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Abstract

Trypanosoma brucei is a tsetse fly-transmitted kinetoplastid protozoan that parasitises a 

wide range of mammals in sub-Saharan Africa. The chronic infections typical of 

trypanosomes have a profile characterised by intermittent parasitaemic peaks, that become 

smaller and further apart. A key component that facilitates the survival of the parasite 

within the bloodstream of the host, and the generation of chronic infections, is antigenic 

variation. This process involves the inherent switching of the surface-expressed variant 

surface glycoprotein (VSG), and the new variable antigen types (VATs) in order to pre­

empt the host immune response. There are approximately 1,000 genes in the VSG 

repertoire, and the observation that certain VATs appear at similar times within infections, 

has led to the conclusion that the expression of VSGs is semi-predictable and semi­

ordered. This hierarchical system allows optimal use of the VSG repertoire, and is highly 

likely to be a significant factor in generating chronicity. It has been established that VSGs 

encoded by subtelomeric genes tend to appear early in infection, whilst those encoded by 

chromosomal internal genes tend to appear later.

The first aim of this thesis was to examine the timing of expression of a subset of VSGs 

within replicate infections in mice and cattle, and to link the timing of expression to the 

genetic locus of the silent, donor, VSG gene. The VSGs examined represented all VSG 

locus types, incorporating 1 bloodstream expression site (BBS) gene (the transcription site 

for VSG genes in the bloodstream stage), 2 metacyclic expression site (MBS) genes, 2 

minichromosomal genes, and 2 chromosomal internal genes. The infections were initiated 

with pleomorphic trypanosomes that switch at a high rate, and are a close-to-field, ‘wild 

type' strain. The infections in mice confirmed that there was a statistically significant 

difference in the timing of onset of VAT-specific immune responses across replicate 

batches of infections with two separate analyses; one by comparing the average time of 

onset of the immune response (General Linear Model [GLM]; F6,io6"7.49, p < 0.0001), and 

the second by ranking the onset of the immune response by sequence of appearance (GLM; 

Fô,112=8.03, p<0.0001). The appearance of VSGs within a restricted period of time was 

confirmed by directly analysing the parasite population in cattle, using FSG-specific 

reverse transcriptase polymerase chain reaction (RT-PCR). These findings allow further 

dissection of the hierarchical expression of VSGs, and provide statistically significant 

confirmation of the existence of semi-ordered expression in high-switching pleomorphic 

trypanosomes for the first time. ;



A mathematical model was formulated (with the assistance of Dr. K. Lythgoe, University 

of Edinburgh) in order to simulate the dynamics of trypanosome infections. The model 

incorporated and built upon successful aspects of previous studies, and included measured 

biological parameters that are known to affect in vivo parasite kinetics. Manipulations were 

undertaken to investigate the effect, in silico, of differential VSG switching rates. The 

effect of varying the intrinsic rate of growth of the immune response was also analysed. 

The simulations indicated areas for potential further experimental studies. In particular, 

results suggested that the rate of growth of the immune response may be extremely 

important in shaping the profile, and duration, of an infection. The outcome of modelling 

whereby VSG switching was manipulated, suggested that there are distinct subsets of 

VSGs, which have differing probabilities in switching to each other. The significance of 

genomic position of the silent, donor, VSG, and also sequence homology between the 

donor VSG and the expressed VSG were investigated. The proportional influence of 

genomic locus and homology-driven switching was suggested to be the most important 

aspect to be elucidated, with respect to further resolving the hierarchical switching of 

VSGs,
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Chapter 1

Introduction



1 Introduction

1.1 African trypanosomiasis

Trypanosomes are haemoflagellate protozoan parasites responsible for causing disease 

across wide areas of Africa, Asia and South America. Transmitted by biting vectors, the 

parasites infect many host species. In Africa, the implications are large with regards to 

human morbidity and mortality, and an even more serious situation exists among the 

domestic animal population. Large swathes of the sub-Saharan subcontinent have 

historically been rendered unsuitable for rearing of livestock, and periodic human 

epidemics have caused significant loss of life. In modem Africa, the human disease 

situation is worsening, with an estimated 60 million people living with the threat of the 

disease, and potentially between 300,000 and 500,000 people infected per annum. This 

susceptible population spans 37 sub-Saharan countries, 22 of which are among the least 

developed in the world (WHO).

The cost to the agricultural community is enomious, with 48 million cattle at risk, and an 

estimated potential cost of $ 1-1.2 billion per year. 10 million km^ of sub-Saharan Africa 

are inhabited by the tsetse fly {Glossina species) vector, and any significant farm animal 

industry is thus restricted in this vast area (Leak, 1999). 85% of the continent’s poor live in 

mral areas, and 80% of the population as a whole rely upon agricultural output (FAQ), so 

the impact of trypanosomiasis is far-reaching and profound.

Trypanosomiasis is one among a plethora of disease, and in particular parasite, threats to 

people and animals in sub-Saharan Africa. In these areas the threat to people and their 

livelihoods is significant, and hence increasing knowledge of the parasite, the disease, and 

the vectors is potentially an important step towards reducing the impact of these factors.

1.2 Life Cycle

African trypanosomes belong to the order kinetoplastida, and group within the Salivaria 

(Hughes and Piontkivska, 2003). They are are transmitted by an insect vector, and in the 

case of T. brucei the vector is the tsetse fly. Within both the human and tsetse host the 

parasite essentially has two types of form; the replicative that divides by mitosis, and the 

non-replicative, which are transmissive types pre-adapted for the next host or niche (see 

Figure 1.1, p.4, for a graphical summary of the life cycle).
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When an infected tsetse fly feeds on a mammalian host, trypanosomes are deposited into 

the dermal connective tissue via the proboscis, from where they spread to the blood and 

lymph compartments. The first trypanosomes inoculated, the metacyclic form, serve to 

initiate the infection, and quickly give rise to the long slender bloodstream form. The long 

slender trypanosomes divide mitotically every 6 hours, and are entirely reliant on glucose 

present in the host blood, aerobic glycolysis metabolising the glucose to pyruvate in 

glycosomes, dedicated organelles (Opperdoes and Borst, 1977). Due to repression of 

mitochondrial function, oxidative phosphorylation does not occur. As the infection 

progresses, and the number of trypanosomes increases, an increasing proportion of the long 

slender trypanosomes differentiate to the non-replicating short stumpy fonn via 

intermediate forms. The trigger for this process is thought to be a density dependent 

mechanism (Vassella et a l, 1997). The short stumpy trypanosomes are pre-adapted to 

transmission to the fly.

Once ingested by the fly, which can be male or female, there is rapid differentiation in the 

tsetse posterior midgut to the mitotically dividing procyclic form, and metabolism switches 

from being carbohydrate-based to amino acid-based, with proline being the main substrate. 

The number of parasites in the midgut declines dramatically during the short stumpy to 

procyclic differentiation, in one study falling from 7.5 x 10  ̂to 2 x 10̂  trypanosomes per 

midgut examined over the first three days post blood meal (Van Den Abbeele et a l, 1999). 

This number then rises over the next three days to a stable threshold of 2-5 x 10  ̂procyclic 

parasites.

There is progression of the parasite population from the posterior to the anterior midgut as 

the procyclic population expands, and the parasites become elongated (Van Den Abbeele 

et a l, 1999), eventually becoming the long, mesocyclic form (Vickerman, 1985), which 

migrates forwards into the proventriculus (Vickerman, 1985; Van Den Abbeele et a l, 

1999). Upon entering the proventriculus, there are further changes to longer post- 

meso cyclic cells. There is replication of DNA, and the post-mesocyclic cells make the 

journey to the foregut and proboscis. Based on staining with the DNA dye YOYO-1 

iodide, the post-mesocyclic cells have been suggested to be tetraploid (Van Den Abbeele et 

a l, 1999), as measured by flow cytometry and fluorescence microscopy, but independent 

controls, le. cells of known DNA content, were lacking (the controls used were reference 

trypanosomes from tsetse dissections). Further differentiation to a long epimastigote cell 

then occurs, and it is thought this stage transfers to the salivary glands. This epimastigote 

divides asymmetrically to give 2 morphologically distinct daughter cells, one short and one 

long. The long daughter cell appears to play no further role, and dies. The short daughter



r cell, however, attaches to epithelial cells in the salivary gland, where the trypanosomes 

divide rapidly (Van Den Abbeele e t  a l ,  1999). There is then an intermediate premetacyclic 

stage (Vickerman, 1985), giving rise to the metacyclic trypomastigote, which is infective 

for the mammalian host. A proportion of this population of trypanosomes are then 

inoculated when the tsetse fly feeds. This salivary gland population remains as a 

transmission source within the salivary glands of the fly, initiating infections at each 

subsequent feed.

/ M E T A C Y C L I C

i E P J MA S T f G O T E

i "

M E S O C Y C l  1C

L O N G
S L E N D E R

S H O R T
S T U M P Y

P R O C Y C L I C

TSETSE FLY MAMMAL

Figure 1.1 Life cycle of Trypanosoma brucei. From Barry and McCuiioch, 2001. The long 
slender, procyclic and epimastigote cells are proliferative, while the short stumpy, 
mesocyclic and metacyclic stages are non proliferative. Procyclic and mesocyclic 
trypanosomes occur in the tsetse midgut, whereas epimastigote and metacyclic ceils reside 
in the salivary glands. Long slender and short stumpy trypanosomes are found in the 
mammalian bloodstream.



1.3 Trypanosome pleomorphism, monomorphism and 
differentiation

A large body of experimental data exists about T, brucei, encompassing many aspects of 

the parasite. The majority of molecular studies have been undertaken in vitro. The strains 

utilised have been passaged a significant number of times in laboratory rodents, and some 

lines have secondarily adapted to growing in culture medium. This serial passaging in vivo, 

and maintenance under in vitro conditions, has resulted in these trypanosomes losing the 

ability to be transmitted to the tsetse vector -  they exist entirely as the replicating long 

slender bloodstream stage (‘monomorphic’ trypanosomes), and do not form the short 

stumpy fly transmissive stage (although with artificial manipulation differentiation to the 

procyclic form can be induced). The inability of the trypanosomes to establish chronic 

infections in laboratory animals results in exponential growth of the parasites until death of 

the host, occurring in mice in a matter of days. The loss of ability to form the short stumpy 

stage is indubitably an important factor -  this differentiation process being suggested as a 

mechanism of self-limitation of growth of the trypanosome population (Vassella et ah, 

1997).

The morphology of the short stumpy cells is distinct in several ways, as the flagellum is 

shorter and the kinetoplast is in a more posterior position, and the mitochondrion is more 

cristate -  this being a pre-adaptation for the tsetse host, where the mitochondrial 

respiratory chain is necessary for survival (van Weelden et a l, 2003). The stumpy form is 

cell-cycle arrested at Go or Gi (Vassella et a l, 1997), and has a finite lifespan unless taken 

up by the tsetse vector ; the in vivo half life in mice has been calculated as 24-36 hours 

(Black et a l, 1982), in a separate study as 48-72 hours (Turner et a l, 1995), and in vitro as 

48 hours (Reuner et a l, 1997). The cell-cycle arrest occurs at a threshold level, and is 

independent of the host immune response as it demonstrably occurs in vitro (Reuner et a l, 

1997) and in immunosuppressed animals (Black et a l, 1985). There has been speculation 

of the existence of a ‘stumpy induction factor’ (SIF), which induces the cell cycle arrest 

and differentiation of cells (Vassella et a l, 1997). The precise ingredient(s) involved have 

not been identified, although in one study it was determined that the factor must be less 

than 500 Da and is stable in in vitro conditions, and was speculated to be either a 

trypanosome-derived pheromone or catabolite (Vassella et a l, 1997). It has been 

elucidated that it is via cAMP signalling that cell cycle arrest occurs. The addition of a 

cell-permeable cAMP analogue induced cell cycle arrest in vitro -  the exit from the cell 

cycle was a necessary precursor to the other morphological and metabolic events
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associated with differentiation to the short stumpy form (Vassella et a l, 1997). It has been 

suggested that the inability of monomorphic strains to differentiate to the short stumpy 

stage is due to an undefined defect in this signalling pathway. This hypothesis has been 

supported by a study showing that this differentiation can occur in vitro with monomorphic 

trypanosomes by incubating them with the same cAMP analogues, although the 

concentrations of analogue required were four times as high, and the time taken for 

differentiation was three times as long (Breidbach et a l, 2002). These data suggest that the 

signalling pathway is intact in monomorphic trypanosomes, but the sensitivity to the 

putative SIF is very much reduced to a level that is incompatible with the ability to self- 

regulate growth.

1.4 Antigenic variation

African trypanosomes exist extracellularly in the mammalian host, in blood vessels and 

tissue spaces. This poses particular problems for a parasite; although the environment is 

very rich in readily available metabolite (glucose in the case of the trypanosome), the 

parasite is constantly exposed to all facets of the host immune response. African 

trypanosomes have circumvented this obstacle by developing a system of antigenic 

variation. The key to antigenic variation in trypanosomes is the variant surface 

glycoprotein (VSG). The VSG forms a coat that cloaks underlying invariant antigens, and 

in addition interferes with non-specific immune mechanisms (Overath et a l, 1994). 

However the VSG is in turn the primary target of the specific immune response, and 

antigenic variation is the method by which new antigenically distinct variants of the 

protein are introduced.

Antigenic variation as a distinct process has been identified in several classes of organism 

-bacteria (Borrelia burgdorferi-{Beirhour, 2003)) and more relevantly parasites, 

Plasmodium (Kyes et a l, 2001), Anaplasma (Brayton et a l, 2002) and Giardia (Nash, 

2003) being well studied examples. Genetic drift of antigens occurs widely; that is, gradual 

evolution of antigens through accumulation of point mutations, meiotic crossovers or other 

background cellular events and processes (notably HIV and influenza, see (Craig and 

Scherf, 2003)). Antigenic variation is distinct from this in that it is a system that has 

evolved specifically to evade the immune response. In order to accomplish this, the rate of 

antigen replacement has to be equal to or greater than that of the immune response rate of 

antigen recognition and removal. This high rate, and in addition specifically directed 

cellular resources and machinery, distinguishes antigenic variation from antigenic drift.
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This concept of a subset of genes with higher mutation rates is similar to the idea of 

‘contingency genes’ in bacteria (Moxon et a l, 1994; Deitsch et a l, 1997), whereby 

increased variability at particular loci is an evolutionary adaptation to changes in 

environmental stress.

Obviously antigens that undergo antigenic variation are those that are exposed to the 

immune system, and are therefore surface expressed, for example Plasmodium falciparum 

erythrocyte membrane protein 1 (PfEMP-1), encoded by var genes in P. falciparum (Kyes 

et a l, 2001), Major Surface Protein 2 (MSP-2) in Anaplasma marginale (Meeus et a l, 

2003), and the VSG in trypanosomes. Trypanosomes are unique however in unicellular 

parasites, in that they spend the all of their time extracellularly within the mammalian host 

bloodstream. Parasites such as Anaplasma and Plasmodium spend a considerable portion 

of their life cycle intracellularly. Trypanosomes have a concomitantly increased necessity 

for a highly efficient system.

The trypanosome invests a large amount of its genome to this process, there being 

potentially 1,000 VSG genes and pseudogenes. Indeed 101 distinct variants were isolated in 

a single study (Capbem et a l, 1977). This capacity for variation is undoubtedly one of the 

keys to the chronic course of infection characteristic of the disease, both extending the 

lifetime of the parasite population within individual hosts, and enhancing the probability of 

transmission to the tsetse vector.

1.5 The VSG

The key to the antigenic variation system is the VSG, one species of which enshrouds the 

parasite at any one time, forming a dense 12-15 nm thick coat. The VSG is a dimer, and 

there are approximately 10 million copies per cell (Carrington et a l, 1991). These tightly 

packed proteins prevent access to invariant proteins by the host’s specific immune 

response. Indeed, in a recent study it has been established that single domain antibodies 

derived fi*om camels, which are much smaller than antibodies produced in other 

mammalian hosts due to the lack of light chains, do gain access to the underlying invariant 

molecules (Stijlemans et a l, 2003), unlike the dimer (IgG) and pentamer (IgM) 

immunoglobulins in other mammals. Low molecular weight compounds are able to pass 

between the VSG molecules, but the great majority of endo- and exocytosis occurs in a 

specialised invagination of the cell membrane around the base of the flagellum, the 

flagellar pocket. This is the only area of the surface membrane without a complex mesh of 

pellicular microtubules, which preclude endocytosis (Webster and Russell, 1993). The
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flagellar pocket is not accessible by the cellular arm of the host’s immune response. It is 

exposed to immunoglobulins, but results of recent work undertaken in vitro suggest that 

any response raised against the invariant proteins could possibly be ineffective, as anti- 

VSG antibodies are cleared by endocytosis (Pal et a l, 2003), which has been defined 

further as specifically via clathrin-mediated endocytosis (Grunfelder et a l, 2003).

However, whether this would be the case in vivo is yet to be demonstrated.

VSGs are composed of 400-500 amino acids, and consist of two domains, the N-terminal 

domain (350-400 amino acid [aa] residues) and the C-terminal domain (50-100 aa 

residues), separated by a ‘hinge region’ (Johnson and Cross, 1979; Carrington et a l, 1991). 

So far, there are 3 types (A-C) of N-terminal domain and 4(1-4) of C-terminus, as revealed 

by alignment of the amino acid sequences of 19 VSGs (Carrington et a l, 1991). These 

types are determined by the pattern of arrangement of conserved cysteine residues (Cross, 

1984; Carrington et a l, 1991), which contribute significantly to tertiary structure by the 

formation of disulphide bridges. The N-terminal domain is the portion that contains the 

coding region for the epitopes exposed to the immune system and is therefore much more 

variable in sequence, whereas the sequence identity is much higher between the C-terminal 

domains. On average, overall sequence identity between VSGs is 20% (Carrington and 

Boothroyd, 1996). VSG ‘families’ have been identified where identity can be as high as 

70% (Field and Boothroyd, 1996), and even in these cases antibodies against the variants 

are not cross-reactive. Despite often significant differences in sequence, VSG molecules 

fold into a similar three-dimensional structure, as determined by X-ray crystallography 

(Blum et a l, 1993). Although this has been examined for only 2 VSGs, the primary 

sequence identity was 20%, and less than this when aligned on the basis of tertiary 

structure.

The VSG is secured to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, 

which is added to the protein as a post-translational modification. During this process a 

conserved carboxy-terminal hydrophobic tail extension (Boothroyd et a l, 1980) is 

removed from the precursor peptide, and the GPI is covalently linked. This membrane 

form (mf) VSG is then transferred to the cell surface by exocytosis in the flagellar pocket, 

and the protein diffuses across the membrane (Overath et a l, 1994). The VSG GPI anchors 

in trypanosomes have extensive carbohydrate side chains, and there is a suggestion that 

this forms a protective glycocalyx that contributes to the barrier nature of the VSG coat 

(Ferguson, 1992). Other invariant proteins are also GPI anchored to the trypanosome 

surface, in particular invariant surface glycoproteins (ISGs) 65 and 75, the transferrin 

receptor, and the protein encoded by the serum resistance associated (SRA) gene. These
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have also been suggested to occur as dimers (Carrington and Boothroyd, 1996), and indeed 

transferrin is encoded by ESAG6 and ESAG7, and expressed as a heterodimer (Steverding 

et a l, 1994). These surface proteins have been proposed to have a similar tertiary structure 

to that of the VSG (Carrington and Boothroyd, 1996).

Upon uptake by the tsetse fly and arrival in the tsetse midgut, expression switches from the 

VSG to procyclin (Roditi et a l, 1989). The VSG is slowly shed, and there is a period of 

transition during which there is a mixed coat, leading to a gradual changeover, resulting in 

the trypanosome membrane never being exposed (Ziegelbauer and Overath, 1990). The 

procyclic molecules are not as densely packed as the VSG, as they are narrow, extended 

molecules (Treumann et a l, 1997) less broad than the GPI anchor carbohydrate structure 

(Ferguson et a l, 1993). This glycosylation is also suggested to exist as a dense protective 

glycocalyx for the procyclic insect stage (Ferguson, 1994). Procyclin has several putative 

functions, possibly protecting against digestion in the insect gut or playing a tropism role, 

in determining the location for growth and differentiation (Roditi et a l, 1998). There are 4 

different types of procyclin, varying in the number of internal repeats; there being 3 types 

with differing numbers of dipeptide EP repeats (EP 1-3) and one with pentapeptide GPEET 

repeats. The relative proportion of these isotypes changes as the trypanosomes progress 

through the cycle in the tsetse, perhaps suggesting different functional roles (Vassella et 

a l , 2001)
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Figure 1.2 iiiustration of VSG homodimer structure, as determined by X-ray crystallography 
(from Blum et al., 1993). On the left is the MiTat 1.2 VSG, and on the right the ILTat 1.24 VSG. 
Red or pink = a helices, green = p sheets. The top views, which are head-on, illustrate the 
portion of the VSGs exposed to the host’s immune response. The sequence identity 
between the two genes was 20%, demonstrating the structural conservation despite 
sequence divergence, (adapted from http://www.bio.cam.ac.uk/~mc115/page12.htm; M. 
Carrington)

1.6 Pleomorphism, monomorphism and reiative antigenic 

switching rates

A significant feature of monomorphic trypanosomes is that they have a relatively low 

switching rate of the VSG coat. They switch at a frequency of 1 x 10'^- 1 x 10'  ̂

switches/cell/generation (Lamont et al., 1986). Compared with more ‘wild-type’ strains, 

which can have switching rates as high as 1 x 10'  ̂switches/cell/generation (Turner and 

Barry, 1989), this is a significantly decreased rate, and indeed is comparable to background 

mutation rates and mitotic recombination events. Whether this difference in switching rate 

is due to the reduced necessity for a high switching system, deriving from absence of

http://www.bio.cam.ac.uk/~mc115/page12.htm
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selection pressure during long term in vitro maintenance, and repeated short-term in vivo 

passages, is unclear. However, it is possible that the reduction in switching rate is linked to 

the adaptation in the first instance, and the trypanosomes that have been heavily selected 

for by the passaging process inherently switch at a lower rate. It has been suggested that 

the difference in rates of switching is due to the lab-adapted monomorphic strains having 

lost a specific pathway involved in the switching event (Barry, 1997), most likely to do 

with homologous recombination. This has led to a revision of the significance of many of 

the studies examining antigenic variation and VSG switching in these lines. Indeed, 

recombination events have been shown to be the major mechanism by which VSG 

switching occurs in pleomorphic trypanosomes (Robinson et a l, 1999), a finding that 

differs from that seen in monomorphic trypanosomes, which utilise promoter switching 

much more fi-equently (McCulloch and Barry, 1999) (see 1.10 for more details).

1.7 Genome organisation in T. brucei

T. brucei has a haploid nuclear genome size of approximately 35 Megabases (Mb), varying 

between isolates by up to 25% (El-Sayed et a l, 2000). There are 11 pairs of megabase 

chromosomes, several intermediate chromosomes (200-900 kilobases [kb]) and 

approximately 100 minichromosomes (50-150 kb each). The diploidy of T. brucei is 

unusual in that it has been demonstrated for only the megabase chromosomes, and not for 

the intermediate or mini- chromosomes. In addition, VSG genes and expression sites 

appear to be haploid, and single copy VSG genes can be readily identified (Robinson et a l,

1999). Furthermore, homologous chromosomes can differ in size to a large extent, up to 

fourfold, both within a genome and between strains. This phenomenon possibly arises 

through subtelomeric recombination events (Gottesdiener et a l, 1990; Melville et a l,

2000).

The precise number of VSG genes in the genome is not known. It was originally proposed 

to be a repertoire of around 1,000 (Van der Ploeg et a l, 1982). The majority of these are 

thought to be in chromosomal internal locations, although the ratio of complete VSGs to 

pseudogenes has been revised due to insights provided by the genome project, and the 

proportion of pseudogenes is much higher than previously considered; approximately 95% 

of 850 VSG genes examined (L. Marcello, P. Burton & J.D. Barry, pers. comm.). The 

remainder of VSGs are located subtelomerically, the majority of these on 

minichromosomes. Indeed, minichromosomes (and possibly intermediate chromosomes) 

are postulated to act as a reservoir of VSGs, as only VSGs have been found to reside in the
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majority examined thus far (most minichromosomal content consisting of 177-bp ‘staffer 

repeats’), and the more primitive T. vivax has only one minichromosome per strain (Dickin 

and Gibson, 1989). The actual repertoire can differ significantly between strains, with only 

a few genes common to most (Van Meirvenne et a l, 1975; Bernards et al.  ̂ 1986). This is 

evident in the fact that vaccination by the ‘infect and cure’ method is not cross-protective 

across strains (Morrison et a l, 1985). This difference is thought to occur by gene 

duplication and deletion, which are integral to the antigenic variation system, and 

occurring constantly at a high rate in pleomorphic trypanosomes.

1.8 The VSG expression sites

There are 2 separate VSG expression systems in T. brucei, one specific to the metacyclic 

life cycle stage, and the other to the bloodstream form. These are sets of expression sites 

exclusive to each lifecycle stage, termed the metacyclic expression sites (MESs) and 

bloodstream expression sites (BBSs). They are located at subtelomeres on megabase 

chromosomes, and there are estimated to be 20 -  30 BESs (Borst et a l, 1990) and possibly 

as many as 27 MESs (Turner et a l, 1988).

Transcription of bloodstream VSG genes occurs exclusively from BESs (Johnson et a l, 

1987; Kooter et a l, 1987), one BBS being active at any one time. This system of allelic 

exclusion ensures that only one species of VSG is present and exposed to the immune 

system (Cross, 1984), and is central to the process of antigenic variation in trypanosomes. 

Transcription occurs via RNA Polymerase I (Gunzl et a l, 2003), which has recently been 

shown to occur in a small nuclear-associated structure, termed the expression site body 

(ESB) (Navarro and Gull, 2001). Only the active BBS was present in the ESB, and this 

potentially provides the route for the allelic exclusion vital to the VSG system. BESs differ 

in length and composition, although there are components common to all examined so far. 

They encode polycistronic units, with a variable number of expression site associated 

genes {ESAGs). The VSG is located 5-10 kb from the cliromosome end, and is surrounded 

by regions largely devoid of restriction sites. The upstream region extends for 1-2 kb, and 

contains multiple imperfect 70-bp repeats. Many of the differences in size between BESs 

can be assigned to different numbers of ES AGs, The function of many of the ESAGs 

remain to be elucidated, although ESAG6 and ESAG7 encode the two subunits of the 

surface located heterodimeric transferrin receptor (Steverding et a l, 1994), and ESAG4 is 

an adenylate cyclase (Alexandre et a l, 1996). There have been 11 ESAGs identified, with 

functions identified only for those mentioned above. Only ESAG6 and ESAG7 are common
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to all BESs looked at so far, and it has been deduced from that these are the only ESAGs 

transcribed from BESs constitutively (Berriman et a l, 2002). In T. brucei rhodesiense, the 

serum resistance-associated (57M) gene is an ESAG that is necessary to be transcribed to 

confer infectivity to humans (Xong et a l, 1998). In addition, it has been suggested that the 

existence of different BESs may serve to provide a library of different transferrin receptors, 

each with differing affinity to transferrin from different host species (Bitter et a l, 1998). 

This hypothesis requires further examination, although in vitro studies have shown 

differences in growth rate when incubated with medium containing transferrin from 

different species (Gerrits et a l, 2002).

A feature of silent BESs is the presence of p-D-Glucosyl-hydroxymethyluracil, or base J, 

which is a modification of the base thymine that substitutes approximately 0.5-1.0% of 

thymidine in trypanosomes (Gommers-Ampt et a l, 1993). Base J seems to accrue around 

non-transcribed repetitive sequences and is present in 50-bp repeats found upstream of 

BESs, and in the 177-bp repeats that make up the majority of the minichromosomes. It is 

also present in silent BESs (van Leeuwen et a l, 1996), but is not found between the 

telomeric and the 50-bp repeats in the active BES. In addition, base J has not been found in 

internal VSGs (van Leeuwen et a l, 1997). Base J has been suggested to play roles in 

alteration of transcription, preventing recombination between repetitive sequences, or the 

remodelling of chromatin, which are all potential silencing mechanisms of BESs (van 

Leeuwen et a l, 1998). However, further work is required before any role can be ascribed 

to base J with regard to the switching on or off of BESs.
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1.9 Genetic mechanisms of antigenic variation

The mechanisms for switching the expressed VSG to a new variant can be separated 

broadly into two categories; in situ switching which involves promoters, and duplication 

mechanisms whereby genes are replaced. As mentioned previously, the VSG genes are 

flanked upstream by a set of imperfect repeats 70-bp long (Liu et al., 1983), the average 

length being 76-bp. In the BES these take the form of an array, comprising of hundreds of 

copies, Minichromosomal telomeric genes have fewer repeats than the BESs; 35 repeats in 

one studied case (Robinson, 1999), and chromosomal internal genes have a small number 

( 1 - 5 )  (L. Marcello, P. Burton and J.D. Barry pers. comm.). There are short blocks of 

homology at the opposite end of the gene, in particular a sequence 16 bp long in the 3’ 

untranslated region (3’UTR) (Majumder et a l, 1981). This essentially means that each 

VSG occupies a “cassette”, with common upstream and downstream regions. These have 

been suggested as putative functional units for homologous recombination -  ‘expression 

cassettes’ (Barry, 1997). This has important implications in terms of duplicative 

transposition.

There are several reported and suggested means by which T. brucei replaces the VSG in the 

BES, summarised below and in Figure 1,4, p. 19.

1,9.1 Dupiicative transposition of a chromosomai internai gene 

into an active BES

The basic copy (BC) VSG genes are not expressed in their chromosomal location. They 

have to be copied and transposed into a BES, forming an expression linked copy (ELC), 

replacing the former ELC (Hoeijmakers et a l, 1980; Pays et a l, 1983a). Gene replacement 

occurs through recombination between regions of homology flanking both the BC genes 

and the BES, such as the 70-bp repeats. Several studies have revealed that the 70-bp 

repeats are not necessarily utilised in VSG switches (Donelson et a l, 1983; Pays et a l, 

1983c; Lee and Van der Ploeg, 1987), although these studies involved monomorphic 

trypanosomes. Indeed when the 70-bp repeats in monomorphic trypanosomes were either 

deleted or inverted, there was seen to be no effect upon the incidence of VSG duplication 

into that BES (McCulloch et a l, 1997). In studies with pleomorphic trypanosomes, 

however, every observed activation was associated with the 70-bp repeat sequence
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(Delauw et a l, 1987; Matthews et a l, 1990). In the most detailed study (Burton, 2003), the 

upstream conversion limit for independent activations of the same gene always mapped to 

the 70-bp repeats, and indeed occurred at several points along the repeat tract, indicating a 

homologous recombination reaction rather than a site-specific recombination event. This is 

in agreement with an experiment in which deletion of RAD51, an enzyme integral to the 

homologous recombination pathway in trypanosomes, yielded an approximate 10-fold 

reduction in VSG switching (McCulloch and Barry, 1999). Recombinational switching 

events were not entirely ablated, suggesting the existence of back-up pathways, an example 

of which has recently been identified (Conway et a l, 2002) (see 1.10 for more detail).

Duplicative transposition of silent VSGs can be considered the dominant mechanism in 

trypanosome antigenic variation, as it is the only route to activation for the chromosomal 

internal repertoire, which constitute the majority of VSG genes. It has been shown to be the 

predominant mechanism in non lab-adapted, pleomorphic trypanosomes in that it is the 

most frequent route utilised (Robinson et a l, 1999).

1.9.2 Dupiicative transposition of a siient teiomeric VSG gene 

into an active BES

This process involves the same principles as internal gene transposition. The duplication, 

however, can extend beyond the boundary of the expression cassette, resulting in the 

replacement of large regions of sequence, and possibly the whole telomere (De Lange et 

a l, 1983). This is probably an important mechanism for the array of minichromosomal 

VSG genes, which are located subtelomerically (Barry, 1997; Burton, 2003).

1.9.3 Reciprocai teiomere recombination

Reciprocal telomere recombination involves exchange of the active site VSG with a VSG 

and other homologous sequences at another subtelomere (Pays et a l, 1985a). Neither copy 

is lost, the two merely exchanging places, with the new VSG entering the active expression 

site. Exchanges could in theory take place over a large region of the telomere, and indeed 

wide variation has been reported in size of fragments exchanged (Rudenko et a l, 1996; 

McCulloch et a l, 1997). This has been suggested to be a significant mechanism of VSG 

switching, although all reports have been in monomorphic trypanosomes. In pleomorphic 

trypanosomes switching at a much higher rate, this mechanism is likely to play only a 

minor role, occurring as it does at the rate of random mitotic crossovers.
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1.9.4 in situ switching

In situ switching involves the switching off of one BES and the independent switching on 

of another. This mechanism is different from all other models for VSG switching in that it 

does not involve recombination, and is a transcriptional switching event. It was deduced 

from early studies that in the majority of switching events there was duplication of the BC 

into the ELC, but in several cases the gene was activated without a detectable duplication 

occurring (Myler et a l, 1984a). It was notable that in these instances the activated gene 

was subtelomeric (Bernards et a l, 1984; Myler et al., 1984b). The molecular basis behind 

this means of switching is unclear, and although in some of these switches in 

monomorphic trypanosomes there is evidence of DNA rearrangements upstream of the 

BES promoter (Gottesdiener et al., 1992; Navarro and Cross, 1996), there was no 

discernable pattern, and an analysis of nine independent in situ switches could not detect 

any DNA rearrangements (Horn and Cross, 1997). Obviously a synchronous switching on 

of the silent BES and switching off of the active BES is desirable, first of all to prevent the 

loss of surface coat, and also to prevent any immune recognition of the ‘old’ VSG due to 

the presence of a mixed coat (Munoz-Jordan et al., 1996; Chaves et a l, 1999). In vitro 

studies have shown the activation of two BESs, and hence expression of 2 VSGs on a 

single trypanosome (Comelissen et a l, 1985; Baltz et a l, 1986), suggesting independent 

activation of each BES. However it has recently been shown that this ‘double expressor’ 

state is an unstable one, and when artificially maintained, by the introduction of drug 

resistance genes and growth under selection, expression seemed to switch rapidly between 

the BESs (Chaves et a l, 1999).

