
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


The effect of the HPV-16 minor capsid protein L2 
on the HPV-16 viral transcription regulator E2

Afam Amobi Okoye 
January 2004

This thesis is submitted to the University of Glasgow in 
accordance with the requirements for the degree of Doctor of 

Philosophy in the Faculty of Veterinary Medicine

Institute of Comparative Medicine 
Garscube Estate 
Switchback Road 

Glasgow 
G61 IQH

© Afam Okoye



ProQuest Number: 10390720

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10390720

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346



fGlÂSGOW ' I 
UNIVERSITY I 
XÏBRARY: j



I dedicate this work to Him who gives me life and strength, my 

wonderful parents Sir C.E.S & Lady Grace Okoye

and

to my ever loving wife Amaka.

II



Acknowledgements

I would like to thanlc my supervisor Prof Saveria Campo for your excellent supervision 

and instruction. Dr Iain Morgan and Pablo Cordano and all members of the 

papillomavirus lab for all their support and direction during my studies, 1 couldn’t have 

done it without you guys.

To my darling wife I say thanlc you for putting up with me and supporting me for these 

last three years. 1 would also like to acknowledge and appreciate my parents Sir (Chief) 

Sonny and Lady (Lolo) Grace Okoye, my brothers Nnamdi, Ikenna and Amaechi for 

being there from the beginning; I love you all and could not have done it without your 

support and care. 1 would also like to thank my big cousin Chimay Anumba, his wife 

Clair and his beautihil daughters Nmachi and Kenechi for being an encouragement and a 

good friend. To my friends who have also supported me over these years, my big brother 

Ola, Ekene & Ayo, Femi, Jumoke, Eni, Sade & Eniolu Rotimi, the Ekuwezor and 

Komolafe families, my uncle Chris and my dear aunty Ekwy Madichie.

I would finally like to thank the University of Glasgow and the MRC for the postgraduate 

scholarship, which financed my studies.

Ill



Table o f Contents

Acknowledgements......................... .................. ..............................................Ill

Table of Contents...............................................................................................IV

List o f Figures.......................   .....XI

List o f Tables................................................................     XV

Abbrevea tions.....................................................................................................X VI

Declaration......................................................................................................... XX

Abstract................................................................................................................XXI

Chapter 1: Introduction......................................................   1

1.1. Viruses and Cancer..................................................................................................1

1.1.1. Human T-cell Leukemia virus Type 1 (HTLV-1).............................................2

1.1.2. Hepatitis B virus (HBV)..................................................................................... 3

1.1.3. Kaposi’s sarcoma-associated herpesvirus (KSHV)...........................................3

1.1.4. Epstein-Barr virus (EBV)................................................................................... 4

1.1.5. Viruses and Breast Cancer.................................................................................. 5

1.2. Papillomaviruses.................................................   7

1.2.1. Papillomavirus Genome Organisation................................................................7

1.2.2. Epithelial Differentiation....................................................................................14

1.2.3. HPV Life Cycle..................................................................................................20

1.2.4. HPV and Cell Transformation........................................................................... 25

1.2.5. HPV and Cervical Cancer..................................................................................36

1.2.6. Other HPV Associated Diseases........................................................................39

IV



1.2.7. The Transcription Regulator E2.......................................................................41

1.2.8. The Minor Capsid Protein L2.......................................................................... 45

1.3. Promyelocytic Leukemia (PML) Oncogenic Domains “PODs” ................ 51

1.3.1. Association of Viruses with PODS................................................................. 56

1.3.1.1. Interferon...........................................................................................................56

1.3.1.2. Herpes Simplex virus type one (HSV-1)........................................................ 58

1.3.1.3. Epstein-BaiTvirus............................................................................................ 60

1.3.1.4. Human Cytomegalovirus (HCMV)................................................................. 61

1.3.1.5. Adenovirus........................................................................................................61

1.3.1.6. Other viruses and PODs...................................................................................62

1.3.2. Papillomavims proteins and PODs................................................................. 62

1.4. Project Aims.................................................   63

C h a p te r  2: M a te r ia ls  an d  M e th o d s ......................................................................65

2.1. M aterials................................................................................................................ 65

2.1.1. Antibodies.........................................................................................................65

2.1.2. Bacterial Hosts................................................................................................. 66

2.1.3. Buffers............................................................................................................... 66

2.1.4. Cells................................................................................................................... 67

2.1.5. Cell Culture Materials...................................................................................... 68

2.1.6. Chemicals and Enzymes.................................................................................. 68

2.1.7. Equipment and Plasticware..............................................................................72

2.1.8. Kits.................................................................................................................... 73

V



2.1.9. Molecular Weight Markers............................................................................ 74

2.1.10. Other Materials............................................................................................... 74

2.1.11. Plasmids...........................................................................................................75

2.1.12. Water................................................................................................................78

2.2. Methods  .................................................................................................... 79

2.2.1. Molecular Biology........................................................................................... 79

2.2.1.1. DNA Extraction............................................................................................... 79

2.2.1.2. Quantification of Nucleic Acids......................................................................80

2.2.1.3. Restriction Enzyme Digestion of DNA.......................................................... 80

2.2.1.4. Agarose Gel Electrophoresis...........................................................................81

2.2.1.5. Southern Blotting.............................................................................................81

2.2.1.6. Isolation and Purification of DNA Restriction Fragment from

agarose gel.......................................................................................................83

2.2.1.7. Ligation of DNA Fragments...........................................................................83

2.2.1.8. Preparation of competent cells........................................................................84

2.2.1.9. Transformation of E  coli BL21 cells...............................................................84

2.2.1.10. Transformation ofE  co//DH5a cells............................................................. 85

2.2.1.11. Glycerol Stocks................................................................................................86

2.2.1.12. Small Scale Preparation of Plasmid DNA (Miniprep).................................. 86

2.2.1.13. Large Scale Preparation of Plasmid DNA (Maxiprep)................................. 86

2.2.2. Cell Culture and Transfection....................................................................... 87

2.2.2.1. Cell Culture......................................................................................................87

2.2.2.2. Maintenance of cells in culture.......................................................................87

2.2.2.3. Long Term Cell Storage.................................................................................. 88

VI



2.2.2.4. Transient Transfection of HaCaT and C33a cells..........................................88

2.2.2.5. Luciferase Assays........................................................................................... 89

2.2.2.6. Transient DNA replication assay....................................................................89

22.2.1. Probe for Hybridisation...................................................................................90

2.2.2.8. Beta-Galactosidase Assay...............................................................................91

2.2.3. DNA and RNA analysis..............................................................  91

2.2.3.1. Total RNA Extraction from Cell Lines.......................................................... 91

2.2.3.2. Polymerase Chain Reaction (PCR)............................................................... 92

2.2.3.2.1. Amplification of DNA................................................................................... 92

2.2.3.2.2. Amplification from RNA: Reverse Transcriptase-PCR............................... 95

2.2.3.2.3. Real Time Quantitative PCR..........................................................................96

2.2.3.3. DNA Sequencing........................................................................................... 97

2.2.4. Protein Analysis...............................................................................................98

2.2.4.1. Protein Preparations from Cells for Western Blot Analysis........................98

2.2.4.2. Protein Concentration Assays........................................................................99

2.2.4.3. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)............................100

2.2.4.4. Western Blotting........................................................................................... 100

2.2.4.5. Stripping Western Blot Membranes............................................................ 102

2.2.4.6. Immunoprécipitation..................................................................................... 102

2.2.4.7. Expression and Purification of GST Proteins.............................................. 103

2.2.4.8. In vitro Transcription Translation and GST-Pull Down Assays................104

2.2.4.9. Pulse-chase f  ̂ S] Methionine labelling for protein Half-Life.................... 105

2.2.4.10. Cycloheximide treatment for protein Half-Life...........................................105

VII



2,2.5. Immunofluorescence..................................................................................... 106

Chapter 3: Effect of the Human Papillomavirus type 16 L2 protein
on the functions of the E2 protein..............................................107

3.1. The Virai Regulatoiy Protein E2.......................................................................107

3.1.1. Down-regulation of the transcription transactivation function of

HPV-16 E2 by HPV-16 L2........................................................................... 108

3.1.2. HPV-16 L2 does not affect the replication function of HPV-16 E2............ I l l

Chapter 4: The effect of L2 on E2 protein expression and stability 128

4.1. E2 Expression and stability................................................................................ 128

4.1.1. Down regulation ofHPV-16 E2 protein expression by HPV-16 L2 in

HaCaT and U20S but not C33a cells............................................................128

4.1.2. L2 does not alter E2 mRNA transcription...................................................... 130

4.1.3. L2 down-regulation of the transcriptional activity of E2 is proteasome

independent....................................................................................................131

4.2. L2 does not affect E2 half-life/stability............................................   131

Chapter 5: Analysis of HPV-16 L2 deletion mutants....................................146

5.1. Introduction.......................................................................................................... 146

5.2. Identification ofE2-binding domains of L2  ...........................................146

5.2.1. GST Gene Fusion System................................................................................146

5.2.2. Constmction of GST-L2 deletion mutants......................................................147

5.2.3. The amino terminus of L2 mediates binding with E2.................................... 148

5.3. Visualisation of GFP-L2 deletion mntants....................................................... 161

vm



5.3.1. The Green Fluorescent Protein.......................................................................161

5.3.2. Construction of GFP-L2 deletion mutants.................................................... 161

5.3.3. Primer design and cloning.............................................................................. 162

5.3.4. Detection of GFP-L2 and its deletion mutants.............................................. 163

5.3.5. Expression of GFP-L2 deletion mutants........................................................165

5.4, Analysis of the effect of L2 deletion mutants on E2 function......................181

5.4.1. Construction of L2-deletion mutants in pcDNA expression vector............. 181

5.4.2. Primer design and cloning.............................................................................. 181

5.4.3. Effect of L2 and L2 deletion mutants on the transcription transactivation

function ofE 2.................................................................................................182

5.4.4. Effect of L2 and L2 deletion mutants on E2 expression...............................183

C hapter 6: Discussion...................................................................................  192

6.1. Introduction.......................................................................................................... 192

6.2. Functional interaction between HPV-16 E2 and HPV-16 L2........................193

6.2.1. Regulation of transcription............................................................................. 193

6.2.2. DNA replication..............................................................................................197

6.2.3. Protein Expression.......................................................................................... 199

6.3. HPV-16 L2 deletion mutants and E2 function................................................. 202

6.3.1. L2-E2 Association.......................................................................................... 204

6.3.2. Cellular localisation of GFP-L2 and GFP-L2 deletion mutants.................... 204

6.3.3. Expression ofL2 and L2 deletion mutants in HaCaT...................................206

6.3.4. E2 function and L2 deletion mutants.............................................................207

DC



6.3.5. L2 deletion mutants and E2 protein expression.............................................208

6.4. Summary...............................................................................................................209

6.5. E2, L2, PODs and the viral life cycle................................................................ 214

6.6. Future Work...............  218

References..............................................................................................................222

X



List of Figures

Figure 1.1. Schematic representation of the HPV-16 genome showing the early and late 

open reading frames.........................................................................................9

Figure 1.2. Schematic representation of the human papillomavirus 16 long control

region.............................................................................................................. 10

Figure 1.3. Differentiation Programe of a Stratified Epithelium.....................................17

Figure 1.4. The cycle of human papillomavirus infection of epithelial cells...................22

Figure 1.5. Structure and cellular targets of HPV E7....................................................... 30

Figure 1.6. Schematic Representation of HPV E6 protein................................................31

Figure 1.7. HPV E6, E7 and Tumour Progression............................................................33

Figure 1.8. Diagram of cervical cancer disease progression..............................................38

Figure 1.9. Schematic representation of Human papillomavims type-16 E2 protein 42

Figure 1.10. The E2-DNA complex ofBPV-1 and HPV-18..............................................43

Figure 1.11. Schematic representation of the papillomavims minor capsid protein L2..50

Figure 1,12. Schematic representation of the stmcture of the promeo lytic leukaemia

protein (PML) showing the ring box coiled coil motif (RBCC)...................53

Figure 1.13. Formation of PODs due to SUMOylation of PML.......................................54

XI



Figure 3,1, Transactivation of HPV-18 LCR and BPV-4 LCR luciferase reporter

constructs by HPV-16 E2 in C33a and U20S cells respectively................113

Figure 3.2. Schematic representation of luciferase reporter plasmids.......................... 115

Figure 3.3. Transactivation of HPV-18 LCRBS mutants and E2 minimal promoter

constructs by HPV-16 E2 in HaCaT cells.................................................... 117

Figure 3.4. Transactivation of HPV-18 LCRBS mutants and E2 minimal promoter

constructs by HPV-16 E2 in C33a cells....................................................... 119

Figure 3.5. HPV-16 L2 down-regulates the transcription transactivation function of

E2 in HaCaT cells.......................................................................................... 121

Figure 3.6. HPV-16 L2 down-regulates the transcription transactivation function of

E2 in C33a cells............................................................................................. 123

Figure 3.7. Effect of HPV-16 L2 on the transactivation of tk and tk6E2 promoters by

HPV-16 E2 in C33a cells.............................................................................. 125

Figure 3.8. Effect of HPV-16 L2 on the transient replication function of HPV-16 E2 in 

C33a cells.......................................................................................................127

Figure 4.1. HPV-16 L2 down-regulates E2 in HaCaT but not in C33a cells................. 135

Figure 4.2. HPV-16 L2 decreases the level of E2 in HaCaT cells in a proteasome

independent manner...................................................................................... 137

Figure 4.3. HPV-16 L2 does not alter E2 mRNA transcription......................................139

XII



Figure 4.4. HPV-16 L2 down-regulates the transcription transactivation function of

E2 in cells is independent ofE2 degradation................................................ 141

Figure 4.5, The effect of HPV-16 L2 on the stability of HPV-16 E2 using

methionine labelling in HaCaT cells.............................................................143

Figure 4.6. The effect of HPV-16 L2 on the stability of HPV-16 E2 after

cyclohexamide treatment in HaCaT cells......................................................145

Figure 5.1. Schematic representation of HPV-16 L2 deletion mutants...........................152

Figure 5.2. Graphical representation of pGEX-4T-2........................................................154

Figure 5.3. Digestion of GST-L2 N-terminal and C-terminal deletion mutants 156

Figure 5.4. The N-terminal domain of L2 mediates binding with E2.............................158

Figure 5.5. The N-terminal domain of L2 mediates binding with E2.............................160

Figure 5.6. Schematic representation of the backbone of the green fluorescent

Protein............................................................................................................ 168

Figure 5.7. Graphical representation of pEGFP-Cl.........................................................170

Figure 5.8. Digestion of pEGFP-L2 N-terminal and C-terminal deletion mutants........172

Figure 5.9. Visualisation of GFP-L2 and GFP-L2 deletion mutants...............................174

Figure 5.10. Expression of GFP-L2 and GFP-L2 deletion mutants.................................180

xm



Figure 5.11. Digestion of pcDNA-L2 and pcDNA-L2 N-terminal and C-terminal

deletion mutants............................................................................................185

Figure 5.12. Effect of L2 and L2 deletion mutants on the transcription transactivation

function of E2 in C33a cells.......................................................................... 187

Figure 5.13. Effect of L2 and L2 deletion mutants on the transcription transactivation

function ofE2 in HaCaT cells.......................................................................189

Figure 5.14. Full length HPV-16 L2 is required to down-regulate E2 in HaCaT cells... 191

Figure 6.1. Cartoon representing the possible role for L2-E2 interaction during the

viral life cycle.................................................................................................217

XIV



List of Tables

Table 1.1. Showing some known viral-cancer associations............................................. 6

Table 1.2. Cellular targets of HPV E7............................................................................. 30

Table 1.3. Cellular Targets of HPV E6........................................................................... 32

Table 1.4. HPV-16 L2 interacting partners identified using a yeast two-hybrid
system..............................................................................................................49

Table 2.1. Oligonucleotide PCR primers......................................................................... 92

Table 2.2. Sequencing Primers.........................................................................................98

Table 6.1. Summary of the characterisation of L2 deletion mutants............................ 213

XV



ABBREVIATIONS

ATP

bp

BPV

BrdU

BSA

CIN

cm

CRPV

T

DMEM

DMSO

DNA

DNase

dNTP

E.coli

EBV

ECL

ECM

EDTA

EGTA

EtBr

FITC

FCS

g
G418

GFP

GST

Adenosine triphosphate 

Base pairs

bovine papilomavirus 

Bromodeoxyuridine 

Bovine serum albumin 

Cervical intraepithélial neoplasia 

Centimeters

Cottontail rabbit papillomavirus 

degree centigrade

Dulbecco’s modified Eagles medium 

Dimethyl sulphoxide 

Deoxyribonucleic acid 

Deoxyribonuclease

3’ deoxyribonucleoside 5’ triphosphate 

Escherichia Coli 

Epstein-Barr virus 

Enhanced chemiluminescence 

Extracellular matrix 

Ethylenediamine tetra-acetic acid

Ethylene Glycol-bis(P-aminoethyl Ether) N,N,N’,N’-tetra-

acetic acid

Ethidium bromide

Flurorescein-isothiocynate

Foetal calf seium

Gram

Geneticin, g418-sulphate 

Green Fluorescent Protein 

glutathione-S-transferase

XVI



HBV

HEPES

HBS

HPV

KDRP

HTLV-1

hr

HSV

IgG

kb

kDa

kg
I

LCR

Pg

pi
M

mg

min

ml

mM

mRNA

PAGE

OD

ORE

PBS

PBS-T

PCR

pmols

POD

Hepatitis B virus

N-[2-Hyroxyethyl]piperazme“N’“[2-ethanesuifonic acid]

HEPES buffered saline

Human papillomavirus

Horseradish peroxidase

Human T cell leukaemia virus-1

Hours

Herpes Simplex Virus

immunoglobulin G

Kilobase pairs

KiloDalton

Kilogram

Litre

Long control region

microgram

microlitre

Molar

milligram

minute

millilitre

Millimolar

Messenger ribonucleic acid 

Polyacrylamide gel electrophoresis 

Optical density (light absorbance)

Open reading frame

Phosphate buffered saline

Phosphate buffered saline plus 0.1% Tween

Polymerase chain reaction

Picomoles

Promonocytic leukaemia protein (PML) oncogenic 

domains

XVII



RNA Ribonucleic acid

Rnase Ribonuclease

RT-PCR Reverse transcriptase-polymerase chain

rpm Revolutions per minute

SDS Sodium dodecyl sulpate

sec Second

SV40 Simian virus 40

TBP TATA box binding protein

TBS Tris-buffered saline

TEMED N,N,N’ ,N’ -tetramethylethylenediamine

Tris Tris (hydroxymethyl) aminomethane

Tween 20 Polyoxyethylene sorbitan monolaurate

tk Thymidine kinase

UV Ultraviolet

V Volts

v/v Volume per unit volume

w/v Weight per unit volume

wt Wild type

ftg Microgram

pi Micro litre

pM Micromolar

% Percentage
32p Phosphorous isotope 32 atom

^̂ S Sodium isotope 35 atom

Single letter DNA nitrogenous base

A Adenine

C Cytosine

G Guanine

T Thymine

xvm



Single letter amino acid code

Alanine Ala (A)

Arginine Arg(R)

Asparagine Asn (N)

Aspartic acid Asp (D)

Cystein Cyc(C)

Glutamic acid Glu (E)

Glutamine Gin (Q)

Glycine Gly(G)

Hisitdine His (H)

Isoleucine He (I)

Leucine Leu (L)

Lysine Lys(K)

Methiionine Met (M)

Phenylalanine Phe (F)

Proline Pro (P)

Serine Ser (S)

Threonine Thr (T)

Tryptophan Trp (W)

Trrosine Tyr(Y)

Valine Val (V)

XIX



DECLARATION

The work presented in this thesis is my own original work except confocal imaging in 

chapter 5, which was performed by Dr Pablo Cordano in the Department of Veterinary 

Pathology University of Glasgow. This work has not been previously submitted for any 

other degree.

XX



ABSTRACT

The nucleus contains a variety of morphologically distinct substructures called nuclear 

bodies, which include the promyelocytic leukemia oncogenic domains (PODs) also 

known as PML-NDIO, PODs are macromolecular multiprotein complexes that are 

present in all cultured cell lines as well as in vivo. The major component of PODs is the 

PML protein, which was originally identified as the fusion partner of retinoic acid 

receptor alpha (RARa) in the chromosomal translocation t(15;17) in patients with acute 

promyelocytic leukaemia (APL) (Kakizuka et a l, 1991; Lavau et a l, 1991; Goddard et 

a l, 1992).

The minor capsid proteins L2 of BPV-1, HPV-11 and HPV-33 have been shown to 

localise to PODs in the absence of other viral components (Day et a l, 1998) and co­

expression of BPV-1 L2 with BPV-1 E2TA recruits E2 to PODs (Lambert et a l, 2000). 

The presence of L2 in PODs also appears to be associated with the recmitment of the 

major capsid protein LI. The association of PODs with E2 is dependent on L2 but is 

independent of LI The effect of HPV-16 L2 on the functions of HPV-16 E2 and the 

implications of this interaction to the virus life cycle are discussed.

This study showed that HPV-16 L2 has a selective effect on the functions of HPV-16 E2. 

L2 was able to down regulate the transcription transactivation function of E2 in HaCaT, 

U20S and C33a cells. No effect of L2 on E2 mediated DNA replication was observed. 

L2 was also able to reduce the level of E2 expression in HaCaT and U20S cells but not in 

C33a cells. The effect of L2 on E2 expression in HaCaT cells was further investigated by

XXI



examining E2 mRNA levels and protein half-life. No difference in E2 mRNA or protein 

half-life was detected in the presence of L2.

A series of L2 amino and carboxyl terminal deletion mutants were constructed as GST 

fusion proteins and GST binding assays were performed which showed that the amino 

terminus of L2, even just the first 50 amino acids, was capable of binding with E2. GFP 

fusion forms of each L2 deletion mutant were also constructed and cellular localisation 

detected by immunofluorescence. GFP-L2 and all C-terminal deletion mutants localised 

and were retained in the nucleus while the N-terminal deletion mutants localised to both 

the nucleus and the cytoplasm.

Investigation of the effect of L2 deletion mutants on the transcription transactivation 

function of E2 showed that mutants expressing 1-200 and 150-473 amino acids of L2 do 

not down regulate function in HaCaT and C33a cells. In HaCaT cells, mutants expressing 

amino acids 1-50 and 1-100 also did not inhibit E2 function indicating that binding to E2 

did not correlate with down-regulation of transcription transactivation. Furthermore, only 

full-length L2 was able to reduce the level of E2 expression.
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Chapter One_________________  Introduction

CHAPTER 1: INTRODUCTION

1.1. Viruses and Cancer
Viruses and cancer have a long history in animal studies. Leukemia in chickens was 

experimentally transmitted by an agent that passed through a filter by Danish researchers 

in 1908. Soon aftemards Peyton Rous, in New York, showed the same for chicken 

sarcoma. In 1936, Bittner showed that predisposition to breast cancer in C3H mice was 

passed through the milk to their offspring; this milk factor was later shown to be 

mammary tumour viras (Lyons and Moore., 1962; Lyons and Moore., 1965) . In 1964, 

three scientists Epstein, Achong and Barr working on Burkitfs lymphoma cells 

discovered the first human tumour viras, today known as the Epstein-Bara viras (Epstein 

et al., 1964). Since then the link between viral infections and human cancer has been well 

established. Today, viral infections have been associated with 10 to 15% of all cancers 

worldwide. In most cases, cancer is an infrequent consequence of infection by the 

causative virus (usually as a by-product of viral replication) and often occurs years after 

the initial infection has taken place. As tumour progression is regarded as a multistep 

process, virases may be an essential step but alone might not cause cancer. Certain 

factors must be considered for a virus to be implicated in tumor progression such as the 

introduction of a viral oncogene into a cell or insertion of viral genome into the genome 

of the host cell, thus disrapting the noraial regulation of cell division. Also the viras 

should usually persists during the disease, prevent reinfection and be located
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appropriately to account for disease. Today a variety of DNA and RNA virases have 

now been associated with various malignancies in both humans and animals.

1.1.1. Human T-cell Leukemia virus Type 1 (HTLV-1)

Shortly after its discoveiy in 1980, HTLV-1 was found to be the etiologic agent of both

adult T cell leukamia (ATL) and HTLV-1-associated myelopathy/tropical spastic 

paraparesis (HAM/TSP), a neurologic disease characterised by demyelinating lesions in 

both the brain and the spinal cord. Approximately 5-10% of HTLV-1 infected individuals 

develop either ATL or HAM/TSP. Recent research has suggested that the route of 

primary viral infection may dictate the course of disease pathogenesis associated with 

HTLV-1 infection. Specifically, mucosal exposure to HTLV-1 has been associated with 

cases of ATL. ATL is an aggressive lymphoproliferative disease that develops in 

approximately 1-5% of seropositive individuals. The leukemic cells in ATL are almost 

exclusively CD4^ T cells, likely reflecting the fact that HTLV-1 displays an in vivo 

cellular tropism for this cell population within the peripheral blood. It has been 

demonstrated that 90-99% of HTLV-1 proviras segregates with CD4^ T cells within the 

peripherial blood of ATL patients infected with the viras (Richardson et a l, 1990). The 

genesis of ATL has been linked to the effects of the viral protein TAX (Franchini., 1995; 

Uchiyama., 1997). Tax is a 40-kDa phosphoprotein essential for both viral replication 

and cellular transformation. It is a transcriptional transactivator and can dramatically 

increase viral gene expression through its interaction with cellular factors and the 5' long 

terminal repeats (LTR) of the proviral genome (Marriott et al., 1989). HTLV-1 has been 

found primarily in populations in southern Japan, Brazil, the Caribbean, and regions of 

central Africa. HTLV-2 has been linked with haiiy cell leukaemia although its connection
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with the disease is weak because it has been identified in cells from only a few patients 

with the disease (For review) (Bannak et ciL, 2003; Uchiyama., 1997).

1.1.2. Hepatitis B virus (HBV)

HBV causes hepatitis B and plays a major role in the development of liver cancer known 

as hepatocellular carcinoma (HCC) (Brechot et a i, 2000; Buendia., 1998; Buendia., 

2000). HBV is a small-enveloped DNA viras, which replicates in paraenchymal cells of 

the liver. During acute and chi'onic infections, the liver produces empty viral envelopes 

organized in spherical or filamentous particles that cany the HBV surface antigen. In 

endemic regions, young children are usually infected at birth by their infected mothers or 

by contact during early yeai*s of life. In non-endemic regions, HBV-infected individuals 

usually develop adequate cellular and humoral immune responses, produce antibodies 

against HBV and recover. In 5-10% of patients, failure of the immune system to clear the 

virus results in a chronic HBV carrier state (Hollinger., 1996). These individuals usually 

develop persistent infections and an increased risk of liver ciiriiosis and liver cancer 

(HCC). Integration of the viral DNA and deregulation of cell growth control by 

inappropriate expression of viral transactivators have been implicated in HBV induced 

oncogenesis (Brechot., 1998).

1.1.3. Kaposi’s sarcoma-associated herpesvirus (KSHV)

KSHV is a member of the gammaherpesviras subfamily, Rhadinoviras genera. They are

double-stranded DNA virases approximately 165kbp in size. A characteristic of KSHV 

and other gammaheipesvirases is the similarity of a large number of the ORFs to known 

cellular genes suggesting that some of these genes may be pirated from the host
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cliromosome during the process of viral evolution. KSHV latently infects predominantly 

B-cells and endothelial cells. Infected cells retain the virus from one generation to the 

next and can also transform (Ganem., 1997). Strong evidence now exists to establish 

KSHV as the etiologic agent of Kaposi sarcoma (KS) (Boshoff et ciL, 1995; Chang et al., 

1994). KS is an unusual multifocal neoplasm characterised by dark puiple lesions, which 

differs from most other common tumours in that the lesions contain multiple cell types 

(polyclonal), with the dominant cell being the spindle cell derived from endothelial 

origins. In addition, the KS lesions contain numerous infiltrating inflammatory cells 

(Verma and Robertson., 2003). KS is more wide spread in patients who are 

immunocompromised such as people with AIDS. In such cases it can become detrimental 

to the patient and even fatal.

1.1.4. Epstein-Barr virus (EBV)

EBV is a member of the gammaheipesvims family that infects 94% of adult populations 

worldwide and following primaiy infection the individual remains a lifelong earner of the 

virus. The viras is generally spread to and between young children tlirough salivary 

contact. Cancer usually develops in cases of clinical illness, where primaiy infection is 

delayed until adolescence or beyond, or when an intense immunopathological reaction 

leads to the symptoms of infeetious mononucleosis (a lymphoproliferative disorder). The 

virus is found in neaiiy all Burkitt’s lymphoma tumours from patients in central Africa, 

where the disease is most common. EBV has a pronounced tropism for human B- 

lymphocytes, which are readily infected and immortalized in vitro (Kaye et al., 1999; 

Rickinson et al., 1984). By influencing B-cell suiwival mechanisms, EBV may induce 

tumours such as B Lymphoproliferative disease and Hodgkins disease. EBV contributes
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to the immortalization/transformation of infected cells through the activity of viral 

proteins that interfere with cellular pathways controlling growth and/or suiwival. These 

viral proteins act cooperatively and may induce different biological effects in different 

cellular backgrounds (Kaye etaL, 1993; Wang et ciL, 1985).

1.1.5. Viruses and Breast Cancer

The mouse mammary tumour virus (MMTV) is a B-type retro vims. MMTV causes 

mammary cancer in mice thiough a process called inseitional mutagenesis. Reseai’chers 

have long sought a human homologue of MMTV. Recent reports from a group in Sydney 

suggest a link between a new vims and a large percentage of breast cancer cases (Ford et 

ai, 2003). They found that 40% of breast cancer samples taken from Australian- 

Caucasian women had MMTV-like gene sequences although it was found in only two 

percent of noimal breast samples taken from cosmetic surgeiy. The vims was found in 

the cancerous tissue and not in the normal breast tissue from women with breast cancer. It 

may also play an important role in male breast cancer, with over 50% of male samples 

testing positive for the vims. Previous studies have also found MMTV-like gene 

sequences in 38% of breast cancer tissue from United States women (Wang et al., 1995).
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PATHOGEN MALIGNANCY

HTLV-I Adult T-cell leukaemia/lymphoma

HTLV-II Hairy cell leukaemia

HBV Liver cancer

KSHV Kaposi’s sarcoma

EBV Lymphoproliferative disorders

EBV Nasopharyngeal carcinomas

EBV Burkitt’s lymphoma

HPV Anogenital carcinoma, cervical 

cancer, skin cancer

Table 1.1. Showing some known viral-cancer associations.

HTLV=human T-cell leukaemia/lymphoma vims, HHV= human herpes vims, EBV= Epstein- 

Barr vims, HBV= hepatitis B virus, HPV= human papillomavirus
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1.2. Papillomaviruses
Papillomavirases are nonenveloped icoshedral, double-stranded DNA vimses that belong 

to the family of Papoviridae. They are found in many species, including humans, rabbits, 

cows, and dogs (Campo., 2002). They are highly species specific and are not known to 

cross the species barriers, with the exception of Bovine papillomavimses, which can 

infect horses and induce equine sarcoid (Chambers et al., 2003). There aie over 90 

different types of Human papillomavimses (HPVs) identified based upon degree of 

relatedness of viral genome, Papillomavimses induce tumours in skin and mucosa, thus 

explaining the name of this vims group (from the Latin papilla, nipple, pustule and the 

Greek suffix oma to denote tumour). In some tumours, the vimses occur in large amounts 

(up to 10̂  ̂physical particles per gram tumour). Certain types of HPVs may cause warts 

or papillomas, which are benign (non cancerous) tumours that grow on hands and feet 

and or in the mouth and genital area. HPVs are divided into low-risk vimses such as 

HPV-6, HPV-11 associated with skin warts and high-risk vimses such as HPV-16, HPV- 

18 and HPV-31, which are recognised as the major cause of cervical cancer. HPVs that 

lead to the development of cancer are referred to as “cancer associated types” (Campo., 

1998).

1.2.1. Papillomavirus Genome Organisation

HPVs are DNA vimses with double-stranded circular DNA enclosed in a protein coat, the 

capsid. The protein stmctural units of the capsid are capsomeres. HPVs contain 72 

capsomers and measure 52-55 imi in diameter. The genome of HPVs can be divided into 

three regions, the early and late open reading frames separated by a long control region 

(LCR) (Fig 1.1). The LCR is a Ikb sequence containing many of the viral transcriptional

7
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regulatory signals as well as origin of replication (Fig 1.2). The early region contains 

those ORFs expressed primarily in non-productively infected cells expressing genes 

designated El to E7. The late region contains the ORFs for the capsid proteins LI and L2 

(Fig 1.1).

The El ORE encodes a 68-76kDa protein essential for viral DNA replication. The full- 

length El product is a phosphoiylated nuclear protein that binds to the origin of 

replication in the LCR of papillomavimses. E 1 binds to the E2 protein enhancing viral 

replication. Binding to E2 also strengthens the affinity of El for the origin of DNA 

replication. The E2 ORE encodes a 42-48kDa protein that regulates viral DNA 

transcription. BPV-1 encodes three E2 proteins, the major transcription transactivator 

(E2TA) which activates viral promoters by binding to E2 responsive elements. The 

function of the E2TA is repressed by two other E2 proteins; the E2 transcriptional 

repressor (E2TR) and E8/E2 transcriptional repressor (E8/E2TR) (Choe et al., 1989; 

Lambert et al., 1990). The E2 protein is described in further detail in section 1.2.7.



The Human Papillomavirus type 16 Genome

LCR

Figure 1.1. Schematic representation of the HPV-16 genome showing the 
early and late open reading frames. The early region contains those ORFs 
expressed primarily in non-productively infected cells expressing genes 
designated El to E7. The late region contains the ORFs for the capsid 
proteins LI and L2.
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The E4 gene product is found primarily in the cytoplasm of kératinocytes, where it is 

extremely abundant. It is expressed from spliced mRNA (EKE4) transcripts from a 

differentiation inducible promoter that lies within the E7 open reading frame. It was first 

detected in naturally occumng lesions in cells in which vegetative viral DNA replication 

is occuiTing. It persists during the late stages of infection and is modified by proteolytic 

processing and phosphorylation. The role of E4 in the viral life cycle is described in more 

detain section 1.2.3.

The E5 ORE encodes a 4.6-9.2kDa cell-transforming protein. It is one of the more poorly 

conserved ORFs among the papillomaviruses and often lacks an initiation codon. The E5 

gene product is a very small hydrophobic transforming protein that is expressed in the 

deep layers of the epithelium (Anderson et ah, 1997; Burnett et al., 1992), localising in 

the endomembrane compartments of the endoplasmic reticulum and Golgi apparatus 

(Burkhardt et al., 1989; Pennie et a l, 1993). E5 from both animal and human 

papillomavimses can transfoim mammalian cells with vai ying degrees of efficiency. The 

transforming activity of BPV-1 E5 is shared by other fibropapillomvimses; in contrast, 

E5 proteins of HPVs show only weak transforming activity. E5 cell transformation is 

brought about by the activation of several kinases, from growth factor receptors to 

cyclins-cdks. BPV-1 E5 has been shown to stimulate the transforming activity of EGF 

and CSF-1 receptors associated with the inhibition of receptor degradation and 

persistence of activated receptors on the cell surface (Martin et al., 1989). E5 interacts 

with the 16 kDa subunit of the vacuolar H^ATPase usually resulting in the inhibition of 

the acidification of the endosomes (Straight et al., 1995). Failure to acidify endosornes

11
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may be responsible for the inliibition of the EGF receptor degradation, thereby allowing 

increased receptor recycling to the membrane. BPV E5 also activates the platelet derived 

growth factor receptor (PDGFR) for the platelet-derived growth factor in cells stably 

transfoiTned with E5 (Petti et al., 1991).

E5 has also been implicated in viral immune evasion with recent observations that in E5 

expressing cells, the major histocompatability complex (MHC I) is not present on the cell 

surface but is retained in the Golgi apparatus. The treatment of E5-transformed cells with 

interferon which increases the synthesis of MHC I, did not prevent E5 from inhibiting 

MHC I transportation to the cell surface (Ashrafi et al., 2002; Marchetti et al., 2002). 

Preventing MHC I transport to the cell surface would have immense consequences for 

presentation of viral peptides to the immune system.

The E6 ORF encodes a 16-19kD cell transforming protein. Although small, E6 induces 

several important changes in the host cell that impact both on the normal viral life cycle 

and the process of immortalisation. The E6 protein contains four Cys-X-X-Cys motifs, 

indicating a potential for zinc binding. It may also act as a nucleic acid binding protein. 

E6 alone is not capable of immortalising primary human foreskin kératinocytes (HFK) 

but can efficiently immortalise human mammary epithelial cells (HMEC) (Kiyono et al., 

1997; Liu et al., 1999). In high-risk HPVs such as HPV-16 however, E6 and E7 proteins 

are necessary and sufficient to immortalize their host squamous epithelial cells. The E6 

proteins of high-risk HPVs have been shown to complex with p53 and to promote its 

degradation (Scheffner et al., 1990) via the ubiquitin pathway, while low risk HPV E6

12
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protein binds p53 less efficiently. In addition to interacting with p53, E6 may impact on 

apoptosis through p53-independent pathways. E6 can interact and inhibit Bak, a 

proapaototic protein expressed at high levels in the upper layers of differentiating 

epithelium (Thomas and Banks., 1998).

The E7 ORF encodes a I0-14kD cell-transfonning protein. E7 proteins are approximately 

100 amino acids in size and divided into domains with sequences homologous to the Ad5 

El A sequence with conserved region 1 (CRl) consisting of amino acids 1-20, CR2 

containing residues 21-39 and CR3 composed of amino acids 40-100. The protein 

contains two Cys-X-X-Cys zinc-finger DNA-binding motifs, a pRB-binding domain, a 

casein kinase II (CKII) phosphorylation site, and regions that show homology to other 

viral oncoproteins. The role of E6 and E7in cell transformation is described in section 

1.2.4.

LI and L2 late gene products are estimated to be in a molar ratio of 30 to 1. The LI ORF 

encodes the 56-60kD major capsid protein. The carboxy-terminus of the LI protein of 

HPV-16 contains two basic sequences believed to be responsible for the nuclear 

localisation of the LI protein. The minor capsid protein L2 has a molecular weight of 76- 

78kD. The N-terminal domain of the L2 protein is highly conserved among different 

papillomavimses. Differentiation of the epithelium triggers a coordinate increase in the 

replication of the viral genome and expression of the LI major and L2 minor stmctural 

viral proteins leading to the assembly of infectious viral particles in the nucleus. When 

LI alone is expressed in eukaryotic cells by recombinant baculovirus or vaccinia vims

13
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(Hagensee et a i, 1993b; Kirnbauer et al., 1993; Rose et al., 1993), it can self-assemble to 

form icosahedral particles or vims-like particles (VLP). When L2, which is not required 

for assembly, is coexpressed with LI, both LI and L2 are incorporated into the particles 

(Hagensee et al., 1993b; Kirnbauer et al., 1993). Restriction of HPV late gene expression 

to terminally differentiated cells and differences in level of expression of late gene 

products from various HPV types may be due to the presence of negative regulatory 

elements in the HPV late mRNAs (Gumming et al., 2002; Kennedy et al., 1990; Kermedy 

et al., 1991; Koffa et al., 2000). L2 is described in further detail in section 1.2.8.

1,2.2. Epithelial Differentiation

The complete HPV replication cycle resulting in the production of infectious progeny 

(virions) is tightly linked to the differentiation state of infected cells (Meyers et a i, 

1997). Epithelial cells are tightly bound together in sheets called epithelia which line all 

cavities and free surfaces of the body forming baniers to the movement of water, solutes 

and cells from one compartment to another. The differentiation of epithelial cells such as 

in the skin epithelium (i.e. the epidermis) is characterised by a series of coordinated 

biochemical and morphological changes resulting in a highly organised stratified 

epithelium. The epidermis is a dynamic epithelium that is constantly renewed throughout 

life. Its turnover is estimated at about 7days in mice and about 60 days in humans 

(Ghazizadeh and Taichman., 2001; Potten., 1981). Maintenance of the epidermis is 

accomplished by the presence of stem cells that self renew and generate progeny, which 

then undergo terminal differentiation (Watt., 2001).

14
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Stem cells are not the only cells within the epidermis capable of proliferation. Stem cell 

progeny that are destined to undergo terminal differentiation can divide a small number 

of times before they irreversibly exit the cell cycle; these are known as transit amplifying 

cells (Fig 1,3b) (Lavker and Sun., 2003; Watt., 2001). Divisions of transit amplifying 

cells increase the number of tenninally differentiated cells that are produced by each stem 

cell division. In normal undamaged epidermis, stem cells divide infrequently, whereas 

transit-amplifying cells are actively recycling but have a low self-renewal capacity and a 

high probability of undergoing terminal differentiation (Taylor et al., 2000).

