigma_{\mathrm{n}}=2 \mathrm{k} \theta+\mathrm{C}_{\alpha}$ on an α line
$\sigma_{m}=-2 k \theta+C_{\beta}$ on a β line
$\Delta \sigma_{m}=2 \mathrm{k} \Delta \theta$ on α line
$\Delta \sigma_{\mathrm{m}}=-2 \mathrm{k} \Delta \theta$ on β line
where C_{α} and C_{β} are constants on given α, β lines. The Hencky cquations represent the equilibrium equations for a material deforming plastically, and allow the change in mean slress, σ_{m}, from a point where the stresses are known to a new point to be determined from the rotation of the slip lines $(\Delta \theta)$.

Without loss of generality, the asymptotic crack tip stress field can be divided into elastic and plastic sectors. The angular span over which yield criterion is not satisfied defines the elastic sector. The von Mises yield criterion can be written in cylindrical co-ordinate system (\mathbf{r}, θ) as:
$\left(\sigma_{\theta \theta}-\sigma_{\mathrm{r}}\right)^{2}+4 \sigma_{\mathrm{r} 0}{ }^{2}=4 \mathrm{k}^{2}$
Rice (1974) has shown that for an incompressible material ($v=1 / 2$) undergoing plastic deformation, the assumption that the crack tip stresses are finite plus the plane strain condition allows the asymptotic equilibrium cquations to be written as:
$\frac{\partial \sigma_{m}}{\partial \theta} \cdot \frac{\partial \sigma_{t \theta}}{\partial \theta}=0$
where, σ_{m} and $\sigma_{\mathrm{r} 0}$ are mean and shear stresses. Equation 4.8 has two simple solutions:
$\frac{\partial \sigma_{\mathrm{m}}}{\partial \theta}=0, \quad \frac{\partial \sigma_{\mathrm{r} \theta}}{\partial \theta} \neq 0$
and

$$
\begin{equation*}
\frac{\partial \sigma_{r \theta}}{\partial 0}=0, \frac{\partial \sigma_{m}}{\partial 0} \neq 0 \tag{4.10}
\end{equation*}
$$

The first solution given by Equation 4.9 is a plastic sector in which mean stress, σ_{m}, does not vary with angle, and is known as a constant stress sector. A constant stress sector is represented by a slip line field with straight α and β lines as shown in Figure 4.2. The stresses can be written as:

$$
\begin{equation*}
\sigma_{\mathrm{m}}=\sigma_{33}=\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right)=\frac{1}{2}\left(\sigma_{\mathrm{r}}+\sigma_{n 0}\right)=\text { constant } \tag{4.11}
\end{equation*}
$$

The second solution given by Equation 4.10 corresponds to a centred fan in which the shear stress, $\sigma_{t \theta}$, equals the yield stress in shear, k, and the mean stress, σ_{m}, varies linearly with the angle. This type of slip line field is represented by a set of straight radial lines focussed at the crack tip and a sel of concentric ares as illustrated in Figure 4.2. The stresses within the centred fan can be given as:
$\sigma_{\mathrm{T}}=\sigma_{\text {ө月 }}=\sigma_{33}=\sigma_{\mathrm{m}}$
$\sigma_{\mathrm{r} \theta}= \pm \mathrm{k}$

4.1.1 Plane strain mode I crack tip fields

As an example of slip line field analysis it is appropriate to consider the Prandtl slip line field (Prandtl, 1920) illustrated in Figure 4.3. The Prandtl field is developed on the assumption that the plasticity fully surrounds the crack tip. The stresses for this field can be solved starting from the traction free crack surface, where the stresses are known. The Cartesian stresses at the crack surface of region I can be given as:
$\sigma_{11}=2 \mathrm{k}$
$\sigma_{22}=0$
$\sigma_{12}=0$
$\sigma_{33}=\sigma_{\mathrm{m}}=\mathrm{k}$
where, k is the yield stress in shear. The Hencky equilibrium equations indicate that the Cartcsian stresses are constant throughout the region I, as the slip lines in this region are straight and thus region I is called a constant stress scctor. In a cylindrical co-ordinate system (r, θ), the stresses in the region I can be given as:
$\sigma_{\mathrm{r}}=\mathrm{k}(1+\cos 2 \theta)$
$\sigma_{0 \theta}=\mathrm{k}(\mathrm{l}-\cos 2 \theta)$
$\sigma_{z z}=\sigma_{\mathrm{m}}=\mathrm{k}$
$\sigma_{\mathrm{r} 0}=\mathrm{k} \sin 2 \theta$
where, $\pi \geq \theta \geq 3 \pi / 4$. The constant stress sector I is followed by a centred fan, denoled by Π. The stresses in this region can be derived from Hencky equations following a β (negative) line:
$\sigma_{\mathrm{rt}}=\sigma_{\theta 日}=\sigma_{\mathrm{zz}}=\sigma_{\mathrm{m}}=\mathrm{k}(1+3 \pi / 2-2 \theta)$
$\sigma_{\mathrm{r} 0}=\mathrm{k}$
where, $3 \pi / 4 \geq 0 \geq \pi / 4$. The centred fan is leading to a diamond shaped constant stress sector denoted by III. Following the same slip line (negative β), the stresses in this region can be given as:
$\sigma_{\pi}=k(\pi+1-\cos 2 \theta)$
$\sigma_{00}=\mathrm{k}(\pi+1+\cos 2 \theta)$
$\sigma_{\mathrm{zz}}=\sigma_{\mathrm{m}}=\mathrm{k}(1+\pi)$
$\sigma_{r 0}=\mathrm{k} \sin 2 \theta$
where, $\pi / 4 \geq \theta \geq n \pi / 4$. In Prandll field the maximum hoop stress, σ_{00}, occurs directly ahead of the crack $(\theta=0)$:
$\sigma_{\text {п }}=\mathrm{k} \pi$
$\sigma_{\theta \theta}=k(\pi+2)$
$\sigma_{z z}=\sigma_{\mathrm{m}}=\mathrm{k}(1+\pi)$
$\sigma_{\mathrm{r} \theta}=0$
The hoop stress $(2+\pi) \sigma_{0} / \sqrt{3}$ is the greatest possible stress in an elastic perfectly-plastic material in mode I. However, Du and Hancock (1991) have shown that this stress, and the Prandtl field from which it is derived, only occurs when $T \geq+0.446 \sigma_{0}$. Here T is the second term in the Williams (1957) expansion of the asymptotic elastic field

$$
\begin{equation*}
\sigma_{i j}=A_{i j}(\theta) r^{-1 / 2}+B_{i j}(\theta) r^{0}+C_{i j}(\theta) r^{1 / 2}+\cdots \tag{4.18}
\end{equation*}
$$

Focusing on the terms that are non-zero at the tip, the far elastic field can be written as:

$$
\sigma_{\mathrm{H}}=\frac{\mathrm{K}}{\sqrt{2 \pi r}} \mathrm{f}_{\mathrm{ij}}(\theta)+\left[\begin{array}{ll}
\mathrm{T} & 0 \tag{4.19}\\
0 & 0
\end{array}\right] \quad(\mathrm{j}, \mathrm{j}=1,2)
$$

T corresponds to a uni-axial tensile or compressive stress parallel to the crack flanks. If T is zero or negative Du and Hancock (1991) have shown that within the plastic zone elastic wedges appear on the crack flanks as shown in Figure 4.4. As T/ σ_{0} becomes more negative (compressive) the stress ahead of crack decreases due to a decrease in the hydrostatic or mean stress, which O'Dowd and Shih (1991) have called Q. In this case the stresses directly ahead of the crack $(\theta=0)$ are written as:
$\sigma_{\mathrm{rr}}=\mathrm{k} \pi+\mathrm{Q}$
$\sigma_{00}=\mathrm{k}(\pi+2)+\mathrm{Q}$
$\sigma_{z z}=\sigma_{\mathrm{m}}=\mathrm{k}(1+\pi)+\mathrm{Q}$
$\sigma_{\mathrm{r} \theta}=0$
The stress field for incomplete crack tip plasticity (Du \& Hancock 1991, Li \& Hancock 1999) can be determined by assembling plastic and elastic sectors. The strcsses within an elastic sector are given by a solution of Timoshenko \& Goodier (1970) for a semi-infinite wedge loaded by constant surface tractions:

$$
\begin{aligned}
& \sigma_{\pi}=\mathrm{E}_{1} \sin 2 \theta+\mathrm{E}_{2} \cos 2 \theta+1 / 2\left(\mathrm{E}_{3} \theta+\mathrm{E}_{4}\right) \\
& \sigma_{6 \theta}=-\mathrm{E}_{1} \sin 2 \theta-\mathrm{E}_{2} \cos 2 \theta+1 / 2\left(\mathrm{E}_{3} \theta+\mathrm{E}_{4}\right) \\
& \sigma_{\mathrm{r} \theta}=\mathrm{E}_{1} \cos 2 \theta-\mathrm{E}_{2} \sin 2 \theta-\mathrm{E}_{3} / 4
\end{aligned}
$$

$$
\begin{equation*}
\sigma_{z z}=1 / 2\left(E_{3} \theta+E_{4}\right) \tag{4.21}
\end{equation*}
$$

The constants $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ and E_{4} are determined by the boundary conditions. Using this solution the elastic-plastic crack tip field has been discussed by Li \& Hancock (1999). The asymptotic crack tip field is developed by assembling centred fan, constant strcss and clastic sectors subject to conditions of equilibrium at the sector boundary. A particularly important condition applies to an elastic wedge located on the crack flanks:
$\sigma_{\theta \theta}=\sigma_{10}=0, \theta= \pm \pi$
Consider an clastic wedge AOB on the upper crack flank in cylindrical co-ordinate system (r, θ) centred at the crack tip as illustrated in Figure 4.5. The angular span of the elastic wedge is denoted by $\varphi . \gamma$ is measured from the upper crack flank $(\theta=\pi)$, such that $\theta=\pi$ γ. II and K denote the hoop and shear stresses on the elastic-plastic boundary OB. Following Timoshenko \& Goodier (1970) the stresses within the elastic wedge can be given as:
$\mathrm{\sigma}_{\mathrm{rr}}=-2 \mathrm{P}(\cos 2 \gamma+1)-2 \mathrm{Q}(2 \gamma+\sin 2 \gamma)$
$\sigma_{\theta \theta}=2 \mathrm{P}(\cos 2 \gamma-1)+2 \mathrm{Q}(\sin 2 \gamma-2 \gamma)$
$\sigma_{\mathrm{r} \theta}=2 \mathrm{P} \sin 2 \gamma-2 \mathrm{Q}(\cos 2 \gamma-1)$
where, P and Q are constants. At $\gamma=\varphi, \sigma_{\theta \theta}=\mathrm{H}$ and $\sigma_{\mathrm{r} \theta}=\mathrm{K}$. Substituting in Equations 4.23 , gives constants P and Q as:
$\mathrm{P}=\frac{\mathrm{H}(\cos 2 \varphi-1)+\mathrm{K}(\sin 2 \varphi-2 \varphi)}{4(1-\cos 2 \varphi-\varphi \sin 2 \varphi)}$

$$
\begin{equation*}
Q=\frac{H \sin 2 \varphi-K(\cos 2 \varphi-1)}{4(1-\cos 2 \varphi-\varphi \sin 2 \varphi)} \tag{4.24}
\end{equation*}
$$

The stresses within the plastic sectors can also be solved using the boundary conditions on the clastic-plastic boundary OB. If the elastic sector is followed by a centred fan, the shear stress on the boundary, K , equals the yield stress in shear, k . Using Hencky equilibrium equations the stress field within the fan can be given as:

$$
\begin{align*}
& \sigma_{\pi}=\sigma_{\theta \theta}=\sigma_{\tau \pi}=\sigma_{\mathrm{m}}=2 \mathrm{k}(\pi-\varphi-\theta)-\mathrm{H} \\
& \sigma_{\mathrm{r} \theta}=\mathrm{k} \tag{4.25}
\end{align*}
$$

For a constant stress sector adjoining the centred fan, the stress field can be given as:
$\sigma_{\mathrm{tr}}=\mathrm{k}\left(-\cos 2 \theta-2 \varphi+\frac{3 \pi}{2}\right)-\mathrm{H}$
$\sigma_{00}=\mathrm{k}\left(\cos 2 \theta-2 \varphi+\frac{3 \pi}{2}\right)-\mathbf{H}$
$\sigma_{: 0}=\mathbf{k} \sin 2 \theta$
$\sigma_{r z}=\sigma_{m}=k\left(\frac{3 \pi}{2}-2 \varphi\right)-H$
where, $\pi / 4 \leq \varphi \leq 3 \pi / 4$. Following Du and Hancock (1991), the elastic sector on the crack flank is followed by a centred fan which leads to a constant stress sector directly ahead of crack. At any sector boundary involving a fann, $\sigma_{\mathrm{r} \theta}=\mathrm{k}$, and $\sigma_{\mathrm{rr}}=\sigma_{\theta \theta}=\sigma_{z z}=\sigma_{\mathrm{m}}$. Therefore, at the boundary between elastic sector and fan, $\sigma_{\mathrm{r} \theta}=\mathrm{K}=\mathrm{k}$, and $\sigma_{\mathrm{r}}=\sigma_{\theta \theta}$. Applying these boundary conditions to Equations 4.23 to solve for constants P and Q , and then by Equations $4.24, \mathrm{H}$ and K can be given as:
$\mathrm{H}=\frac{2 \varphi \mathrm{k} \cos 2 \varphi-\mathrm{k} \sin 2 \varphi}{1-\cos 2 \varphi}$
$K=k$
Then, for an specific value of φ the stresses in the different sectors can be solved and the sectors are assembled accordingly.

4.1.2 Plane strain mixed mode crack tip fields

Slip line fields for mixed mode (I/II) loading have been discussed by Shih (1974). The mixed mode (I/II) slip line field illustrated in Figure 4.6, shows a statically admissible field in which plasticity fully surrounds the crack tip and assuming full continuity of stresses through out the slip line field. The sector boundary of makes an angle, α with the upper crack flank $(\theta=\pi)$ such that, $\theta_{\theta f}=\pi-\alpha$. The angular position of sector boundary $o e, \theta_{o e}=$ $(3 \pi / 4+\gamma)$, and δ is the rotation of the constant stress diamond cod from the symmetry axis due to applied mode II loading, where α, γ and δ are related by: $\gamma=-\pi / 4-\alpha, \delta=-1 / 2-\alpha$, and $\pi / 4 \leq \alpha \leq 3 \pi / 8-1 / 4$. The cylindrical stresses in the constant stress sector $a o b$ adjacent to the lower crack flank can be given as:
$\sigma_{\mathrm{rr}}=\mathrm{k}(1+\cos 2 \theta)$
$\sigma_{\theta \theta}=k(1-\cos 2 \theta)$
$\sigma_{\mathrm{r} \theta}=-\mathrm{k} \sin 2 \theta$
Using the Hencky equilibrium equations (Hencky, 1923) the stresses for the sectors can be solved consecutively. In the centred fan boc the stresses are:
$\sigma_{\mathrm{tr}}=\sigma_{\theta \theta}=\mathrm{k}(1+3 \pi / 2+2 \theta)$
$\sigma_{\mathrm{rg}}=-\mathrm{k}$
The stresses in the constant stress diamond cod can be given as:
$\sigma_{\mathrm{rr}}=\mathrm{k}[(1+\pi+2 \delta)-\sin (\pi / 2+2 \delta-2 \theta)]$
$\sigma_{\theta \theta}=\mathrm{k}[(1+\pi+2 \delta)+\sin (\pi / 2+2 \delta-20)]$
$\sigma_{\mathrm{r} \theta}=\mathrm{k} \cos (\pi / 2+2 \delta-2 \theta)$
In the centred fan doe the stresses are:
$\sigma_{1 T}=\sigma_{00}=k(1+3 \pi / 2+2 \theta-4 \delta)$
$\sigma_{\mathrm{rt}}=\mathrm{k}$
The stresses in the constant stress sector eof can be written as:
$\sigma_{\mathrm{rr}}=\mathrm{k}[(1+4 \delta-2 \gamma)+\cos (2 \gamma-2 \theta)]$
$\sigma_{\theta \theta}=\mathrm{k}[(1+4 \delta-2 \gamma)-\cos (2 \gamma-2 \theta)]$
$\sigma_{\mathrm{r} \theta}=\mathrm{k} \sin (2 \gamma-2 \theta)$
In the centred fan fog the stresses can be given as:
$\sigma_{\mathrm{Ir}}=\sigma_{\theta \theta}=-\mathrm{k}(1+3 \pi / 2+2 \theta)$
$\sigma_{\mathrm{r} \theta}=-\mathrm{k}$
Finally, the stresses in the constant stress triangle goh adjacent to the upper crack flank can be given as:
$\sigma_{\mathrm{r}}=-\mathrm{k}(1+\cos 2 \theta)$
$\sigma_{\theta 0}=-\mathrm{k}(1-\cos 2 \theta)$
$\sigma_{\mathrm{r} \theta}=\mathrm{k} \sin 2 \theta$
Li and Hancock (1999) have discussed mixed mode (I/IL) slip line fields in which plasticity does not fully sumound the crack tip, and an elastic wedge appears on the upper crack flank. Following Shih (1974) the ratio of tension to shear can be expressed in terms of a mixity. The ratio of tension to shear in the remote elastic field is defined as elastic or far field mixity, which can be given as:

$$
\begin{equation*}
\mathrm{M}_{\mathrm{el}}=\frac{2}{\pi} \tan \cdot\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{\mathrm{H}}}\right)=\frac{2}{\pi} \tan ^{-1}\left\{\lim _{\mathrm{r} \rightarrow \infty} \frac{\sigma_{\theta \theta}(\mathrm{r}, \theta=0)}{\sigma_{\pi i}(r, \theta=0)}\right\} \tag{4.35}
\end{equation*}
$$

The ratio of tension to shear directly ahead of crack is defined as plastic or near field mixity where plasticity occurs at the crack tip:

$$
\begin{equation*}
M_{\mathrm{F}}=\frac{2}{\pi} \tan ^{-1}\left\{\lim _{\mathrm{r} \rightarrow 0} \frac{\sigma_{\theta \theta}(\mathrm{r}, \theta=0)}{\sigma_{\mathrm{rt}}(\mathrm{r}, \theta=0)}\right\} \tag{4.36}
\end{equation*}
$$

Two mixed mode slip line fields (Li \& Hancock, 1999) of different mixities are iflustrated in Figure 4.7. In type I ficid, the plastic part below the symmetry axis consists of a constant stress sector, a fan, and a part of a constant stress sector. Type II field occurs for a relatively fower value of mixity, where the same part (below the symmetry axis) consists of two constant stress sectors, a fan, and a portion of a fan. In the both cases, φ is the angular span of the elastic wedge at the upper crack flank, α is the angular span of the centred fan boc in the fully plastic side, and δ is the angle which the sector boundary od makes with the symmetry axis. Then for type I field the plastic mixity can be given as:

$$
\begin{align*}
& M_{p}=\frac{2}{\pi} \tan ^{-1}\left\{\frac{\cos 2 \alpha-1-2 \alpha}{-\sin 2 \alpha}\right\} \tag{4.37}\\
& M_{p}=\frac{2}{\pi} \tan ^{-1}\left\{\frac{[\sin 2 \delta+2(\pi-\delta)](1-\cos 2 \varphi)-2 \varphi+\sin 2 \varphi}{\cos 2 \delta(1-\cos 2 \varphi)}\right\} \tag{4.38}
\end{align*}
$$

where, $\alpha \geq \pi / 4$ and $\alpha-\delta=\pi / 4$. For type \amalg field the mixity can be written as:

$$
\begin{align*}
& M_{p}=-\frac{2}{\pi} \tan ^{-1}\left\{\frac{\pi}{2}-4 \alpha-1\right\} \tag{4.39}\\
& M_{p}=\frac{2}{\pi} \tan ^{-1}\left\{2 \pi-\frac{2 \varphi-\sin 2 \varphi}{1-\cos 2 \varphi}\right\} \tag{4.40}
\end{align*}
$$

where, $\alpha \leq \pi / 4$, and $\alpha+\delta=\pi / 4$. The stresses for the fields can be solved by using the equilibrium equations for the plastic sectors and the wedge solution for the elastic sector, and the sectors can be assembled accordingly if the plastic mixities are known.