1.9.5 Mosaic gene formation (segmentai gene conversion)

Mosaic gene formation involves the construction of a novel VSG by the recombination of 

two or more segments from VSG genes or pseudogenes. It is thought to occur later in 

infection, when the chronically infected host has generated effective immune responses to 

all of the conventionally generated variants (Thon et a l, 1989; Kamper and Barbet, 1992). 

It has been demonstrated that parasites later in infections have assembled functional ELCs 

from a combination of coding regions, producing an antigenically novel and therefore 

protective coat (Thon et a l, 1990; Kamper and Barbet, 1992). This has been suggested as a 

mechanism for extending the repertoire and providing an additional source of antigenic 

variation (Kamper and Barbet, 1992). The extent of recombination can vary from 

replacement of part of one VSG with another (Pays et a l, 1983d), leaving a chimaera in
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place, to the construction of composite genes from several pseudogenes. The utilisation of 

pseudogenes to construct new VSGs (Roth et a i, 1986; Roth et a l, 1989) is likely to be 

more significant. The large pool of pseudogenes, as revealed by analysis of the 

trypanosome genome project (L. Marcello, P. Burton and J.D. Barry, pers. comm.), is 

potentially a huge resource for expansion of the antigenic repertoire, especially as none of 

the pseudogenes will have been expressed, and the only route to activation is 

recombination into the expression site as part of a composite gene. This has significantly 

revised upwards the estimates of significance, and frequency, of this method of VSG 

switching.

1.9.6 Point mutations

It has also been proposed that the generation of point mutations within the ELC, giving rise 

to antigenically distinct epitopes, is an important mechanism (Rice-Ficht et a l, 1982; Lu et 

a l, 1994). Studies have shown generation of point mutations altering surface epitopes 

(Baltz et a l, 1991), although this was achieved under drug selection pressure. A more 

recent study has indicated, however, that point mutations are rarely generated during gene 

conversion (Graham and Barry, 1996) and that the higher number reported in earlier 

studies were artefactual, and due to the drug selection pressure imposed. There is also the 

argument that even many point mutations are unlikely to lead to the changing of all 

exposed epitopes, and therefore it is doubtful that it is a significant mechanism of antigenic 

variation.
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Figure 1.4 Mechanisms of VSG activation. A; Duplicative transposition of VSG involving 
only the ‘expression cassette’. B; Duplicative transposition of telomeric VSG, with 
boundaries extending beyond the expression cassette. C; Reciprocal telomere exchange, 
with recombination boundaries varying across the length of the expression site. D; in situ 

promoter switch. E; Mosaic gene formation. The VSG is depicted in red, the 70-bp repeats 
with vertical hatching, the promoter region as a blue flag. The vertical green bar represents 
a region of shared homology at the end of VSGs, the 3’UTR. Grey shading indicates the 
boundaries of potential exchange/recombination. Blue circle indicates promoter switching.
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1.10 DNA recombination and antigenic variation in 

trypanosomes

The fact that the majority of the VSG repertoire has the requirement to undergo a 

recombination reaction in order to be activated indicates the importance of this mechanism 

in the trypanosome antigenic variation system. Homologous recombination has been 

demonstrated to be a major driving force. This is evidenced by the reduction in switching 

observed in RAD51 knockouts (McCulloch and Barry, 1999). The null mutants were also 

more sensitive to DNA damaging agents, methylmethane sulfonate and 3- 

aminobenzamide, indicating impairment in the ability to repair damage to DNA by 

homologous recombination. In a second study using the same knockout trypanosomes, 

there was a 10-fold reduction in their ability to integrate transformed DNA constructs in 

vitro, which is consistent with homologous recombination mediating DNA integration 

(Conway et a i, 2002). In addition, in both monomorphic (Liu et a i, 1983) and 

pleomorphic trypanosomes (Burton, 2003) the extent of homologous flanking sequence 

used in switching reactions varies, which resembles homologous recombination rather than 

a site-specific reaction.

RAD51 mediated homologous recombination does, however, require large stretches of 

homology, greater than 100 bp in Saccharomyces cerevisiae (Ira and Haber, 2002). The 

stretches of homology upstream of the VSGs, to which all conversion limits map in 

pleomorphic trypanosomes (Shah et a l, 1987; Matthews et a l, 1990; Burton, 2003), the 

70-bp repeats, are degenerate however, and vary in both their length and extent of 

homology (Burton, 2003). The efficiency of RAD51 mediated reactions in S. cerevisiae is 

much reduced by sequence heterology, a 9 bp heterologous insert leading to ablation of the 

ability of RAD51 to bypass, or ignore, the heterology and continue the reaction (Holmes et 

a l, 2001), and in fact the presence of RAD51 has a negative impact upon recombination 

using only short regions of homology (Ira and Haber, 2002). Therefore, the recent 

identification of a second pathway of homologous recombination in trypanosomes, which 

does not involve RAD51, and that requires only small stretches of homology -  as little as 

7-13 bp (Conway et a l, 2002), may be highly significant with regards to VSG switching. 

This requirement for only short stretches of homology could mean that this pathway could 

play an important role in the production of mosaic genes. Characterisation of the pathway
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and identification of the components is obviously necessary before any conclusions can be 

drawn.

1.11 Trypanosomes and disease

1.11.1 African trypanosomiases

Evans in 1880 was the first to report the association between the presence of trypanosomes 

in the blood of the host, and disease. He noticed trypanosomes in the blood of camels and 

horses in India, afflicted by a disease known as ‘surra’. Soon afterwards Bruce linked 

trypanosomes with ‘nagana’ (from the Zulu nakana, or ‘tsetse fly disease’) in Southern 

Africa. Since these seminal observations trypanosomiasis has been described in many host 

species, and the diseases caused and parasites themselves have become the objects of great 

interest and research.

Trypanosomiasis in humans occurs in two broad categories, A South American illness, 

Chagas’ disease, is caused by Trypanosoma cruzi, which is transmitted by reduviid bugs. 

The African disease, sleeping sickness, is caused by 2 subspecies of T. brucei and 

transmitted by Glossina species, or tsetse fly. The 2 subspecies of T brucei are loosely 

defined by geography and pathology. Trypanosoma b. rhodesiense largely occurs in East 

and Southern Africa, whereas Trypanosoma b. gambiense occurs in Western Africa. The 

course of disease caused by T. b. rhodesiense is characteristically short and acute, and T. b. 

gambiense causes a more chronic syndrome.

In Africa, tsetse flies, trypanosomes and wild animals have existed and evolved together 

for millenia. This evolutionary co-existence has led to a balanced relationship. In contrast, 

domestic animals are a relatively recent phenomenon on the African landscape. Bos 

indicus breeds -  humped cattle e.g. Zebu -  are thought to have reached East Africa as 

recently as 700 AD, along with sheep and goats, with the Arab invasion (Leak, 1999). 

Therefore the evolutionary relationship has not evolved to an equilibrium state, and disease 

is frequently the outcome of infection by trypanosomes. Certain African Bos taurus breeds, 

such as N’Dama and West African shorthorn, are thought to be descended from cattle 

introduced into North-East Africa from 4,500 BC onwards (Leak, 1999). This longer 

relationship with the trypanosome offers a simplistic explanation for the trypanotolerance 

exhibited by such breeds.
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With reference to cattle in particular, there are 3 species of African trypanosome of 

concern. T. vivax and Trypanosoma congolense are the 2 species that cause severe disease 

among cattle, while T brucei is less significant clinically (it should be noted that these 

classically ‘bovine’ trypanosomes are also capable of infecting goats, sheep, pigs, and 

equids -  and in the latter all three cause serious disease [see Table 1.1]). The epizootiology 

of trypanosomiasis caused by these three parasites is largely linked to the distribution and 

prevalence of the tsetse vector. However, T. vivax has the ability to undergo mechanical 

transmission by Tabanid flies (Desquesnes and Dia, 2003). Mechanical transmission has 

facilitated the spread of T. vivax beyond the African continent to South America and 

Mauritius after the importation of infected cattle (Jones and Davila, 2001), and within 

Africa T vivax can cause disease in the absence of tsetse.

As well as the above species causing disease in equids, T equiperdum (very closely related 

to T brucei; (Isobe et a l, 2003)) is the causative agent o f ‘dourine’ or ‘slapsiekte’ in 

horses, mules and donkeys. The parasite is specific to these hosts, and is atypical in that it 

is venereally transmitted. This fact means that control of the disease is much simpler than 

those caused by the salivarian trypanosomes, because it does not rely on control of 

intermediate hosts, and it has been eliminated from many areas.

trypanosome cattie sheep goats pigs___ horses donkeys
T. brucei + ++ ++ + +++ ++
T. congolense +++ ++ ++ + ++ ++
T. vivax +++ ++ ++ - ++ +
T. evansi ++ + + ++ +++ ++
T. equiperdum - - - - +++ ++
T.simiae - + + +++ - -

T. suis - - - ++ - -

Table 1.1 Trypanosome species and host range (adapted from (Connor, 1994) key; + = mildly 
pathogenic, ++ = pathogenic, +++ = severely pathogenic, - = non-infective.

1.11,2 Pathogenesis

Typically, trypanosomiasis in cattle is characterised by chronic infections with relapsing 

parasitaemias, the major feature of the disease being anaemia. There is a range of 

conditions, however, extending from death within two weeks to full recovery. The factors 

influencing the course and outcome of infection are multiple: strain/species of 

trypanosome, breed of cattle, level of nutrition, and level of challenge (Morrison et a l,
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1981). The most pathogenic species is T. vivax, with T. congolense also causing severe 

disease. T. brucei usually causes low grade chronic infections in cattle.

A typical course of disease sees the packed cell volume (PCV) of the cow progressively 

decrease by around 40 -  50% over the first 4 - 6  weeks. The PCV is a direct indicator of 

anaemia. During this phase, pallor of the mucous membranes can be evident, and 

superficial lymph nodes are sometimes palpably enlarged. Intermittent periods of pyrexia 

occur, particularly with instances of high parasitaemias early in infection. Despite this, 

animals usually continue to eat throughout the disease, although there is a gradual loss of 

body condition. After this initial stage, there can be several outcomes. The PCV can 

continue to fall, leading to death, or it can stabilise and be maintained, leading either to 

recovery and elimination of parasites, or death due to relapse of parasitaemia and clinical 

signs. As anaemia becomes more severe, there is a downward spiral, with the animals 

becoming further weakened and eating less, and in terminal stages some are unable to rise. 

The cause of death is congestive heart failure, resulting from a combination of anaemia, 

myocardial damage, and increased vascular permeability, exhibited in latter stages as 

jugular pulsation, bradycardia and subcutaneous oedema (Morrison et a l, 1981).

Anaemia is the major factor in trypanosomiasis, and is common to trypanosome infections 

in many species. The exact process by which anaemia arises is poorly understood, 

probably involving a variety of mechanisms and complex pathogenesis. It broadly divides 

into 2 phases within the context of an infection. The initial phase (3-4 months in cattle) is 

due to a haemolytic anaemia caused by an increase in red blood cell destruction by the 

mononuclear phagocytic system (mainly in the spleen, but also in the bone marrow and 

lungs). This is due to there being a large proportion of damaged red blood cells, again the 

exact causes being poorly understood, but probably by a combination of the following: 

possible release of haemolysins by trypanosomes (probably not a specific virulence factor, 

but more likely to be fortuitously erythrocyte-lytic molecules); attachment of trypanosome 

antigens - the VSG has been suggested to migrate from the trypanosome to red blood cells 

(Rifkin and Landsberger, 1990); antigen/antibody complexes; attachment of complement 

components to the red blood cell surfaces; and the increased fragility of red blood cells 

during fever (reviewed in Connor, 1994).

1.11.3 Host response

The response of the host to trypanosome infection is critical to the outcome of infection. 

The majority of experimental work has been done in cattle with T. congolense, and mice
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with T. brucei. There are distinct differences between the immunological responses of the 

two host species, and indeed the two parasite species behave differently, with T. 

congolense being an obligatory parasite of the intravascular compartment, whereas T. 

brucei exists in extravascular tissue foci as well as within the bloodstream. This makes 

direct comparison difficult, but there are several factors that are acknowledged to be 

common to trypanosome infections.

The host immune response can broadly be divided into 2 categories -  innate and acquired. 

A large amount of research has looked into the innate aim of the immune response, 

particularly with respect to breeds or lines of animal that exhibit trypanotolerant traits. 

N’Dama cattle and C57BL/6 mice have both been shown to have an ability to control 

infections better than trypanosusceptible counterparts (Muiray et ah, 1981; Morrison and 

Murray, 1985). Indeed, in the case of N’Dama cattle, there is evidence that this 

phenomenon is not restricted to trypanosomiasis, and the breed has shown to have 

increased ‘tolerance’ to tick borne diseases and dermatophilosis (Mattioli et a l, 2000). The 

exact mechanisms behind this are unclear, although it is suspected to be a multigene trait, 

and mapping is undeiivay to identify candidate genes for further study, in both mice and 

cattle (Iraqi et a l, 2000; Hanotte et a l, 2003). Aspects of the innate immune response have 

been shown to be circumvented by trypanosomes. For example, the alternative pathway of 

complement activation, which is a first line of defence against microbes, has been shown to 

be activated only by parasites lacking a VSG coat, indicating the VSG somehow masks the 

parasite from this innate mechanism (Ferrante and Allison, 1983),

The most important mechanism for the host in controlling trypanosome infection is 

generally accepted to be humoral, or B-cell directed specific antibody responses, which 

target the VSG. This has been illustrated by protection being mediated by passive transfer 

of antibodies (Campbell and Phillips, 1976). The initial parasitaemic peak is mainly 

controlled by the IgM class of antibody. IgM levels rise rapidly initially (Luckins and 

Mehlitz, 1976; Musoke et a l, 1981), and concentrations seem related to parasite burden 

(Nielsen et al, 1978). The IgM levels remain high throughout infections when measured. 

Production of the IgG isotype increases as the infection progresses and affinity maturation 

occurs, and the specificity and efficiency of this subclass increases with time (Musoke et 

a l, 1981). Experimentally, there is correlation with antibody response and size of 

inoculation. When cattle were inoculated with a range of irradiated T. brucei, from an 

inoculum size of 1 x 10̂  to 1 x 10  ̂parasites, above a threshold of 1 x 10  ̂trypanosomes 

there was complete protection against re-infection by homologous parasites (Morrison et 

a l, 1982a), partial protection with an inoculum of 1 x 10^parasites, leading to a delay in
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onset of patent parasitaemia compared with the 1x10^ inoculum that conferred no 

protection. In mice injected with a range of irradiated T. congolense, from 1 x 10̂  to 5 x 

10"̂  parasites, an inoculum of 1 x parasites induced a detectable IgM response as 

measured by the single radial immunodiffusion assay -  any dose greater than this induced 

both IgM and IgG antibodies (Morrison and Muiray, 1985). The trypanolysis test, 

however, which is a more direct test of antibody efficacy in vivo, was used to assay the 

same serum responses, and only functioned with an inoculum 1 x 10  ̂or over.

Interestingly, there has been evidence that antibodies are induced only by degenerating 

parasites, the suggestion being that only pleomorphic parasites that differentiate to the 

short stumpy life cycle stage can induce a viable specific immune response (Sendashonga 

and Black, 1982). Mice immunised with purified VSG {i.e. not live trypanosomes) 

produced VSG specific antibodies; the majority of these did not bind to surface-accessible 

epitopes on live trypanosomes however, but rather reacted with soluble VSG or VSG on 

acetone fixed smears (Black et a l, 1982; Sendashonga and Black, 1982). In contrast, mice 

infected with pleomorphic trypanosomes produced antibodies that reacted only with 

surface-accessible VSG epitopes (Sendashonga and Black, 1982). Infections with 

trypanosomes in mice with monomorphic trypanosomes did not produce detectable 

antibodies in serum, antibodies could not be detected bound to purified trypanosomes, and 

collected lymphocytes did not produce VSG-specific antibody-producing hybrids with 

myeloma cells (Sendashonga and Black, 1982). The obvious major difference between 

these two forms of parasite is the fact that pleomorphic trypanosomes differentiate to the 

short stumpy life cycle stage, which has a finite lifespan in the mammal unless taken up by 

the tsetse vector. These data suggest that B cells in infected animals respond to fragments 

of trypanosome on which the VSG organisation is intact, probably derived from the 

senescent short stumpy parasites. However, there has been no subsequent verification of 

these findings.

Cytokine responses in infected animals are also important, particularly in controlling 

parasites in extravascular tissues, by the activation of macrophages (Hertz and Mansfield, 

1999). The key cytokines involved are interferon y (IFNy) and tumour necrosis factor a  

(TNFa). T. b. gambiense induced dose-dependent production of TNFa by macrophages in 

vitro, and there was also a dose-dependent direct lytic effect of TNFa on bloodstream 

trypanosomes in vitro. However, this direct lytic effect was ablated by the addition of red 

blood cells, suggesting that it plays a role in the extravascular compartment. The addition 

of anti-TNFa antibodies to culture increased the number and lifespan of trypanosomes
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(Daulouede et a l, 2001). IFNy is thought to be the main mediator of TNFa production by 

macrophages in vivo. By analysing T. b. rhodesiense infections in IFNy knockout mice, it 

was deduced that resistance was associated with the ability to produce IFNy (Hertz et a l, 

1998), and it has since been elucidated that the induction of nitric oxide, which is 

important in combating other microorganisms, is not the pathway via which IFNy confers 

resistance in trypanosome infections (Hertz and Mansfield, 1999; Millar et a l, 1999), 

However, the complex interplay and pathways by which cytokines function are not clear 

with respect to trypanosomiasis, and indeed cytokine profiles differ between mammalian 

species (see (Defresne, 1998; Goddeeris, 1998)), so the validity of extrapolating between 

in vitro, mouse and cattle models in this case is questionable.

Elimination of trypanosomes from the bloodstream is most likely to be due to antibody- 

mediated complement lysis. One study has shown the accumulation of radio-labelled 

trypanosomes in the liver following passive immunisation by injection of hyperimmune 

serum (MacAskill et a l, 1980), suggesting VSG specific antibody opsonisation and 

phagocytosis by Kuppfer cells (a subset of macrophage) in the liver. It is possible, 

however, that this was due to phagocytosis of ‘ghosts’, already lysed by antibody mediated 

lysis. The precise role played by antibody mediated complement lysis in trypanosome 

removal during in vivo infections is unclear. This process would involve the antibody 

binding to its VSG surface epitope target, and initiating the complement cascade, the end 

of which leads to pore formation in the trypanosome plasma membrane, perforation and 

lysis of the parasite. There is circumstantial evidence for this process playing a role, as 

there is marked reduction in complement component levels during infection, which 

coincides with parasite peaks (Nielsen et a l, 1978). In addition, there are high IgM levels 

associated with trypanosome infection (Luckins and Mehlitz, 1976; Musoke et a l, 1981), 

and cattle IgM binds complement 1 0- 20  times as efficiently as IgG (Goddeeris, 1998). 

Moreover, microscopic analysis of blood collected at remission of parasitaemia reveals 

many trypanosome ghosts (J.D, Barry, pers. comm.). These observations combine to 

suggest that antibody mediated complement lysis is the most likely route of trypanosome 

removal by the host immune system.

1.12 Hierarchical VSG expression

Following inoculation into a new host by tsetse bite, trypanosomes rapidly differentiate to 

the long slender bloodstream form. At this point, the tiypanosomes are expressing VSGs 

from among the metacyclic subset, and continue to do so for the first few days of infection.
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After approximately 5-7 days the MESs are silenced and expression switches to the BESs 

and the bloodstream variable antigen type (VAT) repertoire (Barry and Emery, 1984). It 

has been noted that one of the first VATs to appear is the one that was ingested by the fly 

(Hajduk, 1984). Almost certainly this is due to reactivation of the BES that was active in 

some of the ingested trypanosomes. The subsequent characteristic infection profile of 

pleomorphic trypanosomes is of an initial high magnitude and relatively short duration 

parasitaemic peak, giving rise to intermittent relapse peaks, decreasing in both 

parasitaemia and timespan as the infection progresses. The interval between peaks also 

increases with time. Each peak consists of several sub-populations expressing different 

VATs. This profile is particularly typical of infections in cattle and humans. When the 

same strain was compared across several host species (T. vivax in mice, rats, rabbits, goats 

and cows), the profile and course of infection differed quite markedly (Bainy, 1986). The 

parasitaemia differed in the timing of emergence, number of parasites, and size of relapse 

peaks. The progression of infection is undoubtedly a product of many factors, both 

associated with the host and trypanosome. A major factor is thought to be the semi- 

predictable progression through the VSG repertoire. This staggered usage of VSGs 

prevents expression of, and the onset of immune responses against, a majority of the VATs 

over a short period, and rapid exhaustion of the repertoire. It optimises use of the range of 

VATs available, and is probably a key to extending the chronicity of an infection. The 

following paragraphs concentrate on the major studies addressing this phenomenon.

The observation of a loosely fixed hierarchy of expression of valiants within the period of 

replicate infections was made as long ago as 1965 (Gray, 1965). Gray noted the “semi- 

predictable” order of appearance of different antigen types in tsetse transmitted T. brucei 

infections in rats, with some VATs being expressed more frequently, one in particular 

being frequently activated and ‘predominant’, and detected in all infections that were 

followed. This was ternied the “basic strain antigen” and, in the absence of immune 

pressure, stocks expressing other VATs reverted to this type, thus confiiming the 

“reversibility” of antigenic variation. Although the method of comparison between VATs, 

by cross-referencing trypanosome samples at infection timepoints with variant-specific 

antisemm and using agglutination as the discriminatory criterion, does not take into 

account either the number of VATs the cross-reference antisera was directed against, or the 

switching rate of the trypanosomes (the latter not feasible at the time), the agglutination 

test is highly specific, and even if identifying sub-groups of antigens rather than individual 

VSGs, as was probably the case, this study still illustrated very neatly the repeatability of 

the hierarchy. It also is quite unusual in using tsetse transmission (in order to address the
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question of whether the tsetse cycle affected the observation of hierarchy), as most 

subsequent studies have used syringe inoculation.

In a similar study (McNeillage et a l, 1969) looking at relapse populations in T. brucei 

infections in mice initiated with a clonal trypanosome line, it was also noted that certain 

antigen types were represented more often than others, and that relapse populations were 

mixed. In particular it was observed, again by cross agglutination test, but this time against 

clones grown up from the first relapse peaks, that the same variants appeared in separate 

infections initiated with two clones, one derived from the other but several passages 

removed, indicating a maintenance of the hierarchy through generations. In this case it was 

hypothesised that the reason for some variants to appear more often was in fact differential 

virulence, and therefore inequality in the ability of the respective variants to grow in mice.

Van Meirvenne (Van Meirvenne et a l, 1975) analysed the composition of first relapse 

peaks in mice and rabbits infected with clonal T. brucei stabilates with defined lineages, by 

cross-referencing specific antisera using immunofluorescence and trypanolysis, and noted 

that many of the antigens were shared, but only within related trypanosome strains. Clones 

from two different lineages were examined, and it was seen that there were no shared 

antigens. Based on this study, the term ‘serodeine’ was developed to describe a “set of 

antigenic variants which can all be derived one from the other”. It was concluded that the 

variants isolated from each strain of parasite represented the ‘predominant’ antigen types 

of the respective strain, following the lead of Gray (1965).

Capbem isolated 101 different antigenic types during infection in 11 rabbits with T. 

equiperdum, and analysed the time of appearance of antibodies against each (Capbem et 

a l, 1977). These were arbitrarily separated into 3 categories -  a) “early types” which 

appeared in the first three weeks of infection, b) “semi-late types” appearing slightly later, 

and c) “late types” which appeared only in rabbits that survived more than a month. The 

progression was again examined by the agglutination test, in this case with antisera raised 

against clonal trypanosomes. From this study several important observations were made. 

The variants appeared with a rapid fiequency -  new variants could be isolated every two to 

three days, and several variants could often be isolated at the same time. In addition, when 

infections were initiated with clones of parasite expressing different variants, which had 

been previously derived from the original “basic type antigen”, the general progression of 

antigenic types was similar. Interestingly, the basic type antigen, BoTat-1, was isolated 

from the first relapse peak during all of the 6 infections initiated with descendent clones.



29

When the expression of several VATs of T. brucei was examined in relapse peaks in rats 

(Miller and Turner, 1981), it was again discovered that the VATs grouped into 3 main 

groups, designated as -  a) “expressed in the majority of relapses”, b) “expressed 

occasionally” and c) “absent”. This was a more precise and extensive study; where 

previous experiments had by necessity examined VATs at the population level, Miller and 

Turner could identify individual trypanosomes, thanks to use of purified antibodies and 

specific immunofluorescence. This showed significant advantages, in that it allowed the 

identification of minor types by immunofluorescence, and in addition the ability to 

immunise with purified VSG minimised the possibility of cross reactive antibodies. From 

their results. Miller and Turner suggested that there were differences in the likelihood of 

one VAT switching to another, with the “order of priority” being in effect lineages of 

VATs, each of which determined the subsequent one. They also stated that this was 

independent of growth rate, although they did suggest that differential growth rate may be 

important in determining the major VAT in each parasitaemic peak (see 1.13 for further 

discussion of this idea).

Myler and colleagues examined the progression of VAT populations in irradiated mice 

(Myler et a l, 1985), In this study the “stability” of each VAT was calculated by 

immunofluorescence, with clonal lines switching to the “basic type” at different 

frequencies. It should be noted that in this case, the only VAT switched to from 5 different 

derived clones was the basic type. Again, VATs were divided into 3 categories -  a) the 

basic type, and one derived clone that did not switch to any other VAT, b) one VAT that 

after 50 days had 90% of the population expressing the basic type, and c) 3 VATs that 

were rapidly replaced by the basic type. The growth rates of the different VATs were 

evaluated and found not to differ. Based on these results, the authors hypothesised that 

there were different “switch frequencies” determining the probability of one VAT 

switching to another. This study also emphasised the point made in earlier work, that 

antigenic variation is independent of the immune response as it occurs in the absence of 

immune selection, demonstrated by the fact that antigenic variation occurs in vitro in T. 

brucei (Doyle et a l, 1980).

Robinson and colleagues analysed the emergence of antibodies against several VATs over 

the course of T. brucei infections in four rabbits (Robinson et a l, 1999). It was proposed 

that VATs emerging early in infection have a higher probability, and hence frequency, of 

expression, than those emerging later. As a result of this, the predictability of the order is 

higher early in infection than later. This was even seen to be the case within relapse peaks, 

with VATs activated towards the end of the peak displaying a more iiTegular expression
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pattern across the 4 rabbits than those present at the start. The genomic location and copy 

number of the VSGs isolated were elucidated, and the timing of expression was suggested 

to be linked with genomic location of the silent, or donor, VSG gene. All donor genes 

analysed in this series of infections were located subtelomerically, with the exception of 

ILTat 1.71, which was a chromosomal internal VSG that appeared relatively late in one 

infection (isolated on day 17). Studies in monomorphic lines have revealed that early 

switches predominantly involve subtelomeric genes (Pays et al., 1983b; Aline et al.,

1985b; Liu et a l, 1985), while chromosomal internal genes were presumed to be expressed 

later in infection. Due to the internal repertoire representing a large proportion of the VSGs 

available to the trypanosome, it is thought they must play a major role in chronic 

infections. An earlier study examining the expression of an internal VSG (VSG 118 in 427 

trypanosomes) in rabbit infections, had noted that the VSG was isolated at similar time 

points in 2 infections (days 18 and 20), and when clones were examined, the 118- 

expressing population had arisen from several independent activations (Timmers et a l, 

1987). When the expression of VSG 118 in a rabbit infection was examined in more detail, 

it was observed that transcription (measured by Northern analysis) occurred firom days 15 

through 22, and the parasites were detectable by inununofluorescence during the same 

period, peaking in numbers at day 20 (Lee and Van der Ploeg, 1987). This subpopulation 

was also derived from several independent activations. These data combine to suggest that 

VSGs tend to appear within a relatively restricted timeframe, dependent upon their 

genomic locus, and arise tlnough multiple switching events.

Mosaic gene formation is a rarely detected event, and therefore likely to become of 

importance once the internal gene repertoire effectively becomes exhausted, due to the 

presence of antibodies against the gene products (Kamper and Barbet, 1992). However it 

must be noted that the high predominance of pseudogenes in the internal repertoire of 

TREU 927 trypanosomes (L. Marcello, P. Burton and J.D. Barry, pers. comm.) suggests 

mosaic gene formation may be of more import than previously assumed.

1.13 Mathematical models

Theoretical modelling is a tool that has been utilised in order to try and explain the 

mechanisms that drive the hierarchical expression of VSGs. There have been few models 

that have successfully fused biological knowledge and data with modelling inputs and 

outcome. This is due to the complexity of interactions involving both host and parasite, and 

the necessity to simplify the situation in order to model it.
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An early hypothesis proposed that different antigenic variants differ in their intrinsic 

growth rates, leading to the faster growing variants appearing earlier in infection (Seed, 

1978). It was concluded from Seed’s study that rather than direct outgrowth, there was a 

level of inhibitive competition, as one clone in particular replaced another at a rate greater 

than the measured growth rates would have predicted. This progression was semi- 

predictable. There were, however, several flaws in this model. Two clones with the same 

serotype, which therefore presumably expressed the same VSG, had differing abilities to 

compete with 3 other variants, suggesting a phenotype not linked to the VSG. In addition, 

the possibility of switching events resulting in an increase or decrease in magnitude of 

VAT-expressing populations was not taken into account. The model proposing differential 

growth rates has been opposed on theoretical grounds (Kosinski, 1980), where randomly 

generated differences in growth rates were unable to simulate the in vivo picture (all other 

parameters were assumed to be non-variant). Indeed, it was felt that the differences in 

growth rates would have to be much greater than those observed to produce a realistic 

profile. Moreover, Kosinski suggested that “allowing each variant to generate only a 

limited range of other variants” could simulate the picture in the host. He allowed that 

significant competition between different VATs could be a mechanism, as could a range of 

differences in immunogenicity across VATs. Growth rates have been analysed 

experimentally (Myler et al., 1985; Aslam and Turner, 1992), and no correlation has been 

found between the expression of different VSGs and differing growth rates. The 

differential growth of trypanosome clones undoubtedly will occur, but a relationship with 

the expression of individual VSGs is unlikely. A level of general inhibition has also been 

obseiwed in T. brucei infections, when superinfections were undertaken in batches of mice 

and sheep, and the iniiibition was detennined to be independent of the stock of 

trypanosomes and the immune response, the suggestion being that it was most likely to be 

due to a decrease of the long slender form mitotic rate (Turner et ah, 1996). These findings 

constitute an aspect of trypanosome infections that deserves further study, as the 

phenomenon of inhibition could potentially be extremely important, in terms of chronicity 

of infections, interaction between parasites within the host, and potentially virulence.

Agur and colleagues (1989) suggested a model whereby the hierarchy may be due to 

differential immune responses to ‘double expressor’ trypanosomes that were in the 

transition between different VATs. In this model, switches occur at random, and a 

proportion of the switching events undergo a phase whereby two species of VSG are 

expressed on the surface of the trypanosome as one is in the process of being replaced by 

the other. Only by this being the case, and the double expressors having differential 

susceptibility to the immune response, could the ordered appearance of variants be
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modelled. Different growth rates or switching probabilities were not sufficient. This model 

has also failed to gain support (see (Barry and Turner, 1991)), although it has not been 

thoroughly tested. Double expressor trypanosomes have been generated in vitro by 

inserting a second VSG into the active BES, and it was demonstrated that the expression of 

2 VSGs simultaneously is not intrinsically harmful to the cell (Munoz-Jordan et al., 1996). 

However, in a more pertinent study (Chaves et a i, 1999), whereby 2 drug-resistance genes 

were inserted into two different BESs, VSG double expression was maintained only under 

drug selection, and expression seemed to fluctuate between the two. It seems likely, 

therefore, that the double expressor is likely to be an unstable and transient intermediate.

Two models have also suggested that chronic infections characteristic of T. congolense in 

cattle were most likely to be explained by a gradual increase in levels of antibody to 

invariant antigens as the infection progi'esses (Antia et a l, 1996; Agur and Mehr, 1997). 

This is an unstudied hypothesis. The specific immune response is heavily directed towards 

the VSG, however, although the picture in later stages of chronic infections is not so well 

understood. Immune responses are generated against invariant antigens (Radwanska et al, 

2000b), but the effectiveness or otheiwise of these responses has not been examined. It has 

been suggested that antibody responses are stimulated only by degenerating stumpy 

parasites (Black et a l, 1982), and in this scenario it is feasible that the invariant antigens 

normally concealed by the VSGs would be accessible to the immune system. However, the 

efficacy or othei'wise of these antibodies is not clear, and indeed it is difficult to envisage 

how the antibodies would be able to suimount the presence of the VSG barrier in intact 

living trypanosomes.

Frank (Frank, 1999) formulated a mathematical model that has been the most satisfactory 

to date in terms of incorporating current knowledge of trypanosome antigenic variation. 