The layers of the stratified epithelium begin with a basal layer of cells anchored to a 

basement membrane. The basal layer contains proliferating cells, which expand by cell 

division, some cells then detach from the basement membrane and begin to move 

upwards towards the surface and activate a programme of teiminal differentiation. As the 

cells move up towards the surface, they progress thiough thi ee distinct stages; spinous, 

granular and stratum corneum (Fig 1.3a). As basal cells enter the spinous layer, they 

strengthen their cytoskeletal and intracellular connections, gaining resilience to 

mechanical stress. Once this task is completed, the cells enter the granular layer, where 

they produce the epidermal barrier. The barrier precursors consist of two major 

components: (i) glutamine- and lysine-rich comifled envelope precursor proteins, which 

are synthesized and deposited beneath the plasma membrane and (ii) lamellar granules, 

which are filled with lipid bylayers. As the cells enter the final phases of teiminal 

differentiation, a flux of calcium activates the enzyme transglutaminase, which 

biochemically cross-links the cornified envelope proteins through s-(Y-glutamyl)lysine

15
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isopeptide bonds and which activates extmsions of the lipid bylayers onto this scaffold. 

Cell death ensures, leaving dead, flattened squames at the skin surface, the end process of 

teiTninal differentiation (Fig 1.3a).

16
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As the cells progress thi ough the different layers of the epithelium, unique sets of genes 

are turned on and off in a growth and differentiation specific manner. These include 

genes encoding stmctural cytoskeletal proteins, transcription factors and products that are 

necessary for the barrier function of the skin. Basal cells transcribe genes encoding 

keratins K5 and K14, while cells in the spinous layer switch off these genes and induce 

K1 and KIO, required for the marked mechanical resistance of these cells (Fuchs, 1995). 

In the granular layer, cells express loricrin, filaggrin and transglutaminase, which are 

involved in the assembly of the cornified envelope. The cornified envelope plays a 

critical role in barrier function of the tissue and for the organism. Several other proteins 

have been identified to be components of the epidermal cornified envelope, they include 

involucrin, cystatin a, elafin and several small proline rich proteins (SPRl and SPR2) 

(Steinert and Marekov., 1995). This stmcture foims a sac to contain the keratin filaments 

and to provide a scaffold upon which specialized lipids are extruded and organized 

(Fuchs., 1993; Fuchs., 1997). Once the barrier is in place, kératinocytes cease their 

metabolic activity becoming dead squames that are eventually sloghed off the skin 

surface, continually being replaced by stems cells transiting outward and differentiating.

Several molecular networks and cellular signalling pathways regulate the balance 

between epithelial growth and differentiation. In cultured epideimal cells, the 

concentration of extracellular Câ "̂  can select for a basal or differentiation phenotype 

(Hemiings et al., 1980; Yuspa et al., 1983). Under conditions were Câ "̂  is <G.lmM, 

kératinocytes proliferate rapidly, express a basal cell phenotype and do not cornify, while 

higher Ca^  ̂ induces terminal differentiation in basal kératinocytes (Yuspa et al., 1982).

18
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Also physical analyses of tissue sections from mouse and human epidermis have 

demonstrated the existence of a gradient of Câ "̂  in which basal layer Ca^  ̂content is low 

(<0.1 mM) while granular layer Ca^  ̂ content is much higher (Malmquist et a l, 1984; 

Menon et al., 1985).

Adhesion mediated by pi integrins have also been known to regulate terminal 

differentiation of epidermal kératinocytes and when mouse or human kératinocytes are 

placed in suspension they withdraw rapidly from the cell cycle and initiate teiminal 

differentiation (Watt., 2000). Other regulators of teiminal differentiation are 14-3-3a 

(Dellambra et al., 2000) and a-catenin (Vasioukhin et al., 2001). a-Catenin links 

adherens junctions to the actin cytoskeletion, targeted ablation of a-catenin in mouse 

epidermis results in epideimal hypeiproliferation and sustained activation of the 

Ras/MAPK cascade (Vasioukhin et al., 2001). 14-3-3o binds to phosphoserine motifs in 

a variety of cellular proteins and can thus contribute to the regulation of a range of 

signalling pathways, including Ras/MAPK cascade; expression of 14-3-3o antisense 

mRNA blocks exit from the stem cell compartment in cultures of human kératinocytes 

(Dellambra et a i, 2000).
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1.2.3. HPV LIFE CYCLE

The productive life cycle of papillomavimses usually begins in epithelial stem cells 

located in the basal layers of the stratified epithelium. The vims enters the epithelium 

through microlesions and infects the basal epithelial cells. As these cells keep dividing, 

they produce daughter cells, which withdraw from the cell cycle, migrate away from the 

basal layer and become committed to differentiation. As HPVs infect proliferating 

undifferentiated kératinocytes, the HPV genome becomes established as 

extrachromosomal elements in the nucleus and copy number is increased to 

approximately 50-100 copies per cell. As infected cells divide, viral DNA is distributed 

between both daughter cells. One of the daughter cells migrates away from the basal 

layer and initiates a program of differentiation. The other daughter cell continues to 

divide in the basal layer and provides a reseivoir of viral DNA for further cell divisions. 

Since production of HPV is restricted to suprabasal cells, the cells in the basal layer 

continue to proliferate (Fig 1.4). This differentiation dependence allows the infected cells 

to persist in the basal layers for periods as long as several years (For reviews see 

Desaintes and Demeret., 1996; Phelps et aL, 1998; Stubemauch and Laimins., 1999).

All HPV genomes contain approximately eight open reading frames, which are 

transcribed as polycistronic messages from a single DNA strand. Regulatory sequences 

for early viral transcription and DNA replication are concentrated in a small non-coding 

region teimed the long control region (LCR). In basal cells, transcripts from high-risk 

types are initiated from a promoter in the LCR such as p97 for HPV-16. The maintenance 

and establishment of HPV genomes are associated with expression of the early HPV 

transcripts that encode the oncoproteins E6, E7 and E5 as well as the replication proteins

20



Chapter One_____________________________________________________ Introduction

El and E2. Viral replication is intimately tied to the differentiation programme of the 

host tissue. As the cells of the basal layer divide, one of the daughter cells migrates away 

from the basal layer and initiates a program of differentiation. The other daughter cell 

continues to divide in the basal layer and provides a reseivoir of viral DNA for further 

cell divisions. Since production of HPV is restricted to suprabasal cells, the cells in the 

basal layer continue to proliferate (Fig 1.4). This differentiation dependence allows the 

infected cells to persist in the basal layers for periods as long as several years (For 

reviews see (Desaintes and Demeret., 1996; Phelps et al., 1998; Stubenrauch and 

Laimins., 1999).

Cell proliferation poses a problem for the virus which needs the replicative machinery of 

the cell for viral DNA synthesis, and a terminally differentiated cell will contain little or 

no replicative enzymes. Therefore the vims needs to stimulate G1 to S phase progression 

in the face of a cell programmed to terminally differentiate, in order to produce the 

conect environment for viral DNA amplification. The virus is still dependent on cellular 

differentiation as the late promoter, which regulates the mRNA coding for the capsid 

proteins LI and L2, is only switched on in partially differentiated cells. HPV-infected 

cells, contrary to normal epithelial cells, continue cycling also in the subrabasal layers 

(Doorbar et al., 1997b) resulting in amplification of the viral genomes to 1000-10000 

copies per cell (Lambert., 1991) (Fig 1.4).
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Transcription of papillomavims genes is dependent upon epithelial specific 

transcriptional enhancers present in the viral long control region (LCR). Multiple 

promoters direct transcription of subsets of viral genes. These promoters are differentially 

regulated by viral and cellulai' transcription factors. Promoters directing transcription of 

early genes are active throughout the epithelial layers, while those directing expression of 

the late genes are preferentially active in highly differentiated cells. Viral proteins are 

expressed from differentially spliced mRNA at different times during the migration of the 

infected cell towards the epithelial surface. With the exception of the virion stmctural 

proteins and E4, viral gene products are not readily detected in vivo (Doorbar et aL, 

1986; Doorbar et al., 1988). The onset of HPV-31b early transcription following 

epithelial cell infection was examined by detecting newly synthesized, spliced viral 

transcripts by reverse transcription and PCR (Ozbun., 2002). El and E2 transcripts were 

detected as early a 4 hours post-infection, whereas the other major viral transcripts such 

as E6, E1^E4 were detected by 8 to 10 hour post-infection.

E7 is expressed in lower epithelial layers as determined by the presence of E2F-activated 

gene products such as MCMs (Middleton et aL, 2003). In HPV-16 infected epithelial raft 

tissues prepared using NIKS cells harbouring HPV-16 episomes, cells expressing both E4 

and E7 were found in the intenuediate epithelial layers. Cells expressing E7 in the 

absence of E4 were oecasionally apparent in the upper epithelial layers (Middleton et aL, 

2003). In lesions caused by HPV 16, E7 is expressed from the early promoter (p97), 

which also directs expression of E6. Very low E6/E7 transcripts are detected in basal 

cells in low-grade dysplastic lesions, while an increase in their levels is observed in
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differentiated upper layers of the epidermis (Durst et aL, 1991). In contrast, high-grade 

lesions and squamous cell carcinoma (SCC) show high levels of E6/E7 transcripts 

throughout all layers of the epithelium, including the basal layers (Durst et aL, 1991; 

Stoler 1992). Staining of ceiwical section for E2 showed detection in CIN I and II grade 

lesions. E2 expression was confined to the superficial layers of the epithelium, 

specifically to the koilocytic nuclei with little immunoreactivity obseiwed in the 

inteimediate or basal layers. Weak detection of E2 was observed in CIN III lesions, 

while no E2 was detected in SCC lesion (Stevenson et aL, 2000).

E4 proteins expressed from the spliced mRNA E1^E4 was first detected in naturally 

occurring lesions in cells in which vegetative viral DNA replication is occumng (Doorbar 

et aL, 1997a). The E4 proteins persist throughout the late stages of infection and are 

modified by proteolytic processing and phosphoiylation (Grand et aL, 1989). E4 proteins 

localise in part to cytoplasmic intermediate filaments in low grade squamous 

intraepithélial lesions caused by HPV-16 but are also diffusely cytoplasmic and 

perinuclear. As infected cells near the epithelial surface, E4 proteins localize to 

perinuclear bundles (Doorbar et aL, 1997b). Although its function in the viral life cycle is 

still unclear, expression of the HPV E1^E4 protein in kératinocytes in monolayer cultures 

leads to a collapse of cellular intermediate filament network (Doorbar et aL, 1991). E4 

has been implicated in viral genome amplification with the obseiwation of a coirelation 

between initiation of E4 expression and the onset of viral DNA amplification in 

suprabasal epithelial cells (Breitburd et aL, 1987).
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Expression of E4 precedes the synthesis of vims structural proteins and the assembly of 

infectious particles. The production of HPV late-gene products, LI and L2 are detected 

primarily in the terminally differentiated cells in the upper layers of the epithelium 

(Hagensee et aL, 1993a; Turek., 1994). In addition to promoter switch, one reason for the 

restriction of HPV late gene expression to teraiinally differentiated cells is due to the 

presence of negative regulatoiy elements in the HPV late mRNA identified as an 

inhibitoiy sequence in the 3’ untranslated region (UTR) which acts by reducing mRNA 

stability in vitro (Kennedy et aL, 1990; Kennedy et aL, 1991). This post-transcriptional 

regulation of late mRNA may also be responsible differences observed in the levels of 

expression of late gene products from various HPV types.

1.2.4. HPV and Cell Transformation

The association of HPV infection and squamous cell precancer lesions of the uterine 

ceiwix has been established since the late 1970s. Today, oncogenic HPV types are 

regarded as the most important etiological factors of ceiwical squamous cell cai'cinoma. 

HPV types cause a variety of lesions in the genital tract of males and females (Schiffman 

and Brinton., 1995). Some types cause benign warts and low-grade premalignant lesions 

and are not found in malignant tissues. HPV-6 and HPV-11 are the most common isolates 

from these lesions. The high-risk viruses such as HPV-16 and HPV-18 are found in 

premalignant and malignant tissues. Initial infection with high-risk types causes low- 

grade disease, which is manifested by inhibition of the noiuial differentiation in the lower 

third of the epithelium. The lesions may remain low grade, regress, or progress to severe 

dysplasia. This later stage may persist or may start to penetrate the basement membrane 

leading to invasive disease. During progression from premalignant to malignant phases of
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the disease, the relationship between the HPV genome to the host cell chromosomal DNA 

may change. Most metaplastic cells have been shown to have integrated HPV sequences 

(McCance et aL, 1986; zur., 2002) with integration occurring randomly in cellular 

chromosomes. All viral DNA integration events associated with malignant disease allow 

for the expression of E6 and E7.

Due to their limited coding capacity, HPYs have to use the cellular DNA synthesis 

machinery in order to replicate their genomes. However, while low-risk HPYs begin 

replication in cells that are still proliferating, the replicative phase of high-risk HPY 

infection is confined to more differentiated cells that have already exited the cell cycle 

and are non-permissive for DNA synthesis (Doorbar et aL, 1997a). In order to overcome 

the problem, the high-risk HPY E7 protein tai'gets a number of cell cycle regulatory 

proteins, including the pocket protein family of pRb, p i07 and p i30, thereby 

upregulating genes required for G 1/S transition and DNA synthesis (Fig 1.5a,b). 

However, the noimal response of the host cell to this unscheduled induction of 

proliferation would be to trigger apoptosis and/or growth anest. To overcome these 

obstacles, the high-risk E6 protein targets a variety of cellular proteins involved in 

regulating these defence mechanisms (Fig 1.6, Table 1.2).

The tumour suppressor protein p53 is a transcription factor that stimulates the expression 

of genes involved in cell-cycle anest and apoptosis such as the cyclin-dependent kinase 

inhibitor p21. E6 binds to p53 and leads to ubiquitin-mediated degradation of the latter 

(Scheffher et aL, 1990). E6 mediated degradation of p53 involves an E3 ubiquitin ligase
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E6AP. Under normal circumstances, viral replication would then continue resulting in 

production of infectious virions. On rai'e occasions, however, the viral life cycle is 

inteiTUpted and processes are initiated that lead to immortalization and ultimately to full 

transformation of the cell. E6 alone is not capable of immortalising primary human 

foreskin kératinocytes (HFK) but can efficiently immortalise human mammary epithelial 

cells (HMEC) (Kiyono et aL, 1997; Liu et aL, 1999). In high-risk HPVs such as HPV-16 

however, E6 and E7 proteins are necessaiy and sufficient to immortalize their host 

squamous epithelial cells. Both in vitro and in vivo studies have show that the function of 

both proteins, particularly the high-risk types are essential for cellular transformation 

(Herber et aL, 1996; Song et aL, 1999). E6 and E7 from low risk types are weakly 

transfoiming proteins (Mansur and Androphy., 1993). The contribution of E6 and E7 to 

tumour progression is shown in fig 1.7.

Although targeting p53 for degradation is the major route by which E6 overcomes its 

effects, several reports indicate that E6 makes use of additional pathways to abrogate 

p53’s growth suppressive activities. The capacity of high-risk E6 proteins to abrogate 

transactivation of p53 target genes does not depend only on p53 destabilization, as E6 

mutants defective for degradation retain the ability to abrogate transcriptional activation 

by p53 in vivo (Pim et aL, 1994). This could be due to E6 interfering with binding of p53 

to its DNA recognition site (Lechner and Laimins., 1994; Thomas et aL, 1995) or due to 

the interaction of E6 with the transcription coactivator p300/CBP (Patel et aL, 1999; 

Zimmermann et aL, 2000). Reports also indicate that other activities other than targeting 

p53 for degradation are required for the full transfoimation potential of E6 (Liu et aL,
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1999; Nakagawa et aL, 1995; Pim et aL, 1994). Moreover, cutaneous HPVs mainly rely 

on their E6 proteins, which do not interact with p53, for their transfoimation ability 

(Elbel etaL, 1997).

The high-risk HPV E6 oncoproteins have been implicated in activating telomerase, a 

potential mechanism for HPV-induced immortalisation (Klingelhutz et aL, 1996). 

Telomerase adds repeat sequences to chromosome ends and is believed to play a role in 

cellular immortalisation. E6-induced telomerase activity alone cannot result in 

immortalisation without coexpression of E7. E6 protein has also been shown to interact 

with cellular minichi’omosome maintenance proteins, which are believed to play a key 

role in regulating cellular DNA replication (Kuhne and Banks., 1998). E6 can also 

interact and inliibit Bak, a proapaototic protein expressed at high levels in the upper 

layers of differentiating epithelium (Thomas and Banks., 1998).

E6 has been shown to interact with a vaiiety of PDZ domain-containing proteins. PDZ 

domains consist of approximately 90 amino acid long protein-protein interaction units 

often found within cellular proteins located at areas of cell-cell contact such as synaptic 

junctions in neurons and tight junctions in epithelial cells (Fanning and Anderson, 1999). 

PDZ domain containing proteins shown to interact with E6 include liDlg (Kiyono et aL, 

1997, Lee et aL, 1997), MUPPl (Lee et aL, 2000) and hScrib (Nakagawa and Huibregtse. 

2000). HPV E6 proteins possess PDZ domain-binding motifs at their extreme carboxyl- 

tennini (Lee et aL, 1997) (Fig 1.6). Binding of high-risk HPV E6 proteins to these PDZ 

proteins results in E6AP mediated ubiquitination and proteolysis (Gardiol et aL, 1999;
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Nakagawa and Huibregtse, 2000). The cellular tai’gets of E6 have been summarised in 

table 1.2.
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Structure and cellular targets of HPV E7
Recruits

HDAC
+

Mi2p
CRl CR2 AP-1

R b A
1 20 38 IA  j 98
1 N -T e r . I R b  b rn d ln iÜ Z n  y  y  F in a e r  I

LXCXE ^  ̂ cxxc cxxc

casein kinase (OKU) 
domain 30-35aa

Associated Cellular Proteins Functional consequences

pR B ,p l07 ,p l30 Disruption of E2F transcription factor complexes 
Degradation

p21c'P' Inactivation of cdk and replication inhibitory activity
p27k'P' Inactivationof cdk inhibitory activity
TBP Transcription ?
TAFllO Transcription ?
AP-1 Activation of c-jun transcriptional activity function
Mi2(3 (HDAC) Chromatin remodelling ?
IGFBP-3 Inhibition of IGFBP-3 mediated apoptosis
M2 Pyruvate kinase 7

a-Glucosidase ?

hTid-1 ?

p48 component of 1SGF3 Inhibition of interferon-a stimulation
F-actin ?

Forkhead transcription factor MPP2 Activation of MPP2 transcriptional activity
S4 subunit of proteasome ?

Figure 1.5. (a) A schematic representation of the HPV E7 protein showing CRl HD, CR2 HD denoting conserved 
regions of 1 and 2 of the Adenovirus El A protein respectively. CR2 HD contains the core pRB binding domain 
(LXCXE) and a consensus sequence for casein kinase II phosphorylation (CKll). The metal binding domain 
consists o f two C-X-X-C sequences in the carboxyl terminus. From McCance J., ed. Human Papillomaviruses. 
Perspectives in medical virology 8. Elsevier 2002. (b) Table 1.2. Showing known cellular proteins which interact 
with E7. Data complied from Munger and Howley 2002. Virus Res. (8) 9:213-228.
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Chapter One_____________________________________________________ Introduction

The ability of E7 to bind to the retinoblastoma (Rb) protein is perhaps the most 

characterized property of this viral oncoprotein. Evasion of cell cycle arrest by binding 

Rb is a property common to various viral oncoproteins, such as adenovims El A and 

simian vims SV40 large T antigen (Munger., 1995), this underscores the importance of 

Rb binding in the natural history of vims infection. Hypophosphorylated Rb binds to E2F 

transcription factor, repressing the transcription of cell cycle genes. During progression 

from GO through G1 to S-phase, Rb gets hypeiphosphorylated by G1 cyclin-cyclin 

dependent kinases, releasing E2F, which in turn activates genes involved in DNA 

synthesis and cell cycle progression (Dyson., 1998). E7 binds to hypophosphoiylated Rb 

and thereby induces cells to enter into premature S-phase by dismpting Rb-E2F 

complexes (Huang etaL, 1993; Wu etaL, 1993).

Binding to Rb is primarily mediated through amino acid sequences contained in the 

consei’ved amino acid terminal of CR2 region of E7 (Barbosa et al., 1990). The CR2 

region of E7 binds to Rb and its family members p i07 and p i30, through sequence 

motifs LXCXE. The LXCXE motif of E7 has been shown to specifically bind to the Rb 

pocket region, between 649 and 772 amino acids (Huang et aL, 1993). The E7 proteins of 

HPV-16 and HPV-18 bind hypophosphorylated Rb with higher affinity than HPV- 6  and 

HPV-11 (Griffiths and Mellon., 1999). E7 has also been associated with histone 

deacetylases (HDAC), AP-1 transcription factors, cyclins, cyclin-dependent kinases 

(cdks), and cdk inhibitors. These associations contribute to the ability of E7 to induce 

cellular proliferation, immortalisation and transformation.
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Cyclin E-cdk2 is essential for initiation of DNA synthesis and can activate cell cycle 

progression in the absence of cyclin D-cdk4 underlining this complex as a potential target 

by which E7 propels cell cycle re-entry. E7 expressing cells have been shown to maintain 

cyclin E-cdk2 activity in the presence of growth arrest signals such as epithelial 

differentiation, semm deprivation, and anchorage-independent growth (Ruesch and 

Laimins., 1998). E7 has been detected in complex with pl07-cyclin E-cdk2, suggesting 

that E7 may affect cyclin E-cdk2 through physical interaction (McIntyre et aL, 1996).

To determine whether E7 plays a role in the HPV-16 life cycle, Flores et aL, (2000), 

created an E7-defrcient HPV-16 genome by inserting a translational termination linker in 

the E7 gene of the full-length genome (Flores et aL, 2000). This DNA was transfected 

into an immortalized human foreskin keratinocyte cell line, BCl-Ep/SL, which support 

the full viral life cycle. Cells hartouring the wild type or E7 deficient HPV-16 were 

grown using raft cultures and also suspended in methylcellulose to induce differentiation, 

which promotes the productive phase of the HPV-16 life cycle. The loss of E7 resulted in 

lack of viral DNA amplification and reduced LI expression. In contrast, cells harbouring 

wild type HPV-16 genome induced the host cell DNA replication machinery and 

inhibited the differentiation of the host cell in the suprabasal layers of the raft.Concluding 

that E7 is important for the full viral life cycle.

The link between dismption of E2F/pRB binding and cell transfoimation by E7 is still 

under investigation. Interaction of pRB with E7 is mediated through the amino terminal 

domain containing the LXCXE pRB binding motif. Although this region of E7 mediates
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high affinity binding to pRB, it is not sufficient to displace E2F from pRB (Huang et aL, 

1993; Wu et aL, 1993). The carboxyl region of E7 has been shown to bind pRB and is 

required for displacement of E2F from pRB. Chimeric E7 proteins with carboxyl 

terminus replaced with stmcturally related HPV E6  derived domains were impaired for 

dismption of E2F/pRB complexes but retained transformation competence (Braspenning 

et aL, 1998; Mavromatis et aL, 1997). This suggests that the ability of E7 to dismpt 

pRB/E2F complexes and cellular transfonnation are not necessarily linked. This is further 

supported by evidence that several non-transforming HPV-16 E7 mutants retain the 

ability to interact with pRB and efficiently activate transcription of E2F-responsive 

promoters (Banks et aL, 1990; Edmonds and Vousden., 1989; Phelps et aL, 1992). Jewers 

et al (1992) showed that mutations in HPV-16 E7, which eliminate binding to pRB, do 

not alter the ability of the constmcts to immortalize primary kératinocytes (Jewers et aL,

1992). Therefore these results suggest that the transfoimation ability of E7 is not 

primarily linked to its interaction with pRB but could result with interaction with other 

cellular proteins.

1.2.5. HPV and Cervical Cancer

The ceivix is the naiTow lower portion of the female utems that extends into the vagina. 

Cancer of the ceivix is the second most common malignant disease among women 

coming only second to cancer of the breast. In many developing countries, it is the most 

common cause of cancer and death. The primary cause of ceivical cancer is HPV as more 

than 90% of squamous cervical cancers contain HPV DNA (Herzog., 2003; Waggoner., 

2003). Infection is believed to be primarily by sexual activity. Only high risk HPVs such 

as types 16, 18, 31 and 33 promote the development of ceivical cancer to any appreciable
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extent (Campo., 1998; Waggoner., 2003). The variation in carcinogenic potential among 

HPVs is governed by the E6  and E7 proteins; specifically the capacity of these proteins to 

interact with and alter or destroy key cell cycle regulatory molecules. Factors associated 

with the development of ceivical cancer include the age of onset of sexual activity, 

number of sexual partners as well as histoiy of genital warts. Immunocompromised 

patients such as HIV positive ones and smokers are also at increased risk.

Ceivical intraepithélial neoplasia (CIN) associated with infections of high-risk HPV types 

typically begins as flat or inverted condylomas (CIN I). Grades of CIN identify 

increasing numbers of undifferentiated malignant cells and a decrease in noimal 

epithelial cell differentiation. CIN III therefore morphologically describes severe 

dysplasia and carcinoma in situ (Fig 1.8). In most cases progression of CIN lesions to 

carcinoma takes a few years of continuous presence of high-risk HPVs. The prognosis for 

patients with cervical cancer is dependent on the stage of disease at diagnosis. Routine 

Pap screening is able to detect precancerous lesions in the ceivix and carcinoma in situ. 

Preinvasive disease is generally managed thiough ablative or excisional procedures. 

Radical hysterectomy or radiotherapy can be used for early invasive stages while more 

advanced stages are treated with radiotherapy or combined chemotherapy and 

radiotherapy (For review see Herzog., 2003).
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1.2.6. Other HPV Associated Diseases

A small but significant number of patients present with papillomas of the mucosa of the 

respiratory tract. Although laryngeal papillomas are associated with low-risk HPV- 6  and 

HPV-11, these usually benign infections can cause life-threatening disease by obstmction 

of the aiiways, and from the debilitating effects of frequent treatments for recuiTences. 

Squamous cell carcinoma of some oral and head and neck cancer contain high-risk HPV- 

16, HPV-18 and HPV-31, and occasionally, low-risk HPV- 6  and HPV-11 (Schwartz et 

aL, 1998). Epidemiological and experimental data suggest that some chemicals, 

nutritional deficiencies, physical factors and infectious agents are associated with the 

development of oesophageal squamous cell carcinoma (Syijanen, 2003). One of the 

earliest evidence for the involvement of papillomavimses in oesophageal carcinogenesis 

has been obtained from studies from cattle in Scotland, which have a high incidence of 

upper alimentary tract papillomas and carcinomas (Campo et aL, 1981; Campo, 1987; 

Campo et aL, 1990). Bracken fern is a cmcial factor in malignant conversion of these 

papillomas. Bracken fern contains carcinogenic agent that can induce damage to DNA 

and immunosuppresants that inhibit the ability of the animal to mount an immune 

response against the vims (Jackson et aL, 1993). Experimental data suggests that similar 

mechanisms to those that occur in ceivical carcinogenesis may also be involved in 

oesophageal carcinogenesis with both E6  and E7 interfering with cell-cycle regulation 

(Syijanen., 2003).

Epidermodysplasia vermciformis (EV) is a rare recessive autosomal disease associated 

with cutaneous flat papillomas known as macular lesions. Some lesions progress to
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malignant squamous cell carcinomas (Jablonska et al., 1972; McGregor and Rustin., 

1994). EV carcinomas harbor high copy numbers of episomal HPV genomes (usually 

HPV5 or occasionally HPV8 , 14, 17, 20, or 47) and abundant transcripts of the E6  and E7 

open reading frames (Orth., 1986). Patients with EV tend to have depressed cell-mediated 

immunity. A susceptibility locus for EV has been mapped to chi'omosome 17q25, with 

the identification of nonsense mutations in two adjacent genes, EVERl and EVER2 

(Ramoz et aL, 2002). The gene products EVERl and EVER2 have features of integral 

membrane proteins and are localized in the endoplasmic reticulum.

The viral and cellular molecular mechanisms leading to the early development of skin 

malignancies in EV patients are still poorly understood. HPV-5 and HPV- 8  E7 proteins 

have been shown to associate with retinoblastoma (Rb) protein, though with reduced 

binding affinities compared to HPV-16 and HPV-18 E7 proteins (Schmitt et aL, 1994; 

Yamashita et aL, 1993). In addition, the E6  proteins of oncogenic EV HPV do not 

possess the ability to interact with p53 protein and ubiquitin-protein ligase E6 -AP, which 

would promote p53 degradation and inhibit p53-mediated transactivation of cellular 

genes (Elbel et aL, 1997; Kiyono et aL, 1994; Steger and Pfister., 1992). Analyses of the 

p53 status in EV carcinogenesis from lesion specimens from two PIPV5-infected EV 

patients showed a dysfunction of the p53 gene in EV tumours with mutations detected at 

different stages of tumour progression (Padlewska et aL, 2001). The role of p53 in EV 

carcinogenesis is supported with the report that expression of HPV-5 E6  inhibits 

ultraviolet (UV) radiation-induced G1 arrest and apoptosis, in spite of increased levels of 

transcriptionally active p53 protein (Jackson and Storey., 2000). This is particularly
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relevant as malignant transformation of EV lesions usually occurs on sun-exposed areas 

of the skin, suggesting that UV radiation may act as a cofactor in the carcinogenesis 

process (Majewski and Jablonska., 1995; Orth., 1986).

1.2.7. The Transcription Regulator E2

The E2 protein belongs to a family of proteins that form dimeric p-ban els and use surface 

a-helices for DNA interaction. The E2 protein has three domains; the well-conseived N- 

teiminal/trans-activating and C-tenninal DNA-binding/dimerisation domains are 

connected thiough a variable hinge region (Giri and Yaniv., 1988). The activation 

domain is involved in interactions with the replication protein El and the cellular proteins 

TFIIB and AMF-1. E2 activates transcription in a cell type dependent manner (Morgan et 

aL, 1998; Vance et aL, 1999). The DNA-binding domain of E2 has been shown to make 

functional interactions with the replication protein El and the transcription factor TBP 

(Fig 1.9). E2 facilitates efficient binding of El to its target DNA sequence (Seo et aL,

1993). The El binding site is juxtaposed with an E2 DNA binding site. The transcription 

and replication functions of E2 can be separated by point mutations within the amino- 

teiTninal 200 amino acids (Ferguson and Botchan., 1996; Sakai et aL, 1996; Winokur and 

McBride., 1992). The ciystal structure of BPV-1 E2 DNA binding domain revealed that 

the protein forms a dimeric (3-barrel with surface recognition a-helices. BPV-1 E2 

undergoes a subtle reaiTangement in subunit orientation upon DNA binding while 

maintaining the overall stmcture of each monomer (Hegde and Androphy., 1998). The 

DNA wraps around the E2 |3-barrel enclosing both recognition helices in successive 

major groves (Fig 1.10).
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The transcriptional regulation and replication functions of E2 are mediated thiough its 

interaction with a palindromic consensus sequence ACCGN4 CGGT in the viral LCR. 

Multiple E2 binding sites that differ in the sequences of the central N4  “spacer” 

nucleotides are present in the viral LCRs (17 in BPV-1 and 4 in HPV-16). Although all 

E2 proteins recognise the same consensus palindromic DNA sequence, proteins from 

different viral types differ in their abilities to discriminate among their specific DNA- 

binding sites. The LCR of HPV-16 as well as other mucosal epitheliotropic 

papillomavimses such as HPV-18 or BPV-4 has four E2 binding sites. Two immediately 

upstream from the TATA box separated by 3 or 4bp, the most proximal of which to the 

TATA box mediates transcriptional down-regulation at high levels of E2 (Morgan et aL, 

1998). Further upstream there are two other sites, one juxtaposed with the El DNA 

binding site while the other is some 300 or 400bp further upstream (Fig 1.2).

The role of the hinge domain of E2 is less well defined, although it is generally 

considered a flexible linker between the two functional domains (Gauthier et al., 1991). 

In a recent study, Zou et aL, (2000) used green fluorescent protein (GFP) as a tracer to 

delineate the domains of HPV-11 E2 responsible for its nuclear localization (Zou et aL,

2000). Mutational analysis identified in the hinge a cluster of basic amino acids critical 

for nuclear localisation signalling and for nuclear matrix association. Phosphorylation of 

the hinge domain has been associated with the stability of BPV-1 E2 protein (Lehman et 

aL, 1997; McBiide et aL, 1989). However studies with HPV-18 have shown that the 

hinge region is not involved in controlling the stability of the protein (Bellanger et aL,

2001).
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The major role of E2 in HPV DNA replication is to target El to the HPV origin of 

replication as El has a weak affinity for it’s binding sequence. Once viral replication has 

been initiated, E2 is no longer required for DNA synthesis. E2 has been shown to bind 

the cellular replication factor RPA (Li and Botchan, 1993). It has also been shown that 

El-mediated replication of bovine papillomavims type 1 is repressed by nucleosomal 

assembly. E2 counteracts this repression, suggesting that E2 might have additional 

functions during viral replication (Li and Botchan, 1994). Analyses of various deletion 

mutants of E2 demonstrate that in most cases, an intact transactivation domain and an 

intact DNA binding domain are required for DNA replication (Ustar and Ustar 1998). 

However some mutants which lack regions in the C-tenninal DNA-binding dimerization 

domain have been shown to support replication (Winoker and McBride 1992). Mutational 

analysis has also shown that the role of the hinge region of E2 in replication is to provide 

a flexible linker function, which comiects the N-teiminus transactivation domain and the 

C-teiminus DNA binding-dimerization domain. The particular amino acid sequence of 

the hinge region is not important for the ability of E2 to bind DNA or initiate replication 

(Allikas et al., 2001).

1.2.8. The Minor Capsid Protein L2

The exact role of the L2 minor capsid protein in the viral life cycle is still unclear 

although its importance in viral capsid assembly has been well documented. It is 

speculated to be involved in encapsidation of the viral DNA, generation and infectivity of 

PV virions as well as interaction with cell surface receptors (Kawana et aL, 2001; Okun 

et aL, 2001). The exact location of the L2 in the viral capsid is unclear although the 

ability of an antibody to L2 to neutralise infectivity demonstrates that a portion of the
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protein is exposed on the surface of the capsid (Heino et aL, 1993). It is speculated that 

L2 molecules are located in the centre of the twelve pentavalent capsomeres in the capsid 

(Tms et aL, 1997).

Differentiation of epithelium triggers the expression of LI and L2, leading to the 

assembly of infectious viral particles in the nucleus. Studies on the regulation of late gene 

expression have resulted in the detection of negative regulatory elements in the HPV late 

mRNA and factors binding to these elements have been identified. Analysis of HPV-16 

late poly (A) sites showed the presence of a negative regulatory element (NRE) in the late 

RNA 3’ untranslated region (Dietrich-Goetz et aL, 1997).

The L2 protein of HPV-16 is 473 amino acids long with groups of positively charged 

residues at the N (from amino acids 1-12) and C teiminus amino acids (456 to 461) 

corresponding to classic nuclear localisation signals (NLS). The amino acid sequence of 

the N teiTuinus is MRHKRSAKRTKR with four charged amino acid clusters important 

for DNA binding (Zhou et aL, 1994). Retention of at least one charged amino acid is 

necessary for DNA binding. Both the N- tenninus DNA binding domain and C-terminus 

NLS sequence of HPV-6 b L2 function in nuclear transport and contribute to the L2 

translocation into the nucleus (Sun et aL, 1995). The sequence 286-306aa which is 

relatively conseiwed among HPV types has been found to be responsible for HPV6 b L2 

nuclear accumulation and retention (Fig 1.11).
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BPV-1 L2 is 469 amino acids long, with groups of positively charged residues at the 

extreme C and N termini. With the goal of assessing the role of these positively charged 

teimini in the generation of infectious virions, Roden et al (2001) constmcted BPV-1 L2 

deletion mutants of amino acids 2 to 9 (L2A2-9) and the final nine amino acids (L2A461- 

469) (Roden et aL, 2001). Coexpression of LI and L2 mutants lacking either the eight N- 

teiminal or nine C- terminal amino acids resulted in wild-type levels of viral genome 

encapsidation; the resulting mutant virions, despite binding to the cell surface with 

similar efficiency of wild type virions, were not infectious. As L2 interacts in vitro 

through positively charged side chains with DNA independently of nucleotide sequence 

(Mallon et aL, 1987; Zhou et aL, 1991), and is associated with viral episomes in vivo 

(Stauffer et aL, 1998), it is possible to speculate that L2 may function in the delivery of 

the viral genome to the nucleus (Kawana et aL, 2001). Characterisation of L2 mutants has 

identified two L2 domains independently interacting with LI (Becker et aL, 2004; Okun 

et aL, 2001). Wild type L2 is able to interact with LI in the nucleus and cytoplasm with 

VLP assembly occurring in the nucleus as the L1-L2 complex is translocated from the 

cytoplasm to the nucleus.

Recent studies have identified several cellular L2 interacting proteins (Table 1.4). Using 

the HPV-16 L2 protein as bait, Gomemann et a l, (2002) used a yeast two-hybrid system 

to isolate putative interacting partners. Their work suggests that L2 can interact with 

several cellular host proteins, has the ability to recmit such proteins to the nucleus and the 

property of complexing with at least three cellular proteins in specific nuclear domains. 

Two of the proteins, the previously identified PATZ and a novel protein designated
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PLINP, were localized in PODs and colocalised with L2. PATZ in a transcriptional 

regulator and member of the zinc finger proteins originally identified as an interactor for 

the androgen receptor, a nuclear homione receptor (Fedele et aL, 2000; Pero et aL, 2002). 

The third protein designated PMSP, is a newly identified cytoplasmic protein, which was 

recmited to PODs when coexpressed with L2. The functional outcome of these 

interactions is unknown. The relationship between L2 and PODs is discussed in further 

detail in section 1.3.2.

L2 has also been shown to bind p-actin, Yang et aL, (2003) demonstrated that a 

conserved domain comprising residues 25-45aa of HPV 16 L2 was sufficient for this 

interaction. The 25-45 L2 residue fused to green fluorescent protein co-localized with 

actin and caused cell retraction and dismption of the microfilament network possibly 

assisting in the release of mature vims.
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Cellular proteins shown to interact with HPV 16 L2

PATZ (POZ-AT-Zn-finger 

Tip60 (tat interacting protein) 

AUPl (ancient ubiquitous protein) 

TIN-Ag-RP

c-myc-modulating protein 

Creatine-transpoiter (CRTR) 

Serine-threonine-kinase 11 

G-protein, p-subunit 

Lysosomal a-Mannosidase 

P-actin

Table 1.4. Table showing HPV-16 L2 interacting partners identified using a yeast two-hybrid system. Data 
from Gornemann et al, 2002. Virology, 303, 69-78 and, from Yang et aL, 2003. J Biol Client. 278(14) 12546-53
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1.3. Promyelocytic Leukemia (PML) Oncogenic Domains 

‘TO Ds”
The cell nucleus contains a variety of moiphologically distinct substructures called 

nuclear bodies, which include the sphere organelles, colloid bodies and the PML nuclear 

bodies or PODs. PODs (also known as PML-NDIO) are maeromolecular multiprotein 

complexes that are present in all cultured cell lines as well as in vivo. They were initially 

visualised using sera horn autoimmune patients with primary biliary cinhosis. 

Immunofluorescence studies have demonstrated that depending on the cell type and other 

factors such as homional exposure and cell cycle (Doucas et a i, 1996), the number of 

PODs per nucleus can vary between 10 and 20. A major component of PODs is the PML 

protein, which was originally identified as the fusion partner of retinoic acid receptor 

alpha (RARa) in the chromosomal translocation t(15;17) in patients with acute 

promyelocytic leukaemia (APL) (de The et al., 1991; Goddard et al., 1991; Kakizuka et 

al., 1991; Lavau et al., 1995a). In leukemic cells from patients with APL that cany the 

translocation t(15;17), the expression of the PML-RARa fusion protein disrupts the 

structural integrity of PODs. In fact PML-RARa forms heterodimers in vivo, which 

results in dismption of noimal POD integrity and may contribute to the oncogenic state in 

APL patients. The POD stmcture is reformed in leukemic cells following treatment with 

a\\-trans retinoic acid (RA), a process that is associated with RA therapy (Dyck et al., 

1994; Grignani et a l, 1993; Weis et a l, 1994).

During mitosis, PODs seem to disappear until early Gi phase where they seem to 

reappear as small sites of low frequency. A cell-cycle dependent regulation of POD
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frequency has been reported (Terris et al., 1995). PML appears to be essential for POD 

assembly. Using cells that lack SplOO or PML, Ishov et al demonstrated that the lack of 

SplOO did not affect the structure of PODs. In contrast, cells lacking PML exhibited 

dispersion of all POD-associated proteins. PODs eould be reconstmcted by the 

introduction of PML into PML -/- cells either by transfection or at more physiological 

concentrations of PML through fusion with PML containing cells (Ishov et al., 1999). 