The mixed mode J/II fields discussed by Li and Hancock (1999), shown in Figure 4.7, consist of five sectors. Starting from the lower crack flank, the sectors can be given as: constant stress sector, fan, constant stress sector, fan and finally elastic sector on the upper crack flank. Zhu and Chao (2001) have presented six sector ficlds for mixed mode I/II loading as the modification of five sector solution, where a constant stress sector has been included between the fan and the elastic sector on the upper crack flank. A six sector crack tip field is shown schematically in Figure 4.8, where the sector angles are defined as θ_{1}, θ_{2}, θ_{3}, θ_{4} and θ_{5}. In Figure 4.8, $\theta_{1}=-3 \pi / 4$ and $\theta_{2}=\theta_{3} \cdots / 2$. Three unknown angles θ_{3}, θ_{4} and θ_{5} can be determined by solving the equations:

$$
\begin{aligned}
& \frac{\mathrm{T}_{\mathrm{\pi}}}{\mathrm{k}}=-\frac{\cos \left(\theta_{5}-20_{4}\right)}{\sin \theta_{5}}-1 \\
& 4\left(\theta_{3}-\frac{\pi}{4}\right)=\left(2 \theta_{4}-\frac{3 \pi}{2}-1\right)-\left(\pi-\theta_{5}\right) \frac{\cos 2 \theta_{4}}{\sin ^{2} \theta_{5}}-\frac{\cos \left(\theta_{5}-2 \theta_{4}\right)}{\sin \theta_{5}} \\
& \frac{\mathrm{~T}_{\mathrm{p}}}{\mathrm{k}}=\left(2 \theta_{3}-1-\frac{\pi}{2}\right)+\sin 2 \theta_{3} \quad \sigma_{r \theta}(0=0)<\mathrm{k}
\end{aligned}
$$

$\frac{T_{p}}{k}=4 \theta_{3}-\pi \quad \sigma_{r \theta}(\theta=0)=k$
where, the parameters $T_{\pi c}$ and T_{p} can be given as:
$2 \mathrm{~T}_{\pi}=\sigma_{r r}(\theta=\pi)-\sigma_{\pi}^{p}(\theta=\pi)$
$\mathrm{T}_{\mathrm{p}}=\sigma_{\theta \theta}(\theta=0)-\sigma_{\theta \theta}^{\mathrm{p}}(\theta=0) \quad \sigma_{1 \theta}(\theta=0)<k$
$\mathrm{T}_{\mathrm{p}}=\sigma_{\theta \theta}(\theta=0)-\mathrm{k}\left(1+\frac{3 \pi}{2}\right) \quad \sigma_{\mathrm{r} \theta}(\theta=0)=\mathrm{k}$
where, $\sigma_{\pi}^{p}(\theta=\pi)$ and $\sigma_{\theta \theta}^{p}(\theta=0)$ are the stress components in the Prandtl field and $\sigma_{\mathrm{If}}(\theta=\pi)$ and $\sigma_{\theta \theta}(\theta=0)$ are the stress components given by the mixed mode $\mathrm{I} I \mathrm{f}$ finite clement result. Following Zhu and Chao (2001), the stresses for the six sectors can be given as:

Constant stress sector AOB:
$\sigma_{\pi}=\mathrm{k}(1+\cos 2 \theta)$
$\sigma_{00}=k(1-\cos 2 \theta)$
$\sigma_{1 \theta}=-\mathrm{k} \sin 2 \theta$
Fan sector BOC:
$\sigma_{\mathrm{r}}=\sigma_{\text {ө日 }}=\mathrm{k}(1+3 \pi / 2+2 \theta)$
$\sigma_{\mathrm{ra}}=\cdots \mathrm{k}$
Constant stress sector COD:
$\sigma_{\text {r }}=k\left(1+\pi / 2+20_{3}\right)+k \sin 2\left(\theta-\theta_{3}\right)$
$\sigma_{\theta \theta}=k\left(1+\pi / 2+2 \theta_{3}\right)-\mathrm{k} \sin 2\left(\theta-\theta_{3}\right)$
$\sigma_{1 \theta}=\mathrm{k} \cos 2\left(\theta-\theta_{3}\right)$
Fan sector DOE:
$\sigma_{\mathrm{rr}}=\sigma_{\epsilon \theta}=\mathrm{k}\left(1+\pi / 2+4 \theta_{3}-2 \theta\right)$
$\sigma_{\mathrm{m}}=\mathrm{k}$

Constant stress sector EOF:

$$
\begin{align*}
& \sigma_{r r}=k\left(1+\pi / 2+4 \theta_{3}-2 \theta_{4}\right)+k \sin 2\left(\theta-\theta_{4}\right) \\
& \sigma_{\theta \theta}=k\left(l+\pi / 2+4 \theta_{3}-2 \theta_{4}\right)-k \sin 2\left(\theta-\theta_{4}\right) \\
& \sigma_{r \theta}=k \cos 2\left(\theta-\theta_{4}\right) \tag{4.47}
\end{align*}
$$

Elastic sector FOG:

$$
\begin{align*}
& \sigma_{\mathrm{r}}=-\mathrm{k} \frac{\cos \left(\theta_{5}-2 \theta_{4}\right)}{\sin \theta_{5}}(1+\cos 20)-\mathrm{k} \frac{\cos 2 \theta_{4}}{1-\cos 2 \theta_{5}}\{2(\pi-\theta)-\sin 2 \theta\} \\
& \sigma_{\mathrm{ta}}=-\mathrm{k} \frac{\cos \left(\theta_{5}-2 \theta_{4}\right)}{\sin \theta_{5}}(1-\cos 2 \theta)-\mathrm{k} \frac{\cos 2 \theta_{4}}{1-\cos 2 \theta_{5}}\{2(\pi-\theta)+\sin 2 \theta\} \\
& \sigma_{\mathrm{r} 0}=k \frac{\cos \left(\theta_{5}-2 \theta_{4}\right)}{\sin \theta_{5}} \sin 20-k-\frac{\cos 2 \theta_{4}}{1-\cos 2 \theta_{5}}(1-\cos 2 \theta) \tag{4.48}
\end{align*}
$$

For the this solution, Zhu and Chao (2001) have defined the plastic mixity, M_{p}, which can be related to the sector angle θ_{3} as:

$$
\begin{array}{ll}
M_{p}=\frac{2}{\pi} \tan ^{-1}\left\{\frac{1+\pi / 2+2 \theta_{3}+\sin 2 \theta_{3}}{\cos 2 \theta_{3}}\right\} & 0 \leq \theta_{3} \leq \pi / 4 \\
M_{p}=\frac{2}{\pi} \tan ^{-1}\left\{1+\frac{\pi}{2}+4 \theta_{3}\right\} & -1 / 2 \leq \theta_{3} \leq 0 \tag{4.49}
\end{array}
$$

4.2 Plane stress slip line fields

Plane stress crack tip fields for elastic-perfectly plastic materials can be represented in terms of slip line fields using theory introduced by Hill (1950). The slip lines are the characteristics of the equilibrium equations. Depending upon the combination of the principal stresses satisfying the plane stress yield criterion, the equilibrium equations can be hyperbolic, parabolic, or elliptic. The resulting slip lines may be real and distinct, real and coincident, or imaginary depending on the nature of the equilibrium equations. For the hyperbolic equilibrium equations, the slip lines are non-orthogonal, but make equal angles with one or other of the two principal directions. Thus the principal directions bisect the angles between two slip lines as illustrated in Figure 4.9. The two non-orthogonal families of slip lines are inclined at $\pm(\pi / 4+\lambda / 2)$ to the maximum principal direction, where, $\sin \lambda=$ $\left(\sigma_{1}+\sigma_{2}\right) / 3\left(\sigma_{1}-\sigma_{2}\right)$ and $\sigma_{1}>\sigma_{2}$.

Under parabolic conditions, the angle between the two sets of lines becomes zero, leaving a single set of coincident slip lines (Hill 1952, Hodge 1951) corresponding to the numerically smaller principal direction.

To discuss crack tip plasticity in plane stress, consider a cylindrical co-ordinate system (r, θ) centred at the crack tip such that the crack lies along $\theta= \pm \pi$. The von Mises yield criterion in plane stress can be given as:

$$
\begin{equation*}
\sigma_{\mathrm{e}}^{2}=\sigma_{\mathrm{rr}}^{2}+\sigma_{0 \theta}^{2}-\sigma_{\pi} \sigma_{\varphi \theta}+3 \sigma_{\mathrm{re}}^{2}=\sigma_{0}^{2} \tag{4.50}
\end{equation*}
$$

Rice (1982) has shown that for an incompressible material undergoing plastic deformation, the assumption that the crack tip stresses are linite plus the plane stress condition allows the asymptotic equilibrium equation to be written as:
$\frac{\partial\left(\sigma_{11}+\sigma_{22}\right)}{\partial \theta} \mathrm{s}_{\pi}=0$
where, σ_{11} and σ_{22} are the Cartesian stresses and s_{51} is the radial stress deviator in the cylindrical co-ordinate system. Equation 4.51 has two simple solutions:

$$
\begin{equation*}
\frac{\partial\left(\sigma_{11}+\sigma_{22}\right)}{\partial 0}=0, s_{n} \neq 0 \tag{4.52}
\end{equation*}
$$

or,
$s_{\mathbf{r}}=0, \frac{\partial\left(\sigma_{11}+\sigma_{22}\right)}{\partial \theta} \neq 0$
One solution given by Equation 4.52 comesponds to a constant stress sector in which the Cartesian stresses σ_{11}, σ_{22} and σ_{12} do not vary with the angle, and consequently the mean stress, σ_{m}, is constant throughout the sector. This sector consists of two non-orthogonal families of straight slip lines.

The second solution given by Equation 4.53 corresponds to a curved fan sector in which the radial stress deviator, $s_{\pi}=0$. The cylindrical stresses for this sector can be given as:
$\sigma_{00}=2 \sigma_{\mathrm{rr}}= \pm 2 \mathrm{k} \cos (\theta-\phi)$
$\sigma_{\mathrm{r} \theta}= \pm \mathrm{k} \sin (\theta-\phi)$
where, k is the yield stress in shear and ϕ is the angle at which the curved lines are asymptotic. The curved fan sector consists of a set of radial straight lines and a set of curves with the equation of the form:
$r^{2} \sin (\theta-\phi)=$ constant
At $\theta=\phi$ the equilibrium equations become parabolic and give use to a single set of slip lincs.

4.2.1 Plane stress mode I crack tip fields

A possible plane stress mode I slip line field has been discussed by Hutchinson (1968) on
the assumption that the plasticity surrounds the crack tip at all angles. In this case the equilibrium equations require a discontinuity in radial stress such that the traction free conditions occur on the crack flanks $(\theta= \pm \pi)$ and the yield condition is satisfied at all angles. The allowable discontinuity in radial stress, $\left(\sigma_{r}^{+}-\sigma_{r}^{-}\right)$across the sector boundary can be given by applying the yield criterion:
$\sigma_{\pi}^{+}-\sigma_{r r}^{-}=\left(4--3 \sigma_{30}^{2}-12 \sigma_{r 0}^{2}\right)^{\frac{1}{2}}$
The Hutchinson plane stress mode I field is shown in Figure 4.10. The cylindrical stresses within the constant stress sector $A O B$ can be given as:
$\sigma_{\pi}=-\frac{\sqrt{3}}{2} \mathrm{k}(1+\cos 2 \theta)$
$\sigma_{\theta \theta}=-\frac{\sqrt{3}}{2} k(1-\cos 2 \theta)$
$\sigma_{\mathrm{r} \theta}=\frac{\sqrt{3}}{2} \mathrm{k} \sin 2 \theta$
OB is the radial line of discontinuity which makes an angle, $\theta_{\mathrm{OB}}=151.4^{0}$ with the crack plane. The stresses within the constant stress sector BOC can be written as:

$$
\begin{align*}
\sigma_{\mathrm{rr}}= & \frac{\sqrt{3}}{4} \mathrm{k}\left(-1+3 \cos 2 \theta_{\mathrm{OB}}\right)+\frac{\sqrt{3}}{4} \mathrm{k}\left(1+\cos 2 \theta_{\mathrm{OB}}\right) \cos 2\left(\theta-\theta_{\mathrm{OB}}\right) \\
& +\frac{\sqrt{3}}{2} \mathrm{k} \sin 2 \theta_{\mathrm{OB}} \sin 2\left(\theta-\theta_{\mathrm{OB}}\right) \\
\sigma_{\theta \theta}= & -\sigma_{\mathrm{rr}}+\frac{\sqrt{3}}{2} \mathrm{k}\left(-1+3 \cos 2 \theta_{\mathrm{OB}}\right) \\
\sigma_{\mathrm{r} \mathrm{\theta}}= & -\frac{\sqrt{3}}{4} \mathrm{k}\left(1+\cos 2 \theta_{\mathrm{OB}}\right) \sin 2\left(\theta-\theta_{\mathrm{OB}}\right) \\
& +\frac{\sqrt{3}}{2} \mathrm{k} \sin 2 \theta_{\mathrm{OB}} \cos 2\left(0-\theta_{\mathrm{OB}}\right) \tag{4.58}
\end{align*}
$$

OC is the sector boundary between the constant stress sector BOC and curved fan sector COD, which makes an angle, $\theta_{0 C}=79.7^{\circ}$ with the crack plane. Finally following Hill (1952), the stresses within the curved fan sector COD can be given as:

$$
\begin{aligned}
& \sigma_{\pi}=k \cos \theta \\
& \sigma_{00}=2 k \cos \theta
\end{aligned}
$$

$$
\begin{equation*}
\sigma_{\mathrm{ru}}=\mathrm{k} \sin \theta \tag{4.59}
\end{equation*}
$$

Dong \& Pan (1990) have discussed a modification of this plane stress mode I slip line field as shown in Figure 4.11, where plasticity surrounds the crack tip at all angles, but differs slightly from Hutchinson (1968) field. This field exhibits a very small constant stress scetor directly ahead of the crack with a span of 5.22°, although no major variation in stress fields is apparent. The spans of the sectors in this field are very close to that of the Hutchinson field.

Sham and Hancock (1999) have discussed plane stress mode I slip line field with incomplete crack tip plasticity where the problem of stress discontinuity has been avoided. This field consists of a curved fan sector ahead of the crack complemented by elastic sectors to the crack flanks as shown schematically in Figure 4.12. AOB is the elastic sector on the upper crack flank. The elastic-plastic boundary OB makes an angle θ_{OB} with the crack plane which is to be determined. Applying traction free boundary conditions on the upper crack flank to the solution of Timoshenko \& Goodier (1970), the stresses in the elastic sector AOB can be given as:
$\sigma_{\pi}=\mathrm{A}(2 \theta-2 \pi+\sin 2 \theta)+\mathrm{B}(1+\cos 2 \theta)$
$\sigma_{\text {ө日 }}=\mathrm{A}(2 \theta-2 \pi-\sin 2 \theta)+\mathrm{B}(1-\cos 2 \theta)$
$\sigma_{1 \theta}=\mathrm{A}(\cos 2 \theta-1)-\mathrm{B} \sin 2 \theta$
Following Iill (1952) the stresses within the curved fan sector BOC ahead of the crack can be given as:
$\sigma_{\mathrm{rr}}=\mathrm{k} \cos \theta$
$\sigma_{\theta 0}=2 \mathrm{k} \cos \theta$
$\sigma_{\mathrm{r} \theta}=\mathrm{k} \sin \theta$
Equilibrium equations require continuity of traction across any sector boundary. Continuity of all stresses across the sector boundary $O B$ is assumed. Equating Equations 4.60 \& 4.61 on the sector boundary OB gives a set of three equations:
$\mathrm{A}(2 \theta-2 \pi+\sin 2 \theta)+\mathrm{B}(1+\cos 2 \theta)=\mathrm{k} \cos 0$
$\Lambda(2 \theta-2 \pi-\sin 2 \theta)+B(1-\cos 2 \theta)=2 k \cos \theta$
$A(\cos 2 \theta-1)-B \sin 2 \theta=k \sin \theta$

Solving Equations 4.62 for θ gives:
$(\pi-\theta) \tan \theta-2=0$
Substituting $\theta=\theta_{\mathrm{OB}}$ in Equation 4.63 gives:
$\left(\pi-\theta_{O B}\right) \tan \theta_{O B}-2=0$
where, $\pi>\theta_{\mathrm{OB}}>0$. The valuc of θ_{OB} obtained from Equation 4.64 is 39.126^{6}. Applying mode I symmetry condition, the angle of elastic-plastic boundary $O C$ with the crack plane, $\theta_{\mathrm{OC}}=-\theta_{\mathrm{OB}}\left(-\pi<-\theta_{\mathrm{OB}}<0\right)$.

The cylindrical stresses within the elastic sector $A O B$ and fan sector $B O C$ have been given by Equations $4.60 \& 4.61$ respectively. The stresses within the elastic sector COD at the lower crack flank can be given as:

$$
\begin{align*}
& \sigma_{\pi}=\mathrm{A}(2 \theta+2 \pi+\sin 2 \theta)+\mathrm{B}(1+\cos 2 \theta) \\
& \sigma_{\epsilon \theta}=\mathrm{A}(2 \theta+2 \pi-\sin 2 \theta)+\mathrm{B}(1-\cos 2 \theta) \\
& \sigma_{\pi \theta}=\mathrm{A}(\cos 2 \theta-1)-\mathrm{B} \sin 2 \theta \tag{4.65}
\end{align*}
$$

The constants A and B can then be calculated from traction continuity across the sector boundary OC. Comparison of the analytic and computational solutions supports the form of field suggested by Sham and Hancock (1999).

4.2.2 Plane stress mixed mode crack tip fields

A statically admissible plane stress near mode I slip line field has been discussed by Shih (1973). This field consists of five constant stress sectors and two curved fan sectors with six sector boundaries as shown schematically in Figure 4.13. The field shows discontinuities in radial stress across the sector boundaries OB and OH . The angular positions of the six sector boundaries are defined as $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}$ and θ_{6} and two asymptotic angles ϕ_{1} and ϕ_{2} associated with the curved fan sectors DOE and FOG respectively. In solving the field Shih obtained six equations from the traction free boundary conditions and traction continuity across the sector boundaries. The additional equation needed to solve the field satisfactorily was not found. Consequently, Shin varied the angles θ_{1} and θ_{6} corresponding to lines of discontinuity $O B$ and $O H$ respectively, keeping the angle BOH constant to obtain a family of statically admissible mixed mode fields. It was observed that with increasing mode II loading discontinuity across linc OB decreases with decreasing θ_{1} and finally vanishes at $\theta_{1}=125.26^{\circ}$, where discontinuity across line OH still remains at $\theta_{6}=-177.22^{\circ}$ just below the lower crack flank as shown in Figure 4.14. With further increasing mode II loading, the discontinuity across OH vanishes and OH merges with lower crack flank in near mode II. At this stage a curved fan sector develops at 125.26° as shown by BOC in Figurc 4.14. It can be noted that during the entire transition from mode I to mode Π the crack line ahead of the crack lies within the curved farl sector.

Dong \& Pan (1990) have discussed a modification of the plane stress mixed mode ffeld discussed by Shih. In solving the problem Dong \& Pan have derived the missing seventh equation in near mode I and near mode II. They have shown that during the very early stage of transition from mode I to mode II, the crack line ahead of crack lies within a constant stress sector which differs from the Shih field. They also found that in near mode Il when discontinuity across OB (Figures 4.13, 4.14) vanishes at $0_{1}=125.26^{\circ}$, the
discontinuity across OH exists at $\theta_{6}=-175.16^{0}$, which also slightly differs from the Shih field. In this field the discontinuity across OH exists until a pure mode II field is achicved.

Figure 4.1: Orientation of α and β lines in the co ordinate system.

Figure 4.2: Slip line field indicating α and β lines in constant stress and centred fan sectors.

Figure 4.3: The Prandtl slip line field.

$$
\mathrm{T} / \sigma_{0}=-0.5
$$

$$
\mathrm{T} / \sigma_{0}=0
$$

Figure 4.4: Mode I slip line fields with elastic sectors on the crack flanks.

Figure 4.5: Elastic wedge on the crack flank.

Figure 4.6: Mixed mode slip line field, plane strain.

Type I

Type II

Figure 4.7: Mixed mode slip line fields with elastic sectors on the upper crack flanks.

Figure 4.8: Zhu and Chao (2001) six sector crack tip field.

Figure 4.9: Non-orthogonal slip lines (α, β) for plane stress.

Figure 4.10: Hutchinson mode I slip line field, plane stress.

Figure 4.11: Dong \& Pan mode I slip line field shown schematically.

Figure 4.12: Sham \& Hancock mode I slip line field shown schematically.

Figure 4.13: Shih plane stress near mode I slip line field shown schematically.

Figure 4.14: Shih plane stress near mode II slip line field shown schematically.

Chapter 5 Crack propagation and toughness in mixed mode loading

5.1 Criteria for crack propagation

Several criteria have been proposed to describe the dircction of crack propagation in brittle materials under mixed mode I/II loading. The Maximum Hoop Stress (Erdogan and Sih, 1963) and the Maximum Strain Energy Release Rate (Hussain et al., 1974) criteria are most widely accepted. Both critcria are based on LEFM, and predict closely similar directions of crack propagation. In the Maximum Hoop Stress critcrion, the crack is assumed to propagate in the direction perpendicular to the direction of the maximum hoop stress (σ_{00}), or equivalently in the direction of zero shear stress. The Maximum Strain Encrgy Release Rate criterion suggests that crack propagates in a direction in which the stain energy release rate is maximum. The direction of maximum strain energy release rate can be determined in numerical calculations by using an extension of the virtual crack extension method of Parks (1974). In ductile material plasticity occurs at the crack tip and the criteria based on LEFM should be modified to consider crack tip plasticity.