Several factors were considered to be independent of the VSG -  growth, antibody 

production and effect, and carrying capacity of the host. The one variable was varying the 

switching rate of one antigen type to another. Randomly varying switch rates did not work; 

instead only “small variations in the rate at which one antigen type switches to others” can 

“explain the obseiwation of a loose hierarchy within an infection”, the variations 

determined by regions of homology between the VSG loci and flanking regions. Frank 

mentions specifically 70-bp repeats as being possibly important. The switching matrix 

formulated by Frank gives rise to a deterministic process, whereby because a VSG cannot 

switch back to itself, and is predicted to switch predominantly to one or two subsequent 

variants, which are then subject to similarly directed switching probabilities, the hierarchy 

is predictable and deterministic, with minor variations. The flaw in Frank’s model is that it
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has a lack of reversibility, which should logically be inlierent in a system based on 

sequence homology. For a more detailed examination and discussion of Frank’s model see 

sections 5.2 (p. 109) and 6.5 (p. 143), and for in depth discussion of all models see section 

5.2.

1.14 Aims of project

This project aims to dissect further the hierarchical expression of VSGs during T. brucei 

infections, with particular reference to the genomic locus of the silent VSG, and the 

flanking regions of the silent VSG.

This will be done by examining the timing of expression of a subset of single copy VSGs 

within replicate chronic infections in mice and cattle, using pleomorphic trypanosomes. 

Single copy genes are to be used in order that it is known from where the silent gene was 

duplicated. It is hoped that a representative group of VSGs can be identified, which 

incorporate all genomic environments that VSGs inhabit, namely bloodstream expression 

sites, metacyclic expression sites, minichromosomes and chromosomal internal arrays.

This will enable the question of the influence of genomic locus on the timing of expression 

to be further studied. Further to this, characterisation of the flanking regions of the VSGs 

will be attempted, specifically with respect to the 70-bp repeats, in order to assess the role 

of flanking regions within the hierarchical expression.

A mathematical model will be formulated, with the assistance of Dr Katrina Lythgoe 

(University of Edinburgh), to simulate the in vivo dynamics of trypanosome infections, 

incorporating relevant and measured biological parameters, and building upon the valid 

foundations of the Frank model (1999). This will be used to further examine the findings 

and conclusions of the experimental work, and to assess the influence of genomic locus 

and homology upon the kinetics of chronic T, brucei infections.
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Chapter 2

Materials and Methods
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2 Materials and methods

2.1 Reagent abbreviations

BSA bovine serum albumin

CBSS Carter’s Balanced Salt Solution (1 x): 0.023 m HEPES, 0.12 M NaCl, 5.41 mM 

KCl, 0.4 mM MgS0 4 , 5.6 mM Na2HP0 4 , 0.035 M glucose, 0.05 inM phenol red, pH to 

7.4.

DAPI 4,6-diamidinO“2“phenylindole

DEPC Diethyl pyi'ocarbonate: use at 0.1 % to remove RNAase.

DMSO dimethyl sulphoxide 

DNA deoxyi'ibonucleic acid 

dNTP deoxynucieoside triphosphate 

FITC fluorescein isothiocyanate

HEPES N-[hydroxyethyl]piperazine-N’-[2-ethane“Sulphonic acid]

PBS phosphate buffered saline (Sigma, Ltd.)

PMSF phenylmethylsulphonyl fluoride

PS phosphate/sodium chloride buffer (1 x) : 0.06 M NazHP0 4 , 46 mM NaCl.

PSG phosphate/sodium chloride/glucose buffer (1 x) : 0.06 M Na2HP0 4 , 46 mM NaCl, 55 

mM glucose, pH to 8.0.

RNA ribonucleic acid

SDS sodium dodecyl sulphate

SOB bacterial medium (per litre): 20 g bacto-tryptone, 5 g bacto-yeast extract, 0.5 g NaCl.
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SOC SOB bacterial medium plus 20 mM glucose

SSC sodium chloride/sodium citrate solution (1 x): 0.15 M NaCl, 0.015 M 

N a 3 C 6 H 5 0 7 .H 2 0

TAE Tris/borate/EDTA buffer (1 x): 0.04 M Tris base, 0.04 M glacial acetic acid, 1 mM 

EDTA

TE 10 mM Tris.Cl, 1 mM EDTA

TLCK N a -p - to sy l-L ~ ly s in e  c h lo ro m e th y l  k e to n e

2.2 Routine handling of trypanosomes

The trypanosome stock used in the chronic mouse infections, EATRO (East African 

Trypanosomiasis Research Organisation) 795, was a field isolate of Trypanosoma brucei 

brucei collected from a cow in Uliembo, Kenya, in 1964. This was passaged in a mouse for 

8 days, and, from this, clonal trypanosomes were grown up in mice for a further 10 days 

prior to stabilation. This has resulted in a line of trypanosomes that is genotypically clonal, 

but phenotypically polyclonal with regard to VSG expression (meroclonal). The 

trypanosomes switches VSG at approximately 1x10"^ switches/cell/generation (Turner, 

1997). The ILTat (I.L.R.A.D. [International Laboratory for Research on Animal Diseases] 

Trypanozoon antigen type) 1.2 expressor clone used in the cattle infections was derived 

fi-om the EATRO 795 line. The ILTat 1.2 trypanosomes switches VSG at about 1x10 “̂ 

switches/cell/generation (Robinson, 1999). The lower switching rate derives from a 

number of in vivo passages, but the trypanosomes remain pleomorphic.

The mouse infections, undertaken in adult female B ALB/c mice, were established by the 

intraperitoneal injection of approximately 1 x 10  ̂trypanosomes (previously grown in an 

immunosuppressed BALB/c mouse infected with the EATRO 795 stabilate). The cattle 

infections were established in adult (approximately 18 months old) Friesian steers by 

intravenous injection of 1 x 10̂  trypanosomes (previously grown in an immunosuppressed 

Harlan MF I mouse infected with the ILTat 1.2 stabilate). Clonal ILTat lines (ILTats 1.21, 

1.22, 1.25, 1.64, 1.67, 1.71 & 1.73), which were used for generation of VAT-specific 

antisera and in vitro complement lysis assays, were grown up in an immunosppressed ICR 

mouse from stabilates in liquid nitrogen storage.
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Estimation of trypanosome numbers was routinely carried out as described (Herbert and 

Lumsden, 1976). If an accurate count was necessary, the trypanosomes were counted in the 

chamber of an improved Neubauer haemocytometer.

2.2,1 Host immunosuppression, trypanosome growth and 

coiiection, and stabiiate preparation

Trypanosomes were grown from stabiiate in ICR or BALB/c mice (Harlan UK) that had 

been immunosuppressed by cyclophosphamide treatment (250 mg.kg"' body weight,

Sigma) 24 h previously. Exsanguination was perfoimed when appropriate by cardiac 

puncture into 5% sodium citrate anticoagulant in Carter’s Balanced Salt Solution (CBSS) 

(0.15 ml 5% sodium citrate per 0.85 ml blood).

Stabilates were prepared routinely by immediately mixing the blood 2:1 with 22.5% v/v 

DMSO (in CBSS), and freezing the sample at -70° C over a 24 h period. The stabiiate was 

then transferred to liquid nitrogen for storage. When a stabiiate was required for infection, 

one tube of it was thawed rapidly at room temperature, mixed with 0.15 ml HMI9 medium 

(Hirumi and Himmi, 1989) and injected as soon as possible into the immunosuppressed 

mouse.

For the haiwesting of large numbers of parasites, the infection was established in 2 

immunosuppressed ICR mice, and the blood was collected at a high parasite titre (> 1 x 

lO^.ml'^), and then and injected equally, intraperitoneally, into 3 Wistar rats (Harlan UK). 

The parasites were then harvested at the initial peak, typically 48 ~ 72 h later, by cardiac 

puncture exsanguination.

During the cattle experiment, 5 ml blood was taken each day from the left jugular vein into 

a vacutainer containing EDTA anticoagulant (Beckton Dickinson). 0.2 ml of each daily 

blood sample was inoculated into an adult Harlan MFl mouse (ILRI), immunosuppressed 

24 h previously by sub-lethal in'adiation (600 Rads). If there was parasite growth, the 

mouse was bled by cardiac puncture when the parasitaemia reached approximately 1x10^ 

parasites.ml"’. 0.2ml of this blood was passaged into a second immunosuppressed Harlan 

MFl mouse, and this mouse was bled by cardiac puncture when its parasitaemia reached 1 

X 10® trypanosomes.mf’ (2 passages were necessary in order to fulfil legal requirements 

with regard to the import of cattle derived parasites to the United Kingdom). A stabiiate 

was prepared from the blood of the second mouse immediately, by mixing blood with 20% 

glycerol in PS G at a ratio of 1:1. The stabilates were suspended for 24 h in the liquid
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n i t r o g e n  ta n k  a b o v e  th e  s u r fa c e  o f  th e  l iq u id ,  a n d  th e n  tra n s fe iT e d  to l iq u id  n i t r o g e n  fo r  

s to ra g e .

2.2.2 Trypanosome cloning

Trypanosome clones were isolated from blood as soon as possible after exsanguination of 

the mouse host, by micromanipulation (McNeillage et a l, 1969). A dilution of the 

trypanosomes was prepared in HMI9, and one-drop samples dispensed into the wells of a 

Terasaki plate (Greiner Labortechnik). The Terasaki plate was kept moist by lining the 

edges with wet tissue paper. The wells were examined using a microscope to identify those 

wells containing only a single trypanosome. 10 pi of HMI9 was carefully pipetted into that 

well, and the contents were transfen'ed by micropipette into a 1.5 ml eppendorf tube 

containing 100 pi HMI9. The contents were drawn into a syiinge containing 0.4 ml of air, 

and were injected intrap eritoneally into an ICR mouse, using the air to push all the liquid 

fi'om the syi'inge.

2-2.3 Preparation of biood smears for immunofluorescence

and the collection of plasma for in vitro complement lysis

Thin-film blood smears were prepared by placing a drop of blood (approximately 5 pi) on 

a glass microscope slide. The blood was spread along the length of the slide using a slide 

edge, and the smear left to air-dry. The smears were then fixed in acetone for 5 mins, air- 

dried, and stored at 4° C sealed in polythene bags containing silica gel.

Plasma was prepared from ICR mice injected with the ILTat clone stabilates. At the initial 

parasitaemic peak the mice were cured with cymelarsen, at 5 mg.kg"‘ body weight (Rhone 

Mérieux), and the blood was collected 72 h later (allowing sufficient time for the 

antibodies to be raised). The blood was centrifuged at 8,000 x g for 10 mins in a 

microcentrifuge to pellet the trypanosomes and larger blood components, and the 

supernatant fluid ( = plasma) was collected. The plasma was stored at -20° C.

Plasma was collected every 4 days during the chronic infections in mice. A maximum of 

15 pi blood was taken per mouse every 4 days. Mouse tail blood was collected,by piercing 

the lateral tail vein with a surgical lancet, and drawing the drop of blood into heparinised 

capillary tubes (Hawksley & Sons Ltd), which then had one end sealed with Critaseal® 

(Hawksley & Sons Ltd.). The capillaries were centrifuged for 3 mins in a micro-
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haematocrit centrifuge (Hawksley & Sons Ltd), and were then broken just above the buffy 

coat using a diamond, and the plasma was expressed into a 0.5 ml eppendorf tube. The 

plasma was then stored at - 20° C.

Plasma was collected daily during the chronic infections in cattle. Blood was taken into an 

EDTA vacutainer (Beckton Dickinson), and centrifuged at 8,000 x g in a centrifuge for 10 

mins. The supernatant was collected and stored at -20°C.

2.2.4 Purification of trypanosomes from biood 

2.2.4.1 DEAE cellulose Ion exchange chromatography

This purification process is based on the difference in surface charge between host cells 

and trypanosomes. Under certain pH and ionic strength conditions, the more negatively 

charged host cells will bind to the DEAE cellulose (DE52 cellulose, Whatman), and the 

less negatively charged trypanosomes pass down the column and are collected in the 

effluent (Lanham and Godfrey, 1970). The cellulose was initially resuspended in PS buffer 

(1 X : 0.06 M Na2HP0 4 , 46 mM NaCl), and the pH was adjusted to 8.0 by the addition of 

phosphoric acid (5%). The cellulose was cycled in several volumes of PS buffer until the 

pH stabilised at 8.0. The cellulose was then added to a column with a sintered glass disc 

(PI, BDH), and approximately 150 g wet cellulose was used per 10 ml of blood. The 

cellulose was allowed to settle, and several volumes of PSG buffer (1 x : 0.06 M Na2HP0 4 , 

46 mM NaCl, 55 mM glucose, pH 8.0) were run through the column slowly. A disc of 

3MM paper (Whatman), cut to the diameter of the column, was carefully placed on the 

surface of the cellulose. Blood was mixed 1:1 with cellulose, and layered on top of the 

paper disc using a pipette. A second 3MM disc was then placed on top of the 

blood/cellulose mixture. The 3MM discs helped maintain the packing of the cellulose 

column, and allowed the addition of buffer without disturbing the cellulose surface. PSG 

buffer was then layered on top of the second 3MM disc using a pipette, and was topped up 

as necessary, care being taken that the column did not dry out. The effluent was collected 

in a series of 50 ml Falcon tubes (Greiner Labortechnik) until no trypanosomes were 

detected by light microscopy. The effluents were centrifuged at 1,000 x g for 10 mins, and 

the pellets were resuspended in 1 ml PSG. The suspensions were then combined, 

centrifuged for 10 min at 1,000 x g, the supernatant was poured off, and the pellet was 

stored at -70° C.
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2.2A2 Percoll gradient

Percoll (Sigma, Ltd) permits separation of trypanosomes from blood cells on a density 

gradient by centrifugation. This method is not as efficient as the DEAE cellulose method in 

that there is more contamination with red blood cells, hi the work described in this thesis, 

Percoll sepai'ation was used only for the isolation of trypanosomes in order to extract 

genomic DNA. The method involved the mixing of the blood and trypanosomes with a 

Percoll stock solution (100 ml of 100% Percoll with 8.55 g of sucrose and 2 g of glucose, 

adjusted to pH 7.4 with HEPES) at a 3 : 5 ratio, and then centrifugation at 1,700 x g for 15 

mins at 4° C. Trypanosomes were then collected by pipette from an observable discrete 

band at the top of the gradient, and washed several times by centrifugation at 1,700 x g, 

and resuspension of the pellet in PSG buffer.

2.3 VSG purification

Trypanosomes were lysed at a concentration of 1 x 10 parasites.mf', in trypanosome lysis 

buffer (10 mM NaP [93.2% v/v 0.1 M Na2HP0 4 , 6.8% v/v 0.1 M NaH2? 0 4 ] pH 8.0, 0.1

mM Na-p-tosyl-L-lysine chloromethyl ketone [TLCK] and fresh 1 mM 

phenylmethylsulphonyl fluoride [PMSF]), The trypanosomes were swirled for 5 mins at 

35° C, activating the released endogenous phospholipase C (Cross, 1975). The solution 

was centrifuged for 15 mins at 15,000 rpm (FI010 rotor, Beckman), and the supernatant 

containing the released VSG was taken off. The protein was then collected by Fast 

Performance (DEAE cellulose) Liquid Chromatography (FPLC), using a Biologic LP 

machine (Biorad). The cellulose had been previously acid/base cycled, by sequentially 

passing 15 volumes of 0.5 M HCl and 15 volumes of 0.5 M NaOH through it, this process 

removing the endogenous proteases, before being recalibrated with 10 mM NaP buffer, pH 

8.0 .

2.4 Protein gel electrophoresis

Protein samples were fi'actionated and visualised on SDS-polyacrylamide gels. 10% 

acryiamide (Anachem) gels were made (Sambrook et al., 1989) between two glass plates. 

The gels were electrophoresed in 1 x SDS running buffer (0.18 M Glycine, 0.023 M Tris, 

0.003 M SDS) at 200 V. The gels were washed briefly in water, and then stained by 

submerging in stain solution (0.25 g Coomassie brilliant blue R [Sigma] in 90 ml of 

methanohwater [1:1 v/v] and 10 ml glacial acetic acid), for 45 mins to 4 h. Gels were
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submerged in destain solution (10% glacial acetic acid, 40% methanol) for 1-3 h, to allow 

visualisation of bands.

2.5 Serology

2.5.1 In vitro complement lysis assay

Trypanosomes were suspended in guinea pig serum (GPS)(Hai*lan) to 1 x 10̂  cells.mf^ 

(except clonal lines ILTats 1.25 and 1.73, which were suspended to 5 x 10̂  cells.mf’). The 

plasma isolated from the mice was diluted 1:10 and 1:50 in GPS. 5 pi of trypanosome 

dilution was mixed with 5 pi of serum dilution in a well of a Terasaki plate. After 

incubation at room temperature for 1 h, the well was examined by phase-contrast 

microscopy (Robinson et a l, 1999). The Terasaki plate was kept moist by lining the edges 

with agar. The extent of lysis was then determined, by counting 100 trypanosomes, 

destroyed cells appearing as ruptured “ghosts”. The trypanosomes were also incubated for 

1 h with GPS alone, as a negative control; with antiserum specific to the clonal line diluted 

in GPS 1:10 as a positive control; with antiserum specific to a heterologous clonal line 

diluted in GPS 1:10 as a further negative control. The assay was performed within 1 h of 

blood collection and the trypanosomes were stored on ice while the dilutions were 

prepared.

2.5.2 In vitro agglutination assay

This method was adapted fi'om the original (Cunningham and Vickeiman, 1962). Clonal 

trypanosomes of a VAT under study were grown up in an immunosuppressed mouse to 

approximately 1x10® paiasites.ml'% and the animal was terminally bled by cardiac 

puncture. The trypanosomes were diluted to 1 x 10̂  parasites.mf* in PSG 10% PCS 

(Phosphate saline buffer pH 8.0 with glucose and 10% foetal calf serum). These parasites 

were then mixed 1:1 with antibody (or plasma) diluted 1:20 in PSG 10% PCS in the wells 

of a Terasaki plate. The plates were incubated at room temperature for 1 h, and the wells 

were examined by light microscopy for the presence of agglutinated clumps of 

trypanosomes.
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2.5.3 Immunofluorescence

Indirect immunofluorescence was performed at room temperature on acetone-fixed thin 

blood smears (Turner and Barry, 1989). Reference antisera, which had been derived in 

either mouse, rat or rabbit hosts, were used separately as the primary antibody. Prior to the 

assay the slides were marked with a hydrophobic paint-pen (Mark-Tex Corp., BDH) to 

produce wells for antibody containment. In a humid chamber, the smears were rehydrated 

for 5 mins by adding PBS to the wells. Wells were drained carefully from one corner using 

a micropipette, then filled with 1% bovine serum albumin (BSA) in PBS as a non-specific 

blocking agent, and incubated for 15 mins. The slides were washed 3 times in PBS for 5 

mins, drained and dried carefully between wells. Primary antibody diluted appropriately in 

PBS was added to the wells, and the slides were incubated for 1 h at room temperature.

The slide was washed 3 times in PBS, and dried between the wells. Fluorescein 

isothiocyanate (FITC) conjugated antibody (anti-mouse, -rat, or -rabbit IgG) was then 

added to the wells, and incubated for 1 h at room temperature. The slides were then washed 

3 times in PBS. Two drops of Vectashield® + 4,6-diamidino-2-phenylindole (DAPI) 

(Vector Laboratories, Inc.) were added per slide, which was then covered with a coverslip, 

ensuring no air bubbles were present. The edges of the coverslip were sealed using clear 

nail vaiTiish. Fluorescence was then determined by light microscopy using an arbitrary 

scoring system: - no fluorescence, (+) faint fluorescence, + slight fluorescence, ++ clear 

fluorescence, and +++ strong fluorescence. Positive controls were also performed using 

VAT specific plasma as the primary antibody.

2.5.4 Plate enzyme linked immunosorbent assay ( ELISA)

A  Maxisorp® 96 C-well plate (Life teclmologies) was coated with antigen by adding 200 

pi VSG solution (20 pg.mf*, made up in 0.05 M carbonate bicarbonate buffer, pH 9.6 in 

PBS). The plate was left on a shaker overnight at 4° C. Following the overnight incubation, 

the coating solution was poured off, and the wells were washed 3 times with PBS-T 

(0.05% Tween 20 [Sigma] in PBS). 1% skimmed milk (Biorad) in PBS was added, and the 

plate was incubated on a shaker at room temperature 1 h, and the same washing procedure 

was carried out. The test serum was serially diluted in PBS-T, 200 pi was added to each 

well, and the plate was incubated on a shaker for 2 h at room temperature. The plate was 

washed 3 times again, and 200 pi of the appropriate peroxidase conjugated secondary 

antibody (Sigma), diluted in PBS-T, was added to each well. A second 2 h incubation at 

room temperature was carried out, and the plates were washed as above. One SIGMA
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FÀSP** OPD tablet, and one urea hydrogen peroxide/buffer tablet (Sigma), were then 

dissolved in 20 ml water (per plate). 200 pi of this substrate was then added to each well, 

and the plate was left stationary at room temperature for 30 mins, by which time an 

orange-yellow colour developed in positive wells. The plates were then read at 450 nm in 

an automated plate reader (Dynex technologies).

2.5.5 Dot blot ELISA

Dilutions of VSG protein (100, 20 and 2 ng.mf *) in PBS were set up, and 1 pi samples 

were spotted onto nitrocellulose membrane filters (Hybond) and allowed to air dry. The 

membranes were placed in blocking solution (PBS 2% skimmed milk 0.05% Tween 20), 

and incubated overnight on a shaker at 4° C. Following the overnight incubation, the 

membranes were left in the blocking solution for a further hour at room temperature. The 

blocking solution was then decanted, and primary antibody diluted in blocking solution 

was added, and the filters were incubated for 1 h at room temperature. The primary 

antibody was decanted, and the membranes were rinsed and washed three times in 

blocking solution, for 15 mins each at room temperature on a shaker. Secondary 

peroxidase conjugated antibody, diluted in blocking solution, was added, and incubated at 

room temperature on a shaker for a further 1 h. The membranes were then washed twice in 

blocking solution, once in PBS-T and finally in PBS, each time for 15 mins at room 

temperature. Supersignal ECL® solutions (Biorad) were mixed 1:1, and left for 5 mins. In 

a darkroom, the excess PBS was drained from the membranes, which were then placed on 

Clingfilm (Saran). Supersignal ECL solution was pipetted over the membrane, which was 

then left for 5-10 mins. The excess solution was drained off, and the membrane was 

wrapped in fresh Clingfilm. The membrane was then taped into an autoradiograph cassette, 

and exposed to autoradiograph film (Kodak) for an appropriate time (which is dependent 

on the degree of luminescence produced by any positive reaction), and the film was 

developed.

2.6 Cloning of PGR products and transformations of 
bacteria using TOPO vector (Invltrogen)

PCR products amplified using Tag DNA polymerase were suitable for use in the TOPO 

vector due to the production of a 3 ’ adenosine overhang by this enzyme. Following 

separation on a 0.7% agarose gel, PCR products were gel purified using the QIAgen gel 

extraction kit (following the manufacturer’s protocol). 0.5 -  4 pi of PCR product was
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incubated with 1 pi of salt solution (1.2 M NaCl, 0.06 M MgCb), made up to a total 

volume of 6 pi with water. This was incubated for 5 mins at room temperature. 2 pi of the 

reaction was added to a 25 pi sample of TOP lOF’ (Invitrogen) cells, mixed gently, and 

incubated at 42° C for 45 s, and then immediately transferred to ice for 2 mins. 1 ml of 

SOC was then added, and the mixture was incubated for 1 h at 37° C. The cells were 

centrifuged for 1 min at 8,000 x g in a microcentrifuge, the supernatant was poured off, 

and the pellet was resuspended in 100 pi of SOC. This suspension of cells was then 

streaked over L-agar plates containing ampicillin at a final concentration of 100 pg.mf* 

(Sigma), and incubated overnight at 37° C. Single colonies were then re-streaked on fresh 

L-agar plates, with the same concentration of ampicillin. Single colonies from these second 

plates were then picked and used to inoculate 5 ml L-broth (also containing ampicillin at 

100 pg.mf*), and grown up overnight at 37° C. Plasmids were then prepared from 1,5 ml 

of the overnight culture using the Qiagen miniprep kit.

2.7 Gel electrophoresis and Southern blotting

2.7.1 Gel electrophoresis

Standard DNA separations were performed on 0.7% agarose gels (Seakem LE, BMA) run 

at lOOV in 1 x TAE (1 x : 0.04 M Tris base, 0.04 M glacial acetic acid, 1 mM EDTA) 

buffer using a commercial 1 kb ladder as a size marker (Invitrogen). Genomic digests were 

electrophoresed on a 0.7% agarose gel mn at 30 V overnight in 1 x TAE buffer. Gels 

routinely contained 0.2 pg.mf* ethidium bromide (EtBr) to facilitate visualisation of the 

DNA under UV light.

2.7.2 Genomic digestions

Genomic DNA (usually 1 pg) was digested overnight with the appropriate restriction 

enzymes, following the manufacturer’s protocol (New England Biolabs). The products 

were then fractionated overnight by gel electrophoresis to ensure a high resolution of the 

bands, after which the DNA was transferred to a nylon membrane by Southern blotting.

2.7.3 Southern blotting

Prior to blotting, the agarose gels were stained with ethidium bromide, viewed and 

photogi’aphed on a UV transilluminator. The gel was then immersed in 0.25 M HCl for 15
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mins (to nick the DNA), rinsed with distilled water, and immersed for a further 30 mins in 

dénaturation solution (0,5 M NaOH, 1.5 M NaCl). The gel was rinsed briefly in distilled 

water and then placed in neutralising solution (1 M Tris-HCl pH 8.0, 1.5 M NaCl) for 30 

mins. The DNA was transferred to a nylon membrane (Hybond-N) by wet blotting using 

20 X SSC as the transfer buffer (Sambrook et a l, 1989), and blotted for 24 h. After 

transfer, the DNA was cross-linked to the membrane using an UV spectrolinker 

(Stratagene).

2.8 Probe manufacture and DNA hybridisation

2.8.1 Radiolabelling

The probes used in this study were manufactured from PCR products, specifically 

amplifying the N-terminal encoding sequence of the VSG from genomic DNA (for list of 

primers see Table 2.1, p. 49). These were electrophoresed on 0.7% agarose gels, excised 

and gel purified using the Qiagen gel extraction kit (following the manufacturer’s 

protocol); radiolabelling was perfoimed using the Prime-It II kit (Stratagene). Initially, 50 

ng of purified DNA template were mixed with 10 pi of random-sequence oligonucleotides 

and sterile, distilled water in a total reaction volume of 37 pi. This mixture was then heated 

to 95-100° C for 5 mins, cooled, and centrifuged briefly. Afterwards, 10 pi 5x primer 

buffer, 2pi a-^^P labelled dCTP and Ipl Klenow (5U.pf') were added in order, mixed 

carefully, and the reaction was incubated at 37° C for 5 mins. the resultant probes were 

then purified from the unincoiporated nucleotides by passing them through NuncTrap 

columns (following the manufacturer’s protocol, Stratagene). Once purified, the probes 

were denatured at 95° C for 5 mins before use.

2.8.2 Hybridisation

The nylon filters were wetted with distilled water and transferred to a glass hybridisation 

tube. Approximately 20 ml of Church-Gilbert solution (0.342 M Na2HP0 4 , 0.158 M 

NaH2P0 4 .2H2 0 , 0.257 M SDS and 1 mM EDTA per litre) were added and the filters were 

prehybridised for a minimum of I h at 65° C. the purified, denatured probe was then 

added, and the hybridisation step was incubated overnight at 65° C. After this hybridisation 

step, the filters were washed at 65° C, rotating in an oven, progressively with the following 

series of dilutions: 5 x SSC, 0.1% SDS; 2 x SSC, 0.1% SDS; 0.2 x SSC, 0.1% SDS (50 ml 

solution used per 15 mins wash). The filters were then rinsed at room temperature in 0.1 x
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SSC (without SDS), heat sealed in plastic, and placed next to a phosphoimager screen in an 

autoradiography cassette at room temperature for 4-48 h, depending on the strength of the 

signal.

2.8.3 Stripping of nyion fiiters

The nylon filters were stripped with boiling 0.1% SDS. The solution was poured onto the 

filters in a heat resistant container and allowed to cool to room temperature. The procedure 

was repeated again, after which the filter was rinsed in 2 x SSC and was ready for reuse. 

Following stripping, the filters were placed next to a phosphoimager screen (Fuji) in an 

autoradiogi'aphy cassette at room temperature for 24 h for assessment of whether the 

procedure had been successful.

2.9 Isolation of genomic DNA

Trypanosomes were separated fi*om blood on a Percoll gradient (maximum 1x10® 

parasites.mf’), and centrifuged at 1,620 x g for 10 mins at room temperature. The 

trypanosome pellet was then resuspended in 1 ml lysis buffer (50 mM Tris pH 8.0, ImM 

EDTA, 100 mM NaCl). 50 pi 10% SDS and 2.5 pi proteinase K (at 20mg.mf’) were then 

added, and the preparation was incubated at 37° C overnight in order to lyse the 

trypanosomes and digest the proteins. The DNA was then subjected to phenol/chloroform 

extraction and resuspended in 50 mM Tris.Cl (pH 8.0), 1 mM EDTA, and stored at 4° C.

2.10 Phenol/chloroform extraction

The volume of the sample was adjusted minimally to 200 pi by the addition of TE buffer 

(10 mM Tris.Cl, 1 mM EDTA). An equal volume of phenol/chloroform (1:1 mixture) was 

then added and mixed thoroughly by inversion. The two phases were separated by 

centrifugation in a microcentrifuge at maximum speed for 10 mins, after which the 

aqueous layer was eluted and transferred to a new eppendorf tube. An equal volume of 

chloroform was then added and the tube contents were mixed by inversion. After 

centrifugation at maximum speed for 5 mins, the aqueous layer was eluted and added to 

1/10 the volume of 3 M sodium acetate and 2 pi of glycogen (Boehringer Manheim); 2 

volumes of 99% ethanol were then added and the tube was mixed thoroughly. The tube 

was then transferred to -20° C for at least 20 min, after which the DNA was pelleted by
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centrifugation at maximum speed for 15 min. The pellet was then washed in 1 ml 70% 

ethanol, air-dried, and resuspended in an appropriate volume of buffer (usually TE).

2.11 RNA isolation and reverse transcription

2.11.1 RNA isolation from blood

The isolation of RNA from blood containing trypanosomes was earned out in an identical 

manner for blood from cattle and mice. 200  pi of blood were added to 1 ml erythrocyte 

lysis buffer (ELB, Qiagen), and incubated on ice for three periods of 5 mins, vortexing 

between incubations. The sample was then centrifuged at 320 x g for 10 mins, the 

supernatant and layer of haemoglobin were pipetted off, and the pellet was resuspended in 

400 pi ELB. A further centrifugation for 10 min at 320 x g was undertaken, the supernatant 

removed, and the clear pellet was retained. The pellet was resuspended in 350 pi RLT 

buffer (Qiagen RNeasy kit) plus 1 % p-mercaptoethanol, and the RNA was isolated using 

the Qiagen RNeasy mini kit (following the manufacturer’s protocol).

2.11.2 Reverse transcription

The RNA was treated initially with DNAase in order to remove any residual DNA that 

could create false positive results by PCR. 1 pg RNA was incubated for 15 mins at room 

temperature with 1 unit of RNAase-fi'ee DNAase (Invitrogen) and 1 pi 10 x DNAase 

buffer (Invitrogen), made up to a total volume of 10 pi with DEPC-treated water. After the 

incubation, the reaction was terminated by the addition of 1 pi 0.25 M EDTA, and a 20 

mins incubation step at 65° C was carried out. cDNAs were generated by reverse 

transcription using the Superscript II® First-Strand Synthesis System for RT-PCR kit 

(Invitrogen). 1 pi of 0.5 pg.mf’ oligo dT primer was added to the 1 Ipl DNAase-treated 

RNA solution, and heated to 70° C for 10 mins. The solution was cooled by transferring to 

ice, and 2 pi 25 mM MgCb, 2 pi 10 x PCR buffer, 2 pi 0.1 M DTT, and 1 pi 10 pM 

dNTPs were added, and the solution was mixed and incubated at 42° C for 5 mins. 1 pi of 

Superscript II reverse transcriptase (200 U .pf’) was then added, and the reaction was 

incubated at 42° C for 50 mins (a routine negative control included an identical replicate 

reaction, where 1 pi water was added in place of the reverse transcriptase, to control 

whether DNA had been removed by the DNAase step). Next, the tube was incubated at 70° 

C for 15 mins in order to heat inactivate the enzyme, followed by immediate cooling by
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transfer to ice. The final step involved the addition of 1 pi RNAse H (3.8 U.pl"’), and 

incubation of the reaction for 20 mins at 37° C, to remove the remaining RNA and leave 

only cDNA, which was then ready for use as a substrate for PCR reactions.

2.12 Polymerase Chain Reaction

50 pi PCRs were routinely set up (except for the reactions using material from cattle 

infections; see below). This reaction volume comprised 5 pi 10 x PCR buffer, 3 pi 25 mM 

MgCb, 1 pi 10 mM dNTPs (all components of the Superscript 11® First-Strand Synthesis 

System for RT-PCR kit), 2 pi cDNA, 2 pi of both primers at 5 pM, and 0.5 pi (2.5 units) 

Taq polymerase (ABgene), the remaining volume being topped up with water. The thermal 

cycles used varied depending upon the particular PCR.