This reconstmction includes the recruitment of all POD proteins including SplOO.

The central function of PML in POD formation seems to suggest that interaction of PML 

is a key factor in the accumulation of proteins (Fig 1.7 and 1.8). Studies of other POD 

associated proteins such as Daxx (a DNA-binding protein) showed that its localisation to 

PODs depended on the presence of a PML interaction domain located at the same region 

of Daxx as the interaction domain with Fas (Ishov et al., 1999). PML has several SUMO- 

1 modification sites (Kamitani et al., 1998a; Kamitani et a l, 1998b) and it has been 

obseiwed that Daxx accumulation at PODs is dependent on SUMO-1 modification of 

PML. SUMO-1 is a small ubiquitin-related modifier, which binds to PML at three lysine 

residues (Fig 1.7) (Duprez et al., 1999; Muller et al., 1998; Stemsdorf et al., 1997). 

Testing PML constmcts with decreasing numbers of SUMO-1 modification sites suggests 

less Daxx binding at PODs. SplOO can also be SUMO-1 modified, but SUMOylation is 

not essential for its localization to the nuclear body.
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To date several components of the nuclear body have been identified; these include pRB, 

p53, Daxx, GBP, SplOO (transcription regulation), BLM (DNA helicase), elF-4 (initiation 

of translation), SUMO-1 (SUMOylation) and HAUSP (De-ubiquitination). An 

understanding of common biological and biochemical features shared by these molecules 

may reveal the function of the nuclear body. However the various nuclear body 

components seem to posses multiple biological functions and as such do not appear to act 

in a common pathway or share stmctural features.

SplOO is an acidic protein with a molecular mass of 54kDa, which has a highly abeiTant 

electrophoretic mobility in SDS-polyacrylamide gel electrophoresis of approximately 

lOOkDa (Szostecki et al., 1990). SplOO is an autoantigen that was originally identified in 

patients suffering from the auto-immune disease, primary biliary cinhosis. The SplOO 

gene located on the human chromosome 2  gives rise to a number of alternatively spliced 

SplOO variants, some of which contain a domain with high sequence similarity to an 

interferon-inducible human nuclear phosphoprotein HNPPl/2 (Grotzinger et al., 1996; 

Guldner et al., 1999; Seeler et al., 1998). SplOO has been described to exhibit 

transcriptional modulatoiy effects under certain experimental conditions possibly due to 

its interaction with the heterochromatin protein 1 (HPl), which has been shown to 

interact directly with SplOO (Lehming et al., 1998; Seeler et a i, 1998). Both HPl and 

SPlOO concentrate in PODs and overexpression of SPlOO leads to enhanced 

accumulation of endogenous HPl in these stmctures (Seeler et al., 1998). The molecular 

domains of SplOO for interaction with HPl is located in the C-tenninal region and the 

SplOO homo-dimerization domain in a rather long sequence at the N-terminal end
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(Sternsdorf et a l, 1999), suggesting that a three dimensional stmcture is responsible for 

the oligomerization of SplOO at PODs.

1.3.1. Association of Viruses with PODS

The association of POD bodies with viral infection was first explored by Gerd Maul 

(Maul et al., 1993) when he observed that HSV-1 infection led to the dismption of these 

nuclear bodies. Since then, there has been a great interest in the field of virology to 

understand the exact role of POD during viral infection. Today, a large number of vimses 

have been linked with POD alteration in one foiTn or the other. At present, the functional 

consequence of this alteration of PODs is still not known. It is possible that this alteration 

could be a result of nuclear reorganisation in response to infection or a specific viral 

strategy to block cellular systems that may hamper viral replication.

1.3.1.1. Interferon

Interferons (IFNs) are a large family of multifunctional secreted proteins that regulate 

cellular antiviral, antitumour and immunological responses thi'ough IFN-stimulated gene 

expression. They consist of two different types, type I IFNs (i.e. IFN-a/|3) that are 

produced in virally infected cells, and type II IFN (i.e. IFN-y) that is not virus inducible 

and is restricted to mitogen or cytokine-activated lymphoid cells such as T lymphocytes 

and natural killer cells.

It has been obseiwed that upon treatment of cells with interferon, PML is induced and the 

number of nuclear bodies increases dramatically (Gaboli et al., 1998; Lavau et al., 

1995b), possibly suggesting a role for PML and the nuclear bodies as part of the anti-viral
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defence mechanism. Apart from PML, other POD associated proteins such as SplOO, 

Sp40, Spl 10 and PA28 also have increased expression as a result of IFN treatment. Type 

I (a,(3) and type II (y) IFNs strongly enhance SplOO and PML gene expression both at the 

RNA and protein level (Chelbi-Alix et al., 1995); (Grotzinger et al., 1996; Guldner et al., 

1992; Lavau et al., 1995b) with very similar kinetics (Grotzinger et a l, 1996).

The IFNs a, p and IFNy-inducible gene promoters are characterised by the presence of 

consensus elements known as IFN-stimulated response elements (ISRE) and IFN-y 

activation sites (GAS), which mediate primary transcriptional induction in response to 

IFN-a/p and IFN-y, respectively (Darnell, Jr. et al., 1994). In the case of SplOO, elevated 

RNA levels are mainly due to an IFN-enhanced transcription rate of SplOO gene. 

Identification and analysis of ISRE and GAS in the SplOO promoter region (Grotzinger et 

al., 1996) demonsti'ated that both elements aie neeessary for long term transcriptional 

IFN-a/p induction of the SplOO gene and that the Spl 00-GAS site suffices to render a 

heterologous promoter IFN-y-inducible. Since promoters of IFN-inducible genes usually 

contain either an ISRE or a GAS element, it appears that this seems to be a unique 

characteristic of the SplOO promoter.

The PML promoter also contains an ISRE and GAS (Stadler et al., 1995). In contrast to 

SPlOO, the PML-ISRE alone is sufficient to mediate type I and II IFN-enhanced gene 

expression. Expression is usually upregulated with a noticeable swelling of POD bodies. 

Different types of PML, aiising from alternative splicing of a single gene are induced by 

IFN in different cell lines. Probably due to sequence differences the SplOO- and PML-
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ISRE bind transcription factors with strikingly different affinities (Grotzinger et al., 

1996; Stadler et al., 1995; Stemsdorf et a l, 1997). Deletion of the ISRE motif in the 

PML promoter abolishes the response to type I and diminishes induction by type II IFN, 

whereas deletion of the GAS element only modestly alters the response to IFNy. This is 

due to the binding of IFN signal transducers and activators of transcription (STATs), 

which have been shown to be weak for the GAS, but strong for the ISRE, which also 

seemed to contribute substantially to the IFN-gamma response (Stadler et al., 1995).

1.3.12. Herpes Simplex virus type one (HSV-1)

A variety of vimses target the PODs and often cause their dismption. HSV-1 carries out 

gene expression, DNA replication, and DNA encapsidation in globular nuclear domains 

designated replication compartments (Puvion-Dutilleul et al., 1995; Quinlan et al., 1984). 

These domains contain the essential viral DNA replication proteins (the origin-binding 

protein, the single-stranded DNA-binding protein, the helicase-primase subunits, and the 

polymerase subunits (Liptak et a l, 1996) (Lukonis and Weller., 1997; Quinlan et a l, 

1984)and are usually visualised by antibodies either against ICP8 , the single-stranded 

DNA-binding protein, or UL42, the polymerase processivity subunit. The formation of 

replication compartments is mediated by interactions with PODs. HSV-1 DNA 

accumulates in the periphery of the nuclear bodies (Ishov and Maul., 1996), within 

minutes of infection, the immediate early protein ICPO (VmwllO) also localizes to the 

nuclear bodies and rapidly induces their disruption (Everett et al., 1998; Everett and 

Maul., 1994). Specifically, the expression of ICPO, which like PML is a RING finger 

protein, causes a decrease in the amounts of SUMOylated PML and SplOO (Muller and 

Dejean., 1999). ICPO is a potent and promiscuous activator of gene expression and plays
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a role in lytic growth of the vims as well as in viral latency. ICPO is also a co-activator of 

ICP4 (Vmwl75), the major transcriptional regulator of HSV-1. The loss of POD staining 

after HSV-1 infection seems not to be due to degradation of the conesponding proteins 

but to relocalisation of POD proteins into vims-induced stmctures (Maul et a i, 1993; 

Puvion-Dutilleul et al., 1995). The proposal that HSV-1 induces either the degradation of 

PML and SplOO or their de-SUMOylation (Chelbi-Alix and de The., 1999) (Everett et 

al., 1998)is still widely debated. ICPO has been postulated to be a derepressing agent for 

HSV-1 viral genome; this suggests that dismption of the nuclear bodies can be a critical 

event for expression of viral genes (Everett et al., 1998).

Everett et al identified a 135kDa protein HAUSP (herpes simplex-associated ubiquitin- 

specific protease), so named because it binds strongly to the C-terminal region of ICPO 

(Everett et al., 1997). HAUSP is a member of a family of proteins that removes ubiquitin 

adducts from proteins, thus protecting them from degradation by the ubiquitin-protease 

pathway. It is distributed in the nucleus in a micropunctate pattern with a limited number 

of larger discrete foci, some of which co-localize with PML in PODs. At early stages of 

viral infection, the presence of ICPO increases the proportion of PODs, which contain 

HAUSP. The interaction of HAUSP and ICPO implicates ICPO in a ubiquitin-protease 

pathway. Deletion of the region of ICPO which binds to HAUSP reduced significantly 

its ability to stimulate gene expression and viral lytic growth (Everett et al., 1997; 

Meredith et al., 1995), and a deletion which overlaps this region eliminates the ability of 

ICPO to reactivate latent vims in an in vitro latency system (Zhu et al., 1990). Varicella 

zoster vims, type I bovine and equine herpesviruses as well as pseudorabies virus, all
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members of the alpha herpesvirus sub-family express proteins similar to ICPO which 

disrupt PODs to varying degrees (Parkinson and Everett., 2000).

1.3.1.3. Epstein-Barr virus

EBV initially replicates within epithelial cells in the oropharynx and subsequently infects 

B cells trafficking thiough the pharynx. In B cells, the vims usually converts to a latent 

form and persists indefinitely in the host (Li et ah, 1992; Sixbey et ciL, 1984). During 

latency, only a small subset of EBV-encoded proteins is expressed. The first EBV genes 

expressed during the lytic form of viral replication are the immediate-early genes BZLF-1 

and BRLFl (Kieff et ctL, 1996; (Adamson and Kenney., 2001). Both proteins function as 

transcriptional activators and induce expression of the next group of EBV genes, the early 

genes that encode the viral proteins required for EBV DNA replication (Kieff et al., 

1996). Induction of the lytic fonn of EBV infection using either expression vectors for 

BZLF-1 or BRLFl or an adenovims vector that expresses BZLF-1 leads to dispersion of 

PODs in EBV-positive cells (Adamson and Kenney., 2001). In EBV negative cells, 

expression of BZLF-1 alone but not BRLFl is sufficient to disperse PODs. The first 8 6  

amino acids of BZLF-1, which encode the transcriptional activation domain as well as 

replication function, are required for PML dispersion (Adamson and Kenney., 2001). 

EBV also expresses a protein, EBNA-5 that associates with PODs (Szekely et a l, 1996). 

EBNA-5 is one of the earliest of six nuclear proteins expressed by EBV and is nuclear 

matrix associated. EBNA-5 is homogeneously distributed throughout the nucleus within 

the early phase of infection but associates with PODs at the end of the first day of 

infection.
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1.3.1.4. Human Cytomegalovirus (HCMV)

Infection by HCMV abolishes POD staining by anti-SplOO and PML antibodies both 

during the early and late phase of infection. HCMV early proteins lEl and IE2 

accumulate in the nuclear bodies and induce their dismption (Ishov et al., 1997). 

Interestingly, lEl, like ICPO, can act as a de-SUMOylating agent for PML (or induce its 

degradation) (Maul et al., 1996). IE2 interacts with Ubc and SUMO-1,-2 and -3 

(probably through a specific SUMO-interaction domain), and can be modified by both 

SUMO-1 and SUMO-2. Mutation of the two modification sites on IE2 does not affect its 

interaction with PODs (Ahn and Hayward., 2000). The HCMV protein IE72 includes a 

potential zinc-binding motif in a region that is also required for its ability to dismpt 

PODs.

1.3.1.5. Adenovirus

Adenovims infection also results in the redistribution of PODs into fibrous stmctures of 

elongated tracks within 4 hours of infection. This redistribution of PODs into nuclear 

tracks is mediated by E4orI3 which itself co-localizes with PML in the nuclear tracks. 

The El A oncoprotein of Adenovims also concentrates in PML-containing fibres 

(Caivalho et al., 1995), which becomes visible after extraction of soluble El A from cells. 

Although E4orf3 does not affect SUMO-1 conjugation to exogenous PML in co­

transfected cells, there is a gradual change in PML during adenovims infection that 

results in an additional modification of many of the endogenous PML isoforms. This is 

followed by loss of the SUMO-1 modified PML species.
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1.3.1.6. Other viruses and PODs

As seen, viral infections appear to target and dramatically alter the composition of PODs. 

Disruption of the PODs function can in turn favour transformation by oncogenic vimses, 

or allow expression of viral genes, or aid viral replication by triggering the cell 

replication machinery though inactivation of the growth/tumour suppressive role of the 

PML nuclear body. Rabies vims genome encodes a phosphoprotein, which is amino- 

teiTninally tmncated to give four other products known as P2, P3, P4 and P5. GFP-P3 has 

been shown to localise to PODs. In Lymphocytic choriomenengitis vims (LCMV) 

infection, PML is redistributed to the cytoplasm (Borden et ciL, 1998). In the case of 

HTLV-1, the tax protein alters POD associated Int- 6  protein localisation. The binding of 

Tax to Int- 6  eauses its redistribution from PODs (Desbois et al., 1996). Hepatitis delta 

vims (HDV) large antigen (L-HDAg) colocalises with PODs during infeetion. PML is 

found in the rims with L-HDAg and viral RNA while the other POD components Sp 100 

and Daxx were found in the centre of the PODs (Bell et al., 2000).

1.3.2. Papillomavirus proteins and PODs
It has been obseived that the minor capsid protein L2 of BPV has an intrinsic capacity to 

localize to PODs in the absence of other viral components (Day et al., 1998). The 

presence of L2 in PODs appeared to be associated with the recmitment of the major 

eapsid protein LI and E2 (the transcriptional activator). L2 has been shown to also recmit 

the E2 transcriptional repressor E2TR of BPV 1 to PODs as well as the ftill-length E2TA 

(Heino et al., 2000). The association with E2 is dependent on L2 but is independent of 

LI. The reason why L2 localizes to PODs still remains unclear but one may speculate 

that E2 (which is capable of binding DNA with high-affmity at multiple sequence-
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specific sites) is recmited to PODs by L2, suggesting that L2 may hmction to facilitate 

virion production by inducing the co-localization of other components required for virion 

assembly. Alternatively association with PODs can also be speculated to play a positive 

role in viral replication. The localisation of L2 might result in an increase of the local 

concentration of viral products and as such promote viral assembly and packaging. It 

could also result in access to cellular transcription and/or replication factors promoting 

processing of viral products.

1.4, Project Aims
The role of PODs during viral infection has not been clearly defined. Viruses have been 

implicated in a variety of different ways with these discrete nuclear domains within the 

nucleus. Ai’e they part of the hosts natural defence mechanism to fight off viral infection 

or are they utilised by the vims as sites of viral replication and virion assembly?

Previous studies have shown that BPV-1, HPV-11 and HPV-33 L2 localises to PODs and 

co-expression of BPV-1 L2 with BPV-1 E2TA sees the recmitment of E2 by L2 to PODs. 

The aim of this thesis was to define the relationship between HPV-16 E2 and HPV-16 L2 

proteins. As such, the consequence of the co-localisation of E2 and L2 at PODs on viral 

transcription was studied. A number of HPV-18 LCR derived E2-responsive promoters 

with mutations in one or more E2 binding sites and two synthetic E2 responsive 

promoters linked to the tk or HPV-18 TATA were used. The effect of L2 on E2 mediated 

viral DNA replication in transient replication assays was also studied.
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HaCaT, U20S and C33a cells were used in most experiments. HaCaT are spontaneously 

immortalised kératinocytes (Boukamp et a l, 1988) while U20S are osteosarcoma cell 

lines. C33a are ceiwical carcinoma derived cells, which have no HPV DNA. The effect of 

L2 on E2 protein expression and stability was examined in all tlnee cell lines.

To further characterise the interaction of L2 with E2, the sequence domains of L2 

required for its association with E2 were investigated. Amino and carboxyl teiminus 

deletion mutants of L2 were generated. The L2 mutants were cloned into pCDNA 3.1 

expression plasmids and their effect on E2 mediated viral transcription and E2 protein 

expression was studied. Fusion forms of these mutants were constmcted with Glutathione 

S-transferase (GST) and Green Fluorescence Protein (GFP). Deletion-mutants of L2 

fused with GFP were transfected in HaCaT cells to analyse by confocal microscopy their 

localisation. This enabled conelation between the intracellulai* localisation of these 

proteins and their effects on E2 mediated transcription transactivation. GST binding 

assays were done using in vitro translated E2 labelled with ^^S-methionine to determine 

domains of L2 that bind to E2.
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CHAPTER 2: MATERIALS AND METHODS

2.1 Materials

2.1.1. Antibodies

SUPPLIER ANTIBODY

CalbioChem- Novabiochem corporation 

San Diego, USA

Anti-mouse IgM horseradish peroxidase 

linked whole antibody (raised in goat)

CalbioChem- Novabiochem corporation 

San Diego, USA

Anti-Actin (Ab-1). Mouse monoclonal IgM 

antibody (clone JLA20).

Amersham International pic, Amersham, 

Bucks, England

Anti-rabbit IgG horseradish peroxidase 

linked whole antibody (raised in sheep)

Amersham Pharmacia Biotech, 

Amersham, Bucks, England

Anti-mouse IgG horseradish peroxidase 

linked whole antibody (raised in sheep)

Amersham Pharmacia Biotech UK Ltd. 

Amersham, Bucks, England

Anti-GST goat polyclonal antibody 

horseradish peroxidase conjugated

Sigma Chemical Co., Ltd., Poole, 

Dorset, UK

Anti-Rat IgG (whole molecule) peroxidase 

conjugate (raised in rabbit)

Sigma Chemical Co., Ltd., Poole, 

Dorset, UK

Anti-Rabbit IgG (whole molecule) 

peroxidase conjugate (raised in goat)

Santa Cruz Biotechnology, Inc 

California, USA

Anti-GFP (FL) rabbit polyclonal IgG 

antibody (Sc-8334)

Santa Cruz Biotechnology, Inc. 

California, USA

Anti-HA Rabbit polyclonal IgG antibody (Y- 

11: Sc-805)

A gift from Dr. M. Hibma, ICRF 

Tumour Virus Group, University of 

Cambridge

TVG261, a monoclonal antibody directed 

against amino acids 2-17 in the amino 

terminus of HPV-16 E2.

Roche Diagnostics GmbH, Germany Anti-HA high affinity rat monoclonal 

antibody (clone 3FI0)

A gift from Dr. M. Muller, Deutsches HPV-16 L2 polyclonal rabbit serum (No. 20)
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Tumorirologie, Heidelberg, Germany.

2.1.2. Bacterial Hosts

SUPPLIER BACTERIAL HOSTS

Invitrogen Life Technologies, Ltd., 

Paisley, Scotland

E. coli DH5a competent cells

Amersham International pic, Amersham, 

Bucks, England

E. coli BL21 competent cells

2.1.3. Buffers

TE lOmM Tris-HCl pH 8.0, ImM EDTA pH 

8.0

lOx TBE buffer 900mM Tris base, 900mM boric acid, 

25mMEDTA, pH8.0

1 X ligase buffer 50mM Tris HCL pH7.6, lOmM MgClz, 

ImM ATP, ImM DTT, 5% (w/v) 

polyethylene glycol-8000

Phosphate buffered saline (PBS) 137mM NaCl, 44mM KCl, 1.4 mM 

KH2 PO4 , 8.5 mMNa2 HP0 4

10 X loading buffer 0.45% (w/v) Bromophenol blue, 1% (w/v) 

SDS, lOOmM EDTA, 2.5% (w/v) Ficoll 

400 in TE

SDS-PAGE Lysis buffer IM Tris-HCl (pH 6.8), 10% (w/v) SDS, 

20% (v/v) glycerol

SDS-PAGE Resolution gel buffer 0.5M Tris (pH8.8), 0.4% (w/v) SDS

Tris-glycine electrophoresis buffer 25mM Tris, 250mM glycine and 0.1% 

(w/v) SDS

2x SDS gel loading buffer 4% (w/v) SDS, 0.2% (w/v) bromophenol
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blue, 20% (v/v) glycerol and lOOmM Tris,

2.1.4. Cells

Cell types Description Growth Medium

HaCaT Spontaneously immortalised 

kératinocytes

Dulbecco’s Modified Eagles 

Medium,

10% Foetal Calf Serum 

ImM sodium pyruvate 

4mM L-glutamine 

100 lU penicillin 

lOOpg streptomycin

HaCaT-E2 HaCaT derived cell line 

expressing HPV-16 E2 

constitutively kindly 

provided by Dr Pablo 

Cordano, ICM, Glasgow.

Dulbecco’s Modified Eagles 

Medium,

10% Foetal Calf Serum 

ImM sodium pyruvate 

4mM L-glutamine 

100 rU penicillin 

lOOgg streptomycin 

Geneticin G418 sulphate

C33a Human cervical carcinoma 

cells with no HPV DNA

Dulbecco’s Modified Eagles 

Medium with GlutaMAX-1 

4500mg/L D-Glucose with 

sodium pyruvate 

10% Foetal Calf serum 

100 lU penicillin 

lOOpg streptomycin

U20S Osteosarcoma cell line Dulbecco’s Modified Eagles 

Medium with GlutaMAX-1 

4500mg/L D-Glucose with 

sodium pyruvate
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10% Foetal Calf serum 

100 lU penicillin 

lOOpg streptomycin

2.1.5. Cell Culture Materials

SUPPLIER MATERIAL

Cadisch and Sons, Finchley, UK 70|im filter nylon gauze

Invitrogen Life Technologies, Ltd., 

Paisley, Scotland

Foetal Calf Serum

Invitrogen Life Technologies, Ltd., 

Paisley, Scotland

10% Dulbecco s Modified Eagles Medium

200 mM glutamine

Geneticin, G418 sulphate

100 mM sodium pyruvate

2.5% Trypsin

2.1.6. Chemicals and Enzymes

Supplier- Amersham International pic. Amersham, Bucks. England

ECL Western detection agent

ECL Plus Western detection agent

Redivue [a^^PJdATP

Amplify™ Fluorographic reagent

Glutathione Sepharose® 4B

Supplier- BDH Chemicals Ltd.. Poole. Dorset. England.

Calcium chloride

D-glucose

Glycerol

68



Chapter Two________________________________   Materials & Methods

Supplier- Beta Lab.. East Moslev. Surrey. England.

Yeast Extract

Supplier- Boehringer Mannheim UK Ltd.. Lewes. East Sussex. England.

DNase 1, RNase-free 

Protease K

Supplier- Calbiochem (Merck)

MG-101; Calpain Inhibitor 1

MG-132; Carbobenzoxt-L-leucyl-L-leucyl-L-leucinal

ALLM; Calpain Inhibitor 11

Lactacystin, synthetic

Leupeptin hemisulfate

Supplier- Difco laboratories. Detroit. Michigan. USA.

Bacto-Agar

Bactotryptone

Supplier- Fisons Scientific Equipment. Loughborough. England.

Acetic acid 

Butan-l-ol 

Chloroform

di-potasium hydrogen orthophosphate anhydrous 

Ethylene diamine tetra acetate (EDTA) disodium salt 

Dimethyl sulfoxide (DMSO)

Hydrochloride acid 

Magnesium chloride 

Magnesium sulphate 

Methanol 

Potassium chloride

Potassium dihydrogen orthophosphate 

Propan-2-ol
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Sodium acetate

Sodium carbonate

Sodium chloride

Sodium dodecyl sulphate (SDS)

Sodium hydroxide

Supplier- Invitrogen Life Technologies. Ltd.. Paisley. Scotland.

All DNA restriction enzymes and appropriate buffer concentrates were obtained from 

Invitrogen Life Technologies unless otherwise stated. The following reagents were also 

obtained from Invitrogen:

Agarose (ultrapure electrophoresis grade)

Tris Base

LIPOFECTAMINE™ Reagent 

LipofectAMINE PLUS™ Reagent 

Superscript™ One-Step RT-PCR with PLATINUM® Taq 

Deoxyribonuclease 1, Amplification Grade

Supplier- James Burrough Ltd.. Witham. Essex. England.

Ethanol

Supplier- NBL Gene Sciences 

Alkaline phosphatase 

T4 DNA ligase

Supplier- New England Biolabs

NEB buffer 2

Xmnl

Dpnl

Bovine Serum Albumin

Supplier- Novagen. Inc USA 

BugBuster™ Protein Extraction Reagent
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Supplier- Promega. Southampton. England

Deoxynuclease Triphosphates (dNTPs); dATP, dCTP, dGTP, dTTP

Rnasin ® Ribonuclease Inhibitor

Pfu DNA Polymerase

AMV Reverse transcriptase

Supplier- Sigma Chemical Co.. Ltd., Poole. Dorset. England.

Arabinose 

(3-mercaptoethanol 

Bicinchoninic Acid solution 

Bovine Serum Albumin 

Bromophenol Blue 

Coomassie Brilliant Blue R

Copper(II) sulphate (pentahydrate 4% (w/v) solution)

DEPC

Dithiothreitol (DTT)

Ethidium Bromide

Kanamycin

Leupeptin

Nonidet P-40 (NP40)

Phenol:Chloroform;Isoamyl Alcohol (25:24:1 (v/v))

PMSF

Ponceau S solution

TEMED (N,N,N’ ,N’ -tetramethylethylenediamine)

Tween-20 (Polyoxyethylene sorbitan nonolaurate)

Supplier- Roche Diagnostics GmbH. Germanv 

Protease Inhibitor Cocktail tablets

Supplier- Stratagene.

QuickHyb® Hybridization Solution 

Prime it 11 Random primer labelling kit
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Supplier-Qiagen, Dorking. Surrey. England 

Superfect Transfection Reagent™

Supplier- Vector Laboratories. Burlingame, USA. 

Vectashield™ Mounting Medium

2.1.7. Equipment and Plasticware

SUPPLIER EQUIPMENT

Alpha Laboratories Ltd., Eastleigh, 

Hampshire, England

Microfuge tube 

Pastettes

Amersham International pic, Amersham, 

Bucks, England

Hybond-C extra 

Hybond-N

Becton Dickinson Lab ware, Plymouth, 

England

Falcon 1059 polypropylene tubes 

Falcon 2059 polypropylene tubes 

Falcon 2097 polypropylene tubes 

Falcon 2098 polypropylene tubes 

Sterile Plastipak syringes 

18 gauge sterile syringe needles 

60, 90 and 140 mm tissue culture dishes

Greiner Sterile bijou tubes 

Sterile universal tubes 

Cell scrapers 

Filter tips

60 and 100mm bacteriological petri dishes 

Sterile plastic universal containers

Corning B V, High Wycombe, Bucks, 

England

25ml, 10ml 5ml pipettes 

24 well tissue culture plates 

96 well tissue culture plates 

Cryogenic vials

Eastman Kodak Co., Rochester, New 

York, USA

X-ray film (XAR-5)
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VMR (MERCK/BDH) Sterile syringes 

Needles 

Saran wrap 

Foil

Ilford Ltd., Mobbrrley, Cheshire, England Ilford PANF 50 black and white film

Scientific Laboratory Supplies T25, 80, and 175 cm^ tissue culture flasks

Sartorius Sterile 0.2gm filter 

Sterile 0.45p.m filter

Labco Cin Bins

Whatman International Ltd., Maidstone, 

Kent, England

Whatman 3MM filter paper

2.1.8. Kits

SUPPLIER KIT

Perkin Elmer Cetus, Norwalk, USA. Gene Amp PCR core kit

Gene Amp thinwalled reaction tubes

BigDye™ Terminator Cycle Sequencing

Promega Ltd., Chilworth Research Centre, 

Southampton, England

Luciferase Assay System 

Reporter Lysis 5 X Buffer 

TNT® Quick Coupled 

transcription/translation system

Qiagen Ltd., Dorking, Surrey, England QIA prep Spin plasmid miniprep kit 

QIA quick gel extraction kit 

RNeasy Mini RNA purification kit 

Omniscript RT Kit 

HotStar Taq PCR Kit

Applied Biosystems Big dye 3 

Big dye 3 buffer 

HI-DI formamide
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2.1.9. Molecular W eight Markers

SUPPLIER MARKER

Invitrogen Life Technologies, Ltd., 

Paisley, Scotland

Rainbow™ coloured protein molecular 

weight markers

Invitrogen Life Technologies, Ltd., 

Paisley, Scotland

Bacteriophage X DNA (Hindlll digested) 

lOObp DNA ladder 

1Kb DNA Ladder

2.1.10. Other Materials

SUPPLIER MATERIALS

Veterinary Pathology Central Services LB-Medium (Luria-Bertani Medium) 

TSS (Transformation storage solution) 

YTA medium 

Sterile distilled water 

Sterile glycerol

Sterile phosphate-buffered saline (PBS)

Merck Ltd., Poole, England Silicone grease

Johnson and Johnson Medical Limited, 

Berks, UK

PRESEPT* effervescent disinfectant 

tablets

Premier Beverages., Adbaston, Stafford, 

UK

Marvel (Dried Skimmed milk)

74



Chanter Two______________________________________________________ Materials & Methods

2.1.11. Plasmids

pCMV is an expression vector which contains the cytomegalovirus (CMV) immediate- 

early promoter/enhancer, pCDNA 3.1+ is a 5.4kb vector derived from pcDNA3 and 

designed for high-level stable and transient expression in mammalian hosts. It also contains 

CMV promoter and a multiple cloning site, which facilitates cloning.

pCMV-Elie is a construct that consists of the HPV-16 DNA fragment nt 865 to 2813 

encoding the E l protein, amplified by PCR to add the Kozak consensus sequence, inserted 

into the Xbal-Smal sites of pCMV4 .

p C M V - E 2 i6  contains the HPV-16 DNA fragment from nt 2725 to 3852 encoding the 

viral transcription regulator E2, excised from pSK-E2i6 and cloned into the Xbal-Smal 

sites.

pGL3 is a luciferase reporter vector obtained commercially from Promega

pGL3 CONT contains the SV40 enhancer-promoter driving expression of the luciferase 

gene. This reporter plasmid is commercially available from Promega.

pBPV-4LCR contains the BPV-4 LCR from nucleotide 6710-331 cloned into the BamHl 

site of the pOluc luciferase plasmid.

pl8LCR-BSl is a pGL3 luciferase reporter plasmid that contains the full length HPV-18 

LCR with four point mutations in the E2 binding site 1 introduced by PCR.
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pl8LCR-BSl-3 contains the HPV-18 LCR with mutations in the E2 binding sites 1-3. It 

was derived from CAT reporter plasmid, generously provided by F. Thierry.

pl8-6E2 is a luciferase reporter plasmid which contains six E2 binding sites linked to the 

HPV-18 TATA box promoter element.

ptkluc contains the tk promoter from HSV-1 cloned into the pGL2 luciferase vector.

ptk6E2 is a ptkluc with six E2 binding sites linked to the tk promoter.

pl6ori contains the HPV-16 origin of replication (nucleotides 7838-130 of the HPV-16 

genome) cloned into pBSII SK(-)(Stratagene). This plasmid was a gift from Prof. Peter 

Howley (Harvard University).

pl6ori-m, is a pl6ori plasmid with a point mutation at nt 115 from C to A to create a 

Dpnl restriction enzyme site.

pCDNA-L2 is a construct that consists of the HPV-16 DNA fragment nt 4135 to 5560 

encoding the minor capsid protein L2, amplified by PCR and inserted into the BamHl- 

EcoRl sites of pCDNA 3.1 under the control of cytomegalovirus promoter.

pl6-HAL2 contains the HPV-16 L2 DNA sequence from nt 4135 to 5656 inserted into 

pHAl between the Xhol and Xbal sites under the transcriptional control of a CMV 

promoter. pHAl was a kind gift from C.W. Lee. It contains three copies of the HAl 

epitiope cloned in pcDNA3 (Invitrogen, UK).
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pEG FP-Cl is a eukaryotic expression plasmid for the Green Flourescent Protein (GFP). 

GFP expression is driven by the CMV promoter and the multiple cloning site is between 

the GFP sequences and SV40 poly A site. It is commercially available from Clontech Lab. 

This plasmid was a kind gift from Dr M. Roberts (ICM, Glasgow).

pEGFP-L2 is a pEGFP plasmid expressing the GFP protein fused amino terminally to the 

full-lenght HPV-16 L2 protein.

pGEX-4T-2 contains a GST domain and the recognition sequence for thrombin cleavage. 

This plasmid is commercially available from Amersham Pharmacia Biotech.

pGEX-L2 expresses the GST protein fused to wild type HPV-16 L2 under the control of 

the tac promoter.

A series of L2 deletion mutants were designed generating amino and carboxyl terminal 

deletions of the HPV-16 L2. All mutants of L2 were cloned into pCDNA 3.1+, pEGFP- 

N1 and pGEX-4T-2. A summary of all deletion mutants is given in the table below.

Mutant

l-400aa Encoding HPV-16 L2 from amino acids 1- 

400

l-300aa Encoding HPV-16 L2 from amino acids 1- 

300

l-200aa Encoding HPV-16 L2 from amino acids 1- 

200
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1-lOOaa Encoding HPV-16 L2 from amino acids 1- 

100

l-50aa Encoding HPV-16 L2 from amino acids 1- 

50

25-473aa Encoding HPV-16 L2 from amino acids 25- 

473

50“473aa Encoding HPV-16 L2 from amino acids 50- 

473

150-473aa Encoding HPV-16 L2 from amino acids 

150-473

250-473aa Encoding HPV-16 L2 from amino acids 

250-473

350-473aa Encoding HPV-16 L2 from amino acids 

350-473

390-473aa Encoding HPV-16 L2 from amino acids 

390-473

2,1,12. W ater

Distilled water for the preparation of buffer stocks was obtained from a Millipore MilliRQ 

15 system, and for protein, enzyme, RNA or recombinant DNA procedures was further 

purified on a Millipore MilliQ System to 18MiQ/cm.
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2.2. Methods

2.2.1. Molecular biology

2.2.1.1. DNA Extraction

DNA samples were purified by extraction with phenol;chloroform in order to remove 

contaminants, such as residual enzyme activities from a restriction reaction or detergent 

which might otherwise interfere with subsequent cloning steps. In the first round of 

extraction the DNA sample was mixed with an equal volume of phenol:chloroform. The 

aqueous DNA and organic phase were mixed thoroughly by vortexing, and then separated 

by centrifugation in a microcentrifiige at 14000 rpm for 5 minutes at room temperature. 

The upper aqueous phase was transferred in a clean eppendorf tube, care was taken not to 

transfer any of the interphase to the tube, and the extraction process repeated. The 

aqueous phase was then extracted with an equal volume of chloroform 

(chloroform: isoamyl alcohol, 24:1 v/v) by vortexing and centrifugation as described 

above. This was repeated to remove any traces of phenol from the aqueous phase. The 

aqueous phase was transferred to a fresh eppendorf for ethanol precipitation.

Ethanol precipitation was used to concentrate DNA samples and also to remove solute 

contaminants such as salt. The aqueous DNA solution was mixed with one-tenth volume 

of 3M sodium acetate pH 5.2 and 2-2.5 volumes of ice-cold ethanol. The sample was then 

mixed well by inversion several times and then stored at -20°C or, alternatively, placed on 

dry ice for 15-30 minutes to facilitate DNA precipitation. The precipitated DNA was 

collected by centrifugation in a microcentrifuge at 14000 rpm for 15 minutes at 4°C. The 

supernatant was discarded, the pellet was washed with 70 % ethanol to remove any trace
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of salt and dried under vacuum before resuspension in distilled water at an appropriate 

concentration. The DNA concentration was determined as described below.

2.2.1.2. Quantification of Nucleic Acids

The concentration of nucleic acid in a solution was determined spectrophotometrically in a 

WPA UVl 101 Biotech spectrophotometer. Samples were diluted in dH20 and transferred 

to a quartz cuvette with a pathway of 1cm. The spectrophotometer was initially calibrated 

using dH20 only as a blank. The optical density reading were obtained at 260nm and 

280nm; an O.D, reading of 1 at 260nm (A2 6 0  -  1) corresponds approximately to a 

concentration of 50p,g/ml of double stranded DNA, for oligonucleotides an A2 6 0  of 1 was 

taken to correspond to ~35p,g/ml, and for RNA an A2 6 0  of 1 was taken to correspond to 

40|ug/ml. The ratio between readings at 260nm and 280nm (A2 6 o:A2 8 o) provided an 

estimate of the sample purity; a ratio of -1,8 indicated that preparations contained 

essentially no protein or phenol contamination.

2.2.1.3. Restriction Enzyme Digestion of DNA

Restriction digests were carried out in small reaction volumes using enzymes and their 

appropriate concentrated buffer solutions according to the manufacturer’s instructions. 

Plasmid DNA was incubated with 5-10 units enzyme/|ug DNA in a buffered solution 

ensuring that the total volume of enzyme added did not exceeded one tenth of the final 

reaction volume. Small quantities of plasmid DNA (<5pg) were routinely digested in a 

20|ul reaction volume as specified by the manufacturer for 1 hour at 37“C. Large digests 

were carried out in proportionally larger reaction volumes. The digestion fragments were 

analysed by agarose gel electrophoresis as described below.
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2.2.1.4, Agarose Gel Electrophoresis

In general, 1% (w/v) agarose gels were used, but smaller fragments (100-400) were 

separated on 2-4% gels. Low melting point agarose was used at a concentration of 1% 

(w/v) in order to isolate and purify required DNA restriction fragments. Gel mixes 

containing the appropriate amount of agarose were dissolved in 0.5 x TBE buffer by 

heating the solution in a glass conical flask in a microwave until all the particles of agarose 

gel had dissolved. The gel was poured when the agarose was hand hot and a comb with 

the required number and size of teeth placed immediately into the gel to form the sample 

wells. The gel was submerged in 0.5 x TBE buffer. The samples containing 1 x loading 

buffer were loaded in each well along with an appropriate size marker (e.g. 100b ladder, 

1Kb ladder) into the first and/or last well in the gel and run at 70-100 constant voltage 

usually until the samples’ blue dye front was 1-3 cm from the end of the gel. Once run, 

the DNA fragments were visualised by staining the gel in running buffer containing

0.5p,g/ml ethidium bromide with gentle agitation for 10 minutes at room temperature. The 

separated DNA was visualised by illumination with short wave (312nm) UV light and 

photographed through a red filter onto video print paper using an UVP gel documentation 

system.

2.2.1.5. Southern Blotting

The DNA fragment to be used was digested with the appropriate restriction enzymes as 

described in section 2.2.1.3 and run on an agarose gel with the appropriate DNA size 

markers (2.2.1.4). The gel was stained with ethidium bromide and photographed with a 

ruler laid alongside the gel so that band positions can be identified on the membrane. The 

following procedure was then undertaken:-
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1. The gel was rinsed in distilled water and placed in a clean glass dish containing -10 

gel volumes of dénaturation solution (1.5MNaCl, O.SMNaOH) and shaken slowly 

on a platform shaker for 30 minutes at room temperature. This was done twice.

2. The dénaturation solution was poured off and the gel rinsed with distilled water 

washed twice with -10 gel volumes of neutralisation solution (1.5M NaCl, 0.5M 

Tris-HCi pH 7.0) shaking slowly on a platform shaker for 30 minutes at room 

temperature.

3. To transfer the DNA from the gel to the membrane, a solid support was placed in a 

glass dish with wicks made out of Whatman 3MM filter paper. Three pieces of 

Whatman 3MM paper the same size as the gel was then cut and stacked onto the 

solid support.

4. The gel was rinsed in distilled water and placed on the filter paper stack and air 

bubbles were removed by rolling a glass pipette over the surface.

5. Four strips of plastic wraps were cut and placed over the edge of the gel so that 

the buffer flows through rather than around the gel.

6. A piece of Hybond-N nylon membrane just large enough to cover the exposed 

surface of the gel was immersed in distilled water for -5  minutes. The wet 

membrane was then placed on the surface of the gel. Air bubbles were removed by 

rolling a glass pipette over the surface of the membrane.