Extensive analytical, numerical and experimental investigations have been undertaken to examine the bchaviour of cracks under mixed mode (I/H) loading (Shih, 1974, Ghosal et al. 1994, Maccagno et al., 1991). The experimental work has examined the effect of mixed mode (I/II) loading on fracture toughness of materials showing brittle (cleavage) and ductile fracture behaviour. In mixed mode (I/I) fracture, Maccagno and Knott (1989) have defined an equivalent crack angle, $\beta_{\text {eq }}$, which gives the relative amount of mode I and mode II loading as:

$$
\begin{equation*}
\beta_{c \mathrm{c}}=\tan ^{-1}\left(\frac{\mathrm{~K}_{\mathrm{L}}}{\mathrm{~K}_{\mathrm{II}}}\right) \tag{5.1}
\end{equation*}
$$

With this notation, purc mode I and mode II loadings correspond to equivalent crack angles 90° and 0° respectively. For mixed mode ($/ / \square$) loading, $90^{\circ}>\beta_{\mathrm{eq}}>0^{\circ}$.

5.2 Cleavage (brittle) fracture

During cleavage cracks propagate along low index crystallographic planes following a transgranular path. Although cleavage may occur under macroscopically elastic conditions it is associated with local plasticity and possibly ductile crack extension. Maccagno and Knott (1991) have investigated cleavage fracture behaviour of steel under mixed mode (I/II) loading at $-196^{\circ} \mathrm{C}$. The experimental technique used edge-cracked bend bar specimens with symmetric four-point loading for mode I and anti-symmetric four-point loading (Gao et al., 1979) for mixed mode (I/I) and mode Il. Tests were performed on four grades of steels: En3B mild steel, 1Cr-1Mo-0.3V structural steel, HY130 pressure vessel sleel and C-Mn steel subrnerged arc weid. The directions of crack propagation obtained from their investigation were consistent with the Maximum Hoop Stress criterion of Erdogan and Sih (1963). It was observed that in all cases under pure mode I loading, the crack propagated along the direction of the original crack, which corresponds to a fracture angle, $\theta_{0}=0^{0}$. Under mixed mode (I/II) loading, the crack advances in a direction other than $\theta_{0}=0^{\circ}$, and with increasing mode II loading, the fracture angle, 0_{0}, increases. Figure 5.1 illustrates the directions of crack propagation under different mixed mode (I/II)
loadings in large grain $1 \mathrm{Cr}-\mathrm{IMo}-0.3 \mathrm{~V}$ steel specimens (Maccagno \& Knott, 1991). From the experimental data, Maccagno \& Knott (1991) compared the fracture angle, 0_{0}, with that predicted by Maximum Hoop Stress critcrion as shown in Figure 5.2. The experimental results agree well with the theoretical prediction, Gao et al. (1979) and Yokobori ct al. (1983) also investigated brittle fracture under mixed mode (I/II) loading using similar matcrials. Gao ct al. used $1.3 \mathrm{Cr}-0.5 \mathrm{Mo}-0.1 \mathrm{~V}$ steel specimens with anti-symmetric fourpoint bend loading, and Yokobori et al. used $0.04 \% \mathrm{C}$ mild steel tubes under remotely applied tension and torsion, and show similar results as illustrated in Figure 5.3.

Manoharan et al. (1989a, 1989b) and Graves (1992) have shown that under mixed mode (IW) loading the fracture toughness of a brittle material increases with increasing mode III loading. Using aluminium alloys, Kamat \& Hirth (1995a) have shown that mixed mode I/II and I/III have similar effects on fracture toughness. It was observed (Kamat \& Firth,1995a) that fracture toughness of the aluminium alloy, $2034 \mathrm{Al}(1.08 \mathrm{wt} \% \mathrm{Mn})$ corresponding to pure mode I decreases slightly in near mode I as the mode II (or mode III) loading applied, subsequently the toughness does tot vary further with increasing mode II (or mode II) loading as shown in Figure 5.4.

5.3 Ductile fracture

In ductile materials the crack extends due to nucleation, growth and coalescence of microvoids, which form at inclusions and second phase particles by interface de-cohesion or particle cracking. The voids then grow by plastic strain and hydrostatic stress and finally coalesce with the blunting crack tip. In ductile materials crack initiation and advance in mixed mode (I/II) can occur in the dircction of maximum shear rather than the direction normal to the maximum hoop stress (Bhattacharjee and Knott, 1994). Bhattacharjee and Knott (1993) have shown experimentally that in ductile crack growth under mixed mode (I/LI) loading the shear mode dominates over the opening mode and crack initiation and advance are due to shear. Figure 5.5 shows two similar specimens tested under similar mode I/II ratios at $-100^{\circ} \mathrm{C}$ (brittle region) and at $20^{\circ} \mathrm{C}$ (ductile region). In the brittle specimen the crack propagates following the Maximum Hoop Stress criterion, whereas, in the ductile specimen the crack advances in the original direction following the maximum shear path.

Experimental studies (Bhattacharjee ct al., 1994, Tohgo et al., 1988) have shown that under mixed mode ($/$ /II) loading in ductile materials part of the crack tip blunts and the other part sharpens due to a competition between hydrostatic stress and equivalent plastic strain. Analytical (Shih, 1974) and numerical (Ghosal et al., 1994, 1996) investigations have shown that the hydrostatic stress directly ahead of the crack in mode I loading decreases as mode II loading applied, and this is accompanied by an increase in equivalent plastic strain at the crack tip. Budden (I988) and Saka ct al. (1986) have shown by mixed mode (I/II) blunting analysis that the crack tip blunts depending upon the initial crack tip profile. Budden modelled the crack tip with sharp comers, and Saka et al. used a crack with circular tip. The changes of crack tip profiles shown by Budden and Saka et al. are illustrated in Figure 5.6. Aoki ct al. (1987) have investigated deformation of a smooth crack tip under mixed mode (V/I) loading by finite element analysis. They have reported that crack initiation may occur either from the blunted side or from the sharpened side of the crack tip depending upon the ratio of mode I \& II. With mode I/II ratios higher than 0.6 , void volume fraction and equivalent plastic strain are higher at the blunted side, which may result in crack initiation from the blunted side. On the other hand, with mode I/I
ratios less than 0.6 , the void volume fraction and equivalent plastic strain are higher at the sharpened side, which may result in crack initiation from the sharpened side following the direction of maximum shear. Bhattacharjee and Knott (1994) have shown experimentally that even for mode I/II ratios much higher than 0.6 , i.e., with a mode $1 / \mathrm{II}$ ratio 3.15 , crack initiation may occur from the sharpened side of the crack tip. Figure 5.7 shows the changes in notch tip profiles in HY 100 steel specimens (Bhattacharjee and Knott, 1994) at different load values under mode I/II ratio 1.57 .

Under mixed mode (I/ח) loading, the fracture toughness for ductile materiais decreases with increasing mode II loading. Kamat and Hirth (1995a) experimentally have shown the effects of mixed mode I / Π and I / \amalg on fracture toughness of aluminium alloy 2034 Al $(<0.1 \mathrm{wt} \% \mathrm{Mn})$ and found a similar variation of toughness under the two mixcd modes as shown in Figure 5.8.

Figure 5.1: Direction of crack propagation under mixed mode (I/II) loading in large grain $1 \mathrm{Cr}-1 \mathrm{Mo}-0.3 \mathrm{~V}$ steel specimens (Maccagno \& Knott, 1991).

Figure 5.2: Comparison of experimental and theoretical fracture angles (Maccagno \& Knott, 1991).

Figure 5.3: Comparison of experimental fracture angles (Gao et al., 1979, Yokobori et al., 1983) with theoretical prediction (Maccagno \& Knott, 1991).

Figure 5.4: Effect of mixed mode (I/II, I/III) loading on fracture toughness, J_{tc} of the aluminium alloy, $2034 \mathrm{Al}(1.08 \mathrm{wt} \% \mathrm{Mn})$ (Kamat \& Hirth, 1995).

Figure 5.5: Specimens showing brittle (top) and ductile (bottom) fracture (Bhattacharjee \& Knott, 1993).

Figure 5.6: Change in crack tip profile due to (a) Budden (1988) and (b) Saka et al. (1986) (Bhattacharjee \& Knott, 1994).

Figure 5.7: Change in notch tip profile with load in HY 100 steel specimens under mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1.57$) (Bhattacharjee \& Knott, 1994).

Figure 5.8: Effect of mixed mode (I/II, I/III) loading on fracture toughness, J_{tc} of the aluminium alloy, $2034 \mathrm{Al}(<0.1 \mathrm{wt} \% \mathrm{Mn})$ (Kamat \& Hirth, 1995).

Chapter 6 Numerical methods

6.1 Boundary layer formulations

The concept of a boundary layer formulation was introduced by Rice and Tracey (1973) to investigate elastic-plastic crack tip fields. Interest is focused on the small region close to a crack tip where plastic deformation takes place. Instead of modelling the complete structure, a circular region centred on the crack tip is considered. The boundary conditions for the model are based on the first term (boundary layer formulation) or first and second terms (modified boundary layer formulation) of the Williams expansion (Williams, 1957). Displacements corresponding to the asymptotic elastic field for mode I and mode II loading and T-stress are applied on the remote boundary of the model. The Cartesian displacements u_{1} and u_{2} arc given by:

$$
\begin{align*}
& \mathrm{u}_{1}=\mathrm{u}_{1}^{\mathrm{K}_{1}}+\mathrm{u}_{1}^{\mathrm{K}_{11}}+\mathrm{u}_{1}^{\mathrm{T}} \\
& \mathrm{u}_{2}=\mathrm{u}_{2}^{\mathrm{K}_{\mathrm{t}}}+\mathrm{u}_{2}^{\mathrm{K}_{11}}+\mathrm{u}_{2}^{\mathrm{T}} \tag{6.1}
\end{align*}
$$

where, $u_{1}^{K_{1}}$ and $u_{2}^{K_{1}}$ are Cartesian displacements for mode I, $u_{1}^{K_{13}}$ and $u_{2}^{K_{u}}$ are Cartesian displacements for mode II and u_{1}^{T} and u_{2}^{\top} are displacements for the T-stress. The displacements for mode I and II are given as:

$$
\begin{align*}
& u_{1}^{K_{1}}=\frac{\mathrm{K}_{1}}{2 \mathrm{G}}\left(\frac{\mathrm{r}}{2 \pi}\right)^{\frac{1}{2}}\left(\cos \frac{\theta}{2}\left(\kappa-1+2 \sin ^{2} \frac{\theta}{2}\right)\right) \\
& u_{2}^{K_{1}}=\frac{\mathrm{K}_{1}}{2 \mathrm{G}}\left(\frac{\mathrm{r}}{2 \pi}\right)^{\frac{1}{2}}\left(\sin \frac{\theta}{2}\left(\kappa+1-2 \cos ^{2} \frac{\theta}{2}\right)\right) \\
& u_{1}^{\mathrm{K}_{1}}=\frac{\mathrm{K}_{\mathrm{II}}}{2 \mathrm{G}}\left(\frac{r}{2 \pi}\right)^{\frac{1}{2}}\left(\sin \frac{\theta}{2}\left(\kappa+1+2 \cos ^{2} \frac{\theta}{2}\right)\right) \\
& u_{2}^{\mathrm{K}_{1}}=\frac{\mathrm{K}_{11}}{2 \mathrm{G}}\left(\frac{r}{2 \pi}\right)^{\frac{1}{2}}\left(-\cos \frac{\theta}{2}\left(\kappa-1-2 \sin ^{2} \frac{\theta}{2}\right)\right) \tag{6.2}
\end{align*}
$$

where, K_{1} and $\mathrm{K}_{\text {II }}$ are applied stress intensity factors, r is the distance from the crack tip, $\kappa=(3-4 v)$ for planc strain and $\kappa=(3-v) /(1+v)$ for plane stress, v is Poisson's ratio and G is the shear modulus. The displacements cotresponding to the T-stress in plane strain and plane stress can be given as:
$u_{i}^{T}=\frac{T\left(1-v^{2}\right) r \cos \theta}{E}$
$u_{2}^{T}=-\frac{T v(1+v) r \sin \theta}{E}$, for plane strain
and
$\mathrm{u}_{1}^{\mathrm{T}}=\frac{\operatorname{Tr} \cos 0}{\mathrm{E}}$
$u_{2}^{T}=-\frac{\nu \operatorname{Tr} \sin \theta}{\mathrm{E}}$, for plane stress
where, r is the distance from the crack tip, E is modulus of elasticity, v is Poisson's ratio. The displacements were calculated using a spread sheet in Microsoft Excel and pasted into an ABAQUS (Hibbitt, Karlsson and Sorensen, 1998) input deck.

Plane strain problems have been investigated under mode I , mixed mode I / I and mode II loadings with $\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\text {II }}$ ratios: $\propto, 2,1,1 / 2$ and 0 , and at three levels of T -stress: $\mathbf{T}=-0.5 \sigma_{0}, 0$ and $+0.5 \sigma_{0}$, where σ_{0} is the uni-axial yield strength. Plane stress problens have been investigated under mode I, mixed mode X / II and mode Π loadings with $\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}$ ratios: \propto, 1 , $1 / 2,0.45,1 / 4$ and 0 , and at $T=0$. The plane stress mode I problem has also been investigated at $\mathrm{T}= \pm 0.5 \sigma_{0}$ to determine the effect of the T -stress on crack tip plastic zone..

The mesh used for numerical analysis is shown in Figure 6.1. The mesh is based on 24 rings of 24 second order iso-parametric hybrid elements highly focused at the crack tip. The crack tip is modelled by 49 initially coincident but independent nodes. Displacement boundary conditions are applied on the outer nodes of the mesh. Plasticity was restricted to a small fraction of the mesh radius to represent contained yielding.

Finite clement analysis was performed using finite element code ABAQUS (Hibbitt, Karlsson and Sorensen, 1998). The material response is taken to be elastic-perfectly plastic. The uni-axial stress-strain relations are given by the equations:
$\sigma=\mathrm{E} \varepsilon, \quad \varepsilon<\sigma_{0} / \mathrm{E}$
$\sigma=\sigma_{0}, \quad \varepsilon \geq \sigma_{0} / E$
where, σ is the uni-axial stress, Γ is modulus of elasticity, ε is strain and σ_{0} is the uni-axial yield strength. The plastic response of the material was modelled as isotropic and almost incompressible elastic material using a Poisson's ratio of 0.49. In uni-axial tension plastic deformation is assumed to occur at a constant strcss, σ_{0}, such that there is no strain hardening, as illustrated schematically in Figure 6.2. This response is known as elasticperfectly plastic. Under the near incompressible conditions associated with plastic flow the use of reduced integration hybrid elements, and small departure from perfect incompressibility help to avoid mesh-locking problems.

To generalise the uni-axial material response to multi-axial states of stress the von Mises yicld criterion was used with an associated flow rule and incremental plasticity within a framework of small displacement gradient theory of deformation. A modulus of elasticity
of $2 \times 10^{11} \mathrm{~Pa}$ and a yield strength, $2 \times 10^{8} \mathrm{~Pa}$ were used in the analysis, although nondimensional results are always presented.

Output data were written to an abaqus.mt file using post processing programs fullfan3.go and fullfanodd3.go given in Appendix I which were used in conjunction with the ABAQUS post-processor ABAQUS Post. (Hibbitt, Karlsson and Sorensen, 1998). The radial distances and Cartesian stresses at different angles surrounding the crack tip were obtained from the abaqus.rpt file. The data were obtained at 7.5° intervals starting from crack plane to 180° and -180°. The data were then arranged in matrix form using the Matiab programs fullfan 3.m and fullfanodd3.m given in Appendix II and the stresses were extrapolated to the crack tip in Cartesian form. The asymptotic stresses are then transformed to polar co-ordinate system. The data from output files were plotted as angle versus stresses using Microsoft Excel.

J-integrals were determined surrounding the crack tip by using the CONTOURS parameter in *CONTOUR INTEGRAL option in the ABAQUS input filc. The cvaluation of the Jintegral is based on a modification of the virtual crack extension method of Parks (1974) due to Li, Shih \& Needleman (1985). In ABAQUS model each ring of elements surrounding the crack tip is considered as a contour. To evaluate J-integral, ABAQUS automatically identifies the elements of each ring from the node set defined by *NSET option using NSET = TIP parameter in ABAQUS input file. Four J-integral contours were used at the crack tip to maintain accuracy of result and obtained in ABAQUS data file.

6.2 Determination of slip line fields from numerical results

Slip line fields were determined from the asymptotic stresses in plane strain and plane stress. The crack tip field is initially divided into elastic and plastic sectors. The angular span over which yield criterion is not satisfied defines the elastic sector, and the sector over which the yield criterion is satisfied defines the plastic sector. In plane strain slip line fields, the crack tip plastic sector can only comprise constant stress and centred fan sectors. In constant stress sectors, the mean stress, σ_{m}, does not vary with angle. In centred fan sectors shear stress, $\sigma_{\mathrm{r} \theta}$, equals the yield stress in shear, k, while the mean stress, σ_{m}, varies linearly with the angle. This allows the angular span of elastic sectors, constant stress sectors and centred fans to be identified from the numerical results to an accuracy, which is limited by the angular mesh refinement.

In plane stress slip line fields, the crack tip plastic sector is also divided into constant stress and curved fan sectors. In constant stress sectors, the mean stress, σ_{m}, does not vary with angle. In curved fan sectors, the radial stress deviator, s_{rr} is zero, or equivalently, $\sigma_{\theta 0}=2 \sigma_{\pi}$. The angle at which shear stress, $\sigma_{r}=0$, defines the asymptotic angle, ϕ. This information again allows asymptotic slip line fields to be constructed from numerical data in plane stress.

Figure 6.1: Mesh used in boundary layer formulation.

Figure 6.2: Stress-strain curve for elastic-perfectly plastic material.

Chapter 7 Results

7.1 Plane strain mixed mode (I/II) crack tip fields in perfect plasticity

7.1.1 Plastic zones

In plane strain, the effect of the T-stress on plastic zone in mode I, mixed mode I/II and mode I loading has been investigated at three levels of l '-stress: $\mathrm{T}=0$ and $\mathrm{T}= \pm 0.5 \sigma_{0}$. The plastic zones are shown in Figures 7.1 to 7.5. In mode I loading a compressive T-stress enlarges both wings of the plastic zone and causes the plastic lobes to swing forward. The tensile T stress has little effect on the plastic zone size but causes the plastic lobes to swing backward as shown in Figure 7.1. These results are consistent with those reported by Du \& Hancock (1991).

Under mixed mode loading ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\pi}=2$), a compressive T -stress enlarges the forward lobe of the plastic zone, whereas a positive T-stress increases the trailing lobe causing it to merge with the crack flank, as shown in Figure 7.2.

Under mixed mode loading ($\mathrm{K}_{I} / \mathrm{K}_{\mathrm{II}}=1$), both positive and negative T -stresses increase the size of the plastic zone as shown in Figure 7.3. In this case a compressive T-stress causes the part of the plastic zone in the positive quadrant to increase in size and to swing upward but decrcases the size of the lobe in the negative quadrant. A tensile T-stress decreases the positive part of the plastic zone and causes it to swing downward, but it enlarges the positive part.

In the case of $\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1 / 2$, both positive and negative T -stresses increase the plastic zone size, but compressive T-stress cause the plastic zonc to move upward and in contrast tensile T-stress cause the forward part of the plastic zone to swing downward as illustrated in Figure 7.4.

In pure mode II loading the plastic zone shape shown in Figure 7.5 is symmetric about the crack plane, as the stress field must be anti-symmetric. A T-stress destroys this symmetry. A compressive T'stress causes an enlarged lobe to develop in the arca above the symmetry axis, while a tensile T stress enlarges the lobe in the area below the symmetry axis.

7.1.2 Asymptotic stress fields

The asymptotic stresses have been determined numerically for mode I, II and mixed mode I/II loading with and without T-stresses. The angular variation of stresses at the crack tip are shown in Figures 7.6a to 7.20b. The effect of T-stress on the plastic mixity is shown in Figure 7.26 and Table 7.1. Elastic and plastic mixities have been discussed in Section 4.1.2. The cffect of T-stress on the mode I and mixed mode I/II fields is essentially to change the hoop stress (or equivalently the mean stress) directly ahead of the crack. In mixed mode fields, a tensile I -stress increases the hoop stress ahead of the crack and increases plastic mixity, whercas a compressive T-stress causes the hoop stress and plastic mixity to decrease. Under mode I, the shear stress ahead of the crack is defined to be zero and the effect of T-stress is only to increase or decrease the hoop stress (or equivalently the mean stress) directly ahead of the crack depending upon tensile or compressive T-stress. The mode I stress fields ($\mathrm{T}=-0.5 \sigma_{0}, 0,+0.5 \sigma_{0}$) are shown in Figures 7.6 a to 7.8 b , and the
mixed mode I/II ficids are shown in Figures 7.9a to 7.17b. Mode II loading gives antisymmetric stress field, where the hoop stress ahead of the crack is zero. In this case a compressive T-stress gives rise to a compressive hoop stress directly ahead of crack, which results in a negative plastic mixity. On the other hand, a tensile T-stress gives rise to a tensile hoop stress ahead of crack, which corresponds to a positive plastic mixity. The mode II stress fields are given in Figures 7.18a to 7.20 b.