The PCRs earned out on the cDNA derived from samples extracted daily during the 

chronic cattle infections were set up in 10 pi reactions, in order to optimise use of the 

limited substrate across several PCRs. This reaction volume comprised Ipl of both primers 

at 5 pM, 0.1 pi (0.5 units) Taq polymerase, 1 pi of custom-made 10 x PCR buffer (which 

gives final concentrations of 45 mM Tris HCl pH 8 .8, 11 mM ammonium sulphate, 4.5 

mM MgCb, 6.7 mM p-mercaptoethanol, 4.4 pM EDTA pH 8.0, and 1 mM dNTPs 

[ABgene]), 1 pi cDNA and 5.9 pi water. Again, the thermal cycles used were dependent 

on the PCR involved.

The oligonucleotides used in this study are listed in Table 2.1 (overleaf).
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o ligon u cleotid e  nam e se q u e n c e  (5'-3')
tbsl (splice leader) GTTTCTGTACTATATTG
tbSut (3’ UTR) GTGTTAAAATATATCA
Tub for 2 (7. brucei beta tubulin) AGCCAGGTACAATGGACTCC
Tub rev 2 (7. brucei beta tubulin) CGTTCATGTTGGACTCTGCC
bov act for (Bos taurus actin) GCGGCATTCACGAAACTACG
bov act rev (Bos taurus actin) TGGGAAGGCAAAGGACTTCC
1.21 for CAAAGGCAGGCGGTTCGATC
1.21 rev TGTTTGCTTTGGGATCCGCG
1,22for2 TGGAAAAGGAAGTTTGGGGG
1.22rev2 ATGGTGTTGAGATGGATGCG
1.25for GAGGAGAAGCATGGAAGGGG
1.25rev TGGTGGATTTGCAAGGATGG
1.64for AAGGGGTAGCAGGAGGTGGG
1,64rev GGGTGGTGTAGGGTAGGGGG
1.67for GAAGGGGAATATATGGAATG
1.67rev GGGGTGGTGGTATGGGTGGG
1.71 for GGGAGTGTTTGGGTTAGGGG
1.71 rev TTGGGGGGTTGTTTGGGGGG
1.73for AAGAAGGAGGAGGAAGGGGG
1.73rev GTTGTTGAGGGTTTTGGGGG
1.2for3 AATGGGAAATAGGGGGGTGG
1.2rev3 AAGGTTTGGTGTTGGATGGG
221 5' GGGAATTGGGGATGGGTTGGAATGAGGAGGG
221 3' GGGGGATGGGCTGTATGGGGGAGAAGTGGAG

Table 2.1 List of o lig o n u c leo tid es u sed  In th is study.
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Chapter 3

Chronic mouse infections



51

3 Chronic mouse infections

3.1 Introduction

There have been a large number of studies of antigenic variation in Trypanosoma brucei. 

The majority have concentrated on the molecular mechanisms behind the switching 

process, and have been performed on monomorphic trypanosomes, which switch at a low 

rate, several orders of magnitude below that of pleomorphic trypanosomes. In addition, 

these strains are unable to initiate chronic infections in vivo, due to an inability to 

differentiate to the self-limiting short stumpy form. Monomorphic trypanosomes have a 

switch rate of between 1 x 10"̂  and 1 x 10"̂  switches/cell/generation, which is low enough 

to be attributed to backgi'ound mutation and mitotic homologous recombination. 

Pleomorphic trypanosomes by contrast switch at 1 x 10'  ̂switches/cell/generation (Turner, 

1997). This has led to questions about the significance of findings pertaining to antigenic 

switching in these lines (Barry, 1997).

Studies examining the hierarchical expression of VSGs generally have concentrated on 

first relapse peaks of parasites in rodents or rabbits (Gray, 1965; Miller and Turner, 1981). 

By necessity, pleomorphic trypanosomes have been utilised, as these lines have the ability 

to initiate chronic infections in these laboratory animals. Early studies deduced that there 

was “semi-ordered” expression of variants (Gray, 1965; Capbern et a l, 1977; Miller and 

Turner, 1981), whereby the same variants were observed to appear at similar timepoints 

within an infection timeframe. It has since been elucidated that genes activated earlier tend 

to be subtelomeric, and that duplicative VSG gene processes predominate (Liu et a l, 1985; 

Robinson et a l, 1999).

The aim of this investigation was to examine the timing of expression of specific variants 

in replicate infections in mice, using the high switching line of pleomorphic trypanosome, 

EATRO 795. No study investigating the dynamics and patterns of VSG switching has thus 

far been attempted with pleomorphic trypanosomes that switch at this rate (1 x 10 '̂  

switches/cell/generation). The VSGs examined were single copy, so that any detection of a 

switching event could be positively linked to that particular gene, its genomic locus and 

surrounding flanking regions.
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3.2 The VSG genes under study

An important facet of this study was the identification of single copy VSG genes. 

Preferably, these genes would be from a variety of genetic loci within the trypanosome 

genome, in order that the linking of the hierarchy with genetic locus of the silent donor 

VSG could be analysed. The genes had to be identified within the EATRO 795/ILTat 

lineage of trypanosomes. 6 single copy VSGs had been identified previously (Robinson et 

a l, 1999). These had been isolated fiom the first and second relapse peaks of a rabbit 

infected with ILTat 1.2. This was done by amplifying trypanosomes each day in mice and 

making stabilates of these ‘amplifier’ populations. From these, trypanosomes were cloned 

and grown in immunosuppressed mice. The clonal lines were then analysed; the VSG was 

cloned and sequenced by RT-PCR using VSG generic primers (tbsl and tbSutr, see Table 

2.1), and copy number was deduced by Southern blotting analysis. 11 VATs were isolated 

and analysed, 6 of which were single copy. Of these 6 , 5 were subtelomeric - 1 occupied a 

BBS, 2 were in silent MESs, 2 were minichromosomal -  and 1 was chromosomal internal 

(see Table 3.1). It was arbitrarily decided that an ideal number of VATs to study would be 

a repertoire of 10, with some more examples of internal genes, as these were thought to be 

more important in the chronic stages of infection.

It was not possible, for logistical reasons, to carry out further chronic infections in rabbits 

in order to clone out the trypanosomes appearing later in infection. In addition, the ILTat 

trypanosomes are unable to establish chronic infections in mice. Although EATRO 795 

trypanosomes do produce chronic infections, it is not possible to obtain trypanosome 

clones homogeneously expressing 1 VSG, due to the high switching rate. However, the 

aforementioned rabbit ILTat infection had been followed until midway through the third 

relapse peak (days 28, 29 and 30 post infection), and amplifier stabilates had been made. In 

the present study, 23 clones were isolated firom these amplifier stabilates, and analysed. 

From RT-PCR, cloning and sequencing it was established that these clones were of 2 

VATs, expressing previously unidentified VSGs. These novel VSGs were named ILTat

1.73 and ILTat 1.74.

The copy number of each VSG was elucidated by generating a PCR fragment from the N- 

terminal coding regions of the respective genes (for primers see Table 2.1, p. 49), and this 

was then used to probe Southern blots of ILTat DNA digested with enzymes (specifically 

EcoKL, Hindlll and Pstl). From these it was deduced that there were two copies of ILTat 

1.74, and one of ILTat 1.73 (for Southern blots of ILTat 1.73, see Figure 3.1, p. 54).
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Further to this, the location of the gene could be identified as either telomeric or internal. 

Genomic DNA from four lines of ILTat trypanosome, each with different passage history, 

was subjected to the same enzymatic digestion. These were probed with the same gene 

specific probe (see Fig. 3.1). The bands identified were in identical positions in all three 

digests in all four ILTat lines, indicating the ILTat 1.73 gene was chromosomal internal. 

The different passage history, and in effect age, of the three lines would be likely to have 

resulted in telomeres differing in size due to standard telomere tract dynamics, and if ILTat

1.73 was telomeric, this would have been reflected in different sized bands between the 

different strains. This was repeated on EATRO 795 procyclic genomic DNA (using 

procyclic gDNA guaranteed no confusion with expression-linked copies) to ensure there 

had been no change in copy number or locus position in this high switching line (Fig. 3.2, 

overleaf).
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Figure 3.1 Southern blot Illustrating single copy number of ILTat 1.73 VSG and possible 
chromosomal location In gDNA from 4 distinct ILTat populations (digests : E = EcoRI, P 
Pstl, H = HindWl, marker Is 1 kb ladder).

EATRO 795 ILTat 1.2
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Figure 3.2 Southern blot Illustrating single copy number of ILTat 1.73 In EATRO 795 
procyclic gDNA, and maintenance of fragment size when compared with ILTat 1.2 BSF 
gDNA (digests : P = Pstl, E = EcoRI, H = H/ndlll; marker Is 1 kb ladder).
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Despite many attempts, no further single copy VSGs could be identified. Therefore the 

repertoire available for analysis was 7 single copy VSGs, 5 being telomeric and 2 

chromosomal internal. However, there was at least 1 example of each type of VSG 

genomic locus represented. The only function of switching that cannot be addressed with 

the repertoire available is mosaic gene formation, which, as has been previously 

mentioned, may have significance later in infection. Therefore any conclusions with regard 

to the hierarchy or otherwise from this study can apply only to full length, or entire VSGs.

VSG G enom ic lo cu s C hrom osom al location

ILTat 1.21 minichromosomal telomeric

ILTat 1.22 MES telomeric

ILTat 1.25 minichromosomal telomeric

ILTat 1.64 MES telomeric

ILTat 1.67 BES telomeric

ILTat 1.71 internal internal

ILTat 1.73 internal internal

Table 3.1 S ingle co p y  VSGs and location within the tryp an osom e g en o m e  (IVIES = m etacycllc  

ex p ressio n  site; BES = b loodstream  ex p ressio n  site)

3.3 Assessment of methods of analysis

Much effort was spent assessing various methods of following the progression of VSGs 

through an infection, in particular ways of measuring the onset of the specific immune 

response to the respective VATs. This was important because of the limited amount of 

material available in chronic mouse infections -  approximately 7 pi of plasma every four 

days -  due to humane considerations regarding continuous blood sampling. This limiting 

factor in itself was important to ensure no skewing of parameters, by undertaking analysis 

in an animal where pathology could be exerting an unmeasurable influence. However, the 

small amount of material meant a sensitive technique was required to elucidate the onset of
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immune response to all 7 VATs. The methods examined were plate ELISA, dot-blot 

ELISA, in vitro agglutination assay, and in vitro complement lysis assay.

3.3.1 P!ate ELISA

The plate ELISA technique was found to be both very sensitive, and very specific. At high 

dilutions of antibody (1:6561) there was differentiation between VSG species (see Fig. 3.3, 

p.57). At lower dilution there was cross-reaction, probably because the purified protein 

used as the immunogen contained the conserved C-terminus, a region that shares up to 

40% sequence identitity between VSGs (CaiTington and Bootliroyd, 1996). However there 

were envisaged disadvantages, in that the test mns were caiTied out using the hyperimmune 

sera from rabbits immunised with 1 VSG species -  how the ELISA would function when 

analysing serum from mice infected with trypanosomes expressing many VSGs, in 

particular if assessing the immune response to minor variants, was not clear. The technique 

also required the purification of large amounts of VSG for use as substrate, a very time- 

consuming process. The biggest obstacle for the use of this technique however was the 

amount of primary antibody required for each test plate, which fai* exceeded that available 

from the chronic mouse infections.
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Figure 3.3 Examples of plate ELISA outputs, Illustrating specificity, and efficacy at high 
dilutions of primary antibody (logs7 = 1/2187, logsB = 1/6561). Absorbance measurements 
are arbitrary units. Title Indicates VSG used as substrate.
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3.3.2 Dot-blot ELISA

Dot-blot ELISAs use the same principle as plate ELIS As, but carried out on a smaller 

scale, and thus the suitability of this method was considered with respect to optimum use 

of limited amounts of semm. Again this technique was sensitive, the specific antiserum 

binding detectably at around 2 ng of protein. However in this case, there was a variable 

amount of cross-reaction, even at low concentrations of VSG (2 ng). Therefore it was 

concluded that the specificity of this technique was not high enough. Again, as specific 

immune serum was used, how efficient the technique would be at the beginning of an 

immune response, or against a minor variant, was not clear.

3.3.3 In vitro agglutination assay

Agglutination of cells is one of the properties of specific antibodies, and in particular IgM. 

Antibodies bind to the surface of a cell, and when two cells with bound antibodies of the 

correct isotype (IgM) come into contact, there is cross-linking. The clumping of such 

agglutinated cells provides a quick and visual result. Using the hyperimmune semm as a 

control, agglutination occurred very rapidly, and there was sensitivity to the level of 1:100  

dilution of antisemm. However there was a variable amount of agglutination in the absence 

of antibody. The reason behind this is not known, but occurred repeatedly. An initial set of 

chronic infections was mn, and the agglutination assay was used to analyse the onset of 

antibody to the 7 VATs under study. The results using plasma from infected mice were 

uninterpretable, with agglutination occurring from day 0. Thus the method was discarded 

as a possibility.

3.3.4 In vitro complement lysis assay

The basis of this assay is the main means by which specific antibody leads to the lysis of 

trypanosomes. The assay involves the antibody binding to its VSG surface epitope target, 

and initiating the complement cascade, the end of which leads to perforation of the plasma 

membrane and lysis of the parasite. This technique was very specific, with no cross­

reaction observed, even at the high concentrations of antibody used. The specificity is 

probably due to the fact that the technique utilises live trypanosomes, and the only epitopes 

exposed are those that induce effective immune responses in in vivo infections. The 

teclmique also provides optimum use of the limited semm quantities available, and 

provides the scope to test all VATs plus controls. However, it is a relatively insensitive 

technique, and is extremely reliant on the quality of the complement -  complement is
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highly labile, and the method of preparation greatly affects its activity in this assay. A large 

amount of effort was expended in sourcing a reliable commercial product, the most 

consistently reliable being guinea pig semm that was frozen at -70° C immediately upon 

collection (Harlan). Taking everything into consideration, the in vitro complement lysis 

assay was the most favourable method for measuring the onset of the VAT-specific 

immune responses.

3.4 EATRO 795 trypanosomes

The EATRO 795 pleomorphic line utilised in this study is derived from a population 

originally isolated in the field from a Kenyan cow (Uhembo, Central Nyanza Province, 

Kenya; 1964). This was initially passaged for eight days in a mouse and, from that 

amplified population, single trypanosomes were further grown in mice for 10 days. There 

have since been a number of syringe passages, but what has resulted is a genotypically 

clonal but phenotypically polyclonal line with regard to VSG expression. The switching 

rate of this stabiiate is at the high end of the trypanosome range -  approximately 1 x 10 ’̂  

switches/cell/generation (Turner, 1997). The VATs under study were isolated from the 

ILTat 1.2 line. This line is itself derived from the EATRO 795 stock, and is isogenic with 

reference to the VSG repertoire. The ILTat 1.2 trypanosomes switch at a lower rate -  

approximately 1x10'^ switches /cell/generation (Robinson, 1999), which permits 

preparation of relatively pure VATs for testing the specific immune responses.

Trial infections were initiated in BALB/c mice with differing inoculum sizes; 10, 10̂  and 

10  ̂trypanosomes (2 mice per inoculum), and the infections were followed daily until ill 

effects were observed, at which point the mice were euthanased.
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Figure 3.4 Graph illustrating the parasltaemlas during Infections In BALB/c mice Initiated 
with differing Inoculum sizes (10  ̂and 10° parasites, In two mice, a & b, for each Inoculum 
size) of EATRO 795 trypanosomes. (data for 10̂  Inoculum not shown -  no parasites 
detected).

The inoculum of 10 trypanosomes did not produce a patent parasitaemia as detected by 

haemocytometer (mice were checked daily until day 26 post infection). Only one of the 

mice infected with 10̂  parasites went on to develop a patent infection. This mouse had a 

parasitaemia that was first detectable on day 11, with distinct separation between peaks, 

and the peaks gradually increased in size until there was essentially a fulminant infection 

from day 38 onwards, and the mouse had to be euthanased. Both mice injected with 10̂  

trypanosomes developed patent infections, which were first detectable on days 5 and 6 post 

inoculation. These had a different profile, with the individual peaks less distinct, and the 

magnitude being slightly less. In addition, the mice were able to control parasite numbers 

to a greater degree later in the infection, and indeed the parasite numbers decreased at a 

timepoint where the 10̂  inoculum infection overcame the mouse. It must be stressed that 

these were small sample sizes, but the results were convincing enough to draw 

conclusions. In summary, it was decided to use inocula of 10  ̂trypanosomes in the chronic 

mouse infections, as this gave rise to chronic infections in both mice injected, and did not 

cause excess pathology that would lead to early termination of the experiment. It was also 

decided that the end-point of the experimental infections was to be 35 days, as this 

generally covered the initial peak of parasitaemia and at least 2 relapse peaks, and for
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humane purposes, in order to minimise any effects of pathology due to long-term high 

parasitaemias.

3.5 Initiation and progression of infections

EATRO 795 trypanosomes were amplified from the stabiiate WCMP (Wellcome Centre 

for Molecular Parasitology) 2665 in BALB/c mice that had been immunosuppressed by 

cyclophosphamide treatment 24 h previously. This stabiiate had been prepared in a similar 

manner, by amplifying in a BALB/c mouse from stabiiate WCMP 1041 (derived firom ICR 

mice). Blood was collected by cardiac puncture at the first parasitaemic peak -  

approximately 1 x 10̂ '̂  parasites.mf’. At this stage of the infection the parasite population 

was predominantly (at least 80%) of the long slender bloodstream foim.

The trypanosomes were incubated with antibody specific to the VSGs under study, and 

Guinea Pig Serum (GPS) to ensure that any subsequent appearance of these VATs had 

arisen fi'om de novo switching events. To achieve this, the trypanosomes were counted on 

an improved Neubauer haemocytometer, diluted using GPS and separated into samples of 

1x10^ cells, with antibody concentrations of 10%. These aliquots were incubated for 1 h 

at 37° C. A second haemocytometer count was undertaken, and 1x10^ viable cells were 

then inoculated via the intraperitoneal route into BALB/c mice. BALB/c mice were used 

because they are inbred, minimising differences due to host variance. In addition, BALB/c 

mice had been shown to be suitable hosts for chronic infections using EATRO 795 

tiypanosomes (C.M.R. Turner, pers. comm.). Each experiment used mice of the same 

batch, and in each case females of approximately the same age were used, to ensure 

uniformity of age and body size. As a control to test the efficacy of the pre-incubation with 

antibodies, the inoculum for one set of 8 animals (mice B2-J2; see Table 3.2, p. 65) was 

not antibody treated. In this case the VATs were detected in the initial parasitaemic peak; 

when incubated with antibody this was not the case, indicating that the removal of VATs 

under study from the inoculating population was necessary and was successful.

Parasitaemia was estimated every two days -  1 pi of blood being collected and mixed with 

9 pi 0.85% ammonium chloride before being examined by improved Neubauer 

haemocytometer. The threshold of detection by this method was 1x10^ parasites.mf’. 

Plasma was collected every fourth day.

The parasitaemic profiles of infected mice followed a general pattern. There was an initial 

peak almost unifonnly on days 6-7. The size of this initial peak was however variable.
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ranging from 1 x 10̂  to 2 x 10̂  parasites.ml'’. Thereafter, there was typically a definable 

first relapse peak, occurring at around 14 days post infection, followed by a varying 

number of relapse peaks, which increased in duration and parasite burden, and the 

separation of which into peaks could become subjective. This period was the most variable 

between individual mice, in terms of both parasitaemia levels and peak duration. Only one 

mouse displayed a substantially different profile (mouse B3), there being a gradual 

increase of parasites, with no definable peak sti'ucture, until termination at day 21 post­

infection. Otherwise the gradual increase in parasite load generally led to the termination 

of infection at around day 35 for humane reasons. Mice were also euthanased if the 

parasitaemia remained above 1 x 10  ̂parasites.mf’ for two consecutive counts (effectively 

at least three days). All deaths were due to euthanasia; there were none from fulminant 

trypanosomiasis. The profiles of parasitaemia ai e notable in several ways. It was expected 

that the profiles would be very similar between mice, as seen in previous infections (J.D. 

Barry, pers. comm.). However, very few large-scale (in terms of number of mice) chronic 

infections have been earned out with these highly pleomorphic trypanosomes. It is likely 

the extremely high switching rates lead to variable infection profiles, following a 

predictable initial period of parasitaemia.
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Figure 3.5 Examples of EATRO 795 parasitaemic profiles of selected Infections In BALB/c 
mice. Values on the X axis indicate the number of days post-lnoculatlon.
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Figure 3.6 EATRO 795 parasitaemic profiles of Infections In 50 BALB/c mice. This graph 
Illustrates the pattern of distinguishable Initial and first relapse peaks, followed by a more 
divergent and unpredictable outline.

3.6 The VSG-specifIc immune responses

3.6.1 Onset and duration of VSG-specific immune responses

The onset of the immune responses was measured by the in vitro complement lysis assay. 

Plasma collected at 4-day intervals was incubated with GPS and clonal trypanosomes 

expressing a single species of VSG. The onset of the immune response could be measured 

by the corresponding sample in which lysis of the trypanosomes occurred. Controls were 

applied in every case. A positive control was included -  clonal trypanosomes incubated in 

GPS with specific antiserum against that VAT raised in mice. 2 negative controls were 

incorporated, one with the trypanosomes incubated in GPS alone to ensure there was no 

non-specific trypanosome lysis, the other with the clonal trypanosomes incubated with 

specific mouse anti serum against one of the other 6 VATs under study. Controls were 

prepared in duplicate wells on a Terasaki plate. All VATs were incubated with specific
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antisera to each of the other respective six VATs under study. No cross-reaction was ever 

observed.

MINI TELO MINI TELO TELO I NT INT
mouse 1.21 1.22 1.25 1.64 1.67 1.71 1.73

B2 7 7 15 7 15
C2 7 7 15 7 27
D2 7 7 11 *

F2 7 7 * 7 15 *

G2 7 11 7 15 7 15 *

H2 7 7 7 15 7 15
12 7(31) 7 7(27) 11(27) 7 15(23)
J2 7 7 7 15 7 35

MINI TELO MINI TELO TELO INT

A5 15 19 15 19(23) 15 19 15
B5 15 19 15 19(27) 15 19 19
C5 15 19 11 19 11 23 19
D5 15 15 15 19 15 15 15

INT
1.21 1.22 1.25 1.64 1.67 1.71 1.73

A3 13 17 13 13 17
B3 9 17 9 13 13
C3 17 17 13 N 25 17 13
03 17 17 13 29 9 17 17
E3 17 13 17 17 9 9 21
F3 13 17(25) 13 17 9 13 13
G3 13 17(25) 13 17 13 17 17
H3 17 17(25) 13 17 17 17 13
13 13 17 13 17 9 N
J3 17 17 13 17 9 25(33)

A4 15 15 15(33) 19(23) 15 31 19
B4 19 N 15 19 15 N 19
C4 15 19 11 19 15 19 15
04 19 23 19 19 11 19 19
E4 15 19 15 19(27) 15 15 15
F4 19 19 15 19(23) 15 19 15
G4 15 19 15 19(23) 7 27 11(19)
H4 15 19 15 19(31) 15 23 15

Table 3.2 Day of onset of specific immune response to VATs as measured by in vitro 

complement lysis assay for 4 sets of chronic Infections. Seven VATs under study are ILTats 
1.21,1.22,1.25,1.64,1.64,1.71 & 1.73. MINI = mlnlchromosomal, TELO = telomeric, INT = 
chromosomal Internal. Numbers = day post Inoculation that Immune response was first 
detected. Numbers In brackets = day on which Immune response became undetectable. If 
this occurred. N = no immune response detected. * = analysis not done due to exhaustion of 
mouse plasma sample. Mice B2-J2 were a control batch, where VATs under study were not 
eliminated from Inoculum. Mice A3-J3, A4-H4 & A5-D5 represent 3 separate sets of 
Infections, carried out in an Identical manner, with VATs under study removed from the 
Inoculum by Incubation in v/fro with specific antibodies.
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A total of 30 chronic mouse infections were analysed (Table 3.2). Of these, the first batch 

of 8 mice (B2-J2) represented a control where the VATs under study were not removed 

from the inoculum by incubation with specific antibody. The other 3 batches (A3- J3, A4- 

H4 and A5-D5) represented the 22 chronic infections in which the VATs were removed by 

this treatment of the inoculum. By examining the difference between these 2 sets of data, it 

can be deduced that the incubation of the inoculum with the specific antibodies did remove 

at least the majority of any trypanosomes expressing the VATs. The day of onset of 

immune response against ILTats 1.21, 1.22 and 1.25 was delayed by an average of 6 -  10 

days in the experimental mice. The difference was 2 days for ILTat 1.67, and 2-4 days for 

ILTat 1.64. There was not a great degree of difference for ILTat 1.71, and ILTat 1.73 was 

not analysed in the control group due to exhaustion of mouse sera through refining the 

technique. It can be argued fî om these data, that ILTats 1.21, 1.22, 1.25, 1.64 and 1.67 

were present in varying, probably very small, numbers in the initial inoculum, whereas 

ILTat 1.71 was probably not present. Those that had been present were removed by the 

specific antibody incubation step in the experimental mice, on the basis of the differing 

times of onset of specific antibody between the control and experimental groups.

There are several notable features of the immune response analysis. Firstly, there are only 

4 instances when no immune response is detected. This occurs in mouse B4 for ILTat 1.22, 

mouse C3 for ILTat 1.64, and mice 13 and B4 for ILTat 1.71. These VSGs are located in 

MESs for ILTats 1.22 and 1.64, and chromosomally internal for ILTat 1.71. In these cases 

it appears that there was no detectable switching to these VATs during the chronic 

infections. Overall, these data indicate that this repertoire of 7 VATs is utilised to a large 

degree in the 35-40 day time period of the chi onic mice infections. Additionally, in the 

majority of cases, the VAT-specific immune response remained detectable to the 

termination point of the infections. This indicated there was no waning of the immune 

response, at least below the threshold detected by the assay, and meant that there could be 

no reappearance of sub-populations expressing the respective VAT at a later timepoint in 

the infection. There were, however, occasional instances of the immune response dropping 

below the threshold detectable by the in vitro complement lysis assay. This phenomenon 

was never observed for ILTats 1.21 or 1.67, encoded respectively by minichromosomal 

and BES silent genes. It was seen during one infection for ILTat 1.25 (4.5% of infections 

analysed), which is a minichromosomal gene, once for ILTat 1.71 (4.5%), a chromosomal 

internal gene, and once for ILTat 1.73 (5%), also cliromosomal internal. However, the 

VAT-specific immune response dropped below detectable levels on 7 occasions for ILTat
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1.64 (35%) and 3 (13.6%) for ILTat 1.22, both MBS genes. Collectively, these instances 

occurred over a number of mice, and therefore weak immune response of an individual 

mouse could be discounted; although the likelihood of this occurring should have been 

decreased in any case by using inbred mice. Nevertheless, if the results for control mouse 

12 are examined, one can see that there was loss of the detectable immune response against 

4 of 6 VATs examined, and in this case the loss was likely due to generalised weakening of 

the specific immune response, probably due to stress or illness in the mouse. This situation 

does not apply to the experimental mice, however.

The drop in detectable immune response can be explained in several ways. There would 

be, as has already been mentioned, dampening of the immune response generally, although 

this would have occurred for responses against all the VATs. Additionally, there could 

have been a fault in the assay, such as degradation of complement, or antibody. This can be 

discounted, as the positive and negative controls will have ensured that the complement 

functioned, and the same semm sample was used across several VATs, so any degi'adation 

would appear consistent as in mouse 12. Thirdly, there could conceivably have been 

quantitatively fewer trypanosomes expressing the respective VATs in the particular mice. 

This assumes that the titre of the VAT-specific immune response is unifonnly directly 

proportional across the different VSGs up to a threshold level. If the relevant sub­

population drops below that threshold, and there is not continuous, or relatively much less, 

further switching back to that VSG, then the immune response could wane, hr the subset of 

single copy VSG genes under study, the metacyclic VSG genes, and in particular ILTat 

1.64, were the genes for which this drop in immune response seemed to occur. The 

MVSGs are the proteins expressed by the trypanosome injected initially by the tsetse, and 

it is presumably preferable for the animal not to have been exposed to them previously in 

order to initiate infection. Therefore it could be hypothesised that limitation of switching to 

these genes, as a by-product of their genomic environment, could help to optimise 

transmission in an endemic situation.

3.6.2 Analysis of VAT-specific immune responses

The analysis of the VAT-specific immune responses was undertaken in several ways. The 

simplest approach was to analyse whether or not there was a significant difference between 

the times of onset of responses against the different VATs. The second approach was to 

rank the timing of onsets within individual infections, and then carry out comparisons of 

the ranking between infections. This reduced the possibility of extremes (statistical 

outliers) impacting on the mean outcome. The linking of timing of onset of VAT-specific
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immune responses to peaks of parasitaemia was also considered. This approach however 

was discarded, as in many cases the interpretation of separation of peaks was ambiguous. 

Moreover, one could not be certain that the actual VAT growth correlated with the 

parasitaemia peak associated with the immune response. The last approach was to combine 

data for the different genomic locus types, and investigate whether any difference in timing 

of onset of immune responses corresponded with different types of genomic loci inhabited 

by the silent donor VSG, by testing in the order of prediction.

3.6.2.1 Time of onset of VAT -specific immune response.

Time data were normalised by transforming them as logio (time+). “Time+” indicated that 

occasions where no immune response was observed were scored as 36 days i.e. endpoint of 

experiment + 1 day. General Linear Models were used to analyse the data, with logiotime+ 

as the response variable, and VAT code and mouse batch as factors. Parametric 

assumptions were checked by analysing normal distribution, and testing for equal 

variances. It was vital to analyse any effect of mouse batch on the outcome of the analysis 

for several reasons. Firstly, sampling of plasma samples commenced on day 1 for batch 

A3-J3, and day 3 for batches A4-H4 and A5-D5. This led to an automatic difference of 2 

days in the time of onset between the two groups, which had to be factored. Moreover, any 

difference between batches would invalidate the results, as the findings fiom the data 

would not be consistent across thi*ee different experiments, due to either lack of 

experimental rigour, or differences between the mice.

Time of onset of immune response differed significantly between the VATs (F6,io6=7.49, p 

< 0.0001) (see Fig. 3.7, overleaf). There was also a significant difference between the two 

batches (Fi,io6=5.82, p =0.018), as was expected due to the difference in sampling times. 

Importantly, however, there was no interaction between mouse batch and variances 

between VAT gi'oups (F6,io6=1.39, p=0.225), so the relative time of appearance of the 

VATs was not different between batches.
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Figure 3.7 Least square mean of ‘tlme+’ for onset of Immune response against VATs. 
"Tlme+" Indicated that occasions where no Immune response was observed were scored as 
36 days i.e. endpoint of experiment + 1 day. Day p.l. = day post Inoculation. The error bars 
represent +/- SEM, n = 22.

S.6.2.2 Ranking of the appearance of VAT-specific immune responses.

The onset of VAT-specific immune responses was ranked according to their order of 

appearance within individual mice infections. Therefore, the first VAT immune response 

was assigned a value of 1, the second 2, and so on. If immune responses to different VATs 

appeared at the same time, they were assigned the same value, i.e. VATs A and B appeared 

first, they were assigned a value of 1, VATs C and D next, these were both ranked as 2. If 

no immune response was observed, the VAT was assigned a ranking one greater than the 

highest within that infection. “Rank” data were normalised by transformation as reciprocal 

of rank. General Linear Models were used to test the hypothesis, with reciprocal of rank as 

the response variable, and VAT code and mouse batch as factors. Parametric assumptions 

were checked by analysing normal distribution and testing for equal variances.

The ranking differed significantly between the VATs (p6.112=8 .03, p<0.0001). There was 

no significant mouse batch effect (F],i 12= 1.6 8 , p=0.197), and therefore no interaction 

between batch and variances between VAT groups (F6,io6=0.83, p=0.550). In this case, the 

difference of 2 days between the sampling timings should not have had an effect as the 

ranking system was designed to remove any, as the difference in day number would not
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have affected the ranking position. Again, the lack of batch effect validates experimental 

consistency.

2.5

2

I
1

0.5 1

rank against VAT

ILTat 1.67 ILTat 1.25 ILTat 1.21 ILTat 1.73 ILTat 1.71 ILTat 1.22 ILTat 1.64

VAT

Figure 3.8 Least square mean of rank against VATs ("rank" refers to the ranking of the 
onsets of the VAT-specific Immune response within Individual mice Infections). The error 
bars represent +/- SEM, n = 22.

3.6.2.S Comparison of time of onset, and ranking of immune 

responses.

When the results for the “rank” and “time+” data are compared, they give very similar 

results (see Table 3.3, overleaf). In both sets of analysis, the immune response against 

ILTat 1.67 was first to appear, followed by ILTat 1.25, ILTat 1.21, ILTat 1.73, ILTat 1.71, 

ILTat 1.22, and finally ILTat 1.64. When time of onset is analysed, the fifth out of the 

seven is ILTat 1.22, then ILTat 1.71 and finally ILTat 1.64. There is general agreement 

between the two sets of analysis, with only ILTats 1.71 and 1.22 differing. This is likely 

due to the immune response against ILTat 1.71 appearing relatively very late in the 

infection in a few cases (mice J3, G4 and C5), and therefore skewing the data.
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Rank Time+

ILTatl.67 ILTat 1.67

ILTat 1.25 ILTat 1.25

ILTat 1.21 ILTat 1.21

ILTat 1.73 ILTat 1.73

ILTat 1.71 ILTat 1.22

ILTat 1.22 ILTat 1.71

ILTat 1.64 ILTat 1.64

Table 3.3 Comparison of "rank" and "time+” as measurements of hierarchy (“rank” refers to 
the ranking of the onsets of the VAT-specifIc immune response within Individual mice 
infections; “time+” Indicated that occasions where no immune response was observed were 
scored as 36 days i.e. endpoint of experiment + 1 day). Top of table : earliest onset of 
immune response, bottom : latest.