7. The surface of the membrane was then flooded with 20 x SSC (3M NaCl, 0.3M 

C^HsO^Nas (tri-sodium citrate)). Five sheets of Whatmann 3MM filter paper cut to 

the same size of the gel were placed on top of the Hybond-N membrane.

8. Paper towels were then cut the same size as the membrane and stacked on the top 

of the Whatmann 3MM paper to a height of-4cm.
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9. A glass plate was placed on top of the structure and a weight placed on top to hold 

everything in place and left overnight.

The next day, the paper towels and filter paper were removed and the Hybond-N 

membrane recovered. The membrane was rinsed in 2 x SSC and placed on a sheet of 

Whatmann 3MM paper to dry. The membrane was then placed in a Spectrolinker 

XL1500 (Spectronics Corperation) and irradiated with 1600 J/m^ of UVC at 254nm to 

crosslink the DNA. The membrane was then baked for >60 minutes at 80“C in a 

Hybaid mini-oven MKII hybridisation oven.

2.2.1.6. Isolation and Purification of DNA Restriction Fragment from  

Agarose Gel

The DNA fragment to be used for cloning was recovered from low melting point agarose 

gel and visualised as described in section 2.2.1.4. The fragment was cut out of the gel 

with a clean scalpel blade and the gel slice placed in an eppendorf tube. Extraction of the 

DNA fragment from the agarose was achieved using a Qiagen Qiaquick gel extraction kit 

following the manufacturer’s instructions.

2.2.1.7. Ligation of DNA Fragments

Both vector DNA and the DNA fragment to be inserted into the vector were separately 

digested with restriction enzymes and purified as described above and then isolated by gel 

electrophoresis as described in section 2.2.1.4. The vector DNA was dephosphorylated at 

its termini to prevent re-ligation. After the vector DNA had been linearized by digestion, 

the reaction mixture was adjusted by adding dephosphorylation buffer and 1 unit of Calf 

Intestinal Alkaline Phosphatase (CIAP) was added to the reaction mixture and incubated 

at 37°C for 1 hour. The reaction was stopped by heating to 90‘’C for a further 5 minutes.
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All enzyme activity in the reaction was finally stopped by heating to 90°C for a further 5 

minutes.

The DNA was phenol:chloroform extracted, ethanol precipitated and then resuspended in 

appropriate volume of distilled water and stored at -20°C. The DNA fragment was 

incubated with dephosphorylated vector (lOOng) at a ratio of 3:1 respectively in a reaction 

containing 1 x ligase buffer and 1 unit of T4 ligase at 16”C for 1 hour or overnight. 

Dilutions of this reaction volume were used to transform competent bacterial cells (section 

2 .2 . 1.8).

2.2.1.8. Preparation of competent cells

E. coli BL21 (Amersham Pharmacia Biotech) were made competent according to the 

manufacturers instructions. A sterile streak technique was used to streak bacteria from a 

glycerol stock onto an LB medium plate and incubated overnight. A single colony was 

isolated and used to inoculate 50ml of LB broth at 37°C with shaking at 225rpm until cells 

grew to an absorbance measurement of 0.4-0.5 at 600 nm. Cells were sedimented at 

approximately 2500xg for 15 minutes at 4“C, then gently resuspended in 1/10 volume (5- 

10ml) of ice-cold TSS (l.Og tryptone, 0.5g yeast extract, 0.5g NaCl, lOg polyethylene 

glycol, 5ml dimethylsulfoxide [DMSO], and 5ml MgCb [1ml] in 70ml sterile dHzO) and 

placed on ice. Cells were transformed within 2-3 hours.

2.2.1.9. Transformation o f  E  c o l i  BL21 cells

GST expression plasmids were transformed and expressed in E  coli BL21 made 

competent as described above (2.2.1.8). For transformation, 1 ml of freshly prepared 

competent bacteria was added to pre-chilled 50ml sterile disposable centrifuge tubes and
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stored on ice. Ing of plasmid was added to the cells, and swirled gently to mix and placed 

on ice for 45 minutes. The cells were heat shocked in a 42”C water bath for 2 minutes then 

chilled briefly on ice. lOOpl of transformed cells were then transferred to 17x100mm tubes 

(Falcon) containing 900pl of LBG medium (LB + 20mM glucose) pre-warmed to 37"C 

and incubated for Ihour at 37‘’C with shaking at 225rpm. lOOpl of the diluted transformed 

cells were plated onto LB AG plates (LBG + lOOpg/ml ampicillin). The plate was inverted 

and incubated overnight at ?>TC to allow colony formation. Frozen glycerol stocks 

cultures were prepared as described below in section 2.2.1.11.

2.2.1.10. Transformation o f  E  c o l i  D H 5a cells

Plasmids were propagated in commercially available E. coli DH5a competent cells 

supplied as frozen stocks (Invitrogen) kept at -70°C until use. Bacteria were transformed 

following manufacturer s instructions. Competent cells were thawed slowly on ice, and 

20gl of aliquots put into prechilled 1.5ml eppendorf tubes. 1-2 ng of the appropriate 

plasmid DNA was added to each aliquot and mixed by gently moving the pipette tip 

trough the cells while dispensing. The cells were then incubated on ice for 30 minutes 

before being heat shocked for 45 seconds at 42”C. The tube was then immediately placed 

on ice for 3 minutes. 180 p.1 of room temperature SOC Media (2% Bactotryptone, 0.3% 

Yeast Extract, lOmM NaCl, 2.5mM KCl, 20mM Mg^' Stock (equimolar ratio of 

MgCli.ôHzO & MgS0 4 .7 H2 0 ) and 20mM Glucose) was then added to each 

transformation reaction. The tube was then transferred to a shaking 37°C incubator 

(approximately 225rpm) for 1 hour to allow expression of the antibiotic resistant marker.
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2.2.1.11. Glycerol Stocks

Host strains, and their derivatives containing useful plasmids, were stored as glycerol 

stocks for future retrieval. 800 p,l of an overnight culture was mixed gently with 200 p,l 

sterile glycerol in a 1.5 ml Nunc Ciyotubes and stored at -70°C. A sterile plastic loop was 

used to retrieve an aliquot of cells as and when required.

2.2.1.12. Small Scale Preparation of Plasmid DNA (Miniprep)

Small amounts of plasmid DNA were extracted from transformed bacterial colonies to

identify correct clones. Single colonies of bacteria carrying the required plasmid were 

picked using a sterile yellow pipette tip and grown in 5 ml culture of L-Broth (1% w/v 

Bactotryptone, 0.5% w/v yeast extract, 1% w/v NaCl) containing antibiotic (lOOpgAnl 

Ampicillin) at 37“C in a shaking incubator (225rpm) overnight. 10 separate colonies were 

generally picked for screening at any one time. Bacteria were pelleted from 1.5ml of 

overnight culture by spinning in a micro centrifuge (MOOOrpm) for 30 seconds at room 

temperature. DNA was prepared using the QIA prep Spin plasmid miniprep kit following 

the manufacturer’s instructions.

2.2.1.13. Large Scale Preparation of Plasmid DNA (Maxiprep)

Bacteria containing the plasmid of interest were streaked onto an L-agar plate containing

the appropriate antibiotic and the plate inverted and incubated overnight at 37°C to allow 

colony formation. A single colony was picked, using a sterile yellow tip, from this plate 

and used to inoculate a sterile universal tube containing 5 ml of L-Broth medium and the 

appropriate antibiotic (100|ug/ml Ampicillin) which was then put in a shaking incubator at 

225rpm overnight at 37°C. This culture was then added to 500 ml of broth, containing 

100|Lig/ml Ampicillin in a 1 litre glass conical flask (to allow good aeration), then returned
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to the shaking incubator for 48 hours. DNA was prepared using the QIA prep Spin 

plasmid maxiprep kit following the manufacture’s instructions,

2.2.2. Cell Culture and Transfection

2.2.2.1. Cell Culture

All cell culture work was performed following strict aseptic techniques inside a laminar 

flow hoods (Class II Microbiological safety Cabins; Gelaire BSB4), Cells were incubated 

in dry 37°C incubators containing 5% (v/v) CO2  (Napco Model 5410 Genetic Reseach 

Instrumentation LTD).

2.2.2.2. Maintenance of cells in culture

Cells were fed twice weekly, old medium was aspirated from sub-confluent flasks and 

fresh medium added. Replating was performed as follows: for T150 cm^ tissue culture 

flask medium was aspirated off and the cells washed once with 10 ml phosphate-buffered 

saline (PBS). The PBS was removed and 1 ml of trypsin solution (0.25% trypsin in Ix PE 

buffer; PBS with the addition of EDTA to 1 mM), which had been pre-warmed to 37°C, 

was added to cells. Flasks were transferred to the 37“C incubator until the cells had 

detached from the flasks. Complete medium was added and the cell suspension transferred 

to a sterile universal tube. The cells were pelleted by centrifugation at lOOOrpm for 5 

minutes at room temperature. The pellet was then resuspended in fresh growth medium 

and the cells reseeded at a 1:10 density.
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2.2.2.3. Long Term Cell Storage

To freeze cell stocks for storage, confluent cultures were trypsinised, and pelleted as 

described above (section 2.2.2.2). The pellet was then resuspended at a concentration of 

approximately 10̂  cells/ml in growth medium containing 10% (v/v) DMSO. The DMSO 

in the medium acts as a cryoprotectant but all solution must be chilled, as DMSO is toxic 

to cells at room temperature. Suspensions were divided into 1 ml aliquots in 1-2 ml Nunc 

cryotubes and placed in a polystyrene box and frozen, well insulated, at -70°C overnight to 

ensure a slow rate of cooling. The ampoules were then transferred to a liquid nitrogen 

bank containing labelled storage rack until required. Frozen stocks were recovered by 

removing the ampoules from liquid nitrogen and placing them into a small, covered bucket 

of water at 37”C. Once thawed, the cells were added to 10ml of the appropriate pre- 

warmed growth medium, centrifuged, resuspended in fresh growth medium and 

transferred to 175 cm  ̂flasks.

2.2.2.4. Transient Transfection of HaCaT and C33a cells

C33a cells were transiently transfected using a standard calcium phosphate precipitation

technique. Cells were plated out at ôxloVôOmm tissue culture dish. The following day a 

solution of calcium phosphate containing the DNA was added to the cells. This was 

carried out as follows, for each 60mm cell monolayer; 250gl of a solution containing the 

plasmid DNA in 250 mM CaClz was added dropwise with gentle mixing to 250pl to 2x 

HEPES buffered saline (280mM NaCl, lOmM KCl, 1.5mM Na2HP0 4 .2 H2 0 , 50mM 

HEPES). The mixture was left for 30 minutes to allow a fine precipitation to form and 

added directly into the medium above the cell monolayer. 16-18 hours later, the cells were 

washed twice with PBS and refed with fresh growth medium. The cells were harvested
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24-32 hours later. HaCaT cells were transfected using LIPOFECTAMINE PLUS™ 

Reagent (Invitrogen) according to the manufacturer’s instructions.

2.2.2.5. Luciferase Assays

Transfected C33a and HaCaT cells were lysed directly on 60mm tissue culture plates. 

Cells were washed twice with PBS. The PBS then was completely removed by aspiration 

and 200p.l of 1 x reporter lysis buffer (Promega) added to each plate. Following 10 

minutes incubation at room temperature, cells were scraped off the culture plate and each 

lysate transferred to a 1.5ml eppendorf. Cell debris was pelleted by spinning lysates at 4°C 

in a microcentrifuge at MOOOrpm for 5 minutes. The supernatant was transferred to a 

second eppendorf tube taking care not to disrupt the cell pellet. The lysate were either 

assayed for reporter enzyme activity immediately or stored at -20°C.

Luciferase activity was determined using a luminometer with automatic injection 

(Luminoskan Ascent-Thermo Labsystems). For each sample, 80pl of lysate and 80pl of 

Luciferase assay buffer (Promega) were used. Luciferase activity was normalised for 

protein content determined using the BCA assay (Sigma).

2.2.2.6. Transient DNA replication assay

Transient DNA replication assays were performed in C33a cells, as first described by 

Sakai et al., (1996) and as modified by Boner et al., (2002). Cells were set up in 100mm 

plates at 6x10^ per plate and transfected with Igg pl6ori-m, 5gg pCMV-Elie, lOng or 

lOOng pCMV-E2i6 with or without Ipg pl6-HAL2 using calcium phosphate precipitation 

method for C33a cells or LIPOFECT AMINE PLUS™ Reagent method for HaCaT cells, 

respectively. Low molecular weight DNA was extracted using the Hirt protocol (Hirt B.,
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1967) modified as described below. On day two after transfection, cells were washed with 

PBS and 800pl of Hirt solution (0.6% SDS, lOmM EDTA) was added per plate. After 5 

minutes the cell lysate was transfered into 1.5ml tubes and 200pl of 5M NaCl was added 

to each tube. The tubes were mixed by inverting gently to allow efficient precipitation of 

genomic DNA and left overnight at 4°C. The next day samples were centrifuged at 15000g 

for 30 minutes at 4°C and the supernatant, containing low molecular weight DNA, was 

retained while the pellet was discarded. DNA in the supernatant was phenol-chloroform 

extracted and ethanol precipitated. To create linearised plasmid, 25gl of each sample were 

digested with 2OU Xmnl for 3 hours at 37“C. Linearised plasmid was further digested 

with 2OU Dpnl overnight at 37°C. Xmnl linearises pl6ori-m while Dpnl digests only 

unreplicated -methylated DNA. Replication was assayed after Xmnl and Dpnl 

digestion. DNA was electrophoresed in a 1% agarose gel in 0.5x TBE and transferred to a 

Hybond-N nylon membrane (Amersham Pharmacia Biotech, UK) by Southern blotting as 

described in section 2.2.1.5. Hybridisation was done using QuikHyb hybridisation solution 

(Stratagene, UK) according to the manufacturer’s instructions. A Molecular Dynamics 

Storm 840 phosphoimager (Amersham Pharmacia Biotech, UK) was used to scan the 

Southern blot and quantify hybridised signals. The extent of replication was calculated by 

measuring the ratio of double cut/single cut bands. This method of measurement controls 

for variation in transfection efficiency between experiments.

2.2.2.7. Probe for Hybridisation

The pl6ori-m (2pg) plasmid was digested with Pvull. The digestion was electrophoresed 

in a 1% agarose gel and a band of ~700bp, corresponding to the sequence of HPV 16-ori, 

was cut out. It was purified using the QIAquick™ Gel Extraction kit (QIAGEN, UK) and 

eluted in 60pl dH20. A Prime-it II Random labelling kit (Stratagene) with [a-P^^]dCTP
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was used to generate the probe according to the manufacturer’s instruction and purified 

using a NICK Column (Amersham Pharmacia Biotech, UK).

2.2.2.8. Beta-Galactosidase Assay

The plasmid pCHllO was used in all transient transfections as an internal control against 

which the efficiency of transfection could be normalised. (3-galactosidase catalytically 

converts colourless o-nitrophenyl-p-D-galactopyranoside (ONPG) to yellow o- 

nitrophenol. The level of activity of this enzyme can be assayed by measuring changes in 

light absorbance at 420nm. Cells were lysed as detailed in section 2 23 .1 . To 80jul of 

each cell lysate, 1ml of solution I (60mM Na2 HP 0 4 , 40mM NaH2 P 0 4 , lOmM KCl, ImM 

MgCl2 , 50mM P-mercaptoethanol) and 0.2ml of solution II (60mM Na2 HP0 4 , 40mM 

NaH2 P 0 4 , 2mg/ml ONPG) was added. After mixing, all samples were incubated at 37°C 

for 30-60 minutes or until a yellow colour change could be seen. Samples were 

transferred to plastic disposable cuvettes and the reactions stopped by the addition of 

0.5ml IM sodium carbonate. The absorbance was read at 420nm using a Beckman DU 

650 spectrophotometer.

2.2.3. DNA and RNA analysis

2.2.3,1, Total RNA Extraction from Cell Lines

Cells were grown in a 175cm^ (T175) flask to approximately 80% confluency. Total RNA 

was then extracted by use of the RNAeasy Kit (Qiagen). The cells were washed once with 

pre-warmed sterile PBS and trypsinised and counted. 1x10^ cells of all cell lines were 

subjected to the RNA extraction method as per manufacturer’s details. For all RNA
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extractions the concentration of RNA was measured spectrophotometrically as described 

in section 2.2.1.2. RNA samples were aliquoted and stored at -70°C.

2.2.3.2. Polymerase Chain Reaction (PCR)

2.2.3.2.I. Amplification of DNA

All reagents were provided in the HotStarTaq PCR Kit with the exception of dNTP’s, 

which were obtained from the Perkin-Elmer Core DNA PCR kit. Primer sequences are 

described in table 2.1.

Table 2.1 Oligonucleotide PCR primers

Primer Name Primer Nucleotide Sequence Purity

HPV-16 L2 BamHl 
AT G forward

tgcaggatccatgcgacacaaacgttctgc Tm 81 

%GC 53
HPV-16 L2 BamHl 
forward

tgcaggatcccgacacaaacgttctgc Tm 77 

%GC 38
HPV-16 L2 EcoRl 
reverse

tgcagaattcggcaagtagacagtggc Tm 81 

%GC 53
25-473 atgL2 
forward

tgcaggatccatggcaggtacatgtccacct Tm 82 

%GC 54
50-473 atgL2 
forward

tgcaggatccatgagtatgggtgtatttttt Tm 76 

%GC 38
150-473atgL2
forward

tgcaggatccatgaatactgttactactgttact Tm 76 

%GC 38
250-473 atg forward tgcaggatccatgattacatatgataatcct Tm 74 

%GC 35
350-473atg forward tgcaggatccatgactaccccttcacatgca Tm 81 

%GC 51
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390-473 atg forward tgcaggatccatgttatcaggttatattcct Tm 76 

%GC 38
GST-L2 1-50 
reverse

tgcagaattcctaacttccatattgtaatat Tm 72 

%GC 29
GST-L2 1-100 
reverse

tgcagaattcctaagggcccacaggatctac Tm 81 

%GC 51
GST-L2 1-200 
reverse

tgcagaattcctatgtatccataggaatttc Tm 74 

%GC 35
GST-L2 1-300 
reverse

tgcagaattcctagccagtacgcctagaggt Tm 81 

%GC 51
GST-L2 1-400 
reverse

tgcagaattcctaaattgttgtatttgcagg Tm 74 

%GC 35
GST-L2 25-473 
forward

tgcaggatccgcaggtacatgtccacct Tm 81 

%GC 57
GST-L2 50-473 
forward

tgcaggatccagtatgggtgtatttttt Tm 74 

%GC 39
GST-L2 150-473 
forward

tgcaggatccaatactgttactactgtt Tm 74 

%GC 39
GST-L2 250-473 
forward

tgcaggatccattacatatgataatcct Tm 72 

%GC 35
GST-L2 350-473 
forward

tgcaggatccactaccccttcacatgca Tm 79 

%GC 53
GST-L2 390-473 
forward

tgcaggatccttatcaggttatattcct Tm 74 

%GC 39
RT-L2
forward

caggcggacgcactgggt Tm 74 

%GC 72
RT-L2
reverse

gtcaggatctggtgctat Tm 65 

%GC 50
Actin
forward

gcgtctggacctggctggccgggacct Tm 87 

%GC 74
Actin
reverse

ggaaggctggaagagtgcctcagggcag Tm 84 

%GC 64
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The reaction mixture comprised 200pM of each dATP, dGTP, dCTP and dTTP, 1 x PCR 

kit buffer, 0.2p,M of each primer, 2.5 units HotStarTaq polymerase (a modified 

thermostable DNA polymerase from Thermus aquaticus) and lp,g of DNA sample. It was 

aliquoted into 0,5ml GeneAmp PCR reaction microfuge tubes in a final volume of lOOjul. 

Each cycle of PCR amplification consists of a number of steps which produce two 

oligonucleotide-primed single-stranded DNA templates, set up the polymerisation reaction 

and synthesize a copy of each strand of the template being targeted. The tubes were 

placed into the PCR machine (MJ Research PTC-200 Peltier Thermal Cycler) and heated 

to 95”C for 15 seconds to inactivate DNase and ensure all DNA duplexes were melted, in 

addition to activating the HotStarTaq.

The DNA was amplified for 35 cycles at 94°C for 60 seconds, then between 55-65°C for 

60 seconds, to allow the primers to anneal to the template DNA. The sequences of the 

primers are a major consideration in determining the temperature of the PCR amplification 

cycles. For primers with a high Tm, a higher annealing temperature is usually 

advantageous. The higher temperature minimizes non-specific primer annealing, increasing 

the amount of specific product produced and reducing the amount of primer-dimer 

formation. The annealing temperatures for all primers were determined by optimising the 

annealing conditions by performing the reaction at several temperatures starting at 5“C 

below any calculated Tm. The annealing temperature for each PCR reaction was dependent 

on the primer with the lowest Tm. The melting temperature for oligonucleotides can be 

calculated with the formula below.

Tm- 81.5 + 16.6 (logio[Na1) + 0.41 (%G+C) -  675/n
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Where [Na^] is the molar salt concentration; [K'^]=[Na^] and n= number of bases in the 

oligonucleotide. Primers are usually designed with a 40-60 G+C%.

The extensions of the primers were performed at 12°C for 60 seconds. After completion of 

the cycles, the reaction was incubated at 72”C for a further 7 minutes to ensure full 

extension and then cooled to 4°C. 5p,I of each sample was analysed by agarose gel 

electrophoresis (as described in section 2.2.1.6) to check the correct product was 

amplified.

2.2.3.2.2. Amplification from RNA: Reverse Transcriptase-PCR (RT- 

PCR)

RNA was prepared (see section 2.2.4.2) and used as the template for reverse transcription 

and PCR amplification of cDNA. Firstly cDNA was synthesised from RNA by reverse 

transcription using the Omniscript RT kit (Qiagen). The reaction was carried out 

according to the manufacturer’s instructions, to the following final concentrations: Ix RT 

buffer, 5mM of each of dATP, dGTP, dTTP, dCTP, 10 unit RNase inhibitor, Ipg RNA, 4 

units Omniscript reverse transcriptase, 1 p-M of Oligo-dT primer, and DEPC-treated water 

to a final volume of 20 \x\. Control reactions using no Omniscript reverse transcriptase 

were carried out, in addition to assaying suitable negative cell lines for each experiment.

All samples were placed in the thermocycler and further incubated at 37°C for 60 minutes, 

and then incubated at 4°C for 5 minutes. The above reaction was then stored at -20°C 

until use. Typically 2p,l of the RT reaction was carried forward to the amplification step. 

PCR reactions were carried out as per manufacturer’s guidelines (Qiagen) for HotStarTaq 

amplification. Briefly final reaction volumes were lOOgl consisting of 2p.l of RT reaction
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mixture combined with a final concentration of Ix PCR Buffer, 200p,M of each dNTP, and

0.2jj,M of the forward and reverse primers, 2.5 Units of the HotStarTaq made up to 98|ul 

with distilled water. To activate the HotStarTaq an initial incubation of 95°C was carried 

out for 15 minutes. Amplification proceeded for 35 cycles of 94°C for 60 seconds, 59“C 

for 60 seconds, plus a 60 second extension at 72 °C. PCR was carried out in a MJ 

Research PTC-200 Peltier Thermal Cycler. The samples were then analysed by agarose 

gel electrophoresis as described in section 2.2.1.6 to ensure correct amplification.

2.2.3,2.3. Real Time Quantitative PCR.

Cells were seeded and transfected with 4|ug plasmid and total RNA was isolated with 

RNeasy®MiniKit (QIAGEN, UK) and resuspended in RNase-free water following the 

instructions of the supplier. Thirty-two nanogram total RNA was digested with 0.5U 

Dnase I (Invitrogen™, UK) according to the manufacturer’s protocol. The reverse 

transcription was primed in duplicate with Random Primers (Promega, UK) at a 

concentration of 0.5|Lig in a 25p.l reaction mixture with or without 3U AMV-RT 

(Promega, UK) and 0.5mM each dNTP (Promega, UK), 20U rRNAsin (Promega, UK), 

and IX AMV-RT buffer (Promega, UK) following the instructions of the supplier. As a 

preliminary screening, cDNA was amplified by PCR with 2.5U Taq Polymerase (Gibco 

BRL®, UK) in a final volume of 50pl containing IX PCR buffer (Gibco BRL®, UK), 

125p,M of each dNTP (Promega, UK) and 0.5|uM of each primer (sense: 5’CGA TGG 

AGA CTC TTT GCC AA; antisense: 5’TAT AGA CAT AAA TCC AGT) for 30 cycles at 

94°C 1 minute, 50°C 1 minute and 72°C for 2 minutes and 1 cycle at 72°C for 10 minutes 

and the PCR products were electrophoresed in a 1% agarose gel. Once checked that the 

RNA was free from DNA contamination, cDNA was amplified in triplicate with the
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primers Tql6E2f 5’CCT GAA ATT ATT AGG CAG CAC TTG and Tql6E2r 5’GCG 

ACG GCT TTG GTA TGG at a concentration of 300mM each in a 50p,l reaction that 

contained in final concentration: IX PCR Buffer II, 200pM dATP, dCTP, dGTP, and 

400p,M dUTP, 5.5mM MgCl2  and 1.25U AmpliTaq® DNA Polymerase with GeneAmp®. 

The reaction also contained the detection probe TaqMan® Probe: 5’ CAA CCA CCC 

CGC CGC GA, at a concentration of 300nM. The thermal cycling conditions were 2 

minutes at 95°C, followed by 45 cycles of 95°C for 15 seconds and 60°C for 1 minute. All 

reactions were performed in the model 7700 Sequence Detector (PE Applied Biosystems), 

which contains a GeneAmp PCR System 9600. As control cDNA was amplified with 

primers for actin: p-actin Forward Primer and P-actin Reverse Primer (PE Applied 

Bio systems, Foster City, Ca, USA) at a concentration of 60nM each in a reaction mix with 

the same cycling conditions, with p-actin Probe (PE Applied Bio systems, Foster City, Ca, 

USA) at a concentration of 40nM.

2.2.3.3. DNA Sequencing

The sequence of all new plasmids was checked using Taq terminator sequencing on an

Applied Bio systems Prism 3100 Genetic Analyzer DNA sequencer. The region to be

sequenced first underwent PCR amplification. The sequencing reaction mix was prepared

by adding 500ng of template DNA (~6gl of standard miniprep), 2|ul 5x sequencing buffer,

3.2pmoles the appropriate primer, 4 |l i 1 of BigDye™ Terminator Ready Reaction Premix

(Applied Biosystems) made up with distilled H2 O to a total reaction volume of 20|il in

200jil thin walled eppendorf tubes. The samples were placed in a MJ Research PTC-200

Peltier Thermal Cycler and exposed to 25 cycles of 96°C for lOseconds, 50°C for

5seconds and 60°C for 4 minutes. The PCR products were purified using PERFORMA®

DTR Gel Filtration Cartridges. The columns were first spun at 3000rpm for 2 minutes to
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remove buffer. The columns were then transferred to sample collection tubes. The PCR 

sequencing reaction mix was then loaded onto the centre of the gel column. The column 

was spun for 3000rpm for 2 minutes. The sample was then dried under vacuum for 15-20 

minutes and then resuspended in 25|ul formamide.

Table 2.2 Sequencing primers

Primer Name Position Primer Nucleotide Sequence

T7 forward 5’-3’ 864-882 5’ - attaatacgactcactataggga -3’

BGH reverse 5’-3’ 1018-1249 5’ - ctagaaggcacagtcgaggc -3’

PGEX forward 5’-3’ 869-891 5’ - gggctggcaagccacgtttggtg -3’

PGEX reverse 5’-3’ 1042-1020 5’ - ccgggagctgcatgtgtcagagg -3’

pEGFP-Cl sequencing 

Primer

679-658 5’ - cctaggagcactaagcga -3’

2.2.4. Protein Analysis

2.2.4.1. Protein Preparations from Cells for W estern Blot Analysis

Cells were lysed by aspirating the culture medium off, washing the cell monolayer once

with ice-cold PBS, the PBS was completely removed by aspiration. For lysis with NP-40 

lysis buffer (150mM NaCl, 0.5% NP-40, 50mM Tris-HCI and one tablet protease inhibitor 

cocktail), 1ml of trypsin was added to cells until they detached. Cells were collected in 

universal tubes using 6ml of serum containing medium to inactivate trypsin. Cells were 

pelleted by spinning for 5 minutes at lOOOrpm. The pellet was washed once with ice cold 

PBS and repelleted. The supernatant was removed and 200pl of NP-40 lysis buffer was
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added to the pellet and kept on ice for 10 minutes. Cell debris was pelleted at 14000 rpm 

and the supernatant transferred to a new micro centrifuge tube.

For lysis with SDS-lysis buffer (lOOmM Tris-HCl pH6.8, 2% SDS, 2% glycerol and one 

tablet protease inhibitor cocktail), the cells were lysed by aspirating the culture medium 

off, washing the cell monolayer once with PBS. The PBS was completely removed by 

aspiration. 200|l i 1 of SDS lysis buffer was added to the plates and cell debris was scraped 

off and transferred to microcentrifuge tubes. The cells were further disrupted using either 

a sonicator or repeated aspiration with a syringe. The cell debris was pelleted at 14000 

rpm and the supernatant transferred to a new microcentrifuge tube.

2.2.4.2. Protein Concentration Assays

The BCA/CuS04 Protein assay was used to spectrometrically determine the protein 

concentration of dilute solutions following the manufacturer’s instructions. Proteins 

reduce alkaline Cu(II) to Cu(I) in a concentration-dependent manner. Bicinchoninic acid is 

a highly specific chromogenic reagent for Cu(I), forming a purple complex with an 

absorbance maximum at 562nm. lOpl of protein solution was placed in separate wells in 

96 well plate. 200p,l of developing solution (5ml BCA (Biocinchoninic acid) solution, 

lOOjul of 4% (w/v) CuS04 (copper II sulphate pentahydrate solution) was added to the 

protein samples and incubated at 37°C for 30 minutes.

The absorbance of each sample was read at 590nm using a WPA UVl 101 Biotech 

photometer plate reader. The absorbance reading was converted to concentration in |ug/ml 

for each sample using a standard curve generated from a series of control BSA solutions
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of known concentration. The actual concentration of each protein sample was calculated 

after multiplying by the relevant dilution factor.

2.2.4.3. SDS-Polyaciylamide Gel Electrophoresis (SDS-PAGE)

Protein samples were resolved according to the molecular weight using sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE). All Western blot analysis was 

performed using Nu PAGE^^ pre cast gel system. lOpg of each protein sample were 

electrophoresed on Nu PAGE™ 4-12% Bis-Tris gel (Invitrogen, UK) under denaturing 

conditions. Prior to loading, equivalent amount of each protein samples (lOfig) was mixed 

with 5 pi of 4x SDS gel loading buffer (Invitrogen, UK) and 2pi of 2x reducing agent 

(Invitrogen, UK) made up to 20pl with dHzO. Samples were then boiled for lOminutes at 

70°C. The prepared protein samples were then loaded into consecutive wells and 15pl 

Rainbow™ protein molecular weight marker mix (molecular weight range 6KD-188KD) 

added to the first and/or last well on the gel. The gel was run by electrophoresis at a 

constant voltage of 200V for 45minutes. The running buffer (Nu PAGE™ MES buffer, 

Invitrogen, UK) was used with 5 00pi antioxidant (Invitrogen, UK) added to 200ml of the 

running buffer for the inner tank. Once the dye front was approximately 5-10cm from the 

bottom of the gel, the gel was removed and used for western blot analysis.

2.2.4.4. W estern Blotting

Separated protein samples were transferred to a nitro-cellulose membrane using the Nu 

PAGE™ wet blotting tank. For this purpose the gel was removed from the electrophoresis 

tank and transferred onto a nitrocellulose membrane (Invitrogen, UK). Before transferring 

the membrane, the Nu PAGE™ gel sandwich was pre-soaked with transfer buffer with 

500pl antioxidant added to 1ml of transfer buffer (with 10% or 20% methanol depending
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on the number of gels being transferred). The gel sandwich contains a pre-cut 

nitrocellulose membrane sandwiched between two filter papers. The gel tank was set up as 

follows

1. The first sheet of filter paper, soaked in transfer buffer was placed neatly on to 

the gel avoiding any air bubbles.

2. Then the nitro-cellulose membrane was laid on the gel, and then a further sheet of 

filter paper, all soaked in transfer buffer was added to the top.

3. The sandwich was rolled with a glass pipette to eliminate any air bubbles

4. The sandwich was placed into the transfer tank and run at 30V for approximately 

60 minutes, the time taken for the pre-stained marker proteins to be completely 

transferred.

Once the transfer was completed, the membrane was blocked by shaking for a minimum of 

1 hour in 50 ml of block buffer (5% Marvel [dried milk] in PBS-0.01% Tween) at room 

temperature. The nitro-cellulose filter was washed in wash buffer (PBS-T) for 10 minutes. 

The filter was then placed in 7ml blocking buffer containing suitable primary antibody and 

incubated at room temperature for 1 hour with gentle shaking. The primary antibody 

solution was removed and the filter rinsed in blocking buffer then washed 1x15 minutes 

and 2x 5minutes in 100ml volumes of fresh PBS-T. The filter was then incubated in 20 ml 

blocking buffer containing a 1/5000 dilution of the applicable HRP-linked secondary 

antibody for 1 hour at room temperature with gentle shaking. The filter was washed Ix for 

15 minutes and 4x for 5 minutes with PBS-T buffer. Excess surface liquid was removed 

from the filter by briefly blotting with a piece of Whatman 3MM paper. The detection 

consisted of incubating the filter in an equal volume of an Amersham Enhanced
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chemilluminescence (ECL) detection reagents 1 and 2 for 1 minute at room temperature. 

The excess detection solution was drained off the nitro-cellulose filter and this was then 

wrapped in Saran wrap and exposed to Amersham ECL film for 30 seconds and up to 30 

minutes (depending on the strength of the signal).

2.2.4.5. Stripping W estern Blot Membranes

If a western blot membrane was required for multiple analyses with different probe 

antibodies then the initial primary and secondary antibodies were removed from the 

membrane by stripping. The membrane post exposure to the Amersham ECL film was 

washed for 10 minutes three times in PBS before being incubated for 1 hour at room 

temperature in Stripping Buffer (0.2M Glycine pH 2.5, 0.2% SDS). The membrane was 

then washed with copious amounts of PBS until all traces of the SDS were safely 

removed. The membrane was then blocked as per protocol for the next probing primary 

antibody.

2.2.4.6, Immunoprécipitation

For immunoprécipitation assays, O.lg of protein-A sepharose beads (Sigma) was pre­

swollen in NP40 lysis buffer overnight at 4^C. The next day, the beads were centrifuged at 

14000rpm at 4°C for 1 minute and washed three times with lysis buffer and finally 

resuspended in 1 volume lysis buffer (~300pl). Then lOpl of beads was added to SOpl 

protein extract plus 50pl lysis buffer for 1 hour with rotation at 4®C. The mixture was 

centrifuged and the supernatant was transferred to new microcentrifuge tubes. The 

antibody was diluted 1:10 and lp.1 added to supernatant and incubated with rotation at 4°C 

for 1 hour. Then lOpl of beads was added and further incubated for another 1 hour with 

rotation at 4°C. The mix was centrifuged and pellet washed 5x with 0.5ml lysis buffer. To
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load onto a gel, traces of lysis buffer were removed and samples prepared for loading onto 

SDS-PAGE gel as described in section 2.2.4.3 above.

2.2.4.7. Expression and Purification of GST Proteins

Individual bacterial colonies {E coli BL21) containing recombinant pGEX-GST fusion 

expression vectors were used to inoculate 5 ml 2x YTA medium and grown overnight at 

37°C with shaking at 225rpm. 1ml of culture was used to inoculate 50ml of pre-warmed 

2x YTA medium and grown at 37°C with shaking until an Â oo of 0.6-0.8 was reached. 

Expression was induced by the addition of IPTG (final conc. 0.1 mM) and the culture was 

incubated with shaking at 37°C for a fiarther 5 hours. Bacteria were pelleted by 

centrifugation at 2500g for 30 minutes. The pellets were resuspended in 5ml (1/10 

volume) of BugBuster^^ Protein Extraction Reagent (Novagen) containing 1 tablet 

protease inhibitor cocktail (per 10ml reagent) and incubated for 30 minutes with rotation. 

The cell extracts were centrifuged at 2500g for 30 minutes. 1ml aliquots of the 

supernatant were transferred to fresh tubes and stored at -70°C. Fusion proteins were 

purified on glutathionine-Sepharose beads by incubating 1ml supernatant (crude extract) 

with 50pl beads for 30 minutes at room temperature with rotation. The beads were 

pelleted in a microfuge (14000 rpm, 20 seconds) and washed 3x 0.5 ml NETN (20mM 

Tris-HCL, pH 8.0), lOOmMNaCl, ImMEDTA, 0.5% Nonidet P-40 (NP-40) containing 1 

tablet protease inhibitor cocktail per 10ml buffer. The beads were resuspended in 50pl 

NETN and purified proteins were analysed by 10% SDS-PAGE (Section 2.2.4.3) before 

subsequent manipulations.
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2.2.4.S. I n  v i tr o  Transcription Translation and GST-Pull Down Assays

HPV-16 E2 was subcloned from pCMV-HPV16 E2 into the BamHl site of pBluescript

SKII under control of the T7 promoter using standard molecular biology techniques. 

HPV-16 E2 was in-vitro transcribed-translated using TNT Quick Coupled 

Transcription/Translation System (Promega) as instructed by the manufacturer to produce 

^̂ S labelled E2. The efficiency of transcription-translation was checked using a luciferase 

control plasmid construct to produce ^̂ S labelled luciferase. 5pi of each reaction was 

analysed by SDS-PAGE and proteins were fixed in 7% methanol and 7% glacial acetic 

acid for 15 minutes shaking and lOminutes with Amplify™ Fluorographic reagent 

(Amersham). The gel was transferred onto filter paper, dried and exposed for 

autoradiography at -70°C overnight.

GST pull-down assay were performed as follows: pGEX, pGEX-L2 and pGEX-L2 

deletion mutants were used to transform competent E  coli BL21 cells. GST fusion 

proteins were expressed and purified as described in section 2.2.4.7. The proteins 

immobilised on beads were pre-washed three times in pull-down buffer (PDB: 50mM Tris 

pH 7.9, lOOmMNaCl, ImM DTT, 0.5mM EGTA, 0.5% NP-40, ImMPMSF). The NaCl 

concentration in PDB can be changed to assess the specificity of binding. 7.5pl ^̂ S labelled 

in vitro translated protein was then incubated with approximately Ipl immobilised fusion 

protein (approximately lOpl protein on beads) in a total volume of 200ql fresh PDB for 30 

minutes at 4°C with rotation. The beads were pelleted in a microfuge (14000 rpm, lOsec) 

washed four times in PDB. Bound proteins were separated by 10% SDS-PAGE, fixed, the 

gel was dried and exposed for autoradiography at ~ l(fC  overnight. Bands were then 

analysed by densitometry using a UMAX Powerlook III Flatbed scanner and ImageQuant 

v5.2 software.
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2.2.4.9. Pulse-chase Methionine labelling for protein Half-Life

Cells were plated out at 1.2x10*' cells/100mm dishes (to give -80%  confluency when

labelling). Culture medium was aspirated from dishes and cells washed once with PBS and 

once with 5ml Ix short term labelling (STL) medium. Cells were then incubated with 

STLM (STL, 5% DFCS, 4mM L-Glutamine) for 15 minutes. The STLM was aspirated 

and STLM with [^^S] methionine (0.2pCi/ml) was added to cells for 1 hour at 37®C, 5% 

CO2  to pulse cells. To chase, the dishes were washed with Ix chase medium (10% FCS in 

DIMEM) then incubated with 10ml chase medium. For protein half-life studies, cells were 

harvested over a described time course. To harvest cells, chase medium was removed and 

washed Ix with 5ml PBS. 1ml of trypsin was added per dish. Once detached, 4ml of chase 

medium was added and aspirated and centrifuged at 14000rpm at 4°C for 10 minutes. NP- 

40 lysis buffer was used to harvest the cells as described in section 2.2.4.1. To analyse for 

protein half-life, cell lysates were immunoprecipitated with required antibody as described 

in section 2.2.4.6. The gel was dried and exposed for autoradiography at -70°C overnight. 

Bands were then analysed by densitometry using a UMAX Powerlook III Flatbed scanner 

and ImageQuant v5.2 software.

2.2.4.10. Cydoheximide treatment for protein Half-Life

Cells were plated out at 1.2x10^ cells in 100mm dishes then left for 24 hours before being

treated with cydoheximide (CHX). CHX (Sigma-Aldrich) in DMSO was added to a final 

concentration of lOOpg/ml to each plate and DMSO only was used as a negative control. 