The crack tip fields (mode I, II and mixed mode I / L, and $T=-0.5 \sigma_{0}, 0,+0.5 \sigma_{0}$) have been represented in terms of slip line fields which are shown in Figures 7.21 to 7.25. The slip line fields have been constructed from numerical results as discussed in Section 6.2. The critical angles of the slip line fields are given in Table 7.2. The mode I slip line fields ($\mathrm{T}=-$ $0.5 \sigma_{0}, 0,40.5 \sigma_{0}$) are shown in Figure 7.21. Under mode I, a tensile T-stress gives rise to the Prandtl field, where plasticity fully surrounds the crack tip. For $T=0$, field consists of a constant stress diamond ahead of the crack and two fan sectors, complemented by elastic sectors to the crack flanks. A compressive T-stress decreases the angular span of the fan sectors, and thus the angular spans of the elastic wedges on the crack flanks increase. The mixed mode I / II slip line fields are shown in Figures 7.22 to 7.24 . Under mixed mode I/II loading the constant stress diamond ahead of the crack rotates with increasing mode II loading and plasticity eventually breaks through to the lower crack flank. Compressive Tstress causes the constant stress diamond to rotate more compared to $\mathrm{T}=0$ field. Tensile T stress has little effect on the rotation. Under mode Π loading, plasticity surrounds the crack tip at all angles, where T-stress has very little effect on the slip line field. The mode II slip line fields ($\mathrm{T}=-0.5 \sigma_{0}, 0,+0.5 \sigma_{0}$) are shown in Figure 7.25 .

7.1.3 Loading

The level of loading may be measured in the remote field by the applied stress intensity factors K_{I} and K_{fl}. These can be combined to give a remotely applied strain encrgy release rate, G, or equivalent J :
$\mathrm{G}=\mathrm{J}=\frac{\mathrm{K}_{1}^{2}}{\mathrm{E}^{\prime}}+\frac{\mathrm{K}_{\mathrm{II}}^{2}}{\mathrm{E}^{\prime}}$
where $\mathrm{E}^{\prime}=\mathrm{E}$ for plane stress, and $\mathrm{E}^{\prime}=\mathrm{E} /\left(1-\mathrm{v}^{2}\right)$ for plane strain. Under conditions of non-linear or linear elasticity J is cxpected to be path independent, so that values of J measured in the local field near the crack tip correspond to the remotely applied J. However, under conditions of incremental plasticity, in which limited amounts of local unloading may occur, the local and remotely measured J-values may differ (Zywicz \& Parks, 1989). The local value of J was measured by the routine provided by ABAQUS (Hibbitt, Karlsson and Sorensen, 1998). This is based on a modification of the virtual crack extension method of Parks(1974) due to Li, Shih \& Needleman (1985). The ratio of the local to remote values of J are given in Table 7.3. The trend of the results is that the negative values of T tend to increase the ratio of local to remote J and positive T stresses to decrease it.

7.2 Plane stress mixed mode (I/M) crack tip fields in perfect plasticity

Plane stress mode I, mode II and mixed mode I/II crack tip fields have been investigated analytically and numerically, and represented in-terms of slip line fields. Analytical
solutions were obtained by assembling the constant stress, fan and elastic sectors subject to boundary conditions and continuity of tractions across the sector boundaries. Slip line theory (Hill, 1950) was used to solve the plastic sectors (constant stress and fan sectors) and the solutions for elastic sectors were given by using the semi-infinite wedge solution of Timoshenko and Goodier (1970). Numerical solutions were obtained by using boundary layer formulation introduced by Rice and Tracey (1973).

The asymptotic crack tip stresses for plane stress mode I, II and mixed mode I/II are shown in Figures 7.27 a to 7.32 c . The data points in the graphs represent the numerical results, and the solid lines represent the analytical results. The analytical solutions show good agreement with the numerical results. Under mixed mode I/L loading the hoop stress (or equivalently the mean stress) ahead of the crack corresponding to mode I loading decreases with increasing mode II loading, which results in decreasing plastic mixity. The elastic and plastic mixities for the diffcrent combinations of loading are shown in Figure 7.39 and Table 7.4. Mode I stresses are shown in Figures 7.27a to 7.27c. Mixed mode fields are shown in Figures 7.28 a to 7.3 lc . Finally mode II loading gives rise to an anti-symmetric crack tip field, in which the hoop stress (or equivalently the mean stress) ahead of the crack. is defined to be zero. Mode II stresses are shown in Figures 7.32a to 7.32c.

The slip line fields have been determined from numerical data as discussed in Section 6.2. The slip line ficlds for mode I, II and mixed mode I/II loading are shown in Figures 7.33 to 7.38. The critical angles of the slip line fields are shown in Table 7.5. The mode I slíp line field shown in Figure 7.33, consists of a curved fan sector ahead of the crack, which ranges from -39.126° to $+39.126^{\circ}$ and is complemented by elastic sectors to the crack flanks. The mode I plane stress slip line field has been discussed in detail by Sham and Hancock (1999). Under mixed mode I/II loading the curved fan sector ahead of the crack rotates. Figure 7.34 shows the slip line field under mixed mode, $\mathrm{K}_{1} / \mathrm{K}_{11}=1$, where the curved fan sector rotates and the span of the fan increases, while still retaining elastic sectors on the crack flanks. The corresponding stress fields are shown in Figures 7.28a to 7.28c. With increasing mode II loading plasticity breaks through to one crack flank and then to the other. The slip line field for mixed mode, $\mathrm{K}_{\mathrm{y}} / \mathrm{K}_{\mathrm{II}}=1 / 2$, is shown in Figure 7.35. Here plasticity breaks through to the upper crack flank, where a constant stress sector develops. The stress fields for this loading ate shown in Figure 7.29a to 7.29c. The slip line ficld for mixed mode, $\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{JI}}=0.45$ is shown in Figure 7.36. Here plasticity breaks through to lower crack flank, where a constant stress sector develops. The corresponding stress fields are shown in Figures 7.30 a to 7.30 c . Under mixed mode, $\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1 / 4$, plasticity surrounds the crack tip at all angles and curved fan sectors emerge at $\pm 125.3^{0}$ separating two constant stress tegions. The field consists of 4 constant stress sectors and 3 curved fan sectors as shown in Figure 7.37. The corresponding stress fields are shown in Figures 7.31a to 7.31c. Finally, mode II slip line field is shown in Figure 7.38, where plasticity surrounds the crack tip at all angles. Mode II field consists of 4 constant stress sectors and 3 curved fan sectors.

The effect of the T-stress on the crack tip plastic zone under mode I loading has been investigated at $T=0$ and $T= \pm 0.5 \sigma_{0}$. The plastic zones are shown in Figure 7.40. Both tensile and compressive T -stresses enlarge the plastic zone. It can be noted that the tensile T-stress (Figure 7.40c) does not have much effect on the shape of the plastic zone, where the compressive T-stress (Figure 7.40a) has. A compressive T-stress rotates the wings of the plastic zone towards the crack flanks.

Figure 7.1: Effect of T-stress on crack tip plastic zone under mode I loading, plane strain.

a) $\mathrm{T}=-0.5 \sigma_{0}$

b) $\mathrm{T}=0$

c) $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.2: Effect of T-stress on crack tip plastic zone under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain.

a) $\mathrm{T}=-0.5 \sigma_{0}$

b) $\mathrm{T}=0$

c) $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.3: Effect of T-stress on crack tip plastic zone under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{l\mid}}=1$) loading, plane strain.

Figure 7.4: Effect of T-stress on crack tip plastic zone under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain.

a) $\mathrm{T}=-0.5 \sigma_{0}$

b) $\mathrm{T}=0$

c) $\mathrm{T}=+0.5 \sigma_{0}$

Figure 7.5: Effect of T-stress on crack tip plastic zone under mode II loading, plane strain.

Figure 7.6a: Angular variation of stresses in mode I loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 7.6b: Angular variation of stresses in mode I loading, plane strain, $T=-0.5 \sigma_{0}$.

Figure 7.7a: Angular variation of stresses in mode I loading, plane strain, $\mathrm{T}=0$.

Figure 7.7b: Angular variation of stresses in mode I loading, plane strain, $\mathrm{T}=0$.

Figure 7.8a: Angular variation of stresses in mode I loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.8b: Angular variation of stresses in mode I loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.9a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 7.9b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $T=-0.5 \sigma_{0}$.

Figure 7.10a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $\mathrm{T}=0$.

Figure 7.10b: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{11}=2$) loading, plane strain, $\mathrm{T}=0$.

Figure 7.11a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.11b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2$) loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.12a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 7.12b: Angular variation of stresses in mixed mode $\left(\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1\right)$ loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 7.13a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane strain, $\mathrm{T}=0$.

Figure 7.13b: Angular variation of stresses in mixed mode $\left(\mathrm{K}_{1} / \mathrm{K}_{11}=1\right)$ loading, plane strain, $\mathrm{T}=0$.

Figure 7.14a: Angular variation of stresses in mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1\right)$ loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.14b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.15a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 7.15b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{11}=1 / 2$) loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 7.16a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $\mathrm{T}=0$.

Figure 7.16b: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $\mathrm{T}=0$.

Figure 7.17a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $T=+0.5 \sigma_{0}$.

Figure 7.17b: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.18a: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 7.18b: Angular variation of stresses in mode II loading, plane strain, $T=-0.5 \sigma_{0}$.

Figure 7.19a: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=0$.

Figure 7.19b: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=0$.

Figure 7.20a: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.20b: Angular variation of stresses in mode II loading, plane strain, $\mathrm{T}=+0.5 \sigma_{0}$.

Figure 7.21: Slip line fields under mode I loading, plane strain.

Figure 7.22: Slip line fields under mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{11}=2\right)$ loading, plane strain.

Figure 7.23: Slip line fields under mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{ll}}=1\right)$ loading, plane strain.

a) $\mathrm{T}<0$

b) $T=0$

c) $\mathrm{T}>0$

Figure 7.24: Slip line fields under mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 2\right)$ loading, plane strain.

a) $\mathrm{T}<0$

b) $\mathrm{T}=0$

c) $\mathrm{T}>0$

Figure 7.25: Slip line fields under mode II loading, plane strain.

Figure 7.26: Elastic mixity $\left(\mathrm{M}_{\mathrm{el}}\right)$ versus plastic mixity $\left(\mathrm{M}_{\mathrm{p}}\right)$ in plane strain.

Figure 7.27a: Angular variation of stresses in mode I loading, plane stress, $\mathrm{T}=0$.

Figure 7.27b: Angular variation of deviatoric stresses in mode I loading, plane stress, $\mathrm{T}=0$.

Figure 7.27 c : Angular variation of stresses in mode I loading, plane stress, $\mathrm{T}=0$.

Figure 7.28a: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.28b: Angular variation of deviatoric stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{11}=1$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.28c: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.29a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.29b: Angular variation of deviatoric stresses in mixed mode $\left(K_{1} / K_{11}=1 / 2\right)$ loading, plane stress, $T=0$.

Figure 7.29c: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\| I}=1 / 2$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.30a: Angular variation of stresses in mixed mode $\left(\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=0.45\right)$ loading, plane stress, $\mathrm{T}=0$.

Figure 7.30b: Angular variation of deviatoric stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=0.45$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.30c: Angular variation of stresses in mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=0.45\right)$ loading, plane stress, $\mathrm{T}=0$.

Figure 7.31a: Angular variation of stresses in mixed mode ($\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=1 / 4$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.31b: Angular variation of deviatoric stresses in mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 4\right)$ loading, plane stress, $\mathrm{T}=0$.

Figure 7.31c: Angular variation of stresses in mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 4$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.32a: Angular variation of stresses in mode II loading, plane stress, $\mathrm{T}=0$.

Figure 7.32b: Angular variation of deviatoric stresses in mode II loading, plane stress, $\mathrm{T}=0$.

Figure 7.32c: Angular variation of stresses in mode II loading, plane stress, $\mathrm{T}=0$.

Figure 7.33: Slip line field at the crack tip under mode I loading, plane stress, $\mathrm{T}=0$.

Figure 7.34: Slip line field at the crack tip under mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1\right)$ loading, plane stress, $\mathrm{T}=0$.

Figure 7.35: Slip line field at the crack tip under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 2$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.36: Slip line field at the crack tip under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=0.45$) loading, plane stress, $\mathrm{T}=0$.

Figure 7.37: Slip line field at the crack tip under mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=1 / 4\right)$ loading, plane stress, $\mathrm{T}=0$.

Figure 7.38: Slip line field at the crack tip under mode II loading, plane stress, $\mathrm{T}=0$.

Figure 7.39: Elastic mixity $\left(\mathrm{M}_{\mathrm{el}}\right)$ versus plastic mixity $\left(\mathrm{M}_{\mathrm{p}}\right)$ in plane stress, $\mathrm{T}=0$.

Figure 7.40: Effect of T-stress on crack tip plastic zone under mode I loading, plane stress.

Loading mode	Elastic mixity $\left(\mathrm{M}_{\mathrm{el}}\right)$	Plastic mixity $\left(\mathrm{M}_{\mathrm{p}}\right)$		
	$\mathrm{T}=-0.5 \sigma_{0}$	$\mathrm{~T}=0$	$\mathrm{~T}=+0.5 \sigma_{0}$	
$\mathrm{~K}_{\mathrm{I}}$	1	1	1	1
$\mathrm{~K}_{\mathrm{I}} / \mathrm{K}_{I I}=2$	0.70	0.75	0.82	0.90
$\mathrm{~K}_{\mathrm{I}} / \mathrm{K}_{11}=1$	0.50	0.60	0.68	0.71
$\mathrm{~K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1 / 2$	0.30	0.34	0.49	0.52
$\mathrm{~K}_{\mathrm{II}}$	0	-0.09	0	0.15

Table 7.1: Elastic and plastic mixities, plane strain.

Loading mode	Mode of T-stress	Critical angle (anti-clockwise positive) in degree							
		θ	θ_{2}	θ_{3}	0_{4}	05	θ_{6}	θ_{7}	θ_{8}
K_{1}	T<0	. 90	-45	+45	+90				
	$T=0$	-120	-4.5	+45	$+120$				
	$T>0$	- 180	-135	-45	+45	+135	+180		
$\mathrm{K}_{\mathrm{i}} / \mathrm{K}_{\mathrm{II}}=2$	T<0	-180	-135	-90	0	+75	$+107$		
	$\mathrm{T}=0$	-180	-135	-81	+9	+74	$+92$		
	$\mathrm{T}>0$	-180	-135	-67	+23	+90			
$\mathrm{K}_{1} / \mathrm{K}_{11}=1$	' $\mathrm{i}<0$	-180	-135	-105	-15	+60	$+107$		
	$\mathrm{T}=0$	-180	-135	-99	-9	+60	+91		
	$\mathrm{T}>0$	-180	-135	-99	-9	+60	+76		
$\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{tI}}=1 / 2$	T<0	-180	-135	-117	-27	+45	$+180$		
	$\mathrm{T}=0$	- 180	-135	-111	-21	+48	+80		
	$\mathrm{T}>0$	-180	-135	-111	-21	$+48$	+81		
K II	$\mathrm{T}<0$	-180	-135	-125	-35	+35	$+125$	+135	+180
	$\mathrm{T}=0$	-180	-135	-124	-34	+34	+124	+135	+180
	$T>0$	-180	-135	-123	-33	+39	+129	+135	+180

Table 7.2: Critical angles on the slip line fields, plane strain.

Mode of loading	$\begin{aligned} & J_{\text {lucala }} / I_{\text {remote }} \\ & \left(\mathrm{T}=-0.5 \sigma_{0}\right) \end{aligned}$	$\begin{gathered} \mathrm{J}_{\text {locan }} / \mathrm{J}_{\text {renote }} \\ (\mathrm{T}=0) \end{gathered}$	$\begin{gathered} \mathrm{J}_{\text {locata }} / \mathrm{J}_{\text {remore }} \\ \left(\mathrm{T}=+0.5 \sigma_{0}\right) \end{gathered}$
K_{I}	0.93	0.92	0.86
$\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{lf}}=2$	0.99	0.93	0.89
$\mathrm{K}_{\mathrm{V}} / \mathrm{K}_{1 \mathrm{l}}=1$	1.08	0.98	0.89
$\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{11}=\mathrm{l} / 2$	1.06	0.98	0.98
$\mathrm{K}_{\text {II }}$	1.04	1	1.05

Table 7.3: $\mathrm{J}_{\text {weal }} / \mathrm{J}_{\text {remote }}$ ratios under mode 1, II and mixed mode (I/II) loading, plane strain.

Loading mode	Elastic mixity $\left(\mathrm{M}_{\mathrm{el}}\right)$	Plastic mixity $\left(\mathrm{M}_{\mathrm{P}}\right)$
K_{I}	1	1
$\mathrm{~K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1$	0.50	0.58
$\mathrm{~K}_{\mathrm{V}} / \mathrm{K}_{\mathrm{II}}=1 / 2$	0.30	0.41
$\mathrm{~K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=0.45$	0.27	0.38
$\mathrm{~K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1 / 4$	0.16	0.23
$\mathrm{~K}_{\mathrm{II}}$	0	0

Table 7.4: Elastic and plastic mixities in plane stress, $\mathrm{T}=0$.

Loading mode	Critical angle (anti-clockwise positive) in degree							
	θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}	θ_{6}	θ_{7}	θ_{8}
K_{t}	-39.126	39.126						
$\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{1 \mathrm{l}}=1$	-69.6	53.34						
$\mathrm{K}_{7} / \mathrm{K}_{\text {II }}=1 / 2$	-122.87	54.7	180					
$\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}} \cdots 0.45$	-180	-125.3	54.7	180				
$\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=1 / 4$	-180	-125.3	-97.83	-51.92	52.77	118.6	125.3	180
$\mathrm{K}_{\mathbf{I I}}$	-180	-125.3	-109.32	-51.21	51.21	109.32	125.3	180

Table 7.5: Critical angles on the slip line fields, plane stress, $\mathrm{T}=0$.