3.6.2.4 Testing in the direction of prediction.

Predictions for the order of appearance of the onset of immune responses were based on 

the results of the General Linear Model “time+” (see 3.6.2.1), equivalent to 'observed' 

data, and also on the location of the individual genes within the genome, equivalent to the 

‘expected’ data. The ‘expected’ data were based also on previous work involving 6 of the 

genes under study in rabbits (Robinson et al, 1999). Thus, VATs encoded by VSG genes 

located in bloodstream expression sites were expected earliest, followed by those encoded 

by minichi'omosomal genes, then those encoded by metacyclic expression site genes, and 

finally those encoded by genes situated internally in megabase chromosomes. Data for 

genes belonging to one of these groups were pooled; ILTats 1.21 and 1.25 are both
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minichromosomal genes, ILTats 1.22 and 1.64 are both MES genes, and ILTats 1.71 and

1.73 are both chromosomal internal. This gave 4 groups of data.

Using a directional heterogeneity test (Rice and Gaines, 1994), the order of appearance 

between these four groups was seen to be highly significant (p<0.0001) (Fig. 3.9, below).

25

20

15
a

■S 10

BES

mean time of appearance

mini MES
VAT category

Figure 3.9 Least square mean of "time+" for onset of immune response against category of 
VAT ( BES = bloodstream expression site, mini = minichromosomal, MES = metacyclic 
expression site, Int = chromosomal Internal). "Tlme+" Indicated that occasions where no 
Immune response was observed were scored as 36 days i.e. endpoint of experiment + 1 day.

3.7 Summary

The results of the chronic mouse infections indicate that there is a statistically significant 

difference in the onset of VAT-specific immune responses across 3 separate batches of 

chronic infections, comprising a total of 22 mice. The general progression of infections in 

the mice was itself notable, with a predictable early course of parasitaemia, including very 

similar magnitude and timing of the initial parasitaemic peak. Thereafter, however, the 

progression and parasitaemic profile were very variable, probably a reflection of the high 

switching rate and pleomorphism of the EATRO 795 trypanosomes. The VAT-specific 

immune responses also had characteristic features. The immune responses generally lasted 

the duration of the infections, which would ensure no reappearance of sub-populations
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expressing the respective VAT later in the infection. In addition, there were very few 

instances where there was no immune response detected to a particular VAT, indicating 

that within the period of these infections in mice, the subset of VATs under study were all 

usually expressed. When the onset of the VAT-specific immune responses was analysed, 

by compaiing the average times of onset, and by ranking arbitrarily depending on the 

sequence of appearance, it was found in both cases that there were significant differences 

between the different VATs. This indicates a definite hierarchy of expression within this 

subset of VATs. It is also possible to say that, for this subset, the hierarchical differences 

can be significantly grouped within data fi'om different genetic loci types. These findings 

help to increase the resolution of examining the hierarchy, which had previously been 

limited to the difference between subtelomeric and chromosomal internal genes. It must be 

stressed that there are limitations in the study. The analysis was limited to the immune 

response, and therefore was not directly measuring the switching event at the level of the 

trypanosome, or the development of VAT subpopulations. In addition, assumptions were 

made regarding proportionality of immune response to number of trypanosomes, and the 

fact that there was not any qualitative difference between the immune response against 

different VATs. However, these were reasonable assumptions, as there is no published 

work in disagreement. Moreover, this is a very small subset of the VSG repertoire, seven 

out of possible hundreds, hi addition, only 2 of each genetic locus type for MVSGs, 

minicliromosomal VSGs and chromosomal internal VSGs, and 1 BES VSG were analysed. 

Also, findings from this subset can pertain to only switching events involving frill length 

VSGs, and not events such as mosaic gene formation. These experimental restrictions were 

insumiountable, however, and despite these limitations, the significant differences between 

the onset of the VAT-specific responses does give an hitherto obscured insight into the 

hierarchical nature of VSG switching. Furthermore, these results were obtained fr'om a 

substantial number of infections, using a highly pleomorphic trypanosome, and provide a 

basis to explore further the nature of hierarchical VSG switching, both in cattle hosts and 

by mathematical modelling.
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Chapter 4

Chronic cattle infections
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4 Chronic cattle infections

4.1 Introduction

As mentioned in the previous chapter, most work on African trypanosomes has 

concentrated on molecular mechanisms in laboratory-adapted monomorphic T. brucei.

Very few in vivo studies have examined the dynamics of the parasite within the context of 

a chronic infection. Even fewer have concentrated on the situation in what is considered a 

‘natural’ host of the parasites, cattle. Work on cattle trypanosomes has been concerned 

mainly with T. congolense and T. vivax, as they are considered the major pathogens of 

those hosts, whereas T. brucei causes little disease. Due to this, most studies have 

concentrated on pathological or immunological aspects of infection (Dargie et a l, 1979; 

Morrison et a l, 1982a; Williams et a l, 1996), and very few have looked at antigenic 

variation (an exception being (Barry, 1986)). It has been shown that the kinetics of 

trypanosome infections differ significantly between different hosts, in terms of both 

duration and parasitaemic profile (Barry, 1986), specifically T. vivax infections. How these 

differential progressions of infections could affect, or be affected by, trypanosome 

dynamics with respect to antigenic variation in vivo is intriguing and is one of the 

questions this investigation addresses.

The aim of this study is to examine the hierarchical expression of VSGs in replicate cattle 

infections. The emergence of a set of 7 variants within the time course of an infection are 

analysed, importantly by direct examination of the parasite population itself, but also by 

investigation of the development of the host’s specific immune response to each VAT. The 

VSGs involved are all single copy, in order that any linkage between genomic locus and 

hierarchy could be analysed. Cattle are used for several reasons. Firstly, as mentioned 

above, they are primary hosts for T. brucei. Secondly, chronic infections are a natural 

outcome of trypanosome infections in cattle, which therefore are a more valid host for the 

study of this disease state. Lastly, a relatively large amount of material can be sampled 

from a cow on a daily basis, removing the restrictions inherent to the mouse model. The 

aim was to gain information on the dynamics of an in vivo trypanosome infection, and also 

to test whether hierarchical switching of VSGs is related to the genomic locus of the silent 

donor gene.
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4.2 Rationale behind the choice of host breed and 
parasite strain

As it was desirable to extract the maximum information from these infections, conditions 

had to be optimised. The breed of cattle was important, as it has an effect on parasite 

numbers. The majority of previous experiments looking at antigenic variation had utilised 

European Bos taurus breeds of cattle, or crosses thereof; Charolais cross steers (Barry, 

1986) being a notable example. Bos indiens breeds, such as boran and zebu, have been 

shown to exhibit varying degrees of trypanotolerance (Njogu et a l, 1985; Wellde et al, 

1989), while African taurine breeds such as N’Dama are well known for this trait (Murray 

et a l, 1981). There has also been a large amount of anecdotal evidence that the level of 

parasitaemia tends to be greater in European susceptible breeds (J.D. Barry, M. Mun-ay, 

P.A.O. Majiwa, pers. comm.). For this reason it was decided to use Friesian steers, as this 

was the European breed most easily obtained in Kenya, and steers are much less expensive 

than adult females. The cattle came from an area of Kenya (Naivasha, Rift Valley 

Province) free from trypanosomiasis, and the experiment was carried out on the premises 

of the International Livestock Research Institute (ILRI) in Nairobi, Kenya, also an area 

with no trypanosomiasis or vectors.

A pool of 13 available cattle was screened for previous exposure to T. brucei, T. vivax or T. 

congolense. The screening was done by antibody ELISA, the respective antigen coated 

plates being provided by the ILRI serology department. 1 cow was positive for exposure to 

T. vivax, and 1 cow was borderline positive for T. brucei exposure - these cattle were 

discounted for use immediately - and none was positive for T. congolense. The T. vivax 

exposure must have come about via mechanical transmission by biting flies other than 

tsetse, and the T. brucei result was possibly a false positive, as the result of the ELISA 

reaction was not sufficiently positive to indicate definite exposure. 2 cattle were chosen 

that were negative for exposure to all trypanosome species, and on the basis of size 

similarity (the exact age of each individual in the cohort was not known -  age was 

approximated at 18 months by weight, information from the fanner of origin, and dental 

eruption); these were cattle BW49 and BV154. These candidate cattle were screened in a 

similar manner for exposure to Theileria parva, Theileria mutans, Anaplasma marginale, 

and Babesia bigemina. These tick-borne parasites cause serious disease in cattle and 

therefore it was necessary to ensure the candidate cattle were not infected, in order to 

guarantee any pathology observed was due to the experimental trypanosome infection, hi 

addition, A. marginale can cause changes in immunoglobulin levels (E. Authie, pers.
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comm.). Cow BW49 was positive for exposure to T. parva, T. mutans, and A. marginale, 

while BV154 was positive for A. marginale and B. bigemina. As it was vital to eliminate 

these parasites and in particular A. marginale, a chemosterilisation regime was undertaken 

(Rogers and Dunster, 1984). The cattle were housed in tick-free accommodation, and 

blood smears examined weekly to check for any re-infection by Anaplasma. Cattle had ad 

libitum access to hay, water and mineral supplements throughout the study.

BW49 BV154
Trypanosoma brucei NEG NEG
T. congoiense NEG NEG
T. vivax NEG NEG
Anaplasma marginale POS POS
Theileria parva POS NEG
T. mutans POS NEG
Babesia bigemina NEG POS

Table 4.1 ELISA results for candidate Friesian cattle BW49 and BV154 (POS = positive, NEG 
= negative).

The trypanosome line used in this study was the ILTat 1.2 expresser clone. This line is 

derived from the EATRO 795 line, and so is isogenic with reference to the VSG repertoire. 

The ILTat 1.2 trypanosomes switch at a lower rate -  approximately 1x10'^ 

switches/cell/generation (Robinson, 1999). It was decided to use this line because of the 

lower switching rate (the EATRO 795 line switches at approximately 1x10 ’̂  

switches/cell/generation, (Turner, 1997)). It was felt this would lead to a more easily 

examinable progression of the switching hierarchy, given that with the projected 

parasitaemias of 1 x 10̂  parasites.mf' in a 400 kg cow with an approximate blood volume 

of 25 1 there would be an enormous number of parasites (an estimated 2.5 x lO’®) in total at 

the peak. If these parasites were switching at the rate of the EATRO 795 line, all of the 

VATs under study could feasibly appear very early in infection, which although 

biologically accurate, would make elucidation of the hierarchy difficult. In addition, the 

ILTat trypanosomes are more monomorphic than the EATRO 795 line, as they grow 

exponentially in mice and do not yield chronic infections. However they undergo the 

transition to short stumpy in larger hosts (rabbits; (Robinson et al., 1999)), and it was 

hoped this more monomorphic trait would give rise to higher parasitaemias. There was also 

a long-term aim to clone parasites from stabilates made later in the infection, with the hope 

of identifying VATs from the chronic stage. EATRO 795 trypanosomes switch at a rate 

that precludes obtention of phenotypically ‘pure’ clones, as during the time it takes to grow



78

a clone in amplifier mice, a large number of switching events have occurred and the 

population is no longer clonal with respect to VSG expression. Therefore the lower 

switching line was selected.

4.3 Initiation and progression of infection

Before initiation of infection, temperature and weight measurements were taken. Blood 

was sampled, pre-infection haematological parameters were measured, and pre-infection 

plasma samples were stored at -20*^0. ILTat 1.2 trypanosomes were grown up from frozen 

stabilate in irradiated Harlan MFl mice to a level of approximately 1 x 10̂ '̂  parasites.mT’ 

and the mice were terminally exsanguinated by cardiac puncture. The trypanosomes were 

incubated with specific antibodies to the 7 VATs under study, along with guinea pig 

serum, for 1 h at room temperature, in order to eliminate the possibility of inoculating 

parasites that had already switched during the growth in mice. 1x10^ viable parasites were 

then diluted into 5 ml of PSG, and injected via the intravenous route into each cow.

Each day for a total of 70 days, progression of infection was followed. 5 ml of blood was 

taken from the left jugular vein into a vacutainer containing EDTA. Rectal temperature 

was measured using a mercury thennometer. The cattle were weighed on a weekly basis 

using a weighing crush. Peripheral lymph nodes were palpated to check for any 

enlargement, mucous membranes examined for signs of anaemia, and general demeanour 

and appetite were checked regularly.

Daily samples and measurements were made using the 5ml of blood from each cow. 

Parasitaemia was measured by haemocytometer (thi'eshold 1x10^ trypanosomes), and if 

none were detected then the examination of the huffy coat was undertaken (threshold 1 x 

10̂  parasites). RNA was extracted from 0.2ml blood and stored at -70° C for later use in 

RT-PCR. Haematological parameters were measured using an automated haematology 

machine, and in addition a manual measurement of PCV was done, by centrifuging blood 

contained in a sealed capillary tube in a micro centrifuge and measuring the PCV using a 

manual PCV measurement chart (Harlan). 0.2 ml blood was injected via the intraperitoneal 

route into an irradiated Harlan MFl mouse in order to amplify the parasite population if 

present, both as a method of detecting low levels of trypanosome and also in order to make 

representative stabilates of the daily populations. In order to transport the trypanosomes 

back to the United Kingdom, it was necessary to passage the parasites through 2 mice as a 

filter against bovine pathogens, in particular foot and mouth disease vims. Plasma was
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extracted from the remainder of the blood, intended for use in ELISA and in vitro 

complement lysis.

4.3.1 Parasitaemia

Parasitaemia was measured by three different means; haemocytometer, buffy coat 

examination, and inoculation into immunosuppressed mice. The haemocytometer counts 

were undertaken by incubating 10 pi of blood with 90 pi of 0.85% ammonium chloride. 

This allowed accurate counting by lysing the blood cells first, and leaving only the 

trypanosomes. The detection threshold of this method is 1 x 10̂  trypanosomes.mr’. Using 

the haemocytometer, however, the ability to follow the parasitaemia was very limited. The 

initial peak was detectable in both cattle, on days 12, 13 and 14 post-infection in cow 

BW49 reaching a peak of 2.8 x 10̂  trypanosomes.ml"% and on days 13 and 14 in BV154 

peaking at 3 x 10̂  trypanosomes.mf*. Thereafter no parasites were detectable by 

haemocytometer during the remainder of the 70 day infection in BW49, and only 

intermittently on days 19, 20, 24,31, 65 and 66 for BV154, each incidence not exceeding 

10̂  parasites.mf'. The buffy coat technique (Murray et a l, 1977) involved centrifuging 50 

pi of blood in a sealed capillary tube in a microcentrifuge, cutting the tube above the buffy 

coat using a diamond pen, and expressing the buffy coat onto a glass slide. The area under 

the buffy coat was then thoroughly examined under a coverslip. The thi'eshold of detection 

is approximately 1x10^ parasites.ml'^ Utilising this method, detection was more sensitive 

(see Figure 4.2, p. 81), although inaccurate.

The most sensitive detection was inoculation of the cattle blood into immunosuppressed 

mice. An inoculum of 0.2 ml cow blood was used daily, and passage to the second mouse 

occurred when the parasitaemia reached 1 x 10̂ '̂  parasites.ml’ This gave a method of 

crudely assessing the parasitaemic profile in the cattle, by assuming that the time to 

passage was directly proportional to the number of parasites inoculated. Therefore by 

inversely plotting the number of days to passage, an impression of the parasitaemic profile 

was obtained (see Figure 4.1). It was assumed that if no parasites could be detected in the 

mice by 10 days post-inoculation, then there had been no parasites in the inoculum. The 

comparative sensitivity of these techniques has been examined previously (Paris et a l , 

1982) and this study also found that amplification in mice was the most sensitive.
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day of infection in cattle

Figure 4.1 Parasitaemic profiles of cattle BW49 and BV154 as measured by Inversely 
plotting the time In days from Inoculating 0.2 ml cattle blood Into an Immunosuppressed 
mouse to achievement of a parasitaemia of 1 xIO* trypanosomes.ml \

The parasite levels in the cattle were lower than anticipated. This caused problems with the 

amount of parasite RNA that it was possible to extract each day (see 4.6.3, p. 97). The 

levels of parasitaemia anticipated, however, were based largely on infections initiated with 

T. vivax (Barry, 1986), T. congolense (Morrison et a i, 1982b) and T. evansi (Payne et a l, 

1992; Thammasart et a l, 2001), all of which are more pathogenic in cattle than T. brucei 

The total number of parasites however is still substantial; a 320 kg cow such as BW49 will 

have a blood volume of approximately 20 litres, and at the maximum observed 

parasitaemia of 2.8 x 10̂  parasites.mf', there would be at least 5.6 x 10*® parasites within 

the circulation of the animal.
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Figure 4.2 Graph illustrating detection thresholds of parasitaemia during infections in cattle 
BW49 (graph A) and BV154 (B). Y-axis; 0 = parasites undetectable by any method, 1 = 
parasites only detectable by amplification in irradiated mice, 2 = parasites detectable by 
examination of buffy coat, 3 = parasites detectable by haemocytometer. (nb. no measurements 

taken on day 32 post infection)
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It was not possible to elucidate the minimum number of parasites that could be amplified 

in mice, but this would be the method of choice for any further T. brucei infections in 

cattle. It could be deduced that the more pleomorphic EATRO 795 strain would have 

resulted in even lower levels of parasitaemia. A parallel infection was carried out using the 

highly pleomorphic line TREU 927 (see Appendix), and in this case parasites were never 

detected by haemocytometer, very rarely by buffy coat, but did amplify every day (with 1 

exception) in mice.

4.3.2 Health and haematological parameters

The health of the cattle was measured in several ways. Rectal temperature was monitored 

daily as an indicator of pyrexic incidents, a pathological feature of trypanosome infections. 

Body weight was measured weekly, as weight loss is a direct indicator of suppression of 

diet due to lethargy, arising from pyrexia and anaemia. The cattle were examined directly 

for any external signs of trypanosomiasis; superficial lymph nodes (prescapular, 

prefemoral and submandibular) were palpated to check for the generalised 

lymphadenopathy characteristic of the disease, and mucous membranes were examined for 

pallor, indicating anaemia, the second cardinal pathological sign of trypanosomiasis.

temperature curve
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Figure 4.3 Graph of daily rectal temperatures of cattle BW49 and BV154 during the 70 day 
infection.
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Figure 4.4 Graph of weekly weight measurements of cattle BW49 and BV154 during the 70 
day infection.

There were very few overt signs of pathology in the cattle during the course of the 

infections. No gross pathology was observed; there was not any measurable 

lymphadenopathy or visible pallor of the mucous membranes. There were peaks of 

pyrexia, particularly in cow BV154, early in infection. These coincided with peaks of 

parasitaemia on days 12-13 and day 19, corresponding with the initial and first relapse 

peaks. The temperatures measured on these days were at the high end of normal for cattle 

(normal value range 37.5 -  39.5° C (Blood, 2000)), but did not last for extended periods. 

There were smaller spikes of pyrexia during the BW49 infection, again early in infection 

between days 12 and 20, corresponding to the initial peak and the first relapse peak. 

Thereafter, there were no periods of raised temperature in either cow. Body weight 

dropped initially, falling to the lowest point in both on day 21, falling from 328 to 314 kg 

in cow BW49 (losing 4.2 % of body weight), and 356 to 340 kg in cow BV154 (4.4 %). 

This period of loss was in the initial period of infection, specifically during the initial 

parasitaemia peak and the first relapse peak. Thereafter in both cattle there was a gradual 

increase over the remaining seven weeks. In the case of BW49, the cow’s weight increased 

from 314 to 348 kg, a weight gain of 0.69 kg.day *. BV154 increased from 340 to 372 kg, 

growing at a rate of 0.65 kg. day*. This rate of weight gain is within the normal range for 

adult Friesian cattle fed an ad libitum diet of hay and concentrates, recommended as 0.50 -  

0.75 kg.day * ïor Bos taurus cattle (Radostits and Blood, 1985). These measurements 

combine to indicate that the acute phase of the infections associated with higher levels of
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parasitaemia, particularly the first sets of parasitaemic peaks, produced both a level of 

pyrexia and weight loss. After these initial peaks in temperature and drop in body weight 

however, the rate of weight gain and temperature measurements returned to normal levels.

Haematological parameters were measured using an automated haematology machine 

(Vettest, Idexx) for the first 58 days. Thereafter reagents were unobtainable due to 

logistical problems. As a back-up, PCV was also measured daily using a haematocrit 

centrifuge. PCV is a direct measurement of anaemia, as it is the percentage volume of the 

blood taken up by red blood cells. Haemoglobin concentration and red blood cell count 

were also measured. Both are more indirect measurements of anaemia. In addition, the 

whole white blood cell concentration was measured. White blood cells rise as a result of 

the onset of immune responses during microbial infections, and in trypanosomiasis, are an 

indirect measurement of general immunosuppression, another feature of trypanosome 

infections (Urquhart et a i, 1973).

haematocrit PCV

day post inoculation

BW49
BV154

Figure 4.5 Graph of daily manual PCV measurements of cattle BW49 and BV154 during the 
70 day infection.
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Figure 4.6 Graph of daily haemoglobin concentration measurements of cattle BW49 and 
BV154 for the first 58 days of the 70 day infection.
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Figure 4.7 Graph of daily red blood cell size measurements of cattle BW49 and BV154 for 
the first 58 days of the 70 day infection.

The measurements of PCV, haemoglobin concentration, and red blood cell count indicate 

that there was a moderate drop in red blood cell numbers and haemoglobin concentration, 

following a similar profile in the two cattle. PCV gradually dropped from a starting point 

of approximately 35 % to approximately 27 % by day 35 post-infection. Thereafter it 

remained stable, even slightly increasing to approximately 29 % by the end of the 70 day 

observation period. Haemoglobin concentration dropped by approximately 1 g.df* across
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the 70 days. These parameters, while indicating that the trypanosome infection did produce 

a very moderate anaemia, did not in either case go below the bottom threshold of the 

considered normal ranges for cattle (PCV: 24 -  46 %, haemoglobin concentration: 8 - 1 5  

g.dl'% RBC: 5 - 10 pm (Jain, 1986)). The PCV did not ever approach the level, 15%, at 

which the experiment would have been terminated, for humane reasons.

white blood cell counts
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Figure 4.8 Graph of dally white blood cell counts of cattle BW49 and BV154 for the first 58 
days of the 70 day Infection.

The leukocyte counts represented a count of total white blood cells, therefore taking into 

account effector cells of both non-specific and specific immune response. The levels were 

higher than the accepted upper normal threshold level in cattle (4 -  12 x 10̂  ceUs.pf’ (Jain, 

1986) during most of the 58 days measured. Nevertheless, this high level was considered 

normal for Nairobi (Majiwa, pers. comm.), as the accepted levels are based on averages 

under conditions in European/North American agriculture, whereas the cattle in Kenya, 

and in particular exotic cattle such as Friesians, are under challenge from a wider array of 

microbes. There was a drop in white blood cell numbers in both cattle from days 5 - 1 5  

post-infection. Attributing this drop to any host or parasite effect, however, would be 

speculative. Thereafter the numbers stayed relatively stable, with minor fluctuations.

As a summary of the pathological and haematological measurements taken over the 

progression of the 70 day infections, it can be said that in the initial stages there was 

intermittent pyrexia and slight weight loss up to 21 days post-infection, and also a slight 

drop in the PCV. However both the cattle then proceeded to gain weight for the remainder
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of the period of obsei*vation, pyrexic incidents ceased, and haematological parameters 

stabilised. In combination with the parasitaemia data, it can be deduced that the initial 

period of infection, corresponding with the highest levels of pai'asitaemia, led to pyrexia 

and a progi ession of non-clinical anaemia, combining to contribute to a weight loss of 

approximately 4% body weight over the first 3 weeks. Thereafter, as parasite numbers 

reduced, conditions stabilised. No gross pathological signs were observed tliroughout the 

infections, and it can be concluded that the ILTat line of trypanosomes are non-pathogenic 

to Friesian cattle. As a caveat, it must be stressed that these infections were followed for 

only 70 days, and it cannot be concluded that if the infections were left to progress, there 

would have been no subsequent disease.

4.4 Results of the in vitro complement lysis assay

The measurement of the onset of the immune response to each of the seven VATs under 

study was attempted in two ways, by ELISA, and by the in vitro complement lysis assay. 

The methodology of the in vitro complement lysis assay was identical to that used in the 

chronic mouse study, apart from a few minor modifications: plasma collected from the 

cattle on a daily basis was incubated with GPS and clonal trypanosomes homogeneously 

expressing a single species of one of the VSG under study (the GPS used in Nairobi was 

collected from guinea pigs on site, and frozen immediately at -70° C upon collection). The 

onset of the immune response was measured; lysed trypanosomes appearing as ruptured 

'ghosts’ under phase/contrast microscopy. Controls were applied in every case. A positive 

control was included -  clonal trypanosomes incubated in GPS with specific antiserum 

against that VAT raised in mice. 2 negative controls were incorporated, 1 with the 

trypanosomes incubated in GPS alone to ensure there was no non-specific trypanosome 

lysis, the other with the clonal trypanosomes incubated with specific mouse antisemm 

against 1 of the other 6 VATs under study. Controls were prepared in duplicate wells on a 

Terasaki plate. No cross-reaction was ever observed.
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Locus VSG Cow BW49 Cow BV154

mini ILTat 1.21 25 22

MES ILTat 1.22 26 26

mini ILTat 1.25 23 22

MES ILTat 1.64 25 27

BES ILTat 1.67 18 27

int ILTat 1.71 64 66

int ILTat 1.73 40 28

Table 4.2 Day of onset of VSG-speclfic Immune response in each cow to the seven VSGs 
under study (BES = bloodstream expression site, MES = metacycllc expression site, mini 
minichromosomal, int = chromosomal internal).

The order of appearance of immune response to the 7 VATs under study was similar to that 

in the chronic mice, with the immune responses against the VATs encoded by the BES 

gene (ILTat 1.67) and the miniclu'omosomal genes (1.21 and 1.25) appearing earlier, 

between days 18 and 27, and those against VATs encoded by the MES genes (1.22 and 

1.64) and chiomosomal internal genes (1.71 and 1.73) appearing later, between days 25 

and 66. Indeed in the two cattle, the immune response against VATs encoded by internal 

genes tended to appear markedly later, on days 28 and 40 for ILTat 1.73, and days 64 and 

66 for ILTat 1.71. In addition, in the case of ILTat 1.67, the immune response was 

regularly detected earliest in the mice infections, and in cow BW49 appeared as early as 

day 18 post-infection. Obviously the conclusions drawn are limited by the sample size of 2 

cattle. The onset of the immune responses to the seven VATs under study was much later 

in terms of day post-infection compared with the mice. Most likely this was due to the 

lower switching rate in the ILTat trypanosomes, which switch at 1 x 10'  ̂

switches/cell/generation compared with 1x10'^ switches/cell/generation in the case of the 

EATRO 795 line, the assumption being that the generation of populations expressing novel 

variants would take longer in the lower switching ti*ypanosome. In addition, the time to 

patency of infection was much longer in the cattle, 9 and 10 days, compared with an
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average of day 5 for the mice, this probably being a product of body volume and growth 

rate of the parasites.

In almost every instance, the immune response to each variant remained detectable by this 

method until the end of the 70 day monitoring period. This suggested no waning of the 

immune response during this period. However, the immune responses to ILTats 1.21 and 

1.64 in cow BV154 did drop below the detectable threshold. In the case of ILTat 1.21, the 

immune response was detectable from days 22 to 66 post-infection. The immune response 

to ILTat 1.64 was first detected on day 27, and became undetectable on day 60. This could 

be due to the lower parasitaemias detected in BV 154 leading to a lesser magnitude of 

immune response in this cow. It could also be due to individual variation between the 

immune responses of the two cattle -  they were not related, and comparison is not at the 

same direct level with the inbred BALB/c mice.

Cow BV154
1.73
1.71
1.67
1.64
1.25
1.22
1.21

D ay  I D a y  70

Cow BW49
1.73
1.71
1.67
1.64
1.25
1.22
1.21

D a y  I D ay  70

Figure 4.9 A schematic representation of the immune response onset and duration against 
the seven VSGs (ILTats 1.21,1.22,1.25,1.64,1.67,1.71 & 1.73) in cows BW49 and BV154.
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4.5 ELISA results

The second teclinique used to detect the host immune response was ELISA. In theory this 

technique should provide a method for differentiating between the levels of the different 

isotypes of specific immunoglobulin, in particular IgG and IgM, as well as defining more 

sensitively the onset of the specific immune response. The different isotypes are thought to 

play different roles in control of parasite numbers within the host, IgM featuring earlier in 

infection although maintaining high levels throughout (Luckins and Mehlitz, 1976;

Musoke et a l, 1981), and the role of IgG increasing as the infection progresses and affinity 

maturation strengthens. IgM is involved in complement mediated lysis in vivo, and IgG 

more in opsonisation (Goddeeris, 1998).

The ELISA substrate was VSG purified from clonal trypanosomes grown up in rats, and 

purified as in section 2.2.5.1 (p. 41). This was whole soluble form VSG, including both the 

conserved C-terminus, and the variable N-tenninus. The ELISA protocol was performed as 

in 2.5.4 (p. 42). Plates were tested using plasma sampled at 5-day intervals for the first 30 

days, and at weekly intervals thereafter, the rationale being to concentrate on the onset of 

the specific immune response. Positive controls used serum from a rabbit immunised on 4 

occasions at 3-weekly intervals with the same purified VSG protein. The rabbit was 

euthanased following the final immunisation, providing hyperimmune seium rich in 

polyclonal antibody versus the relevant VSG. Negative controls used serum prepared in an 

identical manner to a heterologous VSG, pre-infection serum from the appropriate cow, 

and dilution buffer alone. 2 plates were prepared for each VSG per cow. The first was used 

to measure the IgGl level, as this is the subtype that predominates during trypanosome 

infections (Musoke et a l, 1981). The second plate measured the IgM response.
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Figure 4.10 Curves of absorbance levels at timepoints throughout the 70 day Infection, 
measuring the IgGl levels to the seven VSGs under study In cow BW49. (Plasma samples 
were tested diluted 1/1250)
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Figure 4.11 Curves of absorbance levels at timepoints throughout the 70 day infection, 
measuring the IgM levels to the seven VSGs under study in cow BW49. (Plasma samples 
were tested diluted 1/1250)
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Figure 4.12 Curves of absorbance levels at timepoints throughout the 70 day Infection, 
measuring the IgGl levels to the seven VSGs under study In cow BV154. (Plasma samples 
were tested diluted 1/1250)
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Figure 4.13 Curves of absorbance levels at timepoints throughout the 70 day Infection, 
measuring the IgM levels to the seven VSGs under study In cow BV154. (Plasma samples 
were tested diluted 1/1250)

The results of the ELISA analyses were not conclusive, preventing discerning of a discrete 

onset of the specific immune responses. There was an observable difference between the 

progression of the IgGl and IgM levels, and indeed between the profiles of the 2 cattle. 

There was very little similarity between the results obtained by the in vitro complement 

lysis and ELISA. The levels of immunoglobulin measured for the 7 VSGs under study, and 

VAT-specific antibody profile over the timecourse of the infections, were very similar to
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each other within each cow. The IgM levels became detectable on day 15 post-infection, 

and rose to a peak between days 30 and 37 in both cattle, and then decreased again, 

dropping to a level slightly above that at the start of infection. The peak does correlate with 

the peaks of parasitaemia in both cattle, and in addition the drop corresponds with the 

period where no parasites were detectable in the cattle. This does not agree with 

observations made previously, where the IgM levels were maintained throughout infection 

(Luckins and Mehlitz, 1976; Musoke et a l, 1981), although does concur with one 

observation that IgM levels are proportional to parasite burden (Nielsen et a l, 1978). With 

respect to the IgGl levels, they also followed similar profiles across the infection for all of 

the VSGs. hi cow BW49 the levels rose slowly, beginning to increase on day 20 to a peak 

between days 37 and 44, and thereafter remained at a slightly decreasing plane. In cow 

BV154, interestingly, there was a similar initial peak at day 37, which decreased to day 51, 

and then there was a second, greater peak in antibody levels, rising steadily until the end of 

the infection. These two profiles agree with the parasitaemic profile in the cattle, the 

second increase in BV154 corresponding with the second relapse peak of parasitaemia, 

which commenced on day 57. In contrast, the second relapse peak in cow BW49 was 

detected on day 68. A likely explanation for the similarity of the levels of antibody 

between the immune responses to the different VSGs is that the substrate was not specific 

enough. As it was whole VSG protein utilised, the cross-reactive, conserved regions of the 

protein were available for binding. The control plasma was able to differentiate between 

the VSG species, but this was hyperimmune plasma raised in rabbits by serial 

immunisation. The plasma extracted from the cattle was polyclonal, the antibodies against 

the VSGs were not purified in any way, and undoubtedly there will have been antibodies 

against conserved epitopes, raised against dead trypanosomes, or via fragments of parasites 

killed by the specific immune response. Therefore the ELISA has inadvertently provided a 

method of assessing the general IgM and IgGl anti-VSG response, and agi'ees with the 

general observation that the IgM response is detectable earlier than that of the IgGl 

response, but unfortunately has not enabled the distinction between the specific immune 

responses raised against the 7 VSGs under study.

4.6 Analysis of VSG expression by RT-PCR

RNA was extracted each day horn the cattle blood collected during the infection. Specific 

oligonucleotide primers were designed from within the N-terminus coding region of each 

VSG, and the PCR conditions were optimised (for primer sequences see Table 2.1, p. 49). 