Cells were harvested in SDS lysis buffer at regular time intervals after CHX/DMSG 

addition. Lysates were then run on Nu PAGE™ pre cast gel system (Invitrogen), before 

being transferred to a nitrocellulose membrane for probing. Bands were then analysed by
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densitometry using a UMAX Powerlook III Flatbed scanner and ImageQuant v5.2 

software.

2.2.5. Immunofluorescence

Round cover slips were first washed in distilled water, air-dried and put into a beaker for 

autoclaving. The cover slips were placed in 16 well tissue culture plates and cells seeded 

1x10^ cells per well. All transfections for immunofluorescence studies were performed 

using LIPOFECTAMINE™ according to the manufacturer’s instructions. Twenty-four 

hours after transfection, the cells were washed twice with PBS and fixed by 10 minute 

incubation at room temperature with 1.85% formaldehyde (Sigma) diluted in PBS 

containing 2% sucrose and washed three times with PBS. They were permeablilsed by 10 

minute incubation at room temperature with 0.5% NP40 in PBS containing 10% sucrose 

and washed three times with 1% FCS in PBS After washes with 1% FCS in PBS, 

coverslips were mounted in AFl (Citifluor, UK). Fluorescence was analysed using a Leica 

TCS SP2 true confocal scanner (Leica-microsystems, Heidelberg Germany) with three 

lasers giving excitation lines at 488nm.
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CHAPTER 3: EFFECT OF THE HUMAN 

PAPILLOMA VIRUS TYPE 16 L2 PROTEIN ON THE 

FUNCTIONS OF THE E2 PROTEIN

3.1. The Viral Regulatory Protein E2

The viral E2 protein regulates viral transcription through binding as a dimer to its specific 

recognition sequences (binding sites) contained within the viral long control region 

(LCR). The LCR of mucosal papillomavimses has four E2 binding sites (E2BS1-4) (Fig 

1.3) (Desaintes and Demeret, 1996). Two of these sites are immediately upstream from 

the TATA box (E2BS 1,2), separated from each other and from the TATA box by 3 or 4 

base pairs. For the other two sites, one is beside the El DNA binding site involved in the 

regulation of viral DNA replication, and one is a further 300-400 bp upstream (Fig 1.3). 

In general, binding of E2 to E2BS 1, 2 and 3 causes transcriptional repression, while E2 

binding to E2BS 4 leads to activation (Demeret et al., 1997). The full-length E2 protein is 

essential for efficient viral DNA replication. The El protein has DNA binding, DNA 

helicase and ATPase activities and plays a key role in viral DNA replication. Both El and 

E2 proteins bind to sites located within the LCR called the origin of DNA replication 

(on) (Chiang et al., 1992), and are the only viral proteins necessary to initiate replication 

from the ori (Chow and Broker, 1994). The ability of E2 to form a complex with El is 

mediated by the amino-terminal portion of E2.

In BPV-1, CO-expression of L2 and E2 causes the redistribution of E2 into PODs, leading 

to the suggestion that a major redistribution of viral components occurs during virion
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assembly (Day et al., 1998; Heino et al., 2000). Despite the obseived co-localisation of 

E2 and L2 to PODs, little is known about the effect of this interaction on E2 function in 

viral transcription regulation or replication. As such the effect of the interaction of HPV- 

16 E2 and HPV-16 L2 on the transcription transactivation and replication function of E2 

was investigated.

3.1.1. Down-regulation of the transcription transactivation function of 

HPV-16 E2 by HPV-16 L2

In order to determine the effect of L2 on E2 function in transcription transactivation, the

role of E2 in enhancing transcription from the HPV-18 LCR was investigated. The BPV- 

4 LCR was also used to obseive activation of transcription transactivation from a 

different promoter. C33a and U20S cells were transfected with wild type HPV-18 LCR 

or BPV-4 LCR luciferase reporter constmcts and pCMV-E2,6. In both cell lines, E2 

activated transcription from the HPV-18 and BPV-4 promoters as described previously 

(Jackson and Campo, 1995; Morgan et al., 1998; Steger and Corbach, 1997). This 

activation was approximately one and a half fold to two fold at low and inteiinediate 

levels of E2 while high levels of E2 results in down-regulation of transcription 

transactivation (Fig 3.1) indicating that over expression of E2 résultés in the down- 

regulation of transcription transactivation from the wild type HPV-18 and BPV-4 LCR 

promoters. This down-regulation has been shown to occur as a result of E2 binding to 

E2BS 1 interfering with TBP binding to the TATA-box (Steger et al., 1995) or by 

competing with the cellular transcription factor Spl, which binds to a site overlapping 

E2BS 3 (Demeret et al., 1994; Demeret et al., 1997; Tan et al., 1994). This is further
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elucidated with the observation that overexpression of E2 increases transcription 

activation of an SV40 promoter (Morgan et al., 1998) and mutations in the E2BS 1-3 

have been shown to lead to an increase in transcription activation eliminating trans­

repression (Morgan et al., 1998; Phelps and Howley, 1987; Vance et al., 1999), 

indicating that down-regulation is mediated tlii'ough E2 binding to its E2BS. E2BS 4 has 

been shown to be the major site for E2 activation on the LCR with which it has its highest 

binding affinity (Steger and Corbach, 1997).

In this study, E2 responsive reporter constmcts derived from the HPV-18 LCR with 

mutations in E2BS 1 (pl8LCR~BSl) or E2BS 1-3 (pl8LCR-BSl-3) to prevent E2 

binding these sites (Fig 3.2) and two synthetic promoters consisting of six multimerized 

E2BS 4 fused to the HPV-18 TATA (pl8-6E2) or tk promoter (ptk6E2) were used. These 

reporter constmcts were chosen, as transcription is not repressed by E2 as obseived with 

wild type LCR. Any activity difference between these plasmids in a reporter assay is 

attributed to the binding of E2 to the E2BS, inducing transcription of the reporter gene. 

HaCaT and C33a cells were transfected with each plasmid and increasing amounts of 

pCMV-E2|6. The results indicated that luciferase expression increased with increasing 

amounts of E2 in both cell lines and no trans-repression was obseiwed even at the highest 

amounts of E2 used. In HaCaT cells, the LCR was five to ten times more 

transcriptionally active when the E2BS 1 was mutated. Mutation of E2BS 1-3 similarly 

activated transcription about 12 fold. The use of synthetic promoters further increased 

transcription, with ptk6E2 showing the highest activation (Fig 3.3). In C33a cells, 

mutation of E2BS 1 or 1-3 gave activations of three to six fold while pi 8-6E2 and ptk6E2 

gave 15 and 35 fold aetivation respectively (Fig 3.4). In summary, overexpression of E2
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increased the transcription transactivation of all reporter constmcts in a dose dependent 

manner with complete abrogation of down-regulation. Although the kinetics of activation 

differed slightly between promoters and between different cell lines, a similar pattern of 

activation was observed for all promoters.

As the down-regulation of E2 transcription transactivation is abrogated using the E2 

responsive reporter constmcts described above, it provided a system to study any change 

in E2 function in the activation of transcription. To study the effect of HPV-16 L2 on the 

transactivation function of HPV-16 E2, HaCaT and C33a cells were transfected with 

pl8LCR-BSl, pl8LCR-BSl-3, pl8-6E2, ptk6E2, pCMV-E2i6 and increasing amounts of 

pl6-HAL2, a HPV-16 L2 expressing plasmid. The amount of E2 was kept sub-optimal 

for E2-mediated transactivation to allow for detection of any effect of L2. The addition of 

L2 led to an inliibition of E2-mediated transactivation in a dose-dependent manner in 

both cell lines (Fig. 3.5 and Fig. 3.6). This was obseiwed for all reporter plasmids used 

although the kinetics of inhibition varied slightly from reporter to reporter. All reporters 

were however fully inhibited at the highest amounts of L2 used in both cell lines. The 

addition of L2 in the absence of E2 did not affect the constitutive activity of reporters 

(Fig 3.5 and Fig 3.6). To determine if L2 had any effect on a promoter not responsive to 

E2, C33a cells were transfeeted with ptkluc (the tk promoter reporter plasmid with no E2 

binding sites), and increasing amounts of pl6-HAL2. The results indicate that L2 and E2 

co-expression has no effect on the tk promoter activity (Fig. 3.7).
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3.1.2. HPV-16 L2 does not affect the replication function of HPV-16 E2

E2 binds to El and promotes origin-dependent viral replication. The effect of HPV-16 L2

on the ability of HPV-16 E2 to co-operate with HPV-16 El in a transient DNA 

replication assay was investigated. The DNA replication assays were performed in C33a 

cells, because replication assays did not work in HaCaT cells, perhaps due to a decrease 

in cdk2/cyclin E activity as described for HeLa cells (Lin et al., 2000). C33a cells were 

transfected with pl6ori-m (a plasmid which contains the HPV16 origin of replication 

cloned into pSKII(-), with a point mutation at 115 from C to A to create a Dpnl 

restriction enzyme site), pCMV-El i6, and pCMV-E2i6 with or without pl6-HAL2 and 

assayed for E2 mediated DNA replication. DNA replication was dependent on the 

presence of pl6ori-m, El and E2. Forty-eight hours post transfection, low molecular 

weight DNA was extracted using the Hiit protocol (Hirt, 1967) and linearised by 

digestion with Xmnl. The linearised plasmid was further digested with Dpnl, which 

cleaves only when its reeognition site is methylated. Xmnl linearises pl6ori-m while 

Dpnl digests only dam methylated unreplicated DNA. Replication was assayed after 

Xmnl and Dpnl digestion by detection of an undigested but linearised pl6ori-m band. In 

the absence of E2, no replication took place, while at lOng of E2, a replieated band was 

detected, increasing with E2 concentrations (Fig. 3.8a). There was no replication in the 

presence of L2 and absence of E2. The results indicate that L2 had little effect on the 

replication activity of E2 (Fig. 3.8a and b). Altogether, these results indicate that L2 has a 

selective effect on the functions of E2. L2 drastically inhibits the transcriptional function 

of E2 but has little effect on replication.
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Figure 3.1. Transactivation of HPV-18 LCR and BPV-4 LCR luciferase reporter 

constructs by HPV-16 E2 in C33a and U20S cells respectively. C33a and U20S cells 

were transiently transfected with 0.1 pg of each luciferase reporter construct and with 

increasing amounts of the E2 expression plasmid pCMV-E2i6, (0.01 pg, 0.1 pg and Ipg). 

The total amount of DNA was kept constant by adding appropriate amounts of the 

parental plasmid pCMV. Each experiment was performed in triplicate. Transactivation is 

shown as fold activation of luciferase expression over that of the reporter plasmids 

without E2, taken arbitarily as 1.
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Figure 3.2. Schematic representation of luciferase reporter plasmids. The first three 

plasmids contain respectively the wild type LCR of HPV-18 (pHPV18-LCR), the LCR 

with four point mutations in the E2 binding site 1 (pHPV18-LCR-BS1 ) or four point 

mutations in each of sites 1 to 3 (pHPVl 8-LCR-BS 1-3). The other two plasmids are p i8- 

6E2 containing six E2 binding sites upstream of the HPV-18 TATA and the E2-minimal 

promoter constiuets ptk6E2, containing six E2 binding sites upstream of the tk promoter.

114



V
S
k

ao
U
k

o
a

(2

a
u

cS
o
a

o
>• pN
%

a
o
a

n
M

n
3 g3( S

o
a

a
u
u
00

k
s

m %

tf l
a

a
u
hJ
00

É
a

rT
V 4
C/5
aa
u
N ^
00

ia
fS
a
VO

I
00

r4
M
VO

a



Chapter Three_________________________________________________________ Results

Figure 3.3. Transactivation of HPV-18 LCR BS mutants and E2 minimal promoter 

constructs by HPV-16 E2 in HaCaT cells. HaCaT cells were transiently transfected 

with 0.1 |ig of each luciferase reporter construct (BSl, BS 1,2,3, pl8-6E2, and ptk6E2) 

and with increasing amounts of the E2 expression plasmid pCMV-E2]6 (O.Olng, 0.1 ng, 

Ing and lOng). Shown are representative results from each promoter in HaCaT cells. The 

total amount of DNA was kept constant by adding appropriate amounts of the parental 

plasmid pCMV, Each experiment was performed in triplicate. Transactivation is shown 

as fold activation of luciferase expression over that of the reporter plasmids without E2, 

taken arbitarily as 1.
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Figure 3.4. Transactivation of HPV-18 LCR BS mutants and E2 minimal promoter 

constructs by HPV-16 E2 in C33a cells. C33a cells were transiently transfected with 

O.lpg of each luciferase reporter construct (BSl, BSl,2,3, pl8-6E2, and ptk6E2) and 

with increasing amounts of the E2 expression plasmid pCMV-E2i6, (O.Olng, O.lng, Ing 

and lOng). Shown are representative results from each promoter in C33a cells. The total 

amount of DNA was kept constant by adding appropriate amounts of the parental plasmid 

pCMV. Each experiment was performed in triplicate. Transactivation is shown as fold 

activation of luciferase expression over that of the reporter plasmids without E2, taken 

arbitarily as 1.
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Figure 3.5. HPV-16 L2 down-regulates the transcription transactivation function of 

E2 in HaCaT cells. HaCaT cells were transiently co-transfected with O.lpg of each 

luciferase reporter construct and Ing pCMV-E2i6 with increasing amounts of pl6~HAL2, 

(O.OSpg, O.lpg, 0.5pg and Ipg). Each experiment was adjusted for total DNA by co­

transfecting with the parental plasmid pCMV. Shown are representative experiments for 

each promoter (a) BSl, (b) BS1,2,3, (c) pl8-6E2 and (d) ptk6E2 in HaCaT cells. Each 

experiment was performed in triplicate. Transactivation is shown as fold activation of 

luciferase expression over that of the reporter plasmids without E2, taken arbitrarily as 1.
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Figure 3.6. HPV-16 L2 down-regulates the transcription transactivation function of 

E2 in C33a cells. C33a cells were transiently co-transfected with O.lpg of each luciferase 

reporter construct and Ing pCMV-E2i6 with increasing amounts of pl6-HAL2, (0.05pg,

O.lpg, 0.5pg and Ipg). Each experiment was adjusted for total DNA by co-transfecting 

with the parental plasmid pCMV. Shown are representative experiments for each 

promoter (a) BSl, (b) BS1,2,3, (c) pl8-6E2 and (d) ptk6E2 in C33a cells. Each 

experiment was performed in triplicate. Transactivation is shown as fold activation of 

luciferase expression over that of the reporter plasmids without E2, taken arbitrarily as 1.
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Figure 3.7. Effect of HPV-16 L2 on the transactivation of tk and tk6E2 promoters 

by HPV-16 E2 in C33a cells. Cells were transiently co-transfected with O.lpg of each 

luciferase reporter construct and Ing pCMV-E2]6 with increasing amounts of pl6-HAL2, 

(O.lpg, 0.5pg and Ipg). The total amount of DNA was kept constant by adding 

appropriate amounts of the parental plasmid pCMV. Each experiment was performed in 

triplicate. Transactivation is shown as fold activation of luciferase expression over that of 

the reporter plasmids without E2, taken arbitarily as 1.
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Figure 3.8. Effect of HPV-16 L2 on the transient replication function of HPV-16 E2 

in C33a cells. (A) Phosphoimage of Southern blot hybridised with ^^P-labelled HPV-16 

ori plasmid. Cells were transfected with Ipg of pl6ori-m, +/- 5pg pCMV-Eli6, +/- lOng 

or lOOng pCMV-E2i6 and +/- Ipg or 2pg p 16-HAL2. For each reaction, Xnml was used 

to linearise p 16ori-m (odd-numbered lanes), and then Dpnl was used to digest replicated 

DNA (even-numbered lanes). The open arrow on the left indicates unreplicated plasmid 

and the closed arrow on the right indicates replicated plasmid. Replication occurred in the 

presence of lOng or lOOng of pCMV-E2,6 co-transfected with Ipg pl6ori-m and 5pg 

pCMV-El 1 6 (lanes 6 and 12). The absence of either El (lane 4) or E2 (lane 2) resulted in 

no detectable replication. The experiment was carried out three times with essentially the 

same results. (B) Quantification of DNA replication. Southern blots were scanned and 

extent of DNA replication was calculated by measuring the ratio of double cut/single cut 

bands, thus controlling for variations between experiments. The graph represents a 

summary of three independent experiments +/- standard deviation.
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CHAPTER 4: THE EFFECT OF L2 ON E2 PROTEIN 

EXPRESSION AND STABILITY

4.1. E2 expression and stability

Proteins utilize a variety of protease pathways for their destmction. These include non­

specific lysosymal protease; proteases involved with apoptosis such as caspase and 

calpains; and the ubiquitin-dependent proteasome pathway. The degradation of BPV-1 

E2 is regulated by phosphoiylation, which is required for efficient ubiquitination and 

subsequent degradation of E2 by the ubiquitin-proteasome pathway (Penrose and 

McBride, 2000). The ubiquitin-proteasome degradation pathway also controls the 

stability of HPV-18 E2 mediated thi’ough its amino-terminal transactivation domain 

(Bellanger et al., 2001). The full-length or transactivation domain of E2 is efficiently 

ubiquinated and proteasome inhibition in cells expressing E2 increases its half-life about 

sevenfold. As the transcription transactivation function of E2 is down regulated in the 

presence of L2, the effect of L2 on E2 expression was investigated.

4.1.1. Down-regiilation of HPV-16E2 protein expression by HPV-16 L2 

in HaCaT and U 20S  but not C33a cells

HPV-16 L2 down regulates HPV-16 E2-mediated transcription transactivation in a dose 

dependent manner. To deteimine whether the effect of L2 on E2 function in transcription 

transactivation was due to the degradation of E2, HaCaT, U20S and C33a cell lines were 

transfected with 4pg pCMV-E2i6 alone or 4pg of pCMV-E2]6 and 4pg p 16-HAL2 

expression plasmids and detection of E2 levels was accomplished by Western blotting. In
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HaCaT cells, the presence of L2 lead to a marked reduction in the level of the E2 protein 

(Fig 4.1a). In U20S cells, the level of E2 expression in the presence of L2 was also 

drastically reduced when compared to cells expressing E2 alone (Fig 4.1c). In contrast, 

co-expression of E2 and L2 in 03 3a cells resulted in no marked reduction in the level of 

the E2 protein (Fig 4.Id). The effect of L2 on E2 protein levels in HaCaT cells was 

further investigated using a stable E2 expression system established in HaCaT cells. This 

system provided a functional and detectable level of E2 in HaCaT cells. Transfection of 

HaCaT-E2 cells with 4pg pl6-HAL2 lead to a marked reduction in the level of the E2 

with actin levels remaining unchanged (Fig 4.1b). These results indicate that the effect of 

L2 on E2 levels is a cell type dependent effect.

As the degradation of E2 is proteasome mediated (Bellanger et al., 2001; Pem'ose and 

McBride, 2000), the down-regulation of E2 protein expression by L2 was further 

investigated to deteimine whether this effect was proteasome dependent. A variety of 

proteasome inliibitors were used, which have been shown to inhibit proteasome-mediated 

degradation of E2 (Penrose and McBride, 2000). HaCaT and C33a cells were transfected 

with 4pg pCMV-E2i6 alone or 4|ig of pCMV-E2i6 and 4|u.g pl6-HAL2. The cells were 

then treated 24h post transfection with each proteasome inliibitor for 8h. The inhibitors 

used were 5pM MG132, 12.5pM Lactacystin, lOOpM ALLN (calpain inhibitor 1) and 

lOOpM ALLM (calpain inhibitor 11) and detection of E2 levels was accomplished by 

Western blotting. In untreated HaCaT cells, the presence of L2 lead to an -75% reduction 

in E2 level while no reduction was obseiwed in C33a cells. Treatment with all proteaome 

inhibitors led a 30% increase in E2 protein levels in both cell lines transfected with E2
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alone. In the presence of L2, treatment with all proteasome inhibitors did not restore the 

level of E2 in HaCaT cells expressing both E2 and L2 (Fig 4.2). In contrast, in C33a 

cells, the inhibitors increased the amount of E2 present in cells expressing both E2 and 

L2 to similar levels as cells expressing E2 alone (Fig 4.2). These results conclude that the 

proteasome degradation pathway is not involved in L2 mediated decrease in E2 protein 

levels as proteasome inhibition fails to restore E2 levels in the presence of L2. This leads 

to the possibility that the effect of L2 could be acting at the level of protein transcription.

4.1.2 L2 does not alter E2 mRNA transcription.

To ascertain whether the decrease in E2 protein in HaCaT cells expressing L2 was due at 

least in part to inhibition of E2 mRNA sysnthesis, HaCaT cells were transfected with 4pg 

pCMV-E2]6 +/- 4pg pl6-HAL2 and total RNA isolated. The RNA preparations were 

analysed by comparing RNA extracted from cells expressing E2 or co-expressing E2 and 

L2 after RT-PCR. The results indicated that there was no difference in the level of E2 in 

cells expressing E2 alone compared with cells expressing both E2 and L2 indicating that 

L2-induced decrease in E2 protein level is a post-transcriptional process (Fig 4.3a).

A Real Time Quantitative PCR was also used to investigate differences in E2 mRNA 

synthesis due to co-expression of E2 with L2. HaCaT cells were seeded and transfected 

with 4pg pCMV-E2i6 +/- 4pg pl6-HAL2, and total RNA was isolated and resuspended 

in RNase-free water. The results indicated that there were no differences in E2 mRNA 

levels in cells transfected with pCMV-E2,6 or pCMV-E2i6 and pl6-HAL2, as all the 

amplification cmwes were coincident (Fig 4.3b). As E2 mRNA levels remain the same in
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the presence or absence of L2, these results indicate that the effect of L2 on E2 protein 

expression is not mediated by transcription inhibition.

4.1.3. L2 down-regulation of the transcriptional activity of E2 is 
proteasome independent

To further investigate if the effect of L2 on the transcription transactivation function of 

E2 could be overcome by inhibition of E2 degradation mediated thiough the proteasome, 

C33a cells were transfected with pl8-6E2, ptk6E2, pCMV-E2i6 and increasing amounts 

of p l6 “HAL2 and treated with the proteasome inhibitor MG 132. The amount of pCMV- 

E2i6 was kept sub-optimal for E2-mediated transactivation. For both promoters used, 

inhibition of E2 degradation had no effect on the down-regulation of E2 transcription 

transactivation by L2 as the presence or absence of MG 132 resulted in similar kinetics of 

inhibition of transcription transactivation (Fig 4.4). This further confinns that the down 

regulation of transcription transactivation function of E2 by L2 is not due to E2 protein 

degradation.

4.2. L2 does not affect E2 half-life/stability

Biosynthetic labelling teclmiques are commonly used in the study of biochemical 

properties, synthesis, processing, intracellular transport, secretion and degradation of 

proteins. To investigate the effect of L2 on E2 protein turnover, the half-life of E2 was 

measured by pulse-chase analysis in HaCaT cells. HaCaT cells were transfected with 

pCMV-E2i6, +/- pl6-HAL2 and labelled with [^^Sjmethionine for Ihi'. The labelling 

medium was removed and samples extracted at hourly time points up to 6h. E2 was 

immunoprecipitated and analysed by SDS PAGE and autoradiography. A graphical
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representation of the experiment shown in Fig 4.5, illustrates that E2 had a half-life of 

-75 minutes with -60% degradation observed after 2 hour. In HaCaT cells co-transfected 

with both pCMV-E2i6 and pl6-HAL2, the level of residual E2 was lower than in cells 

transfected with only pCMV-E2i6 but the half-life remained similar (Fig 4.5). The use of 

pulse-chase analysis to obseiwe E2 half-life in the presence of L2, results in labelled 

E2 being affected by a continuous expression of L2. The presence of L2 did not affect the 

level of E2 in cells expressing both E2 and L2 when compared to cells expressing E2 

alone.

To further investigate the effect of L2 on E2 half-life, cycloheximide (CHX), which shuts 

down protein translation, was used to treat HaCaT cells. As CHX shuts down protein 

translation, the effect of L2 on E2 will be as a result of the presence of residual L2 left 

after protein translation has been shut off. HaCaT cells were transfected with pCMV-E2i6 

or pCMV-E2i6 and pl6-HAL2. CHX was added and cells were haiwested over an hourly 

time course up to 8 hours. The E2 protein was detected using Western blotting analysed 

by SDS PAGE. Dimethyl sulfoxide (DMSO) tlie solvent for CHX was used as a control. 

A graphical representation of the experiment shown in Fig 4.6, illustrates that E2 had a 

half-life of -110 minutes with -60% degradation also obseiwed after 2 hour (Fig 4.6). 

The half-life of E2 was slightly longer than the half-life seen with the pulse-chase 

experiment. In both experiments, the results also did not indicate a difference in E2 half- 

life in the presence of L2.
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Although there were slight differences in the measurement of protein turnover, both 

experiments indicated that L2 had no effect on the half-life of E2 in HaCaT cells. The 

reason why no difference in E2 half-life was detected is unclear. In both experiments L2 

reduced the level of E2 expressed and although less E2 was present, this residual E2 had 

no change in its half-life. These results suggest that L2 may act on E2 mRNA translation.
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Figure 4.1. HPV-16 L2 down-regulates E2 in HaCaT but not in C33a cells. (A), 

HaCaT cells were transfected with 4|ig pCMV-E2i6 (lane 1), or 4pg pCMV-E2i6 plus 

4|ig pl6-HAL2 (lane 2), or with 4pg pl6-HAL2 alone (lane 3). (B), HaCaT cells stably 

expressing E2 (lane 1) were transfected with 4pg pl6-HAL2 (lane 2). (C) U20S cells 

were transfected with 4pg pCMV-E2i6 (lane 1), or 4pg pCMV-E2i6 plus 4pg pl6-HAL2 

(lane 2). (D), C33a cells were transfected with 4pg pCMV-E2i6 (lane 1), or 4|ig pCMV- 

E2i6 plus 4pg pl6-HAL2 (lane 2). Cell were harvested using SDS-PAGE lysis buffer and 

extracts were analysed in independent Western blots with mouse anti-HA monoclonal 

antibody (HA.l 1) to probe for HA-L2, anti-E2 mouse monoclonal antibody TVG261 and 

mouse anti-actin antibodies.

134



HPV-16 L2 down-regulates E2 in HaCaT 
and U20S but not C33a cells.

a

Actin

1

E2 mm

Actin

] 2

E2 -

Actin

1 2

E2

Actin

35



Chapter Four_________________________________________________________ Results

Figure 4.2. HPV-16 L2 decreases the level of E2 in HaCaT cells in a proteasome 

independent manner. HaCaT cells or C33a cells were transiently transfected with 4pg 

pCMV“E2i6 alone lanes) or with 4pg pCMV-E2i6 and 4pg pl6-HAL2 (“+” lanes). 

After 24 hours the transfected cells were either treated for 8 h with the indicated 

proteasome inhibitors or kept untreated. All cells were harvested using SDS-PAGE lysis 

buffer and the different cell extracts were analysed by Western blot and revealed by anti- 

E2 mouse monoclonal antibody TVG261 and mouse anti-actin antibodies.
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Figure 4.3. HPV-16 L2 does not alter E2 mRNA transcription. (A) Total RNA from 

HaCaT cells transfected with pCMV-E2i6 alone or with pCMV-E2i6 and pl6-HAL2 

After RNA extraction and DNase treament, the extracted RNA was reverse transcribed to 

cDNA and PCR was performed using E2 and L2 primers. Lanes 1 and 2 show RNA from 

HaCaT transfected with E2 alone, and actin control respectively. Lanes 3 and 4 show 

RNA from cells transfected with L2 alone and actin control respectively. Lanes 5, 6 and 7 

show RNA from cells transfected with E2 and L2 as well as the actin control 

respectively. Lanes 8 and 9 show RNA from cells transfected with pCMV, which did not 

yield cDNA using the E2 and L2 primers. The actin control in lanes 2, 4 and 7 show the 

three actin isotypes (alpha, beta and gamma). All three isotypes were detected with the 

actin primers used. (B) Total RNA from HaCaT cells transfected with pCMV-E2i6 alone 

or with pCMV-E2i6 and pl6-HAL2 was digested with DNAse and reverse transcribed 

with random primers. Real time PCR was performed in triplicate with primers and probes 

for E2 and actin. There was no difference in E2 transcription in the presence or absence 

of L2, and all the amplification curves were coincident.
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Figure 4.4. HPV-16 L2 down-regulates the transcription transactivation function of 

E2 in cells is independent of E2 degradation. C33a cells were transiently co-transfected 

with 0.1 ng of luciferase reporter construct and Ing pCMV-E2i6 with increasing amounts 

of pl6-HAL2, (O.OSpg, 0.1 pg, 0.5pg and Ipg). Each experiment was adjusted for total 

DNA by co-transfecting with the parental plasmid pCMV. The experiment was 

conducted in the presence or absence of MG 132 treatment for 8 hours post-transfection. 

Shown are representative experiments for each promoter (a) pl8-6E2 (b) ptk6E2 in C33a 

cells. Transactivation is shown as fold activation of luciferase expression over that of the 

reporter plasmids without E2, taken arbitrarily as 1.
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Figure 4.5. The effect of HPV-16 L2 on the stability of HPV-16 E2 using 

methionine labelling in HaCaT cells. HaCaT cells were transiently co-transfected with 

4pg of pCMV-E2i6 or 4pg of pCMV-E2,6 and 4pg of pl6-HAL2. Twenty-four hours post 

transfection, the cells were incubated with [̂ ^S] methionine (0.2pCi/ml) for 1 hour at 

37°C, 5% CO2  to pulse cells. To detect protein half-life, cells were harvested using NP- 

40 lysis buffer over a six-hour time course. Detection of ̂ ^S-labelled E2 was achieved by 

immunoprécipitation with anti-E2 polyclonal antibody and exposed by autoradiography 

(a). Densitometry was carried out on bands and shown by graphical representation (b).
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Figure 4.6. The effect of HPV-16 L2 on the stability of HPV-16 E2 after 

cycloheximide treatment in HaCaT cells. HaCaT cells were transiently co-transfected 

with 4jig of pCMV-E2j6 or 4fig of pCMV-E2i6 and 4pg of pl6-HAL2. Twenty four 

hours post transfection, cells were treated with lOOpg/ml CHX in DMSO and DMSO 

only used as a negative control. Cells were harvested using SDS-PAGE lysis buffer at 

regular time intervals after CHX/DMSO addition for up to 8h. Samples were 

immunoblotted and samples probed for E2 by anti-E2 mouse monoclonal antibody 

TVG261 (a). Densitometry was carried out on bands and shown by graphical 

representation (b).
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CHAPTER 5: ANALYSIS OF HPV-16 L2 DELETION 
MUTANTS

5.1 Introduction

The interaction of HPV-16 L2 with HPV-16 E2 has been shown to result in the down 

regulation of the transcription transactivation function of E2 as well as a proteasome 

independent down-regulation of E2 expression in a cell dependent manner, with no effect 

on E2 mRNA synthesis. To detennine the domain or domains of L2 responsible for the 

alteration of E2 transcription transactivation or expression, deletion mutants of L2 (Fig 

5.1) were constructed. An in vitro protein-protein association assay was used to 

determine the ability of L2 and L2 deletion mutants to bind with E2. GPP fusion foims of 

each L2 deletion mutant were also constmcted to determine cellular localisation and 

luciferase transcription assays were performed to identify domain or domains of L2 

responsible for the down-regulation of E2 transcription transactivation.

5.2. Identification of E2-binding domains of L2

5.2.1. GST Gene Fusion System

Glutathione S-transferase is a naturally occumng enzyme that can be expressed in E. coli 

with full enzymatic activity. The system has been widely used for the expression, 

purification and detection of fusion proteins expressed in bacteria. Fusion proteins with 

the GST moiety at the amino teiminus and the protein of interest at the carboxyl terminus 

are expressed in bacteria. The protein accumulates within the cytoplasm and can be 

purified by affinity chromatography using immobilised glutathione. The HPV-16 L2 N-
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and C- tenninus deletion mutants were constmcted by inserting the deleted L2 sequences 

as a BamHI-EcoRl insert within the multiple cloning site of the pGEX-4T-2 vector. 

Expression of the fused protein is under the control of the tac promoter which can be 

induced by the addition of isopropyl (3-D thiogalactosidase (IPTG). The bacterial host 

strain used was E. coli BL21, a strain defective in OmpT and Lon protease production, 

designed to maximize expression of full-length fusion proteins by minimizing the effects 

of proteolytic degradation.

5.2.2. Construction of GST-L2 deletion mutants

The PCR amplified inserts from HPV-16 L2 deletion mutants were cloned into pGEX- 

4T-2 expression plasmid (Fig 5.2). L2 was amplified by PCR as a BamFIl-EcoRl 

fiagment and inserted into pGEX-4T-2. The restriction sites chosen ensured that all 

proteins would be inserted in frame. All mutants were expressed as fusion proteins with 

the GST moiety at the amino terminus and L2 or its deletion mutants at the carboxyl 

teiminus. For the C-teiminus L2 deletion mutants, the primer HPV-16 L2 BamHl 

forward was used for all forward reactions while the primers GST L2 1-50 (or 1-100, 1- 

200,1-300,1-400) reverse (Table 2.1) were used for the reverse reaction. For cloning of 

the amino teiminus deletion mutants, the primer HPV-16 L2 EcoRl reverse was used for 

all reverse reactions while the primers GST-L2 25-473 (or 50-473,150-473,250-473,350- 

473,390-473) forward (Table 2.1) were used for all fbiwaid reactions. For sequencing of 

GST-L2 deletion mutants, the following sequencing primers 5’- 

GGGCTGGCAAGCCACGTTTGGTG-3’ foiward corresponding to position 869-891 on 

the pGEX-4T-2 plasmid and 5 '-CCGGGAGCTGCATGTGTCAGAGG-3 ' reverse 

coiTesponding to position 1042-1020 were designed. Sequencing showed L2 and the L2
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deletion mutants all fused in frame with the GST protein. Restriction digest were also 

perfoimed to confiim that all L2 deletion inserts were of the conect size (Fig 5.3). The 

amino acid sequences of each L2 deletion mutant (Fig 5.1) were as follows:-

1. HPV-16 L2 amino acids 1-50

2. HPV-16 L2 amino acids 1-100

3. HPV-16 L2 amino acids 1-200

4. HPV-16 L2 amino acids 1-300

5. HPV-16 L2 amino acids 1-400

6. HPV-16 L2 amino acids 25-473

7. HPV-16 L2 amino acids 50-473

8. HPV-16 L2 amino acids 150-473

9. HPV-16 L2 amino acids 250-473

10. HPV-16 L2 amino acids 350-473

11. HPV-16 L2 amino acids 390-473

5.2.3. The amino terminus of L2 mediates binding with E2

GST pull-down assays were perfoimed to determine the domain or domains of L2 that 

mediate binding to E2. L2 and L2 deletion mutants were cloned into pGEX-4T-2 as 

described above. Bacteria were transformed with GST-L2 and each GST-L2 deletion 

mutants and grown at 37°C for 5 hours after induction with 0.5mM IPTG. Bacteria were 

haiwested, lysed and cell extracts were incubated with glutathione beads, which 

immobilises GST fusion proteins. Expression of GST-L2 and GST-L2 deletion mutants 

was analysed by SDS-PAGE and Western blotting. Immunoblotting with anti-GST
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antibody to detect expression levels of the GST-L2 deletion mutants showed that GST-L2 

and GST-L2 C-terminal deletion mutants all gave the expected migration on 

polyacrylamide gels (Fig 5.4). N-tenninal deletion mutants were also detected and the 

expected migration was also obseived, although with multiple banding indicating 

increased instability of mutants with deletions in the N teiminus.

Bacterially expressed GST-L2 and GST-L2 deletion mutants were immobilised onto 

glutathione beads and incubated with -methionine labelled HPV-16 E2, The result 

indicated that E2 interacts with GST-L2, with approximately 5% of input E2 bound to 

GST-L2 (Fig 5.4). The binding observed between E2 and GST alone was negligible when 

compared to binding of E2 with GST-L2. GST-L2 N-tenninal and C-teiminal deletion 

mutants were also bacterially expressed, immobilised on glutathione beads and incubated 

with labelled E2. The mutant GST-L2 1-50 showed strong binding with E2 (Fig 5.4a), 

all C-terminal mutants also showed binding with E2. The N-terminal deletion mutants all 

showed weak interaction with E2 indicating the loss of possible binding domains in the 

amino terminal portion of L2. The specificity of the interaction between E2 and L2 was 

confirmed the binding of labelled L2 with GST-E2 immobilised on beads. ^^S-L2 did 

not bind to bead immobilised GST. An umelated protein ^̂ S labelled luciferase did not 

bind to bead immobilised GST-E2 (Fig 5.4c).

To quantify the binding of GST-L2 and its deletion mutants with E2, the amount of ^̂ -S 

E2 bound to each fusion protein immobilised onto beads was measured by 

autoradiography. These values were then normalised by dividing them by the mount of
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GST-L2 proteins immobilised on beads. The latter was measured with the use of image 

analysis software by measuring bands of each ftision protein after SDS-PAGE and 

immunoblotting. The results indicated that binding of the first 50 N-terminal amino acids 

of L2 with E2 gave binding at levels observed for ftill-length L2. Mutant GST-L2 1-300 

showed a weak interaction with E2 probably as a result of confoimational changes in the 

protein (Fig 5.5). The GST-L2 C-teiminal deletion mutants did not bind E2 to levels 

obseiwed with binding with the ftill-length or N-terminal deletion mutants possibly as a 

result of loss of E2 binding domains.

The analysis of the expression of GST-L2 deletion mutants by SDS-PAGE western 

blotting with anti-GST antibody showed that GST-L2 and GST-L2 deletion mutants had 

undergone degradation, as several bands were present, in addition to the expected bands. 

This degradation prevents accurate quantification of the amount of E2 bound by the L2 

mutants, as the quantification method used does not take into consideration any E2 

binding by the GST-L2 breakdown product. Therefore the amount of E2 bound by L2 in 

fig 5.5 may be an underestimate. Nevertheless, the use of GST-pull down assays does 

give an indication of HPV-16 E2-L2 interaction in vitro as has previously been observed 

for BPV-1 (Heino et al., 2000). The results lead us to conclude that the interaction of L2 

with E2 is mediated through the amino terminus of L2.
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Figure 5.1. Schematic representation of HPV-16 L2 deletion mutants. L2 N-terminus 

and C-temiinus deletion mutants were generated by PGR from a HPV-16 genome 

containing plasmid.
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Figure 5.2. Graphical representation of pGEX-4T-2. The gene of interest is inserted 

into the multiple cloning site (MCS) of the vector and expressed as a fusion to the 

carboxyl tenninus of GST. Expression of the fused protein is under the control of the tac 

promoter which can be induced by the addition of IPTG.
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Figure 5.3. Digestion of GST-L2 N-terminal and C-terminal deletion mutants. Ijig of 

each plasmid was digested for Ih with BamHl-EcoRl and analysed using agarose gel 

electrophoresis and observed under UV light. All inserts gave bands at the expected 

mobility when compared with Ikb and lOObp ladders.
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Figure 5.4. The N-terminal domain of L2 mediates binding with E2. Bacterially 

expressed GST and GST-L2 (a) C-tenninal or (a) N-terminal deletion mutants 

immobilised on glutathione beads. lOpl of immobilised beads was incubated with 5pi 

labelled in vitro translated E2. (c) Bacterially expressed GST and GST-E2 were 

immobilised on glutathione beads. lOpl of immobilised beads was incubated with 5pi ^̂ S 

labelled in vitro translated L2 or lOpl ^̂ S labelled in vitro translated luciferase. Bounds 

proteins were separated by SDS-PAGE and visualised by autoradigraphy.
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Figure 5.5. Then N-terminal domain of L2 mediates binding with E2. Bacterially 

expressed GST and GST-L2 carboxyl terminal or amino terminal deletion mutants 

immobilised on glutathione beads were incubated with ^̂ S labelled in vitro translated E2. 

Bounds proteins were separated by SDS-PAGE and visualised by autoradigraphy. Graph 

represents binding of ^^S-methionine labelled E2 to immobilised GST or GST-L2 

deletion mutants normalised for amount of GST-L2 protein.