Chapter 8 Plane stress analytical solutions

The concepts of plane strain and plane stress slip line fields and some of piane strain and plane stress mixed mode (I/II) slip line fields were introduced in Chapter 4. This Chapter develops the analytical solutions of the plane stress crack tip fields presented in Chapter 7. The structure of the asymptotic elastic-plastic crack tip fields can be determined by idealising the material response as elastic perfectly-plastic, which allows the use of slip line theory (Hill, 1950) both for plane stress and plane strain conditions. As discussed in Chapter 4 the plane stress asymptotic crack tip fields can be divided into elastic and plastic sectors. The region over which yicld criterion is not satisfied defines the elastic sector and the region in which yield criterion is satisfied identifies the plastic sector. Rice (1982) has shown that under plane stress, with the assumption that the crack tip stresses are finite, plus the incompressibility condition and the yield criterion, allows the asymptotic equilibrium equation to provide two possible solutions for the plastic sector. These two solutions correspond to constant stress and curved fan sectors. In a constant stress sector mean stress, σ_{in} is constant. Within a constant stress sector the slip lines are straight and nonorthogonal. The angle between the slip lines can be determined by using the stress-strain relations in conjunction with the stress transformation equations to determine the angle between the lines of zero extension. In uniaxial tension or compression the slip lines are symmetrically disposed at $\pm 54.7^{\circ}$ and $\pm 125.3^{\circ}$ to the direction of uniaxial stress. In a curved fan sector the radial stress deviator, $\mathrm{s}_{\mathrm{rr}}=0$ and $\sigma_{\theta \theta}=2 \sigma_{\mathrm{rr}}$. This sector consists of a set of straight lines and a set of curves. The cylindrical stresses within a curved fan sector can be given as:
$\sigma_{\mathrm{rT}}= \pm \mathrm{k} \cos (\theta-\phi)$
$\sigma_{0 \theta}= \pm 2 k \cos (\theta-\phi)$
$\sigma_{\mathrm{r} 0}= \pm \mathrm{k} \sin (\theta-\phi)$
where, k is yield stress in shear and ϕ is the angle to which the curved lines are asymptotic. The stresses within an elastic sector can be given by the semi-infinite wedge solution of Timoshenko and Goodier (1970), subject to the requirement that the yield criterion is not violated:
$\sigma_{\mathrm{rr}}=\mathrm{A}_{1} \sin 2 \theta+\mathrm{A}_{2} \cos 2 \theta+\left(\mathrm{A}_{3} \theta+\mathrm{A}_{4}\right) / 2$
$\sigma_{\theta \theta}=-A_{1} \sin 2 \theta-A_{2} \cos 2 \theta+\left(A_{3} \theta+A_{1}\right) / 2$
$\sigma_{\mathrm{r} \theta}=\mathrm{A}_{1} \cos 2 \theta-\mathrm{A}_{2} \sin 2 \theta-\mathrm{A}_{3} / 4$
where, A_{1}, A_{2}, A_{3} and A_{4} are constants which are to be determined by the boundary conditions on the sector boundary. In the present work elastic sectors arise on the crack flanks ($\theta= \pm \pi$) where traction free conditions give the relations:
$\mathrm{A}_{3}=4 \mathrm{~A}_{1}$
$\mathrm{A}_{4}=2\left(\mathrm{~A}_{2} \pm 2 \pi \mathrm{~A}_{1}\right)$

The sectors can be assembled subject to the boundary conditions and continuity of tractions across the sector boundaries. Continuity of tractions does not in itself require continuity of stresses. Traction continuity requires $\sigma_{\theta \theta}$ and $\sigma_{r \theta}$ to be continuous across the sector boundaries, and an argument presented by Sham and Hancock (1999) shows that $\sigma_{r r}$ must also be continuous on the boundary between an elastic sector and a centred fan, giving full continuily of all stress components. The boundary conditions require traction free conditions on the crack flanks and the loading is defitied by ratio of tension to shear directly ahead of the crack. This is defined in terms of a plastic mixity M_{p} introduced by Shih (1974):

$$
\begin{equation*}
\mathrm{M}_{\mathrm{p}}=\frac{2}{\pi} \tan ^{-1}\left(\frac{\sigma_{\theta \theta}}{\sigma_{\mathrm{rv}}}\right) \tag{8.4}
\end{equation*}
$$

Solutions are presented at the values of the plastic mixity listed Table 7.4. A near mode I field consist of a curved fan complemented by elastic sectors to the crack flanks. The method of solution for near mode-I ficlds starts by determining the asymptotic angle ϕ in the fan directly ahead of the crack for a defined plastic mixity. In the fields presented the plane directly ahead of the crack always lies in a curved fan sector in accord with the assumption of Shih (1974), but in contrast to the fields discussed by Dong and Pan (1990). This allows the relation between the asymptotic fan angle ϕ and the plastic mixity M_{p} to be written as:

$$
\begin{equation*}
\phi=\tan ^{-1}\left(2 \cot \left(\frac{\pi \mathrm{M}_{p}}{2}\right)\right) \tag{8.5}
\end{equation*}
$$

Continuity of stresses $\sigma_{r r}, \sigma_{\theta \theta}$ and $\sigma_{r \theta}$ across sector boundary between fan and elastic sector on the upper crack flank at θ_{2} allows Equations 8.1 to be combined with Equations 8.2 and 8.3 to give three equations which can be solved simultaneously to define the sector boundary θ_{2} and the two unknown constants A_{1} and A_{2}. An identical argument gives the corresponding sector boundary θ_{1} between the fan and the elastic sector on the lower flank. Finally it is necessary to check a posteriori that the stresses postulated in any elastic sectors do not violate the yield criterion.

The mode I fields shown in Figures 7.33 and $7.27 a-c$, discussed in detail by Sham and Hancock (1999), can be regarded as the limiting case of a near mode-I field. The field consists of a curved fan sector directly ahead of the crack in the angular range, $\theta= \pm$ 39.126° complemented by elastic sectors extending to the crack flanks. Under mixed mode loading, the near mode I ficlds consist of a simple modification to this such that the curved fan rotates, but remains complemented by asymmetric elastic sectors to the crack flanks. As an example a mixed mode field corresponding to a remote ratio, $K_{1} / K_{11}=1$ is shown in Figure 7.34. The field consists of a curved fan, which extends between 53.34° and -69.6°. The slip lines in the fan are asymptotic to the angle, $\phi=-57.17^{\circ}$ while elastic sectors extend to the crack flanks. The corresponding stress field is shown in Figures 7.28a-c.

A critical transitional field arises when the angle of the clastic wedge on the upper crack flank reaches 54.7° and the asymptotic angle $\phi=-70.53^{\circ}$, which corresponds to a plastic mixity, $M_{p}=0.392$. The yield criterion is violated in any postulated elastic sector between the fan and the crack flanks, but the field can be completed by a constant stress sector
extending from 54.7° to the upper flank. The stress within this sector is a simple uniaxial compression parallel to the crack flanks:
$\sigma_{t}=-\sqrt{3} \mathrm{k} \cos ^{2} 0$
$\sigma_{t \mid \theta}=-\sqrt{3} \mathrm{k} \sin ^{2} \theta$
$\sigma_{r \theta}=\frac{\sqrt{3}}{2} \mathrm{k} \sin 2 \theta$
where, $54.7^{\circ} \leq \theta \leq 180^{\circ}$. On the lower flank a constant stress sector emerges in $-125.3^{\circ} \geq \theta$ $\geq-180^{\circ}$ from the fan to the crack flank. The stress within this sector is a simple uniaxial tension parallel to the crack flanks:
$\sigma_{\pi}=\sqrt{3} \mathrm{k} \cos ^{2} \theta$
$\sigma_{\theta \theta}=\sqrt{3} k \sin ^{2} \theta$
$\sigma_{r \theta}=-\frac{\sqrt{3}}{2} \mathrm{k} \sin 2 \theta$

The remote loading condition, $\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=0.5$, gives a plastic mixity quite close to this critical configuration ($\mathrm{M}_{\mathrm{p}}=0.41, \phi=-69.6^{\circ}$), but in the numerical calculations plasticity has just broken through on the upper flank, and is about to break through on the lower flank, where the elastic sector ranges from -122.87° to -180°. The numerically constructed slip line field for this loading is shown in Figure 7.35 and the stress field in Figurcs 7.29a-c.

Calculations were also performed at $\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=0.45$, which is very close to the critical condition ($\mathrm{M}_{\mathrm{p}}=0.38, \phi=-70.53^{\circ}$) at which plasticity completes to both upper and the lower crack flarks. A constant stress sector develops in the angular range $-125.3^{\circ} \geq 0 \geq$ 180°. This sector is subject to uniaxial tension parallel to the crack flanks. On the upper flank a constant stress sector develops between $54.7^{\circ} \leq \theta \leq 180^{\circ}$ and is subject to uniaxial compression parallel to the crack flanks. The slip line field for this loading is shown in Figure 7.36 and the corresponding stress field in Figures 7.30a-c. Although the transitional field can be determined from the local plastic mixity, an analytic mothod to relate the remote elastic and plastic mixitics has not yet been established.

With increase levels of applied shear a fan emerges at $\theta=125.3^{\circ}$ and a constant stress sector at $\theta=-70.53^{\circ}$ which is the asymptotic angle of the fan ahead of the crack. This gives rise to the near mode II fields. Near mode II fields consist of constant stress sectors on the upper and lower crack flanks leading to curved fan sectors and two further constant stress sectors which adjoin a curved fan directly ahead of the crack. Consider the near mode II slip line field shown in Figure 7.37. The method of solution starts by determining the angle ϕ_{1} for the fan directly ahead of the crack using Equations 8.4 and 8.5. The constant stress sector angle, $\theta_{7}=125.3^{\circ}$ and continuity of stresses across this sectur boundary gives the asymptotic fan angle for the fan at $125.3^{10}, o_{2}=70.53^{\circ}$. The field above
the crack plane is fixed by the span of the constant stress sector between θ_{5} and θ_{6}. The angle between the slip lines in a constant stress sector gives the relation:
$\tan \left(\theta_{6}-\theta_{5}\right)=2 \tan \left(\phi_{1}-\phi_{2}\right)$
Equating the mean stresses at θ_{5} and θ_{6} gives the relation:
$\left(\theta_{5}+\theta_{6}\right)=\left(\pi+\phi_{1}+\phi_{2}\right)$
These equations are solved simultaneously to give numerical values of θ_{5} and θ_{6}. A similar procedure gives the sector boundaries θ_{3} and θ_{4} on the lower flank. Numerical calculations have been performed at $K_{\mathrm{J}} / \mathrm{K}_{I 1}=0.25$ and $\mathrm{M}_{\mathrm{p}}=0.23$ for the slip line field shown in Figure 7.37. The sector angles are given in Table 7.5, and the stress field in Figures 7.31a-c. Finally in pure shear, $\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=0$, the slip line field, shown in Figure 7.38 is constructed and is identical to that proposed by Shih (1973). The corresponding stress field is given in Figures 7.32a-c, and the sector angles in Table 7.5.

Chapter 9 Discussion

Perfectly plastic fields for plane strain and plane stress which are dcrived as the limit of the HRR fields (Hutchinson, 1968, Rice \& Rosengren, 1968) as the strain hardening exponent approaches zero necessarily exhibit plasticity at all angles around the crack tip. For mode I plane strain conditions this leads to the Prandtl field whose relevance as the limit of the HRR fields as the strain hardening exponent approaches zero has been recognised by Rice (1982). In this field plasticity fully surrounds the crack tip al all angles giving rise to a unique high constraint crack tip field which is fully characterised by J or the crack tip opening displacement. However this field only occurs when the T-stress is positive (tensile) which occurs in deeply edge-cracked bend bars in tension and bending (Betegón \& Hancock, 1991). At very small applied loads in any configuration the T-stress is close to zero, and an elastic wedge appears on the crack flanks and the stress ahead of the crack decreases by a hydrostatic term which O'Dowd and Shih (1991a, 1991b) have denoted by Q. In configurations such as centrc cracked panels negative (compressive) T-stresses develop. Here the angular span of the elastic wedge on the crack flanks increases further and the mean stress ahead of the crack further decreases. This family of plane strain mode I fields arises in perfect plasticity because plasticity does not fully surround the crack tip, and the loss of crack tip constraint is accompanied by an increase in the anguiar span of the elastic wedge on the crack flanks. The loss of crack tip constraint gives rise to an increase in fracture toughness in cleavage (Betegón \& Hancock, 1991) and an enhanced resistance to ductile tearing (Hancock et al., 1993). The mode I fields ($\mathrm{T}=0, \pm 0.5 \sigma_{0}$), discussed in present work are consistent with the three sector solution presented by Li and Hancock (1999).

Planc strain mixed mode I/II fields have been discussed by Shih (1974), on the assumption that plasticity surrounds the crack tip at all angles. This requires the introduction of a discontinuity in radial stress between trailing sectors. This is permitted by the equilibrium equations, and has been interpreted as the limit of an angular zone with steep radial stress gradients in the mixed mode HRR fields. However, the problem of stress discontinuity can be avoided by allowing the possibility of elastic sector on the crack flank, which allows a fully continuous distribution for all stress components. Li and Hancock (1999) have presented five sector solutions for mixed mode I/ll fields, where sectors from the lower crack flanks can be given as: constant stress sector 1, fan 1, constant stress sector 2, fan 2 and an elastic sector on the upper crack flank. Zhu and Chao (2001) have presented six scctor solutions for mixed mode ficlds as the modification of the five sector solutions, where a constant stress sector has been included between fan 2 and elastic sector on the upper crack flank. According to Zhu and Chao (2001), five sector solution presented by Li and Hancock (1999) for mixed mode loading is the special case of six sector solution and is valid for the field containing an clastic wedge with a span, $\varphi \geq \pi / 4$. Unlike mixed mode fields by Li and Hancock (1999), the fields discussed in present work show an incomplete constant stress sector adjacent to the elastic sector on the upper crack flank, which is consistent with the six sector solution of Zhu and Chao (2001). A comparison of the present numerical solution and the six sector analytical solution for mixed mode, $\mathrm{K}_{1} / \mathrm{K}_{11}=2$ is shown in Figure 9.4. Li and Hancock (1999) mixed mode fields for $\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=2$ are shown in Figures 9.1 and 9.2. For this loading ($\mathrm{K}_{1} / \mathrm{K}_{I I}=2$), a comparison of stress fields from the analytical solution of Li and Hancock (1999) and current numerical solution is shown in Figure 9.3. Both solutions presented for the plastic mixity, $\mathrm{M}_{\mathrm{p}}=0.82$, show identical stresses in the leading sectors and differ only slightly in the trailing sectors. The toughness
predicted by applying local fracture criteria to either field would thus give identical results, and the minor difference in the trailing sectors does not appear to have any significant effect on toughness.

Under mode I loading in plane strain, the effect of T-stress is to change the constraint of the field leading to a family of fields parameterised by constraint. If plasticity breaks through to one crack flank in the corresponding mixed mode fields, the effect of the 'Tstress is to change the local mixity, but not to create a new family of fields. The mixed mode toughness is thus fully characterised by J at any given local crack tip mixity. It may however be noted that the T-stress changes the relationship between the local and remote mixities, so that the remote ratio of tension to shear ($\mathrm{K}_{\mathrm{r}} / \mathrm{K}_{\mathrm{r}}$) does not lead to a unique toughness measured by J. Using the six sector solutions at $\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2$ but differing T-stress, the effect of T-stress is illustrated in Figures 9.5 and 9.6 and 'Table 9.1. These Figures compare the numerical solutions with analytical solutions. The trend is that increasingly tensile T -stresses decrease the span of the constant stress sector between the fan and the elastic sector, and change the plastic mixity. The mixed mode fields can be unified with unconstraint mode I fields into a single constraint-mixity locus. This allows mode I toughness to be extended to mixed mode loading configurations. The effects become significant when assessing structural integrity on shallow cracked components subjected to mixed mode loading.

In plane stress, mode I and near mode I fields have been discussed by Hutchinson (1968), Shih (1973) and Dong and Pan (1990) on the assumption that plasticity surrounds the crack tip at all angles. Statically admissible fields developed on this basis requires a discontinuity in radial stress which is allowed by the equilibrium equations. However in the present work, the problem of a stress discontinuity has been avoided by allowing the possibility of elastic sectors on the crack flanks. Unlike mode I and near mode I fields discussed by Dong and Pan (1990), in the fields (mode 1 and mixed mode $1 / I I$) discussed in present work, the crack line ahead of crack always lies in the curved fan throughout the transition from mode I to mode II. In mode I loading, the maximum hoop stress occurs in the curved fans, when the stress is uniquely defined. As a rcsult, although the T-stress has an effect on the shape of the plastic zone, it has no effect on the asymptotic field, which is uniquely characterised by J. In mode I, the present work recovers the ficld discussed by Sham and Hancock (1999), however in mode II and near mode II, the fields identified by Shih (1973) emerge in which plasticity surrounds the tip at all angles.

Figure 9.1: Asymptotic crack tip field under mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=2$) loading in plane strain (Li \& Hancock, 1999).

Figure 9.2: Li \& Hancock (1999) plane strain mixed mode ($\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=2$) slip line field.

Figure 9.3: Comparison of plane strain mixed mode $\left(\mathrm{K}_{\mathrm{I}} / \mathrm{K}_{\mathrm{II}}=2\right)$ numerical result (data points) with analytical solution (solid lines) of Li \& Hancock (1999).

Figure 9.4: Comparison of plane strain mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\mathrm{II}}=2\right)$ numerical result (data points) with six-sector analytical solution (solid lines), $\mathrm{T}=0$.

Figure 9.5: Comparison of plane strain mixed mode $\left(\mathrm{K}_{\mathrm{l}} / \mathrm{K}_{\text {II }}=2\right)$ numerical result (data points) with six-sector analytical solution (solid lines), $\mathrm{T}=-0.5 \sigma_{0}$.

Figure 9.6: Comparison of plane strain mixed mode $\left(\mathrm{K}_{1} / \mathrm{K}_{\mathrm{II}}=2\right)$ numerical result (data points) with six-sector analytical solution (solid lines), $\mathrm{T}=+0.5 \sigma_{0}$.

Angle (degree)	$T=-0.5 \sigma_{0}$		$T=0$		$T=+0.5 \sigma_{0}$	
	-135	-135	-135	-135	-135	-135
θ_{2}	-92.07	-90	-80.71	-81	-68.96	-67
θ_{3}	-2.07	0	9.29	9	21.04	23
θ_{4}	68.88	75	72.84	74	84.48	90
θ_{5}	113.88	107	92.02	92	98.43	90

Table 9.1: Sector angles of the slip line fields under mixed mode, $\mathrm{K}_{1} / \mathrm{K}_{1} \models 2$ in plane strain.

Chapter 10 Conclusion

Mode I, mode II and mixed mode I/II crack tip fields have been investigated under contained yielding conditions. The asymptotic crack tip fields for an elastic perfectlyplastic material response have been determined analytically, and verified numerically using boundary layer formulations in plane strain and plane stress conditions. The crack tip fields have been represented in terms of slip line fields.

The effects of the non-singular T-stress on the plastic zone at the crack tip as well as on the asymptotic crack tip field have been determined in plane strain. T-stress changes the size and shape of the plastic zone at the crack tip under mode I and mixed modes I/II. Under mode I loading, T-stress changes the constraint of the crack tip field leading to a family of fields, but does not change local mixity. Under mixed mode loading, T-stress changes local mixity without creating a new family of fields. In plane strain mode I, the numerical results are consistent with the analytical solutions of Li and Hancock (1999), while in mixed mode I/II loading, the data are consistent with the extension to the Li and Hancock fields proposed by Zhu and Chao (2001). However, this is a minor difference which only slightly affects the trailing sectors and does not change the form of the leading sectors.

Under mode I loading in plane stress, the effect of T-stress on plastic zone at the crack tip has been determined. Both positive and negative T-stresses change the size and shape of the plastic zone, although they do not have noticeable effects on the crack tip field.

Analytical solutions for plane stress mode I and mixed mode I/II problems have been developed by assembling constant stress, fan and elastic sectors. Analytical solutions show good agreement with the numerical results, and unlike fields presented by Hutchinson (1968), Shib (1973) and Dong and Pan (1990), the fields exhibit full continuity of stresses, and feature incomplete plasticity around the crack tip. In mode I, field discussed by Sham and Hancock (1999) cmerges, and in mode II and near mode U, fields discussed by Shih (1973) develop.

Chapter 11 References

Aoki, S., Kishimoto, K., Yoshida, T. and Sakala, M., (1987), A finite element study of the near crack tip deformation of a ductile material under mixed mode loading, J. Mech. Phys. Solids 35, pp. 431-455.

Brown, W.F. Jr. and Srawley, J.E., (1966), Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, American Socicty for Testing and Materials, Philadelphia, PA.

Betegón, C. and Hancock. J.W., (1991), Two-Parameter Characterisation of Elastic-Plastic Crack-Tip Fields, Joumal of Applied Mechanics, Vol. 58, pp.104-110.

Bhattacharjee, D. and Knott, J.F., (1994), Ductile fracture in HY 100 steel under mixed mode // mode ll loading, Acta metal. mater., Vol. 42, No. 5, pp. 1747-1754.

Bhattacharjee, D. and Knott, J.F., (1993), Micro-mechanisms of fracture in steel tested under mixed-mode loading above the transition temperature, Mixed-Mode Fatigue and Fracture, ESIS 14, Mechanical Engineering Publications, London, pp. 99-109.

Budden, P.J., (1988), The effect of blunting on the strain field at a crack tip under mixed modes 1 and 2, J. Mech. Phys. Solids 36; pp. 503-518.

BS 5447: (1974), Methods of Testing for Plane Strain Fracture Toughness (K_{IC}) of Metallic Materials, British Standards Institution, London.

Du, Z.-Z. and Hancock, J.W.. (1991), The Effect of Non-singular Stresses on Crack-tip Constraint, Journal of the Mechanics and Physics of Solids, Vol. 39, No. 4, pp. 555-567.

Dong, P. and Pan, J., (1990), Asymptotic Crack-Tip Fields for Perfectly Plastic Solids Under Plane-Stress and Mixed-Mode Loading Conditions, Journal of Applied Mechanics, Vol. 57, pp. 635-638.

E 399-83: (1983), Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, American Society for Testing and Materials, Philadelphia.

Erdogan, F. and Sih, G.C., (1963), On the crack extension in plates under plane loading and transverse shear, Joumal of Basic Engineering, Vol. 85, pp. 519-527.

Griffith, A.A., (1920), The Phenomena of Rupture and Flow in Solids, Philosophical Transactions, Series A, Vol. 221, pp. 163-198.

Ghosal, A.K. and Narasimhan, R., (1994), A finite element analysis of mixed-mode fracture initiation by ductile fracture mechanisms, Journal of Mechanics and Physics of Solids, Vol. 42, pp. 953-978.

Ghosal, A.K. and Narasimhan, R., (1996), Numerical simulations of hole growth and ductile fracture initiation under mixed mode loading, International Journal of Fracture, Vol. 77, pp. 281-304.

Gao, H., Wang, Z., Yang, C. and Zhou, A., (1979), An investigation on the britle fracture of $\mathrm{K}_{\mathrm{I}}-\mathrm{K}_{\mathrm{II}}$ composite mode cracks, Acta Met. Sin. 15, pp. 380-391 (in Chinese).

Graves, C., (1992), Effects of Cobalt Content on the Mixed Mode I/III Fracture Toughness of WC-Co Alloys, M.S. thesis, Washington State University.

Hibbitt, Karlsson \& Sorensen, Inc., (1998), ABAQUS version 5.8, ABAQUS manual.
Hill, R., (1950), The Mathematical Theory of Plasticity, Oxford University Press, London.
Hill, R., (1952), On discontinuous plastic stales with special reference to localised necking in thin sheets, J. Mech. Phys. Solids, 1, 19.