Products from each set of primers, produced by RT-PCR h'om RNA extracted from clonal
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trypanosomes grown in an immunosuppressed mouse, were sequenced to ensure the 

con'ect product was amplified. The aim was to utilise the F*S'G-specifîc primers to detect 

the populations deriving from a switching event to the relevant VSG, and follow the 

longevity of a population expressing a particular VSG. This method, unlike following the 

specific immune responses, theoretically is detecting directly the products of a switching 

event at the soonest possible time point, and should give a clearer indication of any 

hierarchical switching.

4,6.1 Controls

Several positive control primers were also designed (for primer sequences, see Table 2.1, 

p.49). Primers were produced for bovine actin, to ensure RNA extraction proceeded as 

expected. In addition, primers were designed against trypanosome p-tubulin, in order that 

the presence of trypanosome RNA could be ascertained in those instances where other 

VSGs were being expressed. It was also decided to use primers to detect the RNA of the 

VSG expressed by the ILTat 1.2 trypanosomes that were inoculated, as a further positive 

control. A reaction combining cDNA from ILTat 1.2 trypanosomes and primers against the 

ILTat 1.2 VSG were included in each panel as a positive PCR control. As all primers 

designed and used were complementary to sequences within the coding sequence, it was 

essential in each case that DNAase treatment was earned out thoroughly, and RT positive 

and RT negative reactions were included. Additionally a reaction was included without any 

template DNA in order to ensure no contamination of PCR reagents.



9 5

VSG primers 
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kb 1.0

Figure 4.14 Size of expected PCR products. PCR reactions performed using ILTat 1.2 gDNA 
(y axis = 1 kb size standard ladder), -ve = no template negative control. The PCR products 
were run on a 0.7% EtBr stained gel.

As a means of quantifying the lower detection limit of the RNA extraction and RT-PCR 

methods used in the cattle, an in vitro control was undertaken. This was a necessary trial, 

as, although the peaks of parasitaemia in the cattle regularly exceed 1x10^ 

trypanosomes.mf', for much of the rest of the time, the levels would be much below this. 

In addition, the VAT-specific sub-populations would be only a fraction of this. In order to 

follow the populations of trypanosome expressing the VATs under study, a sufficient level 

of RT-PCR sensitivity was required. Lister 427 trypanosomes (a monomorphic line much 

utilised and characterised in in vitro studies) were grown in vitro in HMI-9 medium at 37® 

C to a concentration greater than 1x10^ trypanosomes.mf'. An accurate count was 

determined using a haemocytometer, and serial dilutions were performed in horse blood, 

from 1 X 10̂  to 10 parasites.mf*. At each titre point, RNA extraction and RT-PCR were 

undertaken in an identical manner to that in the cattle. The primers used in the PCR 

reactions were designed and directed against the N-terminus of the 221 VSG, which is the 

predominantly expressed VSG in 427 trypanosomes.
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Figure 4.15 Agarose gel illustrating iowest concentration of Lister 427 trypanosomes in 
horse blood detectable by 221 VSG-speclfic RT-PCR (numbers on x-axis refer to 
concentration of trypanosomes/ml, + = RT+ve, - = Rt -ve; y-axis Ikb ladder). The PCR 
products were run on a 0.7% EtBr stained gel.

The lowest detectable concentration of trypanosomes using this method was 1x10^ 

trypanosomes.mf', although the band on the agarose gel was very faint. The probable 

lowest reliable threshold was 1x10^ trypanosomes.mf’. Southern blotting of the agarose 

gels and probing using PCR products was not attempted. There were insurmountable 

differences in this control experiment from the cattle samples, such as the use of horse 

blood instead of bovine. In addition, it cannot be guaranteed that all the 427 trypanosomes 

expressed the 221 VSG, although it was highly likely > 99% did (J.D. Barry, pers. comm.), 

therefore extrapolation of counted trypanosomes to detection of the 221 VSG must be 

cautious. However, it was concluded that this experiment provided an insight into 

problems that may have been encountered with low levels of parasitaemia. Additionally, 

the observed threshold level was concluded to be sufficiently sensitive for the expected 

parasitaemic profiles.

4.6.2 Possible use of mouse stabllates derived from

trypanosome populations in cattle for VSG-spec/f/c RT-PCR.

Trypanosome stabilates were derived from the cattle blood by amplifying any parasite 

population present in an irradiated mouse, which was then passaged further through a 

second irradiated mouse. The possibility was considered of growing these stabilates in a 

mouse host, and then extracting RNA for use as a substrate for RT-PCR. The number of 

trypanosomes, and therefore the quantity of trypanosome RNA, would be much greater 

than that extracted from the cattle blood. To test this, an RT-PCR reaction was carried out 

with RNA extracted from ILTat 1.21 trypanosomes grown in an immunosuppressed
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mouse. This was achieved with a stabilate 1 passage from the original cloned stabilate, a 

scenario identical to the mice stabilates that were derived from the cattle.

1.2 1.21 1.25 1.64 1.67 1.71 1.73 -ve

Figure 4.16 RT-PCR panel illustrating products obtained from RNA extracted from mouse 
blood. The amplified stabilate (ILTat 1.21) had a similar passage history to the stabilates 
derived from the cattle blood (Figures at side indicate size in kb of ladder fragment; RT 
negative panel not shown). The PCR products were run on a 0.7% EtBr stained gel. Primers 
used were complementary to sequences within the respective VSG N-terminus coding 
region (see Table 2.1).

It can be seen from the RT-PCR panel (Fig. 4.16) that, although the ILTat 1.21 product is 

the most abundant product, there have been switching events detectable by PCR, namely to 

ILTat 1.2, ILTat 1.22, and less so to ILTat 1.64 and ILTat 1.71. As the starting material 

was three passages from the original clone stabilate, and that would be the same period 

elapsed by the cattle derived trypanosomes, it was concluded that accurate RT-PCR 

detection of VATs required application directly to the RNA extracted from the infected 

cattle.

4.6.3 Levels of RNA extracted from daily blood samples during 

cattle infections

The quantity of RNA extracted on a daily basis from the cattle was measured by UV- 

spectrophotometer. As this source of RNA was the only suitable option for the RT-PCR 

approach, the amount could be a significant limiting factor in determining the presence or 

otherwise of VSG transcripts. Measurements were taken for the first 45 days of infection in 

both cattle in the first instance, and these were to be examined for correlation with success 

or otherwise of the RT-PCR analysis.
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Infection.
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Figure 4.18 RNA levels (ng.pl per dally sample for cow BV154 for the first 45 days of 
Infection.

The levels of RNA indicated by UV-spectrophotometer are low, almost invariably under 

50 ng.pl '. The recommended optimum amount for first-strand cDNA synthesis 

(Invitrogen) is between 1 ng and 5 pg of total RNA. The levels obtained from the cattle fell 

within these parameters, but were close to the minimum recommended threshold. The 

fluctuating levels did not correlate either with the measured parasitaemia, or with the white 

blood cell counts observed in the 2 cattle. This low quantity is due to the extraction of 

RNA from only 200 pi of blood. This relatively small volume of blood, and concomitant
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low number of trypanosomes will inevitably result in variation in RNA yield. No further 

measurements of RNA levels were taken, as it was deemed the positive control PCR 

reactions for bovine actin and trypanosome p-tubulin would provide information on the 

ability to amplify from the RNA substrate. As these are both constitutively expressed 

proteins, the absence of any detectable PCR product would indicate the isolation of 

insufficient RNA.

4.6.4 RT-PCR results

RT-PCRs were undertaken for each cow on every sample taken on a day where parasites 

were detectable, by haemocytometer, buffy coat examination, or amplification in irradiated 

mice. This meant an initial pool of 33 samples for cow BW49 and 46 for BV154. In the 

instance of VSG transcripts being detected readily in these sets of samples, examination of 

the remainder would be undertaken. Reactions were directed towards detection of the 

constitutively expressed bovine actin and trypanosome p-tubulin. In the event of successful 

amplification of their transcripts, PCRs subsequently were aimed at the seven VSGs under 

study. The samples collected fi'om cow BV154 were independently “blinded”, by assigning 

a code to each sample, which was translated only upon completion of the PCRs. This was 

done to ensure lack of bias during interpretation of gel results, and to provide validation of 

the pattern of results obtained for cow BW49.

Bovine actin gene products were obtained in the majority of samples analysed; 78.8% from 

BW49 (26 samples of 33 analysed), and 80.4% from BV154 (37/46). This indicated that 

the blood sampling, RNA extraction, DNAase treatment and reverse transcriptase steps all 

functioned in these samples. It is likely that in the cases where no bovine actin detectable, 

one or more of these steps had failed. However, there was a disappointingly much lower 

demonstrable level of trypanosome p-tubulin transcripts in samples from both cattle.

39.4% (13/33) of samples from BW49 and 41.3% (19/46) of samples from BV154 had 

detectable trypanosome RT-PCR products. This was, respectively, 50% and 51.3% of 

samples positive for bovine actin. These figures alone indicate that the amount of 

trypanosome material available in the samples from the cattle was indeed a limiting factor. 

However the similarity in the number of trypanosome positive samples from the two cattle 

does indicate uniformity in experimental technique.

The samples that were positive for trypanosome p-tubulin were then examined for the 

presence of specific VSG transcripts. Products for all 7 VSGs were identified in both cattle.
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VSGs were identified in 53.8% (7/13) of the samples from BW49 and 36.8% (7/19) from 

BV154. The period within each infection during which VSGs were detectable is 

remarkably similar. In cow BW 49, VSG transcripts were detectable on days 12 and 13 

post infection, corresponding with the initial parasitaemic peak, on days 19, 20, and 23, 

which relate to the first relapse peak(s), and on day 43, which matches with a small 

independent peak after the first relapse. For BV 154, VSGs were first detected on day 12 of 

the infection, again matching the initial parasitaemic peak, and thereafter on days 17, 18, 

20, 21, 23 and 24, during the first relapse peak(s) (for parasitaemias refer to Fig. 4.1, p.

80).

Bovine ac tin
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B i
1.636
1.018
0.506

0.396

B
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RT-tve RT-ve
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0396

D

12 1.21 122 1 25 1.64 1.71 1.73 +ve -ve
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1.2 1.21 1.22 1 25 1.64 1.71 1.73

Figure 4.19 Example panel of RT-PCR products. Agarose gels Illustrating products obtained 
from cow BV154, day 20. Panel A; bovine actin, Reverse Transcriptase (RT) positive (+ve) and 
negative (-ve). B; trypanosome p-tubulln, RT +ve and -ve. C; VSGs, RT+ve. Positive control (ILTat 1.25 
primers against ILTat 1.2 gDNA). Negative control, no template. D; VSGs, RT -ve. The PCR products 
were run on a 0.7% EtBr stained gel.

As can be seen in Figures 4.20 and 4.21, some of the PCR products were extremely faint, 

presumably due to the low amounts of RNA in the original sample. Ideally further 

confirmation by a method such as nested PCR would have been undertaken, but 

unfortunately this was not possible due to time constraints. For the same reason, sequences
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of all PCR products obtained were not determined, although several products were shown 

to have the expected sequence.
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Figure 4.20 Schematic Illustrating positive products on agarose gels, obtained from 
samples from cow BW49 for the 8 VSGs examined, and the days post-lnfectlon when 
detected.
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Figure 4.21 Schematic Illustrating positive products on agarose gels, obtained from 
samples from cow BW49 for the 8 VSGs examined, and the days post-lnfectlon when 
detected.



1 0 3

cowBW49
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notenplate

221 231 241 25

Bovine actin
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ILTat 1.2
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ILTat 1.71
ILTat 1.73
no template
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KEY

Ipositive txvins ocntrd 
positive trypanosome control 
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no PCR product detected

Table 4.3 Summary of PCR results for all samples analysed by RT-PCR during chronic 
Infection of cow BW49. Separate blocks represent peaks of parasitaemia.

cow BV154
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ILTat 1.22 "Tj dâ E s
ILTat 1.^3 j

Hill
..

ILTat 1.64 " 1 C-y
ILTat 1.67 1 FT■*ILTat 1.71 ‘ j rz
ILTat 1.73 I 3 mW — p: sÀLà
no template

• n i l » 9 H __ **

Table 4.4 Summary of PCR results for all samples analysed by RT-PCR during chronic 
Infection of cow BV154. Separate blocks represent peaks of parasitaemia. Key as for Table 
4.3.
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The pattern of appearance of the specific VSGs is somewhat obscured by interruptions in 

the data where it was not possible to detect trypanosome RNA (see Tables 4.3 and 4.4, p. 

103). Of the 8 VSGs examined, only ILTat 1.2 was detectable in initial parasitaemic peaks. 

ILTat 1.2 was the VSG expressed by the inoculating clonal line, and thus was expected to 

appear early in infection. The results indicate that the initial parasitaemic peak did not 

contain any of the 7 relapse VSGs under study.

In both cattle, the majority of PCR products for the VSGs under study were detected during 

the first relapse peak. Indeed all 7 appeared in this peak in BV154, and the same occurred 

in BW49, with only 1 exception. The order of appearance can be distinguished only with 

uncertainty. In BW49, ILTats 1.22 and 1.67 were detected first, on day 19, and there were 

transcripts of ILTats 1.21, 1.25, 1.64, 1.67 and 1.71 on day 20. Unfortunately on days 17, 

18, 21 and 22 it was not possible to amplify any ti-ypanosome products. By day 23, only 

ILTats 1.64 and 1.71 were detectable, and for the remainder of the first relapse peak no 

specific transcripts were detected. ILTat 1.73, however, was detected on day 43, during a 

peak of short duration (4 days) that occun'ed 4 days following the end of the first relapse 

peak. Thereafter there were no PCR products detectable for the remainder of the infection. 

It was disappointing not to obtain information for the days 17, 18, 21 and 22, as these 

possibly would have given more information on the dynamics of this subset of VSGs.

For the BV154 infection, the picture is slightly clearer, although there were still gaps in the 

information. ILTats 1.21, 1.25 and 1.64 were detected on day 17, and these were joined by 

ILTat 1.67 on day 18. Day 19 did not have any detectable bovine or trypanosome material. 

On day 20, it was possible to amplify products for all 7 VSGs apart from ILTat 1.22. On 

day 21 there was no longer an ILTat 1.21 transcript, but ILTat 1.22 appeared for the first 

time, along with ILTats 1.25, 164, 1.67, 1.71 and 1.73. By days 23 and 24 only ILTat 1.73 

was present. Therafter there were no PCR products detectable for the remainder of the 

infection. Again, the overall picture is fi'usti'ated by the lack of information available on 

days 16, 19 and 25. However, in this infection the appearance of the 7 candidate VSGs did 

span the course of one distinct parasitaemic peak, indicating that this peak is made up of 

several sub-populations, each deriving fi*om switching events and expressing the VSGs 

under study. In the case of BW49, the VATs other than ILTat 1.73 did occur over a time 

period similar to that of their counterparts in the BV154 infection, but seemed to foim a 

subpeak at the begimiing of a large period of continuous parasitaemia.
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ILTat
VSG BW49 BV154 VSG locus

1.2 12,13 12
1.21 20 17,18,20 mini
1.22 19 21 MES
1.25 20 17,18,20,21 mini
1.64 20,23 17,18,20,21 MES
1.67 19,20 18,20,21 BES
1.71 20,23 20,21 int
1.73 43 20,21,23,24 int

Table 4.5 Table illustrating days on which VSGs were detectable by RT-PCR in cattle BW49 
and BV154 {mini = minichromosomal, MES = metacycllc expression site, BES = bloodstream 
expression site, Int = chromosomal Internal, * = Inoculating VAT)

4.7 Summary

When the results of the PCR are combined with those of the in vitro complement lysis 

assays, a broader picture of the infection in the two cattle can be outlined (see Figure 4.22, 

overleaf). The 2 sets of results coiTelate, with detection of PCR product slightly preceding 

that of the respective immune response (with the exception of ILTat 1.73 in cow BW49). 

In addition, there was very little overlap between the PCR products and the immune 

response, indicating the removal of trypanosomes expressing the respective VSG by the 

specific immune response. The mRNA that gave rise to PCR products appeared only 

within a restricted timeframe, and seemed not to reappear, indicating 1 continuous 

subpopulation existing until the emergence of the antibody response. The restriction of the 

subset of VSGs to a narrow timefi'ame, early in terms of the infection, is similar to the 

previous findings in rabbit infections (Robinson, 1999). These observations indicate that 

the subset of VSGs examined, are activated relatively early in a truly clironic, long-term 

infection, and leads to intriguing questions as to what is occurring later. Unfortunately, 

there is discontinuity in the PCR data, due to the low amounts of trypanosome RNA 

extracted in the cattle samples and occasional failure of RNA extraction. However, the 

complement lysis results, combined with those from PCR, provide a hitherto unseen 

insight into the dynamics of a long teim infection with regard to both parasite and host.
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Figure 4.22 Graphical representation of VSG expression and specific immune responses 
during trypanosome infections in cattle BW49 and BV154.
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Chapter 5

Mathematical model
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5 Mathematical Model

5.1 Introduction

The population dynamics of a parasite population within a host are a consequence of 

parasite effects, host effects, and the interaction between the two factors. In trypanosome 

infections, there is a characteristic profile of a chronic undulating parasitaemia, with peaks 

getting smaller and wider apart. It is thought that these kinetics result from the system of 

antigenic variation, a mechanism by which trypanosomes produce sequential novel VSG 

coats, thereby inherently pre-empting the host’s specific immune responses, the functional 

tai'get of which is the VSG. A typical trypanosome infection has a number of 

characteristics. The appearance of variants is hierarchical to an extent, possibly leading to 

optimal use of the available repertoire of VSG genes, and extending the chi’onicity of the 

infection. Each peak of parasitaemia consists of multiple sub-peaks, each a population 

expressing a different VSG. There is never a patent re-expression of any variant, as the 

specific immune response to that variant seems to remain throughout the timecourse of an 

infection.

A variety of mechanisms have been proposed to be the basis of the “semi-predictable” 

ordering of expression of VSGs, as has been observed experimentally (Gray, 1965;

Capbem et a l, 1977; Miller and Turner, 1981). Much of this speculation has not been 

satisfactory in terms of withstanding either theoretical or experimental scrutiny. For 

example, it has been suggested that differential growth rates conferred upon the 

trypanosome by the expression of different VSGs was a possible system (Seed, 1978), but 

this has been discounted both theoretically, where the observed growth differences were 

not sufficient to produce the profile seen in trypanosomes (Kosinski, 1980), and 

experimentally, where again the growth rates observed between clones expressing different 

VSGs were not markedly different (Aslam and Turner, 1992).

Modelling has been used as a tool for examining the dynamics of interactions between 

parasites and hosts (Lythgoe, 2000; West et a l, 2000). Modelling allows manipulation and 

examination of the effects of certain aspects of the relationship. The technique by 

definition is population based, and the output is phenotype driven. Attempts at modelling 

the dynamics of trypanosome infections thus far have had mixed results. Several models 

have arisen h'om hypotheses that do not have biological or experimental support, such as 

differential immunity towards trypanosomes expressing two VSGs during a switching
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event (Agur et a l, 1989), and the influence of the immune response against invariant 

antigens (Agur and Mehi-, 1997). There are examples of models that produce viable 

outputs, and successfully incorporate established biological features of the parasite (Frank,

1999). The aim of this study was to produce a model that could build on the positive 

aspects of the published theoretical models, include as many as possible known biological 

parameters, and simulate the in vivo kinetics and dynamics of a trypanosome infection, 

with the key variable being the semi-ordered expression of VSGs.

5.2 Background

The credibility of any proposed idea depends on the soundness of its foundations. 

Modelling is no exception, and for this reason it is worthwhile critically reviewing 

previous work. In addition, certain aspects of previous models will be incorporated into 

this study. A number of mechanisms have been proposed to be behind the semi-predictable 

expression of the VSG repertoire. Frank (Frank, 2002) grouped the various hypotheses 

broadly under 3 headings; natural selection, antigen cross-reactivity and variable switching 

rates. I will combine the first 2 under the broad heading of ‘natural selection’, and use the 

heading ‘molecular switching’ for the latter category.

5.2.1 Natural selection

The ability of different VSGs to confer different growth rates upon the trypanosomes has 

long been proposed as a mechanism for producing the sequential peaks of parasitaemia 

(Seed, 1978). This would arise due to the first variants being those that more efficiently 

made use of the resources available, and once these are removed by the specific immune 

response, those with slightly less of a competitive advantage would predominate, and so 

on. There are, however, fundamental flaws with this hypothesis. Firstly, the range of 

differences in growth rates would need to be significant to produce such a progression of 

infection (Kosinski, 1980). Indeed experimental analysis has suggested that any obseiwed 

difference in growth rates is not sufficient to support this theory (Myler et a l, 1985; Aslam 

and Turner, 1992). In addition, although individual clones derived from trypanosome 

populations can exhibit different growth rates, the linking of this phenotype to the 

expression of particular VSGs has not been proven by study of large numbers of clones. 

However, in Seed’s study there were two clones, expressing the same VSG, with different 

growth rates, indicating that growth is not a function of VSG expression.
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A switching intermediate, a trypanosome that expresses 2 VSGs at the same time before 

protein turnover results in the removal of the previously expressed VSG, has been 

suggested as a fundamental aspect in determining the ordered appearance. Agur et al. 

(1989) produced a model whereby these double expressor trypanosomes had differential 

susceptibility to the host’s immune response. Using this model, a range of susceptibility of 

double expressors produces a hierarchical progi'ession of VAT expressing sub-populations, 

even with all switches having similar probabilities. Although simulations in the same paper 

support this hypothesis, it has no biological support. Double expressor trypanosomes have 

been generated in vitro, demonstrating that the expression of 2 VSGs at once is not in itself 

intrinsically harmful (Chaves et a l, 1999). A second study suggested that expression 

fluctuates between 2 VSGs when double expression was maintained by insertion of drug 

resistance genes into 2 different BBSs, and subsequent maintenance under drug selection 

(Munoz-Jordan et a l, 1996). This indicates the double expressor is likely to be an unstable, 

transitory intermediate.

A similar possibility not proposed before, which would in effect function in the same 

manner as the double expressor theory, is where the immune response specific to each 

VSG differs in the qualitative ability to either recognise or kill that variant. In effect, this 

translates as a range of immunogenicity across the VSGs. There have not been any studies 

done to con'oborate this hypothesis. It also suggests that the VSGs are present 

concuiTently, and it is the differential immune response that determines the longevity of 

any particular VSG-expressing sub-population. However, data suggest that this is not the 

case, and there are discrete separate VAT populations, certainly if compared between 

parasitaemic peaks (Robinson, 1999).

The prospect of an increasing role of non-variant antigens as an infection progresses has 

been suggested as significant in shaping the profile of trypanosome infections (Antia et a l, 

1996; Agur and Mehr, 1997). The suggestion is that after the first few peaks of 

parasitaemia, invariant antigens beeome a significant target of the host’s immune response, 

particularly as a proportion of these proteins are invariant for functional reasons. Certainly 

Agur & Mehr suggest that only by including this parameter in their model was it possible 

to mimic the phenomenon of parasitaemic peaks becoming wider apart and lessening in 

magnitude. There is limited experimental evidence of immune responses being detected 

against invariant antigens during T. congolense infections in cattle (Authie et a l, 1993), 

and T. brucei infections in mice (Radwanska et a l, 2000b). However there is no 

experimental substantiation of the effectiveness of these responses. Indeed, it can be 

suggested that the increase in antibodies against invariant antigens will inevitably occur in
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chronic infections, as there will be exposure via cells lysed by the specific immune 

response, and from senescent short stumpy trypanosomes. However, the efficacy of these 

antibodies is questionable, as these antigens are not exposed on living trypanosomes due to 

the VSG barrier, and they are therefore probably not relevant in teirnis of protective 

responses.

5.2.2 Molecular VSG switching and homology

The proposed variable in our model that affects the profile of in vivo infections, and in 

particular the semi-predictable order of expression of VSGs, is the difrerent activation rates 

of different (categories of) VSGs. This aspect of trypanosome molecular biology has been 

used to produce the most compelling model to date (Frank, 1999). The molecular 

switching of VSGs is a well studied process, although not fully understood. Our model 

proposes to input two partially overlapping aspects that influence VSG switching; the 

position of the VSG within the genome, and sequence homology between silent and active 

VSG genes.

The influence of different genetic loci on the position of the silent VSG gene within the 

hierarchy has been well studied. In both monomorphic (Liu et a l, 1985) and pleomorphic 

(Robinson et a l, 1999) trypanosomes it has been established that subtelomeric VSGs tend 

to be activated before VSGs located internally in cliromosomes. Other events such as 

mosaic gene formation (Thon et a l, 1990; Ramper and Barbet, 1992) seem to be rare 

occurrences, probably occurring later in the infection period (Barry, 1997). A secondary, 

but related phenomenon is the predominance of duplicative switching processes involving 

the replacement of the active gene with a silent gene by a recombinatorial mechanism. The 

other mechanism is in situ switching, whereby 1 bloodstream expression site’s promoter is 

switched off, and another turned on. The ratio of these mechanisms has been measured as 

at least 9:1 respectively (Robinson, 1999) in pleomorphic trypanosomes. The earlier 

appearance of subtelomeric VSGs is likely to be a reflection of this, as the association and 

consequent recombination between two subtelomeric genes, probably is easier than 

between an interstitial and a subtelomeric locus. The predominance of duplicative 

switching events means that sequence homology must play a role in switching. It has been 

demonstrated that proteins involved in homologous recombination (in particular RAD51) 

exert influence in antigenic variation (McCulloch and Bany, 1999). Homologous 

recombination requires relatively long stretches of sequence homology. This is most likely 

provided by the an*ay of 70-bp repeats which are upstream of the VSG genes in varying 

numbers. However, the formation of mosaic genes later on in infection, if mediated by
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homologous recombination, has to involve homology within the VSG coding sequence.

This particular aspect has not been examined thus far, due to the limited number of 

confinned mosaic VSGs isolated (Thon et a i, 1989; Kamper and Barbet, 1992).

Frank (1999) concluded that only “minor modifications of switch rates by natural selection 

ai'e required to develop a sequence of ordered parasitaemias”, the modifications being a 

function of the different probability of particulai' VSGs switching to others, producing a 

range of switching rates. He does not attribute this to specific mechanisms, but the model 

provides a matrix of switching frequencies that affect the loosely ordered profile, the 

variations determined by regions of homology between the VSG loci and flanking regions, 

with the 70-bp repeats specifically being mentioned as possibly being important. Growth, 

antibody production and effect, and carrying capacity of the host were considered to be 

independent of the VSG, The model is essentially deterministic, whereby variant A will 

switch to variant B, which will then switch to vai'iant C and so on. However, this produces 

a lack of reversibility in the system. If homology was a significant factor, then variant B is 

presumably as likely to switch to A, as it is to C.

A modification of the Agur model (1989) inadvertently agrees with the significance of 

differential switching. It is mentioned in passing that when the role of the double expressor 

intermediate is much reduced, and “preferential activation of telomeric genes” or “DNA 

nucleotide sequence controlled preferential activation” are introduced, this leads to a 

hierarchical progression of VSGs.

In our model we consider a refinement of Frank’s mechanism for switching. In this 

enhancement, there are variants that are more likely to be switched to than others, and this 

can be dependent or independent of the variant that is switched from, dependent 

respectively upon the relative significance of genomic position and sequence homology. 

This results in a system that is less deterministic than Frank’s model, which is important, 

as it reduces artificial rigidity, and should reflect with gi'eater accuracy the picture in vivo.

5.3 Model input

The model begins from the point of inoculation of 4000 trypanosomes, with a repertoire of 

30 VSGs. The population of trypanosomes will grow logarithmically, until reaching a level 

where the density-dependent formation of short stumpy form trypanosomes causes the 

parasitaemia to plateau (Reuner et a l, 1997). This differentiation stage is also essential in 

shaping the profile of infection, and incorporating aspects of a biologically valid model of
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in vivo stumpy stage formation (Tyler et a l, 2001) was important in order to produce a 

more holistic simulation.

The population of trypanosomes within the host consists of 2 morphological forms, which 

vary in their proportions as infections progresses; the total population of long slender 

trypanosomes, V, and short stumpy form trypanosomes, M  Maximum stumpy production 

occurs at the concentration of cells K. Within this greater framework there also exist 

several sub-populations, each expressing an antigenic ally unique VSG. For a given variant 

i, there is a slender population v,-, and a stumpy population w/. Slender cells have an 

intrinsic growth rate and there is a probability/that when a cell divides one of the 

daughter cells will differentiate to a terminal short stumpy cell. This probability increases 

as the total number of parasites increases, as this is a density dependent phenomenon 

(Reuner et a l, 1997). All variants switch at the same rate, which is measured as the global 

switching rate; 1x10'^ switches/cell/generation (Turner, 1997). There are differences in 

the rates at which particular variants are switched to, but this is independent of the variant 

that it is switched from. The rate at which a particular variant i is switched to from variant j  

is defined as s^.

The immune response to variant i is the second aspect that will determine the fate of 

populations v,- and w,-. The killing rate depends on the strength of the acquired immune 

response ai, and the maximum rates at which the immune system eliminates slender cells, 

di, and stumpy cells, (5,-. There is also a general killing function. At the beginning of 

infection the growth rate is at a maximum, r, but as the duration of the infection increases 

there is a generalised inhibition of growth rate independent of the acquired immune 

response to each of the variants. For all of our simulations we chose a value of p of 2500, 

meaning it takes 26 days for gr owth to be inhibited by 50% as determined experimentally 

(Turner et al, 1996).
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Sym bol Param eter
y total number of long slender cells
M total number of short stumpy cells
K number of cells at which maximum stumpy production occurs

Vi slender cells of variant /

rrii stumpy cells of variant /

rt growth rate of variant at time f

f probability of one daughter cell differentiating to a short stumpy ceil

r maximum growth rate of variant

SiJ rate at which variant / is switched to from variant j

Ui acquired immune response

di maximum rate of killing of slender cells of variant /

ôi maximum rate of killing of stumpy cells of variant j

P general killing function

T time lag for onset of acquired immune response

Ci Scaled constant of the acquired immune response against variant /
c Scaled constant of the acquired immune response
X rate of the intrinsic growth of the immune response

Pi rate at which / gets switched to independent of variant / it is replacing

h i
m easure of readiness of variant / to replace variant j  based on

homology

Table 5.1 Sum m ary and explanation  of m odel param eters.

Following this the dynamics of slender and stumpy cells are given by;

dv,
dt y=i

dm,
dt

-  = VirJ-m^Sa,

where

f  = l ~ e i Vr VM) l K
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and

— r e - t i p

The modelling of the acquired immune response to each variant, a,, was that used by Tyler 

et al (2001), using a single equation;

d a ^

dt
e l l - a , . )

V,. +  m ,.

V c ;

where Cj, C and are constants, and the prime (v'i and m\) indicates the number of cells at 

time t-T where x is the time lag that it takes the immune system to respond. The growth of 

the immune response against variant i has an intrinsic rate which is dependent on the 

number of cells in populations v/ and m,-. The parameter x was used as a variable, 

determining how the intrinsic growth rate of the immune response varies with the 

increasing population.
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1x106x10 0x102x1 4x1 0

Figure 5.1. The intrinsic rate of growth of the immune response (y-axis) for a given number of ceils 

in the host. ci=100, C=10®. Lines from top to bottom, x=1,x=2,x=3.
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When the growth rate of the immune response is directly proportional to the increase 

in the number of trypanosomes. For higher values of x, the rate of growth of the immune 

response is relatively slow when the number of trypanosomes is low, and relatively fast as 

the number of parasites increases. Thus as x: increases, a threshold like effect is seen, where 

for small numbers of trypanosomes, the immune response does not respond, but beyond 

the threshold, the immune response increases rapidly to its maximum. The latter scenario is 

similai' to what occurs in vivo with trypanosomes, and with immunogens in general. This 

threshold-like effect has been seen when immunising cattle with different size inoculi of T. 

brucei; no protective effect was seen below 1x10^ trypanosomes, but above this level 

complete protection was obseiwed (Morrison et a i, 1982a). When mice were infected with 

different titres of T. congolense, it was not possible to detect any antibody at all (by single 

radial immunodiffusion assay) below 1x10^ parasites, but above this threshold antibody 

was detected in all mice (Morrison and Murray, 1985).

There is also the built-in assumption that the immune response does not wane against 

specific VSGs during the lifetime of the infection. Although in both the cattle and mice 

chronic infections examined in this thesis there have been examples of the VSG-specific 

immune response dropping below the detection threshold by in vitro complement lysis 

assay, in the majority of cases the immune response has been present, after first detected, 

as long as measurements were taken. Other studies have agreed with this trend (Robinson, 

1999). It could be argued that in all of these cases the infections are not truly chronic (35 

days infection in mice; 70 days infection in cattle; 35 days infection in rabbits), as certainly 

cattle infections have been followed for hundreds of days (Luckins and Mehlitz, 1976). 