159



&X)
s

• pN
pO

CQ

s
r 4

^  w
\ o

f f l
; wo
G

* 3

s
0

CQ
a• m4

B

k
4->

1
%
a>

X
H

1

f f i

N  CO

li
M  <0

N  CO

(N CO

■ P U I Q  Z3 S - S C

o\o



Chapter Five___________________________________________________________Results

5.3. Visualisation of GFP-L2 deletion mutants 

5.3.1. The Green Fluorescent Protein

The green fluorescent protein, GFP (Fig 5.6a), is a spontaneously fluorescent protein 

isolated from the Pacific jellyfish, Aeqtioria Victoria which transduces, by energy 

transfer, the blue chemiluminescence of another protein, aequorin, into green fluorescent 

light. The molecular cloning of GFP cDNA and the demonstration by Chalfie et al (1994) 

that GFP can be expressed as a functional transgene has opened exciting new avenues of 

investigation in cell, developmental and molecular biology. Fluorescent GFP has been 

expressed in bacteria, yeast, plants, Drosophila, and mammalian cells. GFP can Fmction 

as a protein tag, as it tolerates N- and C-terminal fusion to a broad variety of proteins 

many of which have been shown to retain native function. When expressed in mammalian 

cells, fluorescence from wild type GFP is typically distributed tluoughout the cytoplasm 

and nucleus. The flexibility of GFP as a non-invasive marker in living cells allows for its 

use as a reporter of gene expression. The cDNA of GFP encodes a protein of 238 amino 

acids with the molecular weight of 26.9kDa. Only three amino acids serine 65,tyrosine 66 

and glycine 67 that make up the chi'omophore are responsible for the fluorescence. Its 

wild-type absorbance/ excitation peak is at 395 nm with a minor peak at 475 nm with 

extinction coefficients of roughly 30,000 and 7,000 M'‘ cm"’, respectively. The emission 

peak is at 508 nm.

5.3.2. Construction of GFP-L2 deletion mutants

To obtain a fusion form of HPV-16 L2 with GFP (Fig 5.6b), the L2 sequence was cloned 

into pEGFP-Cl vector (Fig 5.7) at the C-terminus of GFP using PCR. L2 cDNA was
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PCR amplified as a BamHl-EcoRl fragment from HPV-16 genome. The resulting 

plasmid was sequenced to confiiTn its identity and called pGFP-L2. A series of L2 N- 

terminus and C- terminus deletions of HPV-16 L2 were also designed and cloned into 

pEGFP-Cl vector at the C-tenninus of GFP. Primers were designed with BamHl-EcoRl 

restriction sites. For cloning into the pEGFP-Cl vector, the restriction sites Bgl II-EcoRl 

were used to clone each insert into the pEGFP-Cl plasmid.

5.3.3. Primer design and cloning

For the C-terminus L2 deletion mutants, the p r i m e r L2 BamHl forward was used 

for all forward reactions while the primers GFP L2 1-50 (or 1-100, 1-200,1-300,1-400) 

reverse (Table 2.1) were used for the reverse reaction. For cloning of the N-terminus 

deletion mutants, the primer HPV-16 L2 EcoRl reverse was used for all reverse reactions 

while the primers GFP-L2 25-473 (or 50-473,150-473,250-473,350-473,390-473) 

foi'ward (Table 2.1) were used for all forward reactions. For sequencing GFP-L2 and its 

deletion mutants, the sequencing primer 5’-CCTAGGAGCACTAAGCGA-3’ 

corresponding to position 679-658 of the pEGFP-Cl plasmid was used. All plasmids 

sequences had the L2 deletion fused to the GFP protein as a Bgl 11 (BamHl)-EcoRl 

insert. Sequences showed HPV-16 L2 inserts all fused in frame with the GFP fusion 

protein and designated pGFP-L2 1-400, pGFP-L2 1-300, pGFP-L2 1-200, pGFP-L2 1- 

100, pGFP-L2 1-50, pGFP-L2 25-473, pGFP-L2 50-473, pGFP-L2 150-473, pGFP-L2 

250-473, pGFP-L2 350-473 and pGFP-L2 390-473. Restriction digest were also 

perfoiuied to confinn that all L2 deletion inserts were of the coiTect size (Fig 5.8).
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5.3.4. Detection of GFP-L2 and its deletion mutants

To determine the localisation of GFP-L2 and its deletion mutants, HaCaT cells were first 

transiently transfected with varying amounts of GFP-L2 and the vector expressing GFP 

alone. Cells were seeded onto iri 01 coverslips in 24-well plates at a density of 10̂  

cells/well and cultured overnight. When 80% confluent, cells were transfected with 5ng, 

lOng, 25ng, 50ng lOOng, 0.5pg, Ipg or 5pg of pGFP-L2 or pEGFP (GPF-L2 or GFP 

alone expressing plasmids). A DNA concentration of lOOng was chosen for subsequent 

transfections as it gave best results for efficiency of transfection.

Twenty-four hours after transfection, the cells were washed twice with PBS and fixed by 

10-min incubation at room temperature with 1.85% formaldehyde diluted in PBS 

containing 2% sucrose, and washed three times with PBS. Staining for DNA was done 

using 4’6’-Diamino-2-phenylindole (DAPI) that stains nucleic acids in general and 

fluoresces in the deep blue spectium. Cells were incubated with a DAPI staining solution 

(a 1/100 dilution from a lOpg/ml stock of DAPI in washing buffer) for lOmins, washed in 

PBS-FCS and then distilled water (to remove traces of FCS) and dried before the 

coverslips were mounted in AFl (Citifluor, UK) and visualised using the confocal 

microscope as described in section 2.2.5. Cells transfected with GFP showed a green 

fluorescence uniformly distributed in the whole cell (Fig 5.9a) while GFP-L2 expressing 

cells resulted in a well-defined localisation to the nucleus (Fig 5.9b) suggesting that the 

nuclear localisation of GFP-L2 was exclusively due to L2 sequence. All cells even with 

the weakest fluorescence presented a nuclear localisation of GFP-L2 excluding the 

possibility that the cellular localisation of GFP-L2 was due to its over expression.

163



Chapter Five___________________________________________________________Results

In order to determine the localisation of GFP-L2 C-terminal deletion mutants, HaCaT 

cells were transfected with lOOng pGFP-L2 1-400, pGFP-L2 1-300, pGFP-L2 1-200, 

pGFP-L2 1-100 and pGFP-L2 1-50. Cells were fixed as described above, mounted and 

visualised using the confocal microscope. Cells expressing all C-terminal deletion 

mutants showed clear localisation to the nucleus (Fig 5.9c-g). Nuclear localisation results 

from the presence of an arginine rich DNA binding domain (Zhou et al., 1994) which has 

been shown to function as NLS sequences with N-terminal amino acids 1-60 of HPV-6b 

L2 being able to localise beta-galactosidase to the nucleus (Sun et al., 1995).

Transfection of lOOng of pGFP-L2 25-473, pGFP-L2 50-473, pGFP-L2 150-473, pGFP- 

L2 250-473, pGFP-L2 350-473 and pGFP-L2 390-473 in HaCaT cells all showed 

localisation to both the nucleus and the cytoplasm. In contrast to cells transfected with 

GFP alone with green fluorescence uniformly distributed in the whole cell when 

transfected, with the N-teiminal deletion mutants, clearly defined nucleus and cytoplasm 

could be identified (Fig 5.9h-m). Localisation to the nucleus results from the presence of 

NLS sequences at the C-terminus of L2. Deletion of sequences within the N teiminal 

protein of L2 appears to affect effective translocation or prevent retention of L2 within 

the nucleus. Both the N-teiminal DNA binding domain and the C-terminal NLS of HPV- 

6b L2 have been shown to be functional in protein nuclear transport and contribute to the 

translocation of L2 into the nucleus (Sun et al., 1995). In summaiy, GFP-L2 and GFP-L2 

C-teiminal deletion mutants all gave a localisation to the nucleus while the GFP-L2 N- 

teiminal deletion mutants gave a staining pattern that was both nuclear and cytoplasmic.
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5.3.5, Expression of GFP-L2 deletion mutants

To detect GFP-L2 and GFP-L2 deletion mutants by immunoblotting, HaCaT cells were 

transfected with 4g pGFP-L2 or 4p of each pGFP-L2 deletion mutants. Cells were 

harvested 24 hours post transfection and detection of GFP fusion proteins was 

accomplished by SDS-PAGE and Western blotting. Probing with HPV-16 L2 polyclonal 

rabbit serum detected a high steady state level of expression in cells expressing GFP-L2 

1-400, GFP-L2 1.300 and GFP-L2 1-200 (Fig 5.10a). Cells transfected with pGFP-L2 

showed a lower expression level with multiple banding obseived indicating a high level 

of protein instability. A low level of GFP-L2 1-100 could be detected while GFP-L2 1-50 

could not be detected using the L2 polyclonal rabbit semm possibly due to a loss of the 

L2 epitope. Mutants pGFP-L2 25-473 and pGFP-L2 50-473 showed a lower steady state 

level of expression while mutants pGFP-L2 150-473, 250-473, 350-473 and 390-473 

could not be detected using the L2 semm (Fig 5.10a). Differences in detection between 

the N-terminal and C-terminal deletion mutants could result from deletion of instability 

sequences located within the 3’-end of the L2 mRNA (Sokolowski et al., 1998) leading 

to increased expression of C-tenninal deletion mutants. All GFP-L2 C-terminal deletion 

mutants were also detected using an anti-GFP rabbit polyclonal antibody (Santa Cmz) 

including mutants GFP-L2 1-50 and GFP-L2 1-100, which could not be detected using 

the HPV-16 L2 polyclonal rabbit semm (Fig 5.10b). GFP-L2 as well as all N-terminal 

GFP-L2 deletion mutants could not be detected using the anti-GFP antibody.

Expression of papillomavirus stmctural proteins LI and L2 is tightly regulated resulting 

in difficulties in detection of L2 in mammalian cells by means of DNA transfections. 

This regulation has been linked to the differentiation status of cells, polyadenylation
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signals teiTninating transcripts before reaching the late region (Baker and Howley, 1987; 

Terhune et al., 2001) and mRNA encoding negative regulatory sequences that prevent 

nuclear export or destabilize the message (Kennedy et a l, 1990; Kennedy et al., 1991; 

Sokolowski et al., 1998). Transient expression of L2 in non-differentiated human cells 

has been shown to be highly improved by changing the RNA coding sequences (Leder et 

al., 2001; Zhou et al., 1999). Considering that GFP-L2 and N-terminal GFP-L2 deletion 

mutants could be visualised by immunofluorescence but not by Western blotting 

indicates that the process of protein extraction and SDS-PAGE analysis could contribute 

to the increased instability and reduced detection of L2 by immunoblotting.
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Figure 5,6. Schematic representation of the backbone of the green fluorescent 

protein. (A) GFP consists of eleven anti-parallel beta-sheets, which surround a co-axial 

helix enclosing the chromophor. The structure gives high stability to the protein, making 

it resistant to denaturing chemicals. (B) Schematic representation of HPV-16 L2 fused to 

the carboxyl terminus of GFP.
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Figure 5.7. Graphical representation of pEGFP-Cl. pEGFP-Cl is a GFP expression 

plasmid designed to generate fusion proteins for expression and localization studies, or 

expression of GFP in mammalian cells. The gene of interest is inserted into the multiple 

cloning site (MCS) of the vector and expressed as a fusion to the C-terminus of GFP.
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Figure 5.8. Digestion of pEGFF-L2 N-terminal and C-terminal deletion mutants.

Ifxg of each plasmid was digested for Ih with Nhel-EcoRl, analysed using agarose gel 

electrophoresis and observed under UV light. All inserts gave bands at the expected 

mobility when compared with Ikb and lOObp ladders.
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Figure 5.9. Visualisation of GFP-L2 and GFP-L2 deletion mutants. Confocal images 

of HaCaT cells transfected with lOOng of (a) pEGFP, (b) pGFP~L2 (c) pGFP-L2 1-400, 

(d) pGFP-L2 1-300, (e) pGFP-L2 1-200, (f) pGFP-L2 1-100, (g) pGFP-L2 1-50, (h) 

pGFP-L2 25-473, (i) pGFP-L2 50-473, (j) pGFP-L2 150-473, (k) pGFP-L2 250-473, (1) 

pGFP-L2 350-473 and (m) pGFP-L2 390-473, fixed after 24h and stained for DNA using 

DAPI. GFP alone showed a uniform distribution in the cell. GFP-L2 showed a well- 

defined localisation to the nucleus. The C-terminal deletion mutants also showed well- 

defined localisation to the nucleus. The N-terminal GFP-L2 deletion mutants showed a 

disperse localisation in both the cytoplasm and nucleus.
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Figure 5.10. Expression of GFP-L2 and GFP-L2 deletion mutants. HaCaT cells were 

transfected with 4pg pGFP-L2, or 4pg pGFP-L2 deletion mutants. Cell were harvested 

using SDS-PAGE lysis buffer and extracts were analysed by Western blotting with (A) 

HPV-16 L2 polyclonal rabbit serum (B) Anti-rabbit polyclonal antibody to probe for GFP 

fusion proteins.
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5.4. Analysis of the effect of L2 deletion mutants on E2 function

5.4.1. Construction of L2-deletion mutants in pCDNA expression vector

To investigate the domain or domains of L2 that mediate the down-regulation of E2 

transcription transactivation as well as E2 expression, the series of L2 deletion mutants 

was cloned into pCDNA3.1(+) expression vector. The pCDNA3.1(+) plasmid is a 5.4kb 

vector derived from pCDNA3 and designed for high-level stable and transient expression 

in mammalian hosts. It contains the CMV promoter, neomycin resistance gene and a 

multiple cloning site, which facilitates cloning. A series of primers were designed for 

cloning of both the N-terminal and the C-terminal deletions of HPV-16 L2 (Fig 5.1).

5.4.2 Primer design and cloning

The following primers were used to PGR amplify inserts for cloning into pCDNA 3.1+ 

vector. For the carboxyl terminus L2 deletion mutants, the ^nm.Qx HPV-16 L2atg BamHl 

forward was used for all forward reactions while the primers L2 1-50 (or 1-100, 1-200,1- 

300,1-400) reverse (Table 2.1) were used for the reverse reaction. For cloning of the 

amino terminus deletion mutants, the primer HPV-16 L2 EcoRl reverse was used for all 

reverse reactions while the primers L2 25-473atg (or 50-473atg, 150-473atg, 250-473atg, 

350-473atg, 390-473atg) forward (Table 2.1) were used for all forward reactions. For 

sequencing of pCDNA-L2 deletion mutants, the forward sequencing primer ‘5- 

ATTAATACGACTCACTATAGGGA-3’ corresponding to position 864-882 in 

pCDNA3.1 (+) and the reverse primer 5 ’-CTAGAAGGCACAGTCGAGGC-3 ’ 

corresponding to position 1249-1018 were designed. All plasmid sequences had the L2 

deletion as a BamHl-EcoRl insert with the ATG start site and designated pCDNAL2,
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pCDNAL2 1-400, pCDNAL2 1-300, pCDNAL2 1-200, pCDNAL2 1-100, pCDNAL2 1- 

50, pCDNAL2 25-473, pCDNAL2 50-473, pCDNAL2 150-473, pCDNAL2 250-473, 

pCDNAL2 350-473 and pCDNAL2 390-473. Restriction digests were also performed to 

confimi that all L2 deletion inserts were of the correct size (Fig 5.10).

5.4.3. Effect of L2 and L2 deletion mutants on the transcription 

transactivation function of E2

To determine the domain or domains of L2 that mediate the down regulation of the 

transcription transactivation function of E2, C33a and HaCaT cells were transfected with 

ptk6E2, pCMV-E2i6 and increasing amounts (0.1-lpg) of pl6-HAL2, pCDNAL2 or L2 

deletion mutants (pCDNAl-400, 1-300, 1-200, 1-100, 1-50, 25-473, 50-473, 150-473, 

250-473, 350-473 and 390-473). The amount of E2 was kept sub-optimal for E2- 

mediated transactivation. In C33a cells transfection with pl6-HAL2, pCDNAL2 or 

mutants pCDNAL2 1-400 and pCDNAL2 1-300, down-regulated E2 transcription 

transactivation in a dose dependent manner, completely repressing E2 activation to levels 

obseived with the base promoter in cells transfected with Ipg of plasmid (Fig 5.11a). 

Mutant 1-200 did not inhibit E2 activity while mutants 1-100 and 1-50 inhibited E2 

activity but not to levels observed with full-length L2. For the N-terminus L2 deletion 

mutants, all mutants with the exception of 150-473 were able to fully inhibit E2 

transcription transactivation (Fig 5.11b). In HaCaT cells, mutants 1-200, 1-100 and 1-50 

did not inhibit E2 activity. The N-terminus deletion mutants 25-473, 350-473 and 390- 

473 inhibited E2 transcription transactivation at the highest amount of plasmid 

transfected while mutants 50-473, 150-473 and 250-473 showed no inhibition of E2 

activity (Fig 5.12b). In C33a cells, it appears that sequences between amino acids 150-
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200 inhibits repression of E2 transactivation function. It also appears that deletion of the 

C-tenninus of L2 from amino acid 200 also alleviates repression of E2 transcription 

transactivation which is better elucidated with results observed in HaCaT than in C33a 

cells. In HaCaT cells, transfection of the N-terminal deletion mutants did not give levels 

of repression of E2 transactivation as observed in C33a cells although results with mutant 

150-473 remained similar. Differences in the mode of transfection could contribute to 

differences in results obtained from both cell lines, as calcium phosphate precipitation is 

used to transfect C33a cells while LIPOFECTAMINE is used for transfection with 

HaCaT.

5.4.4. Effect of L2 and L2 deletion mutants on E2 expression

HPV-16 L2 down-regulates the expression level of HPV-16 E2 in HaCaT and U20S but

not C33a cells. To determine the domain or domains of L2 which mediate this down 

regulation of E2 expression, HaCaT cells were transiently transfected with 4pg pCMV- 

E2i6 alone or 4pg of pCMV-E2i6 and 4pg pl6-HAL2, pCDNAL2 or pCDNAL2 deletion 

mutants and detection of E2 levels was accomplished by Western blotting. In HaCaT 

cells, the expression of HA-L2 or wild type L2 lead to a marked reduction in the level of 

the E2 protein (Fig 5.13). In cells expressing E2 and L2 deletion mutants, the level of E2 

did not appear to be inhibited to levels comparable with the full-length L2 protein, 

indicating that the full-length protein is required for the down-regulation of E2 

expression.
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Figure 5.11. Digestion of pCDNA-L2 and pCDNA-L2 N-terminal and C-terminal 

deletion mutants. Ipg of each plasmid was digested for Ih with BamHl-EcoRl and 

analysed using agarose gel electrophoresis and observed under a UV light. All inserts 

gave bands at the expected mobility when compared with Ikb and lOObp ladders.
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Figure 5.12. Effect of L2 and L2 deletion mutants on the transcription 

transactivation function of E2 in C33a cells. C33a cells were transiently co-transfected 

with 0.1 jig of ptk6E2 luciferase reporter construct and Ing pCMV-E2i5 with increasing 

concentrations (0.1 pg, 0.5pg andlpg) of pCDNA16-L2 or (a) C-terminus and (b) N- 

terminus deletion mutants. Shown is the average of three consecutive experiments. 

Transactivation is shown as fold activation of luciferase expression over that of the 

reporter plasmids without E2, taken arbitrarily as 1.
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Figure 5.13. Effect of L2 and L2 deletion mutants on the transcription 

transactivation function of E2 in HaCaT cells, HaCaT ceils were transiently co­

transfected with 0.1 pg of ptk6E2 luciferase reporter construct and Ing pCMV-E225 with 

increasing concentrations (0.1 pg, 0.5pg andlpg) of pCDNA16-L2 or (a) C-terminus and 

(b) N-terminus deletion mutants. Shown is the average of three consecutive experiments. 

Transactivation is shown as fold activation of luciferase expression over that of the 

reporter plasmids without E2, taken arbitrarily as 1.
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Figure 5.14. Full length HPV-16 L2 is required to down-regulate E2 in HaCaT cells.

HaCaT cells were transfected with 4jag pCMV-E2i6, or 4jag pCMV-E2]6 plus 4pg pl6- 

HAL2, pCDNAL2 or pCDNAL2 (a) C-terminus and (b) N-terminus deletion mutants. 

Cell were harvested using SDS-PAGE lysis buffer and extracts were analysed in 

independent Western blots with anti-E2 mouse monoclonal antibody TVG261 and mouse 

anti-actin antibodies.
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Chapter Six_________________________________________________________Discussion

CHAPTER 6: DISCUSSION 

6.1. Introduction
The viral minor structural protein L2 of BPV-1, HPV-16 and HPV-33 has been shown to 

localise to dynamic nuclear substructures associated with the nuclear matiix called PODs 

(Day et al., 1998; Florin et al., 2002; Gomemaim et a l, 2002). Co-expression of BPV-1 

L2 and E2 causes the redistribution of E2 into PODs (Day et at., 1998; Heino et al., 

2000). Besides the co-localisation of E2 and L2 to PODs, little is known about the effect 

of this interaction on E2 function. As a result, the aim of this thesis was to address the 

question of whether L2 plays a role in regulating E2 functions during the viral life cycle. 

The study presents evidence in a HPV-16 system that L2 was able to down regulate the 

transcription transactivation function of L2 in a dose dependent manner but had no effect 

on E2 function in DNA replication. Although no effect of L2 on E2 mRNA levels was 

observed, L2 was able to reduce the level of E2 expression in a cell type dependent 

manner and this reduction was not proteasome dependent. Using L2 deletion mutants, the 

domain of L2 required for binding with E2 was identified. Binding of L2 did not correlate 

with the down regulation of E2 transcription transactivation function or a reduction of E2 

protein expression levels.
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6.2. Functional interaction between HPV-16 E2 and HPV-16 L2

6.2.1. Regulation of transcription

The viral E2 gene product regulates papillomavims gene expression. E2 is a sequence 

specific DNA-binding protein, which interacts directly with E2-dependent enhancer 

elements, located within the viral genomes thiough E2 binding sites (E2BS) and plays an 

essential role in the activation of viral gene expression. There are four E2BS on the LCR, 

which mediate the activity of E2 in transcriptional activation and repression. E2BS 1-3, 

mediate the ability of E2 to repress transcription (Demeret et a l, 1997; Dong et al., 1994; 

Romanczuk et al., 1990; Thierry and Howley, 1991). This is thought to result from the 

ability of E2 to prevent TATA box binding protein (TBP) from binding to the TATA box 

thus preventing transcriptional initiation when E2 is bound to E2BS 1 (Dostatni et al., 

1991). E2BS 3 is thought to mediate E2 repression by competing with the cellular 

transcription factor Spl, which binds to a site overlapping it (Demeret et al., 1997; Tan et 

al., 1994). E2BS 4 mediates activation of transcription by E2, especially under conditions 

where the other binding sites are dismpted (Demeret et al., 1997). During the productive 

stage of the viral life cycle, E2 regulates transcription of the viral E6 and E7 oncogenes. 

Malignant transformation usually occurs as a result of dismption of the E2 gene and 

consequent deregulated expression of E6 and E7 (Fig 1.7). Réintroduction of FlPV-18 E2 

to ceiwical carcinoma cell lines by transient transfection leads to repression of the 

endogenous E6/E7 transcription, inducing cell cycle arrest in G, mediated by the 

stabilization of p53 (Desaintes etal., 1997; Dowhanick a/., 1995).
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The role of E2 in regulating expression of the E6/E7 promoter of HPV-18 has been 

analysed using an in vitro transcription system to deteimine the dose response of E2 on 

the long control region (LCR) (Steger and Corbach, 1997). E2 was shown to activate 

transcription at low concentrations, while increasing the concentration of E2 resulted in 

complete promoter repression. BPV-4 E2 has also been shown to activate transcription 

from the BPV-4 LCR, which was up-regulated at low E2 concentrations while high levels 

of E2 resulted in down regulation of transcriptional activation (Jackson and Campo, 

1995; Morgan et a l, 1998).

The effect of increasing amounts of E2 on the activity of the LCR was further elucidated 

in this study. E2 regulated transcription from the wild type HPV-18 and BPV-4 

promoters in a dose dependent manner with low levels of E2 stimulating transcription. 

Activation of transcription has been shown to result horn E2 binding to E2BS 4 with 

which it has its highest binding efficiency (Steger and Corbach, 1997). An increase in the 

amount of E2 resulted in repression of transcription transactivation. This repression is 

mediated by E2 binding E2BS 1-3 with which it has been shown to bind with lower 

efficiency (Steger and Corbach, 1997). Elimination of repression of E2 transcription 

activation was achieved with the use of a variety of E2 responsive reporter constmcts 

derived from the HPV-18 LCR with mutations in E2BS 1 or E2BS 1-3 to prevent E2 

from binding these sites. Two synthetic promoters consisting of multimerized E2BS 

fused to the HPV-18 TATA or tk promoter were also used. E2 strongly activated 

transcription in a dose dependent manner with no repression observed even at the highest 

amounts of E2, as previously shown (Morgan et ciL, 1998; Phelps and Howley, 1987;
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Vance et al., 1999). The use of HPV-18-derived and synthetic E2 responsive promoters 

showed that the transcriptional transactivation activity of E2 was drastically inhibited by 

L2 in a dose dependent manner. These obseivations are in agreement with obseivations 

using a bovine system that showed repression of BPV-1 E2TA-dependent luciferase 

expression by increasing amounts of BPV-1 L2 in CV-1 3T3 cells (Heino et al., 2000). In 

this study, two human cell lines, HaCaT and C33a were used representing two different 

human models of carcinogenesis. In both cases, similai' results were obtained showing 

repression of HPV-16 E2 dependent luciferase expression by increasing amounts of 

HPV-16 L2. These results suggest that this aspect of the interaction between E2 and L2 

may be a common feature of papillomavimses of different types.

How L2 inhibits E2 transcriptional transactivation activity is not clear. Recruitment of E2 

to PODs by L2 may be the underlying mechanism. PODs are sites of protein modification 

and as a result, post-translational modifications of E2 may interfere with some of its 

activities. PML has been shown to regulate transcription of certain genes in either a 

positive or negative manner. PML interacts with Spl and inhibits Spl-mediated 

transcriptional activity of the epidemial growth factor receptor promoter by dismpting 

Spl-DNA binding (Vallian et a l, 1998). Recmitment of E2 to PODs could result in PML 

interference with Spl binding to the viral LCR, which could result in repression of the 

viral promoter (Tan et al., 1994).

Another possible mechanism for E2 transcription down regulation could result from L2 

acting as a transcription repressor with the ability to actively target E2 transcription
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initiation factors or indirectly by displacing the binding of E2 responsive transcription 

factors by competing for their binding sites. The N-tenninus of L2 binds viral DNA in a 

sequence independent process (Zhou et al., 1994). Binding of L2 to viral DNA could 

interfere with the activity of transcription factors that modulate E2 mediated transcription 

initiation such as TBP, TFIIB or Spl (Li et al., 1991; Rank and Lambert, 1995). E2 binds 

TBP and has been shown to act synergistically with exogenous TBP to facilitate high- 

level transcription from a minimal promoter (Ham et al., 1991; Rank and Lambert, 1995; 

Steger et al., 1995). L2 transcription repression could involve interference with the TBP- 

TATA box interaction affecting E2 mediated transcription initiation.

L2 has been shown to assoeiate with the transcription repressor PATZ (Gomemann et al., 

2002) (Table 1.4). PATZ (POZ-AT hook-zinc finger protein) is a member of the 

BTB/POZ family (for Broad complex, tramtrack, and brie à brae and POZ for poxvims 

and zinc finger), which associates with RNF4 RING finger protein, a mediator of 

androgen receptor activity and acts as a transcription repressor (Fedele et al., 2000). 

POZ/ZF (zinc finger) proteins display a transrepressive activity in a variety of cell types 

and on various promoters (Huynh and Bardwell, 1998). As with other POZ proteins, the 

repressor activity of PATZ is mediated by its POZ domain (Fedele et al., 2000). The 

mechanisms by which transrepression by PATZ occurs still remains unclear but its 

interaction with L2 could be implicated with repression of E2 transcription 

transactivation. PATZ has been shown to localise to nuclear dot and to colocalise with 

L2. The presence of PATZ and the recmitment of E2 to PODs by L2 could result in 

PATZ transrepression of E2 activation.
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The question arises as to why L2 should act to repress the transcription transactivation 

function of E2 during the viral life cycle. Expression of L2 represents a shift from the 

maintenance stage of the viral life cycle to the productive stage as cellular differentiation 

is initiated resulting in expression of the stmctural proteins. At this stage, the expression 

of E6/E7 needs to be down-regulated to enable cellular differentiation to proceed. 

Although over-expression of E2 down-regulates transcription of E6/E7, E2 is also needed 

to enhance genome replication. Expression of L2 could assist in down-regulating E2 

transcription transactivation from the viral LCR with E2 still being able to associate with 

El in genome replication. To further enhance this hypothesis, the effect of L2 on E2 

function in DNA replication was investigated.

6.2.2. DNA replication

Papillomavimses replicate their genomes as episomal DNA using E2 and El (LaPorta 

and Taichman, 1982). E2 binds to El and promotes origin-dependent viral DNA 

replication. In this study, transient replication assays were used to investigate the effect of 

L2 on E2 function in viral replication. These assays allowed for the detection of low-level 

replication eonesponding to the maintenance stage of the viral life cycle. At this stage, 

HPV-16 DNA has been shown to replicate bidirectionally via theta stmctures (Flores and 

Lambert, 1997). With eveiy round of replication, theta stmctures require initiation 

involving E2 tethering E 1 to the origin and allowing for the recmitment of the rest of the 

DNA replication machinery. In differentiated epithelial cells HPV-16 DNA has been 

shown to replicate by a rolling cycle mode of replication which is unidirectional and
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requires one initiation event leading to amplification of PV DNA resulting in multiple 

copies of the genome (Flores and Lambert, 1997) consistent with the productive phase of 

the viral life cycle.

The effect of L2 on the ability of E2 to co-operate with El in a transient DNA replication 

assay was studied. It was shown that expression of L2 had no effect on the ability of E2 

to enhance DNA replication in C33a cells as seen in figure 3.8. This is in agreement with 

previous studies showing that BPV-1 L2 does not interfere with the replication function 

of BPV-1 E2TA (Heino et aL, 2000). These results indicate that L2 preferentially inhibits 

the transcription transactivation function of E2 in both bovine and human papillomavims 

systems with no effect on E2 function in replication. The loss of E2 function in 

transcription transactivation but not replication as a result of expression of L2 during 

productive stage of the viral life cycle is supported by data showing that E2 mutants 

which had no transcription transactivation function but retained replication activity did 

not significantly interfere with the stable maintenance of episomes, the expression of late 

genes, or the differentiation-dependent amplification of the viral genome (Stubenrauch et 

al., 1998). Altogether, these results suggest a novel function for L2 as a possible negative 

regulator of E2 transcription transactivation during cell differentiation and the viral 

genome amplification stage of the viral life cycle.

In this study a transient replication system corresponding to the maintenance stage of the 

viral life cycle was used which requires one initiation event with every round of 

replication possibly requiring more E2. In this system, no effect of L2 on E2 function in
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replication was detected. As one initiation event is expected to occur during the 

productive stage of the viral life cycle, less E2 would be required suggesting that L2 

should not affect viral DNA amplification at this stage.

HPV-11 El, E2 and replicating DNA have been shown to associate with PODs after 

transient co-transfection of the ori plasmid and expression plasmids for El and E2 

(Swindle et aL, 1999), indicating that PODs could be sites of HPV DNA replication as 

observed with Herpes Simplex vims (HSV), which foim replication compartments 

juxtaposed to PODs (Lukonis and Weller, 1997). SV40 DNA replication also occurs in 

similar POD associated foci (Ishov and Maul, 1996) suggesting that recmitment of viral 

proteins to PODs with subsequent association with viral replication could be a common 

feature among DNA vimses. Although L2 does not affect E2 function in replication, L2 

could assist in the translocation of the necessary viral proteins required for replication 

and subsequently packaging.

6.2.3. Protein Expression

E2 degradation is mediated tlii’ough the ubiquitin-proteasome pathway (Bellanger et aL, 

2001; Pem'ose and McBride, 2000). L2 down-regulates the expression of E2 in HaCaT, 

and U20S cells as well as in HaCaT cells stably expressing E2 as shown in figure 4.1. 

This effect did not occur in C33a cells suggesting a cell type dependence for L2 induced 

down-regulation of E2 expression. The presence of proteasome inhibitors failed to restore 

E2 to normal amounts leading to the conclusion that proteasome mediated degradation is 

not the only mechanism implicated in L2-induced decrease of E2 levels. As E2 mRNA 

levels were shown not to change in cells with or without L2 expression (section 4.1.2),
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down-regulation of transcription of the E2 gene by L2 can be discounted. How L2 leads 

to such a decrease in E2 levels remains unclear, particularly as this down-regulation does 

not take place in C33a cells. As E2 gene transcription is not affected by L2, a possible 

mechanism for the down regulation of E2 repression could be the inhibition of E2 protein 

translation.

Interestingly L2 had no effect on E2 protein turnover in HaCaT cells (section 4.2). Even 

though both systems used to analyse E2 stability in the presence of L2 differed with 

respect to the measurement of protein turnover, the half-life of E2 remained unchanged. 

In pulse chase experiments, the degradation of E2 results from a continuous expression of 

L2 as protein translation is not switched off. Treatment of cells with cycloheximide 

(CHX) on the other hand efficiently shuts down protein translation. As a result, the 

observed E2 half-life is due to the effect of any residual L2 present.

In both systems, L2 did not appear to change the half-life of E2. The reason why no 

change in E2 half-life in the presence of L2 was obseived even though L2 is capable of 

reducing E2 levels is unclear. The experimental protocol used allows for the 

measurement of E2 half-life only after the effect of L2 on E2 protein levels has taken 

place. As a result, residual E2 protein not affected by L2 expression has similar kinetics 

of half-life with the wild type E2. A system whereby L2 could be induced instead of co­

transfecting with E2 could result in an improved analysis of the effect of L2 on E2 half- 

life.
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The down regulation of E2 protein expression by L2 is interesting as this effect occurs in 

HaCaT and U20S cells but not in C33a cells. HaCaT aie spontaneously immortalised 

kératinocytes (Boukamp et aL, 1988) while U20S are osteosarcoma cell lines. C33a are 

cervical caicinoma derived cells, which have no HPV DNA. The difference in E2 

expression in the presence of L2 could represent differences in the model of 

carcinogenesis represented by the different cell lines used. HaCaT cells represent an in 

vitro carcinogenesis model of human skin kératinocytes while U20S cells represent a 

model for carcinogenesis of human osteocytes. C33a cells represent an in vitro model for 

ceiwical carcinogenesis. The mechanism for L2 down regulation of E2 expression in one 

cell line but not the other requires further investigation.
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6.3. HPV-16 L2 deletion mutants and E2 function

The role of L2 during the life cycle of papillomavimses is still unclear, particularly as it 

has been shown that the major stmctmal protein LI can self assemble into capsid-like 

particles (Kirnbauer et aL, 1993; Zhou et aL, 1993), suggesting that L2 is not required in 

the assembly of the viral capsid. Recent studies have begun to enhance our understanding 

of the function of L2 with reports that L2 is able to increase the efficiency of DNA 

encapsidation (Zhao et aL, 1998) and infectivity of HPV-33 peudovirions generated in 

COS-7 cells (Unckell et aL, 1997). The obseiwation that co-expression of BPV-1 L2 and 

E2 causes the redistribution of E2 into PODs (Day et aL, 1998; Heino et aL, 2000) opens 

up the possibility that L2 could posses non-stmctural functions.

To further characterise the effect of L2 on E2 function, deletion mutants of L2 were 

constructed to identify domain or domains of L2 responsible for regulating E2 function in 

transcription transactivation and the modulation of E2 expression. The domain or 

domains responsible for direct physical interaction between E2 and L2 was also 

investigated.

6.3.1. L2-E2 Association

L2 is able to affect the transcription transactivation but not replication function of E2 as 

well as reduce the level of E2 expression, as a result, the ability of L2 to physically 

interact with E2 was investigated to determine if binding of L2 with E2 correlated with 

an effect on transcription transactivation and E2 protein expression levels. In this study
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Glutathione S-transferase (GST) pull-down assays were performed using GST-L2 and 

GST-L2 deletion mutants.

To generate GST-L2 deletion mutants, both N-terminal and C-terminal deletions of HPV- 

16 L2 were constructed to yield fusion proteins with the GST moiety at the amino 

teiminus. All mutants were cloned as BamHI-EcoRl inserts into the multiple cloning site 

of the pGEX-4T-2 plasmid (Amersham) in which, expression of GST is under the control 

of the tac promoter which can be induced using isopropyl p-D thiogalactoside (IPTG). 

All mutants were subsequently expressed in BL21 E. coli, which are protease deficient 

and designed to maximize expression of full-length fusion proteins. Once all mutants 

were sequenced to confirm that the inserts were in the correct orientation, expression 

studies were perfonned to optimise fusion protein expression for each mutant. 

Optimisation of expression involved growing bacteria transformed with GST-L2 or GST- 

L2 deletion mutants at various temperatures (30-37”C), for different times (3-24 hours) 

and induction with different amounts of IPTG (0.1-ImM) in order to determine the best 

growth conditions for each mutant. Expression of full-length GST-L2 and its deletion 

mutants proved quite difficult, as L2 appeared to be very unstable. As a result, when 

bacteria were lysed and the GST fusions were analysed by SDS-PAGE and Western 

blotting, multiple bands were often seen. With subsequent manipulation of the growth 

conditions, a temperature of 37“C and an incubation time of 5-6 hours after induction 

with 0.5mM IPTG was chosen as the best expected migration of each fusion protein 

analysed after SDS-PAGE and Western blotting was obseiwed in these conditions.
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GST pull-down assays were perfonned by incubating beads bound to GST-L2 or each 

GST-L2 deletion mutant with in vitro translated ^^S-methionine labelled HPV-16 E2. The 

results indicated that GST L2 deletion mutants expressing 1-50 and 1-100 amino acids of 

L2 fused to GST showed strong binding to E2, compamble to binding with full length L2. 

This indicated that the N-teiminus of L2 mediates binding with E2. BPV-1 E2 contains 

two BPV-1 L2 interaction domains (Heino et aL, 2000). No E2 interaction domains on 

L2 have previously been identified. A 30 amino acid sequence of HPV-33 L2 between 

amino acids 390-420 is required for localisation of L2 to PODs (Becker et aL, 2003). As 

a result, we could hypothesise that L2 localises to PODs via its C-terminal portion and 

binds E2 via its N-terminus recmiting it to PODs. Recmitment of E2 subsequently results 

in the down regulation of E2 transcription transactivation leading to the down regulation 

of E6/E7 expression. Recruitment of E2 to PODs by L2 also allows for the recmitment of 

the viral replication machinery facilitating genome amplification and subsequent 

packaging and release of the mature virion (Fig 6.1). This is confiimed by studies, which 

have shown that E2 enhances packaging of full-length plasmid DNA in BPV-1 

pseudovirions (Zhao et aL, 2000). E2 increased the number of VLPs incorporating a 

circular plasmid supporting the role of L2 and E2 interaction in facilitating packaging of 

the circular PV genome in to the viral capsid.

6.3.2. Cellular localisation of GFP-L2 and GFP-L2 deletion mutants

Papillomavims late genes are inefficiently expressed in undifferentiated cells possibly 

due to the presence of codons that are rarely used in mammalian cells. This could help in 

restricting late gene expression to teiminally differentiating cells. Consequently, 

detection of L2 with eucaryotic expression plasmids designed to produce L2 in
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mammalian cells is not very efficient. L2 mRNA has negative regulatory sequences in the 

3’ end, which reduces protein levels approximately 10 fold (Sokolowski et aL, 1998). In 

an attempt to obtain an efficient detection system for visualising L2 expressed from 

transiently transfected expression plasmids, fusion foims of L2 and L2 N-terminal and C- 

teiminal deletion mutants fused to the green florescent protein (GFP) were constmcted.

Fluorescence microscopy revealed HPV-16 GFP-L2 localised to the nucleus (Fig 5.5b). 

In this study no localisation to PODs was observed, in contrast to HPV-33 GFP L2, HPV- 

6b L2 or BPV-1 L2, which have all been shown to localise to PODs (Becker et aL, 2003; 

Roden et aL, 2001; Sun et aL, 1995). Differences in localisation could be a result of 

differences in the mode of transfection. The use of recombinant vaccinia virases or 

baculoviruses is commonly used (Xi and Banks, 1991; Zhou et aL, 1991) which appears 

to result in expression levels of L2, which permit visualisation of L2 localisation to PODs 

(Becker et aL, 2003; Roden et aL, 2001; Sun et aL, 1995). Codon modification of L2 has 

also been used to detect localisation by immunofluorescence (Heino et aL, 2000). In this 

study, transient transfections with plasmids expressing wild type L2 or L2 deletion 

mutants were used resulting in high levels of protein expression not permitting 

visualisation of co-localisation of L2 with PODs although localisation to the nucleus was 

obseiwed.