Hodge, P.G. Jnr., (1951), Yield conditions in plane plastic stress, J. Math. Phys., 29, 38.
Hutchinson, J.W., (1968), Singular behaviour at the end of a tensile crack in a hardening material, Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 13-31.

Hutchinson, J.W., (1968), Plastic stress and strain fields at a crack tip, J. Mech. Phys. Solids, Vol. 16, pp. 337-347.

Hencky, H., (1923), Ueber einige statisch bestimmte Faelle des Glcichgewichts in plastischen Koerpern Z. angew. Math Mech., 3, pp. 245-251.

Hussain, M.A., Pu, S.L. and Underwood, J., (1974), ASTM STP 560, p.2, Am. Soc. Test. Mater., Philadelphia, Pa, Cited by Bhattacharjee \& Knott (1994).

Hancock, J.W., Reuter, W.A. and Parks, D.M., (1993), Toughness and Constraint Parameterised by T, Constraint Effects in Fracture ASTM STP 1171, pp. 121-140, Philadelphia, PA: American Society for Testing and Materials.

Inglis, C.E., (1913), Stresses in a Plate Due to the Presence of Cracks and Sharp Corners, Transactions of the Institute of the Naval Architects, Vol. 55, pp. 219-241.

Irwin, G.R., (1948), "Fracture Dynamics", Fracturing of Metals, American Society for Metals, Cleveland, pp. 147-166.

Irwin, G.R. and Kies, J.A., (1954), Critical energy rate analysis of fracture strength, Weld. J. Res. Suppl. 33, pp. 193-198.

Kamat, S.V. and Hirth, J.P., (1995), Mixed Mode I/II Fracture Toughness of 2034 Aluminium Alloys, Accepted for publication in Acta Metallurgica et Materialia.

Kamat, S.V. and Hirth, J.P., (1995), Mixed mode fracture toughness of engineering materials, Journal of Engineering Materials and Technology, Vol. 117, pp. 391-394.

Li, J. and Hancock, J.W., (1999), Mode I and mixed mode fields with incomplete crack tip plasticity, Intemational Journal of Solids and Structures. Vol. 36, pp. 711-725.

Li, F.Z., Shih, C.F. and Needleman, A., (1985), A comparison of methods for calculating energy-release rates, Engineering Fracture Mechanics, Vol. 21, pp. 405-421.

Mises, R., (1913), Göttinger Nachrichten Math. Phys. Klasse p. 582, Cited by Karstensen (1996).

Maccagno, T.M. and Knott, J.F., (1989), The fracture behaviour of PMMA in mixed modes I and II, Engng Fracture Mech., Vol. 34, pp. 65-86.

Maccagno, T.M. and Knott, J.F., (1991), The low temperature brittle fracture behaviour of steel in mixed modes I and II, Engng Fracturc Mech., Vol. 38, No. 2/3, pp. 111-128.

Manoharan, M., Hirth, J.P. and Rosenfield, A.R., (1989), Combined Mode I-Mode III Fracture of a High Carbon Steel, Scripta Metallurgica, Vol. 29, pp. 763-766.

Manoharan, M., Raghavachary, S., Hirth, J.P. and Rosenfield, A.R., (1989), Fracture Surface Orientation under Mixed Mode Loading, ASME Journal of Engineering Materials and Technology, Vol. 111, pp. 440-442.

Orowan, E., (1948), Fracture and Strength of Solids, Reports on Progress in Physics, Vol. XII, p. 185.

O'Dowd, N.P. and Shih, C.F., (1991a), Family of Crack Tip Fields Characterised by a Triaxiality Paramcter: Part I - Structure of Fields, Joumal of the Mechanics and Physics of Solids, Vol. 39, pp. 939-963.

O'Dowd, N.P. and Shih, C.F., (1991b), Family of Crack Tip Fields Characterised by a Triaxiality Parameter: Part II - Fracture Applications, Journal of the Mechanics and Physics of Solids, Vol. 39, pp. 989-1015.

Parks, D.M., (1974), A Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors, International Journal of Fracture, Vol. 10, pp. 487-502.

Rice, J.R. and Rosengren, G.F., (1968), Plane strain deformation near a crack tip in a power law hardening material, Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 1-12.

Rice, J.R., (1968), A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mectanics, Vol. 35, pp. 379386.

Rice, J.R. and Tracey, D.M., (1973). In Numerical and Computational Methods in Structural Mechanics, edited by S. J. Fenves et al., Academic Press, New York.

Rice, J. R., (1974), Limitations to the Small Scale Yielding Approximation for Crack Tip Plasticity, Journal of the Mechanics and Physics of Solids, Vol. 22, pp.17-26.

Rice, J.R., (1982), Elastic-plastic Crack Growth In: Hopkins H.G. and Sewell M.J. eds., Mechanics of Solids, the Rodney Hill Anniversary Volume, 539-562.

Saka, M., Tanaka, S. and Abe, H., (1986), Computl Mech. 1, V 175, Cited by Bhatlacharjec \& Knott (1994).

Sham, T.L., Li, J. and Hancock, J.W., (1999), A family of plane strain crack tip stress fields for interface cracks in strength-mismatched elastic-perfectly plastic solids, Journal of the Mechanics and Physics of Solids, Vol. 47, pp. 1963-2010.

Sham, T.L. and Hancock, J.W., (1999), Mode I crack tip fields with incomplete crack tip plasticity in plane stress, J. Mech. Phys. Solids, 47, pp. 2011-2027.

Shih, C.F., (1973), Elastic-Plastic Analysis of Combined Mode Crack Problems, Ph.D. thesis, Harvard University, Cambridge, Mass.

Shih, C.F., (1974), Small-Scale Yielding Analysis of Mixed Mode Plane-Strain Crack Problems, Fracture Analysis, ASTM STP 560, American Socicty for Testing and Materials, pp. 187-210.

Tresca, H., (1864), Comptes Rendus Acad. Sci, Paris 59, 754, Cited by Karstensen (1996).
Timoshenko, S. P. and Goodier, J. N., (1970), Theory of Elasticity, $3^{\text {rd }}$ Edition, McGrawHill Book Company.

Tohgo, K., Otsuka, A. and Gao, H.W., (1988), Proceedings of Far East Fracture Group Workshop (Edited by M. Sakata), Tokyo Institute of Technology, Japan, pp. 101-108.

Wcstergaard, H.M., (1939), Bearing Pressures and Cracks, Journal of Applied Mechanics, Vol. 6, pp. 49-53.

Williams, M. L., (1957), On the Stress Distribution at the Base of a Stationary Crack, Journal of Applied Mechanics, Vol. 24, pp. 109-114.

Yokobori, T., Yokobori Jr, A.T., Sato, K. and Omotani, M., (1983), The effects of ferrite grain size on fracturc of low carbon steel under mixed modes I and II, Engng Fracture Mech., Vol. 17, pp. 75-85.

Zywicz, Z. and Parks, D.M., (1989), Elastic yield zone around an interfacial crack tip, Journal of Applied Mechanics, Vol. 56, pp. 577-584.

Zywicz, Z. and Parks, D.M., (1992), Small-scale yielding interfacial crack-tip fields, Journal of the Mechanics and Physics of Solids, Vol. 40, No. 3, pp. 511-536.

Zhu, X.K. and Chao, Y.J., (2001), Constraint effects on crack-tip fields in clastic-perfectly plastic materials, Journal of the Mechanics and Physics of Solids, Vol. 49, pp. 363-399.

Appendix I

The computer programs fullfan3.go and fullfanodd3.go are used in conjunction with the ABAQUS post processor ABAQUS Post (Hibbitt, Karlsson and Sorensen, 1998) to write radial distances and Cartesian stresses at 7.5° intervals surrounding the crack tip. The data are written in a file named abaqus.rpt.

The program fullfan 3.go

```
delote curves, name=all names
detail, elset = sl
path, absolute, distance, namemsldl80, rodelist, undeت̈ormed=on, var=si.1,
D1.80
print c
slld180
path, absolute, distance, name=slldl65, nodelist,undeformed=on, var-s:1,
D165
print C
s11d155
path, absolute, distance, name=s51d150, nodelist, undeformed=on, var=s11,
D150
print c
slldi50
path, absolute, distance, name=s1Idl35, nodelist, uncieformed=on, var=sl1,
d135
print C
s11d135
path, absolute, distance, mame=s11d120, nodelist, undeformed=on, var=si1,
D120
```

prent o
s11d120
path, absolute, distance, name=s11d105, nodelisi, undetormed=on, var=stl,
D105
print c
s 11 c105
path, absolute, distante, name=s11d90, nodelist, undeformed-on, var=s 11,
D90
print c
s11090
path, absolute, distance, namo=s11d75, nodelist, undeformed=on, var=s11
075

```
print c
5.l.6775
path, absolute,distance, name=s11d60,nodeljst, undetormed=on,var=s.11,
D60
print c
s11d60
path,absolute,distance, name=sl1d45,mocelist,uncleformed-on,var=s11
D45
print c
s.11d<5
path,absolute, distarce, name=sild30, nodelist, undeformed=on,var=m11
D30
print c
s11d30
path,absolute, distance,name-s11d15,nodelist,undeiormed=on,vez=s11
D15
print c
sildi5
detail, elset = upper
path,absolite, distance, name=s11d00u, nodelist, undeformed=on,var=sl1,
D00
print c
sl1d00u
detai.i, elset = bottom
path, absolute, distamce, name=s11d0Cb, nodelist, undeformed=on,var=s11,
D00
print c
sl1d00b
detail, elset: - sl
path,absolute,distance,name=sl1d345,nodelist,undeformed=on,var=s11,
D345
print c
s11d345
pa=h, absolute, distance, name-s11d330, nodelist, undeformed=on, vat=s1i,
330
print c
s11d330
path,absolute, distance, name=s114315, modelist, undeformed=on, var-sl1.
d315
print c
```

```
s11c315
```

path, absolute, distance, rame=sil 1. 300 , nodelist, undeformed=on, var-sll, D300

```
prin= c
```

s11d300
path, absolute, distance, name-s1; d285, nodelist, uncieformed=on, var=s11,
D285
print c
s11d285
path, absolute, distance, mame=sl1d270, nodelist, mindeformed=on, var=s1へ, D270

```
print c
```

s11d270
patin, absolute, distance, ziame=s11d255, nodelist, indeformed=on, var=si1
D2.53
print c
s11d255
path, absolute, distance, name=s112240, nodelist, undeformed=on, var=si1,
D240
print c
s11d240
path, absolute, distance, name=slld225, nodelist, undeformed=on, vax=sll
D225
print C
s11.d2.25
path, absolute, distance, mane=s11d210, nodelist, undeformed=on, var=sl1
D210
print c
s11d210
path, absolute, distance, name-s11d195, nodelist, undeformed=on, var=sll
D195
print c
s11d195
path, absolute, distance, name=sllal81, nodejist, undeforméa=on, var-s11
D1.81
prirt c
s11d181
display,all curves
pati, absclute, distance, mane"s22d180, rodelist, undeFormeci=on, var=s22,
D180

```
prirt c
s22d180
path,absolute, distance, name=s22d165, nodelist, lundeformed=on,var=s22,
D165
print c
s22d165
patin,absolute, distance, name-s22cil50, node1ist, undeformed=on,var=s22,
D150
print c
s22d150
path,absolute, distance, name=s22d135, nodelist,undeformed=on,var-s22,
dl35
print c
s22d135
path, absolute, distance, rame=s22d120,rodelist, undeformed=on, var=s22,
D120
print c
s22d120
path,absolute, distance, name=s22d105,nodeiist,undeformed=or,var=s22,
D105
print c
s22d105
path,absolute,distance, name=s22d90, nodelist,undeformec}=on,var=s22
DO
print c
s22đ90
path,absolute,disliance, name=s22d75,nodelist,undeformed-on,var=s22
D75
print e
s22d75
path, absolute, distance, name=s22d60, nodelist, undeformed=on, var=s22,
D60
print c
s22d60
path,absolute,discance,namo=s22d45,nodclist, undeformed=on,var=s22
D45
print e
s22d4s
path,absolute,cistance,name-s22d30,nodelist, undeformed=on, var=s22
330
print o
```

```
s22d30
path,absolute, distance, name=s22d15, nodelist, undeEormed=on, var=s22
D15
print c
s22dlb
detail, elset = upper
path, absolute, distance, name-m22d00u,nodelist, undeformed=on,var=s22,
D00
print c
E22000u
detail, elset = bottom
path,absolute,distance, name=s22d00b, nodelist, mmdeformed=on, var=s22,
DOO
print c
s22d00b
detail, elset = s1
pa=h,absolute,distance, name=s22d345,nodeljst, undeformed.non,var=s22,
D345
print c
s22d345
path,absolute,distance, name=s22d330,nodelist,undeformed=on,var=s22,
D330
print c
s220330
path,absolute,distance, naue=s22d315,modelist,undeformed=on,var=s22,
d3:5
print c
s22d3.15
path,absolute,cistance, rame=s22d300, nodelist,undeformed=on,var-s22,
D300
print c
s22d300
path, absolute, distance, name-s22d285, nodelist,:mofeformec=on, var=s22,
D285
print c
s22d285
pat.k,aknol.ute, distamce, name=s2206270, nodelist,undeformed=on,var=s22,
D270
print c
s2.2d`.70
```

path, absolute, distance, name=s22d255, nodelist, undeformed=on, var=s22 D255
print c
s22d255
path, absolute, distance, neme=s22d240, nodelist, underozmedion, var=s22, D240
print c
s22d240
path, absolute, distance, name=s22d225, nodelist, undeformed=cn, var=s22 D225
print c
s22d225
path, absolute, distance, name=s22d210, nodelist, undeformed=on, var:=s22 D210
prinl e
s22d210
path, absolute, distance, name=s22d195, nodelist, undeformed=on, var-s22 D195
prirt c
s22d195
path, absoiute, distance, name=s22d181, nodelist, undeformed =on, var=s22 D181
print c
s22d181.
display, ail curve
path, absolute, distarnce, name=s12d180, node1ist, unceformed=on, var=s12, D180
print c
s12d180
path, absolute, distance, neme=s12d165, nodelist, undeformed-on, var=si2. D155
print c
s.12d165
path, absolutc, distance, name=s12d.150, nodelist, undeformed=on, var=s12, D. 150
print c
s.2d150
path, absolute, distance, name=s12d135, nodelist, undeformed=or, var=si2, d135
painit e
s12d135
path, absolute, distance, rame=s12d120, nodelist, mndeformed=on, var=s12, D120
print c
s12d120
path, absolute, distiance, name=s12d105, nodelist, undeformed=on, var=s12, D10.5
print c
s12d105
path, absolute, distance, rame $=s 12 d 90$, nodelist, uncieformed=on, var=s12, D90
print c
s. 3.290
path, absolute, distance, nane=s12d75, nodelist, undeformed=on, var=s12 D75
print c
s.2d75
path, absolute, distance, name=s12d60, nodelist, undcformed=on, vam=s12, D60
print c
512 d 60
path, absoiute, distance, name $=s 12 d 45$, nodelist, unteformed=on, var $=s 12$ D45
primec
s12d45
path, absolute, distance, name=s12d30, nodelist, undeformen=on, var~s12 D30
print c
s12d30
path, absolate, distance, name=s12dl5, nocelist, undetormed=on, var=s12 D15
print c
s12d15
detail, elsez = upper
pati, absolute, disuance, name=s12d00u, nodelist, mdeformed=on, var=s12, D00
print c
si2coou
dewain, elsel - pottom
path, absolute, cistance, name=s_2d00b, nodelist, Lindeformed-on, var=s12. DCO

```
print e
s12d00b
detail, elset = sl
```

path, absoiute, distance, namo $=s 12 d 345$, nodelist, uncetormed=on, var=sl2,
D345
print c
s. 2 d 345
path, absolute, distance, name=s12d330, nodelist, undeformed=on, var: sis 2,
D330
print c
s12d330
path, absolute, distarce, name=sl2d31.5, nodelis=, unde[ormeci-on, var=s12,
d315
print c
s12d315
path, abonute, distance, name=s12d300, rodelist, undeformed=on, var=s12,
D300
print c
s12d300
path, absonute, distance, name-- 12 d 285 , nodelist, undeformed=on, var $=512$,
D285
print c
si2d285
path, absolute, distance, name=s12d270, nodelist, undeformed=on, var=s12,
D270
print c
s12d270
path, absolute, distance, name $=s 12 d 255$, nodelist, undefornied=on, varmsl2
D255
print c
s12d255
path, absolate, cistance, nare $=s 12 d 240$, node1isL, undeformed=on, var=s12,
D240
print. C
s12d240
path, absolute, distance, name=s12d225, nodelist, undeformed=on, var=s12
D225
print t
s120225
path, absolute, distance, name=s12d2lC, nodelist, undeformed=or, var*si2
D210

```
print c
s12d210
path,absolute,distance,name=s12d195, nodelist,undeformed-on, var=s12
D195
print c
s12d195
path, absolute, distance, name=s12d181, nodelist, undetormed=on, var=s12 D181.
print c
s12d181
display,all curve
detail, elset = si
path,absolute, distance, name=misd180, modelist,undeformed=on, var=mises,
D180
print e
misd180
path, absolute, distance, namemisd165, nodelist, undeformed:on,var=mises,
D165
print c
miscl165
path,absolute,distance, name=misd150,nodelist,undeformed=on,var=mises,
D150
print c
misdd50
path,absolute, distarce, namemisd135, nodelist, undeformed=on,var=mises,
d135
print= c
misd135
path, absolute,distance, name=misdl20, nodelist, undeformed=or,var=mises,
D120
print c
miscl1?0
path, mbsolute, cistance, name=msdl05, nodelist, undeformed=or, var=mises,
D105
print c
misd105
pat'n, absolute,distance, ramemisd90, nodel ist, undeformed=on, var=mises,
D90
print s
misd90
```

path, asolute, distance, mame=misd75, nodelist, undeformed=on, var-mises D75
print c
misd75
path, absolutc, distance, name=misd60, nodelist, undeformed=on, var-miscs, D60
print c misd60
path, absolute, distance, name=misd45, nodelist, undeformed=on, var=mises D45
print c
misd45
path, absolute, djstance, name=nisd30, nodelist, undeformed=on, var=mises D30
print c
misa30
path, absolute, distance, name=misdi5, nodelist, undeformed=on, var=mises D15
print c
misdif
detail, elset = upper
path, absolute, distance, name=misdouu, nodelist, undeformed-on, var=mises, D00
print c
misdoon
ketail, elset = bottom
path, absolute, distance, name=misa00b, rodelist, undeformed=on, var=mises, D00
print c
misdi00b
detail, e1.set $=$ s1
path, absolute, distamee, namo=misd345, nodenist, undeformed=on, var=mises, D345
print c
misd345
path, absónte, distance, mame=misd330, nodelist, undeformed=on, var=mises, D330
pris.t c
misd330
path, absolute, distarce, name-misd315, nodelist, undeformed=or, var=mises,
$d 315$
print c
misd315
path, absoluze, distance, namemisd300, nodelist, undeformed=on, var=mises, D300
printe e
misd300
path, absolute, distance, name=misd285, nodelist, undeformed=on, var=mises, D285
print e
misd285
path, absolute, distance, name=misd270, nodelist, undeformed=on, var=mises, D270
print c
misd270
pata, abso-ute, distance, ramemisd255, node"ist, undeformed=on, var=mises D255
print e
misd255
path, absolute, distance, name=misd240, nodelist, undefarmed=on, var=mises, D240
print c
misd240
patn, absojute, distance, name=misd225, nodelist, unceformed=on, var=mises D225
print c
misd225
path, absolute, distance, name=misd210, nodelist, undoformed=on, var=mises D210
print 0
misd210
path, absolute, distance, name-misd195, nodelist, undeformed=on, var=mises D1. 95
print c
misdig5
path, absolute, distance, name $-m^{2}$ sdi8i, nocielist, undeformed=on, varmises D181.
print c
misdl81
display, all curves

```
dclotc curves, name=all names
detail, e1set = s1
path, absolute,distance, name=presd180, nodelist, undetormed=or, var=press,
D180
```

print c
presd180
path, absolute, distance, name-presdi65, nodelist, undeformed=on, var=press,
D165
print c
presd165
path, absolute, distance, mame-presdl50, nodelist, umcieformed=on, var=press,
0150
print c
presd150
path, absolute, distance, name=prosdi 35 , nodel ist, indeformed=on, var=oress,
d135
print e
presdl35
path, absolute, distance, name=prosdi20, nodelist, undeformed=or, var=press,
D120
print c
presd120
pati, absolnte, distance, name=prescio5, nodelist, undeformed=on, var=press,
D105
print c
presd105
path, absolute, cistance, name=presd90, nodelist, undeformed=on, var=press,
D90
print c
presd90
path, absolute, distance, mame=presd75, nodelist, unceformed=on, var-press
275
print c
presd75
path, absolute, distance, mamespest60, rodelist, undeformed=on, var=prest,
D60
print c
presci60
jath, absolute, distance, name=presd45, rindelist, urdeformed=on, var=press
D45

```
print c
```

presd45
path, absolute, djstance, mame-presd30, rodelist, uncieformed=on, var=press D30
wrint C
presd30
path, absolute, distance, name=presdi5, nodelist, indeformed=on, var=press D15
princ c
presdis
detaj1, elset = uppex
path, absolute, distance, name=presdoou, nodelist, undeformed=on, var $\simeq p r e s s$, D00
print c
presco0u
detail, elset - bottom
path, absolute, distance, name-presdoob, nodelist, undeformed=on, var-press, DOO
print c
presctoob
detail, e?set $=s 1$
path, absolute, diutance, name:vresd345, nudelist, undeformed=on, var=press, D345
print c
presd345
path, absolute, distance, mame=presd330, modelist, undeformed=on, var=press. D330
print c
presd330
path, abso? ute, distance, name=presc315, nodelist, undeformed=on, var=press, 13:5
print c
presd315
path, absolute, distance, namempest 300 , nodelist, undeformed=on, varmpress, D300
print c
presci300
path, absclute, distance, namepresd $285, n o d e l i s t$, undeformed-on, var=press, D285
print c
presd285
path, absolute, distance, name-prescd270, fodel ist, undcformed=on, var=prcss, D270
print c
presd2.70
path, absolute, distänce, name=wresdibs, nodelist, undeformed=on, var=press D255
print c
presd255
path, absolute, distance, name presdato, modelist, undeformed=on, var=press, D240
print c
presd240
path, absolute, distance, name=prest225, nerdel ist, undeformed=on, var=press D225
print c
presd225
path, absolute, distance, name=presd210, nodelist, undeformed-on, vaz=press D210
print c
presd210
path, absolute, Gistance, name-presd195, nodelist, undeformed-on, var=press D195
print C
presd195
path, absolute, distance, name=presd181, nodelist, undeformed-on, var=press D181.
print c
prescill
display, all curves
The program fulffanodd3.go
NSET, NSET=DOOK, GENERAIE
1,481,20
NSET, NSE: $=\mathrm{D} 8$, GENERATE 2.482 .20