However in no study has there been a reliable instance of reappearance of a VSG, 

indicating that the VSG-specific immune response remains patent. If we consider one of 

the aspects of the model, the switching to variant i determined by the genomic locus of i, 

this parameter is independent of the gene it is replacing. Therefore in this case all VSGs 

are likely to be switched to from the incumbent VSG at their inherent switching rate, 

regardless of whether they have already appeared. This scenario, which is inlierent in our 

model, causes constant boosting of the VSG-specific immune responses throughout the 

period of the infection.
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5.4 Model output

5.4.1 Effect of genomic locus of VSG

Several sets of simulations were carried out in order to test the influence of manipulations 

upon VSG switching. The first range of switching was drawn from one or more uniform 

log distributions, where the fastest switching variants will be switched to nearly 100,000 

times more fi’equently than the slowest switching variant. The rate at which a variant is 

switched to is independent of the variant that it is replacing. This is different from Frank’s 

model, where each variant has a unique probability of switching to another variant, 

depending on the incumbent variant. All switching rates were then rescaled so that all 

slender cells have an inherent probability of 0.01 of switching to a new (or the same) 

valiant at each division. These scenarios are equivalent to taking into account only the 

genomic position of each gene. Therefore those with a high probability of being switched 

to correspond to VSGs situated at subtelomeres, those with medium probability interstitial, 

and low switchers that arise from rare events such as mosaic gene formation.

f a b c d
a b c d
a b c d
a b c d

la b c d

e  ̂
e 
e 
e
e i

Figure 5.2 The switching matrix S, where each entry to Sy, is independent of the VSG 
incumbent in the expression site. (Compare with Figure 5,11, where the switching is 
homology based). Letters in each column represent switching probabilities, and if entry into 
the matrix is respresented by the rows, the probability of switching to a particular VSG in 
each entry is the same, regardless of the VSG being switched from.
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A

Figure 6.3 Switching distribution A. Distribution from which the switching rates were 
chosen for initial simulations. Only effects of genomic position considered. 30 switch rates 
were drawn from the distribution shown. Switch rates were then in all cases rescaled so that 
all slender cells have a probability of 0.01 of switching to a different, or the same, variant 
per population doubling.

The first set of simulations specifically examined the effect of the intrinsic growth rate of 

the VSG-specific immune response on shaping the outcome, where the rate of growth x = 

1,2 or 3 (see Fig. 5.1), Constant parameters used in all simulations are n=30, i-O.l per 

hour,p“ 2500, d=0,5 per hour, 5=0.1 per hr, K=lxlO^ c=100, C=lxlO^ x=100 (for 

definitions see table 5-1). The graphical output allocates different VSG-expressing sub­

populations a colour, which also designates the respective VAT-specific immune response. 

The total parasite population is represented by a black line.
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Figure 5.4 Time series of parasite dynamics and the immune response where the rate that a 
variant is switched to is independent of which variant it is repiacing. Switching rates were 
chosen from distribution A (Fig 5.3). X-axis; hours post inoculation. Y-axis left graph; 
parasites.ml \  Y-axis right graph; strength of immune response where 1 = maximum. The 
intrinsic rate of growth of the immune response x = 1.
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Figure 5.5 Time series of parasite dynamics and the immune response where the rate that a 
variant is switched to is independent of which variant it is repiacing. Switching rates were 
chosen from distribution A (Fig 5.3). X-axis; hours post inoculation. Y-axis left graph; 
parasites.ml \  Y-axis right graph; strength of immune response where 1 = maximum. The 
intrinsic rate of growth of the immune response x = 2.
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Figure 5.6 Time series of parasite dynamics and the immune response where the rate that a 
variant is switched to is independent of which variant it is replacing. Switching rates were 
chosen from distribution A (Fig 5.3). X-axis; hours post inoculation. Y-axis left graph; 
parasites.ml'V Y-axis right graph; strength of immune response where 1 = maximum. The 
intrinsic rate of growth of the immune response x = 3.
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The time series of parasite dynamics in Figures 5.4, 5.5 and 5.6 examined the outcome 

when all variables, including switching parameters, remained constant, apart from the 

intrinsic rate of growth of the immune response. Common to all outputs were several key 

observations; each peak of parasitaemia is made up of several sub-peaks expressing a 

different VSG, except for the initial peak, which is predominately a single VAT-expressing 

population. None of the variants reappear later in the infection. The immune response 

against variants with a higher switch rate occurs earlier than those with lower switch rates.

The simulations illustrated that a linear rate of growth of immune response (x=l) leads to a 

relatively tamcated parasitaemic profile, with the appearance of one major peak. The 

immune responses to all VSGs rapidly rose to their maximum effectual value, and the 

infection was no longer patent by approximately 350 hours (14.5 days). By comparison, 

when the value of .;c increases, the timecourse eoncomitantly increases, so that when ;c=2 

the infection lasts around 500 hours (20.8 days), and when x=3 the infection persists until 

700 hours (29,1 days). The number of peaks also increases, and when %=2 there are 2 

distinct peaks, with the second peak approximately 200 hours (8.3 days) later and around 

half the magnitude. The outcome resulting fr'om % being at its maximum value, 3, gives rise 

to three parasitaemic peaks, each separated by around 200 hours (8 days), but the 2 relapse 

peaks being roughly a third of the magnitude of the initial parasitaemic peak. The immune 

responses for increasing values of x take a longer time to become fully patent, and more 

spread out, corresponding to the respective parasitaemic peaks within which the relevant 

VAT-expressing sub-population occurred. The value of x that produces an output most 

similar to that seen in vivo in our time series is x=3. This value gives infections that are 

more chi’onic, with more parasitaemic peaks that decrease in magnitude after the initial 

parasitaemic peak, and an immune response profile that mirrors the more chi'onic type of 

infection produced.

These primary simulations, while carried out in order to examine the role of the intrinsic 

rate of gi'owth of the immune response, themselves throw up some intriguing conclusions. 

They suggest that a repertoire of only 30 VSGs can result in an infection period of 4 

weeks, when the relevant effects of stumpy formation and the immune response are taken 

into consideration. They also indicate that when the rate of growth of the immune response 

is relatively slow when the number of trypanosomes is low, and faster as the number of 

parasites increases, this produces an infection outline similar to that seen in vivo. Indeed, 

the time series emphasise the importance of this factor in shaping the duration and profile 

of the infection, and altering the intrinsic rate of growth of the immune response can 

double the effective lifetime of the parasite within the host in our simulations.
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The effect of the distribution of switching rates was then examined. In the first case, 2 

separate distributions of switching rate were modelled. The first, larger range of switching 

rates is analogous to all subtelomeric genes, which includes all minichromosomal F5Gs, 

and those inhabiting bloodstream expression sites. If homology between all VSGs is 

considered equal, as duplication involves only the conserved flanks outside the coding 

regions, then these genes can be inserted into the active expression site by a minimum of 

one recombination event, which may be break induced replication (Barry and McCulloch,

2001). The second group of VSGs with a more narrow and lower switching rate, is 

analogous to internal VSGs, which each require at least 2 homologous recombination 

events, or mosaic gene formation, which require at least 3.
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Figure 5.7 Distribution B. Distribution from which the switching rates were chosen for 
second simuiations. Oniy effects of genomic position considered. 20 switch rates were 
drawn from the distribution on the left, and 10 from the right-hand distribution. Switch rates 
were then in all cases rescaled so that all slender cells have a probability of 0.01 of 
switching to a different, or the same, variant per population doubling.
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Figure 5.8 Time series of parasite dynamics and the immune response where the rate that a 
variant is switched to is independent of which variant it is replacing. Switching rates were 
chosen from distribution B (Fig 5.7). X-axis; hours post inoculation. Y-axis left graph; 
parasites.ml \  Y-axis right graph; strength of immune response where 1 = maximum. The 
intrinsic rate of growth of the immune response x = 3.

The second range of switching rates involved 3 sets of VSGs, each with a different 

likelihood of being switched to. From the repertoire of 30, 10 VSGs were assigned as
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having a high probability of being switched to (high switchers), ten with a moderate 

probability (moderate switchers) and ten with a low probability (low switchers). This is 

similar to the experimental observations, grouping VSGs into early, medium and late 

appearing variants (Capbem et a l, 1977; Miller and Turner, 1981) The switching rates of 

the high switchers were taken randomly from a normal distribution with a mean of 100 and 

a variance of 50. Medium switchers were drawn from a similar distribution one magnitude 

lower, and the low switchers from a magnitude lower still. This scenario is equivalent to 

only taking into account the genomic position of each variant. Therefore those with a high 

probability of being switched to correspond to VSGs situated at telomeres, those with 

medium probability intact genes that are interstitial, and low switchers with interstitial 

incomplete genes associated with rarer events such as mosaic gene formation.

1 10 10 '  10 '  10 '  10 ’  10 "

Figure 5.9 Distribution C. Distribution from which the switching rates were chosen for third 
simulations. Only effects of genomic position considered. 10 switch rates were drawn from 
the distribution on the left, 10 from the middle, and 10 from the right-hand distribution. 
Switch rates were then in all cases rescaled so that all slender cells have a probability of 
0.01 of switching to a different, or the same, variant per population doubling.
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Figure 5.10 Time series of parasite dynamics and the immune response where the rate that 
a variant is switched to is independent of which variant it is replacing. Switching rates were 
chosen from distribution C (Fig 5.9). X-axis; hours post inoculation. Y-axis left graph; 
parasites.ml \  Y-axis right graph; strength of immune response where 1 = maximum. The 
intrinsic rate of growth of the immune response x = 3.
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The switching distributions B and C alter the dynamics of the time series significantly. 

Again, the same key observations hold true; each peak of parasitaemia is made up of 

several sub-peaks expressing a different VSG, except for the initial peak, which is 

predominately a single VAT-expressing population. None of the variants reappear later in 

the infection. The immune response against variants with a higher switch rate occurs 

earlier than those with lower switch rates. There is however more of a delay between the 

first peaks; there being approximately 300 hours (12.5 days) between the initial and first 

relapse peaks for distribution B, and around 250 hours (10.4 days) for distribution C. The 

peaks are also much more distinct in the time series for distributions B & C. The main 

difference in the parasitaemic profile between the two simulations is the amplitude of the 

second relapse peak, which is larger for distribution C. The magnitude of the VAT- 

expressing subpopulations is also noticeably greater in the outputs produced by the 

discontinuous distributions B & C.

The pattern of the VAT-speciflc immune responses becomes progressively more clustered 

with the parasitaemic peaks as one compares the profiles from distribution A to C. The 

time of onset, and time to full patency, are not altered, and the length of the infection is not 

different, merely the profile. Thus the switching distribution directly affects the pattern of 

VAT-specific immune response onset, which in turn shapes the parasitaemic profile.

The simulations based on position alone have given rise to some intriguing outputs, 

suggesting that the rate of growth of VAT-speciflc immune response would be an 

important aspect to study in vivo. The outputs indicate that the rate of growth of the VAT- 

speciflc immune response is relatively slow when the number of trypanosomes is low, and 

faster as the number of parasites increases. The pattern of VAT growth, and respective 

VAT-speciflc immune response, is then further influenced by the distribution patterns of 

the VSG switching rates. A continuous distribution gives rise to an infection with a large 

initial parasitaemic peak, followed by two indistinct relapse peaks, and the emergence and 

maturation to full patency of the VAT-speciflc immune responses are spread evenly 

throughout the infection. In contrast, a discontinuous switching distribution, while not 

affecting the duration of the infection, gives lai'ger VAT-speciflc subpopulations, therefore 

more distinct relapse peaks, and clustering of the VAT-speciflc Immune responses with the 

respective parasitaemic peaks. These simulations neatly provide an insight into the 

interplay of various factors, and illustrate that the shaping of the infection profile cannot 

simply be explained by the influence of a main factor alone, which has been the 

assumption of previous models (Seed, 1978; Agur et a l, 1989; Agur and Mehr, 1997).
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5.4.2 Effect of homology only.

A second set of simulations was done to examine the influence on the dynamics exerted by 

the extent of homology shai’ed between the variants, the assumption being that the greater 

the homology between VSGs, the greater the probability of recombinational switching 

occurring. The key difference from Frank’s model (1999) is that we assumed sy-sji, and 

therefore the probability of variant i switching to variant J was the same as variant J 

switching to variant L The assumption was also made that variant A was most homologous 

to variant B, variant B was most and equally homologous to A and C, etcetera. This 

reversibility is not present in Frank’s model, and is a necessary aspect if homology is 

considered as a factor.
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Figure 5.11 The switching matrix S, where v > w > x > y > z .  Letters in each column 
represent switching probabilities, and if entry into the matrix is respresented by the rows, 
the probability of switching to a particular VSG in each entry is determined by homology, 
whereby the likelihood of switching back to the same VSG (v) is highest, and switching to a 
different VSG with the highest degree of homology (w) is the next most likely outcome, and 
so on.

The first simulation considered that the switching rate between variants is reliant upon the 

extent of homology shared. Variants were assigned a number, from 1 to 30, and this 

ranking coiTesponded to the homology hierarchy; for example variants 1 and 2 would have 

the highest amount of shared homology, and variants 1 and 30 the lowest. The 30 

switching rates were chosen fi’om the distribution shown (Figure 5.9). The highest 

switching rate corresponded to the rate that a variant will switch to itself, Sij, The next 

highest rate was then determined by the closeness of homology, therefore ^/,/(+ or-) 1. The 

global switching rate was then rescaled to 0.01 per population doubling. As with previous 

simulations, constant parameters used in simulations were n=30, i-O.l per hour, p=2500, 

d=0.5 per hour, 5=0,1 per hr, K=lxlO^, c=100, C=lxlO^, T=100 (for definitions see Table 

5.1), and the rate of intrinsic growth of the specific immune response was x~3.
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Figure 5.12 Distribution D. Distribution from which the switching rates were chosen for 
simulations based on homology only. 30 switch rates were drawn from the distribution 
shown. Switch rates were then in all cases rescaled so that all slender cells have a 
probability of 0.01 of switching to a different, or the same, variant per population doubling.
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Figure 5.13 Time series of parasite dynamics and the immune response where the rate that 
a variant is switched to is dependent on homology. Switching rates were chosen from 
distribution D (Fig 5.12). X-axis; hours post inoculation. Y-axis left graph; parasites.mi \  Y- 
axis right graph; strength of immune response where 1 = maximum. The intrinsic rate of 
growth of the immune response x = 3.

The time series produced by the homology-dependent scenario yet again is different. As 

with previous simulations, each peak of parasitaemia is made up of several sub-peaks 

expressing a different VSG, except for the initial peak, which is predominantly a single 

VAT-expressing population; none of the variants reappear later in the infection; and the 

immune response against variants with a higher switch rate occurs earlier than those with 

lower switch rates.

The large initial peak is followed by two indistinct relapse peaks. The relapse peaks are 

lesser in magnitude and closer together than in the position-dependent (x=3) simulations. 

The infection also terminates earlier, at approximately 600 hours (25 days), compared with 

800 hours (33.3 days) for the position-dependent simulations. This is a reflection of the 

immune response profile, which reaches full effectiveness against all VSGs earlier than 

during the position-dependent (x=3) simulations. The pattern of VSG-specific response
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onset is also different, and the VSG-specific responses do not group clearly with the 

parasitaemic peaks.

5.4.3 Effect of a mixture of homology and position.

It is highly likely that the VSG switching system is not based on homology alone, or 

genomic position alone. A degree of both aspects is probably involved, with the 

proportional significance of each important. Working from this theory, the final simulation 

involves two classes of variant. The first class includes those whose switch rate is 

independent of the variant they ar'e replacing, and is analogous to position-dependent 

switching. The second class encompasses switching whereby the shared homology is the 

driving force. The homology of the 30 variants was determined by randomly drawing 

switch rates ffom the left hand distribution in Figure 5.14 (dashed). 15 of these variants 

were then randomly allocated to the class of variants whose switch rate is independent of 

what variant they are replacing. Their switch rates were randomly chosen from the right 

hand distribution (solid line). Constant par-ameters used in simulations were n=30, r=0.1 

per hour, p=2500, d=0.5 per hour, 5=0.1 per hr, K=lxlO^ c=100, C=lxlO \ x=100 (for 

definitions see table 5-1), and the rate of intrinsic growth of the specific immune response 

was x=3.
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Figure 5.14 Distribution E. Distribution from which the switching rates were chosen for 
simuiations based on a mixture of genomic position and homology. The homology of the 30 
variants was determined by randomly drawing switch rates from the left hand distribution 
(dashed). 15 of these variants were then randomly allocated to the class of variants whose 
switch rate is independent of what variant they are replacing. Their switch rates were 
randomly chosen from the right hand distribution (solid line). Switch rates were then in ail 
cases rescaled so that ail slender cells have a probability of 0.01 of switching to a different, 
or the same, variant per population doubling.
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Figure 5.15 Time series of parasite dynamics and the immune response where the rate that 
a variant is switched to is dependent on a mixture of genomic position and homoiogy. 
Switching rates were chosen from distribution E (Fig 5.14). X-axis; hours post inoculation. 
Y-axis left graph; parasites.ml '. Y-axis right graph; strength of immune response where 1 = 
maximum. The intrinsic rate of growth of the immune response x = 3.

The simulations incorporating aspects of both homology and genomic position have the 

same key findings as the previous time series; each peak of parasitaemia is made up of 

several sub-peaks expressing a different VSG, except for the initial peak, which is almost 

entirely composed of a single VAT-expressing population; none of the variants reappears; 

and the immune response against variants with a higher switch rate occurs earlier than 

those with lower switch rates. The duration of the infection is similar to that of the 

homology-dependent simulation; approximately 600 hours (25 days). The profile is 

different, there being the initial parasitaemic peak and one distinct relapse peak, and the 

individual VAT-expressing subpopulations are greater in magnitude. The immune response 

clusters with the parasitaemic peaks in a similar manner to that seen in the position- 

dependent simulations.

5.5 Summary

The application of a mathematical modelling approach to the hierarchical switching of 

VSGs has allowed the examination of several aspects of the system, and their subsequent 

effects on the dynamics of an infection. At the outset it must be stressed there are certain 

limitations; the system examined has a total of 30 variants, which is obviously less than 

that seen in vivo\ the analysis of the output is subjective by nature in terms of 

interpretation, and therefore any conclusions drawn must be made with caution. However, 

as the model has been created upon the basis of the known biology of the parasite, and 

assuming these limitations are taken into consideration, tentative conclusions can be 

drawn.
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The most apparent effect was exerted by the intrinsic rate of growth of the immune 

response. When the rate of growth of the immune response is relatively slow when the 

number of trypanosomes is low, and faster as the number of parasites increases, this 

‘tlu'eshold’-type effect can significantly affect the infection dynamics. Indeed, the 

simulations suggested that this aspect is highly significant to the chronicity of the infection, 

and changing the intrinsic rate of growth of the immune réponse fi.*om a directly 

proportional one to a threshold type one, can in fact double the effective lifetime of the 

organism within the host. This indicates that the details of the VSG-specific immune 

response, and its kinetics, would be an interesting avenue of further examination in vivo, as 

to how it determines the dynamics of a trypanosome infection. Differential antibody 

kinetics in different hosts, for example, could be a contributing factor to the diverse 

infection profiles seen with the same parasite in different hosts (Barry, 1986).

The type of switching distribution also has a significant impact upon the profile of the 

infection. While not affecting the period of infections, discontinuous distributions of 

switching ranges lead to clustering of the VAT-speciflc immune responses with the 

parasitaemic peaks, and an increase in the magnitude of the individual VSG-expressing 

sub-populations, with a concomitant increase in the size of parasitaemic peaks in general. 

With continuous distributions, the opposite situation occurs, and the VAT-speciflc immune 

responses are spread evenly throughout the infection, and the relapse peaks are lower in 

magnitude and less distinct. The profile produced by the discontinuous distributions is 

more similar to that seen in vivo, and suggests that there are distinct subsets of VSGs with 

differing ability to switch to one another, within the global switching rate of 0.01 switches 

per population doubling.

The relative roles of genomic position and homology driven switching are less clear. From 

the simulations, either the discontinuous distributions of genomic position-driven 

switching, or where there was a mixture of the influence of homology and genomic 

position, produced profiles that were consistent with that seen in vivo. This suggests that 

the system is not solely homology driven, which agrees with earlier experimental work that 

suggested genomic position was important (Liu et a l, 1985; Robinson et a l, 1999). 

Although simulations involving genomic position alone produce viable outputs, it must be 

remembered that in these in silico infections the repertoire is limited to 30 VSGs, which in 

effect would represent the very begimiing of a trae infection, where genomic position 

effect may well dominate. The output produced by the combined aspects of homology and 

genomic position is valid however, and perhaps raises the most pertinent question to arise 

fi'om these simulations with respect to the switching system. It is the relative significance.
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and proportional influence of, these 2 driving forces behind the individual switching rate of 

each VSG that shape the eventual infection profile, and it is this ratio that needs to be 

elucidated in order to fully understand the impact of hierarchical switching on infection 

dynamics.
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Chapter 6

Discussion
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6 Discussion

6.1 Introduction

This thesis set out to examine the hierarchical expression of VSG genes during chronic 

infections of Trypanosoma brucei. Specifically, the role of the genomic context of the 

VSGs was studied, with respect to the timing of appearance within replicate in vivo 

infections in cattle and mice using pleomorphic trypanosomes. A subset of single copy 

VSGs was used, and their pattern of appearance was elucidated. A mathematical model was 

constructed (with the collaboration of Katrina Lythgoe, University of Edinburgh), 

incorporating all relevant and measured biological parameters of an in vivo infection, with 

the main variable examined being the differential switching of VSGs within the repertoire. 

Utilising these simulations, the effect of both genomic position of the VSG, and shared 

homoiogy between VSG genes, was investigated.

6.2 The timing of appearance of VSGs during in vivo 
infections

The clironic mouse infections indicated that there is a statistically significant difference in 

the timing of onset of VAT-speciflc immune responses across replicate batches of 

infections with two separate analyses; one by comparing the average time of onset 

(General Linear Model [GLM]; F6.io6=7.49, p < 0.0001), and the second by ranking the 

onset by sequence of appearance (GLM; F^j 12=8 .03, p<0.0001). When the results for the 

ranking and average time of onset data are compared, they give very similar results with 

respect to the VSG hierarchy within the subset examined, hi both sets of analysis, the 

immune response against ILTat 1.67, the VAT encoded by a BBS gene, appears first, 

followed by ILTat 1.25, then ILTat 1.21 (both encoded by minicliromosomal genes) and in 

turn ILTat 1.73 (chromosomal internal). When examining ranking the next in order is 

ILTat 1.71 (chromosomal internal), then ILTat 1.22 and finally ILTat 1.64 (both MES). 

When the average time of onset is analysed, the fifth out of the seven is ILTat 1.22 (MES), 

then ILTat 1.71 (internal) and finally ILTat 1.64 (MES). There is general agi'eement 

between the two sets of analysis, with only ILTats 1.71 and 1.22 changing relative 

positions in the respective hierarchies. In terms of the influence of genomic locus, and 

assuming the timing of onset of the immune response is directly proportional to the 

relevant switching event, the results allow further dissection of the previous findings of
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earlier expression of subtelomeric genes (Liu et a l, 1985; Robinson, 1999), and indicate 

that there is further substmcturing of the temporal expression patterns within the broad 

heading o f ‘telomeric genes’. ILTats 1.67, 1.21 and 1.25 (encoded by BES, and 

minichromosomal genes respectively) do tend to appear eaiiier in infection in this study, in 

agreement with the earlier publications. It would have been interesting to isolate clones of 

the ILTat 1.67 expressor trypanosomes in order to elucidate whether the activation of this 

BES gene was due to in situ switching, duplicative activation, or a combination of the two 

mechanisms. The cloning was unsuccessful, presumably because the population at that 

time was very polyclonal as indicated by RT-PCR, reducing the probability of isolating 

trypanosomes from the relevant sub-population.

The results from the chronic cattle infections agree with the mice data in several aspects. 

The order of appearance is generally similar, in terms of both the detection of the VAT- 

specific immune responses, and the identification of VSG-specific transcripts by RT-PCR. 

There were, however, several differences between the data. The actual timing was later in 

the 2 cattle, but this can be attributed to host differentials in terms of the immune system, 

and the fact that the ILTat line of trypanosomes used in the cattle switches at a much lower 

rate, 1 x 10'  ̂switches/cell/generation, compared with 1 x 10'  ̂switches/cell/generation for 

the EATRO 795 trypanosomes used in the mouse studies. The immune response against 

ILTat 1.71, encoded by an interstitial gene, was detected much later than the transcripts, 41 

days later in the case of cow BW49 and 44 days later in the case of B V I54 (see Figure 

4.23). Assuming PGR amplification yielded the correct product, and that there was no 

degradation of plasma, both factors that were controlled for, this raises somewhat of a 

conundram. No ILTat 1.71 transcripts were detectable after days 23 in cow BW49 and day 

21 in BV154. The low parasitaemias, however, throughout the infections, led to difficulty 

in continuously obtaining sufficient quantities of RNA for RT-PCR, resulting in 

interruptions in the VSG data when no trypanosome products were detectable by RT-PCR. 

Therefore the possibility remains that there were low numbers of parasites expressing this 

VSG for a longer period of time. In addition, there could have been variability in the 

efficiency of the primer pairs used to detect VSG products, and perhaps this should have 

been tested initially. The in vitro complement lysis assay is an effective and unequivocal 

test in terms of its inteipretation, but the lysis effect very quickly dilutes out. The immune 

response against ILTat 1.71 may have been present and effective much earlier than 

detected, but below the level of sensitivity of this test, and only become patent due to 

stimulation by regular subsequent redundant switches. The use of ELISA was an attempt to 

address this, but unfortunately was unsuccessful.
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The early appearance of VSGs encoded by minichromosomal genes is consistent with 

previous studies examining both a high switching trypanosome, the SUSB 48 line 

(isogenic to the ILTat trypanosomes), and the lower switching ILTat line (Robinson et al,, 

1999). It has been suggested that this subtelomeric class of VSG has evolved as a method 

of increasing the pool of subtelomeric VSGs available (Borst et a l, 1993), beyond the 20 or 

so BBSs. Certainly VSGs are the by far the most abundant protein encoding genes on 

minichromosomes. It has also been demonstrated that there are large arrays of 70-bp 

repeats upstream of minichromosomal VSGs (Shah et a l, 1987), 35 repeats in the case of 

ILTat 1.21 (Robinson, 1999). These expanses of repeats provide a large degree of 

homology, possibly enhancing the likelihood of switching to these genes. Therefore the 

miniclnomosomes probably serve as a library of VSGs that are readily available for 

comparatively easy, and therefore frequent, recombination into BBSs, due to both their 

telomeric location, and the large stretches of sequence homology shared between the two 

types of chromosome.

ILTats 1.22 and 1.64, both encoded by MBS genes, tend to appear almost as late, if not 

later according to analysis by rank, than the chromosomal internal genes in the subset of 

VSGs under study. The metacyclic genes are the subset of VSGs that are expressed upon 

inoculation by the tsetse fly in order to establish the infection. They reside in dedicated 

monocistronic expression sites containing very few or no 70-bp repeats (Alarcon et a l, 

1994; Graham and Barry, 1995; Burton, 2003), and their expression usually is superseded 

by BBSs after approximately 7 days (Barry and Emery, 1984). Duplicative reactivation of 

the metacyclic VSGs (MVSGs) in the BBSs has been observed (Matthews et a l, 1990; 

Robinson et a l, 1999), as has one instance of in situ MES activation in bloodstream foims 

(Donelson et a l, 1998), which is thought to be a rare event arising through the very strong 

selection imposed to find this variant (J.D. Barry, pers. comm.). The possibility of in situ 

MES activations in this study was not examined, although the inability to isolate a clone 

expressing ILTat 1.67 from the polyclonal cattle stabilates indicated this would have been 

very difficult in any case. It could be hypothesised that limitation of expression of MVSGs 

during infections would be advantageous to the trypanosome population in an endemic 

situation, as a high proportion of endemic immunity against the infection-initiating VSG 

sub-population would have a strong deleterious effect upon transmission. A decreased 

likelihood of duplicative transposition, possibly a by-product of the low number of 70-bp 

repeats, could explain this scenario. ILTats 1.22 and 1.64 possess 1.5 and 0.5 70-bp repeats 

respectively (Matthews et a l, 1990; Burton, 2003). The observation of several instances of 

waning of the immune responses to both MVSGs (35% of ILTat 1.64 and 13.6% of ILTat 

1.22 infections, compared with a range of 0-5% for the five other genes under study),
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possibly suggesting that the immune responses to these VSGs are not being boosted as 

consistently. If the supposition is accepted that the switching based upon genomic position 

occurs at consistent rates and relative proportions throughout the infection, it can be 

hypothesised that, as an infection progresses and the VAT-specific immune responses 

become patent to VATs that have already appeared, boosting intensity of VAT-specific 

immune responses will mirror the switching hierarchy itself, and the immune response 

against those rarely switched to will be concomitantly less stimulated. This is possibly 

what is occurring with the MVSGs.

As already mentioned, the VSGs encoded by the chromosomal internal genes ILTats 1.71 

and 1.73 also appeared late in this set of analyses. The late expression of VSGs from the 

internal an*ays has been demonstrated previously in pleomorphic trypanosomes (Robinson 

et a i, 1999), and has long been postulated to become of import once exhaustion of 

telomeric genes has occurred. This is likely to be due to the difference in the relative ease, 

or frequency, of interactions between the BES subtelomere and subtelomeric genes, and 

chromosome internal genes. It has been demonstrated that, when a VSG normally 

expressed later in infection was translocated into a telomeric region, which presumably 

will share more regions of homology with the expression site and suiTounding stretches, 

earlier activation resulted (Laurent et al., 1984). Recent examination of the TREU 927 

genome database has indicated that the internal VSG arrays are actually largely composed 

of pseudogenes, with only 5% of over 850 VSG sequences being intact (L. Marcello, P. 

Burton and J.D. Bainy, pers. comm.). Barring this being a strain specific phenomenon, 

which is unlikely, it suggests the recombination of the VSG pseudogenes, either to replace 

parts of already existing VSGs, or to create novel composite genes, may in due course be 

determined to be a major driving force behind antigenic variation. It also raises the 

possibility that the intact internal genes are members of a subset that are more likely to be 

switched to, due to the requirement of a single recombination reaction, than the 

pseudogene repertoire, which will presumably necessitate at the very least two 

recombination events. Certainly in the most thorough examination of hierarchical VSG 

expression in trypanosomes (Robinson, 1999), all silent VSGs that were found to be 

expressed early in the hierarchy were intact.

The labelling of many VAT or VAT-specific antibody appearances as Tate’ in several 

studies (Capbem et a l, 1977; Myler et al, 1985; Robinson et a l, 1999), including this one, 

is really a misnomer in the context of the true level of chronicity that is seen in ‘natural’ 

trypanosome infections. Most of the in vivo studies, including this one, have concentrated 

on the first couple of relapse peaks at the most, which is in reality the beginning of the
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infection. This is due to the use of rodent or rabbit models, which in the case of rodents at 

least are unable to harbour truly long term infections. In all probability, the experimental 

examination of antigenic variation thus far has merely scratched the surface. Certainly, 

trypanosome infections in cattle have been followed for hundreds of days (Luckins and 

Mehlitz, 1976), and the question of what occurs with respect to antigenic variation in the 

tmly chronic stages of an infection is intriguing. From this perspective, the subset of 

internal VSGs examined have appeared relatively early, although generally after most of 

the subtelomeric genes examined (barring MVSGs). Therefore the intact subset of internal 

VSGs putatively forms a semi-compartmentalised group that appear after the more 

ft'equently activated subtelomeric VSGs, but before the, at present time theoretical, mosaic 

gene repertoire. A notable feature of the cattle and mice infections in the present work is 

the relatively restricted period within which the studied subset of VSGs became activated. 

In the cattle infections, all 7 VSG transcripts, with the exception of ILTat 1.73 in cow 

BV154, were detected by RT-PCR in the same first relapse peak within tlrree days of each 

other. The VAT-specific immune responses detected in the mice infections, with more 

exceptions due to the lai'ger sample size, also were quite clustered, generally appearing 

within 8 days of each other. This lends credence to the idea that intact VSG genes in 

general aie more likely to be switched to, and the hierarchy obseiwed within this study, and 

in others (Robinson, 1999), is in fact the hierarchy within a subset of genes that comprises 

the intact VSG genes, and a second tier of hierarchical control exists for the pseudogene 

repertoire.

If we consider the intact VSG repertoire, a common feature is the 70-bp repeat ai*ray.

Within the subset of VSGs included in this study, the minichromosomal ILTat 1.21 gene is 

Imown to have an array 35 repeats long (Robinson, 1999), and the MVSGs ILTats 1.22 and 

1.64, have 0.5 and 1.5 repeats respectively (Matthews et a l, 1990; Burton, 2003). The 70- 

bp repeats of the remaining genes have not been sequenced, despite several attempts using 

Sspl digestion, and MVR (Multiple Variable Repeat) mapping. The different types of 

genomic locus have been found, however, to have similar numbers of repeats. BBSs tend 

to have hundreds of repeats running to several kb (Aline et al., 1985a; Berriman et a l,

2002), although the exact number can vary (Berriman et a l , 2002). Minichromosomes also 

have a substantial number of repeats, but the number is a magnitude lower than that of the 

BBSs (Shah et a l, 1987; Robinson, 1999; Burton, 2003) Internal genes seem to have a low 

number of repeats, many having as few as 1-3 (L. Marcello and J.D. Barry, pers. comm.). 

Although it has been demonstrated that switching events do not require the presence of 70- 

bp repeats (McCulloch et a l, 1997), that analysis was carried out using monomorphic 

trypanosomes. Every conversion limit mapped in pleomorphic trypanosomes has utilised
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the 70-bp repeat region (Delauw et al, 1987; Matthews et a l, 1990; Burton, 2003). The 

use of the 70-bp repeats and downstream conserved sequences such as the 3’UTR 16-mer 

or telomeric repeats as a form of ‘expression cassette’ has been suggested (Barry, 1997). If 

the distribution of 70-bp repeats was even partially consistent dependent upon genomic 

locus, then this study gives a cautious amount of credence to the level of sequence 

homology between VSG loci, possibly the number of 70-bp repeats, influencing the timing 

of expression of VSGs. In this putative system there is no requirement for homology 

between VSGs themselves, and supports the idea that, in the case of intact VSG genes at 

least, the position within the hierarchy can be dependent on genomic location.