The C-terminal deletion mutants all localised specifically to the nucleus with their 

distribution not differing from wild type GFP-L2. Expression of the first 50 amino acids 

of L2 fused to GFP was sufficient for localisation to the nucleus suggesting the presence
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of a nuclear localisation signal (NLS) at the N-tenninus of HPV-16 L2. In contrast, the 

N-terminal deletion mutants localised to both tlie nucleus and the cytoplasm. As the 

mutant GFP-L2 1-50 localised to the nucleus and N-teiminal deletion mutants with 

sequences either completely or partially lacking the first 50 amino acids of L2 localised 

to both the nucleus and the cytoplasm, these results indicate that the sequences contained 

within the first 50 amino acids of L2 are sufficient to localise and retain GFP in the 

nucleus. Dismption of this sequence inhibits the effective retention of GFP to the nucleus 

as obseiwed with the N-teiminal deletion mutants. HPV-6b L2 contains tlnee potential 

NLS, localised at the N-tenninus, the C-tenninus and around amino acids 286 to 306 

(Sun et aL, 1995). HPV-33 L2 also has two NLS located within the central and C- 

teiminal part of L2, homologous to HPV-6b L2 NLS (Becker et aL, 2003). From this 

study, HPV-16 L2 has been shown to have an NLS at both the N and C-terminus.

6.3.3. Expression of L2 and L2 deletion mutants in HaCaT

GFP-L2 and GFP-L2 deletion mutant expression plasmids were transfected into HaCaT 

cells and protein extracts were analysed by SDS-PAGE and Western blotting to 

deteimine the levels of expression of each mutant. Detection of GFP-L2 and its deletion 

mutants was perfoiuied using an anti-HPV-16 L2 polyclonal rabbit serum and anti-GFP 

polyclonal antibody. GFP-L2 was detected at the expected migration but multiple bands 

were also detected indicating breakdown of the fusion protein. GFP-L2 mutants 1-400, 1- 

300 and 1-200 all gave quite a high steady state levels of expression. The L2 semm could 

not efficiently detect GFP-mutants 1-100 and 1-50 possibly due to loss of the L2 epitope. 

This is confirmed by the obseiwation that both could be detected using an anti-GFP 

antibody. Detection of the GFP-L2 N-temiinal deletion mutants 25-473 and 50-473 could
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be achieved with the L2 semm but a lower steady state of expression was obseiwed. The 

L2 semm could not detect mutants 150-473, 350-473 and 390-473. This loss of detection 

could be as a result of the presence of negative regulatoiy sequences present at the C- 

tenninus of L2 mRNA, which has been shown to reduce protein levels (Sokolowski et 

aL, 1998). No detection of bands at the expected migration for all N-terminus deletion 

mutants was obseiwed using an anti-GFP antibody. Although the GFP-L2 N-terminus 

deletion mutants could not be obseiwed by Western blotting, they could be efficiently 

detected by immunofluorescence. As such it is possible that the process of cell extraction 

and SDS polyacrylamide gel electrophoresis significantly reduces the ability to detect the 

mutants by immunoblotting

6.3.4. E2 function and L2 deletion mutants

The domain or domains of L2 that mediate the down-regulation of the transcription 

transactivation function of E2 were investigated. HPV-16 L2 and L2 deletion mutants 

were cloned into pCDNA 3.1 expression plasmid. All plasmids were sequenced to 

determine that all inserts were in the correct orientation and subsequently transfected into 

HaCaT and C33a cells to deteimine the effect of each deletion mutant on the transcription 

transactivation function of E2 in order to coiielate binding of L2 and E2 with the down- 

regulation of E2 mediated transcription transactivation. In C33a cells, most mutants lead 

to a down regulation of transcription transactivation at the highest amount of L2 used 

except for mutants 1-200 and 150-473, suggesting the presence of an overlapping 

sequence between amino acids 150-200 which seems to alleviate L2 induced inhibition of 

E2 transcription transactivation. Mutants 1-50 and 1-100 had less of an effect on E2 

transcription transactivation than full length L2. Plasmids expressing 350-473 and 390-
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473 amino acids of L2 gave strong repression of transcription transactivation at the 

highest amount of L2 transfected. In HaCaT cells, mutant 1-200 did not repress 

transcription as obseiwed with C33a cells. Mutants 1-100 and 1-50 also did not repress 

transcription transactivation at least not to levels comparable with full length L2. This 

appears to indicate that in HaCaT cells, deletion of the C-terminus of L2 alleviates the 

repression of E2 mediated transcription transactivation. The N-terminal deletion mutants 

of L2 in HaCaT cells gave slightly less repression of E2 transcription transactivation, 

with mutants 50-473 and 150-473 showing no repression even at the highest level of L2.

The difficulty in using deletion mutants for such studies is the role of the protein thi'ee- 

dimensional stmcture to deteimine protein function. As a result, linear deletions could 

provide results difficult to inteipret with regard to the full-length protein although it may 

give us an understanding of the role of certain sequences within the protein. An 

alternative method would be to use site directed mutagenesis to construct mutants of L2 

which retain their three dimensional structure but with mutations in sites implicated in 

protein-DNA or protein-protein interaction.

6.3.5. L2 deletion mutants and E2 protein expression

Following on from studies examining the effect of L2 deletion mutants on the 

transcription transactivation function of L2, the effect on E2 protein expression levels 

was also examined to deteimine a correlation between binding and inhibition of 

transcription transactivation and reduction of protein level. Full-length L2 and all L2 

deletion mutants cloned into pCDNA 3.1 were co-expressed with E2 in HaCaT cells.
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Using SDS-PAGE and Western blotting, the levels of E2 after co-expression of L2 or 

each deletion mutant were analysed. It was obseiwed that the full length L2 is required for 

the down regulation of E2 expression as seen in figure 5.8. In cells co-expressing E2 and 

L2 deletion mutants, the level of E2 was not inliibited indicating that the thiee 

dimensional stmcture of the protein is required for this effect.

6.4, Summary

In summaiy, this thesis has been able to elucidate that HPV-16 L2 has a selective effect 

on the functions of HPV-16 E2. L2 is able to down regulate the transcription 

transactivation function of E2 in a cell line independent manner. No effect of L2 on E2 

mediated DNA replication was obseiwed. L2 was also able to reduce the level of E2 

expression in HaCaT and U20S cells but not in C33a cells indicating that the down- 

regulation of transcription transactivation is not due to the reduction in E2 expression 

levels. The effect of L2 on E2 expression in HaCaT cells was further investigated by 

examining the effect of L2 on E2 mRNA levels and protein half-life. No difference in E2 

mRNA or protein half-life was detected indicating that the effect of L2 on E2 protein 

expression could be an effect on E2 protein translation and not transcription.

To further investigate the effect of L2 on E2 function, a series of L2 deletion mutants 

were constmcted and GST binding assays were perfoimed to deteimine the domains of 

L2 required for direct physical interaction with E2. The first 50 amino acids of L2 was 

shown to bind in vitro translated E2 comparable to binding with full-length L2 indicating 

that the N-terminus of L2 mediates the binding of L2 with E2. To deteimine the cellular
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localisation of L2 and its deletion mutants, GFP fusion proteins were constructed and 

detected by immunofluorescence. GFP-L2 and all C-terminal deletion mutants localised 

and were retained in the nucleus. All N-terminus deletion mutants localised to both the 

nucleus and the cytoplasm indicating the presence of two NLS in the C-tenninus and N- 

terminus of HPV-16 L2. Each mutant was analysed for expression by immunoblotting 

which showed the detection of GFP-L2 and all C-terminal deletion mutants with either 

anti-L2 serum or anti-GFP antibodies. Detection of N-tenninal deletion mutants was 

difficult although mutants 25-473 and 50-473 could be detected with anti-L2 semm.

The effect of L2 deletion mutants on the transcription transactivation function of E2 was 

investigated and mutants 1-200 and 150-473 did not inhibit the transcription 

transactivation function of E2. In HaCaT cells, mutants 1-100 and 1-50 also did not 

inhibit E2 transcription transactivation indicating that the C-terminal domain of L2 could 

be responsible for the down regulation of E2 function in transcription transactivation. 

Deletion of the carboxyl and amino temiinus of L2 did not result in the reduction of E2 

expression levels, only full length L2 was able to reduce the level of E2 expression 

indicating the requirement of the secondary stmcture of the protein for this effect.

The full-length L2 protein, which localises to the nucleus binds E2, down regulates its 

transcription transactivation function but not replication and is able to reduce the level of 

E2 protein expression as summarised in Table 6.1. Binding with E2 does not correlate 

with the down regulation of transcription transactivation as L2 mutants 1-50, 1-100 and 

1-200 all bind E2 but do not (especially in the case of HaCaT cells) down regulate E2
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transcription transactivation. Binding also does not correlate with down-regulation of E2 

expression as only full length L2 is able to reduce E2 expression levels while mutants 1 - 

50, 1-100, 1-200 and 1-400 which all bind E2 do not affect E2 protein expression.

211



Chapter Six________________________________________________________ Discussion

Table 6.1. Summary of the characterisation of L2 deletion mutants. Table shows the 

summary of the characterisation of L2 and the L2 deletion mutants indicating domains 

involved with binding of L2 with E2, cellular localisation, mutants involved with down- 

regulating E2 transcription transactivation and the effect of each mutant on E2 protein 

expression levels.
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Summary of L2 deletion mutants

HPV-16 L2 
amino acid 
sequence

Binding 
with E2

Cellular
Localisation

Down
regulation of 
HPV-16 E2 
transcription 
transactivation

Down
regulation of 
HPV-16 E2 
expression

L2 Yes Nuclear Yes Yes

l “50aa Yes Nuclear Yes/No No

l"100aa Yes Nuclear Yes/No No

l-200aa Yes Nuclear No No

l-300aa Yes (Low) Nuclear Yes No

l-400aa Yes Nuclear Yes No

25-473aa No Nuclear/cytoplasmic Yes No

50-473 aa No Nuclear/cytoplasmic Yes No

150-473aa No Nuclear/cytoplasmic No No

250-473aa No Nucl ear/cytoplasmic Yes No

350-473aa No Nuclear/cytoplasmic Yes No

390-473aa No Nuclear/cytopl asmi c Yes No
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6.5. E2, L2, PODs and the viral life cycle

The life cycle of papillomavims is intimately tied to the differentiation of the 

keratinocyte (Fig 1.4). The early stages of the vims life cycle take place in the lower 

layers of the epithelium and, according to a widely accepted paradigm, include 

maintenance of the viral DNA as an episome. This requires the expression of low levels 

of El and E2. In addition to its involvement in episomal DNA maintenance, E2 

transactivates the early viral transcriptional promoter (Bouvard et aL, 1994) and initiates 

the expression of the transfoiming genes E6/E7, responsible for the induction of 

unscheduled cell proliferation (Fig 1.7). No L2 is expressed in these epithelial layers, as 

teiminal differentiation is not initiated. The inhibition of teiminal differentiation of 

promyleocytes has been obseiwed to be associated with the dismption of PODs as a result 

of the fusion of PME with the retinoic acid receptor a (Grignani et aL, 1993). A similar 

dismption of PODs in papillomavims infected kératinocytes would, in conjunction with 

the expression of the transforming proteins, delay cell differentiation and favour cell 

proliferation, as in myeloid cells (Wang et aL, 1998a), thus helping the vims replicate its 

DNA.

As the infected kératinocytes progress from the lower layers to the more superficial ones, 

the expression levels of E2 increase up to the stratum spinosum, above which E2 is no 

longer detected (Pemose and McBride, 2000). Fligh levels of E2 repress the early 

promoter (Bouvard et aL, 1994; Steger and Corbach, 1997), thus down-regulating 

expression of the transforming genes and favouring cell differentiation and expression of 

the stmctural proteins. In the differentiating superficial layers, L2 is expressed and
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contributes to the reduction in E2 transcriptional control function while the maintenance 

of its replication functions would help the production of mature virus. The recmitment of 

E2 to PODs by L2 could represent a switch in the vims life cycle from the non­

productive to the virion productive phase as suggested by Heino et aL, (2000). E2 has a 

high affinity for the viral DNA, and it has been proposed that the recmitment of E2 into 

PODs directs the viral genomes into regions of high concentrations of stmctural proteins, 

so helping DNA encapsidation and virion assembly (Day et aL, 1998). The set of 

hypotheses outlined above requires that, although believed to function at different stages 

of the viral life cycle and in different layers of the epithelium, E2 and L2 are co­

expressed and interacting during keratinocyte differentiation. The proposed outcome of 

the L2-E2 interaction is shown diagrammatic ally in Fig 6.1. In conclusion, the interaction 

between E2 and L2 obseiwed for BPV-1 and now for HPV-16 elucidating the effect of L2 

on E2 function in transcription transactivation and replication, suggests that this may be 

part of a common function or phase in papillomavims life cycle, and therefore not merely 

a peculiarity of cultured cells
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Figure 6.1. Cartoon showing the possible role for L2-E2 interaction during the viral 

life cycle. Recruitment of E2 to PODs by L2 leads to a down regulation of transcription 

of E6 and E7 and the possible recruitment of the cellular DNA replication machinery as 

E2 mediated DNA replication is not affected. Subsequently recruitment of LI to PODs by 

L2 would allow for packaging of replicated viral DNA resulting in the release of mature 

vims.
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6.6. Future Work

The effect of L2 on the functions of E2 raises some interesting questions that would be of 

immense interest for future experiments. Firstly, the ability of L2 to down regulate the 

transcription transactivation function of E2 in transient transcription assays requires 

further investigation to elucidate the mechanism of action of L2 in this process. As L2 

has been shown to associate with a known transcription repressor PATZ, the effect of 

PATZ in this process is of interest. Transient transcription assays would be used, co­

transfecting E2 with PATZ to study the effect of PATZ on E2 transcription 

transactivation. This has been observed for co-expression of PATZ and RNF4 resulting in 

a strong repression of RNF4-mediated activation (Fedele et aL, 2000). The effect of 

PATZ on the activity of the LCR would also be of interest. The association of PATZ with 

L2 may be flirther investigated to deteimine if an increase in L2 expression results in a 

subsequent rise in PATZ levels. As L2 associates with PATZ at PODs (Gomemann et aL, 

2002), the correlation between L2 localisation to PODs and down-regulation of 

transcription transactivation would also be examined to determine if the effect of a 

possible L2-PATZ interaction is dependent on localisation to PODs.

In this study, deletion mutants of L2 were used to analyse the domain or domains of L2 

required for the modulation of E2 function or for mapping sites required for the physical 

interaction of L2 with E2. Although this provided useful infoimation for understanding 

L2 effect on E2 function, it failed to provide a full-length mutant of L2 that does not bind 

E2. Such a mutant would provide a useful tool to further understand the role of L2 on E2 

function in transcription transactivation, replication and E2 protein expression. This could
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be achieved by site directed mutagenesis of the N-terminal domain of L2 responsible for 

binding to E2.

In this study, the effect of L2 on E2 function was observed in monolayers with the use of 

HaCaT, C33a and U20S cell lines, a system which will facilitate the study of the effect 

of L2-E2 localisation to PODs on viral transcription during cell differentiation will 

provide an effective tool to obseiwe this interaction in an in vivo situation. W12, which 

are, immortalised kératinocytes derived from low-grade ceiwical intraepithélial neoplasia 

biopsy, containing episomal HPV-16 genomes (Sterling et aL, 1990) will be used to 

establish organotypic raft cultures. W12 cells can differentiate and foim ordered layers of 

differentiating cells in organotypic raft cultures which can be assessed by production of 

differentiation markers, late viral proteins and viral capsids (Sterling et aL, 1990). In raft 

cultures, kératinocytes are grown submerged on a bed of collagen containing fibroblasts 

and when the culture is raised to the liquid-air interface, the kératinocytes undergo 

differentiation. This will provide the possibility to follow events in the individual layers 

of a differentiating epithelium by histological teclmiques

To study the effect of L2 on E2 activity during differentiation, cells expressing E2 and L2 

will be transfected with the LCR reporter constructs driving expression of green 

fluorescent protein (GFP) or P-galactosidase markers and grown on raft cultures. The use 

of a GFP reporter will allow analysis by confocal microscopy of regulated viral gene 

expression in the layers of the raft culture. These studies will be complemented by 

analysis of transactivation of the LCR by staining sections of raft cultures for (3-
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galactosidase. Serial sections will be analysed for expression of the differentiation 

markers keratin 1, involucrin and filaggrin. The results should establish if an interaction 

between an early and a late protein changes LCR activity. This would suggest that in vivo 

the interplay between early and late proteins could change the viral gene expression 

program, perhaps helping to sustain the switch from early promoter transcription to late 

promoter transcription during keratinocyte differentiation.

The loss of PML from PODs leads to loss of PML functions (Zhong et aL, 2000) and 

possibly preventing differentiation of kératinocytes in analogy to maturation aiTcst of 

myeloid cells in acute promyelocytic leukaemia (APL). In APL cells, the PML gene is 

disabled by a translocation with the gene for the retinoic acid receptor (Stemsdorf et aL, 

1997). It has been shown that fibroblasts from PML' '̂ mice lacking PODs exhibit an 

increased proportion of cells in S phase and display a marked growth advantage 

compared to PML^^  ̂ cells (Wang et aL, 1998b). The loss of PML will be of immense 

benefit to certain viruses such as papillomavimses, which require a delay in cell 

differentiation supporting the maintenance stage of the viral life cycle. To deteiTnine the 

role of PML in the effect of L2 on E2 function in transcription transactivation, PML' '̂ and 

PML’̂ ’̂̂ cells will be used in E2 dependent transient transcription assays, co-transfecting 

E2 with increasing concentrations of L2. PML has been shown to be a tumour suppressor 

with PML" '̂ mice giving rise to more papillomas than PML'*"'̂  ̂ mice, with papillomas 

occasionally progressing to carcinomas after several months (Wang et aL, 1998b). The 

level of E2 expression in PML' '̂ and PML"̂ "̂̂  cells co-expressing E2 and L2 will be 

examined to deteimine if PML is required for L2 mediated reduction in E2 protein
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expression levels. Also transient DNA replication assays will be performed in PM Y' and 

cells, which will be able to further elucidate the role of PML and PODs to 

papillomavims DNA replication with the hypothesis that the presence of PML and hence 

PODs will enhance the level of viral DNA replication.

221



References

REFERENCE

Adamson, A.L. and S. Kenney. 2001. Epstein-barr virus immediate-early protein 

BZLFl is SUMO-1 modified and dismpts promyelocytic leukemia bodies. J. Virol. 75: 

2388-2399.

Ahn, J.H. and G.S. Hayward. 2000. Dismption of PML-associated nuclear bodies by 

lEl correlates with efficient early stages of viral gene expression and DNA replication in 

human cytomegalovims infection. Virology 274: 39-55.

Allikas, A., D. Ord, R. Kurg, S. Kivi and M. Ustav. 2001. Roles of the hinge region 

and the DNA binding domain of the bovine papillomavims type 1 E2 protein in initiation 

of DNA replication. Virus Res. 75: 95-106.

Anderson, R.A., L. Scobie, B.W. O'Neil, G.J. Grindlay and M.S. Campo. 1997. Viral 

proteins of bovine papillomavims type 4 during the development of alimentary canal 

tumours. Vet. J. 154: 69-78.

Ashrafi, G.H., E. Tsirimonaki, B. Marchetti, P.M. O'Brien, G.J. Sibbet, L. Andrew 

and M.S. Campo. 2002. Down-regulation of MHC class I by bovine papillomavims E5 

oncoproteins. Oncogene 21: 248-259.

222



References

Baker, C.C. and P.M. Howley. 1987. Differential promoter utilization by the bovine 

papillomavirus in transfomied cells and productively infected wart tissues. EMBO J. 6: 

1027-1035.

Banks, L., C. Edmonds and K.H. Vousden. 1990. Ability of the HPV 16 E7 protein to 

bind RB and induce DNA synthesis is not sufficient for efficient transfoiming activity in 

NIH3T3 cells. Ofjcogene 5: 1383-1389.

Barbosa, M.S., C. Edmonds, C. Fisher, J.T. Schiller, D R. Lowy and K.H. Vousden.

1990. The region of the HPV E7 oncoprotein homologous to adenovirus Ela and Sv40 

large T antigen contains separate domains for Rb binding and casein kinase II 

phosphoiylation. jEMSO/. 9: 153-160.

Barmak, K., E. Harhaj, C. Grant, T. Alefantis and B. Wigdahl. 2003. Human T cell 

leukemia vims type I-induced disease: pathways to cancer and neurodegeneration. 

Virology 308 : 1-12.

Becker, K.A., L. Florin, C. Sapp and M, Sapp. 2003. Dissection of human 

papillomavims type 33 L2 domains involved in nuclear domains (ND) 10 homing and 

reorganization. Virology 314 : 161-167.

Bell, P., R. Brazas, D. Ganem and G.G. Manl. 2000. Hepatitis delta vims replication 

generates complexes of large hepatitis delta antigen and antigenomic RNA that affiliate 

with and alter nuclear domain 10. J. Virol. 74: 5329-5336.

223



References

Bellanger, S., C. Demeret, S. Goyat and F. Thierry. 2001. Stability of the human 

papillomavims type 18 E2 protein is regulated by a proteasome degradation pathway 

through its amino-terminal transactivation domain. J. Virol. 75: 7244-7251.

Borden, K.L., E.J. Campbell Dwyer and M.S. Salvato. 1998. An arenavims RING 

(zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and 

relocates PML nuclear bodies to the cytoplasm. J. Virol. 72: 758-766.

Boshoff, C., T.F. Schulz, M.M. Kennedy, A.K. Graham, C. Fisher, A. Thomas, J.O. 

McGee, R.A. Weiss and J.J. O'Leary. 1995. Kaposi's sarcoma-associated heipesvims 

infects endothelial and spindle cells. Nat. Med. 1: 1274-1278.

Boukamp, P., R.T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham and N.E. 

Fusenig. 1988. Noraial keratinization in a spontaneously immortalized aneuploid human 

keratinocyte cell line. J. Cell Biol. 106: 761-771.

Bouvard, V., A. Storey, D. Pim and L. Banks. 1994. Characterization of the human 

papillomavims E2 protein: evidence of trans-activation and trans-repression in ceivical 

kératinocytes. E'MS(9 T. 13: 5451-5459.

Boyer, S.N., D.E. Wazer and V. Band. 1996. E7 protein of human papilloma vims-16 

induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. 

Cancer Res. 56: 4620-4624.

224



References

Braspenning, J., A. Marchini, V. Albarani, L. Levy, F. Ciccolini, C. Cremonesi, R. 

Ralston, L. Gissmann and M. Tommasino. 1998. The CXXC Zn binding motifs of the 

human papillomavims type 16 E7 oncoprotein are not required for its in vitro 

transforming activity in rodent cells. Oncogene 16: 1085-1089.

Brechot, C. 1998. Molecular mechanisms of hepatitis B and C vimses related to liver 

carcinogenesis. Hepatogastroenterology 45 Suppl 3: 1189-1196.

Brechot, C., D. Gozuacik, Y. Murakami and P. Paterlini-Brechot. 2000. Molecular 

bases for the development of hepatitis B vims (HBV)-related hepatocellular carcinoma 

(HCC). Semin. Cancer Biol. 10: 211-231.

Breitburd, F., O. Croissant, and G. Orth. 1987. Expression of human papillomavims 

type 1 E4 gene products in warts. Cancer Cells 5:115-122.

Breitburd, F., O. Croissant, and G. Orth. 1987. Expression of human papillomavims 

type 1 E4 gene products in warts. Cancer Cells 5:115-122.

Buendia, M.A. 1998. Hepatitis B vimses and cancerogenesis. Biomed. Pharmacother. 

52: 34-43.

Buendia, M.A. 1998. Hepatitis B vimses and cancerogenesis. Biomed. Pharmacother.

52: 34-43.

225



References

Buendia, M.A. 2000. Genetics of hepatocellular carcinoma. Semin. Cancer Biol. 10: 

185-200.

Biirkhardt, A., M. Willingham, C. Gay, K.T. Jeang and R. Schlegel. 1989. The E5 

oncoprotein of bovine papillomaviius is oriented asymmetrically in Golgi and plasma 

membranes. Virology 170: 334-339.

Burnett, S., N. Jareborg and D. DiMaio. 1992. Localization of bovine papillomavims 

type 1 E5 protein to transformed basal kératinocytes and pennissive differentiated cells in 

fibropapilloma tissue. Proa. Natl Acad. Sci. U. S. A 89: 5665-5669.

Campo, M.S. 1987. Papillomas and cancer in cattle. Cancer Sw^. 6: 39-54.

Campo, M.S. 1998. HPV and cancer: the story unfolds. Trends Microbiol. 6: 424-426.

Campo, M.S. 2002. Animal models of papillomavirus pathogenesis. Virus Res. 89: 249- 

261.

Campo, M.S., M.H. Moar, H.M. Laird and W.F. Jarrett. 1981. Molecular 

heterogeneity and lesion site specificity of cutaneous bovine papillomaviruses. Virology 

113: 323-335.

226



References

Campo, M.S., R.E. McCaffery, I. Doherty, I.M. Kennedy and W.F. Jarrett. 1990.

The Hai’vey ras 1 gene is activated in papillomavims-associated carcinomas of the upper 

alimentary canal in cattle. Oncogene 5: 303-308.

Carvalho, T., J.S. Seeler, K. Ohman, P. Jordan, U. Pettersson, G. Akusjarvi, M. 

Carmo-Fonseea and A. Dejean. 1995. Targeting of adenovirus ElA and E4-ORF3 

proteins to nuclear matrix-associated PML bodies. J. Cell Biol. 131: 45-56.

Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward and D C. Prasher. 1994. Green 

fluorescent protein as a marker for gene expression. Science 263: 802-805.

Chambers, G., V.A. Ellsmore, P.M. O'Brien, S.W. Reid, S. Love, M.S. Campo and 

L. Nasir. 2003. Association of bovine papillomavirus with the equine sarcoid. J. Gen. 

Virol 84: 1055-1062.

Chang, ¥ ., E. Cesarman, M.S. Pessin, F. Lee, J. Culpepper, D M. Knowles and P S. 

Moore. 1994. Identiflcation of heipesvims-like DNA sequences in AIDS-associated 

Kaposi's sarcoma. Science 266: 1865-1869.

Chelbi-Alix, M.K. and H. de The. 1999. Herpes virus induced proteasome-dependent 

degradation of the nuclear bodies-associated PML and SplOO proteins. Oncogene 18: 

935-941.

227



References

Chelbi-Alix, M.K., L. Pelicano, F. Quignon, M.H. Koken, L. Ventiirini, M. Stadler, 

J. Pavlovic, L. Degos and H. de The. 1995. Induction of the PML protein by interferons 

in nonnal and APL cells. Leukemia 9: 2027-2033.

Chiang, C M., M. Ustav, A. Stenlund, T.F. Ho, T.R. Broker and L.T. Chow. 1992. 

Viral El and E2 proteins support replication of homologous and heterologous 

papillomaviral origins. Proc, Natl. Acad. Sci. U. S. A 89 : 5799-5803.

Choe, J., P. Vaillancourt, A. Stenlund and M. Botchan. 1989. Bovine papillomavims 

type 1 encodes two forms of a transcriptional repressor: stmctural and frmctional analysis 

of new viral cDN As. J. Virol. 63: 1743-1755.

Chow, L.T. and T.R. Broker. 1994. Papillomavims DNA replication. Intervirology 37: 

150-158.

Camming, S.A., C.E. Repellin, M. McPhillips, J.C. Radford, J.B. Clements and S.V. 

Graham. 2002. The human papillomavims type 31 late 3' untranslated region contains a 

complex bipartite negative regulatory element. J. Virol. 76: 5993-6003.

Darnell, J.E., Jr., I.M. Kerr and G.R. Stark. 1994. Jak-STAT pathways and 

transcriptional activation in response to IFNs and other extracellular signaling proteins. 

Science 264 : 1415-1421.

228



References

Day, P.M., R.B. Roden, D R. Lowy and J.T. Schiller. 1998. The papillomavims minor 

capsid protein, L2, induces localization of the major capsid protein, LI, and the viral 

transcription/replication protein, E2, to PML oncogenic domains. J. Virol. 72: 142-150.

de The, H., C. Lavau, A. Marchio, C. Chomienne, L. Degos and A. Dejean. 1991. The 

PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute 

promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675-684.

Dellambra, E., O. Golisano, S. Bondanza, E. Siviero, P. Lacal, M. Molinari, S.

D'Atri and M. De Luca. 2000. Downregulation of 14-3-3sigma prevents clonal 

evolution and leads to immoitalization of primaiy human kératinocytes. J. Cell Biol. 149: 

1117-1130.

Demeret, C., C. Desaintes, M. Yaniv and F. Thierry. 1997. Different mechanisms 

contribute to the E2-mediated transcriptional repression of human papillomavims type 18 

viral oncogenes. J. Virol. 71: 9343-9349.

Demeret, C., M. Yaniv and F. Thierry. 1994. The E2 transcriptional repressor can 

compensate for Spl activation of the human papillomavims type 18 early promoter. J. 

Virol. 68: 7075-7082.

Desaintes, C. and C. Demeret. 1996. Control of papillomavims DNA replication and 

transcription. Semin. Cancer Biol. 7: 339-347.

229



References

Desaintes, C., C. Demeret, S. Goyat, M. Yaniv and F. Thierry. 1997. Expression of 

the papillomavims E2 protein in HeLa cells leads to apoptosis. EM BOJ 16: 504-514.

Desbois, C., R. Rousset, F. Bantignies and P. Jalinot. 1996. Exclusion of Int-6 from 

PML nuclear bodies by binding to the HTLV-I Tax oncoprotein. Science 273: 951-953.

Dietrich-Goetz, W., I.M. Kennedy, B. Levins, M.A. Stanley and J.B. Clements. 1997. 

A cellular 65-kDa protein recognizes the negative regulatory element of human 

papillomavims late mRNA. Proc. Natl. Acad. Sci. U. S. A 94: 163-168.

Dong, G., T.R. Broker and L.T. Chow. 1994. Human papillomavirus type 11 E2 

proteins repress the homologous E6 promoter by interfering with the binding of host 

transcription factors to adjacent elements. J. Virol. 68: 1115-1127.

Doorbar, J., C. Foo, N. Coleman, L. Medcalf, O. Hartley, T. Prospero, S. Napthine,

J. Sterling, G. Winter and H. Griffin. 1997a. Characterization of events during the late 

stages of HPV 16 infection in vivo using high-affinity synthetic Tabs to E4. Virology 238: 

40-52.

Doorbar, J., D. Campbell, R.J. Grand and P.H. Gallimore. 1986. Identification of the 

human papilloma vims-la E4 gene products. EMBO J. 5: 355-362.

230



References

Doorbar, J., H.S. Evans, I. Coneron, L.V. Crawford and P.H. Gallimore. 1988. 

Analysis of HPV-1 E4 gene expression using epitope-defined antibodies. EMBO J. 7: 

825-833.

Doorbar, J., S. Ely, J. Sterling, C. McLean and L. Crawford. 1991. Specific 

interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial 

cell intermediate filament network. Nature 352: 824-827.

Dostatni, N., P.F. Lambert, R. Sousa, J. Ham, P.M. Howley and M. Yaniv. 1991. The 

functional BPV-1 E2 trans-activating protein can act as a repressor by preventing 

formation of the initiation complex. Genes Dev. 5: 1657-1671.

Doucas, V., A.M. Ishov, A. Romo, H. Juguilon, M.D. Weitzman, R.M. Evans and 

G.G. Maul. 1996. Adenovims replication is coupled with the dynamic properties of the 

PML nuclear stmcture. Genes Dev. 10: 196-207.

Dowhanick, J.J., A.A. McBride and P.M. Howley. 1995. Suppression of cellular 

proliferation by the papillomavirus E2 protein. J. Virol. 69: 7791-7799.

Duprez, E., A.J. Saurin, J.M. Desterro, V. Lallemand-Breitenbach, K. Howe, M.N. 

Boddy, E. Solomon, H. de The, R.T. Hay and P S. Freemont. 1999. SUMO-1 

modification of the acute promyelocytic leukaemia protein PML; implications for nuclear 

localisation./. Cell Sci. 112: 381-393.

231



References

Durst, M., F.X. Bosch, D. Glitz, A. Schneider and H.H. zur. 1991. Inverse relationship 

between human papillomaviius (HPV) type 16 early gene expression and cell 

differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive 

human cell lines. J. Virol 65: 796-804.

Dyck, J.A., G.G. Maul, W.H. Miller, Jr., J.D. Chen, A. Kakizuka and R.M. Evans.

1994. A novel macromolecular structure is a target of the promyelocyte-retinoic acid 

receptor oncoprotein. Ce//76: 333-343.

Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12: 2245- 

2262.

Edmonds, C. and K.H. Vousden. 1989. A point mutational analysis of human 

papillomavirus type 16 E7 protein. J. Virol 63: 2650-2656.

Elbel, M., S. Carl, S. Spaderna and T. Iftner. 1997. A comparative analysis of the 

interactions of the E6 proteins from cutaneous and genital papillomaviruses with p53 and 

E6AP in correlation to their transforming potential. Virology 239: 132-149.

Epstein, M.A., B.G. Achong and Y.M. Barr. 1964. Vims particles in cultured 

lymphoblasts from burkitt’s lymphoma. Lancet 15: 702-703.

Everett, R.D. and G.G. Maul. 1994. HSV-1 IE protein Vmwl 10 causes redistribution of 

PML. EMBOJ. 13: 5062-5069.

232



References

Everett, R.D., M. Meredith, A. Orr, A. Cross, M. Kathoria and J. Parkinson. 1997. 

A novel ubiquitin-specific protease is dynamically associated with the PML nuclear 

domain and binds to a herpesvims regulatory protein. EMBOJ. 16: 1519-1530.

Everett, R.D., P. Freemont, H. Saitoh, M. Dasso, A. Orr, M. Kathoria and J. 

Parkinson. 1998. The dismption of NDIO during herpes simplex vims infection 

coiTelates with the Vmwl 10- and proteasome-dependent loss of several PML isoforms. J. 

Virol. 72: 6581-6591.

Fanning, A.S. and J.M. Anderson. 1999. Protein modules as organizers of membrane 

stmcture. Curr. Opin. Cell Biol. 11: 432-439.

Fedele, M., G. Benvenuto, R. Pero, B. Majello, S. Battista, F. Lembo, E. Vollono, 

P.M. Day, M. Santoro, L. Lania, C.B. Bruni, A. Fusco and L. Chiariotti. 2000. A 

novel member of the BTB/POZ family, PATZ, associates with the RNF4 RING finger 

protein and acts as a transcriptional repressor. J. Biol. Chem. 275: 7894-7901.

Ferguson, M.K. and M R. Botchan. 1996. Genetic analysis of the activation domain of 

bovine papillomavims protein E2: its role in transcription and replication. J. Virol. 70: 

4193-4199.

Flores, E.R. and P.F. Lambert. 1997. Evidence for a switch in the mode of human 

papillomavims type 16 DNA replication during the viral life cycle. J. Virol. 71: 7167- 

7179.

233



References

Flores, E.R., B.L. Allen-Hoffmann, D. Lee and P.F. Lambert. 2000. The human 

papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life 

cycle./. Virol. 74: 6622-6631.

Florin, L., F. Schafer, K. Sotlar, R E. Streeck and M. Sapp. 2002. Reorganization of 

nuclear domain 10 induced by papillomavims capsid protein 12. Virology 295: 97-107.

Ford, C.E., D. Tran, Y. Deng, V.T. Ta, W.D. Rawlinson and J.S. Lawson. 2003. 

Mouse mammary tumor vims-like gene sequences in breast tumors of Australian and 

Vietnamese women. Clin. Cancer Res. 9: 1118-1120.

Franchini, G. 1995. Molecular mechanisms of human T-cell leukemia/lymphotropic 

vims type I infection. Blood 86: 3619-3639.

Fuchs, E. 1993. Epidermal differentiation and keratin gene expression. /  Cell Sci. Suppl 

17:197-208.: 197-208.

Fuchs, E. 1995. Keratins and the skin. Annu. Rev. Cell Dev. Biol. 11:123-53.: 123-153.

Fuchs, E. 1997. Keith R. Porter Lecture, 1996. Of mice and men: genetic disorders of the 

cytoskeleton. Mol. Biol. Cell 8: 189-203.

234



References

Gaboli, M., D. Gandini, L. Delva, Z.G. Wang and P.P. Pandolfi. 1998. Acute 

promyelocytic leukemia as a model for cross-talk between interferon and retinoic acid 

pathways: from molecular biology to clinical applications. Leuk. Lymphoma 30: 11-22.

Ganem, D. 1997. KSHV and Kaposi's sarcoma: the end of the beginning? Cell 91: 157- 

160.

Gardiol, D., C. Kuhne, B. Giaunsinger, S.S. Lee, R. Javier and L. Banks. 1999. 

Oncogenic human papillomavims E6 proteins taiget the discs large tumour suppressor for 

proteasome-mediated degradation. Oncogene 18: 5487-5496.

Gauthier, J.M., J. Dillner and M. Yaniv. 1991. Stmctural analysis of the human 

papillomavims type 16-E2 transactivator with antipeptide antibodies reveals a high 

mobility region linking the transactivation and the DNA-binding domains. Nueleic Acids 

Res. 19:7073-7079.

Ghazizadeh, S. and L.B. Taichman. 2001. Multiple classes of stem cells in cutaneous 

epithelium: a lineage analysis of adult mouse skin. EMBOJ. 20: 1215-1222.

Giri, I. and M. Yaniv. 1988. Stmctural and mutational analysis of E2 trans-activating 

proteins of papillomavimses reveals three distinct functional domains. EMBO J. 7: 2823- 

2829.

235



References

Goddard, A.D., J. Borrow, P.S, Freemont and E. Solomon. 1991. Chaiacterization of 

a zinc finger gene disiupted by the t(15;17) in acute promyelocytic leukemia. Science 

254: 1371-1374.

Gornemann, J., T.G. Hofmann, H. Will and M. Muller. 2002. Interaction of human 

papillomavirus type 16 12 with cellulai' proteins: identification of novel nuclear body- 

associated proteins. Virology 39^: 69-78.

Grand, R.J., J. Doorbar, K.J. Smith, I. Coneron and P.H. Gallimore. 1989. 

Phosphorylation of the human papillomavims type 1 E4 proteins in vivo and in vitro. 

Fzro/ogy 170: 201-213.

Griffiths, T.R. and J.K. Mellon. 1999. Human papillomavims and urological tumours: 

I. Basic science and role in penile cancer. BJU. Int. 84: 579-586.

Grignani, F., P.F. Ferrucci, U. Testa, G. Talamo, M. Fagioli, M. Alcalay, A. 

Mencarelli, F. Grignani, C. Peschle, I. Nicoletti and . 1993. The acute promyelocytic 

leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes 

survival of myeloid precursor cells. Cell 74: 423-431.

Grotzinger, T., K. Jensen and H. Will. 1996. The interferon (IFN)-stimulated gene 

SplOO promoter contains an IFN-gamma activation site and an imperfect IFN-stimulated 

response element which mediate type I IFN inducibility. J. Biol. Chem. 271: 25253- 

25260.

236



References

Guldner, H.H., C. Szostecki, P. Schroder, U. Matschl, K. Jensen, C. Luders, H. Will 

and T. Sternsdorf. 1999. Splice variants of the nuclear dot-associated SplOO protein 

contain homologies to HMG-1 and a human nuclear phosphoprotein-box motif. J. Cell 

ScL 112:733-747.

Guldner, H.H., C. Szostecki, T. Grotzinger and H. Will. 1992. IFN enhance 

expression of SplOO, an autoantigen in primary biliaiy cirrhosis. J. Immunol. 149: 4067- 

4073.

Hagensee, M.E., N. Yaegashi and D.A. Galloway. 1993. Self-assembly of human 

papillomavims type 1 capsids by expression of the LI protein alone or by coexpression of 

the LI and L2 capsid proteins. J. Virol. 67: 315-322.

Ham, J., N. Dostatni, J.M. Gauthier and M. Yaniv. 1991. The papillomavims E2 

protein: a factor with many talents. Trends Biochem. Sci. 16: 440-444.

Hegde, R.S. and E.J. Androphy. 1998. Crystal structure of the E2 DNA-binding 

domain from human papillomavims type 16: implications for its DNA binding-site 

selection mechanism./. Mol. Biol. 284: 1479-1489.

Heino, P., J. Zhou and P.F. Lambert. 2000. Interaction of the papillomavims 

transcription/replication factor, E2, and the viral capsid protein, L2. Virology 276: 304- 

314.

237



References

Heino, P., J. Zhou and P.F. Lambert. 2000. Interaction of the papillomavims 

transcription/replication factor, E2, and the viral capsid protein, L2. Virology 276: 304- 

314.

Heino, P., S. Goldman, U. Lagerstedt and J. Dillner. 1993. Molecular and serological 

studies of human papillomavims among patients with anal epidermoid carcinoma. Int. J. 

Cancer 53: 377-381.

Hennings, H., K. Holbrook, P. Steinert and S. Yuspa. 1980. Growth and 

differentiation of mouse epidermal cells in culture: effects of exti acellular calcium. Curr. 

Probl. Dermatol. 10:3-25.: 3-25.