NSRT, NSFP - D23, GENERATE
$4,484,20$

NSET, NGET = D38, GENERATE
6.486. 20

NSIET, NSFR = D53, GENERATE

```
8,488,20
NSEI', NSLE'1 = 168, GENERATE
10,490.20
NSET, NSET :- D83, GENERATE
12,492,20
NSE"I, NSE'' = D98, GLNERATE
494,926.18
NSET, NSET = D_13, GENERATE
496.928.18
NSFT, NSET - D\28, GNNERAGE
498,930,18
NSET, NSET = D143, GENERAGE
500,932,18
NGET, NSET = D158, GENERASE
502,931,18
NSET, NSET = D173, GENERASE
504,936,18
NSET, NSET = D188, GENERATE
938,1370,18
NSET, NSET = D203, GENERATE
940,1372,18
NSET, NSET = D218, GENERATE
942,1374,18
NSET, NSET = D233, GENERATE
944.1376.18
NSER, NSET = D24B, GENERATE
946,1378,18
NSEF, NSET = D263, GENERATE
948,1380,18
NSET, NSET = D2.78, GENFRATE,
1382,1766,16
NSET, NSET = D293, GENERATE
1384,1768,16
NSET, NSEN = D3OB, GENERATE
1386,1770,16
NSFT, NSET = D323, GENERATE
1388,1772.16
NSET, NSET = D338, GENERATE
1390,5774,16
NSEM, N゙SET = D353, GENERATE
1392,1776,\6
```

```
delete curves, name=ell names
detail, elset = sl
path, absolutc,distance, name=s11d173, nodelist, undeEormed=on,var=s11,
D.17.3
```

print e
s11d173
path, absolute, distance, name=s11d158, nodelist, undeformed=on, var=s11, D158
print c
sl1d158
path, absolute, distance, name=s1¿d143, nodel之st, unceformed=on, var=s11, D143
print c
s11d143
path, absolute, distancc, name=s1_d128, nodelist, undeformod=on, var=s11, D128
print c
s11d128
path, absolute, distance, name-s11d113, nodelist, undeformed=on, var=s11, 2.1. 1.3
print. e
s.1.d.113
path, absolute, distance, name $=s 11 d 98$, nodelist, urdeformed=on, vax=s11, D98
prin= c
slld98
path, absolute, distance, name=slld83, nodelist, undeformeceon, var=sll, D83
print c
s11d83
path, absoiute, distance, name=s11d68, nodelist, undeformed=on, var-sil D68
print c
s11d68
path, absolute, distance, name=s 11d53, nodelist, urdeformeci=on, var=sil, D53
print c
s11053
path, absolute, cistance, name=s11d38, nodelist, undeformed-on, var-s 11 238
print c

```
s11d38
path, absolute,distance,name=sl1dz3,nodel ist.,urdeformec=on, var=s11
D23
print c
s11d23
path,absolute,distance, name=s11d8, nodelist,undeformed=on, var=s11
D8
print c
sl1d8
detaiב, elset = upper
path،absolute,distance,mame=slldoou,nodelist, undeformed=on,var=sl1,
D00K
print c
s11d00u
detajl, elset = bottom
path, absolute,distance, name-slldo0b,nodelist,undeformed=on,var=sl1,
DOOK
print o
sw1d00b
detail, elset = si
path،absolute,distance, name=sl1d353, nodelist,undeformed=on,var=s11,
D353
print c
s11d353
path,absolute,distance, rame=s11d338, nodelist,undeformed=on,var=s11,
D338
print c
s12d338
path,absolute,distance, name-slld323,nodelist,undeformed=on,var=s11,
D323
print c
slld323
path, absolute, distance, name=s11d30g, nodeljst, undeformed-on, var-m11,
308
primu.0
s11d308
path,absolite, distance, name=s11d293, nodelist,undeformed=on, var=s11,
D293
print c
sl1d293
```

path, absolute, distance, name=s11d278, nodelist, undeformed=or, var=sil, D278

```
print c
s11d278
```

path, absolute, distance, natne-s11d263, nocielist, undeformed-on, var-sll D263
print c
s11d263
path, ansolute, distance, reme=s11d248, nocelist, undeformed=on, var=s11, D248
print c
sild248
path, absolute, distance, name=sild233, nodelist, unceformed-on, var=sl1 D233
print c
s11.d233
path, absoluto, distance, name=s11d218, nodelist, undeformed=on, var=s11 D21. 8
print c
s11d218
path, absolute, distance, name=s11d203, modelist, undeformed=on, var=s11 D203
print:
9119203
path, absolute, disaance, name=s1こd188, nodelist, undeformed=on, var=s11 D188
prirt c
s11d188
display, all curves
path, absolute, distance, name=s22d173, nodelist, undeformec=on, var=s22, D173
print c
s22d173
peth, absolute, distance, name=s22d158, noce1ist, unde[omed=on, var=s22, D158
print C
s22.1158
patin, absollite, distance, name=s22d143, noäeist, undeformed=on, var=s22, D143
print c
s22d143
pati, absclute, distance, rame=s22d128, nodelist, undeformed-on, var-s22, d128

```
print c
```

s22d128
path, absolute, distance, name=s22d113, rodelist, undeformed=on, var=s22, D113
print c
s22d113
path, absolute, distance, name-s22d98, nodelist., indeformed=on, var=s22, D98
print e
s22d98
path, aissolutc, distance, name=s22d83, nodelist, undeformed=on, var=s22, D83
print c
s22d83
patin, absolute, distance, name=s22d68, nodelist, undeformed=on, var-s'22 D68
print c
s22d68
path, absolute, distance, name-s22d53, nodelist, undeformed=on, var=s22, D53
prinic c
s22d53
path, absolute, distance, name=s22d38, nodelist, undeformed=on, var=s22 D38
print c
s22038
path, absolute, distance, name=s22d23, nodelist, undeformed=on, var=s 22 D23
print c
s22d23
path, absolute, distance, name=s22dB, nodelist, undeformed=on, var=s22 D8
print c
s22d8
detail, elset $=$ upper
patin, absolute, distamce, mame=s 22000 , wodelist, undeformeci=on, var-s22, D00K
print c
s22d00u
detail, elsel $=$ bottom
path, absolute, distance, name-s22d00b, rodelist, unceformed=on, var=s22, DOOK
print c
s22d00b
detail, elset $=$ sl
path, absolute, djstance, name-s22.4353, nodelist, undeformed=on, var=s22, D353
print e
s22d353
path, absolute, distance, name=s22d338, nodolist, undeformed=on, var=s22, D338
print c
s22d338
path, absolute, distarce, name=s22d323, nodelist, undeformed-on, var $=s 22$, d323
print c
s22d323
path, absolute, distance, name=s22d230, nodelist, unceformed=on, var=s22, D308
print c
s22d230
path, absolute, distance, name $=s 22 \mathrm{~d} 293$, nodelist, undef̈ormec̈=on, var=s22, D293
print c
s22d293
path, abso-ute, distance, name=s22d278, nodelist, undeformeć=on, var=s22, D278
print e
s22d278
pazh, absoiute, distance, name=s22d263, nodelist, undeformed=on, var=s22 D263
print c
s22d263
path, absolute, distance, name=s22d248, nodelist, undeformed=on, var=s22, 1248
print c
s22d2〔8
path, absolute, distance, name $=$ s22d233, nocelist, undeformed=on, var-s22 D233

```
priat c
s22d233
path,absolute, distance, name=s22d2:.8, mode7.jst, undeformen=orn,var=s22
D218
print c
s22.1218
path, abso_ute, distance, name=s22d203, nodelist, undeformed=on, var=s22
D203
print c
s22d203
path,absolute,distance,name=s22d188,nodelist,undeformed=on,var=s22
D188
print c
s22d188
display,all curve
path,absolute, distance, name-s12&173, nodelis5, undeformed=on,var=s12,
D173
print c
s12d173
path,absolute, distance, name=s12d158, nodelist, undeformed=on,var=s12,
D158
print c
sl2d158
path,absolute,distance, mame=sl.2di 43, nodelist, undeformed=on,var=s12,
D14.3
print o
s12d143
path, absolute, distance, name-s12d"28, nodelist,undeformed=on,var=s.12,
d1.28
print c
s12d128
path, absolute, distance, mame=s12di13, nodelist,undeformed=on,var=s12,
D=13
print c:
s_2d113
path,absolute, distance, name=s12d98, nodelist,undeformed=on,var=s12,
D98
print c
s12c98
path, absolute, distance, name=s12d83, nodelis=, undeformed=on, var=s12,
D83
```

print c
s12d83
path, absolute, distarce, name=s12c68, nodelist, undeformed=on, var=s12 D68
print c
s12d68
path, absolute, distance, name=s12d53, nocielist, undeformed=on, var=s12, D53
print c
s12d53
path, absolute, distance, name $=s 12 d 38$, nodelist, undeformed=on, var=s12 D38
print e
s12d38
path, absolute, distance, name=s12d23, nodelist, undeformed=on, var=s12 D23
print 0
s12d23
path, absolute, distance, name=s12d8, nodelist, undeformed=on, var=si2 D8
print c
s12d8
detail, elset = upper
path, absolute, distarce, neme=s12d00u, nodelist, undeformed=on, var=si2, DOOK
print c
s12d00u
detail, elset $=$ bottom
path, absolute, distance, name=s12d00b, nodelist, undeformed=on, var=si2, D00K
print c
s12d00b
detail, elset = sl
path, absolute, distance, name=s12d353, nodelist, uncle forned=on, var=s12, D353
print c
s12d353
path, absolute, distance, name=si2d338, nodelist, thdeformed=on, var=s 12 , L338
print c
$s 2 d 338$
path, absolute, distance, name=sl2d323, nodelist, undeformed=on, var=s12, d323
print c
s12d323
path, absolute, distance, name=s12d230, nodelist, indeformedmon, var=si2, D308
print c
s12d230
path, absolute, distance, rame=s12d293, nodelist, unceformed=cn, var=s12, D293
print c
s12d293
path, absolute, distarnce, rame=s12d278, nocelist, undeformed=on, var=sl2, D278
print c
s12d278
path, absolute, distance, name $=$ s 12 d263, nodelist, undeformed=on, var=s 12 D263
print c
s12d263
path, absolute, distance, name=s12d248, nodelist, undetormed=on, var=s12, D248
print e
sl2d248
path, absöute, distance, name=s12d233, nodelist, undetormed=on, var=s12 D233
print c
s.12.a233
path, absolute, distance, name-s12d218, nodelist, undeformed=on, var=s12 D218
print c
s12d218
path, absolute, distance, name=s12d203, nodelist, undeformed=or, var=s12 D203
print c
s126203
path, absolute, distance, riame-s12d188, nodelist, unde $=0=m e d=o r$, var=sl2 D1.88
print c
s12d188

```
display,all curve
del:ail, elset = sl
path, absolutc, distance, name=misd1.73, nodelist, undeformed=on, var-mises,
dl73
print c
m!sd173
path,absolute,distance, name=misd158,nodelist, undeEormeci=on,var=mises,
d158
print c
misdlb&
path,absolute, distance, name=misd143, nodelist, undefosmed-on, var=mises,
d143
```

print c
misd143
Dath, absolute, distance, name=misd128, nodelist, undeformed=on, var=mises,
d128
print c
misd" 28
path, absolute, distance, namemisdil3, nodelise, undeformed=on, var-mises,
d113
print c
misdl13
pa二h, absolute, dis¿ance, name=misd98, nodelist, undeformed=on, var=mjses,
d98
print c
misd98
pach, absoiute, distance, name=misd83, nodelist, undeformeci=on, var=mises,
d83
print c
misd83
path, absolute, distanco, name-misdG8, nocelist, undeformed=on, var=mises
d68
print o
misd68
path, absolute, distance, name=misd53, nodelist, undeformed=on, var=mises,
d53
print c
misd53
path, absolute, distance, namemisci38, nodelist, urdeformed=on, vaz=mises
d38
print c
misd38
path, absolute, distance, namemiso23, nodelist, undeformed=on, var=mises d23
print c
misd23
path, absolute, distance, namemincig, nodelis̃,urdefoxmed=on, var=mises c8
print c
misd8
detail, elset = upper
pach, absolute, distance, name=miscoou, nodelist, undeformed=on, var=mises, DOOK
print c
misdo0u
detail, elset - bottom
path, absolute, distance, rame=misdoob, nodelist, undeformed=on, var=mises, D00K
print c
misd00b
detail, elset $=s 1$
path, absolute, distarce, name=misd353, nodelist, undeEormed=on, varmises, d353
print: 0
misd353
path, absolute, distance, name=unisd338, nodelist, undeformed=on, var=mises, 1.3.38
print e
misd338
path, absolute, distance, name=misd323, nodelist, undeformed=on, var=mises, d323
print c
misd323
path, absolute, distance, name=misd308, rodelist, undeformed=on, var=méses, d308
print c
misa308
path, absoluze, distance, name $=$ mis 293, rodeiist, undeformed=on, var=m: ses, d29.3
print c
mis293
path, absolute, distance, name=misd278, nodelist, undoformed=on, varmises, d278
print c
misd278
path, absolute, distance, rame $-m i s d 263$, nodelist, undeformed=on, var=mises d2. 63
prinz c
misd263
path, absolute, distance, name-misd218, nodelist, undeformed=nn, var=mises, d248
print c
misd24B
path, absolute, distance, name=mins sa3, rode-ist, undeformed=on, var=mises d233
print c
misd233
path, absolute, distance, rame=misd218, nocielist., imdeformed=on, var=mises d218
print c
misd218
path, absolute, distance, name-misd203, nodelist, undeformed-on, var=mises d203
print c
misd203
path, absolute, distance, name=nisd188, nodelise, undeformed=on, var-mises D188
print c
misd188
cisplay,all curves
cisplay,all curves
detail, elset $=$ sl
path, absolute, distance, name=presdj73, nodelist, undeformed=on, var=press, D173
print c
presdl//3
path, absolute, distance, rame=presd158, nodclist, undeformed=on, vaz=press, D158
print c
presd158
pa二h, absolute, distance, hame=presci43, nodolist, undeformed=on, var=press,

D1. 43
print c
presdl13
path, absolute, distance, name=presd128, nodelist, undeformea=on, varmpress, 0128
print c
presdi28
path, absolute, distance, name=presdi13, nodelist, undeformed-on, var=press, D113
print c
presd1.13
path, absolute, distance, name-presd98, nodelist, undeformed-on, var=press, D98
print c
presd98
path, absolute, distance, namepresd83, nodelist, indeformed=on, var=press, D83
print c
presd83
path, absolute, distance, name=presc68, nodelist, undeformedi=on, var-press T268
print c
presd68
path, absolute, distance, name=presd53,nodelist, unceformed=or, var=press, D53
print c
presd53
path, absolute, cistance, name=presd39, nodelist, undeformed=on, var=press D38
prinl 6
presd3s
path, absolute, distance, name=presd23, modelist, undeformed=on, var=press D23
print c
presd23
path, absol:1te, distance, name=presd8, nodelist, undeformed-on, var=press D8
print c
presd8
detail, eiset = upper
path, absolute, distance, name=presd00u, nodelist, unde Formed=on, var=press, DOOK
print c
presdoou
detail, eiset $=$ bottom
patin, absolute, distance, name=presdo0b, nodelist, unde Comed=on, var-press, D00K
prirt c
presdoob
detail, elsel $=s 1$
path, abso"ute, distance, name=presd353, nodelist, undeformed=on, var=press, D353
print c
presd353
path, absolute, distance, neme=presd338, nodelist, undeformed=on, var-press, 0338
print c
presd338
path, absolute, distance, name=presd323, nodelist, undeformed-on, var=press, d323
print C
presd323
path, absolute, distance, name-presd308, nodelist, undeformed=on, var=press, D308
print c
presd308
path, absolute, distance, name=presd293, nodelist, undeformed=on, var=press, D293
print c
presd293
path, absolute, distance, name=presd278, nodelist, undeformed-on, var-press, D2\%
print c
presd278
path, absöute, distance, name=presd263, nodclist, undeformed=on, var=press D263
prirt c
presd263
pat.in, absolut.e, disiance, name=presd248, nodelist, undeformed=on, var=press, D248
print c
presá2 48
path, absolute, distance, name=presd233, nodelist, undeformed=on, var=press D233
print c
presd233
path, absolute, distance, name=presd218, nodelist, ande£ormed=on, var-press D218
print c
presd218
path, absolute, distance, name=presd203, nodelise, urdeformed-on, var=press D203
print c
presd203
path, ảsolute, distance, name-presdl88, nodelist, undeformed=on, var=press D188
print c
presdl88
Cisplay, all curves

Appendix II

The programs fullfan3.m and fullfanodd3.m are Mallab programs, which read data (radial distances and Cartesian stresses at 7.5° interval surrounding the crack tip) from an abaqus.rpt file and arrange the data in matrix form. The stress data are then extrapolated to the crack tip in Cautesian form and finally transformed to polar co-ordinate system. The angle versus cylindrical stresses at the crack tip are written in an output file named general.out.

The program fullfan3.m

\%This programme reads abaqus data stored in a file called abacus.rpt. The . irst foart of the programe strips the text from the file and stores the stresses in sa matrix b
 $\mathrm{b}=[$] ;
f=fopen ('abacus.rpt', 'r');
count=0;
foundtcxt $=0$;
counti=1;
while 1
line=fgetl(f);
if ~isstr (line), break, end;
a=sscanf(line, 'sf');
if size $(a, I)>0$
\therefore f. foundtext $==1$, count $=$ count1 +1 ; end;
$\mathrm{b}([1$, count 1$], \operatorname{count}+1)=\mathrm{a}$;
count=count + 1;
foundtext=0;
else
count $=0$;
founcitext=1;
end
end
£close(f):

o This programme reads abaqus data stored in a file called abaqus.rpt
कThe data is assumed to come from a blf with 26 fadial lines of variables
of the data is read and reformatted to a matrix b(ij;
\% The first row $i=1$ contains distances from the tip
\% j loops around angles from 2 Lo 26 ir1 15 degcee intervals
bdirectly ahead of the crack there may be a discortinutty, so this angle is \%treated twice, extrapolating to the nodes on the crack line from above and qbelow the crack, in the abaqus post-processing

```
8511 is in row i 2 thro 27
" s22 is in row i }28\mathrm{ thro 53
% s12 is in row i 54 thro 79
gmises is in rows 80 thro }10
昂ress is in rows 106 throl31 !!! not for plane stress !!!
fFor planc strain this version extrapolates mises anc pressure directly ingtead
8of calculating them from the exicapolted stresses.For plane stress cannot read
zpremsure directyy onl.y mises.
*The strosses arc extrapo:ated to the tip as car=esian stresses and lien
qtransformed to cylindrical co-ords. The upper crack Elank is located along
```

ftheta $\frac{8}{5}=+180$ degrees and the lowex crack flank ajong theva - i80 i.e thetil \%is measured anti- clockwise!!