6.3 The influence of telomeres, and the maintenance of 
VSG diversity

Preferential activation of subtelomeric genes in T. brucei has been observed several times, 

in both monomorphic (Young et a l, 1983; Myler et a l, 1984b; Liu et a l, 1985) and 

pleomorphic (Matthews et a l, 1990; Robinson et al, 1999) trypanosomes. This favoured 

activation is likely to be due to the extensive shared homology, in terms of 70-bp repeat 

arrays common to the mini- and megachromosomes, and also large stretches of sequences 

common to most of the megachromosomes, which consist of expression site sequence, 

ESAGs and sub-telomeric hexanucleotide (GGGTTAn) repeats. This sequence homology 

can certainly facilitate homologous recombination, a main enzyme of which, RAD51, has 

been demonstrated as a driving force behind antigenic variation in monomorphic 

trypanosomes (McCulloch and Baray, 1999), In addition, the putative large degree of 

interaction between telomeres in general, possibly arising from common positioning in the 

nucleus as has been demonstrated in P. falciparum (Freitas-Junior et a l, 2000), enhance 

the likelihood of telomeric VSG switching.

Subtelomeres are regions of chromosomes that have been proposed to be ideal reservoirs 

of divergent gene families (Barry et a l, 2003). The occurence of these gene families in 

subtelomeric regions probably derives from the tendency of telomeres to be regions of high 

ectopic recombination, due to the high level of shared repeat sequences, as has already 

been alluded to in the case of trypanosomes. The fact that telomeres cluster together at the 

nuclear periphery, as has been elegantly illustrated in Plasmodium falciparum (Freitas- 

Junior et a l, 2000), which would facilitate recombination reactions. General examples of 

gene families that occur subtelomerically include the olfactory receptor (OR) genes in 

humans, the largest gene family that occurs in Homo sapiens, the variation within which
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allows humans to recognise over 10,000 different smells (Mefford and Trask, 2002), and 

several multigene families in Saccharomyces cerivisiae, the SUC (p-froctofuranosidase), 

MAL (a-glucosidase/maltose permease), and MEL (a-galactosidase) genes (Zakian,

1996), which are speculated to broaden the range of utilisable carbon substrates .

In parasites other than trypanosomes, there are several examples of subtelomeric gene 

families. Giardia lambliUy Theileria parva and Plasmodium vivax all contain subtelomeric 

gene families (Barry et at., 2003). Plasmodium falciparum contains at least 2 sets of 

antigens that undergo antigenic variation at the surface of the infected red blood cell, 

which have members at sub-telomeres. These are the rif and var genes, which respectively 

encode rifms and Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-l) 

respectively (Kyes et a l, 2001). The var genes are more extensively studied. Within an 

individual parasite, there are approximately 60 var loci, and only one is expressed at a time 

and is transcribed in situ. When the laboratory strain 3D7 was examined, the 59 var genes 

partitioned into 23 chromosomal internal genes, and 36 subtelomeric genes (Kiaemer and 

Smith, 2003). The subtelomeric genes were then further differentiated into two groups, 

dependent on direction of transcription, towards the centromere, or the telomere. 

Diversification of var genes is hypothesised to be due to frequent recombination events, 

and it has been suggested, based on direct evidence of probably meiotic recombination, 

that the subtelomeric genes are a subset that undergo a large degi'ee of ectopic 

recombination in order to generate a continuous pool of changing variants (Freitas-Junior 

et a l, 2000; Scherf et a l, 2001). Examination of var gene sequences indicated the sharing 

of motifs between different P. falciparum strains (Taylor et a l, 2000), suggesting frequent 

exchange. It has been suggested that one of the subgroups of sub-telomeric genes is 

resistant to frequent recombination, due to different flanking regions and orientation 

(Ki*aemer and Smith, 2003), explaining the conservation of a few var genes across P. 

falciparum strains. The effect of gene orientation has been illustrated in T. brucei (Van der 

Werf et al, 1990), whereby the telomerie AnTat LI VSG became activated late in 

infections when in its native, reverse orientation, but if coiTectly positioned was expressed 

readily early in infection. This observation of reverse orientation of a telomerie VSG has 

only been seen once, however, and its importance to general hierarchical expression of 

VSGs may be negligible. It does seem in P. falciparum therefore that there is also a certain 

degree of substructuring in terms of recombination, and the subtelomeric genes are key to 

the maintenance of diversity. There are important differences, however, when compared 

with trypanosomes. The trypanosome is exposed to the immune system for the entirety of 

its time within the mammal, employing a single class of protein to efficiently pre-empt the
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host. Plasmodium undergoes a multi-stage life cycle, and each antigen is only temporarily, 

if regularly, exposed. Thus, the selection pressure is much more intense in the case of the 

trypanosome VSG, and the antigenic variation system has the necessity to function 

constantly. In addition, PfEMP-l has a functional role, displaying variable cytoadherent 

properties that enable sequestration, and avoidance of the screening of the blood by the 

mononuclear phagocytic system in the spleen. Therefore gene conservation in P. 

falciparum, although possibly dependent on chromosomal location (Kraemer and Smith,

2003), presumably occurs at least partially for this functional reason.

There is a paradox here, in the sense that divergent gene families exist in a region where 

homogenisation logically would tend to be the case, due to the large number of conversion 

events that replace one sequence with another. For example, the possibility in 

trypanosomes of continuous backgi'ound conversion events occurring in the expression 

sites, could lead to homogenisation across the BESs. Gene conversion events occurring in 

the absence of an antigenic switch have been demonstrated (Myler et a l, 1988), indicating 

conversion events taking place in inactive BES. ILTat 1.67, however, one of the subset of 

single copy genes utilised in this study, is a single copy VSG inhabiting a BES. The 

conseiwation of this VSG is evidenced by its presence in the EATRO 795 line and the 

ILTat 1.2 trypanosomes derived from it. These trypanosome lineages are separated by a 

significant number of in vivo passages, and if there were a large degree of VSG flux within 

the BES subset of FS'Gs, ILTat 1.67 would probably be lost, as it has no ‘basic copy’ 

elsewhere in the genome. These findings taken together indicate that although there is 

generation of diversity by gene conversion, there is at least a degree of conservation over 

time. The lack of homogenisation can be explained by the presence of different VSGs in 

the different BESs, meaning that any homology driven gene conversion would then 

progress dependent upon the sequence of the individual VSG. The minichromosomes also 

seem to remain relatively stable, certainly when examined experimentally over 

approximately 100 generations (Wickstead et a l, 2003), and this paradoxically is also a 

method of maintaining diversity, by partially compaifmentalising the minichromosomes as 

a pool of intact telomerie VSG genes, and preventing homogenisation.

Whether VSG genes are copied back fi*om active, or inactive, expression sites into the 

internal arrays, other inactive expression sites (BES or MES), or minichromosomes is not 

clear. The fact that there is evolutionary divergence of VSG repertoires, leading to the lack 

of cross-protective immunity between strains, suggests that there must be a dynamic 

process of VSG conversion events, with a relative degree of flux. The evolution and
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plasticity of a VSG repertoire within a population of trypanosomes, and how it would 

progress, is an aspect that would be interesting to study.

The generation of mosaic genes, which has been much alluded to in this discussion, may 

be the most important factor in the generation of VSG diversity. Although not examined 

extensively in trypanosomes, several examples have been identified as being constructed 

from various different VSGs (Roth et a l, 1986; Ramper and Barbet, 1992), and 1 study in 

particular noted that the donor VSGs were incomplete (Thon et al., 1989), and therefore 

unable to be expressed themselves. This therefore provides a route for novel epitopes to be 

expressed, and in light of the large number of pseudogenes that have been found in the 

sequenced genome ofTREU 927 (95% of over 850 VSGs; L. Marcello, P. Burton and J.D. 

Barry, pers. comm.) may be much more significant than previously assumed. Other 

pai'asites use the production of novel genes by reeombination as a main method of 

generating antigenic variation. The ncXiQiism Anaplasma marginale has 2 

immunodominant surface proteins, major surface proteins (MSPs) 2 and 3. Each is 

expressed from a single locus, and antigenic variation proceeds by the recombination of 

pseudogene sequence into the central hypervariable region of the expressed variant (Meeus 

et a l, 2003). The gene conversion reactions involved with MSP2 either involve the whole 

length of the pseudogene (Brayton et a l, 2002), or short segments from the hypervariable 

region (Brayton et a l, 2001). In the case of MSP2, the repertoire of only 9 or 10 

pseudogenes is suggested to be sufficient to generate the approximately 10,000 variants 

necessary to cause the lifelong persistent infections in cattle associated with A. marginale 

(Meeus et a l, 2003). MSP2 also has a large stretch of 5’ flanking region, approximately 

600bp, conserved between the pseudogenes and expressed gene (Brayton et a l, 2001), an 

arrangement conducive to recombinational mechanisms. In T. brucei no recombination 

hotspot has been identified that would be comparable to the hypervariable region, but the 

3 ’ region of VSGs is relatively conserved, and conversion limits have been mapped to this 

area (De Lange et a l, 1983; Donelson et a l, 1983; Pays et a l, 1985b). It is feasible 

however that there is a hierarchy within this possibly very large subset of trypanosome 

antigenic variation. Recombination reactions involving VSG genes or pseudogenes are 

more likely to oceur between VSGs or pseudogenes that share greater sequence homology, 

and a range of probabilities of gene conversion events probably exists across the silent 

VSG repertoire for each BES VSG. It has been shown that, in trypanosomes, recombination 

reactions can be initiated by as little as 7-13 bp homology (Conway et a l, 2002), so a 

range of probability of recombination is very likely to exist over the VSG repertoire. 

Obviously the resulting VSG will need to be functionally expressable, as well as 

antigenically novel. The examination of hierarchical progression of VSGs in infections
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utilising the genome strain TREU 927 would be the ideal way to answer the possibly 

critical question of the role of the VSG pseudogene repertoire.

6.4 The chronic stages of trypanosome infections

One of the most perplexing aspects of trypanosome clironic infections is the long duration 

of subpatent periods that occur during the later stages of the infection. Indeed, during the 

two cattle infections in this study there were gaps of 22 and 14 days between the initial and 

first relapse parasitaemic peaks. As it is considered that switching occurs as regularly 

during these periods as at any point in the infeetion, why any new variants do not grow up 

to create patent peaks is intriguing. Presumably the immune response would preclude the 

population consisting of previously exposed variants. There are several possibilities that 

eould possibly explain this phenomenon, which is central to the development of chronicity.

A build up of trypanosome-derived factors could feasibly lead to the suppression of 

trypanosome growth. For example in cattle BW49 and BV154 the total number of parasites 

feasibly reached 2.5 x 10*̂  trypanosomes at the zenith of parasitaemia, and there was 

maintenance of a broad collective series of subpeaks for approximately 30 days in each 

case. Considering these numbers, there could be a significant build up of stumpy induction 

factor (SIF), or toxic metabolites, from the cumulatively enormous trypanosome 

population, which may then take some period of time to be removed. In the case of the 

cattle BW49 and BV154, the gaps can potentially be explained by significant suppression 

due to build up of SIF or metabolites leading to a low parasite population, the growth of 

which is then retarded by the immune response removing a significant proportion of the 

switched variants. The problem with this hypothesis is that later on in the very chronic 

stages of infection, the gaps between the peaks becomes larger, and the peaks themselves 

smaller (Ban y, 1986), which argues against this being the case. The possibility of there 

being an increased sensitivity of the trypanosomes to the as-yet undefined SIF as the 

infection progi’esses, in a positive-feedback type mechanism similar to that seen with 

immune eells when under constant stimulation (Adler et a l, 2003), also exists, although 

there is no evidence to suggest this. It would require either that the SIF is persistent, and it 

has been shown to be stable, at least under in vitro conditions (Vassella et a l, 1997), or 

that the putative SIF receptor(s) either increase in number with consistent stimulation, or 

increase in sensitivity. This latter scenario is feasible, as it has been demonsti'ated that the 

Lister 427 line of trypanosomes, which has been utilised in vitro for many years, and is 

considered monomoiphic, does still respond to the ‘stumpification’ triggers, but the
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threshold is much higher, presumably due to the lack of stimulation over time (Breidbach 

et a l, 2002). However there has been no demonstration that either of these situations 

oeeurs in vivo, or that this sort of adaptation can occur within the timeframe of an 

infection. The examination would require long term chronic infections in hosts that can 

maintain them for many trypanosome generations, such as cattle.

Another observed influence, that is presumably trypanosome dependent, is the observation 

of growth inhibition as an infection progresses (Turner et a l, 1996). The inhibition was not 

immune response-related, and seemed to be due a lowering of the replication rate of the 

long slender trypanosomes. Importantly in that study, the inhibition was not strain 

dependent, as has been seen in superinfections using T. congolense (Mondson et a l,

1982b), and there was therefore no indication of the competition-type inhibition that has 

been examined in Plasmodium chabaudi (Taylor et a l, 1997). This finding, therefore, 

constitutes the only evidence produced thus far for non-specific growth inhibition, and 

deseiwes to be pursued, as this phenomenon is potentially an extremely important factor in 

the chronic stages of an infection.

It has been suggested that host-derived faetors could also influence the parasitaemia. At 

least two models have included the accumulation of antibodies against invariant antigens 

during the infection as a key influence on the characteristic profile of trypanosome clironic 

infections (Antia et a l, 1996; Agur and Mehr, 1997). Many of the conseiwed antigens on 

the trypanosome surface are functional, and the increasing exposure via whole, or 

fragments of, lysed trypanosomes and possibly also senescent stumpy forms is suggested 

to have an effect on the viability of the population as a whole. Although antibodies have 

certainly been detected that are directed against conserved proteins (Authie et a l, 1993; 

Radwanska et a l, 2000a; Radwanska et a l, 2000b), the effectiveness or otherwise of these 

responses has not been examined. It is difficult to envisage how, in an intact living 

trypanosome, the antibodies would be able either to reach their target on the trypanosome 

surface with the VSG barrier present, or target flagellar pocket antigens. A recent study 

showed it is possible to target cryptic epitopes on the VSG, but only by the use of camel- 

derived monomeric immunoglobulin (Stijlemans et a l, 2003). In addition, it has been 

demonstrated that there is efficient clathrin mediated endocytosis of antibody bound to 

GPI-anchored protein in the flagellar pocket, which is a possible route of removal of 

antibody-targeting of flagellar pocket antigens (Grunfelder et a l, 2003). As yet, therefore, 

there is no evidence for this suggested influence being significant in terms of shaping the 

course of trypanosome infections.
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A further possibility is that the parasites are still present, but the greater proportion is no 

longer in the haematic system during the periods of low parasitaemia. All methods 

routinely used to detect living trypanosomes rely on their presence in peripheral blood 

(Paris et ai, 1982), and certainly these were the only methods utilised in this study. It is 

known that T. brucei is also an extravascular parasite (Seed and Efffon, 1973), although 

the proportion of parasites that are in which compartment at various points of the infection 

is not known. Active invasion has been suggested, specifically across the blood brain 

baiTier, the trypanosomes entering between the endothelial cells with the aid of surface 

associated acid phosphatases and released proteases (Lonsdale-Eccles and Grab, 2002). 

Adhesion to bovine (atrial) endothelial cells in vitro has also been described in the case of 

T. congolense (Hemphill and Ross, 1995). Although the sequestration of parasites in sites 

such as the brain (Abolarin et a l, 1982) and the eye (Whitelaw et a l, 1988) has been 

demonstrated, this has generally been after fulminant infections, when the parasites are 

likely to be in almost every organ, and may not be of particular relevance to the chronic T. 

brucei type infection we have modelled. The resulting ‘sequestration’ is therefore likely to 

be a by-product of a severe infection, and the consequent ‘re-emergence’ of the 

sequestered parasites after dmg treatment due a by-product of being in immunologically 

and phaimacologically privileged sites such as the brain or eye. The evidence therefore for 

active sequestration of trypanosomes is very tenuous, but the possibility of the 

extravascular foci being important in the kinetics of T, brucei infections cannot be 

dismissed, and deseiwes further attention.

A final putative reason for the long periods of quiescence in terms of parasitaemia is 

decreased viability of the individual parasites. As has been mentioned, there is an increased 

likely relevance of mosaic switching and role of the large VSG pseudogene repertoire. If 

the intact VSG genes are considered a subset that are more likely to be switched to, they 

will generally appear earlier in an infection. Very little is known about mosaic VSG 

formation, aside from a few instances of their identification (Roth et a l, 1986; Ramper and 

Barbet, 1992), and even less is known about the components or efficiency of the 

reeombination machinery involved in the process. This raises the possibility of non­

functional, or semi-functional, switches occurring. This ‘non-functionality’ could of course 

result fr'om the formation of a mosaic gene with epitopes that have already been exposed to 

the immune response. Additionally, however, a proportion of switches may result in 

aberrant VSGs that cannot be functionally expressed, or are expressed in a manner that will 

affect viability of the cell. VSG mutation studies in vitro illustrated that directed mutations 

reduced their expression significantly, the impact on expression being dependent on which 

region was mutated (Wang et a l, 2003). Most VSGs were still GPI-anchored however, and
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cells were viable. Whether this alteration of VSG expression dynamics, which in most 

cases resulted in five- to hundred-fold reduction in VSG steady-state levels (although 1% 

of normal VSG expression levels is still around 100,000 molecules per cell), is comparable 

to what could be produced by the mis-generation of mosaic genes is not clear. In addition, 

the question of the in vivo viability of any of the VSG mutants produced was not 

addressed. At this stage, therefore, an increasing role of greater numbers of dysfunctional 

switches as the infection progresses remains purely hypothetical.

6.5 Implications of the mathematical model

The mathematical model described in Chapter 5 is an attempt to examine specific aspects 

that are proposed to affect the dynamics and kinetics of trypanosome infections. 

Specifically, the differential switching of VSGs within the repertoire was assessed, in terms 

of genomic locus and shared homology influencing the hierarchical progression of VSGs. 

An additional possible impact on the profile of infections was studied, namely the intrinsic 

rate of gi'owth of the VAT-specific immune responses. The attraction of mathematical 

modelling is the ability to manipulate particular inputs and inspect the impact upon the 

system. Caution obviously has to be implemented in interpretation, as it will never be 

possible to include all aspects of in vivo infections in silico. However, with this caveat 

taken into consideration, tentative conclusions can be drawn, particularly with regard to 

features that warrant further examination.

The most valid model to date with regard to VSG switching (Frank, 1999) concluded that it 

was only by a range of variations in the rate at which each VSG switches to the other can 

the phenomenon of the characteristic trypanosome infection profile be produced (for 

critique of other models, see 5,2, p. 109). This essentially gives rise to a probability 

cascade as the infeetion progresses, and a quite deterministic progression thi'ough the 

repertoire, although there is some variation between different time-series. This infection 

profile cannot be generated by a randomly selected range of switching probabilities. 

Changing the orders of magnitude over which the switch rates varied (S) affected the 

duration of the infection in silico, such that when S was low (3), the variants all appeared 

relatively early, whereas at higher values (S~6) the same number of variants fonns a 

greater number of discrete peaks, and the infection lasts longer. The basis of this system is 

that variants essentially get a ‘head start’ over each other due to the differential switch 

rates, and then temporarily predominate until removed by the immune response, the order 

being deteimined by probability of switching between variants. This probability range,



144

suggested Franlc, is likely to be due to ranges of homology between VSGs, in terms of 

VSGs themselves, 70-bp repeats, and BESs.

There are, however, several flaws in Frank’s model. The limitation of gi'owth of any 

particular variant is entirely due to the generation of VAT-specific immune responses, 

whereas in reality stumpy formation will play a highly significant role, and in turn alter the 

dynamics of the immune response. In addition, it is assumed that in situ switches also are 

dependent on homology between the BESs. Although rearrangements have been observed 

in active (Navarro and Cross, 1996) and inactive BESs (Gottesdiener et a i, 1992), the 

pattern has not suggested specific rearrangements. The analysis of 9 independent in situ 

switches in vitro could not detect any DNA rearrangements (Horn and Cross, 1997), 

suggesting no reliance on sequence homology or interaction. Whether either of these 

factors influences the central thesis of Frank’s argument is questionable. However, if 

homology is the basis of the switching matrix, the lack of reversibility in Frank’s model 

becomes highly influential, and a potentially serious flaw. Frank’s switching matrix is 

deterministic, meaning when one VAT switches to another, the subsequent VAT is then 

more likely to switch to another, and so on. This means the progression thi'ough the 

hierarchy within a single infection is forced down a directed route, which however may 

differ slightly between infections in the aetual order of appearance. In a system based 

largely on homology, we propose that a VSG is as likely to switch back to its predecessor, 

or itself, as to another equally homologous, but novel, gene. As an infection progresses this 

both lowers the effective switching rate, meaning that the proportion of switches that will 

result in an antigenically new VSG and viable population will decrease (Turner, 1999), and 

also acts to boost the immune system against previously expressed VATs.

In our model we have examined 2 levels of switching, based on genomic locus and on 

homology between VSGs. The hierarchy within the genomic locus influenced switching is 

independent of homology between the VSGs themselves. Therefore this order of switching 

will occur irrespective of the VSGs within the loci. The proposed second tier of switching, 

however, relies entirely on stretches of homology shared between VSGs themselves, a 

possibly important feature, particularly in the formation of mosaie genes. This 2-level 

hierarchy means that although the progression via the route of shared homology between 

VSGs is semi-deterministic, but with a level of inbuilt ‘short range’ reversibility, the 

influenee of genomic locus on switching will remain constant throughout the infection. It is 

this latter class within which the effective switching rate will decrease most therefore as 

the infection progresses, as it is less likely to produce novel variants.
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Our model also incorporates aspects of trypanosome biology affecting the in vivo growth 

of the parasite, that have been studied experimentally; the acquired immune response and 

short stumpy formation (Tyler et a i, 2001), and a non-specific general inhibitory function 

(Turner et a l, 1996). These factors ai'c essential, as they will each affect the dynamics of 

an infection, and any model not taking them into account is ignoring fundamental 

influences. It has been illustrated that modelling only 1 aspect of the dynamics, the stumpy 

formation, gave profiles that were similar to that seen in vivo, but the model of best fit 

incorporated the effect of the acquired immune response (Tyler et al., 2001). The 

modelling of these inputs is by necessity done in a relatively simple way, in order not to 

introduce a confusing and umiecessary multiplicity of parameters that will also confound 

the interpretation of the output. Therefore, although not every aspect of every influence on 

infection dynamics can be included, the model presented in this thesis does represent the 

most complete and satisfactory simulation to date of in vivo trypanosome infections.

The model outputs generated 2 main levels for discussion. The most apparent effect seen 

was when the intrinsic rate of growth of the VAT-specific immune responses was 

modified. The simulated time-series suggest that when the rate of growth is relatively slow 

at low numbers of trypanosomes, and faster as the number of parasites increases, leading to 

a tlireshold-type effect, it in effect increases the duration of the infection and the number of 

parasitaemia peaks (where rate of growth of the immune response x=3’, see Figs. 5.4, 5.5 

and 5.6, p. 119). This is interesting because all other aspects, such as VSG switching rate, 

remain constant. Therefore, when the growth rate of the immune response is exponential, 

the variants are quickly removed by an extremely efficiently responding immune response 

(Fig. 5.4, p. 119). As the rate of growth of the immune response is decreased, it takes 

longer for the immune responses to become fully patent. This means that the immune 

responses to the main V AT-expressing subpopulation(s) in each peak will be generated 

relatively quickly, but the small subpopulations that arise later in the peak as a result of 

switching events, and are then subjected to short stumpy formation and reduction in 

numbers, will not give rise to a patent VAT-specific immune response, allowing them to 

grow into the subsequent parasitaemic peak following the removal or exhaustion of SIF 

(see Fig. 5.6, p. 119). This threshold-type immune response is potentially an extremely 

influential aspect of trypanosome infection kinetics, and allows for a degi'ce of persistence 

of small subpopulations, such as those present between peaks. Obviously, caution has to be 

exercised in the interpretation of a model, and there is the need to see if this situation 

occurs during in vivo infections. The possibility of this aspect being highly influential in 

shaping the differential kinetics seen in infections with the same trypanosome strain in 

different hosts (Barry, 1986), and also in the same species of host with different genetic
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backgrounds (Tyler et a l, 2001), should be considered. A different intrinsic rate of growth 

of the VAT-specific immune responses between the host species, or different 

immunogenetic baekgrounds, could quite feasibly be one of the factors involved.

The second facet to the model was the examination of the influence of the VSG switching 

hierarchy on the dynamics of an infection. The simulations incorporated a repertoire of 30 

VSGs, the switching distribution and therefore linkage within the switching hierarchy of 

which was manipulated in several ways. The distributions were either continuous or split 

into discontinuous groups. Initially the switching was dependent upon the genomic locus 

of the VSG. There was then introduced a second level of switching dependent upon the 

extent of homology between VSGs. The discontinuous distributions can be seen to be 

analogous to the idea of early, medium and late switchers (Capbem et a l, 1977), fast, 

medium and slow (Miller and Turner, 1981), or telomerie, internal and mosaic gene 

fonnation (Robinson, 1999), depending on the distributions. In our simulations they were 

postulated to be representations of discontinuity within the switching probabilities due to 

genomic locus alone (Figs. 5.8 and 5.10, p. 121 and 122), or between switching due to 

genomic locus and homology (Fig, 5.15, p. 127). The first notable feature of the time- 

series was that the discontinuous distributions gave outputs that were more consistent with 

the picture seen in vivo. The parasitaemic peaks, initial and relapse, were more distinct, and 

the VAT-specific immune responses clustered with the respective parasitaemic peaks. The 

switching distribution did not affect the duration of the infections, rather the makeup of the 

peaks. The clustering of the VAT-specific immune responses with the parasitaemic peaks 

agrees with what was obseiwed with the experimental cattle in this thesis, where the VAT- 

specific immune responses grouped very closely with the relevant detected RT-PCR 

products (except for, in both instances, ILTat 1.71; see 6.2, p. 131). With continuous 

switching distributions, the opposite is the case, the relapse peaks being smaller and not 

very distinct, and the VAT-specific immune responses were spread evenly tlnough the 

infection. The continuous sets of distribution were analogous to either genomic locus only 

(Fig. 5.3, p. 118), or homology only (Fig. 5.12, p. 125). If we consider the outputs most 

similar to those seen in vivo, it suggests that there are distinct subsets of VSGs, with 

differing probabilities of activation. This gives a discontinuous range of switching 

probabilities, within the overall switching rate.

The comparison of the simulations examining the roles of switching due to genomic 

position or homology did not produce such clear evidence, although several important 

observations ean be drawn fi’om them. The outputs that were closest to those seen in vivo 

were either the discontinuous switching distributions involving genomic position-driven
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switching, or where there was a combination of position and homology influences. 

Therefore the simulations suggest that the system is not purely driven by homology 

between VSGs, which agrees with the one of the starting hypotheses of this thesis 

regarding the importance of genomic position, and with previously published work (Liu et 

a l, 1985; Robinson et al, 1999). The fact that simulations involving the effect of genomic 

position alone produced viable outputs is perhaps not surprising. The restricted repertoire 

of VSGs, at 30 genes, could easily represent a proportion of the genes utilised early in 

infection, which putatively are intact genes upon which the influence of genomic position 

is the greatest. In addition, this number of genes allows us to model only a truncated time- 

series when compared with in vivo infections. It is the time series incoiporating both tiers 

of influence however, that is the most pertinent to the VSG switching system as a whole. 

The proportional relevanee of the influences of genomic position and VSG homology 

driven switching is perhaps the vital question to ask, paidicularly with reference to the 

recent discovery regarding the large number of pseudogenes. The examination of this ratio, 

and how it would evolve as an infection progresses, in terms of actual and perhaps more 

importantly effective switching rates, is likely to be critical in order to fully understand the 

role of hierarchical VSG switching in determining the dynamics of a chronic trypanosome 

infection.

It must be stressed that conclusions drawn from an in silico model can only suggest the 

direction in which experimental endeavour should proceed. However the simulations 

presented in this thesis do provide several avenues for further examination, in particular 

what seems to be a highly influential role played by the intrinsic rate of growth of the 

VAT-specific immune responses, and the proportional influence of genomic locus- and 

homology-driven VSG switching as an infection progresses.

6.6 Future work

One of the key elements, mentioned regularly in this thesis, is the potential role of the 

pseudogene repertoire. The unexpeeted discovery that the great majority of the internal 

VSG repertoire is composed of pseudogenes (95% of over 850 VSGs), has led to the 

speculation that mosaic gene formation, previously considered to be probably a rare event, 

and minor player, in antigenic variation (Barry, 1997; Robinson, 1999), may well be of 

great significance. The hypotheses presented regarding the significance of homology 

between VSGs in terms of influence on VSG switching hinge on this idea. With the 

resource of the TREU 927 genome, the possibility now exists to investigate the
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pseudogenes. This would also allow examination of the hierarchy as a whole (aside from 

the minichromosomal genes, which are not ineluded in the genome project), in much 

further detail than has been possible. Chronic infections using TREU 927 could be set up 

and followed, and the progression through the repertoire examined. The regular eloning 

and sequencing of K^G-specific RT-PCR products thi’oughout an infection is possible 

using the splice leader primer and a primer specific to the 3’UTR region. It is not possible 

to clone the TREU 927 trypanosome with regard to VSG expression, as within one passage 

of a mouse the phenotype will have switched. In addition, the infections may be restricted 

to rodents or rabbits, as in a parallel infection run in one cow with TREU 927, the 

trypanosome levels were not sufficient for RT-PCR (see Appendix). Microanay 

technology could also be utilised.

The examination of the effect of the threshold-type VAT-specific immune responses, 

observed in the mathematical model, would also be very interesting. The purification of 

VSGs would allow the examination of the progression of the VAT-specific immune 

responses by ELISA, with adequate controls to negate the cross-reactive C-determinant, 

and accurate measurement of immunoglobulin levels. If effort was concentrated upon the 

VSGs that tend to appear early, such as ILTats 1.67 (BES), 1.21 and 1.25 

(minichromosomal), then it would not be necessary to initiate long term chronic infections. 

A relatively large volume of semm is required, however, which may involve the use of 

hosts such as rabbits. It would be ideal to compare this effect between hosts, or between 

hosts of differing immunogenetic backgi’ounds, to see if this is an aspect that determines 

the differential kinetics observed in previous studies (Barry, 1986; Tyler et a l, 2001).
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7 Appendix

7.1 TREU 927 infection

An 18 month-old Friesian steer (BW42) was inoculated with 1x10* TREU 927 

trypanosomes (supplied by C.M.R. Turner, University of Glasgow), and the infection was 

followed in parallel with the ILTat infections described in Chapter 4, although it was 

started one week later, and was therefore followed for 63 days. Parameters were measured 

in the same manner.

temperature curve
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Figure 7.1 Measurements of daily rectal temperatures of cow BW42.
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Figure 7.2 Weekly weight measurements of cow BW42.
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Figure 7.3 Daily haematocrit PCV measurements of cow BW42
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Figure 7.4 Daily white blood cell counts of cow BW42 (up to day 51).

The haematological parameters examined in cow BW42 followed a similar pattern to that 

seen in cattle BV154 and BW49, and described in Capter 4. There was, however, retarded 

growth in cow BW42. Whereas cattle BV154 and BW49 maintained growth rates within 

those expected of uninfected cattle kept in similar conditions, cow BW42 saw a significant 

loss of weight between weeks 1 and 2, losing 12 kg (4.5% of bodyweight). Thereafter, 

weight was steadily regained, reaching the initial weight of 260 kg by week 4 post-
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infection. For the remainder of the infection there was a very small amount of weight gain 

(2 kg, representing a growth rate of 0.05 kg.day '). These data indicate that there was 

reduced performance in terms of weight growth for the cow infected with TREU 927. 

Although overall no weight was lost, during the period of the infection a Friesian steer 

would be expected to gain at least 0.5 kg.day ' (Radostits and Blood, 1985), which over the 

63 days represents 31.5 kg. The impact on growth rate is a significant effect, and can 

possibly be attributed to the TREU 927 trypanosomes, as the cattle infected with the ILTat 

1.2 clone maintained the expected growth rate. Caution must be exercised, however, as 

only 1 cow was infected.

BW42 parasitaem ia
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Figure 7.5 Graph illustrating detection thresholds of parasitaemia during infections in cow 
BW42. Y-axis; 0 = parasites undetectable by any method, 1 = parasites only detectable by 
amplification in irradiated mice, 2 = parasites detectable by examination of buff y coat, 3 = 
parasites detectable by haemocytometer. (NB. no measurements taken on day 25 post infection)

When the progression of parasitaemia is examined, the profile is markedly different to that 

seen with the ILTat 1.2 clone in cattle BV154 and BW49. There were no instances where 

the parasites were detectable by haemocytometer, and only 5 days out of 63 (7.9% of the 

infection period) when parasites were detectable by the buffy coat method. In addition, it 

was possible to amplify parasites by inoculation of cattle blood into mice every day, apart 

from one (day 8). These data suggest that the parasite population is maintained at a low 

level throughout the infection, and there are not peaks of high parasitaemia or long periods 

of quiescence. Obviously, it must be stressed this is information from 1 infection only, and 

speculation is impossible on how the infection would have progressed if followed further.
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However, if the profile was repeated in subsequent infections, it would have implications 

with regard to following infections in cattle with TREU 927 trypanosomes, particularly 

considering that TREU 927 is the reference strain for the genome project.
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