Herber, R., A. Liem, H. Pitot and P.F. Lambert. 1996. Squamous epithelial 

hypeiplasia and carcinoma in mice transgenic for the human papillomavims type 16 E7 

oncogene./. Virol. 70: 1873-1881.

Herzog, T.J. 2003. New approaches for the management of ceiwical cancer. Gynecol. 

Oncol. 90: S22-S27.

Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. /. 

Mol. Biol. 26: 365-369.

Hollinger, F.B. 1996. Comprehensive control (or elimination) of hepatitis B vims 

transmission in the United States. Gut 38 Suppl 2: S24-S30.

238



References

Huang, P.S., D R. Patrick, G. Edwards, P.J. Goodhart, H E. Huber, L. Miles, V.M. 

Garsky, A. Oliff and D.C. Heimbrook. 1993. Protein domains governing interactions 

between E2F, the retinoblastoma gene product, and human papillomavims type 16 E7 

protein. Mol. Cell Biol. 13: 953-960.

Huynh, K.D. and V.J. Bardwell. 1998. The BCL-6 POZ domain and other POZ 

domains interact with the co-repressors N-CoR and SMRT. Oncogene 17: 2473-2484.

Ishov, A.M. and G.G. Maul. 1996. The periphery of nuclear domain 10 (NDIO) as site 

of DNA vims deposition. J. Cell Biol. 134: 815-826.

Ishov, A.M., A.G. Sotnikov, D. Negorev, O.V. Vladimirova, N. Neff, T. Kamitani, 

E.T. Yeh, J.F. Strauss, HI and G.G. Maul. 1999. PML is critical for NDIO formation 

and recmits the PML-interacting protein daxx to this nuclear stmcture when modified by 

SUMO-1. J. Cell Biol. 147: 221-234.

Ishov, A.M., R.M. Stenberg and G.G. Maul. 1997. Human cytomegalovims immediate 

early interaction with host nuclear stmctures: definition of an immediate transcript 

environment. /  Cell Biol. 138: 5-16.

Jablonska, S., J. Dabrowski and K. Jakubowicz. 1972. Epideimodysplasia 

veiTucifoimis as a model in studies on the role of papovavimses in oncogenesis. Cancer 

Res. 32: 583-589.

239



References

Jackson, M.E. and M.S. Campo. 1995. Both viral E2 protein and the cellular factor 

PEBP2 regulate transcription via E2 consensus sites within the bovine papillomavims 

type 4 long control region. J. Virol 69: 6038-6046.

Jackson, M E., M.S. Campo and J.M. Gaukroger. 1993. Cooperation between 

papillomavims and chemical cofactors in oncogenesis. Crit Rev. Oncog. 4: 277-291.

Jackson, S. and A. Storey. 2000. E6 proteins from diverse cutaneous HPV types inhibit 

apoptosis in response to UV damage. Oncogene 19: 592-598.

Jewers, R.J., P. Hildebrandt, J.W. Ludlow, B. Kell and D.J. McCance. 1992. Regions 

of human papillomavims type 16 E7 oncoprotein required for immortalization of human 

kératinocytes. J. Virol 66: 1329-1335.

Kakizuka, A., W.H. Miller, Jr., K. Umesono, R.P. Warrell, Jr., S.R. Frankel, V.V. 

Murty, E. Dmitrovsky and R.M. Evans. 1991. Chromosomal translocation t(15;17) in 

human acute promyelocytic leukemia fuses RAR alpha with a novel putative 

transcription factor, PML. Cell 66: 663-674.

Kamitani, T., H P. Nguyen, K. Kito, T. Fukuda-Kamitani and E.T. Yeh. 1998b. 

Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J. Biol 

Chem. 273: 3117-3120.

240



References

Kamitani, T., K. Kito, H.P. Nguyen, H. Wada, T. Fukuda-Kamitani and E.T. Yeh.

1998a. Identification of thiee major sentrinization sites in PML. J. Biol. Chem. 273: 

26675-26682.

Kawana, Y., K. Kawana, H. Yoshikawa, Y. Taketani, K. Yoshiike and T. Kanda.

2001. Human papillomavims type 16 minor capsid protein 12 N-terminal region 

containing a common neutralization epitope binds to the cell surface and enters the 

cytoplasm. /  Virol. 75: 2331-2336.

Kaye, K.M., K.M. Izumi and E. Kieff. 1993. Epstein-Bam vims latent membrane 

protein 1 is essential for B-lymphocyte growth transfonnation. Proc. Natl. Acad. Sci. U. 

5*. 90: 9150-9154.

Kaye, K.M., K.M. Izumi, H. Li, E. Johannsen, D. Davidson, R. Longnecker and E. 

Kieff. 1999. An Epstein-Barr vims that expresses only the first 231 LMPl amino acids 

efficiently initiates primaiy B-lymphocyte growth transfonnation. J. Virol. 73: 10525- 

10530.

Kennedy, I.M., J.K. Haddow and J.B. Clements. 1990. Analysis of human 

papillomavims type 16 late mRNA 3' processing signals in vitro and in vivo. J. Virol. 64: 

1825-1829.

241



References

Kennedy, I.M., J.K. Haddow and J.B. Clements. 1991. A negative regulatoiy element 

in the human papillomavims type 16 genome acts at the level of late mRNA stability. J. 

Virol 65: 2093-2097.

Kieff, E. 1996. Epstein-Barr vims and its replication, p. 2343-2396. In B. N. Fields, D. 

M. Knipe, and P. M. Howley (ed.), Fields virology, 3rd ed. Lippincott-Raven, 

Philadelphia, Pa.

Kirnbauer, R., J. Taub, H. Greenstone, R. Roden, M. Durst, L. Gissmann, D R. 

Lowy and J.T. Schiller. 1993. Efficient self-assembly of human papillomavims type 16 

LI and L1-L2 into vims-like particles. J. Virol 67: 6929-6936.

Kiyono, T., A. Hiraiwa, M. Fujita, Y. Hayashi, T. Akiyama and M. Ishibashi. 1997. 

Binding of high-risk human papillomavims E6 oncoproteins to the human homologue of 

the Drosophila discs large tumor suppressor protein. Proc. Natl Acad. Sci U. S. A 94: 

11612-11616.

Kiyono, T., A. Hiraiwa, M. Fujita, Y. Hayashi, T. Akiyama and M. Ishibashi. 1997. 

Binding of high-risk human papillomavims E6 oncoproteins to the human homologue of 

the Drosophila discs large tumor suppressor protein. Proc. Natl Acad. Sci U. S. A 94: 

11612-11616.

Kiyono, T., A. Hiraiwa, S. Ishii, T. Takahashi and M. Ishibashi. 1994. Inhibition of 

p53-mediated transactivation by E6 of type 1, but not type 5, 8, or 47, human 

papillomavims of cutaneous origin. J. Virol 68: 4656-4661.

242



___________________________________________________________________ References

Klingelhiitz, A.J., S.A. Foster and J.K. McDougall. 1996. Telomerase activation by the 

E6 gene product of human papillomavirus type 16. Nature 380: 79-82.

Klingelhutz, A.J., S.A. Foster and J.K. McDougall. 1996. Telomerase activation by the 

E6 gene product of human papillomavims type 16. Nature 380: 79-82.

Koffa, M.D., S.V. Graham, Y. Takagaki, J.L. Manley and J.B. Clements. 2000. The 

human papillomavims type 16 negative regulatoiy RNA element interacts with three 

proteins that act at different posttranscriptional levels. Proe. Natl. Aead. Set U. S. A 91: 

4677-4682.

Kuhne, C. and L. Banks. 1998. E3-ubiquitin ligase/E6-AP links multicopy maintenance 

protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J. Biol. Chem. 

273: 34302-34309.

Lambert, P.F. 1991. Papillomavims DNA replication./. Virol. 65: 3417-3420.

Lambert, P.F., B.C. Monk and P.M. Howley. 1990. Phenotypic analysis of bovine 

papillomavims type 1 E2 repressor mutants. J. Virol. 64: 950-956.

LaPorta, R.F. and L.B. Taichman. 1982. Human papilloma viral DNA replicates as a 

stable episome in cultured epidermal kératinocytes. Proc. Natl. Acad. Sci. U. S. A 19: 

3393-3397.

243



References

Lavau, C., A. Marchio, M. Fagioli, J. Jansen, B. Falini, P. Lebon, F. Grosveld, P.P. 

Pandolfi, P.G. Pelicci and A. Dejean. 1995b. The acute promyelocytic leukaemia- 

associated PML gene is induced by interferon. Oncogene 11: 871-876.

Lavau, C., J. Jansen and A. Dejean. 1995a. The t(15;17) tianslocation in acute 

promyelocytic leukemia. Pathol B iol (Paris) 43: 188-196.

Lavker, R.M. and T.T. Sun. 2003. Epithelial stem cells: the eye provides a vision. Eye 

17: 937-942.

Lechner, M.S. and L.A. Laimins. 1994. Inhibition of p53 DNA binding by human 

papillomavirus E6 proteins. J. Virol 68: 4262-4273.

Leder, C., J.A. Kleinschmidt, C. Wiethe and M. Muller. 2001. Enhancement of capsid 

gene expression: preparing the human papillomavims type 16 major stmctural gene LI 

for DNA vaccination puiposes. J. Virol 75: 9201-9209.

Lee, S.S., B. Giaunsinger, F. Mantovani, L. Banks and R.T. Javier. 2000. Multi-PDZ 

domain protein MUPPl is a cellular target for both adenovims E4-ORF1 and high-risk 

papillomavims type 18 E6 oncoproteins. J. Virol 74: 9680-9693.

Lee, S.S., R.S. Weiss and R.T. Javier. 1997. Binding of human vims oncoproteins to 

hDlg/SAP97, a mammalian homolog of the Drosophila discs lai ge tumor suppressor 

protein. Proc. Natl Acad. Sci. U. S. A 94: 6670-6675.

244



References

Lehman, C.W., D.S. King and M R. Botchan. 1997. A papillomavims E2 

phosphoiylation mutant exhibits noiTnal transient replication and transcription but is 

defective in transfonnation and plasmid retention. J. Virol 71: 3652-3665.

Lehming, N., A. Le Saux, J. Schuller and M. Ptashne. 1998. Clnomatin components as 

part of a putative transcriptional repressing complex. Proc. Natl Acad. Sci. U. S. A 95: 

7322-7326.

Li, Q.X., L.S. Young, G. Niedobitek, C.W. Dawson, M. Birkenbach, F. Wang and 

A.B. Rickinson. 1992. Epstein-Bair vims infection and replication in a human epithelial 

cell system. Nature 356: 347-350.

Li, R. and M R. Botchan. 1993. The acidic transcriptional activation domains of VP 16 

and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA 

replication. Ce//73: 1207-1221.

Li, R. and M R. Botchan. 1994. Acidic transcription factors alleviate nucleosome- 

mediated repression of DNA replication of bovine papillomavims type 1. Proc. Natl 

Acad. ScL U. S. A %19;91: 7051-7055.

Li, R., J.D. Knight, S.P. Jackson, R. Tjian and M R. Botchan. 1991. Direct interaction 

between Spl and the BPV enhancer E2 protein mediates synergistic activation of 

transcription. Cell 65: 493-505.

245



References

Lin, B.Y., T. Ma, J.S. Lin, S.R. Kuo, G. Jin, T.R. Broker, J.W. Harper and L.T. 

Chow. 2000. HeLa cells aie phenotypically limiting in cyclin E/CDK2 for efficient 

human papillomavims DNA replication. /  Biol. Chem. 275: 6167-6174.

Liptak, L.M., S.L. Uprichard and D M. Knipe. 1996. Functional order of assembly of 

hei'pes simplex vims DNA replication proteins into prereplicative site stmctures. J. Virol. 

70: 1759-1767.

Liu, Y., J.J. Chen, Q. Gao, S. Dalai, Y. Hong, C.P. Mansur, V. Band and E.J. 

Androphy. 1999. Multiple functions of human papillomavims type 16 E6 contribute to 

the immortalization of mammary epithelial cells. J. Virol. 73: 7297-7307.

Lukonis, C.J. and S.K. Weller. 1997. Formation of hei'pes simplex vims type 1 

replication compartments by transfection: requirements and localization to nuclear 

domain 10./. Virol. 71: 2390-2399.

Lyons, M.J. and D.H. Moore. 1962. Purification of the mouse mammary tumour vims. 

Nature 194 : 1141- 2 .: 1141-1142.

Lyons, M.J. and D.H. Moore. 1965. Isolation of the mouse mammary tumor vims: 

chemical and moiphological studies. /. Natl. Cancer Inst. 35: 549-565.

246



_________        References

Majewski, S. and S. Jablonska. 1995. Epidermodysplasia vermciformis as a model of 

human papillomavirus-induced genetic cancer of the skin. Arch. Dermatol. 131: 1312- 

1318.

Mall on, R.G., D. Wojciechowicz and V. Defend!. 1987. DNA-binding activity of 

papillomavirus proteins./. Virol. 61: 1655-1660.

Malmquist, K. C., L. E., Carlson, B. Forslid, G. M. Roomans and D. R. Akselsson.

1984. Proton and electron microprobe analysis of human skin. Nuclear Instruments and 

Methods in Physics Research. 3: 611-617.

Mansur, C.P. and E.J. Androphy. 1993. Cellular transfoimation by papillomavims 

oncoproteins. Biochim. Biophys. Acta 1155: 323-345.

Marchetti, B., G.H. Ashrafi, E. Tsirimoiiaki, P.M. O'Brien and M.S. Campo. 2002. 

The bovine papillomavims oncoprotein E5 retains MHC class I molecules in the Golgi 

apparatus and prevents their transport to the cell surface. Oncogene 21: 7808-7816.

Marriott, S.J., I. Boros, J.F. Duvall and J.N. Brady. 1989. Indirect binding of human 

T-cell leukemia vims type I taxi to a responsive element in the viral long terminal repeat. 

Mol. Cell Biol. 9: 4152-4160.

247



References

Martin, P., W.C. Vass, J.T. Schiller, D R. Lowy and T.J. Vein. 1989. The bovine 

papillomavims E5 transfomiing protein can stimulate the transforming activity of EGF 

and CSF-1 receptors. Cell 59: 21-32.

Maul, G.G., A.M. Ishov and R.D. Everett. 1996. Nuclear domain 10 as preexisting 

potential replication start sites of hei'pes simplex vims type-1. Virology 217: 67-75.

Maul, G.G., H.H. Guldner and J.G. Spivack. 1993. Modifieation of discrete nuclear 

domains induced by herpes simplex vims type 1 immediate early gene 1 product (ICPO). 

/. Gen. Virol. 74: 2679-2690.

Mavromatis, K.O., D.L. Jones, R. Mukherjee, C. Yee, M. Grace and K. Munger.

1997. The carboxyl-tei’minal zinc-binding domain of the human papillomavims E7 

protein can be functionally replaced by the homologous sequences of the E6 protein.

Virus Res. 52: 109-118.

McBride, A.A., J.C. Byrne and P.M. Howley. 1989. E2 polypeptides encoded by 

bovine papillomavims type 1 form dimers thr ough the common carboxyl-terminal 

domain: transactivation is mediated by the consei'ved amino-terminal domain. Proc. Natl. 

Acad. Sci. U. S. A 86: 510-514.

McCance, D.J., A. Kalache, K. Ashdown, L. Andrade, F. Menezes, P. Smith and R.

Doll. 1986. Human papillomavims types 16 and 18 in carcinomas of the penis from 

Brazil. Int. J. Cancer 37: 55-59.

248



References

McGregor, J.M. and M.H. Rustin. 1994. Human papillomavirus and skin cancer. 

Postgrad. Med. J. 70: 682-685.

McIntyre, M.C., M.N. Ruesch and L.A. Laimins. 1996. Human papillomavims E7 

oncoproteins bind a single form of cyclin E in a complex with cdk2 and p i07. Virology 

215: 73-82.

Menon, G.K., S. Grayson and P.M. Elias. 1985. Ionic calcium reseiwoirs in mammalian 

epideiTnis: ultrastmctural localization by ion-capture cytochemistry. J. Invest Dermatol. 

84: 508-512.

Meredith, M., A. Orr, M. Elliott and R. Everett. 1995. Separation of sequence 

requirements for HSV-1 Vmwl 10 multimerisation and interaction with a 135-kDa 

cellular protein. Virology 299: 174-187.

Meyers, C., T.J. Mayer and M.A. Ozbun. 1997. Synthesis of infectious human 

papillomavims type 18 in differentiating epithelium transfected with viral DNA. J. Virol. 

71: 7381-7386.

Middleton, K., W. Peh, S. Southern, H. Griffin, K. Sotlar, T. Nakahara, A. El Sherif, 

L. Morris, R. Seth, M. Hibma, D. Jenkins, P. Lambert, N. Coleman and J. Doorbar.

2003. Organization of human papillomavims productive cycle during neoplastic 

progression provides a basis for selection of diagnostic markers. J. Virol. 77: 10186- 

10201.

249



References

Morgan, I.M., G.J. Grindlay and M.S. Campo. 1998. Epithelial specific transcriptional 

regulation of the bovine papillomavims 4 promoter by E2./. Gen. Virol. 79: 501-508.

Muller, S. and A. Dejean. 1999. Viral immediate-early proteins abrogate the 

modifieation by SUMO-1 of PML and SplOO proteins, coiTelating with nuclear body 

dismption./. Virol. 73: 5137-5143.

Muller, S., M.J. Matunis and A. Dejean. 1998. Conjugation with the ubiquitin-related 

modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO /  17: 

61-70.

Munger, K. 1995. The molecular biology of cervical cancer. /. Cell Biochem. Suppl 

23:55-60.: 55-60.

Nakagawa, S. and J.M. Huibregtse. 2000. Human scribble (Vaidul) is targeted for 

ubiquitin-mediated degradation by the high-risk papillomavims E6 proteins and the 

E6AP ubiquitin-protein ligase. Mo/, Cell Biol. 20: 8244-8253.

Nakagawa, S., S. Watanabe, H. Yoshikawa, Y. Taketani, K. Yoshiike and T. Kanda.

1995, Mutational analysis of human papillomavims type 16 E6 protein: transforming 

function for human cells and degradation of p53 in vitro. Virology 212: 535-542.

250



References

Okun, M.M., P.M. Day, H.L. Greenstone, F.P. Booy, D R. Lowy, J.T. Schiller and 

R.B. Roden. 2001. LI interaction domains of papillomavirus 12 necessary for viral 

genome encapsidation. J. Virol. 75: 4332-4342.

Orth, G. 1986. Epidermodysplasia verrueifoimis: a model for understanding the 

oncogenicity of human papillomavimses. Ciba Found. Symp. 120:157-74.: 157-174,

Ozbun, M.A. 2002. Infectious human papillomavims type 31b: purification and infection 

of an immortalized human keratinocyte cell line. J. Gen. Virol. 83: 2753-2763.

Padlewska, K., N. Ramoz, P. Cassonnet, G. Riou, M. Barrois, S. Majewski, O. 

Croissant, S. Jablonska and G. Orth. 2001. Mutation and abnormal expression of the 

p53 gene in the viral skin carcinogenesis of epidermodysplasia venvicifoimis. J. Invest 

Dermatol. 117: 935-942.

Parkinson, J. and R.D. Everett. 2000. Alphaherpesvims proteins related to heipes 

simplex virus type 1 ICPO affect cellular stmctures and proteins. J. Virol. 74: 10006- 

10017.

Patel, D., S.M. Huang, L.A. Baglia and D.J. McCance. 1999. The E6 protein of human 

papillomavirus type 16 binds to and inhibits co-activation by GBP and p300. EMBO J.

18: 5061-5072.

251



References

Pennie, W.D., G.J. Grindlay, M. Cairney and M.S. Campo. 1993. Analysis of the 

transforming functions of bovine papillomavirus type 4. Virology 193: 614-620.

Penrose, K.J. and A.A. McBride. 2000. Proteasome-mediated degradation of the 

papillomavims E2-TA protein is regulated by phosphoiylation and can modulate viral 

genome copy number. J. Virol. 74:6031-6038.

Pero, R., F. Lembo, E.A. Palmieri, C. Vitiello, M. Fedele, A. Fusco, C.B. Bruni and 

L. Chiariotti. 2002. PATZ attenuates the RNF4-mediated enhancement of androgen 

receptor-dependent transcription. J. Biol. Chem. 277: 3280-3285.

Petti, L., L.A. Nilson and D. DiMaio. 1991. Activation of the platelet-derived growth 

factor receptor by the bovine papillomavims E5 transforming protein. EMBO J. 10; 845- 

855.

Phelps, W.C. and P.M. Howley. 1987. Transcriptional trans-activation by the human 

papillomavims type 16 E2 gene product. J. Virol. 61: 1630-1638.

Phelps, W.C., J.A. Barnes and D C. Lobe. 1998. Molecular targets for human 

papillomavimses: prospects for antiviral therapy. Antivir. Chem. Chemother. 9: 359-377.

Phelps, W.C., K. Munger, C.L. Yee, J.A. Barnes and P.M. Howley. 1992. Structure- 

function analysis of the human papillomavims type 16 E7 oncoprotein. J. Virol. 66: 

2418-2427.

252



References

Pim, D., A. Storey, M. Thomas, P. Massimi and L. Banks. 1994. Mutational analysis 

of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 

transactivation in vivo and immoifalisation of primary BMK cells. Oncogene 9: 1869- 

1876.

Potten, C.S. 1981. Cell replacement in epidermis (keratopoiesis) via discrete units of 

proliferation. 7/7̂ . Rev. Cytol. 69:271-318.: 271-318.

Puvion-Dutilleul, F., L. Venturini, M.C. Guillemin, H. de The and E. Puvion. 1995. 

Sequestration of PML and SplOO proteins in an intranuclear viral structure during heipes 

simplex vims type 1 infection. Exp. Cell Res. 221: 448-461.

Quinlan, M.P., L.B. Chen and D.M. Knipe. 1984. The intranuclear location of a herpes 

simplex virus DNA-binding protein is determined by the status of viral DNA replication. 

Cell 36: 857-868.

Ramoz, N., L.A. Rueda, B. Bouadjar, L.S. Montoya, G. Orth and M. Favre. 2002. 

Mutations in two adjacent novel genes are associated with epidermodysplasia 

veiiucifoimis. Ad?. Genet. 32: 579-581.

Rank, N.M. and P.F. Lambert. 1995. Bovine papillomavims type 1 E2 transcriptional 

regulators directly bind two cellular transcription factors, TFIID and TFIIB. J. Virol. 69: 

6323-6334.

253



References

Richardson, J.H., A.J. Edwards, J.K. Cruickshank, P. Rudge and A.G. Dalgleish.

1990. In vivo cellular tropism of human T-cell leukemia vims type 1. J. Virol. 64: 5682- 

5687.

Rickinson, A.B., M. Rowe, I.J. Hart, Q.Y. Yao, L.E. Henderson, H. Rabin and M.A. 

Epstein. 1984. T-cell-mediated regression of "spontaneous" and of Epstein-Barr vims- 

induced B-cell transfoimation in vitro: studies with cyclosporin A. Cell Immunol. 87: 

646-658.

Rickinson, A.B., M. Rowe, I.J. Hart, Q.Y. Yao, L.E. Henderson, H. Rabin and M.A. 

Epistein. 1984. T-cell-mediated regression of "spontaneous" and of Epstein-Barr vims- 

induced B-cell transfoimation in vitro: studies with cyclosporin A. Cell Immunol. 87: 

646-658.

Roden, R.B., P.M. Day, B.K. Bronzo, W.H. Yutzy, Y. Yang, D R. Lowy and J.T. 

Schiller. 2001. Positively charged teimini of the L2 minor capsid protein are necessary 

for papillomavims infection. J. Virol. 75: 10493-10497.

Romanczuk, H., F. Thierry and P.M. Howley. 1990. Mutational analysis of cis 

elements involved in E2 modulation of human papillomavims type 16 P97 and type 18 

P105 promoters. J. Virol. 64: 2849-2859.

254



_____________________ References

Rose, R.C., W. Bonnez, R.C. Reich man and R.L. Garcea. 1993. Expression of human 

papillomavims type 11 LI protein in insect cells: in vivo and in vitro assembly of 

vimslike particles. J. Virol. 67: 1936-1944.

Ruesch, M.N. and L.A. Laimins. 1998. Human papillomavims oncoproteins alter 

differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology 

250: 19-29.

Sakai, H., T. Yasugi, J.D. Benson, J.J. Dowhaiiick and P.M. Howley. 1996. Targeted 

mutagenesis of the human papillomavims type 16 E2 transactivation domain reveals 

separable transcriptional activation and DNA replication functions. J. Virol. 70: 1602- 

1611.

Scheffner, M., B.A. Werness, J.M. Huibregtse, A.J. Levine and P.M. Howley. 1990. 

The E6 oncoprotein encoded by human papillomavims types 16 and 18 promotes the 

degradation of p53. Cell 63: 1129-1136.

Schiffman, M.H. and L.A. Brinton. 1995. The epidemiology of cervical carcinogenesis. 

Cancer 16: 1888-1901.

Schmitt, A., J.B. Harry, B. Rapp, F.O. Wettstein and T. Iftner. 1994. Comparison of 

the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomavimses 

reveals strongly transforming and high Rb-binding activity for the E7 protein of the low- 

risk human papillomavirus type 1. J. Virol. 68: 7051-7059.

255



References

Schwartz, S.M., J R. Dating, D R. Doody, G.C. Wipf, J.J. Carter, M.M. Madeleine, 

E.J. Mao, E D. Fitzgibbons, S. Huang, A.M. Beckmann, J.K. McDougall and D A. 

Galloway. 1998. Oral cancer risk in relation to sexual histoiy and evidence of human 

papillomavims infection./. Aa?/. Cancer Inst 90: 1626-1636.

Seeler, J.S., A. Marchio, D. Sitterlin, C. Transy and A. Dejean. 1998. Interaction of 

SPlOO with HPl proteins: a link between the promyelocytic leukemia-associated nuclear 

bodies and the chromatin compartment. Proc. Natl Acad. Sci. U. S. A 95 : 7316-7321.

Sixbey, J.W., J.G. Nedrud, N. Raab-Traub, R.A. Hanes and J.S. Pagano. 1984. 

Epstein-Barr vims replication in orophaiyngeal epithelial cells. N. Engl J. Med. 310: 

1225-1230.

Sokolowski, M., W. Tan, M. Jellne and S. Schwartz. 1998. mRNA instability elements 

in the human papillomavims type 16 L2 coding region. J. Virol 72: 1504-1515.

Song, S., H.C. Pitot and P.F. Lambert. 1999. The human papillomavims type 16 E6 

gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol 73: 5887- 

5893.

Stadler, M., M.K. Chelbi-Alix, M.H. Koken, L. Venturini, C. Lee, A. Saib, F. 

Quignon, L. Pelicano, M.C. Guillemin, C. Schindler and . 1995. Transcriptional 

induction of the PML growth suppressor gene by interferons is mediated thiough an 

ISRE and a GAS element. Oncogene 11: 2565-2573.

256



References

Stauffer, Y., K. Raj, K. Masternak and P. Beard. 1998. Infectious human 

papillomavims type 18 pseudovirions. J. Mol. Biol. 283: 529-536.

Steger, G. and H. Pfister. 1992. In vitro expressed HPV 8 E6 protein does not bind p53. 

Arch. Virol. 125: 355-360.

Steger, G. and S. Corbach. 1997. Dose-dependent regulation of the early promoter of 

human papillomavims type 18 by the viral E2 protein. J. Virol. 71: 50-58.

Steger, G., J. Ham, O. Lefebvre and M. Yaniv. 1995. The bovine papillomavims 1 E2 

protein contains two activation domains: one that interacts with TBP and another that 

functions after TBP binding. EMBO J. 14: 329-340.

Steinert, P.M. and L.N. Marekov. 1995. The proteins elafm, filaggrin, keratin 

intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide 

cross-linked components of the human epidermal cornified cell envelope. J. Biol. Chem. 

270: 17702-17711.

Sterling, J., M. Stanley, G. Gatward and T. Minson. 1990. Production of human 

papillomavims type 16 virions in a keratinocyte cell line. J. Virol. 64: 6305-6307.

Sternsdorf, T., K. Jensen, B. Reich and H. Will. 1999. The nuclear dot protein splOO, 

characterization of domains necessary for dimerization, subcellular localization, and 

modification by small ubiquitin-like modifiers./. Biol. Chem. 274: 12555-12566.

257



References

Sternsdorf, T., T. Grotzinger, K. Jensen and H. Will. 1997. Nuclear dots: actors on 

many stages. Immunobiology 198: 307-331.

Stevenson, M., L.C. Hudson, J.E. Burns, R.L. Stewart, M. Wells and N.J. Maitland.

2000. Inverse relationship betv/een the expression of the human papillomavirus type 16 

transcription factor E2 and vims DNA copy number during the progression of ceiwical 

intraepithélial neoplasia./. Gen. Virol. 81: 1825-1832.

Stoler, M.H., C.R. Rhodes, A. Whitbeck, S.M. Wolinsky, L.T. Chow and T.R. 

Broker. 1992. Human papillomavims type 16 and 18 gene expression in cervical 

KiQoyAasms. Hum. Pathol. 23: 117-128.

Straight, S.W., B. Herman and D.J. McCance. 1995. The E5 oncoprotein of human 

papillomavims type 16 inhibits the acidification of endosomes in human kératinocytes. J. 

Virol. 69: 3185-3192.

Stubenrauch, F. and L.A. Laimins. 1999. Human papillomavims life cycle: active and 

latent phases. Cancer Biol. 9: 379-386.

Stubenrauch, F., A.M. Colbert and L.A. Laimins. 1998. Transactivation by the E2 

protein of oncogenic human papillomavims type 31 is not essential for early and late viral 

functions./. Virol. 72: 8115-8123.

258



References

Sun, X.Y., I. Frazer, M. Muller, L. Gissmann and J. Zhou. 1995. Sequences required 

for the nuclear targeting and accumulation of human papillomavims type 6B L2 protein. 

Virology 213: 321-327.

Swindle, C.S., N. Zou, B.A. Van Tine, G.M. Shaw, J.A. Engler and L.T. Chow. 1999. 

Human papillomavims DNA replication compartments in a transient DNA replication 

system. /  Virol. 73: 1001-1009.

Syrjanen, S. 2003. Human papillomavims infections and oral tumors. Med. Microbiol. 

Immunol. (Berl) 192: 123-128.

Szekely, L., K. Fokrovskaja, W.Q. Jiang, H. de The, N. Ringertz and G. Klein. 1996. 

The Epstein-Barr vims-encoded nuclear antigen EBNA-5 accumulates in PML- 

containing bodies. J. Virol. 70: 2562-2568.

Szostecki, C., H.H. Guldner, H.J. Netter and H. Will. 1990. Isolation and 

characterization of cDNA encoding a human nuclear antigen predominantly recognized 

by autoantibodies from patients with primaiy biliaiy cinhosis. J. Immunol. 145: 4338- 

4347.

Tan, S.H., L.E. Leong, P.A. Walker and H.U. Bernard. 1994. The human 

papillomavims type 16 E2 transcription factor binds with low cooperativity to two 

flanking sites and represses the E6 promoter tlii'ough displacement of Spl and TFIID. J. 

Virol. 68: 6411-6420.

259



References

Taylor, G., M.S. Lehrer, P.J. Jensen, T.T. Sun and R.M. Lavker. 2000. Involvement 

of follicular stem cells in foiming not only the follicle but also the epidermis. Cell 102: 

451-461.

Terhune, S.S., W.G. Hubert, J.T. Thomas and L.A. Laimins. 2001. Early 

polyadenylation signals of human papillomavirus type 31 negatively regulate capsid gene 

expression./. Virol. 75: 8147-8157.

Terris, B., V. Baldin, S. Dubois, C. Degott, J.F. Flejou, D. Henin and A. Dejean.

1995. PML nuclear bodies are general targets for inflammation and cell proliferation. 

Cancer Res. 55: 1590-1597.

Thierry, F. and P.M. Howley. 1991. Functional analysis of E2-mediated repression of 

the HPV 18 P I05 promoter. New Biol. 3: 90-100.

Thomas, M. and L. Banks. 1998. Inhibition of Bak-induced apoptosis by HPV-18 E6. 

Oncogene 17: 2943-2954.

Thomas, M., P. Massimi, J. Jenkins and L. Banks. 1995. HPV-18 E6 mediated 

inhibition of p53 DNA binding activity is independent of E6 induced degradation. 

Oncogene %19;10: 261-268.

260



References

Trus, B.L., R.B. Roden, H.L. Greenstone, M. Vrhei, J.T. Schiller and F.P. Booy.

1997. Novel structural features of bovine papillomavims capsid revealed by a three- 

dimensional reconstruction to 9 A resolution. Nat. Struct. Biol. 4: 413-420.

Turek, L.P. 1994. The stmcture, function, and regulation of papillomaviral genes in 

infection and ceivical cancer. Adv. Virus Res. 44:305-56.; 305-356.

Uchiyama, T. 1997. Human T cell leukemia vims type I (HTLV-I) and human diseases. 

Annu. Rev. Immunol. 15: 15-37.

Uchiyama, T. 1997. Human T cell leukemia vims type I (HTLV-I) and human diseases. 

Annu. Rev. Immunol. 15:15-37.: 15-37.

Unckell, F., R.E. Streeck and M. Sapp. 1997. Generation and neutralization of 

pseudovirions of human papillomavims type 33. J. Virol 71: 2934-2939.

Ustav, E. and Ustav, M., 1998. E2 protein as the master regulator of extrachromosomal 

replication of the papillomavimses. Papillomavirus Report 9: 145-152.

Vallian, S., K.V. Chin and K.S. Chang. 1998. The promyelocytic leukemia protein 

interacts with Spl and inhibits its transactivation of the epideimal growth factor receptor 

promoter. Mo/. Cell Biol 18: 7147-7156.

261



References

Vance, K.W., M.S. Campo and I.M. Morgan. 1999. An enhanced epithelial response of 

a papillomavims promoter to transcriptional activators. J. Biol Chem. 274: 27839-27844.

Vasioukhin, V., C. Bauer, L. Degenstein, B. Wise and E. Fuchs. 2001. 

Hypeiproliferation and defects in epithelial polarity upon conditional ablation of alpha- 

catenin in skin. Cell 104: 605-617.

Verma, S.C. and E.S. Robertson. 2003. Molecular biology and pathogenesis of Kaposi 

sarcoma-associated heipesvims. A£’MS'M/croZ>/o/. Lett. 222: 155-163.

Verma, S.C. and E.S. Robertson. 2003. Molecular biology and pathogenesis of Kaposi 

sarcoma-associated herpesvims. ÆMS'M/croèm/. Lett. 222: 155-163.

Waggoner, S.E. 2003. Cervical cancer. Lancet 561 : 2217-2225.

Wang, D., D. Liebowitz and E. Kieff. 1985. An EBV membrane protein expressed in 

immortalized lymphocytes transfoims established rodent cells. Cell 43: 831-840.

Wang, Y., J.F. Holland, I.J. Bleiweiss, S. Melana, X. Liu, I. Pelisson, A. Cantarella, 

K. Stellrecht, S. Mani and B.G. Pogo. 1995. Detection of mammary tumor vims env 

gene-like sequences inhuman breast cancer. Cancer Res. 55: 5173-5179.

262



References

Wang, Z.G., D. Ruggero, S. Ronchetti, S. Zhong, M. Gaboli, R. Rivi and P.P.

Pandolfi. 1998b. PML is essential for multiple apoptotic pathways. Nat. Genet. 20: 266- 

272.

Wang, Z.G., L. Del va, M. Gaboli, R. Rivi, M. Giorgio, C. Cordon-Cardo, F. 

Grosveld and P.P. Pandolfi. 1998a. Role of PML in cell growth and the retinoic acid 

pathway. Science 279: 1547-1551.

Watt, F.M. 2000. Epidermal stem cells as targets for gene transfer. Hum. Gene Ther. 11: 

2261-2266.

Watt, F.M. 2001. Stem cell fate and patterning in mammalian epidermis. Curr. Opin. 

Genet. Dev. 11: 410-417.

Weis, K., S. Rambaud, C. Lavau, J. Jansen, T. Carvalho, M. Carmo-Fonseca, A.

Lamond and A. Dejean. 1994. Retinoic acid regulates aberrant nucleai- localization of 

PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76: 345-356.

Winokur, P.L. and A.A. McBride. 1992. Separation of the transcriptional activation and 

replication functions of the bovine papillomavims-1 E2 protein. EMBO /  11: 4111- 

4118.

263



References

Winokur, P.L. and A.A. McBride. 1992. Separation of the transcriptional activation and 

replication fonctions of the bovine papillomavims-1 E2 protein. EMBO J. 11: 4111- 

4118.

Wu, E.W., K.E. Clemens, D.V. Heck and K. Munger. 1993. The human 

papillomavims E7 oncoprotein and the cellular transcription factor E2F bind to separate 

sites on the retinoblastoma tumor suppressor protein. J. Virol. 67: 2402-2407.

Xi, S.Z. and L.M. Banks. 1991. Baculovims expression of the human papillomavims 

type 16 capsid proteins: detection of L1-L2 protein complexes. J. Gen. Virol. 72: 2981- 

2988.

Yamashita, T., K. Segawa, Y. Fujinaga, T. Nishikawa and K. Fujinaga. 1993. 

Biological and biochemical activity of E7 genes of the cutaneous human papillomavims 

type 5 and 8. Oncogene 8: 2433-2441.

Yang, R., W.H. Yutzy, R.P. Viscid: and R.B. Roden. 2003. Interaction of L2 with beta- 

actin directs intracellular transport of papillomavims and infection. J. Biol. Chem. 278: 

12546-12553.

Yuspa, S.H., T. Ben and H. Hennings. 1983. The induction of epidermal 

transglutaminase and teiminal differentiation by tumor promoters in cultured epidermal 

cells. Carcinogenesis A: 1413-1418.

264



References

Yuspa, S.H., T. Ben, H. Hennings and U. Lichti. 1982. Divergent responses in 

epidermal basal cells exposed to the tumor promoter 12-0-tetradecanoylphorbol-13- 

acetate. Cancer Res. 42: 2344-2349.

Zhao, K.N., K. Hengst, W.J. Liu, Y.H. Liu, X.S. Liu, N.A. McMillan and I.H. 

Frazer. 2000. BPVl E2 protein enhances packaging of full-length plasmid DNA in 

BPVl pseudovirions. Virology 272 : 382-393.

Zhao, K.N., X.Y. Sun, I.H. Frazer and J. Zhou. 1998. DNA packaging by LI and L2

capsid proteins of bovine papillomavirus type 1. Virology 243: 482-491.

Zhong, S., P. Salomoni and P.P. Pandolfi. 2000. The transcriptional role of PML and 

the nuclear body. Nat. Cell Biol. 2: E85-E90.

Zhou, J., D.J. Stenzel, X.Y. Sun and I.H. Frazer. 1993. Synthesis and assembly of 

infectious bovine papillomavirus particles in vitro./. Gen. Virol. 74: 763-768.

Zhou, J., W.J. Liu, S.W. Peng, X.Y. Sun and I. Frazer. 1999. Papillomavirus capsid 

protein expression level depends on the match between codon usage and tRNA 

availability. J. Virol. 73: 4972-4982.

Zhou, J., X.Y. Sun, D.J. Stenzel and I.H. Frazer. 1991. Expression of vaccinia 

recombinant HPV 16 LI and L2 ORE proteins in epithelial cells is sufficient for assembly 

of HPV virion-like particles. Virology 185: 251-257,

265



References

Zhou, J., X.Y. Sun, K. Louis and I.H. Frazer. 1994. Interaction of human 

papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N- 

terminal sequence. J. Virol. 68: 619-625.

Zhu, X.X., J.X. Chen, C.S. Young and S. Silverstein. 1990. Reactivation of latent 

herpes simplex virus by adenovims recombinants encoding mutant IE-0 gene products. J. 

Virol. 64: 4489-4498.

Zimmermann, H., C.H. Koh, R. Degenkolbe, M.J. O'Connor, A. Muller, G. Steger, 

J.J. Chen, Y. Lui, E. Androphy and H.U. Bernard. 2000. Interaction with CBP/p300 

enables the bovine papillomavims type 1 E6 oncoprotein to downregulate CBP/p300- 

mediated transactivation by p53./. Gen. Virol. 81: 2617-2623.

Zou, N., B Y. Lin, F. Duan, K.Y. Lee, G. Jin, R. Guan, G. Yao, E.J. Lefkowitz, T.R. 

Broker and L.T. Chow. 2000. The hinge of the human papillomavims type 11 E2 

protein contains major determinants for nuclear localization and nuclear matrix 

association./. Virol. 74: 3761-3770.

zur, H.H. 2002. Papillomavimses and cancer: from basic studies to clinical application. 

Nat. Rev. Cancer 2 : 342-350.

266