6The programe is set for both plane strain (nu $=0.3$) and plane stress, qwith piane strain currently commented out

कThe data is plotted agairst distance and curve fitted
\% the plotirng is nommally supressed but can be reactivated to check the curve 8fit.
每Data can be written to an externqal file compatible with excel, and this \%is also currently commented out
 *Firstly sigmall

For i $=2: 27$
\%figure

```
q0.0: (b(1,2:20),b(2,2:20),'bd')
*x\abel('sigmaxx versus distance')
% holg an
saxis(l0 20 -2e8 3e8])
```

scurve fit sigmaxx stress

```
sxx = polyfit(b(1,2:4),b(i,2:4),1);
```

 disti \(=0: 1: 100\);
 sxxi - polyval(sxx, disti);
 8plot (disti, sxxi)
 \%interpolate to crack tip, stress held as stressxx
sthere are 26 stresses imcluding zero which is tield twice
count = $i-1$;
stressxx(count) $=s \times x(2) / 2 e 8 ;$
\% if the count is greater than 13 kourt is set back one lo catch the direction
sahead of the crack twice
if count > 13
kount $=$ count -1 ;
else
kown = count;
end
sangle is keld in degrees, the minus makes it posilive anti clockwise
ancle(count) $=180-(($ kount -$) * 15)$;
end
 sNow sigma22
for $i=28: 53$

```
% plot (b(1,2:20),b(i,2:20),'ri')
&xlabel('sigmayy versus distaree')
% hold or:
%axis([0 20 - 2e8 3e8])
%end
% curve fit sigmavy
```

syy - polyfitifb(1, 2:4), h(i,2:4), 1;:
6disti $=0: 1:=00$;
ssyyi = polyvel (syy, dis=i);
splot(dis=i, syyi)
Binterpolate to crack tip, stress held as stressyy
count $=1-27$;

```
stressyy(count) = syy(2)/2e8;
end
```



```
    fNow sigma.l2
%figure
for i = 54:79
8plot (o(1,5:20),b(i,5:20),'gd')
%label('sigmaxy versus distance')
% hold on
%axis([0 50 -2e8 3e8])
#Interpolate stress to tip and plot
&curve fit sigmaxy stress
sxy = polyfit(b(1,2:4),b(i, 2:4),1);
                                    8disti = 0:1:100;
                                    zsxyi = polyval(sxy,disti);
                                    qplot(disti,sxxi)
qinterpolate to crack tip
count = i.53;
stressxy(count) = sxy(2)/2e8;
end
```



```
% Plot cartesian stresses at tip
figure
axis([-180 180 -2 5.0])
hold on
grid on
title(' Cartesian stresses for plane stress non hardening solution Homogeneous')
&tittle\' Cartesiar stresses for plane strain non harcening solution Material
mismatch =1.6 ')
plot(angle(1:26),stressxx(1:26),'bd')
plot (angle(1:26),stressyy(1:26),'rd')
plot(angle(1:26), stressxy(1:26),'gd')
legend ('stressxx','stressyy','stressxy')
```



```
\%It is most accurate to read mises and mean from the abaqus file, but the wsiress componerts and the mean and mises may not be exactly conistent
8If you want to use the calculated va-ues of mises and mean comment this zsection aut
```



``` bNow mises
for i - 80:105
```

```
% plot (b(3,2:20),b(i,2:20),'rd')
```

% plot (b(3,2:20),b(i,2:20),'rd')
zxlabel('mises versus distance')
zxlabel('mises versus distance')
% hold on
% hold on
8axis([0 20 -2e8 3e8])
8axis([0 20 -2e8 3e8])
qenc
qenc
% curve fil mises
mis = polyfit(b(1,3:6),b(i,3:6),1);

```
```

 %disti = 0:1:100;
 *misesi = polyval(mises,disti);
 &plot(disti,misesi)
 *interpolate to crack tip, stress held as mises
count= = i.79;
mises(count) = mis(2)/2e8;
end

```


```

%Now meam stress (commment out for plame stress)
Zfor i = 106:131
% plot (b(1,2:20),b(i,2:20),'rd')
\&xlabel('press versus distance')
%ozd on
%axis(:0 20 --2c8 3e8])
*end
% curve fit press
*press = polyfit(b(1,3:6),b(i.,3:6),1);
qdisti = 0:1:100;
*pressi = polyval (press,disti);
gplot(disti,press)
Zinterpolate to crack tip，stress held as press
8count $=i-105 ;$
BChange pressure into mean stress by change of sign
oftressm（count）$=$－press（2）／2e8；
tend

```

```

* Transform to polmr co-ords

```
```

* Transform to polmr co-ords

```

```

\％mises and mean stress

```
```

For count = 1:26

```
For count = 1:26
z The minus sigr on the angle makes the sign convention positrive anti-clorkwise
z The minus sigr on the angle makes the sign convention positrive anti-clorkwise
thet゙a= ar:gle(count)*pi/180;
thet゙a= ar:gle(count)*pi/180;
stressrr(counL) = (sLressxx(count) 'stressyy(count))/2 +((stressxx(count) -
stressrr(counL) = (sLressxx(count) 'stressyy(count))/2 +((stressxx(count) -
stressyy(count))/2)*}\operatorname{cos(2*theta) + stressxy(count)*sin(2*theta);
stressyy(count))/2)*}\operatorname{cos(2*theta) + stressxy(count)*sin(2*theta);
stressqq(count) = (stressxx(count) + stressyy(court))/2 - ((stressxx(count) -
stressqq(count) = (stressxx(count) + stressyy(court))/2 - ((stressxx(count) -
stressyy(count))/2)*\operatorname{cos (2*theta) -- strcsexy(comnt)*sin(2*theta);}
stressyy(count))/2)*\operatorname{cos (2*theta) -- strcsexy(comnt)*sin(2*theta);}
stressr`(count) - - ((stressxx(count) - - stressyy(court))/2)*sin(2*theta) +
stressr`(count) - - ((stressxx(count) - - stressyy(court))/2)*sin(2*theta) +
stressxy(count)*}\operatorname{cos(2*theta);
```

stressxy(count)*}\operatorname{cos(2*theta);

```

\footnotetext{
\＆it is most accurace to read mises and mean fror the abaqus file，but the stress components and the mean and mises maynot be exactiy conistent话 you want \(\quad 0\) use the directly read values comment this section out \％Vor mises yield criterion in plane stress
}
```

%mises(count) = sqre(stressxx(coun*)^2 + stressyy(count)^2 - stressxx(count) *
*stressyy(cownt) +3*stressxy(count)^2);
%von mises yield criterion in plane surain
%mises (count)=sgrt (0.75*(stressxx(count)-
stressyy(count))^2+3*stressxy(count)^2);
gmean stress in plane strain
%stressm(counc)=(stressxx(count)+stressyy(count:)/2;
Zmean stress in plane stress
stressm(count) = (stresskx(count) +stressyy(count))/3;

```
\%stress deviators
\(\operatorname{sgc}(\) count \()=\) stressgc (count)-stressm(court);
\(\operatorname{srr}(\) count \()=s t r e s s r r(\) count \()-s t r e s s m(c o u r t)\);
end

of Plot polar stresses at tip
figure
axis( \(\left.\left[\begin{array}{llll}-180 & 180 & -2 & 4.0\end{array}\right]\right)\)
hold on
grid on
\&titief Cylindrical stresses for plane strain non hardening solution Materiaj. mismatch \(=1.6\) )
title(' Cyindrical stresses for plane stress mon hardening solution
Homogeneous \({ }^{1}\) )
```

plot {angle(1:26),stressrr (1:26),'b*')
plot(anglc(1:26), stressqq(1:26),'r+')
p1ot(angle(1:26),stressrq(1:26),'gd')
legend('stressrr','stressqq','stressrq')

```
 \&Plot Deviators at Tip
figure
axis (i-180 180 -2 4.0 )
hold on
grid on
\%ititle(' Cy1indrical stresses for plane strain ron nardening solution, Material mismatch \(=1.2\) ')
title(' Cylindrical stress deviazors for plane stress non hardening solution, Homagenecus')
plot (angle (1:26), srr (1:26), 'b*')
plot (angle (1:26), sqq(1:26), 'r+')
legena('sru','sqq')
 \(\%\) Note there is an option of either calculating mises and mean or using the *directly read values
figure
axis([-180 180 -2 4.0])
hold on

\section*{grid on}
\%title(' mean and mises stress for plane srrain non hardening solution Material mismatch \(=1.6^{\prime}\) )
title(' mean and mises stress for plane stress non hardening solutior Homogeneous')
```

plot(angle(1:26),mises(1:26),'g*')
plot(angle(1:26),stressm(1:26),'r'')
logend('mises','stressm')

```

```

*figure
%axis([-180 180 -2 5.0])
ohold on
8grid on
%title(' mises stress for plane strain non hardening solution ')
%title('mises stress for plane stress non hardening solution ')
%plot(angle(1:26),mises(1:26),'k*')

```

qfigure
baxis([lllll\(-180 \quad 180 \quad-25.0])\)
shold on
*grid or
कtitle(' mean stress for plane strain non harcening solution ')
कtitie(' mean stxess for plane stress non hardenirg solution ')
zplot (angle (1:26), stressm(1:26), 'r+')

    \% write output Lo extermal files
*.n = 'data.out'
*fprintf (fn, 'dimensional distance stiress qq theta \(=0\) (n')
事for 1=4:141

fend

\% write general output to external file
fn - 'general. out'
fprintffif, 'angie stressxx stressyy stressxy stressrr stressqu stressra
srr sqq stressm miscs\r')
for \(\mathrm{i}=1: 26\)
fprinte (fn,

angle(i), stressxx(i),stressyy(i), swressxy(i), stressrr(i),stressqq(i), stressrq(i)
,sur(i), sqq(i), stressm(i), mises(i))
end

\section*{The program fullfanodd3.m}

\section*{}解his programe reads abaqus data stored in a file called abaqus.rpt. The first
qpart of the programe strips the text from the file and storos the stresses in各a matrix b

\(\mathrm{b}=[\mathrm{]}\) ；
f－fopen（＇abaqus．rpt＇，＇r＇）；
count \(=0\) ；
foundtext \(=0\) ；
count1＝1；
while 1
line＝fuecl（f）；
if－isstr（iine），break，end；

if size（a，1）＞0
if foundtext \(==1\) ，countl \(=\) count \(1+1 i\) ，end；
\(b([1\), count 1\(]\), count +1\()=a\) ；
count＝count＋1；
foundtext \(=0\) ；
else
count \(=0\) ；
foundiext \(=1\) ；
end
end
fclose（f）；

कthis programe reads ajaqus data stored in a file called abaqus．rpt．
\％The data is assumed to come from a ble with 26 radial lincs of variables
\％＇The data is read and reformatted to a matrix b（ij）
\％The first row \(i=1\) contains distances from the tip
\％j loops around angles from 2 to 26 in 15 degree intervals
qdirectay ahead of the crack there may be a discontimuity，so this angle is解reated twice，extrapolating to the nodes on the crack line from above and fbelow the crack，in the abaqus post－processing
```

fs11 i.s in row :. 2 thro 2.7
8 s22 is in row : 28 thro 53
% si% is in row % 54 tiroo 79
8mises is in rows 80 thro :05
qpress is in rows 106 throl31!!!not for plane stress!!!

```
\＆For plane strain this version extrapolates mises ard pressure directly insteat解 calculating them from the extrapolted stresses．For plane stress cannot read कpressure directly only mises．

FThe stresses are extrapolated to the tip as cartesian stresses and then otransformed to cylindrjcal co－ords．The upper crack flark is located along ftheta \(\%=+180\) degrees and the lower arack Elaric along theta \(=180\) i．e theta ois measured anti－clockwise！！
\＃the programme is set for both plane strajn（ yu \(=0.5\) ）and plame stress， bwith mine strain currembly commented out
 frhe data is ploted against distance and curve fitted
rothe ploting is nomally supressed tut can be reactivated to check the curve號も，
\＆Data can be written to an externgal file compatible with excel，and chis fis also currently commented out
 कFirstly sigmall
\＆figure
```

for i = 2:27

```
Iplot (b(1,2:20), b(i,2:20), 'bd')
\&x] abel. ('sigmaxx versus distance')
os hold on
名axis ([0 \(20-2 e 8\) 3e8])
qcurve fit sigmaxx stress
```

sxx = poiyrit(b(1,2:4),b(i,2:4),1);

```
disti \(=0: 1: 100\);
sxxi \(=\) polyval(sxx,disti);
splot(disti, sxxi)
名interpolate to crack tip, stress held as stressxx
zthero aro 25 strossos including zero which is held twice
count = i-1;
stressxx (count) \(=\operatorname{sxx}(2) / 2 e 8\);
FThe count is set back two to catcin the direction akead of the crack twice
if count < -3
kount \(=\) count ;
elseif count > 14
kount \(=\) count -2 ;
else
kount \(=12.5\)
end
*aryle is held in degrees, the minus makes it positive anti-clockwise
angle(count) \(=172.5-((\) kount -1\() * 15)\);
end

                    fNow sigma22
Eor \(i=28: 53\)
```

多 plot (b(1,2:20),b(i,2:20),'ra')
8xlabe?('sigmayy versus distance')
% hold on
8axis([0 20 -2e8 3e8))
%end
% curve fit sigravy

```
\(s y y=\) polyfit \((b(1,2: 4), b(i, 2: 4), 1) ;\)
                                    zdisti \(=0: 1: 100\);
                                    ofsyyi = polyval(syy,disti);
                                    fplot(disti, syyi)
Ginterpolate to crack tip, stress held as stressyy
count \(=\) i-27;
stressyy (count) \(=\) syy (2)/2eb;
end

                                    *Now sigma 12
qfigure
for i - \(54: 79\)
*plot (b(1,5:20),b(i,5:20), 'gd';
zlabel('sigmaxy versus distance')
```

8hold on
%axis([0 50 -2e8 3e8])
\&Tnterpolate stress to tip and plot
qcurve fit sigmaxy stress
sxy = polyfit(o(1,2:4),b(i,2:4),1);
%disti = 0:0:100;
%sxyi = polyval(sxy,disti);
8plut(dist\vdots,s\timesxi)
Finterpolate to crack tip
count = i-53;
stressxy(count) - sxy(2)/2es;
erld

```

```

% Plot cartesian stresses at tip
figure
axis([-180 180 -2 5.01)
hold on
grid on
title(' Cartesian stresses for plane stress non hardening solution Homogenems')
战作' Cartesian stresses for plane strain non hardening soiution Material
mismatch =1.6 ')
plot{angie(1:26),stressxx(1:26),'bd')
plot {ang.e(1:26),stressyy(1:26),'rd'}
plot(angie(1:26),strossxy(1:26),'gd')
Zegend ('stressxx','stressyy','stressxy')

```

```

 F Transform to polar co-ords
 for count = 1:26

* The minus sign on the angle makes the sign convention positrive antinolockwise
theta = angle(count)*pi/180;
stressrr(count) = (stressxx(count) +stressyy(count))/2 +((stressxx(count) -
stressyy(count))/2)*\operatorname{cos(2*theta) + stressxy(count)*sin(2*theta);}
stresscq(count) = (stressxx(count) +stressyy(count))/2 - ((stressxx(count) -
stressyy(count))/2)*\operatorname{cos(2*theta) - stressxy(count)*sin(2*theta);}
stressrq(count) = - ((stressxx(count) - stressyy(count))/2)*sin(2*theta) +
stressxy (cournt)*}\operatorname{cos}(2*theta)

```

``` \% mises and mean stress
\% It is most accurate to read mises and moan from the abagus \(\because i l e\), but the stress components and the mean and mises mayno: be exactly conistent
\&If you want to use the directly read values comment this section out \&von mises yield criterion in plane stress
Zmises (court) \(=\) sqrt(stressxx (count) \({ }^{2} 2\)... stressyy (count)^2 - stressxx (count) * \%stressyy (count) +3*stressxy(count) ^2);
\& von misos yield criterion in plane strain
fanises (count) \(=\) sqrt (\(0.75 *\) (stressxx (count) -
```



```
fmean stress in plane strain
```

```
&stressim(count)=(stressxx{count)+stressyy(count))/2;
zmean stress in plane stress
stressm(count)=(stressxx(courlt)+stressyy(count))/3;
```

fotess doviators
sqq(count) $=\operatorname{stresscq}($ count $)-s t r e s s m(c o u n t) ;$
$\operatorname{srr}($ count ) $=$ stressrr (count) - strossm(count.);
end


\%
Now mean stress (comrent out for plane stress)
oft is most accurate to read mises and the mean from the abaqus file, but the ostress comporents and the mear and mises may not be exactly coniscent

क.If you want to use tine calculated values of mises and mean comment this osection out

Zfor $i=106: 131$

```
% plot (b(1,2:20),b(i,2:20),'rd';
&xlabel('press versus distance')
% hol.d on
%axis(10 20-2ed 3e8])
%enc
% curve fit press
```

spress $=$ polyfit $(h(3,3: 6), b(i, 3: 6), 1)$;
oditsi = 0:1:100;
\&pressi = polyval (press, disti);
qplot(disti, press)
( interpolatc to crack tip, stress held as press
\%count $=i-105$;
\&Change pressure into mean stress by change of sign
Zstressm (count) $=-$ press (2) $/ 2 e 8$;
bend

\%It is mos: accurate to read mises a from the abaqus file, but the stress \%componerts and the mean and mises may not be exactiy conistent
\%If you want to use the calculated values of mises and mearn comment this qsection out
q.Now mises
for $i=80: 105$

```
q piot (b(1, 2:20),b(i,2:20),'rd')
*xlabel('mises versus distance')
% hold on
%axis([0 20 -2e8 3e81)
%end
% curve fit mises
```

mis $=$ polyfit $\{b(1,3: 6), b(i, 3: 6\}, 1\} ;$
कdisti $=0: 1: 100$ ；
zonisesi＝polyvai（mises，disti）；
splot（distj，misesi）
Finterpolate to crack tip，stress held as mises
count＝i－79；
mises（count）$=$ mis（2）／2e8；
end


zplot polar stresses at tip
figure
axie（［－1．80 180 -2.24 .0 ）
hole on
grid on
\＆titie！＇Cylindrical stresses for plane strain non hardening solution Material
mismacen＝1．6＇
titleß Cylindrical stresses for piane stress non hardening sojution
Homogeneous＇）
plot（angle（1：26），stressrr（ $1: 26$ ），＇b＊＇）
plot（angle（1：26），stressqg（1：26），＇x＋＇）
plot \｛angle（l：26），stressrg（1：26），＇gd＇）
legend（＇stressxf＇，＇stressaq＇，＇stressra＇）


splot Leviators at Tip
figure
axis（f－180 180 －2 4．0］）
hojd on
grid on
名tithe（＇Cylindrical stresses for plane strain non harciening solution， Homogeneols＇）
titlé＇Cylindrical stress deviators for plane stress non hardening solution．
Homogeneous＇）

plot（angle（1：26），sçq（1：26），＇r＋＇）
legend（＇srr＇，＇sçg＇）

Eigure
axis（l－180 180 －2 4．0）$)$
hold on
grid on
\＆titうe（＇mean and mises stress for plane strain non iardening solution Materjé
gmismatch $=1.61$ ）
titie！mean and mises stress for plane stress non hardening solution
Homogencous＇）
plot（angle（1：26），mises $\{1: 26$ ），＇g＊＇）
piot（angle（1：26），stressm（1：26），＇r＋＇）
legend（＇mises＇，＇stressm＇）

sfigure
马axis $\left\{\left[\begin{array}{llll}-130 & 180 & -2 & 5.0\end{array}\right]\right\}$
shold on

```
%grid on
%title(' mises stress for plane strain non hardening solution ')
%title(' mises stress for plane stress non hardening solution ')
%plot(angle(1:26),mises(1:26),'k*')
```


ofigure
\%axis([-180 180 -2 5.0])
\%hold on
ogrid on
\%title(' mean stress for plane strain non hardening solution ')
\%title(' mean stress for plane stress non hardening solution ')
\%plot(angle(1:26), stressm(1:26),'r+')

of write output to external files
$8 \mathrm{fn}=$ 'data.out ${ }^{\prime}$
\%fprintf(fn, 'dimensional distance strress qq theta $=0 \backslash n ')$
\%for $1=4: 141$
\%fprintf(fn, ' $\left.820.5 \mathrm{f} \% 20.5 \mathrm{f} \backslash \mathrm{n}^{\prime}, \mathrm{b}(1,1), \mathrm{b}(39,1)\right)$
send

of write general output to external file
$\mathrm{fn}=$ 'general.out'
fprintf(fn, 'angle stressxx stressyy stressxy stressrr stressqq stressrq
srr sqq stressm mises $\backslash n^{\prime}$ )
for $i=1: 26$
fprintf(fn,

angle(i), stressxx(i), stressyy(i), stressxy(i), stressrr(i), stressqq(i), stressrq(i)
,srr(i),sqq(i),stressm(i),mises(i))
end

